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A Survey of Processing Systems for Phylogenetics and
Population Genetics
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The COVID-19 pandemic brought Bioinformatics into the spotlight, revealing that several existing methods,

algorithms, and tools were not well prepared to handle large amounts of genomic data efficiently. This led

to prohibitively long execution times and the need to reduce the extent of analyses to obtain results in a

reasonable amount of time. In this survey, we review available high-performance computing and hardware-

accelerated systems based on FPGA and GPU technology. Optimized and hardware-accelerated systems can

conduct more thorough analyses considerably faster than pure software implementations, allowing to reach

important conclusions in a timely manner to drive scientific discoveries. We discuss the reasons that are

currently hindering high-performance solutions from being widely deployed in real-world biological analyses

and describe a research direction that can pave the way to enable this.
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1 INTRODUCTION

Bioinformatics research provides researchers in life and health sciences with the necessary toolset
for processing molecular data to answer important biological questions, ranging from untangling
the evolutionary history of organisms [11] to identifying clinically meaningful genes for cancer
risk assessment, diagnosis, prognosis, and treatment [80]. Advances in DNA sequencing technolo-
gies in the past years, however, increased sequencing throughput while reducing sequencing costs,
leading to an ever-increasing accumulation of whole genomes in private and public databases such
as GenBank [79], GISAID [81], ENCODE [25], and the Cancer Genome Atlas [97]. As a result, stud-
ies today include a constantly growing number of organisms (sample size) in an effort to improve
statistical power and thus accuracy and reliability of the outcome [20]. This has, inevitably, trans-
formed Bioinformatics to a computational discipline that increasingly requires scalable algorithms
and high-performance processing systems.
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Furthermore, the COVID-19 pandemic brought Bioinformatics into the spotlight, exposing
weaknesses in existing methods and tools with respect to handling large datasets efficiently. For
instance, in April 2020, the authors of the widely used software MAFFT [53] for aligning multiple
protein/DNA sequences released an experimental implementation only suitable for SARS-CoV-2.
This implementation exploits certain characteristics of the viral genome (e.g., the high similarity
between sequences due to the rapid spread of the virus) to approximate the alignment process in
an effort to prevent prohibitively long processing times as the number of available SARS-CoV-2
genomes continue to increase rapidly. A phylogenetics study by Morel et al. [59] concludes that
one of the two reasons why constructing the phylogenetic tree of 75,000 SARS-CoV-2 genomes is
“difficult” is the excessive computational requirements due to the large number of sequences (the
other reason is the small number of mutations due to the rapid spread of the virus). The phylo-
genetic analysis was restricted to just 5% of the parameter space, possibly due to the heightened
urgency to reach conclusions because of the pandemic.

Over the years, the computing landscape has become highly heterogeneous, with modern plat-
forms currently integrating multi-core CPUs with GPUs and/or FPGAs. Modern GPUs exhibit
massively parallel computer architectures with thousands of processing cores. FPGAs, however, do
not have a fixed processing architecture but can implement any specialized computer architecture
by configuring and interconnecting millions of fine-grained logic elements. Exploiting hardware
acceleration and high-performance computing (HPC) solutions in Bioinformatics is of para-
mount importance today more than ever, since HPC systems will enable faster and more thorough
biological analyses.

Many widely used algorithms have been previously accelerated using advanced, low-level
software solutions and/or hardware accelerators. Yet, despite their demonstrated performance
potential, hardware accelerators are less frequently deployed in the field than general-purpose
processors. To this end, this survey reviews literature on high-performance solutions targeting
CPUs, GPUs, and FPGAs for important computational problems in Bioinformatics with the aim to
shed light into the performance potential of these technologies. We also analyze the reasons that
are currently hindering high-performance solutions from being actively deployed in real-world
analyses and discuss a research direction that can pave the way to enable this.

Related surveys have previously focused mostly on sequence alignment [10, 44, 60]. Here, we dis-
cuss solutions that boost performance of widely used compute-intensive kernels in phylogenetics
and population genetics, which can have direct, profound impact in future pandemics by enabling
faster, more thorough analyses to detect diseases and design drugs. A study by Turakhia et al. [90],
for instance, shows the potential of phylogenetics for genomic tracing, which can determine ge-
netic similarities between viral genomes isolated from different hosts that carry information about
the transmission dynamics of the virus. Such information can be used to determine, for instance,
the number of unique introductions of the viral genome in a given area, thereby identifying trans-
mission chains among seemingly unrelated infections. A study by Vasilarou et al. [93] elaborates
on the significance of using population genetics to provide insights into the spread and epidemics
of SARS-CoV-2. Population genetics offers the tools to estimate parameters such as the mutation
and the recombination rate, which are important for understanding the evolution and thus the
management of viral diseases. Kang et al. [48] report signatures of a selective sweep in the spike
protein of the SARS-CoV-2 genome, suggesting that this could have contributed to the emergence
of the virus from animals or enabled human-to-human transmission.

This survey focuses on widely used functions for scoring phylogenetics trees (the phylo-

genetic parsimony function (PPF) and the phylogenetic likelihood function (PLF)) and
important association mapping measures in population genetics (linkage disequilibrium (LD)

and epistasis). From a processing standpoint, the selected functions/kernels pose computational
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challenges that are addressed more or less efficiently by each of the computer architectures con-
sidered here, thereby providing a representative range of performance potential of the processing
solutions for Bionformatics problems. For example, both the PLF and epistasis computation rely
on floating-point arithmetic that is more efficiently implemented on a GPU but is very resource
costly on an FPGA. The PPF and LD computation, however, are based on discrete arithmetic that
is more efficiently mapped to FPGAs than GPUs. The phylogenetic scoring functions benefit the
most from deep custom pipelined architectures that can be implemented on FPGAs, whereas LD
and epistasis computation are memory-bound and can better exploit the high memory bandwidth
offered by GPUs.

The rest of the article is organized as follows: Section 2 describes the processing platforms (CPU,
GPU, and FPGA). Section 3 focuses on phylogenetics and discusses solutions for the two main
scoring functions of phylogenetic trees, i.e., the phylogenetic parsimony function (Section 3.1) and
the phylogenetic likelihood function (Section 3.2). Section 4 focuses on population genetics and
discusses solutions for the calculation of linkage disequilibrium (Section 4.1), pairwsie epistasis
(Section 4.2), and third-order epistasis (Section 4.3). Section 5 reviews energy consumption,
while Section 6 discusses performance of unconventional processing systems such as process-
ing in memory and quantum computing. Section 7 provides a discussion and concludes this
survey.

2 PROCESSING ARCHITECTURES

This section describes the processing platforms and their respective advantages and disadvantages.

CPU

A Central Processing Unit (CPU) has a fixed architecture designed to achieve high performance
for the general case. This is achieved by implementing and using caches, on-chip memory, multiple
cores/threads, instruction-level and data-level parallelism, among other optimization techniques.
The utilization of caches, on-chip memory, and instruction-level parallelism is generally taken care
of by the processor itself, whereas the utilization of multiple cores/threads and data-level paral-
lelism has to be managed by the developer. OpenMP is an Application Programming Interface

(API) that enables multi-threading on a CPU in which tasks can be divided over multiple threads
that run on multiple cores. Data-level parallelism can be implemented using vector intrinsics such
as the SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions) instruc-
tions, which enable Single Instruction Multiple Data (SIMD) execution. Figure 1 illustrates an
example of the implementation and usage of a single Arithmetic Logic Unit (ALU) and a vector
of ALUs that execute the same instruction (e.g., an addition) on multiple data elements in parallel,
resulting in higher throughput performance.

GPU

A Graphics Processing Unit (GPU) also has a fixed architecture but differs from a CPU through
the implementation of a massively parallel architecture. A CPU nowadays can contain tens of cores,
whereas a GPU can consist of thousands of cores, which, however, have a more basic processing
architecture and thus lower computing power than CPU cores. A GPU implements a Single In-

struction Multiple Threads (SIMT) execution model that allows multiple threads to execute
the same instruction on multiple data. This execution model effectively is a multi-threaded SIMD
execution model. This limits the types of applications that can efficiently be mapped on a GPU ar-
chitecture, since it is more suitable for applications that process large amounts of data with no data
dependencies. GPUs have smaller cache memories than CPUs and require targeted optimizations
to achieve high performance. The GPU processing cores are called Stream Processors (SPs) in
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Fig. 1. Example of vector processing with a SIMD vector ALU as used with the SSE and AVX instruction sets.

AMD terminology and reside in SIMD Cores. All SPs in a SIMD Core perform the same instruction
simultaneously on multiple data. A Compute Unit (CU) consists of several SIMD Cores. Figure 2
depicts an abstract view of the GPU architecture.

FPGA

A Field-Programmable Gate Array (FPGA) is an integrated circuit that consists of pro-
grammable logic hardware blocks and programmable interconnect, collectively called the fabric. It
can be configured to implement application-specific computer architectures. The logic hardware
blocks are called Logic Elements (LEs) and consist of various basic hardware elements that are
combined upon device configuration to implement the desired functionality. The reconfigurable
nature of the FPGA enables higher performance for specific applications types than CPUs and
GPUs, but FPGA devices have limited on-chip resources and limited bandwidth that reduce per-
formance. Figure 3 shows an abstract view of a generic FPGA architecture and a simplified view
of a Logic Element (LE).

3 PHYLOGENETICS

Phylogenetics reconstruct the evolutionary history of organisms (taxa) based on shared ancestry.
After a Multiple Sequence Alignment (MSA) has been created, phylogenetic inference methods
can construct a phylogenetic tree given an optimality criterion. Due to advances in DNA sequenc-
ing technologies, the field of phylogenetics is currently in need for accelerated solutions; tree
reconstruction increasingly becomes more computationally intensive with an increasing number
of taxa. The search for the maximum likelihood phylogenetic tree is NP-hard [23], which is why
heuristics are inevitably employed to search the tree space for the optimal tree (given some opti-
mality criterion).

Tree-scoring functions are used for evaluating phylogenetic trees. One method for this purpose
is the Phylogenetic Parsimony Function (PPF) [26], which is a discrete function that aims to
find the phylogenetic tree based on the least number of mutations among taxa. Another method
for evaluating phylogenetic trees is the Phylogenetic Likelihood Function (PLF) [30]. The PLF
is the most widely used method for tree construction and is employed in several phylogenetics
tools like RAxML [85], GARLI [110], and MrBayes [74]. Yang and Rannala [103] provide a detailed
review of the major methods and principles in phylogenetics.
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Fig. 2. Abstract view of the GPU architecture with several Stream Processors (SPs) on which threads are

scheduled according to the SIMT execution model.

3.1 Phylogenetic Parsimony Function (PPF)

The PPF is used when the main objective is to find the tree topology that requires the least number
of mutations to explain the data. Figure 4 depicts two possible topologies and the required muta-
tions to explain the observed data at the tips; the tree that requires only one character change is
the most parsimonious one. In comparison with the PLF, which relies on likelihood calculation
(discussed in the next section), the PPF is considerably less compute- and memory-intensive [36]
due to a simpler scoring function that produces an integer output representing the number of
evolutionary changes. Because of this, the PPF is highly suitable for large-scale analyses. Various
studies have already focused on optimizing the calculation of the PPF. Two algorithms can be
used to implement the PPF, i.e., Fitch’s algorithm [31] and Sankoff’s algorithm [75], with Fitch’s
algorithm being more commonly used because of lower computational complexity [18].

Sankoff’s algorithm is a dynamic programming algorithm that finds the most parsimonious
topology for a given tree by counting the smallest number of possible (weighted) state changes.
The algorithm initializes the leaves of the tree with the following scoring scheme:

sv (k ) =
⎧⎪⎨⎪⎩

0 if leaf v has state k

∞ otherwise.
(1)
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Fig. 3. Abstract view of the FPGA architecture with several LEs placed in the fabric, which can be configured

for a specific application. Each LE consists of lookup tables (LUT), basic storage elements such as flip flops

(FF), and multiplexers (MUX).

Fig. 4. Parsimony tree scoring visualization: Less changes in sequence data from the ancestral state to the

current state result in a higher parsimony score and thus a more parsimonious topology.

Given an inner node v and its two children u and w , the score for v is computed using a k × k
scoring matrix δ , with k being the number of possible characters per state and δi,t being the cost
to go from state i to state t :

sv (t ) = min
i
{su (i ) + δi,t } +min

j
{sw (j ) + δ j,t }. (2)

When all nodes are scored, a trace-back step is performed to find the state changes with the optimal
cost and thus the most parsimonious topology.

Fitch’s algorithm initializes each leaf l of the tree with the observed character, i.e., S (l ) =
observed character. For every inner node v with children u and w , a set of S (v ) characters
are assigned as follows:

S (v ) =
⎧⎪⎨⎪⎩
S (u) ∩ S (w ) if non-empty intersection

S (u) ∪ S (w ) otherwise.
(3)
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Then, the algorithm traverses from root to leaf. The root, r , is assigned an an arbitrary character
from its set S (r ). The following nodes, v , are assigned:

• the character in the parent node if it is in its set S (v )
• an arbitrary letter from the set S(v) otherwise.

This will result in the tree topology with the least character changes.

CPU. Alachiotis and Stamatakis [7] employ an optimized, in-house parallel implementation,
dubbed parsimonator, as the reference software for evaluating performance of a hardware accel-
erator (discussed in a following section). This reference software implementation deploys vector
instructions such as the Intel SSE (128-bit streaming SIMD extensions) and AVX (256-bit advanced
vector extensions) intrinsic instructions. The study shows (based on execution time comparisons)
that the AVX implementation is 1.14× to 1.73× faster than the SSE implementation, yet between
5.6× and 9.65× slower than an FPGA accelerator.

Santander et al. [77] present an optimized solution for CPU, which is used for performance
comparisons with their hardware-accelerated PPF implementation. The software (SW) implemen-
tation is parallelized and optimized using the OpenCL framework in combination with SIMD in-
structions. The solution is compared to an unoptimized serial implementation and a newer version
of the parsimonator (1.0.2) (available at: https://cme.h-its.org/exelixis/web/software/parsimonator/
index.html) tool that is parallelized using OpenMP. All performance values are acquired using two
Intel Xeon E5-2630v3 CPUs. The optimized parallel solution is between 8.7× and 77× faster than
the serial implementation and between 1.1× and 9.3× faster than the parallel AVX implementation
of parsimonator.

Block and Maruyama [16] present a CPU-optimized solution developed using C++, which is used
as reference for their hardware-accelerated PPF implementation (discussed in a following section).
The C++ solution implements a local search algorithm that relies on the Progressive Neighbor-

hood (PN) [33] search method. A PN search starts with a large neighborhood and takes more
topologies into account to ensure a more intensive search. The C++ software solution is compared
with the respective FPGA implementation and with TNT [37], a highly optimized tool for parsi-
mony analysis. Using an Intel core i7-860 CPU running at 2.8 GHz as test platform, the software
solution is considerably slower than both TNT and the FPGA accelerator, with TNT achieving, on
average, comparable execution times with the FPGA-accelerated implementation (inferred from
Block and Maruyama [16], Table 3).

FPGA. Kasap and Benkrid [50, 51] present an FPGA implementation that is based on a systolic
array architecture for the acceleration of the PPF using Sankoff’s algorithm [75]. The authors
applied fine- and coarse-grained parallelism on multiple FPGAs, with each device hosting a sys-
tolic array with 20 processing elements. The accelerated system supported up to 12 taxa, which
are transferred from a host processor to the FPGA through PCI-X connectivity while the ances-
tral sequences reside in on-chip memory. To evaluate performance, the authors used the Maxwell
supercomputer [14], which contains Intel Xeon processors running at 2.8 GHz and 64× Virtex-4
FPGAs. The FPGA design was clocked at 70 MHz. Speedups between 5× and 21,606× were re-
ported based on comparisons with PAUP [87], a software tool for phylogenetics analyses that was
executed on an Intel Centrino Duo CPU running at 2.2 GHz. The speedups reported are only rela-
tive speedups with respect to the parsimony implementation in PAUP and not with respect to the
fastest known (at the time of publication) implementation of parsimony in the TNT software [37].
Furthermore, the authors implemented an exhaustive search that yields high arithmetic intensity
and large speedups but does not scale to many taxa or different tree search strategies, thereby
limiting the applicability of the proposed solution in real-world studies.
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Alachiotis and Stamatakis [7] accelerate the PPF using a vector-like pipelined architecture on
an FPGA. The size of the vector of processing elements can be adjusted based on the available
device resources. Input data (tips) are transferred to the FPGA using a custom Gigabit Ethernet
communication framework [1, 2] and are stored in on-chip memory (block RAM) along with an-
cestral states. Unlike the approach of Kasap and Benkrid, this accelerator computes one PPF call
per hardware invocation, i.e., it computes the ancestral state vector of the common ancestor of
a pair of organisms (tree nodes/tips). As previously mentioned, the authors employ an optimized
software implementation as a reference for assessing performance. Profiling reveals that ancestral-
vector computations and final-score computations at the virtual root account for 99% of the total
execution time, which are subsequently accelerated. In comparison with the AVX-based implemen-
tation, the reported speedups range between 5.6× and 9.6× using a Xilinx Virtex-6 FPGA operating
at 188 MHz.

Block and Maruyama [16] also employ FPGAs for the PPF, accelerating the complete tree-search
algorithm using a versatile approach that is not limited by the number of taxa. As with the SW
solution previously mentioned, the accelerated solution uses a local search algorithm that relies
on the PN [33] search method. Every algorithmic step is translated into a dedicated hardware unit,
thereby allowing them to operate in parallel in a pipelined architecture. The solution is imple-
mented on a Xilinx Kintex-7 FPGA operating at 157 MHz. Tip and ancestral vectors are stored in
on-chip memory (block RAM) while host-FPGA communication is not discussed. The performance
comparison, already presented in Section 3.1, shows that the FPGA accelerator achieves speedups
in the order of thousands over the respective unoptimized software solution, but only matches the
execution times of TNT, even though TNT constructs and evaluates 5×more trees than the FPGA
implementation.

The more recent works of Block and Maruyama [17, 18] extend the accelerator design to also
implement the Indirect Calculation of Tree Lengths [35] search method. When using the Indirect
Calculation of Tree Lengths, the time required to visit all the internal nodes of a tree is fixed at
1/T , whereT is the number of taxa. The benefit of this search method is that the time required for
this search does not increase withT [35]. The same Kintex-7 FPGA is used running at 156.25 MHz.
When compared to the previous work, the approach achieves speedups between 34× and 45× per
tree, and between 2× and 6× for the whole local search. When compared with TNT (version 1.1),
the speedups per tree range from 2× to 4×, and from 18× to 112× for the whole local search.

GPU. Santander et al. [76] employ a GPU to accelerate phylogenetic tree inference based on the
PPF. The authors use OpenCL [86], a framework for parallel programming of heterogeneous sys-
tems, and assess performance on various GPUs. In a subsequent study, Santander et al. [77] present
a comparative assessment of various parallel-programming frameworks (OpenCL [86], CUDA [62]
and OpenACC [101]) on different GPU architectures. The PPF is computed by organizing the en-
tire computational task into independent sub-tasks that can be processed in parallel; each sub-task
corresponds to a partial calculation of the PPF. A tree topology is stored on the GPU’s constant
memory, since this data structure has to be read only, while the sequences are stored in global mem-
ory due to their size. A row-major layout is adopted to ensure coalesced memory accesses. The
performance results of the GPU-accelerated solution are compared with a sequential software im-
plementation. Of the three GPUs used for evaluation, the Nvidia GeForce GTX TITAN X achieves
the highest performance with speedups ranging from 8.8× to 324×. The lowest performance gain is
measured on a dataset with short sequences (759 characters), where the memory transfer overhead
is large. Santander et al. [77] shows that implementing the solution using the CUDA toolkit out-
performs the OpenCL implementations, while both CUDA and OpenCL considerably outperform
OpenACC, with OpenCL being between 2.3× to 3× faster than OpenAcc.
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Table 1. Overview of High-performance Computational Solutions for the Phylogenetic

Parsimony Function (PPF)

Work by Year System details Achieved speedup/Reference

Satander et al. [78] 2020 CPU + GPU 22 × –299× / CPU (single-core)
Satander et al. [77] 2019 CPU + GPU 8.8 × –324× / CPU (single-core)
Satander et al. [77] 2019 CPU 8.7 × –77× / CPU (single-core)
Block and Maruyama [17, 18] 2017 CPU + FPGA 18 × –112× / CPU (multi-core)
Block and Maruyama [16] 2013 CPU N/A
Block and Maruyama [16] 2013 CPU + FPGA 1 × / CPU (multi-core)
Alachiotis and Stamatakis [7] 2011 CPU 1.14 × –1.73× / CPU (SSE, multi-core)
Alachiotis and Stamatakis [7] 2011 CPU + FPGA 5.6 × –9.6× / CPU (AVX, multi-core)
Kasap and Benkrid [50, 51] 2010 CPU + FPGA 5 × –21,606× / CPU (single-core)

Santander et al. [78] present a new solution that solely focuses on processing protein sequences,
which results in higher complexity due to the larger number of states (20 amino acids). This work
also presents a comparative view on multiple GPU architectures and different implementation
frameworks. Profiling the accelerated design revealed that nearly 40% of the execution time is spent
on data transfers and pre-processing tasks. By overlapping data transfers with pre-processing tasks,
this time can be reduced. Overall, the CUDA implementation on the Nvidia GeForce RTX 2080 Ti
achieves the highest performance, with speedups ranging from 22× to 299× when compared to a
sequential software implementation.

A summarized overview of the performance-driven solutions for the phylogenetic parsimony
function that were reviewed in this section is provided in Table 1.

3.2 Phylogenetic Likelihood Function (PLF)

The PLF is used by Maximum Likelihood and Bayesian inference tools such as MrBayes [74] and
RAxML [84] to evaluate phylogenetic trees by calculating the likelihood of the tree. The calcula-
tion of the PLF is both computationally and memory-intensive and takes approximately between
85% and 95% of the runtime [84]. This amounts to several CPU hours and is therefore of great im-
portance to be accelerated. The PLF is recursively applied, starting from the tips and proceeding
toward a virtual root, calculating likelihood vectors at the inner nodes of the tree topology.

The PLF for a phylogenetic tree is computed as follows: Every node x is represented by a prob-

ability vector
−→
L x with m entries (m is the MSA sequence length) and each entry containing the

probabilities LA, LC , LG , and LT of observing nucleotides A, C , G, and T , respectively. If x is a
tip, then all probabilities are either 1.0 or 0.0, since the corresponding sequence is in the MSA.

Given probability vectors
−→
L A and

−→
L B , the probabilities of vector

−→
L u

C
(i ), i = 1..m, u ∈ N , and

N = {A,C,G,T } at position i of the vector that describes the common ancestor C , are calculated
as follows:

Lu
C (i ) = �

�
∑

s ∈N

Pu−→s (tl ) ∗ −→L s
A (i )�

	
∗ �
�
∑

s ∈N

Pu−→s (tr ) ∗ −→L s
B (i )�

	
,

(4)

with tl and tr being the lengths of the branches that connect nodeC with the child nodes A and B,
respectively. Pu−→s (t ) is the probability for a nucleotide u to be substituted by a nucleotide s given
a branch length t .
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Fig. 5. Illustration of the computation of a likelihood vector
−→
LC of a common ancestor C with two child

nodes A and B with likelihood vectors
−→
LA and

−→
L B , respectively.

Once the probability vector of the root node,
−→
L vr , is calculated, the final likelihood of the tree

is computed by first calculating one likelihood score, l (i ), per position i , i = 1..m using:

l (i ) =
∑

s ∈N

πs ∗
−→
L s

vr (i ), (5)

with πs , s ∈ N and N = {A,C,G,T } being the prior probabilities of observing nucleotides A, C , G,
and T at the root. Thereafter, the final likelihood score of the tree is computed as the sum of the
logarithm of the per-site likelihood scores:

LH =
m∑

i=1

loд(l (i )). (6)

Figure 5 shows an illustration of the computation of the likelihood vectors of two child nodes
and a common ancestor as a part of a complete tree. To calculate the likelihood score of a tree,
Equation (4) is repeatedly performing matrix-matrix multiplications to compute ancestral state
vectors at inner nodes, while Equations (5) and (6) are only applied at the virtual root. The PLF
is typically applied on DNA or protein data. When processing DNA, Equation (4) multiplies 4 × 4
transition probability matrices with 4 ×m probability vectors (m is the alignment length), while
when protein data is processed, 20 × 20 transition probability matrices are multiplied with 20 ×m
probability vectors. A detailed explanation of the PLF is provided by Malakonakis et al. [58].
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CPU. Pratas et al. [68] present solutions improving performance of the PLF on a CPU, a Cell
Broadband Engine, and a GPU. The authors developed an OpenMP implementation and paral-
lelized the outermost loop of the PLF to minimize synchronization overheads. The solution is im-
plemented on three different systems with multiple CPUs: 2× Intel Xeon Quad-core CPUs (System
A), 4× AMD Opteron Quad-core CPUs (System B), and 8× AMD Opteron Dual-core CPUs (System
C), and performance comparisons are performed with sequential execution on an Intel Core2 Duo
E8400 CPU. Overall, System B achieves the highest speedups, ranging from 4× to 11×, depending
on the dataset. System C achieves the same maximum speedups but lower on-average performance.
System A delivered lower performance than the other two systems under test (speedups between
6× and 7×), but performance was more consistent over varying dataset sizes.

Flouri et al. [32] present the Phylogenetic Likelihood Library (PLL), a highly optimized ap-
plication programming interface for developing likelihood-based phylogenetic inference and post-
analysis software. Similarly, Ayres et al. [12, 13] present BEAGLE, an optimized software library
that implements both likelihood-based and Bayesian-based development. BEAGLE implements
solely the likelihood calculation, while the PLL also implements the tree data structure. The PLL
implementation employs Intel 128-bit SSE and 256-bit AVX intrinsic instructions, whereas BEA-
GLE only employs 128-bit SSE instructions. Both libraries support parallel processing, with the
PLL relying on Posix threads, while BEAGLE uses OpenMP. In the latest work of Ayres et al. [12],
a performance comparison is presented between the AVX PLL (Version 2) and SSE BEAGLE (Ver-
sion 3.1.2) implementations. Both solutions are executed on a single thread of an Intel Core i7-2600
CPU, where the PLL achieves speedups of up to 3.1× over BEAGLE.

FPGA. Alachiotis et al. [6] implement a subset of the PLF functions required to conduct a full
real-world tree search on an FPGA, limiting functionality to fixed tree topologies. The solution is
evaluated using trees with between 4 and 512 taxa and compared with an efficient parallel C code
for multicore CPUs (a stripped-down version of RAxML). A Xilinx Virtex-5 SX240T was used as
the target FPGA, which achieved speedups between 3× and 13.5× faster than a single CPU core.
When compared with 8 CPU cores, the FPGA implementation led to a slowdown of 0.96× for the
16-taxon tree and speedups up to 5.08× for the rest of the tree sizes.

Zierke and Bakos [108] present an FPGA-accelerated solution based on MrBayes [74] using the
Bayesian Metropolis-Coupled Markov Chain Monte Carlo (MC3) method. In addition to the
PLF, the normalisation and log-likelihood steps of MrBayes are also accelerated. For likelihood
calculations, the internal nodes of the tree are processed via a post-order traversal with minimal
intervention from the host to reduce CPU-FPGA communication overheads. The solution utilizes
on-board memory to cache the output vectors of the computations to minimize host-FPGA
communication. A deep pipeline architecture is devised, and the solution is implemented on
a Xilinx Virtex-6 SX475 FPGA running at 310 MHz, and a Xeon 5500-series CPU is used as
the host processor. For performance evaluation, the solution is compared with the software
implementation of MrBayes executed on the same Xeon CPU, resulting in speedups between 4.7×
and 8.7×.

In a recent study, Malakonakis et al. [58] implement the complete RAxML algorithm on a
hybrid system. The calculation of the PLF is done on an FPGA while the rest of the algorithm
runs on the host CPU. Two different target systems are expored: a Xilinx ZCU102 development
board, which consists of a system-on-chip that combines reconfigurable logic with a quad-core
ARM A53 general purpose processor, and a cloud-based Amazon AWS EC2 F1 instance that
hosts multiple FPGAs connected to Intel Xeon E5-v4 CPUs through PCIe. The first system
deploys at most two PLF accelerators at a frequency of 250 MHz, due to memory bandwidth
limitations. This implementation is 7.7× faster than a pure software implementation run on an
AWS EC2 F1 instance. The AWS-based accelerated system is about 5.2× faster than the software
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implementation. In comparison with previous work by Alachiotis et al. [6], the implementation
on the Xilinx development board is about 2.35× faster.

Alachiotis et al. [3] propose a systematic way to exploit the way tree-search algorithms work
in practice to optimize data movement for PCI-attached accelerators for the PLF. The authors
implemented a software cache controller that can exploit the data dependence between subsequent
PLF calls in-between topology rearrangements to cache probability vectors that will be reused
shortly on the accelerator card. In combination with double buffering, the software cache approach
increased the perceived performance of an FPGA accelerator by nearly 4×. Executing the complete
RAxML algorithm on an AWS EC2 F1 instance, the authors observed up to 9.2× faster analyses of
protein data than a Xeon processor running at 2.7 GHz in the same cloud environment.

GPU. Pratas et al. [68] accelerate the calculation of the PLF within MrBayes on a GPU. A fine-
grained architecture is adopted where parallelization is done at the likelihood vector entry level.
Calculation of each vector entry is assigned to one independent thread to minimize thread synchro-
nization. To improve performance, data partitioning is done on three levels: a) global partitions are
created when the data is larger than the GPU’s global memory, (b) block partitioning is used to
distribute the likelihood array elements among processing engines that are processed indepen-
dently, and (c) thread partitioning for a set of computations. For every call to the PLF, the input
data is transferred to the GPU’s global memory, and the results are returned when the computa-
tion is finished. The percentage of time spent on calculating the PLF is reduced from more than
90% to 5%–10%. The CPU-GPU communication, however, severely limits overall performance. The
resulting speedup, when executed on an Nvidia GeForce GTX 285, is approximately 1.5× over the
respective single-thread CPU implementation executed on an Intel Core2 Duo E8400. The pre-
sented speedup is scaled with respect to the clock frequencies of the GPU and CPU, which are
1.48 GHz and 3.0 GHz, respectively.

Zhou et al. [106] propose an improvement over the work by Pratas et al [68]. While the work
by Pratas et al. mainly focuses on the GPU-side computations, this work adopts a more hybrid
approach where the CPU performs computations in parallel with the GPU. Besides that, the au-
thors employ pipelining to reduce the idle time of both platforms and overlap CPU-GPU commu-
nication with computations. To further improve performance, shared memory is exploited and
thread idle operations are reduced to the minimum. When compared with the fastest—at the time
of publication—CPU multi-core implementation, the solution achieves speedups between 0.9× to
5.4×. In comparison with the work by Pratas et al., the performance gain is between 7.5× and 12.6×.

Ayres et al. [12, 13] also include GPU acceleration in BEAGLE and present various optimiza-
tions in version 3.1.2 [12] to further improve GPU acceleration. Both CUDA and OpenCL are used
in different implementations to target a wide range of GPUs, as well as solutions implementing
single- and double-precision arithmetic. Fine-grained parallelization of the likelihood calculation
is applied. BEAGLE version 3.1.2 optimized thread utilization by identifying additional opportuni-
ties for parallelization to prevent thread idle operations. Data partitioning is improved to prevent
sequential execution of BEAGLE instances on the GPU. Overall, the optimizations in version 3.1.2
focus on higher utilization of the massively parallel architecture of the GPU. When executed on
an Nvidia Tesla P100 GPU and two Intel Xeon E5-2690v4 CPUs as host, the solution achieves a
32× speedup over the single-thread PLL [32] software implementation on the same CPU.

A summarized overview of the performance-driven solutions for the phylogenetic likelihood
function that were reviewed in this section is provided in Table 2.

4 POPULATION GENETICS

Population genetics study the genetic variation within one and among different populations. This
includes the detection and understanding of footprints caused by evolutionary phenomena such
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Table 2. Overview of High-performance Computational Solutions for the Phylogenetic

Likelihood Function (PLF)

Work by Year System details Achieved speedup/Reference

Alachiotis et al. [3] 2021 CPU + FPGA 9.2× / CPU (single-core)
Malakonakis et al. [58] 2020 CPU + FPGA 7.7× / CPU (multi-core)
Ayres et al. [12, 13] 2019 CPU + GPU 32× / CPU (AVX, single-core)
Flouri et al. [32] 2015 CPU 3.1× / CPU (SSE, single-core)
Zhou et al. [106] 2011 CPU + GPU 0.9 × –5.4× / CPU (multi-core)
Zierke and Bakos [108] 2010 CPU + FPGA 4.7 × –8.7× / CPU (multi-core)
Pratas et al. [68] 2009 CPU 4 × –11× / CPU (single-core)
Alachiotis et al. [6] 2009 CPU + FPGA 3 × –13.5× / CPU (single-core)
Pratas et al. [68] 2009 CPU + GPU 1.5× / CPU (single-core)

as positive selection, epistasis, recombination, linkage disequilibrium, and genetic drift, among
others, which can explain changes in the frequencies of genes over space and time. The current
section focuses on computational solutions for linkage disequilibrium and pairwise epistasis.

4.1 Linkage Disequilibrium

Linkage Disequlibrium (LD) is the non-random association between alleles at different loci in
a population. The levels and patterns of LD in a population are affected by the action of posi-
tive selection, as predicted by the genetic hitchhiking model [82]. As the number of sequenced
genomes increases and more genetic variation is discovered, the calculation of LD becomes in-
creasingly compute- and memory-intensive. Computational and memory requirements increase
quadratically with the number of Single-Nucleotide Polymorphisms (SNPs), while computa-
tional requirements also increase linearly with the number of genomes (sample size).

The most commonly used measure of LD is r 2, which is equivalent to Pearson’s correlation
coefficient applied on binary data [69]. The calculation of LD between SNPs A and B is provided
in Equation (7):

r 2
AB =

D2
AB

pA (1 − pA)pB (1 − pB )
, (7)

where pA and pB are the frequencies of the derived allele at SNPs A and B, respectively, while DAB

is the coefficient of linkage disequilibrium, defined as follows:

DAB = pAB − pApB , (8)

where pAB is the frequency of occurrence of the derived allele at both SNPs A and B. Under the
widely adopted Infinite Sites Model [55], which assumes that there is an infinite number of sites
and consequently each new mutation appears on a site where previously no mutation has oc-
curred, SNPs can be represented by binary vectors; an unset bit (“0”) represents the initial—before
mutation—state (the ancestral state) and a set bit (“1”) indicates a new—after mutation—state (the
derived state). Thus, allele frequencies are computed by dividing the number of set bits (population
count operation) in SNPs and SNP pairs by the sample size.

The significance of LD, as can been observed from titles of population genetics papers declaring
“Population genomics: Linkage disequilibrium holds the key” [34], has motivated various studies
for high-performance LD computation.

CPU. Chang et al. [22] present an optimized version of PLINK [71], which is a widely used tool
for whole-genome association studies and population genetics. The optimized version (PLINK1.9)
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calculates both Pearson’s correlation coefficient and D ′1 as measures of LD. PLINK1.9 implements
various improvements, such as bit-level parallelism, vector instructions, and higher memory effi-
ciency than its predecessor. For pairwise LD computations, PLINK1.9 is between 754× and 8,450×
faster than PLINK1.07 (initial release) as a result of exploiting bit-level parallelism in combination
of several algorithmic improvements, as can be inferred from the reported execution times by the
authors (Chang et al. [22], Table 5).

Tang et al. [88] present LDkit, a parallel computing toolkit for linkage disequilibrium analysis.
The tool implements both Pearson’s correlation coefficient and D ′. Using task-level parallelism
to deploy multiple threads/cores, the authors report speedups of up to 12.8× (over single-thread
execution) with 32 threads. Performance comparisons with other tools reveal than LDkit does
not outperform PLINK1.9 [22], which is between 1.3× and 25× faster. LDkit, however, has a user-
friendly graphical user interface.

Zhang et al. [105] present PopLDdecay, a C++ tool for LD decay analysis that can be used to
study the rate of recombination in a population. Similarly to the previous tools, PopLDdecay imple-
ments both Pearson’s correlation coefficient and D ′. PopLDdecay does not outperform the second-
generation of PLINK, which is approximately 2.7× faster, but it achieves higher memory efficiency,
utilizing up to 12× less memory than PLINK, on average.

Alachiotis and Pavlidis [4] present a series of parallelization strategies to overcome the problem
of load imbalance when computing LD on multi-core processors. A fine-grained parallelization
approach is suitable for large sample sizes, achieving up to 11.1× speedup with 16 threads/cores,
whereas a coarse-grained approach is proposed for better parallel performance on long genomes.
Because the coarse-grained approach is particularly sensitive to load imbalance (varying SNP den-
sity along the genome), a generic algorithm is proposed that achieves up to 2.5× faster processing
than the coarse-grained approach on 16 threads/cores. All parallelization alternatives are imple-
mented in the open-source software OmegaPlus [8].

Alachiotis et al. [5] demonstrate that the calculation of LD can be cast in terms of Dense Linear

Algebra (DLA) operations. The authors describe the caclulation of LD as a series of Basic Linear

Algebra Subprograms (BLAS) [28, 43, 56] operations and show that the GotoBLAS [41] approach
(now maintained as OpenBLAS [63]) can be used to compute LD as a high-performance General

Matrix Multiplication (GEMM) operation . The proposed approach is implemented based on the
BLAS-Like Instantiation Software (BLIS) [92]), i.e., a high-performance framework for rapidly
implementing DLA operations using the GotoBLAS approach, and is up to 17× and 6.7× faster
than PLINK1.9 [22] and OmegaPlus [8], respectively.

FPGA. Alachiotis et al. [9] present an FPGA accelerator for computing Pearson’s correlation co-
efficient as a measure of LD, using the Infinite Sites Model (ISM) [55]. The hardware architecture
is automatically generated based on a number of parameters that were used to explore the acceler-
ator design space. The study reports that throughput improves when a moderate amount of wide,
pipelined population count2 operators are used instead of a larger number of narrow operators. A
host CPU runs an iterative algorithm that schedules execution on the accelerator hardware based
on the available number of accelerator instances on the FPGA. To evaluate performance, the pro-
posed solution is mapped on a Xilinx Virtex-7 VX980T-2 FPGA with a clock frequency of 137 MHz.
When compared with PLINK1.9 [22] running on a workstation with an Intel Xeon E5-2630 hexa-
core 2.6 GHz CPU, the FPGA achieves 50× faster processing than 12 CPU threads and 200× faster
processing than 1 CPU thread.

1D′ is the normalized D (Equation (8)) by the maximum value it can obtain.
2Population counting describes the operation of counting the number of set bits (“1”) in a computer register.
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Bozikas et al. [19] also implement the Pearson’s correlation coefficient as a measure of LD, with
the architecture supporting the more compute-intensive Finite Sites Model (FSM).3 An acceler-
ator architecture that supports any number of samples is presented and mapped to a system with
four FPGAs. The authors observe that transferring SNPs to the FPGAs is limiting performance and
propose a memory layout that facilitates the parallel retrieval of SNPs through multiple memory
controllers. The Convey HC-2ex platform with four Xilinx Virtex-6 LX760 FPGAs is used. When
compared with PLINK1.9 running on an Intel Xeon E5-2630 CPU at 2.3 GHz, one FPGA is 4.7×
faster than 12 CPU threads, whereas processing becomes up to 12.7× faster than 12 CPU threads
when all four FPGAs are used. Despite using FPGA technology as well, the speedups by Bozikas
et al. [19] are lower than the 50× speedup previously achieved by Alachiotis et al. [9] because of
the additional support of the FSM model that requires more computations and hardware resources.

GPU. Xian et al. [102] present a GPU-accelerated solution for LD, computing Pearson’s corre-
lation coefficient under the ISM model. The authors employ the __popc instruction of the CUDA
Toolkit API [62] for faster bit counting (population count operation). Furthermore, a data reor-
ganization scheme and atomic instructions are used for reducing memory footprint and latency.
The proposed solution is implemented on a cluster of Nvidia Tesla C2075 GPUs (two GPUs per
node), achieving speedups between 906× and 1,589× in comparison with a sequential software im-
plementation on an Intel Xeon E5410 quad-core CPU running at 2.33 GHz. The overall processing
capacity of the cluster (number of nodes, CPU cores, and GPUs) is not specified.

Theodoris et al. [89] present quickLD, an optimized software for computing LD statistics using
either a CPU or a GPU. The GPU implementation is based on the OpenCL framework. The authors
focus on handling large-scale datasets by introducing a two-step process that separates parsing
from processing. This allows for more flexibility in scheduling computation between distant SNPs
without increasing memory requirements. For performance evaluation, quickLD is compared with
PLINK1.9 on two different computing systems: (a) a personal computer with an Intel Core i5-8300H
2.3 GHz CPU and an Nvidia GeForce GTX 1050-M GPU and (b) the Aris supercomputer (https:

//hpc.grnet.gr/ en/ ) with two Intel Xeon E5-2660v3 2.6 GHz CPUs and an Nvidia Tesla K40 GPU
per node. Using datasets with up to 100,000 samples and 10,000 SNPs on the supercomputer, the
authors report up to 29× faster processing than PLINK1.9 (20 threads).

Binder et al. [15] present a portable framework for performing CPU-based SNP comparison
algorithms on a GPU. Comparing SNPs is the core of LD calculations. For portability, the imple-
mentation of LD is based on OpenCL [86] and maps the BLIS [92] framework onto the GPU. The
SNP-comparison framework is evaluated on an Nvidia TITAN V GPU, a GeForce GTX 980 GPU,
and an AMD Radeon Vega GPU, and performance comparisons with a BLIS-based CPU implemen-
tation [5] are performed. The authors report that the GPU implementation is up to 7.8× faster than
the CPU implementation on an Intel Xeon E5-2620v2 6-core CPU running at 2.10 GHz.

A summarized overview of the performance-driven solutions for computing linkage disequilib-
rium statistic that were reviewed in this section is provided in Table 3.

4.2 Pairwise Epistasis

Epistasis is the phenomenon where interaction between different genes is antagonistic in such
a way that one gene overrules or interferes with the expression of another gene. This section
focuses on pairwise epistasis (direct gene-gene interaction). An example of pairwise epistasis is
the interaction between genes that control hair color and genes responsible for total baldness. The

3Under FSM, several mutations can appear at the same genomic location; thus, alleles are represented by 2 to 5 bits, de-

pending on the data type (DNA, protein) requiring more arithmetic operations than ISM due to the longer alphabet length.
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Table 3. Overview of High-performance Computational Solutions for Computing Linkage

Disequilibrium (LD) Statistics

Work by Year System details Achieved speedup / Reference

Tang et al. [88] 2020 CPU 12.8× / CPU (single-core)
Theodoris et al. [89] 2020 CPU + GPU 20× / CPU (SSE, multi-core)
Zhang et al. [105] 2019 CPU N/A / N/A
Binder et al. [15] 2019 CPU + GPU 7.8× / CPU (multi-core)
Bozikas et al. [19] 2017 CPU + FPGA 4.7 × –12.7× / CPU (SSE, multi-core)
Alachiotis et al. [4] 2016 CPU 2.5 × –11× / CPU (multi-core)
Alachiotis et al. [5] 2016 CPU 17× / CPU (SSE, multi-core)
Alachiotis et al. [9] 2016 CPU + FPGA 50× / CPU (SSE, multi-core)
Chang et al. [22] 2015 CPU 754 × –8,450× / CPU (multi-core)
Xian et al. [102] 2013 CPU + GPU 906 × –1,589× / CPU (single-core)

gene that is responsible for total baldness is epistatic to the gene that controls hair color because
the gene for total baldness supersedes the effect of the gene that controls hair color. The gene that
controls hair color is called hypostatic to the gene for total baldness.

Detecting pairwise epistasis consists of two stages: (a) creation of contingency tables that con-
tain the (multivariate) frequency distribution of the variables, and (b) statistical testing of each
created table. A contingency table is created for every SNP pair, which leads to excessive compute
and memory requirements. Because of this, approximate statistical tests [91, 96] have been pro-
posed to shorten analysis times when conducting Genome-Wide Association Studies (GWAS).
Commonly used tools for epistasis detection are BOOST [94], MB-MDR [21], and iLOCi [65]. The
most widely used method for pairwise epistasis relies on the maths behind BOOST, which is de-
scribed in detail by Wan et al. [94]. BOOST (BOolean Operation-based Screening and Testing)

consists of two stages, a screening stage and a testing stage. In the screening stage, the Kirkwood
superposition approximation is used to evaluate all pairwise SNP interactions based on the con-
tingency table collected by using Boolean operations, and a user-defined threshold is applied to
determine whether the SNP pair will be used in the testing stage. In the testing stage, a likelihood
ratio is computed for each pair to assess the interaction effect, and a statistical test is applied to
determine whether the interaction is significant. Cordell [24] provides a detailed explanation of
epistasis and related statistical methods.

CPU. Wienbrandt et al. [100] present an optimized implementation of the BOOST [94] algo-
rithm, which performs an exhaustive pairwise analysis using statistical regression and is used
by PLINK [71]. To improve performance, sample covariance is not supported, and a logistic re-
gression test based on contingency tables is used. This optimization reduces the computational
complexity from O (NT ) to O (N +T ), where N is the number of samples and T is the number of
iterations required for a single test. When executed on a system with two Octa-core Intel Xeon
E5-2667v4 3.2 GHz CPUs, the optimized version is between 10× and 15× faster than the original
PLINK BOOST implementation.

González-Domínguez et al. [38] also optimize the PLINK BOOST algorithm using logistic re-
gression, targeting the Intel Xeon Phi 5110P co-processor with between 57 and 61 simplified Intel
CPU cores running at 1.0–1.2 GHz. Optimizations are mainly focused on exploiting the available
512-bit-wide vector instructions, including the popcount instruction. In addition, an embarrass-
ingly parallel workflow is adopted to employ the underlying many-core architecture. Moreover,
the authors present a heterogeneous CPU/GPU implementation that additionally deploys an
Nvidia Tesla K20m GPU. This heterogeneous implementation is between 8× and 33× faster than
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the Phi-only software implementation, as can be inferred from the reported execution times by
the authors (González-Domínguez et al. [38], Table 3).

FPGA. Wienbrandt et al. [99] present an FPGA-accelerated GWAS epistasis detection tool. The
solution combines fine- with coarse-grained parallelism through systolic arrays on multiple FPGAs,
resulting in a large number of Processing Engines (PEs) operating in parallel. The systolic array
architecture is used for both the creation of large contingency tables and the application of a statisti-
cal test that is adopted from iLOCi [65]. The authors introduce a nearly redundant-free SNP pairing
scheme while maintaining load balance among a large number of FPGAs. The proposed solution
is implemented on the RIVYERA [64] system that features 128 Xilinx Spartan 6-LX150 FPGAs and
two Intel Xeon E5-2620 CPUs as host processor. All FPGAs run at a clock frequency of 150 MHz,
and each one of them implements 100 PEs. The accelerated implementation achieves up to 285×
faster processing than the iLOCi software executed on two Intel Xeon quad-core 2.4 GHz CPUs.

González-Domínguez et al. [40] also target the RIVYERA [64] system for implementation of the
commonly used BOOST [94] algorithm, including its statistical tests. A similar systolic architecture
as in the work by Wienbrandt et al. [99] is used for large-scale parallel pairwise contingency
table creation and preparation, followed by the statistical tests. A total of 128 FPGAs running at
133 MHz are deployed, with each device hosting 56 processing engines. For performance evaluation
purposes, the authors created an optimized parallel software implementation using PThreads. The
FPGA solution achieves a speedup of 190× when the software implementation is run on an Intel
Core i7-3930K using 12 threads.

GPU. Hemani et al. [45] propose a GPU-accelerated pairwise epistasis analysis tool called
epiGPU, which uses the OpenCL framework [86]. The solution performs an exhaustive pair-
wise analysis where each SNP is statistically tested against all other SNPs, resulting in a two-
dimensional search grid with calculations distributed over the massive parallel architecture of the
GPU. To increase performance, the program does not consider the effect of covariates in the anal-
ysis. Also, the authors observe that the slow access to global memory limits performance consid-
erably, and they introduce optimizations to the regression algorithm to achieve higher utilization
of the faster shared memory on the GPU. Moreover, the CPU-GPU communication overhead is
minimized by using bit-packed compression, while the memory access time is minimized by using
coalesced memory accesses. The optimizations result in a 15× speedup over the unoptimized imple-
mentation. For performance evaluation, the Nvidia GeForce GTX 580 was used with an Intel Core
i7-970 CPU as host processor. In comparison with the respective parallel software implementation
running on the host CPU (six CPU cores), the accelerated epiGPU solution is 15.7× faster.

Yung et al. [104] present GBOOST, a GPU-accelerated implementation of BOOST [94] using the
CUDA toolkit. The creation and preparation of the contingency tables as well as the statistical test
are performed on the GPU. The log-linear filter, however, is executed on the CPU to avoid thread
divergence. The performance of the statistical test calculation is improved through coalesced mem-
ory accesses to the global memory. The solution omits the effects of covariates. For performance
comparison GBOOST is tested on an Nvidia GeForce GTX 285 and compared to BOOST, which
is executed on an unknown CPU running at 3 GHz. GBOOST achieves a 40× speedup compared
with BOOST.

Wang et al. [95] present an optimized version of GBOOST [104] called GBOOST 2.0. The solution
achieves higher true positive rates than GBOOST through the implementation and consideration
of covariates. Performance comparison is performed using the Nvidia GeForce GTX 285, but no
host CPU is reported. The authors report a speedup of 1.5× speedup of GBOOST 2.0 over GBOOST.

González-Domínguez et al. [40], in addition to the FPGA implementation previously discussed,
also present a hybrid CPU-GPU implementation of the BOOST algorithm. The same contingency
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Table 4. Overview of High-performance Computational Solutions for Calculating Pairwise Epistasis

Work by Year System details Achieved speedup / Reference

Wienbrandt et al. [100] 2019 CPU 10 × –15× / CPU (multi-core)
Wang et al. [95] 2016 CPU + GPU 1.5× / GPU
González-Domínguez et al. [38] 2015 CPU N/A
González-Domínguez et al. [40] 2015 CPU + FPGA 190× / CPU (multi-core)
González-Domínguez et al. [40] 2015 CPU + GPU 31× / CPU (multi-core)
Wienbrandt et al. [99] 2014 CPU + FPGA 285× / CPU (multi-core)
Hemani et al. [45] 2011 CPU + GPU 15.7× / CPU (multi-core)
Yung et al. [104] 2011 CPU + GPU 40× / CPU (single-core)

table creation and statistical test calculation steps are performed as with the FPGA implementation.
The GPU solution, however, uses a single kernel to perform the whole analysis on a batch of SNP-
pairs. This improves performance, since large tables do not need to be stored in global memory.
The resulting SNP information is stored in binary form in global memory before being transferred
back to the host. As with the FPGA implementation, the GPU implementation is also compared
with the same optimized software solution that employs PThreads, executed on an Intel Core i7-
3930K using 12 threads. The GPU solution is also compared with BOOST [94] executed on the
same CPU but using a single thread. Using an Nvidia GeForce GTX TITAN GPU, speedups of 269×
and 31× are achieved over BOOST and the PThreads implementation, respectively.

A summarized overview of the performance-driven solutions for epistasis evaluation that were
reviewed in this section is provided in Table 4.

4.3 Third-order Epistasis

Third-order epistasis is the epistatic interaction between three genes. It is used to explain complex
traits such as Alzheimer’s disease [109] or breast cancer [73]. Three-way gene interaction
increases the number of required tests from n(n − 1)/2 to n(n − 1) (n − 2)/6, where n is the number
of SNPs in the dataset, thus massively increasing the computation and memory complexity of the
problem.

CPU. Ponte-Fernández et al. [66] present MPI3SNP, a tool that implements an exhaustive third-
order epistasis examination on CPU cluster systems. Unlike other works, this solution does not
make any compromises to keep execution times feasible, e.g., limiting the number of SNPs. The
solution is a hybrid implementation that combines Message Passing Interface (MPI) [42] pro-
cesses and threads to utilize the available cores on every node of a cluster. A workload distribution
scheme is implemented to prevent high synchronization and communication times.

A more recent study by Ponte-Fernández et al. [67] extends the MPI3SNP solution with different
functions implemented according to the SIMD execution model using 512-bit AVX vector intrin-
sics. The vector implementation of the algorithm is between 5.0× and 15.0× faster than the initial
solution when both algorithms are executed on an Intel Xeon Gold 6240 using 18 cores.

FPGA. Kässens et al. [52] present an FPGA-accelerated third-order epistasis analysis tool for
exhaustive GWAS. The solution extends an earlier work by Wienbrandt et al. [99] and applies fine-
grained parallelism using a systolic array architecture. Due to the increased memory complexity
of third-order epistasis, the solution implements multiple systolic arrays that perform parts of the
whole computation to achieve high performance and to prevent data transfer stalls. To further
increase performance, resource usage is minimized to allow to increase parallelism of the systolic
array architecture. A total of 102 PEs, divided into 6 arrays, are implemented on a Xilinx Kintex
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Table 5. Overview of High-performance Computational Solutions for

Calculating Third-order Epistasis

Work by Year System details Achieved speedup/Reference

Ponte-Fernández et al. [67] 2022 CPU 5 × -15× / CPU (multi-core)
Ribeiro et al. [72] 2021 CPU + FPGA 6.0× / FPGA (Kässens et al. [52])
Ponte-Fernández et al. [66] 2020 CPU + GPU 126.3× / CPU (single-core)
Nobre et al. [61] 2020 CPU + GPU 3.3 × -4.4× / GPU
Kässens et al. [52] 2015 CPU + FPGA 182× / CPU (multi-core)

7-K325T FPGA running at a frequency of 250 MHz. The FPGA solution achieves a speedup of 182×
when compared to an equivalent, optimized parallel, software implementation using six cores on
an Intel Core i7 Sandy Bridge 3.20 GHz CPU.

Ribeiro et al. [72] present an FPGA-accelerated high-order exhaustive epistasis analysis tool. A
novel parameterizable architecture is proposed that can perform any order of epistasis interac-
tion with any dataset size. The developed architecture is parameterizeable to generate specialized
accelerators for any epistatic interaction order. Resource optimizations are applied to a systolic
array architecture, e.g., algorithmic optimizations for binary encoded input data are applied as
well as SNP processing decoupling among several specialized specific function units for different
stages of the epistasis detection. To maximize memory bandwidth and minimize data traffic, the
data layout is reorganized and the data transfer size is tuned to the number of PEs. The solution is
implemented on a Xilinx Virtex 7-690T running at a frequency of 250 MHz with 204 PEs. Using a
simulated dataset with the same number of SNPs and samples as the evaluation setup of Kässens
et al. [52], this solution outperforms the solution of Kässens by 6.0×.

GPU. The initial work by Ponte-Fernández et al. [66] also presents a GPU cluster system im-
plementation of MPI3SNP to perform a third-order exhaustive search. A hybrid approach is im-
plemented that utilizes both MPI [42] and CUDA [62]. MPI is used to transfer the workload to
the GPUs and to call the correct kernel. The CUDA kernels are adopted from an earlier work by
González-Domínguez and Schmidt [39]. The two steps of epistasis analysis are implemented using
two kernels to minimize thread divergence. When using a single Nvidia Tesla K80 GPU, which is
effectively the solution by González-Domínguez and Schmidt [39], a speedup of 126.3× is achieved
over a sequential CPU implementation using an Intel Xeon E5-2680v3. Using eight Tesla K80 GPUs,
a speedup of 947× is achieved over the sequential version.

Nobre et al. [61] propose a highly optimized hybrid CPU-GPU solution. The solution aims to
fully exploit the computational capabilities of both the CPU and the GPU by scheduling and dis-
tributing parts of the algorithm suited for each of the architectures. A multi-core CPU generates
the SNP vectors, as this task requires complex control and synchronization primitives. The anal-
ysis of the SNP vectors takes place on the GPU, since it is a highly data-parallel task: It consists
of the computation of contingency tables and statistical testing to determine the local optimal re-
sult. The process of generating and analyzing the SNP vectors is split up into multiple scheduling
rounds until all SNP combinations are examined. When compared to the GPU implementation of
MPI3SNP, speedups between 3.35× and 4.39× are achieved using an Intel Core i7-5960X and an
Nvidia Titan X.

5 ENERGY CONSUMPTION

Energy efficiency is a major concern in high-performance computing This section summarizes
energy-consumption evaluation results from the previously discussed works. Only a limited
number of studies provide energy consumption measurements: two studies that implement the
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PPF [77, 78], two studies that compute pairwise epistasis [40, 99], and three studies that compute
third-order epistasis [61, 66, 72].

Phylogenetic Parsimony Function. Santander et al. [77] implement the PPF for phylogenetic
tree inference using the GPU architecture. Various parallel programming frameworks and GPUs
are used to collect performance values. The Nvidia GeForce GTX TITAN X achieved the highest
performance (in terms of execution time) using 224.7 J to process a dataset that consists of
1,495 sequences and 8,610 sites. The Nvidia Tesla K40 and K20Xm use 256.9 J and 251.3 J to exam-
ine the same dataset, respectively. The energy consumption values of the parallel-programming
frameworks (OpenCL [86], CUDA [62], and OpenACC [101]) are in line with the computational
performance of each framework, as discussed in Section 3.1. This results in the CUDA implementa-
tion consuming the least amount of energy, closely followed by OpenCL, while both frameworks
consume far less than OpenACC.

Santander et al. [78] also compute the PPF, solely focusing on processing protein sequences.
This work presents energy consumption values using the Nvidia Tesla V100 and Nvidia GeForce
RTX 2080 Ti utilizing the CUDA toolkit. To examine a dataset with 720 sequences and 5,873 sites,
51.4 J and 75.8 J are consumed using the V100 and RTX 2080 Ti, respectively. The RTX 2080 Ti
achieves the best energy efficiency based on this dataset.

Pairwise epistasis. González-Domínguez et al. [40] accelerate the BOOST algorithm for pairwise
epistasis with a hybrid CPU-GPU implementation utilizing the CUDA toolkit with the Nvidia
Tesla K20 and GTX TITAN GPUs. To perform an analysis of a dataset with 5,009 sequences and
500,568 SNPs, the Tesla K20 and TITAN GPUs consume 648 kJ and 540 kJ, respectively. The
authors also present an FPGA implementation of the BOOST algorithm using the RIVYERA [64]
system. To analyze the same dataset with 5,009 sequences and 500,568 SNPs, the FPGAs running
at a clock frequency of 133 MHz outperform the GPU implementation presented in the work and
consume a total of 252 kJ.

Wienbrandt et al. [99] present an FPGA-accelerated GWAS epistasis detection tool using the
RIVYERA [64] system that features 128 Xilinx Spartan 6-LX150 FPGAs. Multiple FPGAs are used
in the fine- and coarse-grained parallel solution running at a clock frequency of 150 MHz. The
RIVYERA system consumes 180 kJ to examine a dataset with 5,000 sequences and 500,000 SNPs.

Third-order epistasis. Ribeiro et al. [72] present an FPGA-accelerated high-order exhaustive
epistasis analysis tool implemented on the Xilinx Virtex 7-690T FPGA and Zync-7000 and Zync-
Ultrascale+ development boards. The reconfigurable logic on the Zync-7000 is clocked at a fre-
quency of 250 MHz and consumes 1,156 kJ for performing a third-order analysis on a dataset
consisting of 6,400 sequences and 40,000 SNPs. Note that the authors, in addition to energy con-
sumption values of their own work, present energy consumption measurements for the works of
Ponte-Fernández et al. [66] and Nobre et al. [61], which are presented in the following paragraphs.

Ponte-Fernández et al. [66] present a GPU-accelerated third-order exhaustive epistasis analysis
for GPU clusters. The solution is tested on a heterogeneous system consisting of an Intel Core
i9-7900K and an Nvidia TITAN V. The same dataset consisting of 6,400 sequences and 40,000 SNPs
is analyzed, consuming 24,840 kJ. This measurement is reported by Ribeiro et al. [72].

Nobre et al. [61] also present a GPU-accelerated third-order exhaustive epistasis analysis tool
but optimized for a single GPU. The same dataset and system are used as with the energy con-
sumption evaluation of the work by Ponte-Fernández et al. [66]. The third-order analysis of the
6,400 sequences and 40,000 SNPs consumes 82,084 kJ. This measurement is reported by Ribeiro
et al. [72].
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Table 6. Overview of Energy Consumption of Discussed Works

Work by Year System details Algorithm Energy (J) Dataset (seq./SNPs) Power (W)
Ribeiro et al. [72] 2021 CPU + FPGA 3Epi. 1,156 k 6,400/40,000 14.73
Ponte-Fernández et al. [66] 2020 CPU + GPU 3Epi. 24,840 k 6,400/40,000 250 (Max)
Nobre et al. [61] 2020 CPU + GPU 3Epi. 82,084 k 6,400/40,000 250 (Max)
Santander et al. [78] 2020 CPU + GPU PPF 75.8 720/5,873 137.7
Santander et al. [77] 2019 CPU + GPU PPF 224.7 1,495/8,610 123.9
González-Domínguez et al. [40] 2015 CPU + GPU Epi. 540 k 5,009/500,568 –
González-Domínguez et al. [40] 2015 CPU + FPGA Epi. 252 k 5,009/500,568 –
Wienbrandt et al. [99] 2014 CPU + FPGA Epi. 180 k 5,000/500,000 780 (Max)

A summary of the energy-consumption results that were reviewed in this section is provided in
Table 6.

6 UNCONVENTIONAL ARCHITECTURES

The processing platforms (CPU, GPU, FPGA) reviewed so far are load-store architectures: data need
to be loaded from main memory to the processing units and then stored back to main memory
when computation is over. This data movement restricts system performance, and this problem
intensifies in Bioinformatics with the large volumes of data to be processed. To overcome this
performance limitation, some more advanced, unconventional architectures have already been
proposed, which we briefly review in this section.

Huanfu et al. [46] present RADAR, a 3D-ReRAM-based DNA alignment accelerator architec-
ture. RADAR is a Processing-In-Memory (PIM) architecture that utilizes Resistive Content

Addressable Memory (ReCAM) with the aid of Application-Specific Integrated Circuits

(ASICs) to accelerate BLASTN, a widely used nucleotide sequence alignment algorithm. RADAR
is between 53× and 189× faster than multi-core CPUs, FPGA-, and GPU-based accelerators.

A study by Joardar et al. [47] demonstrates the potential of using a Network-on-Chip enabled
co-design framework for counting k-mers (substrings of fixed length k) in DNA and protein se-
quences. A PIM design is proposed, which offers in-memory computation options to the software.
The system outperforms a state-of-the-art software implementation that utilizes Hybrid Memory

Cube (HMC) memory by up to 7.14×.
Prousalis and Konofaos [70] improve performance of dot matrix sequence alignment through

the use of quantum computing for pattern recognition. The proposed method is partially based
on the quantum search algorithm presented by Zhou and Ding [107]. Prousalis and Konofaos [70]
organize the dot matrix data in a way that allows implementation and execution of the adopted
quantum search algorithm. The work does not present any speedup values but shows the effec-
tiveness of the proposed method through an example application.

Ellinas and Jarvis [29] also explore quantum computing for Bioinformatics algorithms. More
specifically, the study describes how quantum computing can be used to compute probability
vectors of phylogenetic tree nodes. The authors simulate a variety of standard phylogenetic
branching models applied on trees of various topologies using appropriate decoherent quantum
circuits.

Kim et al. [54] propose a novel seed location filtering algorithm called GRIM-Filter. The GRIM-
Filter is optimized to exploit 3D-stacked memory systems that perform processing-in-memory by
integrating computation within a logic layer stacked under memory layers.

Kaplan et al. [49] present a novel Processing-In-Storage (PIS) architecture called PRinS.
The architecture employs to accelerate the Smith-Waterman sequence alignment algorithm [83].
The architecture is capable of general-purpose associative processing and can also be applied
to machine learning tasks. High performance is achieved by simultaneously using the proposed
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architecture for data storage and processing, implementing a massively parallel SIMD accelerator.
The system is at least 4.7× faster than implementations using a Xeon Phi [57], an FPGA [98], and
a GPU cluster [27].

7 DISCUSSION AND CONCLUSION

Due to advances in DNA sequencing technologies in the past years, the domain of Bioinformat-
ics has been gradually transformed into a computational discipline that requires scalable algo-
rithms and high-performance processing systems. The use of hardware acceleration and high-
performance computing is found to be a viable solution for this trend. In this study, we reviewed
heterogeneous FPGA-/GPU-based systems and CPU-based algorithmic optimizations that boost
performance of compute-intensive kernels in the fields of phylogenetics and population genet-
ics, providing insights into the performance and energy-efficiency potential of these processing
technologies.

CPU optimizations and hardware-accelerated solutions empowered by FPGAs and GPUs are
capable of reducing analysis times by two to three orders of magnitude in comparison with unop-
timized software implementations. Despite the well-demonstrated potential of such technologies,
however, we observe a lack of widespread adoption of hardware accelerators by the computa-
tional biology and bioinformatics community. This can be explained, in part, by the high acqui-
sition costs of more advanced, specialized hardware like FPGAs, which, unlike CPUs and GPUs,
require low-level technical expertise to set up a working system. Interestingly, there are several
on-demand cloud computing platforms available today that offer pay-per-use access to GPU and
FPGA hardware-accelerated servers, thereby mitigating acquisition and setup costs.

While on-demand cloud computing represents a cost-effective option for end-users, one more
general challenge facing hardware accelerators, which possibly hinders their widespread adoption
further, is the limited I/O and external memory bandwidth; when I/O- or memory-bound tasks are
offloaded to accelerator hardware, the effective accelerator performance perceived by the host
application can be considerably lower than the accelerator’s theoretical peak performance if the
system cannot satisfy the accelerator’s bandwidth requirements. Hardware accelerators for phy-
logenetics are generally more prone to performance degradation (due to system-level bandwidth
capacity limitations) than accelerators for population genetics. Because phylogenetics investigate
interspecies relationships, accelerators for tasks that usually dominate analysis times, such as the
PLF and the PPF, operate on a species pair at a time to calculate a representation of the common
ancestor (an inner-node vector). On the one hand, offloading pair-based computations to accelera-
tors leads to hardware solutions that can work in tandem with any tree search strategy (as they are
independent of the tree structure [3]) and avoids tree-size limitations that can make the solutions
impractical for real-wold, many-species phylogenies [50]. On the other hand, the workload of a
topology-unaware hardware accelerator becomes a function of the alignment length alone. This re-
duces arithmetic intensity, because the inner-node vector calculation, which is an embarrassingly
parallel task with no cross-site dependencies, leaves no opportunities for data reuse. Therefore, the
negative effect that insufficient system bandwidth has on the accelerator’s perceived performance
is exacerbated, suggesting that boosting performance of phylogenetic tree reconstruction using
specialized hardware is first about optimizing the data movement to/from the accelerator.

Hardware accelerators for population genetics are less likely to be bound by the system band-
width as they investigate interactions between genomic locations across all available samples of
a species. Tasks that frequently dominate analysis times calculate pairwise statistics to quantify
concepts such as LD and epistasis in an all-to-all fashion over all locations in one or more genomic
regions of interest. This offers several opportunities for data reuse and increased arithmetic inten-
sity that is now limited by the computational capacity of the processing/acceleration hardware [5].
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As genomic datasets continue to grow in size, we expect to see more real-world bioinformatics
analyses conducted on cloud computing infrastructures in the future. This will be enabled by a
shift of engineering efforts toward devising programming models and frameworks that alleviate
the data-movement problem, since hardware accelerators in cloud infrastructures require explicit
data movement from a host processor to the accelerator card (GPU or FPGA), which can easily dom-
inate execution times and dismiss compute-time improvements. Luckily, the concerns are common
for FPGA and GPU acceleration, and we expect to witness a convergence of engineering efforts
in addressing the common data-movement challenge, thereby opening up the path for existing
research outcomes on optimized processing solutions to be even more frequently deployed by
computational biologists and bioinformaticians.
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