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Abstract

A variety of products undergo a transformation from a pure mechanical design to more and
more software and electronic components. A polarized example are watches. Several decades
ago they have been purely mechanical. Modern smart watches are almost completely electronic
devices which heavily rely on software. Further, a smart watch offers a lot more features than
just the information about the current time (e. g. Bluetooth connectivity or health features).

This change had a crucial impact on how software is being developed. A first attempt to control
the rising complexity was to move to agile development practices such as extreme programming
or scrum. This rise in complexity is not only affecting the development process but also quality
assurance and software testing. If a product contains more and more features then this leads to
a higher number of tests necessary to ensure quality standards. Furthermore agile development
practices work in an iterative manner which leads to repetitive testing that puts more effort on
the testing team. We aimed within the thesis to ease the pain of testing. Thereby we examined
a series of subproblems that arise.

A key complexity is the number of test cases. We intended to reduce the number of test cases
before they are executed manually or implemented as automated tests. Thereby we examined the
test specification and based on the requirements coverage of the individual tests, we were able to
identify redundant tests. We relied on a novel metaheuristic called GCAIS which we improved
upon iteratively.

Another task is to control the remaining complexity. Testing is often time crucial and an
appropriate subset of the available tests must be chosen in order to get a quick insight into the
status of the device under test. We examined this challenge in two different testing scenarios.

The first scenario is located in semi-automated testing where engineers execute a set of au-
tomated tests locally and closely observe the behaviour of the system under test. We extended
GCAIS to compute test suites that satisfy different criteria if provided with sufficient search time.
We delivered the metaheuristic as part of a test selection GUI where test engineers can perform
a preselection based on their expert knowledge. Mathematically this reduces the search space
which is beneficial for the runtime.

The second use case is located in fully automated testing in a continuous integration (CI)
setting. CI focuses on frequent software build cycles which also include testing. These builds
contain a testing stage which greatly emphasizes speed. Thus there we also have to compute
crucial tests. However, due to the nature of the process we have to continuously recompute a
test suite for each build as the software and maybe even the test cases at hand have changed.
Hence it is hard to compute the test suite ahead of time and these tests have to be determined
as part of the CI execution. Thus we switched to a computational lightweight learning classifier
system (LCS) to prioritize and select test cases. We integrated a series of innovations we made
into an LCS known as XCSF classifier system such as continuous priorities, experience replay and
transfer learning. This enabled us to outperform a state of the art artificial neural network which
is used by companies such as Netflix. We further investigated how LCS can be made faster using
parallelism. We developed generic approaches which may run on any multicore computing device.
This is of interest for our CI use case as the build server’s architecture is unknown. However, the
methods are also independent of the concrete LCS and are not linked to our testing problem.

We identified that many of the challenges that need to be faced in the CI use case have
been tackled by Organic Computing (OC), for example the need to adapt to an ever changing
environment. Hence we relied on OC design principles to create a system architecture which wraps
the LCS developed and integrates it into existing CI processes. The final system is robust and
highly autonomous. A side-effect of the high degree of autonomy is a high level of automatization
which fits CI well. We also gave insight on the usability and delivery of the full system to our
industrial partner. Test engineers can easily integrate it with a few lines of code and need no
knowledge about LCS and OC in order to use it. Another implication of the developed system is
that OC’s ideas and design principles can also be employed outside the field of embedded systems.
This shows that OC has a greater level of generality.

The process of testing and correcting found errors is still only partially automated. We make
a first step into automating the entire process and thereby take an analogy to the concept of
self-healing of OC. As a first proof of concept of this school of thought we take a look at touch
interfaces. There we can automatically manipulate the software to fulfill the specified behaviour.
Thus only a minimalistic amount of manual work is required.
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Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it.
And to make matters worse: Complexity sells better.

- Edsger Wybe Dijkstra [1]
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1 Introduction

Testing plays a major role in the development of new software products as at it aims at finding errors
and thereby ensures quality [21]. Further, it is responsible for a considerable part of the project’s
total cost [22–24]. Thus innovation in software testing is desirable both from an economical as well as
from a qualitative point of view.

Software quality assurance itself is not a single task but rather consists out of various subtasks.
These include for example the choice of an appropriate test suite [6] or formal correctness proofs [25].
Thus we aim at solving a series of testing subproblems within this thesis.

We take a focus on use cases that arise from changes in software development itself. There has
been a move from linear software development processes such as the waterfall model to agile ones [26].
Agile methods have in common that they are iterative and software modules can change several
times throughout a project’s lifetime. Further, it has become a common practice to test as early as
possible and often parallel to software development [27]. Hence testing activities must be adapted and
optimized towards an ever changing software.

Constant adaptation and optimization can be found in multiple processes in nature, most promi-
nently evolution. Thus phenomena found in nature have been translated into algorithms in order to
make use of these valuable properties. This discipline of computer science is known as Evolutionary
Computation (EC) [28] which belongs to the broader field of Artificial Intelligence (AI).

A systems engineering discipline which makes frequent use of AI and EC is Organic Computing
(OC) [29]. OC proposes design patterns and methodologies to create embedded systems that can
satisfy their goals in an ever changing environment. OC systems can usually be described as robust,
adaptive, autonomous and further have certain self-X properties such as self-optimizing or self-learning.
Notable examples include smart camera systems [30] or organic traffic control [31].

The aforementioned properties of EC and OC have motivated us to apply these techniques to a
series of software testing problems. This has not only led to advances in software testing but also in
EC and OC. As a side-effect we improved a machine learning algorithm called XCS classifier system
(XCS) [32] as well as a family of metaheuristics coined Germinal Center Artificial Immune Systems
(GCAIS) [33]. Further, we developed an OC system for software testing and thereby employed a first
OC application outside of embedded systems.

The research conducted is application driven and we take focus on the reproducibility of our
results. Thereby we take special focus on algorithmic descriptions of the methods provided and follow
an open source mentality when possible. The intention is to enable practitioners to quickly employ
the acquired knowledge.

1.1 Trends in Testing

Software testing has been examined from various perspectives. Within this chapter we intend to give
a brief overview about some ideas that we encountered. It is worth mentioning that this is by no
means a complete overview.

There are software testing approaches that focus on the concrete product at hand. There are
methods that are aimed at graphical user interfaces (GUI) [34], embedded systems [35] or distributed
systems [36]. These approaches usually are adaptations of more generic verification techniques. For
example the aforementioned work on distributed systems [36] heavily relies on random testing which
is product-independent.

Random testing aims at creating different inputs for a piece of software and to check how the system
reacts to these inputs. The main idea of the methodology is that a set of diverse test parameterizations
might reveal a high number of errors [37]. The creation of the inputs often involves some form of
randomization (thus the name random testing). However, there are variations that are not purely
random but take the testing history or the similarity of already chosen inputs into account. Random
testing has an active research community as documented in the survey of Huang et al. [37]. Further,
some of the random testing methods are rooted in EC.

Whilst random testing relies more on applied math (stochastics and optimization), the approach
chosen by the prior mentioned embedded system example is located in software engineering [35]. It uses
the software design model to derive an abstract set of tests (also called a test suite). These abstract
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tests are then translated into concrete tests. For example a formal test description is implemented as
an unit test in a specific programming language. These approaches are summarized as model-based
testing. For a more fine-grained discussion of model-based testing the reader is referred to the survey
of Li et al. [38].

These aforementioned techniques have in common that they create a test suite. Another field of
software testing aims at evaluating the effectiveness of the tests at hand by introducing bugs to the
software to be tested. This can be achieved by creating random software changes which are also known
as program mutations. The available tests are thereafter applied to the mutated software and their
failure revealing capabilities are evaluated. This process may be repeated. Based on the outcome,
redundant tests can be identified and removed. Testing methods that roughly follow this process
are known as mutation testing and for a fine-grained overview we recommend to read the survey of
Papadakis et al. [39]. It is worth mentioning that mutation testing can also be used to create new
test cases.

Testing can be separated into black box and white box testing [40]. White box testing summarizes
activities where the underlying source code is available and black box testing where it is not. For
example, the latter might occur if software is bought from third parties and only binaries are delivered.
Hence black box testing activities usually focus on metrics such as requirements coverage or failure
revealing capabilities [40]. White box testing techniques can also examine other metrics such as
code coverage (e. g. how many lines of code are tested with a given test suite?) [41]. A current
trend is not to pursue one goal such as code coverage but several, possibly contradicting, objectives
simultaneously [41]. These issues can be modelled as multi-objective optimization problems and EC
has lead to a variety of algorithms that fit such problems [42]. Their application to testing problems
is known as search-based software engineering [43].

The meaning of an individual test can already be defined within the specification of the software
to be created. One way to specify tests is to document which system requirements they cover [41]. A
single requirement might be covered by several tests and thus there might be redundant tests in the
specification. Hence there have been some approaches which focus on identifying redundant ones in
the test specification as can be seen in the survey of Yoo and Harman [41]. It is worth mentioning
that the underlying problem is NP-hard and known as the Minimum Set Cover Problem (MSCP). For
the MSCP the quality of an approximation can depreciate if the problem instance’s size is large [44]
(for algorithms with a polynomial runtime). MSCP as well occurs in other real-world problems and
due to its hardness it has been examined intensively by the EC community [7].

Natural language processing (NLP) has also been applied to software testing. A well studied use
case is to determine test cases from the system’s specification (the text describing it). A systematic
overview is given in the survey of Garousi et al. [45]. Another application is the prediction of a
manual test’s outcome [46]. Thereby expensive manual tests that are likely to pass can be avoided. Li
et al. [47] use NLP to create the documentation of unit tests in an automated manner. Sometimes it
might occur that two tests detect the same software bug. Failing tests are usually examined manually.
Runeson et al. [48] developed a method to identify test reports that mention the same bug in order
to reduce the amount of manual labor spent on error analysis.

Computer Vision (CV) has also found its way to testing. For example the behaviour of a GUI
can be examined using CV. The state of a GUI is manipulated and an image of the screen is taken
and thereafter examined if it meets the expectation [49]. Further, CV can be employed to test the
physical behaviour of embedded systems [50].

NLP and CV based methods often make use of AI. It is also worth mentioning that a novel field
of software testing researches how AI systems are tested properly [51].

The previously discussed methods work on a test case level (generating new tests, identifying
redundant tests, determining a crucial test suite). Another way to examine a piece of software is not
linked to using tests, but instead using formal methods. These may rely on a specialized logic which
defines a set of rules to use (also known as axioms) that are assumed to be true. Based on these
rules a mathematical proof is performed. A well-known representative of these systems is the Hoare
logic [52]. Formal verification techniques have been successfully applied to different use cases which
include parallel programming [53] and hardware development [54]. It is worth mentioning that these
proofs can also be performed in an automated manner if certain preconditions are met [55].

2



1 INTRODUCTION

(a) BMW E30 series from the 1980s [56]. (b) BMW G20 series from 2019 [57].

Figure 1: BMW 3 series from the 1980s and today.

1.2 Problem Statement

Here we discuss on which part of the wide range of testing we focus. The thesis was initiated by
observation that we want to share first. Based on it we infer major challenges for testing.

Our observation is regarding how some products have changed over time. Figure 1 displays the
BMW 3-series from the 1980s (E30) and today (G20). The E30 is mostly mechanical, has few electronic
components and very little software. On the other hand the newer version heavily relies on software
and offers more and more software features that the version from the 80s did not have (e. g. gesture
control, navigation or connectivity features). Thus one might infer that the software complexity in cars
is rising. We made a similar observation for our industrial partner BSH Hausgeräte GmbH (BSH)
which is Europe’s biggest producer of home appliances. Their products also evolved from mostly
mechanical to electronics / software based devices. For example their products have AI features, are
connected to the internet, and they are run with a micro computer using a Linux operating system.

Higher numbers of tests are necessary in order to handle this complexity and still be able to deliver
a high quality product. The rising number of features is partially handled by employing agile software
development methods (BSH software engineers use Scrum) [26]. However, due the iterative nature of
agile methods this means that testing must be done in an iterative way as well. Thus the software
testing department of BSH started to rely on automated testing in order to shorten the time spent
testing (this gives the developers earlier feedback). Test runs are usually triggered both periodically
and whenever new software is checked in using an automation tool called Jenkins [58]. Thus prolonged
idle times between the creation of the software and its testing can be avoided. Nonetheless due to the
rising complexity there are still high numbers of tests to run. For example just the system level tests
of a BSH dishwasher have a runtime of more than 48 hours. There is a need to give developers an
earlier insight in the current status of the software. We focus within this thesis on determining crucial
and redundant test cases to solve this customer pain. We examine two topics to reduce and control
this complexity:

• Reduction of the planned tests. We identify and permanently remove redundant tests based on
the specification. Thus the complexity can be decreased.

• Selection of a set of important test cases when only limited time is available. This enables us to
control the remaining complexity.

We take a special focus on the latter point. There we examine different notions of what an important
test case is. This may depend on the situation and from a pure practical point of view some objectives
might not be feasible as the data is simply not available. Further the context matters as a fully
automated setting leads to different demands as a semi-automated one. We saw that both can be
found inside BSH. Hence we developed a set of solutions from which one can choose based on his test
setting (automated or semi-automated), what information is available and what important means for
the engineer.
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1.3 Scientific and Engineering Contributions

The key challenge that we described in the previous subchapter is the handling of a rising numbers
of test cases. Thus we developed a series of techniques to tackle this issue for differing scenarios.

Tests are often described by a specification which states what the scope of the test is. We examined
if redundant test cases can be found and removed. The underlying optimization problem is NP-hard.
We summarized, analysed, and detected issues of some of the approximation algorithms available
for the problem. We overcome the issues of the most promising metaheuristic which we examined
(GCAIS) by improving its algorithmic structure. Thereby we boosted the method’s convergence speed,
lowered its memory usage whilst keeping the approximation quality. For our testing application we
could reduce the number of costly, manual test cases that need to be performed.

Further, we take a look at partially automated testing. In this scenario testers execute manually
selected automated tests locally and closely observe the device under test. The underlying selection
problems are deeply linked to the specification problem. Thus we reused and adapted GCAIS to
this selection problem. We introduced population initialization techniques which lead to a rich set of
solutions that enable testers to find errors earlier and more of them (if compared to other techniques).
Further, the errors found are scattered among different features as the metaheuristic employed also
optimizes a requirement coverage criteria. In practice we combine it with a manual preselection (based
on the tester’s expert knowledge) in order to avoid larger search times.

The main innovation of the thesis is located in continuous integration (CI). CI is a modern software
development approach that focuses on the frequent integration of individual developer’s source code.
Thereby big forks that are hard to merge can be avoided. However, on the other side the new code
has also to be tested in order to avoid that bugs are being introduced. Additionally, there is no
unlimited time for testing available (this might endanger an important milestone). Thus the most
crucial test cases must be detected. The test suite must be adapted to the newest software changes.
We successfully apply a modified XCS to prioritize and select crucial tests. Thereby we developed the
following modifications:

• We employ experience replay (ER) to improve the system’s performance. ER is a technique
which stores and reuses data for training. The approach is widespread for neural networks and
has just recently gotten in the focus of machine learning methods such as XCS (as can be seen in
one of our earlier works [12]). We are the first to successfully employ ER on XCS for a practical
problem [15].

• We use a XCS variant for function approximation which is coined XCSF classifier system (XCSF)
to compute continuous test case priorities. This is enabled by designing a heuristic to choose
the priorities based on a test case value function [14].

• We were the first to develop a technique to successfully reuse a test prioritization mechanism
learned for one test project to be applied to another one [16].

• We also examine the developed test case prioritization technique using OC metrics, namely its
robustness (recovery measure for performance breakdowns). We extend the usual evaluation by
also giving insight into the duration of recovery and by introducing a frequency-based approach
to measure how often such performance breakdowns occur.

Furthermore we developed two generic LCS parallelization approaches which may run on any
multicore computing device and thus may be used for our CI use case as there the hardware of the
concrete automatization server is not known.

In order to get the value created to the customer it is necessary to wrap it in a system which
interacts with the test bed, reads out available tests and executes the selected one in an automated
manner. Thereby we rely on an OC system as it turns out that several of the OC design goals fit the
testing use case well.

We further introduce an extension of testing itself which we name corrective testing. There we
examine the product under test and reconfigure it accordingly until it meets the specified behaviour.
Thus we also automate the correction step and thereby take a look at the development loop. We
provide a first successful preliminary study based on a concrete example (touch interfaces [19]).
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1.4 Structure of the Thesis

The research conducted throughout the PhD studies has been application driven. This can also be
found in the structure of the thesis. Each chapter focuses on a specific application. Furthermore the
degree of automatisation in the test problem at hand is increasing from chapter to chapter.

We decided to write parts of the thesis as individual as possible in order to enable readers to
focus on the application which is in the scope of their interest. We have been inspired to follow this
approach by the Organic Computing book which emphasizes this way of writing [29].

For readers unfamiliar with basic concepts from optimization, machine learning, and OC design
principles we provided the necessary background to understand the thesis in chapter 2. Therein we
focus to explain the aforementioned topics in a brief and simple manner.

The two next chapters are from a EC perspective multi-objective optimization chapters. Chapter
3 deals with the aforementioned identification of redundant test cases based on the specification.
Here we explain the underlying NP-hard problem, theoretical insights as well as metaheuristics to
approximate it. We introduce our improved method and evaluate it in a series of experiments. In this
we integrate some of our previous published work [7, 8].

Chapter 4 discusses how tests can be selected for test engineers who work in a semi-automated
way. Thereby we consider several criteria and the underlying mathematical optimization problem is
linked to the problem that we examine in the previous chapter. Hence this chapter builds upon the
prior one. We present how we adapted GCAIS for the task. We start by presenting our insights gained
for a pure requirements based selection [9]. We further discuss an extended variant which takes the
testing history into account [10].

In chapters 5 to 7 we discuss how we approached testing within CI. Thereby we proceed a bottom
up strategy. We introduce the machine learning approach first, then how runtime might be cut down
and afterwards discuss the system architecture which employs the technology.

Chapter 5 discusses the optimization problem first and we introduce how we approximated it
using learning classifier systems (chapter 5). In this part of the thesis we integrate our works about
XCSF [14], experience replay [12, 15], and transfer learning [16]. We further evaluate the robustness
of the methodology developed.

We discuss a generic parallelization approach for LCS in chapter 6. It is generic in terms of the LCS
used and the underlying computing system. For the computing system we only assume a multicore
processor. This fits our testing use case better as it is generally not known with what hardware it is
equipped. We introduce and evaluate easy to implement parallel algorithms which can reduce a LCS’s
runtime. This chapter is based on [11].

In chapter 7 we show how OC design patterns and architectures can be used to wrap the XCSF
based selection technique into a testing system for CI. The system relies on a multi-layered observer-
controller architecture and we underline that it has several properties which are of interest from CI
point of view (e. g. high degree of autonomy). The chapter relies on [17].

In chapter 8 we describe the idea of corrective testing as a future research direction which takes a
look at the development process as a whole. Thereby we give insight into a touch interface component
which we test and adapt until it meets the requirements [19].

The thesis is closed with a summary, conclusion and an outlook which takes the entire contribution
of the thesis into account.

1.5 Employed Scientific Method

Modern research follows a set of practises which is commonly known as the scientific method [59].
For empirical sciences such as physics or machine learning it roughly consists out of the following
steps [60]:

1. Define a question.

2. Gather related work.

3. Form a hypothesis that corresponds to the research question.

4. Evaluate the hypothesis using an reproducible experiment.
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5. Analyse the experimental data and draw conclusions that may be used for future research.

6. Publish the results.

These steps are usually examined during the peer-reviews of conferences. However, publications can
still be hard to reproduce. The nature magazine performed a survey among about 1, 500 scientists
from different fields about the reproducibility of the experiments conducted [61]. More than 70 percent
tried to reproduce the results of other researches and failed. Some of them even claim that there is a
crisis in science due to a lack of reproducibility (step 4 of the aformentioned enumeration).

The questioned scientist also gave insight on the reasons for their failure to reproduce. Some of
these issues may not be found in machine learning (e. g. variability of standard reagents). However,
issues such as a the lack of the experiment’s source code or raw data might very well occur. Thus in
order to make it easier for others to reproduce our results we published both the source code and the
datasets whenever possible.

We maintain the code and the data in several repositories on Github (based on the subject of the
experiments). The Git repositories can be downloaded from here:

https://github.com/LagLukas

They are published using open source licenses in order to enable others to freely use the content. In
the succeeding chapters we are referencing the corresponding repositories of the experiments. It is
worth mentioning that this was not always possible throughout the research conducted as sometimes
we had make use proprietary software of an industrial partner which were not allowed to publish.

A side-effect of the open source mentality that we pursue is that it also enables others to build
upon our insights. In fact, this is what we ourselves did as we extended the results of Spieker et al. [6]
based on the source code and datasets that they published.
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2 Background & Prerequisites

Within this chapter we introduce some basic concepts from computer science / mathematics which
we deem as essential for understanding parts of this thesis. We start by introducing the notion of
NP-hardness since several problems within testing turn out to be in this class [41]. Thereby we rely
on the book of Jungnickel [62] if not stated otherwise. A part of the thesis’ contribution is linked
to machine learning and thus we briefly introduce this subfield of AI. The thesis also has a systems
engineering contribution that makes use of OC design patterns. Thus we introduce some of the basic
architectural concepts from OC (for this we rely on the OC book if not stated otherwise [29]). Organic
Computing use cases have their origins in embedded systems. Within this thesis this is not the case
and hence we concentrate on the more generic parts.

2.1 NP-hard Optimization Problems

NP-hard optimization problems are linked to decision problems. The latter are questions that are to
be answered with yes or no. A well-known decision problem from mathematics is the Königsberger
bridge problem. The city of Königsberg was separated into four different parts by the river Pregel
(as seen in Figure 2). The parts were connected with each other by seven bridges. The question to
be answered is: Is there a tour that starts and ends in the same city district and visits each bridge
exactly once?

Figure 2: The seven bridges of Königsberg [2].
.

Decision problems can be separated in classes. Problems which can be solved by an algorithm
deterministically in polynomial time belong to the class P . In this context polynomial runtime means
that the number computation steps of the algorithm are bounded by a function that is a polynomial
in the problem size1. For our example the problem size would be the number of bridges and the
number of city districts. It turns out that there is such an algorithm which can be traced back to
Hierholzer [62, p.41-43]. Thus the aforementioned decision problem belongs to P .

Another notable class is NP which stands for non-deterministical polynomial time. It summarizes
problems where a yes proof can be verified in polynomial time, hence P ⊂ NP . There is a subset of
problems which are known to be NP-complete. These problems have the property that if we would be
able to solve them efficiently (that means in polynomial time) then we could solve all problems within

1These polynomial boundaries are often expressed using the Landau notation / big O notation. If an algorithm

needs f(x) then a function g(x) is boundary for its runtime if lim sup
|f(x)|
|g(x)| <∞. For example if f(x) = 4x2 + x then

g(x) = x2 is a boundary for f(x). This is abbreviated as f(x) is O(x2).
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NP efficiently. For example if we would switch the role of bridges and city districts in our example
then the resulting problem is NP -complete and known as Hamiltonian circle.

An open question in mathematics and computer science is if NP is equal to P or not. If that
would not be the case then NP complete problems cannot be solved in polynomial time. Hence
NP -complete decision problems are regarded as difficult to solve in a reasonable amount of time.

An optimization problem is coined NP-hard if the underlying decision problem is NP-complete.
For example if we would also consider the length for the Hamiltonian circle then the optimization
problem would be to find the shortest route. The question that the underlying decision problem aims
to answer is if there is an Hamiltonian circle whose length is smaller than a constant. Naturally if we
could solve the optimization problem in polynomial time then we could do the same for the decision
problem. Hence NP-hard optimization problems can also be seen as difficult to solve exactly and
efficiently.

NP-hard problems have been separated even further in order to categorize how well they may be
approximated. These classes rely on the approximation ratio of an algorithm A which we define first:

out(A, in)

OPT (in)
(1)

where OPT is the optimal value for the problem instance in and out(A) is the output of A on in.
The best value that can be achieved is 1. It is worth mentioning that this is the variant of the
approximation ratio for minimization problems.

Figure 3: Example separation of some well-known NP-hard optimization problems based on [3, 4].

The definition of the approximation ratio enables us to introduce the following complexity classes
(for minimization problems) [4]:

• A NP-hard problem is in approximable (APX) if there exists an algorithm that calculates a
feasible solution in polynomial time (in terms of the problem size) and the corresponding worst
case approximation ratio is bounded by a constant C.

• A NP-hard optimization problem has a polynomial-time approximation scheme (PTAS) if there
exists an algorithm that produces a feasible solution that is within the factor of (1 + ε) being
optimal in polynomial time (in terms of the problem size) where ε is an arbitrary postive number.

• A NP-hard optimization problem is in fully polynomial-time approximation schemes (FPTAS)
if it is in PTAS and the corresponding approximation algorithm’s runtime is also polynomial in
terms of 1

ε .
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For the classes the relationship FPTAS ⊂ PTAS ⊂ APX holds. It is worth mentioning that there is
a variety of NP-hard problems that are in APX, PTAS or FPTAS. We give a small overview containing
some well-known problems in Figure 3.

2.2 Machine Learning

Machine learning (ML) is a category of AI which focuses on the design of algorithms that improve in
an automated manner by experience [63]. These algorithms build a model based on data (the training
dataset). This model can be used to propose actions, make predictions or perform classifications. This
paradigm differs from more traditional algorithmic methods. Programmers do not explicitly state how
the decision is made but define what is to be achieved. They rely on machine learning algorithms to
build such a model which fulfills that goal.

Traditionally ML is separated into the following categories [64]:

• Supervised learning: Here the training data consists out of tuples of inputs and correct
outputs. The goal is to learn a function which maps the input to the correct output. For
example an animal classification function which trains on images of animals and predicts the
species. Note, the output could also be a continuous value (these tasks are coined regression).

• Unsupervised learning: For this category no correct output is a part of training data. Corre-
sponding machine learning methods aim at finding patterns in the data (e. g. customer personas
based on a set of customer users) or create features which can be used for other tasks.

• Reinforcement learning: This discipline studies agents that interact with an environment.
At each time step they are in a state and perform an action. For each action an agent receives
a reward. Note, that the next state that the agent will enter is not necessarily exclusively
determined by the action performed and the current state but there might also be a random
influence. The goal of reinforcement learning is to determine a policy π which maximizes the
expected reward received in the long run by proposing an action for each state [65].

It is worth mentioning that there are algorithm families such as LCS that can be used for more
than one of these ML categories [66].

There are also other ways to categorize machine learning methodologies. For example if the
machine learning algorithm makes use of analogies from the evolution such as LCS then they belong
to the field of evolutionary machine learning [66].

ML methods can also be separated by the way they learn. Online ML methods receive data in a
sequential manner and use it instantly for training whereas offline ML methods process a fixed set
data once for training [64].

Another field of ML that we want to mention is transfer learning (TL) which studies the reusage
of an already trained model for another similar task [67]. TL has already found its way into practice.
In computer vision, object recognition models trained for the image net challenge can be retrained for
other object recognition tasks. This functionality has already found its way into standard software
libraries such as Keras [68]. Similar things are possible for NLP use cases [69].

It is worth mentioning that the aforementioned subfields of ML are by no means a complete list.
We confined to the basic classes and the ones that occur within this thesis.

2.3 Observer Controller Architectures

OC has come up with multiple architectures which heavily rely on the observer controller design
pattern as a building block. The observer controller pattern can be seen as an architectual approach
for a control system. This control loop is set on top of a system under observation and control (SuOC).
Further, sensors and actors are available which enable the control loop to influence the SuOC and
measure the effects of the actions taken.

The observer’s task is to read out the raw sensor values. It may perform some sort of preprocessing
(e. g. in case of sensors that are cameras to convert images to grayscale). Additionally the observer can
make initial predictions based on the currently measured values and saved previous ones. The observer
packs the cleaned data together with these first predictions and reports them to the controller.
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Figure 4: Visualization of the generic observer controller architecture [5].

The controller takes the information received by the observer and given goals into account in
order to manipulate the SuOC using the actors. The internal decision mechanism usually relies on an
online machine learning technique. Through this the decision mechanism is capable of adapting to a
changing environment. The controller can also choose the observation model if the current one is not
fitting. Thereby the prediction methods can be changed, different sensors can be read, analysis tools
exchanged or simply a sampling frequency may be updated.

OC systems are often distributed and hence several of these observer controller structures (possibly
with different SuOCs) may exist in parallel and might communicate with each other to achieve some
common global goal. The interaction might lead to a self-organizing effect and a certain structure
might evolve (which is know as emergence in OC). In order to avoid unwanted or harmful self-
organisation and emergence, the observer has a detection mechanism to determine this behaviour and
the controller can perform countermeasures.

Observer controller can be seen as basic building blocks and can be used to create other architec-
tural concepts. One such approach is the multi-layer observer controller (MLOC) architecture.

Figure 5: MLOC architecture visualized.

A commonly used MLOC architecture consists of four different layers which are shown in Figure
5. Each layer serves as an abstraction of layers lower in the architecture. The lowest layer, termed
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productive layer or layer 0, wraps the SuOC whose state it measures and manipulates, e. g., using a
set of sensors and actors.

Layer 1 (reactive adaptation layer) is structured by an observer-controller architecture. Here the
sensors and actors usually correspond to actual hardware (e. g. cameras, a robot). In this case a
modified XCS classifier system (XCS) is used as control mechanism. XCS belongs to the LCS family.
LCS learn and maintain a set of rules which determine the next action to be performed.

The reflection layer (layer 2) differs from the previously discussed observer controller approaches
as it is not meant to measure and influence some physical system, but the rule population of the XCS
of layer 1. If situations are detected where the XCS is rather unexperienced (by the observer) then
new rules are created either at random or using an optimization heuristic (by the controller). The
controller evaluates these rules in a simulation and injects promising rules in XCS’ rule basis in order
to avoid poor performance for rather new situations.

The aforementioned layers result in an autonomous but isolated system. A third layer (collaboration
layer) serves as an interface to neighboring systems (e. g., systems with a similar architecture) as well
as the users. Communicating with neighboring systems enables adding collaboration mechanisms such
as sharing of parameters or state information. The interface for users usually contains functionality
for monitoring the system’s performance as well as adjusting the system’s goals.

A common assumption is that the presented layers are implemented in a way that if one of them
fails (i. e., is not operable any more), the lower ones are still fully functional. This means that failing
upper layers only limit the system’s capabilities to adapt while not disrupting the capabilities of the
lower layers.
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3 Test Suite Minimisation

This chapter takes a focus on the specification of tests. With documentation tools such as Polarion [70]
it is possible to define requirements, test cases and link the test cases with the requirements. Therefore
these tools enable users to get an overview about which requirements are tested and by how many
tests.

The test / requirements relation can be displayed as in Table 1. The rows display four tests (T1,
T2, T3, T4) and the columns six requirements (R1, R2, ..., R6). A brief look at our example table
reveals that T1 is redundant (a minimal test suite consists out of T2, T3 and T4). The task of finding
and removing these redundant tests is coined Test Suite Minimisation Problem (TSMP) [41].

Table 1: Example of test / requirement table. A 1 indicates “covers requirement” and 0 means “does
not cover the requirement”.

R1 R2 R3 R4 R5 R6
T1 0 1 1 0 0 0
T2 1 0 0 0 0 0
T3 0 0 1 1 0 0
T4 0 1 0 0 1 1

The Test Suite Minimization Problem is a variant of the Minimum Set Cover Problem (MSCP)
which is known to be NP-hard [44]. Thereby optimal solutions are difficult to find, but a solution’s
quality can be evaluated in polynomial time. Approximation methods for TSMP often rely on generic
approximation algorithms for MSCP [41,71]. We focus within this chapter on the following topics:

• We introduce MSCP in a mathematical manner and discuss related work regarding its approx-
imability and computational complexity.

• We give an overview of existing metaheuristics for MSCP and benchmark them on a series of
problem instances.

• We choose a search algorithm based on the outcome of the benchmarking. We further improve
it algorithmically and apply it to two test specifications of BSH fridges. Thereby we show that
we can reduce the number of test cases necessary for the project.

It is worth mentioning that the application of the results that we present here requires a well-written
requirements document and test specification. If there are requirements which are not split up and
cannot be verified using a single test that is linked against that requirement, we would accidentally
remove an important test. In order to avoid this we recommend that the output of a search heuristic
should be additionally evaluated manually before any tests are removed.

3.1 Minimum Set Cover Problem

The MSCP is an optimization variant of the set cover problem which is a NP-complete decision
problem and one of the first NP-hard problems discovered by Karp [62]. It intends to answer the
question if there are k sets among a list of given sets S1,...,Sn that cover all elements of ∪ni=1Si. The
goal of the minimization problem is to find the smallest k which achieves this. Note, that the tests
correspond to the sets and the requirements to the elements that the sets cover. Mathematically the
optimization problem can be described as follows (where the minimal |M | corresponds to k):

min |M |

s.t.
⋃
i∈M

Si =

n⋃
i=1

Si

Si ⊆ {1, 2, ...,m}
M ⊆ {1, 2, ..., n}

(2)
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One can show that no polynomial time algorithm to approximate MSCP has a constant approx-
imation ratio and thus the problem is not in APX [44] (given P 6= NP ). Hence its worst case
approximation ratio can grow large if the problem size is big. Therefore it can be considered as one
of the more challenging NP-hard optimization problems.

The MSCP was one of the first NP-hard problems discovered by Karp [72]. Hence its hardness
was examined in a long series of publications. Feige [73] proved that unless all problems in NP can be
solved deterministically in nO(log(log(m))) time, no deterministic polynomial-time algorithm can solve
the MSCP to within a factor of ln(m) − ε of the optimum for any constant ε > 0. Alon et al. [74]
showed that, under the weaker hypothesis P 6= NP , a polynomial-time approximation within cln(m)
is impossible for a certain constant c > 0. Dinur and Steurer [44] improved that result by showing that
the MSCP cannot be approximated to (1 − o(m))ln(m) given P 6= NP . Overall, these results state
that for every approximation algorithm for the MSCP there exists a problem instance such that the
calculated solution is at least about ln(m) times the optimal value (unless P = NP ). As these results
are about worst case approximation ratios there is still research for an approximation algorithm that
might have good results on average [7].

Approximation algorithms also exist outside of EC. Some of them have already been used for the
MSCP. We intend to mention some of them briefly. One possible approach is to iteratively add the
set to the solution which covers the most elements (which are not already covered by the solution).
This greedy algorithm has a logarithmic worst case approximation ratio [4]. Another approach is to
transform the MSCP into a integer linear program (LP)2. The integer constraint can be dropped and
a optimal solution for the LP can be determined. However, it may be possible that the solution of
the LP is infeasible for the version with the integer constraint. It can be rounded in order to create
a feasible solution. There are rounding techniques known to produce solutions which also have a
worst case logarithmic approximation rate [4]. It is also worth mentioning that other methods such as
branch and bound algorithms exists which can compute optimal solutions. However, these have the
downside that their worst case runtime is exponential in the problem size [76].

3.2 Overview of existing Metaheuristics

There have been various approaches from EC to design algorithms that approximate MSCP problems
well on average. These works usually evaluate their performance by benchmarking them on various
problem instances and analysing the empirical results [7].

We focus on seven different search heuristics which we found by using Google scholar. Several of
the works found benchmark their algorithms on the same problem instances (e. g. in [77, 78]). We
could determine some methods that were outperformed by others. Further, we could observe that
there was a switch in which problem instances are considered. Thus we also include some of the older
metaheuristics in order to enlarge our comparison. We also identified two EC algorithms that were
examined mathematically and have a guaranteed approximation ratio.

The majority of the algorithms that we present encode solutions as binary vectors of length n.
The i-th vector indicates if the i-th set is a part of the solution (1 for yes, 0 for no).

3.2.1 SEIP

Simple evolutionary algorithms with isolated population (SEIP) are a rather new family of algorithms
in the field of computational intelligence. It is a population based approach that starts with an empty
population. At the beginning an initial solution such as the zero vector 0 is chosen and inserted into
the population. After that a loop is entered. In each iteration an instance of the population is drawn
at random. Then it is copied and mutated. Next, the mutated instance is compared to the ones in
the population. If there is an instance superior to the mutated one, it is not inserted. Otherwise
the mutated instance is inserted into the population and all instances inferior to the mutated one are
deleted from the population. The superior relation is specific to the problem. The loop is exited if a
stopping criterion is met, e. g. no iterations are left [79].

2A linear program is an optimization problem where a linear function is to be maximized or minimized. Further the
problem can have linear (in)equalities as constraints. It also has the constraint that the variables are integers hence it
is called a integer linear program. A didactic introduction can be found in the book of Bertsimas and Tsitsiklis [75].
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Algorithm 1: Simple evolutionary algorithm with isolated population (SEIP).

input : S1, S2, ..., Sn
output: feasible solution

1 P = {0}
2 while stopping criterion is not met do
3 Choose x from P at random
4 Create y from x via mutation
5 if ∀ x ∈ P: ¬ superior(x, y) then
6 Q = {x ∈ P |superior(y, x)}
7 P = (P ∪ {y}) − Q

8 end
9 return best solution of P

The method is also described as pseudocode in Algorithm 1. SEIP considers a solution x to
be superior to y if and only if it covers the same number of elements but uses fewer sets. In our
implementation we use a bitwise mutation. Hence we flip each bit with a probability of 1

n and we
stop after a certain number of iterations. It is worth mentioning that Yang et al. [79] showed that the
logarithmic border discovered by Dinur and Steurer [44] can be achieved after m steps. Thus SEIP
has the best worst case approximation ratio that can be achieved unless P = NP (for an algorithm
with polynomial runtime).

3.2.2 Artificial Immune Systems

Artificial immune systems (AIS) are population based heuristics inspired by the immune systems of
vertebrates. The population is extended from time to time and the AIS tries to identify bad solutions
among the population and deletes them (as an immune system tries to eliminate pathogens).

Joshi et al. [33] designed an AIS called germinal centre artificial immune system (GCAIS) for the
MSCP. GCAIS allows infeasible solutions in its population. The initial population consists out of the
zero vector 0. In every iteration all members of the population are mutated (the same way as SEIP).
Afterwards the mutated population and the original one are merged. Then all elements of the new
population that are dominated by other solutions in it are deleted. A solution is said to dominate
another one if and only if it either covers more elements and does not cost more or if it covers at least
the same number of elements and costs less. The method is described as pseudocode in Algorithm 2.

Algorithm 2: Germinal centre artificial immune system (GCAIS).

input : S1, S2, ..., Sn
output: a solution

1 P = {0}
2 while stopping criterion is not met do
3 P’ = {}
4 for x in P do
5 y = mutate x
6 insert y to P’

7 end
8 P = P ∪ P’
9 delete all dominated elements from P

10 end
11 return best solution of P
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3.2.3 GSEMO

The global simple evolutionary multi-objective optimiser [80] is similar to GCAIS as it maintains a
population of non-dominated solutions during each iteration. In contrast to GCAIS it only mutates
one member of the population instead of its entirety. This solution is drawn uniformly at random and
mutated the same way. If it is dominated by any solution of the population then it is not inserted.
Upon insertion of a non-dominated solution, the population is searched for dominated solutions which
are subsequently removed. Thus GSEMO is similar to SEIP as they only differ in the way they regard
a solution as superior.

GSEMO may also be parallelized. In order to do so, Γ populations are introduced. On each
population an instance of GSEMO is run. Whenever an instance encounters a solution to be inserted to
its population, it decides with a probability p if it sends the found solution to all the other populations.
The recipients then also update their populations according to the received solution. For the sake of
simplicity we call this variant GSEMO and describe it in Algorithm 3.

Algorithm 3: Global simple evolutionary multi-objective optimiser (GSEMO).

input : S1, S2, ..., Sn, Γ, p
output: a solution

1 Pi = {0}∀i ∈ {1, 2, ...,Γ}
2 while stopping criterion is not met do
3 for i ∈ {1, 2, ...,Γ} do
4 choose x uniformly at random from Pi
5 y = mutate x
6 if y is not dominated by any element of Pi then
7 insert y to Pi
8 if random() < p then
9 send y to all other populations

10 add all received solutions received to Pi
11 delete all dominated solutions of Pi
12 end

13 end
14 return best solution of all Pi

3.2.4 Genetic Algorithm

Genetic algorithms (GAs) are a framework of population based algorithms that roughly consist out of
the three operators: selection, crossover and mutation [81]. Solutions are interpreted as chromosomes
of an individual. The selection operator chooses a solution from the population. The GA uses it
to choose two individuals. Via the crossover operator the two individuals are combined to get two
new ones called the children. The children are changed probabilistically using the mutation operator.
Afterwards, the GA tries to insert the children into the population but its capacity is limited. Hence
sometimes individuals must be removed from the population. This approach is repeated until a
stopping criterion is met and the best solution found is returned. We have summarized the basic steps
in Algorithm 4.

Various attempts have been made to design a GA for the MSCP [82–84]. Beasley [83] used a
binary tournament selection for their GA which draws two individuals from the population at random
and takes the one with the least used sets. They further use a one point crossover operator. It creates
a new child by drawing a random integer i from {1, 2, .., n}. For the first child the first i entries of
x and the last n−i of y are used. For the second the first i entries of y and the last n−i of x are used.

The mutation operator of Beasley [83] inverts bits with a certain probability that is inverse mono-
tone to the iteration. As a GA is not guaranteed to produce a feasible solution, they also introduced
a greedy heuristic to make infeasible solutions valid. If the population becomes too big, random so-
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Algorithm 4: Basic steps of a genetic algorithm (GA).

input : S1, S2, ..., Sn
output: feasible solution

1 P = create initial population()
2 while stopping criterion is not met do
3 Choose x, y from P via selection
4 Create x’, y’ from x, y via crossover
5 Mutate x’, y’
6 insert x’, y’ to P
7 check size of P

8 end
9 return best solution of P

lutions with a cost above average are deleted to keep it in bounds. We use this variant of the GA in
our later experiments.

Beasley [83] also developed a method to initialize the population in order to only generate feasible
solutions. They iterate over every element to be covered and choose one set at random from the sets
that can cover the element. The newly created solution is feasible, but may contain redundant sets.
In order to delete redundant sets from the solution, they draw each used set exactly once uniformly
at random and check if its elements are covered by other sets of the solution. If so, then the set is
deleted from it.

3.2.5 Simulated Annealing

Simulated annealing (SA) is an analogy to physics which, unlike the previous methods, is not pop-
ulation based. The analogy reproduces a hot material that is cooling down. During the cooling the
metal atoms have enough time to get into an optimal state by ordering and getting in a stable struc-
ture. This process is translated into a local search method. Therefore, a temperature function T (·)
is created that decreases over time. The method starts at an initial solution and then tries to jump
to another solution in its neighbourhood. The new solution is accepted if it is better (in terms of its
cost). If not, it is only accepted with a probability based on the temperature function [85].

Algorithm 5: Simulated Annealing (SA) as pseudocode.

input : S1, S2, ..., Sn, initial solution x
output: feasible solution

1 best = x
2 time = 0
3 while iterations left do
4 y = neighbour of x
5 if y is better than x then
6 x = y
7 best = y

8 else

9 probability = exp
( |x|−|y|
T (time)

)
10 if random() < probability then
11 x = repair(y)

12 end
13 time = time + 1

14 end
15 return best found solution
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There have been several publications about a SA algorithm for the MSCP [86, 87]. The initial
solution can be created by the greedy algorithm and there are some degrees of freedom for the neigh-
bourhood operator. The neighbourhood operator that we use drops sets at random. This might lead
to an infeasible solution that can be repaired using a greedy algorithm. Afterwards a small search for
redundant sets is done to keep the solution as small as possible.

Minotra [87] used the following temperature function:

T (t) = γ tTinitial (3)

where Tinitial is the starting temperature and γ is a real number between zero and one. In our later
experiments we use this version of SA. We summarized the method in Algorithm 5.

3.2.6 Particle Swarm Optimization

Particle swarm optimization is a population based metaheuristic originally developed by Eberhart
and Kennedy [88] to solve continuous problems. Each element of the population represents a particle.
A particle holds its own current solution and the best solution that it found throughout its search. A
particle is conscious of its neighbourhood and knows the current best solution of it. The particle is
dragged into both the direction of its own best value and the best value of its neighbourhood. The
particle’s solution is updated until a stopping criterion is met.

As many optimization problems are discrete, there have been some attempts to adapt PSO for
such problems [89, 90]. A new discrete version has been designed by Balaji et al. [78] especially for
the MSCP which they call JPSO. Thus we focus on that version. It creates the initial solutions of its
particles the same way as the genetic algorithm of Beasley [83].

In contrast to the traditional PSO, the JPSO algorithm does not calculate a direction based on
several solutions. A particle pi decides at random if it either moves its current solution vi towards a
random solution x, the best solution of its neighbourhood Li, the global best solution g or towards
its own best solution bi. The target solution is called the attractor. These moves have an analogy to
jumps of frogs, thus are called jumps and hence the name jump particle swarm optimization. Each
jump has the same probability of 0.25. The current solution is merged with the attractor. If the newly
generated solution is superior to its own best solution, the best solution of the neighbourhood, or the
global one then these are updated. We have summarized the basic behaviour in Algorithm 6.

The merge operator first draws a random number r between 0 and the number of used sets by the
particle’s current solution vi. Then we either delete a random set from vi or add a random set from
the attractor. Each event has the same probability of 0.5. This is repeated r times and costs O(m).
During this operation the solution might lose its feasibility. Hence it is repaired greedily if necessary.
After this greedy repair the solution might contain redundant sets. Thus, the repair method further
iterates over all used sets and checks if its elements are covered by other sets and removes it if so.
The overall update of a particle depends on the used neighbourhood operator and random solution
generator. It is worth mentioning that [78] do not state how they generate a new random attractor.
For our later implementation we assumed that they take the same method as for their population
generator. Furthermore they do not describe how to choose the neighbourhood of a solution.

3.2.7 Chemical Reaction Optimization

Chemical reaction optimization (CRO) is a rather new metaheuristic that is still topic of ongoing
research in terms of runtime efficiency [91] and on what problems it performs well [92]. Similar to
GAs it can be seen as a framework of algorithms that has to be adjusted to the specific problem. There
already exists a CRO version for the MSCP which has been successfully tested on the benchmark suite
of Beasley [77] such as the algorithm of Balaji et al. [78]. There it also beats the GA of Beasley [83]
and often had optimal or close to optimal solutions.

CRO is a population based approach and each member of the population represents a molecule.
Each molecule has a potential energy and a kinetic energy. The former is the cost of the solution
the molecule holds and the latter describes its willingness to change to a worse solution. The method
also holds a central buffer of energy that can exchange energy with the molecules. The entire process
resembles more or less a chemical reaction in a box. A molecule can collide with the boxes’ wall and
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Algorithm 6: Jump particle swarm optimization (JPSO).

input : S1, S2, ..., Sn
output: feasible solution

1 P = create initial population()
2 g = best solution among P
3 while iterations left do
4 for particle p i in P do
5 b = random(0,1)
6 if b < 0.25 then
7 attractor = random solution()
8 else if b < 0.5 then
9 // jump towards the particle’s best solution

10 attractor = bi
11 else if b < 0.75 then
12 // jump towards the neighbourhoods best solution
13 attractor = Li
14 else
15 // jump towards best known solution
16 attractor = g

17 end
18 merge current solution with attractor
19 if current solution better than bi then
20 bi = current solution
21 if current solution better than Li then
22 Li = current solution
23 if current solution better than g then
24 g = current solution

25 end

26 end
27 return g
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might change its structure. This on wall collision searches the neighbourhood of the molecule’s solution
for a new one and changes it according to a certain probability that depends on the molecule and its
buffer’s energy. This introduces a form of random search to CRO. Molecules can also decompose into
two new molecules that are partially based on the previous one which also represents a form of search.

Based on the quality of the two new solutions and their energy levels, they are either accepted
into the population or not. If so, the original molecule gets destroyed. Furthermore two molecules
can collide and form a new one. This process is called synthesis and has a similar objective like
the crossover step in a GA. It combines two solutions in order to get an improved one. Similar to
the preceding operators, the acceptance of the new molecule depends on the solution’s quality and
the energy levels. CRO takes another analogy to chemical reactions as two molecules can collide
and bounce away. This is achieved once more by using a neighbourhood operator to perform local
search. This operation is called inter-molecular collision. The four operators are called in a loop until
a stopping criterion is met. For example, Yu et al. [77] used a fixed number of iterations.

We summarized the abstract behaviour in Algorithm 7. We keep it at this abstract level as a
detailed description can be found in [92] and as we focus on the MSCP and not CRO in general in this
thesis. There the decomposition and synthesis criteria are also described in great detail. Furthermore,
their publication contains precise descriptions of the four operations CRO uses. We focus more on
the adaptations of the neighbourhood operator, how the population is initialized, and how infeasible
solutions are turned into feasible ones [77]. Thus, we can see a concrete version of CRO for the MSCP.
We would like to point out that the previously mentioned work also proposes a version for the weighted
minimum set cover problem (there each set has an individual cost).

Algorithm 7: Chemical reaction optimization (CRO).

input : S1, S2, ..., Sm
output: feasible solution

1 P = create initial population()
2 while stopping criterion is not met do
3 b = random(0, 1)
4 if b < threshold then
5 choose random molecule m from P
6 if Decomposition criteria met then
7 perform decomposition on m
8 else
9 perform an on wall collision on m

10 end

11 else
12 choose random molecules m1, m2 from P
13 if Synthesis criteria met then
14 perform synthesis on m1 and m2
15 else
16 perform an inter-molecular collision on m1 and m2
17 end

18 end

19 end
20 return best solution of P

First we have to introduce another notation for the encoding of the solutions. Every other con-
sidered algorithm uses a binary encoding for them where the i-th entry indicates if the corresponding
set belongs to it. Yu et al. [77] use vectors of dimension m to encode a solution. They enumerate all
elements and there the i-th entry indicates by which set the i-th element is covered. It is important to
note that this does not lead to an unique representation and a set cover in the other encoding might
have several encodings in this one.
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A new solution is created by iteration over every element that must be covered. If the i-th element
shall be covered then it is detected by which sets it can be covered. One out of these is drawn at
random using an uniform distribution.

The neighbourhood operator first deletes the set from the cover which has the worst efficiency
among all used ones. The efficiency of a set in a solution is the number of occurrences in the solution.
After the set of worst efficiency is removed, the solution might become unfeasible as it can contain
uncovered elements. In order to regain feasibility the operator chooses new sets to cover those elements.
The i-th set is drawn with the following probability:

si∑m
k=1 sk

(4)

where si is the number of elements that the i-th set can cover among the yet uncovered elements.
The CRO framework has a decomposition operator that tries to create two molecules from one.

This is done by copying the original molecule twice and performing the neighbourhood operator on
each copy ten times. The synthesis operator takes two solutions x, y and combines them into a new
solution z. Here they are combined by choosing entries from each one uniformly at random. Hence:

P (zi = xi) = 0.5 (5)

It is worth mentioning that due to the representation, no repair method is necessary. The collision
operators do not need to be discussed further as they only rely on the neighbourhood operator.

3.3 Runtime Considerations

Previously we described a series of metaheuristics in an algorithmic way. Thereby we did not discuss
important properties such as their runtime. In publications that focus on an empirical evaluation of
an approximation algorithm we frequently observed that the metaheuristic was run for a fixed number
of iterations [33, 77, 78, 87]. Some of them do not measure the actual runtime and also no theoretical
one [33, 77]. In order to give an insight for practitioners, we analysed the worst case cost for an
iteration of each algorithm considered. We did the analogous for initialization cost.

Table 2: Cost of an algorithm’s iteration (iter) and initialization (init) in terms of the Landau notation.

SEIP GCAIS GSEMO
init O(n) O(n) O(Γn)

iter O(n+m) O(|P |2 + Pn) O(
∑Γ
i=1 |Pi|2 + |Pi|n)

GA SA JPSO CRO
init O(|P |mn2) O(n) O(|P |nm2) O(|P |nm)
iter O(mn2 + |P |) O(mn2) O(|P |(n2m+ χ)) O(mn2)

We give an overview about the runtime that we determined in our previous work [7] in Table 2.
The χ which occurs in the iterational cost of JPSO is defined as follows:

χ = max{rand, neigh} (6)

where rand is the cost of a random solution generation and neigh the cost of the used neighbourhood
operator. These operators are not stated in the original source [78] and thus we left the cost at
this high level (in our later experiments we use the concrete generator and neighbourhood operator
described in 3.2.6). Thus we encountered a reproduction problem as mentioned in chapter 1.5.

One observation that we can make is that five out of seven methods have runtime that is not linked
to the problem size, but to other algorithmic parameters such as the population size. Some of the
algorithms such as GCAIS have an unbounded population which might in turn lead to high runtimes.

The considered algorithms can vastly differ in terms of their cost. There are computational
lightweights such as SEIP as well as more intense methods such as JPSO. For some algorithms the
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term n2m is appearing in their runtime. O(n2m) is the cost of the greedy algorithm mentioned in 3.1
on which many of these methods rely.

Our brief overview about the algorithmic complexities underlines our previous statement that an
analysis solely based on the number of iterations such as in [33] is ambiguous as the methods might
differ highly in terms of runtime.

3.4 Benchmarking

We extend the insight about the method’s runtime by performing an empirical analysis. We decided
to do so additionally to our worst case analysis due to the following reasons:

• We only gave an overview on the worst case behaviour. There are widely used algorithms such
as Simplex that have bad worst case runtime, but are fast on average [93].

• The Landau notation leads to a coarse-grained runtime approximation since constants are left
out. For example the introduced CRO uses the neighbourhood operator ten times (for the
decomposition operator) but in the big O notation this costs the same as using it once.

• We did not give any insight of the relationship of the approximation quality and the runtime.

Further we go beyond the problem instances from Beasley’s OR library in order to see if there is some
wider level of generality for the quality of the metaheuristics considered. Thereby we might identify
problem structures that are difficult to solve for some of them since there are instances where every
algorithm either has a high runtime or a bad approximation ratio (given P 6= NP , see [44]).

Another theoretical result to keep in mind is the no free lunch theorem of Wolpert and Macready
[94]. It states that all heuristics perform equally well on average on every optimization problem.
Hence we also intend to evaluate if these methods that are highly adapted towards MSCP differ much
in terms of their performance.

The source code and all problem instances that we considered throughout these experiments can
be found here:

https://github.com/LagLukas/minimum_set_cover

For our experiments we used a Dell OptiPlex XE3 with 32GB RAM and an Intel i7 8700 processor
and it was not used for anything else during the evaluation. Each experiment is run a hundred times.

We stop the execution of an algorithm if one of the following conditions is fulfilled:

• A time budget of one hour is expired.

• The algorithm fails to improve its best solution over 2000 iterations. This means the method
cannot find a feasible solution that uses at least one set less than its known best solution. We
interpret that as convergence.

For our benchmarking we use two different problem classes. It is worth mentioning that in one
of our studies [7] we also considered instances from Beasley’s OR library. However, we made similar
observations and drew the same conclusions for Beasley’s OR library and the problem classes presented
here. Hence we leave them out here.

Some of the metaheuristics introduced require hyperparameters. We adopted the hyperparame-
ters for GSEMO from Joshi et al. [33] (Γ = 30, send probability is set to 30

nm ). We also used the
hyperparameters of the original source material for CRO [77] (see Table 3). For the SA we set γ to
0.975 and start with an initial temperature of 256. The GA has a population size of 200. In our JPSO
version we use thirty particles and use the 5 nearest neighbours for all neighbourhood operations and
we use the L1 norm as a metric. It is worth mentioning that SEIP and GCAIS do not have any
hyperparameters.
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Table 3: Hyperparameters of CRO.

Parameter Value
Initial population size 10

Initial molecular kinetic energy 1000
Initial central energy buffer size 10000

Collision rate 0.1
Energy loss rate 0.1

Decomposition threshold 10000
Synthesis threshold 1000

3.4.1 Steiner Triple Systems

Fulkerson et al. [95] identified Steiner triple systems as especially tough MSCP instances. A Steiner
triple system is a family of sets where each set contains exactly three elements. Furthermore, these
sets overlap at most by one element. The sets’ elements are from a base set B and further all possible
two-subsets are distributed over the triplets. Each two-subset of B appears exactly once as a subset
of a triple. Hence the elements are evenly distributed among the sets. Together with their equal size,
this is the reason why such systems are regarded as tough.

We consider the Steiner triple systems proposed by Fulkerson et al. [95] which are formed on
B = {1, 2, ..., 27} and B = {1, 2, ..., 45}. We call these instances Steiner 27 and Steiner 45. It is worth
mentioning that the optimal solutions for these MSCP instances are known.

The results of each introduced algorithm are displayed in Table 4. The tables show the average,
best approximation ratio, number of iterations and the actual runtime of each considered method.
Here GCAIS and the GA produced optimal solutions. The other methods vary in their results and
are achieving approximation ratios between 1.1 and 1.6. JPSO cannot improve the initial solutions of
its particles for the Steiner triple system of size 27 (as it already converges after 2001 iterations).

The runtime results expose, similar to the theoretical examination, huge differences in terms of
runtime. JPSO has by far the highest runtime and SEIP the lowest. The experiment also reveals that
a pure evaluation of the number of iterations until an algorithm converges is ambiguous as JPSO has
the smallest number of used iterations, but the highest runtime.

Further, the results show the weakness of GCAIS in terms of its runtime: if the sets are rather
disjoint and of equal size, the population can become rather huge which leads to a high runtime.
The latter is the case for Steiner triple systems which explains that GCAIS has such a high runtime
compared to for example CRO or the GA.

Additionally we performed statistical tests to verify if the considered algorithms vary in terms of
their iterations, durations and approximation ratios. Our null hypotheses are that they all behave
the same way for these magnitudes. We applied Friedman tests to test these hypotheses which all
had p-values lower than 10−9 which we regard as significant. Thus statistical tests state that the
algorithms differ regarding the aforementioned magnitudes.

3.4.2 A bad Case for the Greedy Algorithm

The introduced JPSO, CRO, SA and GA have greedy mechanisms as a part of their search design.
There is a class of problem instances where the greedy algorithm has a logarithmic approximation
ratio similar to the worst case [3].

The example can be constructed as follows [3]: Let k be an integer bigger than zero. We construct
sets S1,...,Sk that are pairwise disjoint. Sk holds 2k elements. Sj holds the elements {2j + 1, 2j +
2, ..., 2j+1} for j > 1 and S1 = {1, 2}. We construct two additional sets M1 and M2. M1 contains all
even numbers and M2 all odd numbers. Hence we want to cover a total number of 2k+1 − 2 elements
and M1 and M2 are the biggest sets. Further, half the elements of every Sj are in M1 and the other
half in M2. The greedy algorithm selects Sj , Sj−1,..., S1 instead of the optimal solution consisting
out of M1 and M2. We display one concrete example for k = 3 in Figure 6.
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Table 4: Experimental results for Steiner triple systems of size 27 and 45. It contains average values
±σ for the iterations, approximation ratios and runtime (in seconds). The best values of each column
are marked bold and the worst are in italics.

Steiner 27 iterations duration avg. iteration duration avg. approx. ratio best
CRO 2126.0 ± 53.0 1.048 ± 0.16 0.00049 ± 7e-05 1.644 ± 0.07 1.556
GA 2558.0 ± 478.0 4.342 ± 1.109 0.00172 ± 0.00305 1.078 ± 0.091 1.0

GCAIS 2102.0 ± 22.0 474.271 ± 86.936 0.22574 ± 0.0563 1.0 ± 0.0 1.0
GSEMO 3608.0 ± 1073.0 20.952 ± 8.107 0.00586 ± 0.00077 1.111 ± 0.091 1.0

JPSO 2001.0 ± 0.0 701.123 ± 130.386 0.35039 ± 0.08644 1.433 ± 0.082 1.333
SA 2649.0 ± 839.0 14.047 ± 5.01 0.00537 ± 0.02241 1.433 ± 0.063 1.333

SEIP 4768.0 ± 1250.0 0.666 ± 0.242 0.00014 ± 3e-05 1.167 ± 0.131 1.0

Steiner 45 iterations avg. duration avg. iteration duration avg. approx. ratio best
CRO 2166.0 ± 41.0 2.485 ± 0.62 0.00115 ± 0.00038 1.727 ± 0.119 1.6
GA 2847.0 ± 767.0 25.979 ± 5.508 0.00943 ± 0.01905 1.2 ± 0.144 1.0

GCAIS 2631.0 ± 454.0 1951.188 ± 320.956 0.74636 ± 0.23683 1.033 ± 0.035 1.0
GSEMO 4810.0 ± 2115.0 53.366 ± 28.564 0.01106 ± 0.00182 1.28 ± 0.076 1.133

JPSO 1833.0 ± 121.0 3594.182 ± 15.282 1.9693 ± 0.63859 1.64 ± 0.064 1.533
SA 3678.0 ± 1176.0 88.132 ± 37.294 0.02327 ± 0.00612 2.16 ± 0.126 2.0

SEIP 7197.0 ± 1473.0 2.362 ± 0.706 0.00033 ± 3e-05 1.247 ± 0.063 1.133

Figure 6: Example of a problem instance where the greedy algorithm has a logrithmic approximation
ratio. The rectangles represent sets and the black circles the elements.

For our benchmarking we create several such systems for one instance. To create one instance
we draw k from {2, 3, .., 5} at random and create the corresponding set system. We repeat this 5
times and each system is disjoint to get our overall instance. Thus, we make it hard for greedy based
approaches to break out of a bad solution to the known optimal one.

Table 5 shows the results on those randomly created instances (summarized as random instance).
We put all in one table as the problems share the same inner structure and all have the same optimal
value of 10. In this case only the GA is capable of finding optimal solutions and the optimal solutions
were already in its population from the start. GCAIS, GSEMO, SEIP, and SA also seem to have rather
good solutions (their best solutions use 12 instead of 10 sets). Algorithms such as CRO and JPSO
that are relying on greedy heuristics achieve rather worse solutions compared to the aforementioned
algorithms (due to the design of the problem class). JPSO is also not able to improve the initial
solutions of its particles.

Once more JPSO has the highest runtime and SEIP the lowest. The runtime of GCAIS differs a
lot on this problem class compared to the Steiner triple systems. In this problem class the available
sets highly differ in size which may lead to a smaller population (as it is easier to find a solution that
dominates another one).

Here we also performed Friedman tests to verify if the algorithms differ in terms of their iterations,
duration and approximation ratios. Once more we could observe p-values lower than 10−9. Thus the
statistical tests support the claim that the algorithms differ in the aforementioned magnitudes.
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Table 5: Experimental results for the bad cases for the greedy algorithm. It contains average values
±σ for the iterations, approximation ratios and runtime (in seconds). The best values of each column
are marked bold and the worst are in italics.

rand iterations avg. duration avg. iteration duration avg. approx. ratio best
CRO 2076.0 ± 53.0 1.084 ± 0.405 0.00052 ± 0.00021 2.0 ± 0.0 2.0
GA 2001.0 ± 0.0 2.635 ± 0.919 0.00132 ± 0.00346 1.163 ± 0.084 1.0

GCAIS 2302.0 ± 252.0 5.346 ± 1.357 0.00236 ± 0.00027 1.288 ± 0.06 1.25
GSEMO 2648.0 ± 200.0 9.208 ± 2.573 0.0035 ± 0.00021 1.288 ± 0.06 1.25

JPSO 2001.0 ± 0.0 492.657 ± 113.087 0.24621 ± 0.06516 2.013 ± 0.092 1.875
SA 2297.0 ± 514.0 9.221 ± 4.08 0.00403 ± 0.00175 1.3 ± 0.065 1.25

SEIP 5813.0 ± 1258.0 1.049 ± 0.388 0.00018 ± 4e-05 1.45 ± 0.222 1.25

3.5 Improving GCAIS

In our previous MSCP benchmarking we could recognize that GCAIS (Algorithm 2) had an optimal
or close to optimal approximation ratio across several problem instances which is not the case for
the other metaheuristics considered. This is also the case for several instances from Beasley’s OR
library [7]. On these instances GCAIS and GSEMO were capable of outperforming several of the
other heuristics such as the GA. However, for some instances this comes at a cost. The runtime may
be high if the sets are of similar size and only slightly overlap (e. g. as in the Steiner triple system
evaluation). This can be traced back to large populations [96]. Within this subchapter we address
this issue by introducing a simple datastructure and a population boundary based on an equivalence
relation [8].

3.5.1 Population Boundaries

The domination relation which we described for the base variant of GCAIS is also known as Pareto-
domination [97]. The relation is defined for an arbitrary number of objectives and not only two as for
the MSCP (number of sets used, number of elements covered). A solutions is regarded as better if it
is better in at least one objective and not worse in the remaining.

The base variant of GCAIS only distinguishes solutions by Pareto-domination which might be too
coarse-grained (as in the example of the Steiner triple systems). We group the solutions based on
their concrete values of their objectives. We regard two solutions as equivalent if they have the same
values. For example we regard all MSCP solutions that cover ten elements whilst using two sets as
equivalent.

We create a population boundary Pb for each equivalence class. Whenever the limit is exceeded
then we drop as many random solutions as necessary to return an acceptable level. Hence the total
population has a maximum capacity of n ∗m ∗ Pb + 1 (there is only one solution that uses zero sets
and covers zero elements).

3.5.2 Skyline Computation

The set of non-dominated solutions is known as the Pareto-frontier [97]. Its efficient computation
has been examined by the database community [98, 99] as the Pareto-frontier contains the most
“interesting” data points (set of best possible choices). There it is known as the computation of the
Skyline.

A simplistic approach is to compare each solution with each other which is known as the block
nested loop (BNL) algorithm. If the method is employed for the MSCP then it has a cost of O(|P |2).
There is also a divide and conquer approach and prefiltering method which both have a runtime of
O(|P |log(|P |)) [98, 99]. Other methods such as the research of Endres et al. [100, 101] take special
focus on large amounts of data and efficient parallelizations on database nodes.

We explicitly exploit the fact that the MSCP has only two objectives. We save the population in
a table. An entry i holds all solutions that use i sets. This has the side-effect that we can check the
population boundary rather easily. We split the computation of the Skyline in GCAIS in two steps:
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• Insertion of the mutated solutions.

• Removal of dominated solutions and possible deletion within in the population.

Whenever a newly created solution is to be inserted into the population we check if a corresponding
table entry already exists. If not then we create a new entry (solely consisting of the new solution).
If there already is an entry, we check how many elements the solutions cover. If the existing entry’s
solutions cover more elements then the new solution is not inserted. If they cover the same number
of elements then the solution is added to the entry’s ones. The third case is when the new solution
covers more elements. In this case the entry’s solutions are removed and the novel one is inserted.
Each of these operations has a constant cost and hence we can insert a solution in O(1). Thereby we
can insert the mutated population in O(|P |).

The population might contain dominated solutions after the insertion operation. For example
the entry using three sets might cover more elements than the entry using four sets (this case is not
considered within our insertion approach). Thus a population repair method is necessary in order to
have population that forms a Pareto-frontier.

The repair method iterates over the table indexes {1, 2, ..., n} (in an ascending order). We hold
the start entry of index 1 in a variable. Whenever we encounter an entry that covers less elements
it is deleted. If we encounter an entry that covers more elements then we save the entry (in form of
its index) to the variable and continue as mentioned before. A succeeding entry’s solutions that are
dominated by the old entry’s solutions are also Pareto-dominated by the variable’s new value. After
this operation the population contains no dominated solution. It is straightforward to see that this
computation costs O(n). It is worth mentioning that if m� n then one could also index the table by
the number of elements covered (this would lead to a cost of O(m)). Further, the Skyline computation
alone does not change what the metaheuristic is computing, only how it is done (in contrast to the
population boundaries). However, by employing the table approach we can insert and compute the
Pareto-frontier in linear time.

For the sake of simplicity we summarized the insertion and Skyline procedure in Algorithm 8.
table denotes the look up table and the entry using i sets is accessed using table[i]. The attribute cov
describes how many elements the solutions of the entry cover. Hence the equivalence relation can be
evaluated easily. In our later implementation we hold the solutions of an entry in a simple list.

3.5.3 Alternative Approach

It is worth mentioning that the issue that we encountered for GCAIS has also been discovered by
Joshi et al. [96]. However, they run into the problem whilst examining the multi-objective knapsack
problem and not MSCP.

Joshi et al. [96] did not solve the issue by using population boundaries or improving the way how
the Skyline is computed. Instead they did not use Pareto-domination, but epsilon-dominance. The
relation separates the objective space into hypercubes of edge length epsilon. If two solutions are
compared which are not in the same hypercube, then the ordinary Pareto-Dominance is applied. If
it is not the case, a score for each solution is computed. It is the sum of all objectives that are to be
maximized minus the sum of all objectives that are to be minimized. The solution with higher score
dominates the solution with the lower one.

If the concrete multi-objective optimization problem corresponds to the MSCP, one solution x
epsilon-dominates a solution y if and only if the following condition holds (given both solutions are
in the same hypercube):

||y||1 − ||x||1 + |
⋃
xi=1

Si| − |
⋃
yi=1

Si| > 0 (7)

Thereby epsilon-dominance is more strict within a hypercube (it is more likely to sort out solutions).
The idea is that this stricter dominance relation might lead to a smaller population which also has a
positive effect on the runtime.
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Algorithm 8: Insertion and Skyline procedure for GCAIS using a look-up table.

input : mutated solutions P’
1 // insertion
2 for x in P’ do
3 covered x = requirements covered by x
4 if table has no entry |x| then
5 table[|x|].cov = covered x
6 set the solutions of table[|x|] to x

7 else if table[|x|].cov == covered x then
8 append x to the solutions of table[|x|]
9 if table[|x|] holds more than Pb elements then

10 delete a random element of table[|x|]
11 else if table[|x|].cov < covered x then
12 table[|x|].cov = covered x
13 set the solutions of table[|x|] to x

14 end
15 // repair the table
16 i = 1
17 for k in {2, ...n} do
18 if table[k].cov ≤ table[i].cov then
19 delete table[k]
20 else if table[k].cov > table[i].cov then
21 i = k

22 end

3.5.4 Evaluation on Industrial Data

The MSCP instances we have evaluated previously were purely theoretical. We switch the focus on two
MSCP instances that correspond to TSMP instances. The test specifications that we are examining
within this experiment are manually executed system tests for fridges. These are of special interest as
expensive manual labor must be invested to execute these (a BSH engineer in Germany costs about
100 Euros per hour).

We filtered out test cases of the two datasets that exclusively cover a requirement (these must be
executed). The first dataset (Fridge-1) contains 15 test cases for 68 requirements. The second dataset
(Fridge-2) contains 89 test cases for 133 requirements.

We compare our look-up table version of GCAIS with the base variant proposed by Joshi et al. [33].
Additionally we explore if the positive effects of epsilon-dominance are also valid for MSCP. Further
in the analysis of the theoretical instances we saw that GSEMO performs reasonable well in terms of
runtime and approximation quality. Hence we include this metaheuristic into the experiment.

We adopted the hyperparameters for GSEMO from chapter 3.4. We employ a population boundary
of Pb = 200 and no boundary at all.3 We examine the values 0, 5, 10 and 15 for epsilon. Note that a
value of 0 indicates that raw Pareto-Dominance is used.

We evaluate the algorithm’s performance using three different key performance indicators (KPI):

• speed up: The speed up measures the relative runtime of an algorithm A compared to an
algorithm B:

speed up(A, B) =
runtime of B

runtime of A
(8)

A speed up of two means that A is twice as fast as B.

• memory savings: The memory savings is also a relative measure. We use the algorithms
population sizes as a basis for it. The number of solutions that the algorithm maintains scales

3We retrieved that value in a small hyperparameter study. We actually determined that the magnitude of the variable
has no high impact on the approximation quality. It is solely important that the boundary exists.
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with the memory consumption and is mainly responsible for the memory usage of the considered
metaheuristics. We compare the maximum population sizes encountered throughout the search.
It is defined as follows:

mem save(A, B) =
max population size of B

max population size of A
(9)

A value of ten indicates that A only uses ten percent of the memory used by B.

• estimated approximation ratio: An optimal solution for the two problem instances is not
known and an exhaustive search is not feasible (for the Fridge-2 dataset there are 289 different

solutions). Hence we use an estimation of the optimal value ÔPT :

est. approx. rate =
out(A)

ÔPT
(10)

We estimate the optimal value using the considered metaheuristics’ output solutions.

For the memory savings and the speed up we compare the metaheuristics with the base variant of
GCAIS (i. e. algorithm B in KPI definitions). Thereby we can examine if our algorithmic changes
have a measureable positive effect. It is worth mentioning that the KPIs should not be evaluated
in an isolated way, but in context with each other. For example an algorithm that just proposes to
use all tests will have an excellent speed up and memory saving, but it will do pretty bad on the
approximation rate KPI. On the other hand an exhaustive search leads to the best approximation
rate but it will have a very bad speed up. Thus a method that performs decent in all three categories
is desirable.

The TSMP instances are smaller than the theoretical MSCP instances. Hence we only give each
algorithm a search time of ten minutes. Further, if we do not measure an improvement throughout a
hundred iterations, we regard that as convergence. We repeat each search a hundred times and use
the same computer as in chapter 3.4. The corresponding source code is available here:

https://github.com/LagLukas/gcais_test_suite_reduction

The results of our experiments are displayed in Table 6. Our first dataset (Fridge-1) is rather easy
to solve for the considered methods compared to our second one. The epsilon-dominance variants, the
bounded variant and the base variant of GCAIS always achieve the best possible results. Also, GSEMO
comes close to this. However, the combination of a bounded population and epsilon-dominance is
rather detrimental as these versions produce worse solutions than the version without it. We can see
certain differences in the memory usage and the speed up. The bounded version of GCAIS only uses
about a tenth of the memory of its base variant and is about fourteen times faster. Yet GESMO is
even faster but only achieves close to the best results and requires more memory.

Our other dataset (Fridge-2) is tougher to solve for the considered metaheuristics as only the
bounded GCAIS variant without epsilon-dominance always achieves optimal results. Once more the
results show that this variant can drastically cut down memory usage and runtime. GSEMO has an
even shorter runtime and memory usage but on the other hand only achieves approximation rates
of about three. These differences between GSEMO and our bounded version of GCAIS are due to
GSEMO’s convergence to an inferior solution. GCAIS does not get stuck (as it always finds optimal
solutions) and thus the population continues to grow as does the runtime.

On both datasets we could observe that in our case the epsilon-dominance has a detrimental effect
on the population size and therefore on the runtime. Combined with a bounded population these
effects disappear but the method is unable to find as good solutions as the GCAIS with population
boundaries and no epsilon-dominance. Hence we could not observe the same positive effects of the
usage of epsilon-dominance as [96] did for the Knapsack problem. The pure bounded version always
achieved the best results and achieved high values in our other KPIs as well.

Most of the observed differences can be explained by taking a look at the population growth and
size which we visualized in Figures 7 and 8. The base variant and pure epsilon-dominance variants of
GCAIS show an exponential growth for Fridge-1 and on the other dataset we can observe a similar
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(a) GCAIS base variant (b) GCAIS with epsilon-dominance

(c) GCAIS with bounded population (d) GSEMO

Figure 7: Population sizes ±σ for the Fridge-1 dataset.

(a) GCAIS base variant (b) GCAIS with epsilon-dominance

(c) GCAIS with bounded population (d) GSEMO

Figure 8: Population sizes ±σ for the Fridge-2 dataset.
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Table 6: KPIs for the experimental results (averaged values ± standard deviation σ). A - character
indicates that the parameter was not used. We marked the best values of algorithms that always found
optimal solutions bold. The best values of individual KPIs are marked in italics. The horizontal line
separates our approaches to the ones we are comparing to.

Fridge-1 Pb epsilon mem save speed up est. approx. rate
GCAIS 200 5 22.77± 0.0 1.28± 0.19 1.29± 0.2
GCAIS 200 10 22.77± 0.0 1.54± 0.19 1.34± 0.17
GCAIS 200 15 28.47 ± 0.0 2.11± 0.16 1.38± 0.16
GCAIS 200 - 10.35 ± 0.0 14.14 ± 0.02 1.0 ± 0.0
GCAIS - 5 0.03± 0.03 0.77± 0.16 1.0 ± 0.0
GCAIS - 10 0.03± 8.95 0.75± 0.16 1.0 ± 0.0
GCAIS - 15 0.03± 16.27 0.73± 0.15 1.0 ± 0.0

GCAIS BASE - - 1.0 1.0 1.0 ± 0.0
GSEMO - - 1.66± 0.78 16.81 ± 0.13 1.03± 0.05

Fridge-2 Pb epsilon mem save speed up est. approx. rate
GCAIS 200 5 8.49± 0.0 0.32± 0.38 3.62± 0.46
GCAIS 200 10 10.9± 0.0 0.51± 0.48 3.82± 0.47
GCAIS 200 15 12.49 ± 0.0 0.84± 0.33 3.96± 0.3
GCAIS 200 - 5.11 ± 0.01 3.58 ± 0.08 1.0 ± 0.0
GCAIS - 5 0.14± 3.4 0.88± 0.14 2.7± 0.13
GCAIS - 10 0.18± 3.14 0.88± 0.14 2.66± 0.28
GCAIS - 15 0.23± 2.47 0.96± 0.23 2.8± 0.19

GCAIS BASE - - 1.0 1.0 1.0± 0.02
GSEMO - - 9.89± 0.01 47.33 ± 0.01 2.94± 0.15

observation for epsilon equal to 5. For the other two variants the runtime ran out and thus we do not
fully see an exponential growth. GSEMO’s population size grows linearly for Fridge-1 and more or
less logarithmically for Fridge-2. Our bounded GCAIS version has, as expected, a constant population
size (after several iterations). The jumps in the graphs are due to newly found solutions that dominate
other solutions in the population which get deleted. These different growths are one of the causes for
the differences in speed up as all of the considered algorithms have a runtime which depends on this
magnitude.

The growths in terms of population size can be explained by taking a look at the structure of our
datasets and the problem itself. Our test specifications consist out of test cases that have similar sizes
and only slightly overlap in terms of the requirements which they cover. Also, the two dimensions
(covered requirements and used tests) are integers and there are only limited valid values. Thus there
can be many solutions that cover the same number of requirements and use the same tests and it is
hard to find solutions which dominate large portions of the population. If the tests highly differ in
their size it would be easier to find dominating solutions which leads to smaller populations. Hence
we make similar observations as for the Steiner triple systems.

Next to our visual evaluation and the discussion of the raw values of Table 6, we perform additional
statistical testing to confirm our observations. We test each KPI and each dataset individually. Our
null hypothesis is that the algorithms do not differ on one dataset regarding one KPI. This can be
verified using a Friedman test. On all different null hypotheses we observed p-values below 10−10

which we regard as significant. Thus we conclude that the algorithms differ in terms of the KPIs.
Overall we are able to reduce the size of the test suites by over 30 percent.

3.5.5 Evaluation on Beasley’s OR Library

On our two MSCP instances that correspond to test specifications we could show that our algorith-
mic changes to GCAIS improved the runtime, memory usage and in the case of Fridge-2 even the
approximation ratio. However, we have to keep in mind that two datasets form a limited observation
window. Thus we also examine problem instances of Beasley’s OR library.
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We examine the scpe instances. These differ from our test specifications as they are much larger
instances. Based on the results of Table 6 we confine to examine the base variant of GCAIS, the version
with population boundaries (and no epsilon-dominance), and GSEMO. It is also worth discussing
why we do not consider the variety of metaheuristics that we introduced in chapter 3.2. We already
compared the base variant of GCAIS with CRO, the GA, SEIP etc. on several of Beasley’s instances
in an earlier work [7]. There we could observe that GCAIS and GSEMO have the best performance
(regarding the approximation ratio).

Table 7: Experimental results for Beasley’s OR library. The best values are marked bold. Each KPI
is displayed ± standard deviation σ.

KPI algorithm scpe1 scpe2 scpe3 scpe 4 scpe5
mem save GSEMO 1.62± 0.15 1.62± 0.13 1.39± 0.2 1.1± 0.3 1.91± 0.15
mem save bounded GCAIS 4.23 ± 0.01 4.54 ± 0.01 4.68 ± 0.02 4.31 ± 0.02 4.54 ± 0.01
speed up GSEMO 2.56 ± 0.15 2.22 ± 0.15 1.69± 0.28 1.26± 0.41 3.37 ± 0.15
speed up bounded GCAIS 1.73± 0.18 1.36± 0.24 2.56 ± 0.14 2.04 ± 0.2 1.87± 0.21

approx rate GSEMO 1.46± 0.16 1.53± 0.1 1.49± 0.12 1.43± 0.14 1.53± 0.1
approx rate bounded GCAIS 1.06 ± 0.04 1.01 ± 0.03 1.09 ± 0.03 1.04 ± 0.05 1.08 ± 0.04
approx rate GCAIS BASE 1.11± 0.04 1.08± 0.06 1.11± 0.05 1.07± 0.05 1.14± 0.06

We displayed the experimental results in Table 7. Once more the population boundaries for GCAIS
lead to a cut down in terms of memory and runtime. Further, they reveal that our adapted version of
GCAIS did not lose its capability to find close to optimal or optimal solutions on these more theoretical
instances. In all cases our version was even superior to the base variant. However, in three out of five
cases GSEMO was once more faster than our bounded version as it once more converged towards a
suboptimal solution.

We verified our observations about the bounded GCAIS’ superiority in terms of memory usage
and approximation quality using one-sided Wilcoxon signed-rank tests. The p-values were below 0.05
which we regard as significant.

Further, on these datasets the population of the base variant of GCAIS does not grow as much
as during our evaluation of the industrial datasets. This explains why the memory savings are lower.
The smaller populations thus lead to a smaller runtime which unfolds in smaller speed ups for the
other algorithms. The reason for the smaller populations is that GCAIS detects dominating solutions
more easily, which keep the population in bounds. Hence we think that the problem structure of test
specifications differs from these more theoretical MSCP instances. This can be seen as a sign that
GCAIS benefits from our algorithmic changes even if the MSCP instance does not correspond to a
test specification.

3.6 Chapter Summary

Within this chapter we tried to answer the question if we are capable of determining redundant test
cases solely based on the test specification. We defined redundancy based on the requirements that
the tests cover. Hence we intended to find a minimal subset of test cases that cover all requirements.
This is in fact a well studied problem throughout mathematics and computer science which is known
as the Minimum Set Cover Problem.

The MSCP is a NP-hard optimization problem. We first discussed the mathematical state of
the art and presented major results from complexity theory which underline the hardness of the
problem. Unless P = NP , there cannot be an algorithm with polynomial runtime that has a worst
case approximation ratio which is better than logarithmic in the problem size.

The limited possible worst case approximation capabilities have motivated computer scientists
to design a variety of metaheuristics that perform well on average. We introduced several of these
methods. We further showed that some of them have runtimes which are not polynomial in the
problem size but in dynamic algorithmic hyperparameters. In our experiments we pointed out that
this might lead to high runtimes (possibly even exponential ones). On the other hand the heuristics
produced high quality solutions. This is the case for a class of metaheuristics called GCAIS.
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We improved the algorithmic structure of GCAIS by lowering its theoretical runtime. Further,
we introduced a population boundary based on an equivalence relation. Each equivalence class has a
fixed capacity.

We evaluated our GCAIS variant empirically and observed that we not only cut down runtime
and memory usage but we were also capable of improving the approximation quality. Thereby we
relied on traditional MSCP instances as well as test specifications from BSH which indicates that
our changes are of interest for general MSCP instances. On the test instances we could determine
over thirty percent redundant test cases. Hence the approach is worth considering when a proper
test specification is available. If the specification is too coarse grained (in terms of the requirements
that cannot be covered by a single test), this may lead to the removal of necessary tests. Thus we
recommend to use this method combined with a test engineer who additionally examines the proposed
test cases.
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Test cases which are executed in an automated manner are a piece of software. Experienced developers
are capable of implementing vast numbers of tests. For higher test levels such as system tests, usually
only a limited number of hardware prototypes are available. Testing is often a time crucial task and
hence only a limited time budget is available. Thus a set of crucial test cases is to be determined which
takes the available execution time into account. This problem is known as test case selection [41].

There is no fixed mathematical definition of what crucial means in this context. This is rather
application specific. The survey of Yoo and Harman [41] documents various objectives such as code
coverage, requirements coverage or failure revealing capabilities. Sometimes several criteria have to be
considered simultaneously and hence test selection becomes a multi-objective optimization problem.

The problem is often handled in a generic way as out of the box multi-objective optimizers such
as NSGA-II are used for the task [40, 41, 102]. Within this chapter we examine if Germinal Center
Artifical Immune Systems (GCAIS) are also fit for this task. We are motivated to use it as several of
the testing objectives such as all coverage metrics are variants of the set covering problem on which
GCAIS performs well (see chapter 3).

One of the internal test departments of BSH needed a solution to select test cases based on
requirements coverage. Hence we start the chapter with an analysis of a bi-objective version of
the test selection problem (requirements coverage and execution time). We thereby also present a
technique to reuse previous results (in order to further reduce the runtime). Later we extend the
list of objectives by introducing a failure probability goal in order to improve the failure revealing
capabilities of the resulting test suite.

Figure 9: Example of a local test bed in BSH.

The aforementioned test engineers prefer to work in a semi-automated way. Their device under
test (DUT) is usually directly located at their workplace (e. g. as in Figure 9). The corresponding
test cases are available as source code using some test framework. They execute tests locally and
simultaneously observe the physical DUT if a strange behaviour occurs which is not checked by the
current test case.

These test engineers also do not always execute all available test cases. They usually perform
some sort of preselection of the tests based on their expert knowledge or on recommendations from
their fellow software engineer colleagues. This reduced test suite might still be large and some aid in
further confining the test suite is necessary.

In our later experiments we leave out this manual preselection in order to not introduce a form of
bias into our experiments. Hence we consider the entire set of available tests to search for.
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4.1 Requirements based Selection

The first variant of test selection focuses on the objectives requirements coverage and execution time.
We try to find a test suite of maximal coverage which has a limited execution time. Formally we can
describe it as follows:

max |
⋃
T∈TS

T |

s.t.
∑
T∈TS

d(T ) ≤ C

TS ⊆ {T1, T2, ..., Tn}
Ti ⊆ {1, 2, ...,m}

(11)

where d(T ) is the approximated duration of a test case T and C is an execution time budget.
This test selection variation is closely related to the weighted minimum set cover problem (WMSP)

where a set cover of minimal cost is desired. The MSCP is a special case of the WMSP as each set
has a cost of one. The WMSP differs from this test selection version as WMSP has the constraint
that each element (requirement) must be covered and the cover’s total cost must be minimized.

The theoretical results regarding MSCP that we presented in chapter 3.1 are also valid for WMSCP
(WMSCP is not in APX and the best achievable worst case approximation ratio is logarithmic in the
problem size for polynomial time algorithms [44]). It is straightforward to see that this test case
selection variant is also NP-hard4.

Further, the metaheuristics and algorithms presented in chapter 3.1 can also be used for WMSCP.
Most of the metaheuristics that we discussed have also been benchmarked on WMSCP instances
[77,78,87] or have been examined mathematically regarding the problem [79].

4.1.1 Adjustments of GCAIS

We use GCAIS to solve the following auxiliary problem:

max |
⋃
T∈TS

T |, min
∑
T∈TS

d(T ) (12)

Hence the budget constraint is dropped and the test suite’s execution time becomes another objective
which is to be minimized.

After GCAIS has been applied to the aforementioned auxiliary problem, it has produced a pop-
ulation of solutions. All of these solutions are feasible for the problem described in equation 12, but
some of them may be infeasible for the actual test selection problem at hand (there might be solutions
which exceed the budget C).

We can use a table-based approach as introduced in chapter 3.5 to find feasible solutions. The table
differs here as entry indexes correspond to the requirements covered and the attribute exec corresponds
to the approximated execution time of the entry’s solutions. We greedily search the entries for the
solutions of highest coverage whose execution time is within the budget. The usage of the table leads
to a runtime of O(m) instead of O(|P |).

The runtime consideration is also the reason why we changed the table indexes from the cost to
the requirements covered. For the MSCP the cost axis (number of used sets) is purely discrete and
only n+ 1 values are possible. However, the tests’ execution times can highly vary and are generally
real numbers. This leads to combinatorially more possible execution times of individual test suites
which would in terms lead to a higher search time.

We introduce another innovation for GCAIS by tweaking the population initialization. In the
original variant the starting population solely consists out of the zero vector 0. We initialize the

4A solution of the decision problem connected to equation 11 can clearly be verified in polynomial time. If there
would be an polynomial time algorithm that produces an optimal solution, we could combine it with a binary search.
The binary search can be used to find the minimal time budget C where the optimal algorithm proposes a solution
which covers all requirements. This solution would also be optimal for WMSCP.
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Algorithm 9: Greedy search for a solution that is feasible for test case selection problem
described in 11.

input : table, time budget C
1 for k in {m, ...0} do
2 if table[k].exec ≤ C then
3 return of a solution of table[k]

4 end

population randomly for different time budgets. The intention of the heuristic is that the Pareto-
frontier produced by GCAIS has elements for a variety of time budgets and requirement coverages. The
original variant might converge towards a Pareto-frontier of high requirements coverage (to produce
feasible MSCP solutions) and thus could be unable to provide solutions for the full bandwidth of time
budgets.

Algorithm 10: Random solution creation.

input : time constraint c
1 retries = 0
2 sol = empty solution
3 cost = 0
4 while retries < 5 do
5 T = random unused test
6 if cost +d(T ) < c then
7 add T to sol
8 cost = cost + d(T )
9 retries = 0

10 else
11 retries = retries + 1
12 end

13 end

We describe the routine to create a novel solution in Algorithm 10. Whenever we intend to create
a solution whose execution time does not exceed a predefined limit c, we draw a random test case
which is not yet a part of the solution under construction. When we fail to add a new test case several
times, the method terminates and the solution is returned (here 5 retries).

We perform an equidistant separation of the time axis to choose the time budgets for which we
want to generate the initial solutions. For our later experiments we use a mesh of 5 percent. Hence
we create solutions with a maximum execution time of 0, 5,..., 100 percent of the total execution time
of all tests.

4.1.2 Experimental Setup

We rely again on datasets from BSH Hausgeräte GmbH. We reuse the Fridge-1 and Fridge-2 dataset.
Further we introduce another fridge dataset (Fridge-3). We assign them the execution times of his-
torical tests in order to generate a realistic setting.

We once more rotate the algorithms against which we compare GCAIS using our population
initialization approach. In order to measure its effects we employ GCAIS with the standard population
initialization. Additionally we consider the following methods:

• Random selection : A common practice in testing is to choose a test suite at random [103].
We choose as many tests randomly until the given time budget is exhausted (corresponds to
Algorithm 10). Thus we can also examine how much improvement is due to GCAIS.
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• SEMO : This is a variant of GSEMO which basically only uses one population. Further infor-
mation can be found in the book of Neumann and Witt [97, p.36]. The method is parameter
free.

• SEIP : As mentioned earlier this metaheuristic can also be used for weighted set covering prob-
lems [79] and thus also for this test selection variation.

We reuse the population boundary of 200 from our MSCP experiments for GCAIS. We also reuse the
OptiPlex XE3 computer.

We give each bio-inspired algorithm a total time budget of 5 minutes. If the quality of the Pareto-
frontier does not change over 1000 iterations, we interpret that as convergence.

The source code / data that corresponds to these experiments is available here:

https://github.com/LagLukas/adaptiveTestSelection

4.1.3 Evaluation

We evaluated the time budgets 0.01, 0.02,..., 1 of the total execution time (of all tests) for each
algorithm and dataset. We visualized the results in Figure 10. If an algorithm has a value of 0 for a
time budget, it was unable to produce a solution for the time budget.

Within these experiments we also examine the effect of our random population initialisation. If the
vanilla variant (using only the zero vector) is employed then this leads to a rather poor Pareto-frontier.
For a very low budget no solutions can be offered. However, with our initialization we can overcome
this problem. Furthermore, we can observe that these low-budget solutions offer a higher coverage
than the purely random created ones. Hence GCAIS is able to refine these low budget solutions. For
higher time budgets both forms of population initialization achieve equivalent results.

Throughout all three datasets both GCAIS variants achieve full coverage with the lowest time
budget (compared to the other three methods). Thus, from a pure WMSCP perspective, these are
the best choice. The methods also reach high coverage levels fast. Further, both have a rather low
variance compared to other approaches.

The other two evolutionary algorithms have varying performance on the datasets. For example,
SEIP performs well on the Fridge-3 data, but poorly on the other two. Often SEIP and SEMO cannot
offer solutions in their population for lower time budgets (e. g. Figure 10 (b)).

The pure random selection becomes more and more inferior if the available time budget is rising.
There is a striking performance difference between both GCAIS variants and the random selection if
the time budget rises above 0.2. The random selection is, in most cases, better than SEMO on all
three datasets. Similar effects can be observed for the first two datasets and SEIP.

Our visual evaluation has led to the hypothesis that GCAIS using our population initialization
is in most cases the best choice for ATCS on all three datasets. However, we deem a pure visual
examination as insufficient. Thus we perform additional statistical tests. We decided to go for one-
sided paired Wilcoxon rank tests. We test the null hypothesis “algorithm x performs better than
GCAIS using Algorithm 10 on dataset y” for each considered algorithm x and dataset y. Thus the
alternative hypothesis is that GCAIS using our random initialization is better. We summarized the
p-values in Table 8. They are in all but one case significant. The tests confirm that our GCAIS variant
is better than SEIP, SEMO and the pure random selection. Further, we are also better than the vanilla
variant in 2 out of 3 cases. Even though we cannot reject the null hypothesis on the Fridge-3 dataset
this does not imply that the null hypothesis can be confirmed. It is worth mentioning that we are
close to being significant since the p-value is only 0.058.

Table 8: P-values for one-sided paired Wilcoxon tests which compare GCAIS using our population
initialization with the vanilla variant, SEIP, SEMO and the random selection on all three datasets.
Significant ones are marked bold.

SEIP SEMO RANDOM vanilla GCAIS
Fridge 1 0.0 0.0 0.005 0.0
Fridge 2 0.0 0.0 0.0 0.001
Fridge 3 0.001 0.001 0.001 0.058

36



4 TEST SELECTION FOR SEMI-AUTOMATED TESTING

(a)

(b)

(c)

Figure 10: Mean achieved coverages ±σ for varying time budgets. The budgets are relative to the execution
time of all available tests.

4.1.4 Incorporating Immune Memory

The immune system has another crucial property: it remembers past diseases in order to be prepared
for upcoming similar diseases. This attribute has been translated to an optimization mechanism. Joshi
et al. [104] injected one of the best found solutions from a previous, related problem to the new one.
Thereby they converged faster to high quality solutions. Joshi et al. [104] evaluated the performance
of the memory approach on MSCP instances which gives rise to the idea that these positive results
might also be valid here. This might be of use as requirements may change throughout a projects
lifetime [105] and so might the tests [27].
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We simulate the change of requirements and tests. We drop requirements and test cases uniformly
at random but proportional to the problem size. We follow the same approach to simulate new test
cases and requirements. For example if there are currently m requirements and the drop proportion is
ℵ then we draw a random integer i from [0,ℵm] and drop i randomly chosen requirements from the
available ones. We set the proportion for adding new tests / requirements to 0.05 and for dropping
them to 0.025. Thus we emulate a test suite that is more and more growing. We assign newly created
requirements uniformly at random to the new test cases. Further, an old requirement is added to the
existing test with a probability of 0.05 (to simulate requirement refinements). We gathered historical
test case runtimes which we used as bases for the simulated test cases’ execution times. We simply
draw a random past execution time uniformly at random. For each dataset we create a time-series of
length 40.

In chapter 4.1.3 we observed that the random initialization can lead to superior solutions. Thus
we examine the effects of memory on GCAIS using the initialization described in Algorithm 10.

First we intend to investigate if the immune memory improves the runtime. Thereby we once
more rely on the speed up by computing the quotient of the runtime of the method without and with
memory. We display the speed ups in Table 9. The usage of immune memory cuts down between 10
and 25 percent of the execution time.

Table 9: Averaged measured speed ups and relative population size ±σ.

Fridge 1 Fridge 2 Fridge 3
speed up 1.25± 0.08 1.75± 0.19 1.27± 0.14

realtive population size 0.79± 0.14 0.67± 0.08 0.75± 0.17

Table 9 additionally contains the relative population sizes per iteration. We compare the popula-
tion size of the base variant with our memory approach. Hence a value lower than 1 indicates that the
memory variant has a smaller population size and a value higher than 1 tells us that the population
of the memory variant is larger. We can observe that the memory variant’s population is in all three
scenarios smaller. This explains why our improved algorithm is faster since the population size has a
major impact on GCAIS’ runtime.

We also examined if the usage of memory worsens the quality of the found solutions. We evaluated
the possible relative time budgets 10, 20,..., 100 percent of the total execution time. We employed
once more a Wilcoxon test to investigate if the immune memory worsens the approximation. We could
observe a p-value below 0.05 and thereby we infer that this is not the case.

We additionally compared memory variant of GCAIS with SEIP, SEMO and the random selection
on these simulated time series. There we made observations and conclusions that are highly similar
to the ones discussed in chapter 4.1.3 (GCAIS produces the statistically superior solutions, SEIP /
SEMO fail to produce feasible solutions for a variety of time budgets). We discuss these results in
detail in [9].

4.2 Incorporating a Failure Objective

Our initial variant solely focused on requirements coverage and execution time. Thereby we could
create test suites that examine a variety of features. However, one of the main tasks of testing is to
reveal errors. Within this subchapter we examine if we can model a objective which helps us revealing
errors.

We rely on the testing history which is generally available as testing is often done repetitively.
We use the historical data to model the failure probability for an individual test case T . We use a
simplistic measure by relying on the empirical probability. Hence we approximate the failure revealing
capability of a test as follows:

P (T fails) =
fT
NT

(13)

where fT is the number of executions where T failed and NT is the total number of executions of the
test.
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We use this probability measure to introduce an additional optimization objective for a test suite
TS:

FP (TS) =

∑
T∈TS P (T fails)

|TS|
∈ [0, 1] (14)

which measures the mean failure probability of the test suite.
The extended optimization problem has the following form:

max |
⋃

T∈ TS
T |,maxFP (TS)

s.t.
∑
T∈TS

d(T ) ≤ C

TS ⊆ {T1, T2, ..., Tn}
Ti ⊆ {1, 2, ...,m}

(15)

We once more intend to solve the problem indirectly by defining an auxiliary problem:

max |
⋃
T∈TS

T |,maxFP (TS),min
∑
T∈TS

d(T ) (16)

Some of the objectives are in opposition to each other. For example if more tests are added to
enlarge the coverage then the execution time is also increased. Furthermore, if the coverage and
average fault probability should be enlarged simultaneously, an optimization algorithm has to add
tests with a high likelihood to fail that also verify previously uncovered requirements. If only tests
are added that nearly never fail but cover a lot of requirements, then the average fault probability
will decline. Further, if a test suite solely focuses on tests with a high likelihood to fail but only tests
a few features then this will lead to a rather small coverage.

4.2.1 Extending the Random Initialization

We encountered issues with the failure revealing capabilities of the GCAIS using the random popula-
tion initialization described in Algorithm 10. We additionally initialize the population along a greedy
axis and not only a random axis. We coin this initialization technique multi-axis initialization.

The greedy initialization starts with an empty solution (no test case used). Then it iteratively adds
the next test case with the highest failure probability, makes a copy of the solution and injects it to
the population. It stops adding tests when there is no test left that has a positive failure probability.

We keep the initialization of the random axis as in chapter 4.1.1. Thus we use 5 retries and a mesh
of five percent. The extended initialization is described in Algorithm 11.

4.2.2 Experimental Setup

We once more use datasets from BSH Hausgeräte GmbH. We rely on two oven projects and a dish-
washer project. All three projects are from a system test level. We have insight on several test runs
which are also known as test sessions. The three datasets also differ in the number of test cases,
amount of failures, as well as the number of executions (verdicts). We give an overview in Table 10.
It is worth mentioning that the number of test cases changed throughout the project’s lifetime. Thus
the verdicts are not a multiple of the test cases or the test sessions.

Table 10: Examined datasets.

Oven 1 Oven 2 Dishwasher
test sessions 39 36 45

test cases 486 477 1499
verdicts 22,350 17,349 186,195
failed 10.94% 3.41% 3.44%
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Algorithm 11: Multi-axis initialization.

input : test cases, n, fault probabilities, time budgets ck, max retries r
output: a population of solutions

1 P = {}
2 // create random solutions
3 for each time budget ck do
4 x = 0
5 count = 0
6 while count ≤ r and execution time of x ≤ ck do
7 draw test case i
8 if time left to add i then
9 add i to x

10 count = 0

11 else
12 count += 1
13 end

14 end
15 insert x to P

16 end
17 x = 0
18 // create greedy solutions
19 while ∃i ∈ {0, 1, ..., n− 1} : x[i] = 0 ∧ P (i-th test case fails) > 0 do
20 index = arg maxi∈{0,1,...n−1} P (i-th test case fails)

21 x[index] = 1
22 insert a copy of x to P

23 end
24 return P
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Table 11: P -values for one-sided Wilcoxon tests. The columns represent a dataset and the rows an
algorithm to compare with. The entry of row x and column y is the p-value of the null hypothesis
“the solutions of algorithm x find more errors than GCAIS’s solutions on dataset y”.

Oven 1 Oven 2 Dishwasher
NSGA-II 0.0 6.26e− 274 1.70e− 10
Random 1.19e− 110 0.0 8.98e− 25
SEMO 1.18e− 81 1.41e− 262 0.04

We simulate the real use case based on the dataset at hand. We act as if we would have to choose
a test suite for the i-th session for a fixed time budget C. Afterwards we have to choose a solution
from the Pareto-frontier whose execution time is below C. For the requirements-based selection we
did a greedy search according to the coverage. Here we consider both requirements coverage and the
mean failure probability. Formally we look for the test suite TS which maximises the following term:

FP (TS) +
|
⋃
T∈TS T |
m

(17)

The division of the requirements coverage by m is used to normalize the values. This selection criterion
has the side-effect that we can reuse the table approach for GCAIS (thereby we give the method only
information about the expected execution time and the value of the selection criterion described in
equation 17).

Multi-objective optimization heuristics for test selection are usually only compared with pure
random selections [40, 102]. However, we deem this as too little and thereby also rely on NSGA-II
which was successfully employed for test selection for embedded systems [40,102]. We use the variant
of Lachmann et al. [40] (including the hyperparameters) as they examined it on larger datasets. We
additionally once more rely on a pure random selection as well as on SEMO.

For these experiments we focus on how well the produced solutions find errors, how early, how
many and how they are distributed among the requirements.

We regard a non changing Pareto-frontier over 100 iterations as convergence. We also reuse the
Dell OptiPlex XE3 computer from our earlier experiments. The published source code and data is
available here:

https://github.com/LagLukas/moa_testing

4.2.3 Failure Revealing Capabilities

The goal of testing is to find errors and not to prove their absence. Hence we examined how well
the found test suites perform in this task. We compared the solutions of SEMO, NSGA-II and the
random selection on every considered dataset with GCAIS’ solutions. In order to compare the found
test suites we rely on statistical tests. We employ a series of one-sided Wilcoxon tests and use a
significance level of 0.05. We use the statistical tests to evaluate the null hypothesis of the form
“the solutions of algorithm x find more errors than GCAIS’s solutions on dataset y”. We display the
corresponding p-values in Table 11. All of them are below the significance level and hence we reject
every null hypothesis and infer that the computed test suites of GCAIS are better in finding errors.

We switch our focus to analysing how high the time budget needs to be until the first error
is detected. We display the minimum, maximum, quartiles and average execution times that were
necessary to find a first fault in Table 12. There we can see that, in three experimental settings,
GCAIS produces solutions that have the lowest time budget on average.

We can also see a large range for the time budgets needed to detect the first error. This variety
of values may disturb the mean value. Thus we decided to examine the median for each algorithm
and dataset. There we can observe that GCAIS has the lowest median. SEMO and the pure random
selection lead to similar results on the Oven 1 dataset (regarding the median). We also added the first
and third quartiles into Table 12 in order to describe the time budget distribution more accurately.
Once more we can make the observation of rather low values for GCAIS. Furthermore the necessary
time budget seems to be rather stable as in many cases the first quartile, the median, and the third
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Table 12: Overview of the time budget needed to reveal the first error. The table contains the mean
values ± σ, medians, maxima and minima. The best values are marked bold.

Oven 1 Oven 2 Dishwasher
GCAIS mean 0.145±0.28 0.296±0.39 0.024±0.06

third quartile 0.05 0.36 0.01
median 0.05 0.05 0.01

first quartile 0.05 0.04 0.01
max 0.65 0.64 0.3
min 0.02 0.02 0.01

NSGA-II mean 0.316± 0.36 0.415± 0.45 0.239± 0.25
third quartile 0.48 1.0 0.55

median 0.1 0.1 0.05
first quartile 0.1 0.05 0.05

max 0.69 0.41 0.75
min 0.02 0.01 0.01

RANDOM mean 0.182± 0.27 0.313± 0.38 0.056± 0.02
third quartile 0.19 0.41 0.05

median 0.05 0.1 0.05
first quartile 0.05 0.05 0.05

max 0.63 0.74 0.15
min 0.04 0.01 0.05

SEMO mean 0.222± 0.32 0.35± 0.37 0.062± 0.04
third quartile 0.35 0.48 0.05

median 0.05 0.185 0.05
first quartile 0.04 0.08 0.05

max 0.8 0.59 0.25
min 0.01 0.01 0.01

Table 13: P -values for one-sided Wilcoxon tests. The columns represent a dataset and the rows an
algorithm to compare with. The entry of row x and column y is the p-value of the null hypothesis
“algorithm x’s solutions find the first error earlier than GCAIS’s solutions on dataset y”.

Oven 1 Oven 2 Dishwasher
NSGA-II 6.52e− 46 5.95e− 13 6.46e− 06
Random 7.56e− 11 9.89e− 06 2.28e− 17
SEMO 1.03e− 60 5.80e− 55 2.14e− 50

42



4 TEST SELECTION FOR SEMI-AUTOMATED TESTING

Table 14: p-values for one-sided Wilcoxon tests. The columns represent a dataset and the rows an
algorithm to compare with. The entry of row x and column y is the p-value of the null hypothesis
“algorithm x’s solutions detect more broken features than GCAIS’s solutions on dataset y”.

Oven 1 Oven 2 Dishwasher
NSGA-II 1.38e− 309 3.38e− 12 0.1751
Random 0.0 9.50e− 200 1.09e− 109
SEMO 5.31e− 245 5.02e− 85 1.399e− 43

quartile are the same. For the other examined methods this is not the case and their distributions
are more diverse. We consider these close quartiles an indicator for the robustness of the solutions
produced by GCAIS.

We deem a discussion solely based on central tendencies such as mean values or medians as insuf-
ficient and once more decided to use statistical tests to take a deeper look at our results. We reuse
a significance level of 0.05 and rely on one-sided Wilcoxon tests. We examine the null hypothesis
“algorithm x’s solutions need a lower time budget to find a first error than GCAIS’s solutions on
dataset y” for each considered algorithm and dataset. We show the corresponding p-values in Table
13. The p-values are below our significance level and we reject all null hypotheses and accept the
alternative hypothesis. Thus we infer that solutions found by GCAIS are capable of finding the first
error earlier than NSGA-II, a pure random selection, and SEMO. It is worth mentioning that the
comparably good results of GCAIS are not only due to the initialization. An additional comparison
between our immune system and the initialization showed that GCAIS also performs better in that
scenario.

We additionally examined the objective failure probability F (·) and there we could see that in
all but one combination the GCAIS approach is significantly better than the other approaches. This
might be seen as an indicator for why GCAIS has been found to be superior in detecting errors on
the considered datasets.

4.2.4 Detection of Broken Features

In the previous experiments we solely focused on the detection of failures. It lacks the link to the
requirements covered by the tests. For example if two features are broken and one test suite leads
to a lot of failed tests exclusively for one feature and another one has a failed test for each broken
feature then the first test suite would be better even though it would have failed to identify all broken
features. Thus within this evaluation we focus on the evaluation of how well the considered methods
recognize broken features.

We examine hypotheses of the form “the solutions of algorithm x detect more broken features than
GCAIS’s solutions on dataset y” using a series of one-sided Wilcoxon tests and a significance level of
0.05. The p-values are displayed in Table 14. We can reject the null hypothesis in 8 out of 9 cases and
accept the alternative hypothesis (GCAIS detects more broken features). However, on our dishwasher
dataset the p-value for NSGA-II is rather low (about 0.1751) but still not significant which means that
we cannot reject the null hypothesis. Thus we decided to perform an additional two-sided Wilcoxon
test to check if on average both methods perform equally well on this dataset and this statistical test
indicated that this is the case.

We decided to investigate the difference between GCAIS and NSGA-II on the dishwasher dataset
more deeply. We plotted the average difference of the percentage of detected broken features in Figure
11. The x-axis displays the test session index, the y-axis the relative time budget and the z-axis the
difference in detected broken features. We can see a clear superiority of GCAIS for high budgets and
very low budgets (less than 10 percent). NSGA-II is ahead for time budgets of about 20 percent
for very early test sessions. For succeeding test sessions this gap is tightening. After session index
5 GCAIS becomes significantly superior. Hence if more test outcomes are available then GCAIS’s
performance increases on this dataset.

Our previous evaluation exclusively focused on the question if GCAIS performs better than the
other methods. We also intend to give a total overview instead of only this relative consideration.
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Figure 11: Difference in the percentage of found broken features between GCAIS and NSGA-II on the
dishwasher dataset. A positive value indicates that GCAIS found more broken features (a negative
one indicates the opposite).

(a) Percentage of found broken features using GCAIS on the dishwasher dataset.

(b) Percentage of found broken features us-
ing GCAIS on the oven 1 dataset

(c) Percentage of found broken features us-
ing GCAIS on the oven 2 dataset.

Figure 12: Percentages of found broken features across the considered datasets.
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Thus we also visualized the raw numbers. Figure 12 a) shows the performance on the dishwasher
dataset. Here the performance is generally slowly rising with an increasing time budget. There are
a few outliers that became apparent where GCAIS finds even more broken functionalities, especially
at the start of testing. In this phase there are the most faults in our dataset which explains this
observation. Figures 12 b) and c) display the performance on the two oven datasets. In this setting
generally more errors occurred overall and also in a higher number during later stages of testing. This
explains why there are several test sessions where we detected high numbers of broken requirements.
The succeeding test sessions often show less issues found since between the two sessions the previously
found oven software bugs have been fixed. It is worth mentioning that the two oven projects share
some generic components hence they show some similarity in their error behaviour.

4.3 Chapter Summary

Within this chapter we moved from test suite minimisation to test case selection. We showed that
both problems are partially linked to set covering problems. We composed critical test suites that
fulfill up to three different criteria: small execution time, requirements coverage and failure revealing
capabilities.

Figure 13: Test selection GUI ospylac.

We compared our approach with a variety of generic search heuristics and metaheuristics that have
been successfully applied to test selection. There our approach could prevail and provide solutions
for a variety of settings. This can be partially traced back to the population initialization techniques
that we introduced. Thereby we showed that GCAIS is feasible for this use case.

The chapter mostly focused on algorithmic description of the approaches introduced and their
experimental evaluation. However, this leaves one question open: How did we deliver the value
generated to the customer? A student called Lukas Huber developed a graphical user interface (GUI)
coined ospylac which also offers methods developed to the test engineers.

We provide an example screenshot of the GUI for one test project in Figure 13. It has a menu for
test selection (1) and options for manually prefiltering the test cases at hand (2). One can consider
specially marked test cases, tests that failed a certain number of times or can manually select / deselect
test cases. The chosen test cases can be summarized as test sequences (3). Our GCAIS approach is
used when a tester uses the propose selection option. Then GCAIS also takes the preselection of the
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tester into account. Thereby the final product can be seen as a guided search which also has a positive
effect on the runtime5. The GUI is currently in use in the oven test team of BSH.

5The preselection confines the search space which is beneficial for the algorithmic complexity.
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Continuous integration (CI) is a development practice which has its roots in extreme programming
which is an agile software development process [106]. CI focuses on frequent builds of the software
which is under development. In order to achieve this the source code is maintained at a common
code basis and can be assembled in an automated way using a build server (e. g. Jenkins [58]). One
of the main goals is to integrate the works of individual programmers frequently (usually at least
daily [107]). Thereby lengthy integrations of large chunks of code can be avoided. This also reduces
the number of bugs that are introduced to the code basis from integration to integration. Hence CI
aims at improving software quality.

Figure 14: Simplified CI pipeline.

A software build starts with the download of the source code. Afterwards the software itself is built
which is followed by a testing stage. If the stage is passed then the software may be deployed. We
visualize these steps in Figure 14. These steps form a so called pipeline each run of which is called a CI
cyle. It is worth mentioning that the pipeline usually also contains detailed reporting functionalities
in order to give an insight about the software at hand. Further, this enables non-software developers
to get an overview on the project.

Here we mainly focus on the testing stage. Within it, tests from several test levels may run (e. g.
unit tests, integration tests or even system tests). CI emphasizes speed and hence a set of crucial tests
is to be executed in order to get a quick insight about bugs that might be in the software itself. This
also means that there is a limited search time to determine these tests.

A novel approach is to employ reinforcement learning (RL) to compose these test cases in a CI
setting. Spieker et al. [6] were the first to achieve this. They employed an artificial neural network to
compute the test suites based on the testing history. This is done by prioritizing the tests according
to their execution time and likelihood to fail. The tests are chosen according to the prioritization and
the time budget. This straightforward approach has motivated major companies such as Netflix to
use the approach in practice [108].

We examined if learning classifier systems such as XCSF can be used for this task as well. Hence
we differ from Spieker et al. [6] as we use another machine learning technique. We also gradually
improved and adapted the method to the task itself and this chapter gives insight how we achieved
that.

5.1 Problem Description

During each CI cycle i there is a fixed time budget C available. For every test case T there is an
estimated duration d(T ) known. The task is to assign a rank rki(T ) to each test which corresponds
to the test’s priority. This is done at the beginning of each CI cycle. Note, that ranks are not unique
and it is possible that two test cases get the same rank.

After the rank assignment step, a schedule is created which takes into account the ranks and the
available time budget C as follows: 1) The available tests are first sorted by their ranks in descending
order. 2) Then as many tests are scheduled from the beginning of the sorted list as long as the
estimated overall duration does not exceed the budget C. 3) If it is not possible to schedule all tests
having equal rank, the remaining time budget is filled up with randomly chosen tests of the same
rank. 4) The resulting schedule is summarized in a list.

Let li(T ) be the index of a scheduled test T . The elements of the list determine the test suite TSi
to be executed during CI cycle i.

After the test suite has been executed, the results can be collected. Let TS f
i be the test cases of

TSi that failed. Furthermore, let TSt,f
i be the set of failed tests if all available tests would have been
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executed. Thus the percentage of found failures pi can be computed as follows:

pi =
TS f

i

TSt,f
i

(18)

A commonly used metric to evaluate the quality of a test prioritization is the normalized average
percentage of faults detected (NAPFD) [109]:

NAPFD(TSi) = pi −
∑
T∈TSf

i
li(T )

|TS f
i| · |TSi|

+
pi

2 · |TSi|
(19)

Its values range from 0 to 1 and a high value is desired. Its advantage over pi itself is that it takes
the prioritization into account (by using li). If many passing test cases receive a high priority, i. e.,
have a low index li in the schedule list, then the NAPFD metric decreases. Vice versa, if the schedule
contains a large number of failing tests with high priority (i.e., low indexes li), then this results in a
higher NAPFD value.

Using the definition of NAPFD we are now able to define the adaptive test case selection problem
(ATCS) as:

max NAPFD(TSi)

subject to
∑
T∈TSi

d(T ) ≤ C

TSi ⊆ Ti

(20)

where Ti denotes the entire set of all available tests during cycle i. Thus the goal is to find an optimal
subset TSi of Ti.

Figure 15: Workflow for solving ATCS using RL.

Similar to Spieker et al. [6], we intend to solve ATCS using RL which leads to the workflow
described in Figure 15. The following paragraphs define three reward functions that Spieker et al.
devised [6] as well as the state and action spaces for our proposed XCSF-based RL agent.

A reasonable idea is to try using the NAPFD metric as a reward function for an agent. However,
in practice this would force us to always execute all tests (pi is needed for its computation) which we
explicitly want to avoid. Hence Spieker et al. [6] have proposed the following reward functions:

• failure count reward
rfc
i (T ) = |TS f

i| (21)

• test failure reward

rtcf
i (T ) =

{
1− vi(T ) , T ∈ TSi
0 , otherwise

(22)

• time ranked reward
rtrk
i (T ) = |TS f

i| − vi(T ) ·
∑

tk∈TSf
i,

rk(T )<rk(tk)

1 (23)
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where vi(T ) denotes the binary verdict of a test case T during cycle i. A 1 indicates “test passed” or
“test not executed due to time restriction”. A 0 stands for “test failed”. In the following, we denote
the reward received at time t simply as r(t).

The failure count reward gives each test case the same reward, namely, the number of failed tests of
the current schedule. The test failure reward is more fine-grained as it rewards test cases individually
based on their verdict (a reward of 1 if failed, 0 otherwise). The time ranked reward also takes the
prioritization into account as it punishes a passed test by the number of failed tests having a lower
priority; furthermore, passed tests with a low rank receive a relatively high reward.

The problem’s state space S is defined as follows:

S := [0, C]× {0, 1}k × [0, 1] (24)

A state (a test case) contains the approximated duration (a real number between 0 and C), the testing
history (a binary vector of length k, each entry being the test’s verdict of the respective CI cycle),
and the time of the last execution relative to the entire testing history (a real number between 0 and
1). The hyperparameter k indicates how many previous verdicts of the current test case the agent is
aware of. If there are not k test results available yet (e. g., at the start of training), the missing entries
are filled with zeroes. States are vectors of dimension k + 2; we denote the state at time t by s(t).

The action space A is R as each agent maps a test case described by the current state s(t) to a
scalar rank which reflects its priority. We define a(t) as the action chosen at time t.

It is worth mentioning that the RL interpretation of ATCS differs from the traditional temporal
difference learning (TD) scenario. In TD, sequences of states, actions and rewards are typically
observed in the following order:

s(1), a(1), r(1), s(2), a(2), r(2), . . . (25)

However, for ATCS, all available tests are ranked (i. e., a state observed and an action executed) first
one by one. After that, a corresponding schedule is executed based on whose outcome rewards are
distributed (see Figure 2). Hence here we observe the following sequence:

s(1), a(1), s(2), a(2) . . . , s(n), a(n), r(1), r(2) . . . r(n) (26)

In the ATCS RL problem, an episode corresponds to a single CI cycle with the terminal state being
the last available test case of the cycle. Furthermore, the length of an episode as well as the states
encountered are determined by the available tests and not by the agent’s actions. It is also worth
mentioning that the learning environment for the ATCS problem can be considered non-stationary,
i. e., in general it does not stay constant throughout the episodes. This is due to the fact that, between
two cycles, the software to be tested or the available tests may change.

5.2 XCSF Classifier System

Learning Classifier Systems (LCSs) comprise a family of evolutionary, rule-based machine learning
algorithms. We focus on the XCSF classifier system [110] that is designed to be a general purpose
function approximator. An XCSF consists of a population of rules, a locally acting learning mechanism
for those, as well as a globally acting evolutionary algorithm that optimizes the rules’ localities, i. e.,
the subspace of S each rule covers. A rule participates in the decision process if a certain set of
rule-specific conditions is fulfilled by the given state. For example, a condition could be to assert if
an attribute lies in an interval. One such rule is called a classifier cl. A classifier has several learning
parameters which determine its influence in the system’s collective decisions making process.

We use XCSF to approximate a state-value function V(·) for the following policy π:

π(s) = V̂(s) (27)

where V̂(·) is an approximation of V(·). This policy follows a simple heuristic: If a test case (i. e., a
state) has a high value, it should have a high priority. V̂(·) estimates the reward that will be received
if that policy is applied.
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Each classifier cl models a so called prediction function cl.p(s). It is the classifier’s local estimation
of the value function V (·). We model cl.p(s) as a linear function as proposed by Wilson [110]:

cl.p(s) = w0 +

k+2∑
i=1

wi · si (28)

where wi are real-valued weights which are initialized randomly and k + 2 denotes the state space’s
dimensionality as before.

A classifier tracks how often the rule has been applied which is called its experience which we
denote as cl.experience. Further, it tracks an integer attribute called numerosity (cl.num) which
indicates how many times an identical classifier has been created (identical in terms of conditions6).
Additionally, it keeps record of its prediction accuracy relative to its local niche of overlapping rules
which is called fitness cl.F . Another quality parameter of a classifier is the prediction error cl.ε which
is the mean absolute error estimate of its prediction function.

Whenever XCSF tries to approximate the value function for a state s(t), it searches the rule
population for classifiers whose conditions are satisfied by s(t). These classifiers are collected in a
match set M . This process is known as matching. If the match set is too small, new classifiers that
match the given point are created at random. This creation method is called covering. Based on the
classifiers within M XCSF computes the estimation of the function at s (in our case the estimation
of the value function):

V̂(s) =

∑
cl∈M cl.p(s) · cl.F∑

cl∈M cl.F
(29)

The approximation is coined system prediction in the LCS community and corresponds to the next
action since we follow the policy described in equation 27.

XCSF uses a gradient–based update rule for the prediction functions cl.p(s) which is known as
modified delta rule [110]:

∆wi =
η

‖s̃‖22
(r − cl.p(s))s̃i (30)

where ‖ · ‖2 denotes the Euclidean norm and η is the learning rate. The weights of cl.p(·) are updated
by adding ∆wi. The vector s̃ is the same as the state vector s but extended with a leading 1 to fit
the intercept weight w0, i. e.,

s̃ = (1, s1, s2, ..., sk+2)T , (31)

and r denotes the reward received for the chosen action in s. Hence we try to approximate r based
on s using cl.p(·).

Note that in step t only the classifiers of the match set that corresponds to s(t) are updated. The
remaining learning parameters of the classifiers cl ∈ M such as cl.F and cl.ε are updated as usually
done in XCS.

Within this thesis we follow a need to know policy regarding the description of our modified XCSF.
Thus we limit explanations to the parts that are necessary to understand how we solved the use case
at hand. For a more fine-grained explanation we refer the reader to [32,110] for more details on XCSF.

XCSF periodically applies to its match set a steady-state niche genetic algorithm (GA)7 that is
used to optimize the classifiers’ conditions, i. e. find an optimal partitioning of the state space S. The
heuristic selects parent classifiers from the match set M and reproduces them by applying crossover
and mutation on their conditions. Mutation introduces a form of random search into the optimization
(to avoid the GA from getting stuck at a local optimum) whilst a crossover operator tries to create a
set of new conditions based on the conditions of the two parents. Parental classifiers are selected by
their fitness values cl.F via a fitness proportionate selection.

The population of XCSF has a fixed capacity. If the population contains too many classifiers
after new classifiers have been introduced to it (e. g., by the GA or by the covering mechanism),

6For other LCS such as XCS it is also required that the classifiers propose the same action. However, XCSF has no
real action, only a dummy one. Hence this constraint is satisfied by construction.

7A steady-state GA does not exchange the entire population after an iteration, but only a part. Further, niche means
in that context that it only looks at classfiers that are responsible for a certain subspace of S.
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XCSF deletes classifiers at random but proportional to their quality. We call this deletion mechanism
pruning.

As detailed by the workflow described in Figure 15, we split the functionality of XCSF in a
separate action selection (Algorithm 12) and batch update learning method (Algorithm 13). The
action selection also saves the encountered match sets and states. At the end of the CI cycle the
match sets faced throughout the episode are used to incrementally update the classifier population
(Algorithm 13). The update method in line 2 of Algorithm 13 applies the delta rule (cf. Eq. 30)
to the weights of the classifiers’ prediction functions cl.p(s) and further updates the other learning
parameters. Additionally the GA is run periodically in the batch update.

Algorithm 12: action selection of XCSF

input : state s(t)
output: action a(t)

1 M = matching(population, s(t))

2 a(t) = V̂(s) =
∑

cl∈M cl.p(s(t))·cl.F∑
cl∈M cl.F

3 match sets.append(M)
4 states.append(s(t))
5 return a(t)

Algorithm 13: XCSF batch update learning

input: rewards of CI cycle
1 // iterate over encountered states, match sets, rewards
2 for j = 1 to length(rewards) do
3 update match sets[j] using states[j] by rewards[j]
4 if GA should run then
5 run GA on match sets[j]

6 end
7 match sets = {}
8 states = {}
9 prune population

5.3 Experience Replay

Experience replay (ER) is a technique that stores past experiences of the form (s(t), a(t), r(t), s(t+1))
in a buffer in order to later use them for training. It originally has been developed to speed up
learning in RL settings using the well-known Q-learning method [111]. In 2015 Mnih et al. found the
ER technique to be crucial to prevent deep Q-networks from oscillations or divergences in the weight
updates [112].

Even though ER has proven useful for deep learning it has found little attention in the LCS
community. We performed a first study in 2020 which examined the effects of ER on XCS classifier
system [12]. We evaluated two classes of problems:

• Multi-step problems: These learning tasks are outside of the LCS community known as
sequential decision problems. For that problem class the agent’s utility does not depend on
single actions but on the whole sequence of actions chosen.

• Single-step problems: Class of learning tasks which can often be rendered as online supervised
learning tasks (e. g. online regression) [66].

Within the study we evaluated a series of rather theoretical machine learning problems which
belong to the aforementioned classes. We made the observation that ER is beneficial for single-step
problems and detrimental for multi-step problems.
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Our XCSF-based approach focuses on approximating a value function. Hence the learning task can
also be seen as a single-step problem which gives rise to the hypothesis that ER might be beneficial
for this practical use case. Hence we also developed an ER version of XCSF for this task.

According to the update rule given in (30), we only need to store experiences of the form (s(t), r(t))
for which we use a buffer B of fixed capacity. Whenever the buffer’s limit is reached, the oldest entry
is deleted in favor of the most recent experience.

Since, in the ATCS setting, rewards can be calculated only after finishing an entire CI cycle (i. e.,
an episode), new experiences are stored in B only at the end of each CI cycle; this implies that during
a CI cycle, B does not change.

The ER-extended XCSF is trained by drawing batches of a fixed size. Each experience (s(j), r(j))
is drawn from the buffer with probability

j∑t
i=1 i

(32)

This way, newer experiences are given a higher chance to be drawn which is a form of prioritized ER
that focuses on the reuse of more recent data. We prefer this prioritization as due to software changes
older entries in B are more likely to be deprecated. We call the resulting method XCSF-ER.

Algorithm 14: Action selection of XCSF-ER

input : state s(t)
output: action a(t)

1 M = matching(population, s(t))

2 a(t) = V̂(s) =
∑

cl∈M cl.p(s(t))·cl.F∑
cl∈M cl.F

3 states.append(s(t))
4 return a(t)

Algorithm 15: ER and buffer update for XCSF-ER

input: rewards of CI cycle, encountered states
1 for j = 1 to length(rewards) do
2 insert (states[j], rewards[j]) to B
3 end
4 if ER should run then
5 draw batch b from B based on (32)
6 for (s, r) in b do
7 match set = matching(population, s)
8 update match set using r
9 if GA should run then

10 run GA on match set

11 end

12 states = {}
13 prune population

Our updated action selection method is illustrated by Algorithm 14. In contrast to XCSF’s usual
action selection procedure, we only store the encountered states. The buffer update and experience
replay method are described in Algorithm 15. The latter procedure is called at the end of every CI
cycle. It is worth mentioning that experience replay is only executed periodically (e. g., every third
CI cycle) to avoid overfitting. The GA, usually run periodically as well (based on the average time
since the matching classifiers took part in a GA iteration), was simply moved into the ER procedure.
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5.4 Transfer Learning

The research presented yet focuses on developing a test prioritization agent from scratch on individual
projects. However, the formal description of ATCS is rather generic as states solely rely on information
such as previous failures or execution times. These are not linked to a specific product such as a car,
web application or a home appliance. Hence one might argue that a LCS develops general rules. These
might be reused for other projects as well. This leads to the hypothesis that we introduce within this
subchapter:

Hypothesis 1. XCSF-ER benefits from the reuse of previously trained classifier population in terms
of performance for ATCS.

Or in other words: Is transfer learning for test case prioritization possible?
The TL methods mentioned in chapter 2 have been employed for artificial neural networks. How-

ever, there is very little research in terms of TL for LCS available. A first study has been performed by
Iqbal et al. [113] who developed a rule extraction method for XCS; their technique identifies a subset
of the rules part of a solution for low-dimensional binary problems which may be useful for higher
dimensional problems of the same problem family. In another work, Li et al. [114] develop transforma-
tions of the classifiers’ conditions for certain binary problems (e. g. multiplexers) that make it possible
to reuse them in other contexts. Both works focus on rather theoretical toy learning tasks. However,
our problem does not fit to the aforementioned approaches (as the structure of our state space and
action space differs). Further we differ from their approaches as the dimension of their problem space
changes and ours stays the same. These facts motivated us to develop a novel transformation of the
classifier population.

Our approach is to simply reset certain classifier quality parameters (experience, numerosity, fitness
and prediction error) to their initial default values (see Algorithm 16). We transform the entire
population and hence reuse all classifiers.

Algorithm 16: Classifier conversion for transfer learning.

input : classifier cl
output: transformed classifier

1 cl.experience = 0
2 cl.num = 1
3 cl.F = FI
4 cl.ε = εI
5 return cl

Both the fitness and experience values have a large impact on which classifiers are deleted and
which ones are kept whenever the population is being pruned. By resetting them, we enable the
system to quickly get rid of rules detrimental to the new scenario although having been good for the
previous one. If a previous rule turns out to be appropriate for the new scenario as well, it will regain
high fitness values quickly. We coin an XCSF-ER that includes this mechanism XCSF-TL.

It is worth stressing that we do not adapt the classifier’s prediction weights since we use the same
action space and these prediction functions are used to compute the actions. Hence we regard them as
the main knowledge of the population that we explicitly intend to keep. Furthermore, our approach
is not necessarily exclusively linked to ATCS but might also be applied to other problems where the
state and action space stay the same between two problem instances.

Our method expects that the dimensionality of the state space of the receiving XCSF and the
sending XCSF is the same. The dimensionality of the state space may seem to be variable (it has a
dimensionality of k + 2, see (24)) but empirical results for both the neural network based [6] and our
LCS-based approaches [13–15] indicate that, for each kind of RL approach, there is a certain testing
history length k yielding good results. Thus, we assume an arbitrary but fixed k for ATCS for each
considered dataset and neglect a change of dimensionality.
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5.5 Experiments

For these experiments we focus on three different topics. 1) The evaluation of our XCSF-ER variant
and its comparison with the state of the art artificial neural network of Spieker et al. [6] as well as our
previous raw XCSF variant [14] 2) An evaluation of our population transformation in order to see if
TL is possible for this use case 3) A robustness evaluation.

5.5.1 Evaluation of ER

To evaluate our XCSF-ER against our XCSF variant, we use three different industrial datasets which
were originally examined by Spieker et al. [6]. The first two (ABB paint control and ABB IOF/ROL)
are from a Scandinavian robot company whereas the third is the Google shared dataset of test results
(GSDTSR). An overview of the datasets’ structure is provided in Table 15. While each contains the
test results of more than 300 cycles, they all vary in the number of test cases and the percentage of
failed tests.

Table 15: Examined industrial datasets for the ATCS.

paint IOF/ROL GSDTSR
control

CI cycles 312 320 336
test cases 114 2 086 5 555
verdicts 25 594 30 319 1 260 617
failed 19.36% 28.43% 0.25%

We compare the proposed XCSF-ER against the neural network approach of Spieker et al. [6] and
our previous XCSF-based agent [14]. It is worth mentioning that we started our research on ATCS
using a XCS based approach [13] followed by the XCSF method described in chapter 5.2. The main
results of these studies are shown in the Appendix A.

For the neural network and XCSF-based agents we can rely on the respective original implemen-
tations and hyperparameters [6,14]. The github repository that combines these implementations with
the implementation of XCSF-ER can be found here:

https://github.com/LagLukas/xcsf_er

For the problem setting in this work, and according to the used definition of the state space S,
classifiers’ conditions are a mix of interval-based parts (for the real-valued numbers the state vector
s(t)) and ternary encoded parts (for the binary numbers of the state vector). For the GA we use a
roulette wheel selection based on the classifiers’ fitness. Hence a classifier is drawn at random but
its probability to be drawn is equal to the proportion of its fitness in the entire population. For the
crossover of the ternary conditions we apply a one point crossover and for the intervals and weights of
cl.p(·) an arithmetic one. The one-point crossover chooses an integer i from {1, 2, ..., k} uniformly at
random. The first set of conditions is created by taking the first i conditions from the first classifier
and the last k − i conditions from the second one. For the second set of conditions to be created
this is reversed. The arithmetic crossover computes new conditions from the old ones by taking λ
percent of the first parent’s conditions and 1−λ percent of the second parent’s conditions, for example
x = λy + (1−λ)z if y and z are condition vectors (we used λ = 0.6). For the mutation of the ternary
conditions we follow the widespread approach of Butz and Wilson [115] (i. e., iterate over the bits and
flip each with a probability of 1

q where q is the number of bits) and for the interval-based conditions

and weights of cl.p(·) we apply a random mutation (i. e., choosing an entirely random interval). We
don’t perform any form of subsumption as it is often the case in the literature [66].

Our buffer has a maximum capacity of 12 000 and we draw batches of size 2 000. Updates using
ER are performed every third cycle. The initial weights of cl.p(·) during covering and mutation are
drawn uniformly at random from [−10, 10]. The remaining parameters are adopted from our previous
study [14]8.

8η = 0.1, N = 2000, α = 0.15, β = 0.15, ν = 5, θGA = 25, µ = 0.025, εI = 0, FI = 0, θdel = 20, θsub = 20, χ = 0.75,
ε0 = 0.01, P# = 0.33 (notation of Butz and Wilson [115])
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Figure 16: Comparison of XCSF-ER with XCSF and the neural network.

We selected an appropriate value for the history length k by means of conducting a preliminary
hyperparameter study. We evaluated k ∈ {2, 3, ..., 10} on the paint control dataset using the time
ranked reward. At that, XCSF-ER achieved the best results for a value of k = 6 which we are using
throughout the following experiments.

We have run our experiments for 30 i. i. d. repetitions and present the averaged results. Since the
datasets contain the results of all the test cases for the respective number of CI cycles, we are able to
measure the performance of the methods in terms of the NAPFD metric while simulating the actual
use case by only providing the agent with the results of the tests that it chose to run. Furthermore,
we reproduce the setting of Spieker et al. [6] and give every agent a time budget which corresponds
to 50 percent of the runtime of all tests.

The results of running our approach on the three datasets using each of the three reward functions
from chapter 5.1 are displayed in Figure 16 where each column represents one of the datasets and each
row corresponds to one of the reward functions. The plots also contain trendlines for each agent’s
results. Note that there is still a rather high amount of variance which is mainly due to the changes
in the underlying software reflected in the datasets which naturally have a strong impact on the test
results.

For the first column (ABB paint control), ER shows a positive effect for the failure count reward:
XCSF-ER is superior to the other agents (in terms of the trendline). However, for the test case failure
reward ER appears to be rather detrimental and it is outperformed by the other two agents. For
the time ranked reward, there is no observable effect of ER on the performance. Nonetheless, both
XCSF and XCSF-ER achieve higher NAPFD values compared to the neural network using this reward
function.

The trendlines of both LCSs are superior to the one of the neural network for the ABB IOF/ROL
dataset (Column 2). Visually we can observe neither positive nor negative effects of ER on XCSF.
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On the Google data it can be seen that ER has a negative effect if the test case failure reward is
applied. However, if the other two reward functions are used then ER is clearly beneficial for XCSF.
Furthermore, both LCSs exceed the network on this dataset.

As we can see, for both the neural network- and the pure XCSF-based method, a reward function
that is beneficial for one dataset may be detrimental to another one. For example, when considering
the neural network, the failure count reward function works best on the GSDTSR dataset whereas
the performance decreases over time if it is applied to the ABB Paint Control dataset (we make a
similar observation when combining the XCSF-based solution with the time ranked reward). This is
unsatisfactory from a practical point of view since an appropriate reward function should be known a
priori. However, for XCSF-ER we could not observe this issue: Both the time ranked reward as well
as the failure count reward are suitable choices for all three datasets considered.

Table 16: P-values for H0: XCSF ≥ XCSF-ER using the time-ranked reward for XCSF-ER (significant
entries are bold).

reward function XCSF paint control IO/ROL GSDTSR
failure count 0.00681 0.15045 0.0

test case failure 0.0 0.08591 0.0
time ranked 0.47241 0.55662 0.0

Table 17: P-values for H0: XCSF ≥ XCSF-ER using the failure count reward for XCSF-ER (significant
entries are bold).

reward function XCSF paint control IO/ROL GSDTSR
failure count 0.00269 0.52413 0.0

test case failure 0.0 0.40465 0.0
time ranked 0.34184 0.88968 0.0

Table 18: P-values for H0: neural network ≥ XCSF-ER using the time-ranked reward for XCSF-ER
(significant entries are bold).

reward function network paint control IO/ROL GSDTSR
failure count 0.0 0.00072 0.0

test case failure 0.2248 0.0 0.0
time ranked 0.0 0.00121 0.0

Table 19: P-values for H0: neural network ≥ XCSF-ER using the failure count reward for XCSF-ER
(significant entries are bold).

reward function network paint control IO/ROL GSDTSR
failure count 0.0 0.01779 0.0

test case failure 0.14179 0.0001 0.0
time ranked 0.0 0.02691 0.0

Since trendlines might be disturbed due to outliers, a pure visual examination of the results may
be insufficient. Thus we also perform statistical tests. We decided to use a series of paired Student-t
tests and we denote null hypotheses as H0. We use them to compare the averaged results of individual
agents which we displayed in Figure 16. Student-t tests have the precondition that the data has to
be normally distributed which we ensured with a series of Shapiro-Wilk tests. A significance level of
0.05 was used for all tests.

We first evaluated if the failure count or the time rank reward function is better suited for XCSF-
ER. Here, statistical tests could not give a precise answer as no p-value was below the significance
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level of 0.05 for any of the three datasets. Thus we compare the network and XCSF with XCSF-ER
using these two reward functions. It is worth mentioning that the statistical tests confirmed that the
failure count reward and time ranked reward are a better choice than the test case failure reward for
ABB paint control and GSDTSR.

Table 16 contains the results of the comparison of XCSF-ER using the time ranked reward function
and each possible combination of XCSF and reward function. The analogous case is displayed in Table
17 for the failure count reward function. In both tables our agent is statistically significantly superior
in 5 of 9 cases. For the remaining cases the statistical tests cannot confirm which approach is superior
to the other (IOF/ROL dataset and paint control dataset using time ranked reward). Hence the
statistical tests support our visual observations regarding XCSF.

We display the analogous camparison with the neural network in Tables 18 and 19. Here XCSF-ER
is significantly superior in 8 out of 9 cases. In the remaining case the p-value is rather low and thus
there is a tendency that XCSF-ER might be better. Once more we cannot say which of the time
ranked and failure count reward functions is more suitable in direct comparison.

Overall, our results confirm that ER can increase XCSF’s performance. We can also recommend to
use either the failure count reward or the time ranked reward in practice for our agent. Furthermore,
this enables us to close the gap between the neural network and the LCS since on all three datasets
our system is superior or equal in performance with a suitable but fixed reward function. The latter
is not possible for a pure XCSF since each reward function leads to unsatisfactory results on at least
one dataset.

5.5.2 Evaluation of TL

A conclusion from chapter 5.5.1 was that the failcount and the time rank reward are best suited for
XCSF-ER. Hence we confine to these two reward functions within this part of the thesis.

The source code used for the experiments can be found here:

https://github.com/LagLukas/transfer_learning

We further evaluate a novel dataset from BSH coined SMBV1 within these experiments9. The
dataset corresponds to a product which is in an early state of development and hence only information
about 40 CI cycles is available. It contains 165, 073 verdicts of up to 1, 632 test cases. About 0.58
percent of the executions failed.

Here we aim at evaluating the effects of our population transformation as defined in Algorithm 16.
Hence we use the same hyperparameters for both LCSs (the ones from chapter 5.5.1, we also average
the results over thirty runs). This enables us to examine the transformation’s impact as the systems
only differ in the fact that one uses the transformation and the other does not.

Our first question deals with the choice of the base dataset for our transfer learning approach. A
common practice in natural language processing and computer vision is to reuse a trained model that
performed reasonably well on a large dataset [69,116]. This would point to the usage of the GSDTSR
dataset since it is the largest and the previous LCSs performed well on it [14, 15]. We examined this
hypothesis by using each available dataset as a training basis for XCSF and by applying the pretrained
model on the other remaining datasets. We displayed the averaged NAPFD values achieved in Table 20
(using the time rank reward). On the SMBV1 dataset, all pretrained models perform similar. On the
other datasets, the model pretrained on the GSDTSR dataset works best. Thus results show that, on
average, the GSDTSR dataset is the best choice. We confirmed this by applying a series of one-sided
Wilcoxon tests whose p-values were below our significance level of 0.05 for both the paint control and
the IOF/ROL datasets. On the SMBV1 dataset we used a two-sided Wilcoxon test whose p-value
indicated that the agents indeed perform equally (again using a significance level of 0.05). Hence in
the following experiments we are using the model pretrained on the GSDTSR dataset.

Now we switch our focus to a comparison with the model without TL. We consider the paint
control, IOF/ROL and SMBV1 dataset (since we used the GSDTSR for pretraining the model).

We display the quotient of the NAPFD values of XCSF-TL and the base version in Table 21. There
we can see that the usage of TL boosts the performance by up to 5.5 percent. Furthermore, we cannot

9We also compared XCSF-ER and the neural network of Spieker et al. [6] on this dataset and could statistically
confirm that XCSF-ER is the better choice there [16].
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Table 20: Average NAPFD ±σ achieved for different datasets as knowledge bases. The columns
correspond to the examined pretrained model and the rows to the examined dataset.

applied to\pretrained on paint control IOF/ROL GSDTSR SMBV1
paint control - 0.78± 0.26 0.79± 0.27 0.78± 0.26

IOF/ROL 0.5± 0.32 - 0.51± 0.34 0.48± 0.32
GSDTSR 0.69± 0.17 0.74± 0.17 - 0.66± 0.2
SMBV1 0.5± 0.0 0.5± 0.0 0.5± 0.0 -

Table 21: NAPFD ratio between the XCSF-TL and the XCSF-ER variant not using it.

paint control IOF/ROL SMBV1
failcount 1.0121 1.0550 1.0264
time rank 1.0341 1.0210 1.0001

observe negative effects in any of the nine experimental set ups. The lowest performance increase can
be observed for the SMBV1 dataset when trained using the time rank reward. There, TL improves
the performance only by about 0.01 percent. Nonetheless, the experimental results are in favor of
our hypothesis. We once more perform additional statistical tests to examine our hypothesis since
the averaged NAPFD values contain a certain level of variance. We again use one-sided Wilcoxon
tests and test the hypothesis that the XCSF-ER without TL is superior to XCSF-TL. The p-values
are shown in Table 22. We once more used a significance level of 0.05 and all p-values are below it.
We can reject all null hypotheses and thus infer that XCSF-ER benefits from TL on the considered
datasets.

We also intend to give an overview about the corresponding time series of each agent and not only
about aggregated results. Thus we plotted the averaged NAPFD values for each CI cycle, agent, and
dataset in Figures 17 to 19. Note, that there is a certain variance in performance due to the changes
in the underlying environment (e. g. due to new software errors or fixed ones).

In Figure 17 we can observe close to no effect of TL for the time rank reward. We can only see a
small performance increase at the start and around CI cycle 32. For the other cycles the performance
is equal. However, for the failcount reward we can clearly recognize the advantage of TL in terms of
NAPFD. The vanilla XCSF needs about 35 CI cycles to catch up.

For the IOF/ROL dataset (Figure 18) we can see no performance boost at the start of the exper-
iment. However, TL dampens occuring performance breakdowns, especially for the failcount reward
(e. g. for CI cycles between 200 and 250). The same effects appear even more distinct on the paint
control scenario (Figure 19).

In general, the visual evaluation fits our statistical one. The Wilcoxon test filters out values of
equal performance and only considers data points where the observations differ. In the majority of
these differing data points our TL approach has higher NAPFD values which explains the p-values
below the significance level.

5.5.3 Evaluation of Robustness

In the previous experiments we evaluated how well our algorithmic changes to XCS deal with ATCS
in terms of NAPFD and how good they perform against the artificial neural network of Spieker et
al. [6]. One additional observation that we could make is that there is a high variation in terms of

Table 22: P-values for the null hypothesis that TL is detrimental for the performance in terms of
NAPFD.

paint control IOF/ROL SMBV1
failcount 1.46e-29 4.86e-73 2.29e-524
time rank 1.28e-87 6.91e-24 0.001346
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(a) failcount (b) time rank

Figure 17: Averaged achieved NAPFD values for the SMBV1 dataset.

(a) failcount (b) time rank

Figure 18: Averaged achieved NAPFD values for the IOF/ROL dataset.

(a) failcount (b) time rank

Figure 19: Averaged achieved NAPFD values for the paintcontrol dataset.
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NAPFD for the agents considered (see Figure 16). This variation may be traced back to changes in
the underlying software code basis, the test cases at hand or the test bed itself.

OC has come up with two robustness metrics to measure how well a method can cope with the
influence of disturbances δ:

• passive robustness:

rpassive =
∂U

∂δ
(33)

• active robustness:

ractive =
∂U

∂t
(34)

where U denotes an utility function (in our case NAPFD). Note that the active robustness is only
measured when the utility is below a predefined threshold.

These metrics are inspired by physical disturbances which usually can be measured and are differ-
entiable. Furthermore the utility function has to be differentiable as well. For NAPFD this is not the
case since it is defined on discrete sets (the prioritized test cases and their outcome) which thereby
are closed sets and the mathematical notion of differentiability requires a function to be defined on
open sets.

Passive robustness measures the impact of the disturbance on the utility by using the partial
derivative (with respects to δ). Thereby it describes the change in utility if the magnitude of the
disturbance changes. However, due to the aforementioned mathematical issues and the fact that we
cannot measure the magnitude of a disturbance (e. g. what is the magnitude of a software bug?) we
leave out this KPI.

Similar problems arise when the active robustness is considered, as our time axis is discrete (the
CI cycles). However, OC has come up with an approximation to overcome these issues:

∆U

trec
(35)

where ∆U is the maximal drop in utility and trec is the time the system needs to recover. Note trec is
the length of the span which starts with the performance break-in and stops when the utility is above
the threshold again. Similar to the gradient described in equation 34 the approximation measures the
recovery speed. The estimation enables us to have a measure for it and thereby we focus on this KPI.

In order to have an evaluation over wider time horizon we consider the GSDTSR, paint control and
ifrol datasets (these contain results of a few hunderd CI cycles and the previously considered SMBV1
only of about 40) for this examination. We use XCSF-ER for the GSDTSR dataset and XCSF-TL
for the remaining two. We observed highly similar results for both the timerank and failcount reward
and in order to not repeat ourselves we confine here to the timerank reward. Nonetheless, the results
for the failcount reward are listed in Appendix B.

We once more perform 30 repetitions and give the agent a time budget of 50 percent of total
execution time. There we reuse the hyperparameters from the previous experiments.
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Figure 20: Estimation of the active robustness.

Figure 21: Estimation of the average recovery time.

Figure 22: Event frequency of utility break-ins.
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For our evaluation we consider a variety of utility thresholds (ranging from 0 to 100 percent of
NAPFD). We present the averaged results ± standard deviation σ in Figure 20. As can be expected,
both robustness and its variance generally increases with rising utility thresholds. Notably there is a
reduction in the active robustness for the paint control dataset if the utility threshold rises above 80
percent. In this range the NAPFD values are several times slightly below this value but recover in one
CI cycle which in turn reduces the active robustness (the ∆Us are very small). For GSDTSR we set
the active robustness to zero until a threshold of about thirty percent since for these values we could
not observe any performance break downs below that level. On the first blink the measured active
robustness (recovery speed) may seem low, but one may keep in mind that our utility function only
has a small limited range (0 to 100 percent). Thereby our system is capable to recover rather quickly.

Figure 20 also indicates that our system performs differently for each considered dataset. We
evaluated this hypothesis using a Friedman test that was significant (using a significance level of 0.05)
and thus we infer that the structure of the project to test also has an impact on our test system’s
performance.

The previous evaluation focused on how fast the system reaches a predefined utility threshold after
a performance break down. In Figure 21 we switch the focus on how long it takes to recover in such
situations. The plot shows that, for all considered datasets, the performance recuperates after 1-3 CI
cycles if the threshold is below 50 percent. For higher thresholds the required CI cycles increase but
are still on average single-digit. It is also worth mentioning that our system was always capable of
recovering. Furthermore we can observe once more that the three datasets lead to different recovery
times which we once more can confirm using a Friedman test and the aforementioned significance
level.

After elaborating how fast the system recuperates and how long these events take, we switch our
focus towards how frequently such events occur. We measured the frequencies (in 1

CI Cycle ) for different
thresholds in Figure 22. For all three considered datasets we can observe that the frequencies increase
with the thresholds until reaching a threshold value in the range of 70 to 80 percent. After that,
the frequencies start to decrease since multiple small events that were counted separately for lower
thresholds tend to be merged into fewer, longer events as the threshold is increased (which is in line
with our evaluation of the recovery times).

We can observe differences in the frequencies for utility thresholds lower than 50 percent. The
highest frequencies can be observed for the iofrol dataset, a lower one for the paintcontrol dataset
and the lowest for GSDTSR. For the latter there is often a frequency of zero (no event at all). These
differences are not at random and an additional significant Friedman test underlines this. Thus the
cause is linked to the internal structure of the datasets. One difference between GSDTSR respectively
paintcontrol and the iofrol dataset is the frequency of the test runs. For the first two projects, tests
were run on a daily basis (sometimes even several times) and for iofrol usually only once per month.
Hence two succeeding iofrol software versions can be considered as more different if compared to
GSDTSR or paintcontrol and it is naturally more difficult to create precise test case prioritization
based on historical data. However, the frequencies are still rather small and if we also take the high
active robustness values and short durations of the recovery processes into account then one can see
that our approach can be regarded as robust for these three datasets.

5.6 Additional Discussion of the Approach

In the previous parts of the chapter we focused on a detailed problem and algorithmic description
followed by an evaluation. Within this part we want to discuss the methods classification as an RL
algorithm and why we chose such an approach.

We try to solve ATCS by approximating a state-value function in an online way. These regression
tasks can also be classified as supervised learning. Furthermore ATCS is not modelled as Markov
decision process which is the usual problem formulation in RL [65]. However, it is worth mentioning
that RL is not limited to Markov decision problems [117]. Whitehead and Lin [117] solely require a
definition of an agent and its environment (which is given here). We try to approximate a state-value
function which is often in the focus of RL. For example Q-Learning tries to find an optimal state-value
function which solves one of the well-known Bellman equations [118].
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Overall there are arguments for a classification of the method as RL or supervised learning. We
think it boils down to how one weighs these arguments. For the mere sake of consistency we followed
previous works and classified it as a RL problem whilst we understand both opinions. We think
nonetheless that from a academic point of view the question was worth discussing.

The second topic that we want to elaborate here is why we decided to go for an LCS. The original
work of Spieker et al. [6] employed not only a neural network, but also Q-Learning (which was out-
performed by the former). Thus there has already been an experimental evaluation of two widespread
methods. Out of pure curiosity we tried out an alternative approach (XCS classifier system) in order
to find out how this evolutionary approach performs on this novel problem. There we lacked behind on
some problem instances compared to Spieker et al. [13]. XCS differs from XCSF as it has a constant
output (discrete actions). One of the reviewers gave us the critical feedback to employ an XCSF to
compute continuous actions which we tried out. There we only had to figure out how to use it and
which function shall be approximated. As we can see in our evaluation the critique was well placed.
Thus one might say that our approach was, similar to the techniques, evolutionary.

5.7 Related Work

Clearly our work is related to the publication of Spieker et al. [6] who were the first to come up with
an RL approach for the use case.

From a machine learning perspective this a LCS chapter. We are not the first trying to change the
algorithmic structure of XCSF in order to improve its overall performance. Recently interpolation-
based enhancements have achieved a certain level of success on a variety of toy problems but also on a
first practical use case (distributed traffic control) [119]. The usage of interpolation does not exclude
ER and thereby the work presented might be extended by it. There are even the first approaches
using interpolation to create new synthetic experiences which might further push performance [120].
However, the possible threat of these methods is that interpolation usually requires some form of
spatial closeness / continuity [121] which is not necessarily the case here.

Furthermore metaheuristics might also be used for the task as can be seen in chapter 4. The major
difference is in terms of runtime. In our metaheuristics chapter we measured runtimes of up to two
hours until a test suite has been computed as the number of iterations until convergence is detected
might be high. However, for XCSF that is not the case. The computation of a test case priority is
independent of the test corpus’ size (see chapter 5.2) and thereby the test suite’s computational cost
is linear in the test corpus size. This translates to small runtimes in real time (we often measure only
a few seconds for our final system). We deemed the metaheuristic’s high cost as a no-go for the CI
context (especially as the test corpus underlies frequent changes and there might be several CI cycles
a day which affects the test suite to choose). We deemed a computational lightweight such as an LCS
as more feasible.

The approach discussed further differs from multi-objective approaches as we focus on the quality
of the underlying prioritization and failure revealing capabilities which is computed based on the
outcome of a test session. In practice these test results are often stored in standardized junit xml
files which originated from the Java unit test framework Junit [122]. These files are also created
by other major test frameworks such as pytest [123] or Google test [124]. The report generation is
also supported by build servers such as Jenkins [125]. Hence in a CI environment the information
necessary to use the RL approach is easy to retrieve. Additional coverage based methods are either
limited to white-box testing (as the underlying source code must be available) or the test cases must
be linked to the requirements (in case of requirements coverage). The latter can lead to a considerable
effort for automated testing since the test cases (in form of software, e. g. a pytest test case) must be
linked to these requirements and these links must be updated upon test and requirements refinement.
Hence the RL approach can be seen as a rather generic approach and the multi-objective ones as more
specific methods. Thus a potential user of the technology should consider which preconditions are
valid for their project to test.

63



5 TEST CASE PRIORITIZATION AND SELECTION IN CI

5.8 Chapter Summary

Within this chapter we evaluated if LCS can be used to prioritize and select test cases in a CI envi-
ronment. We presented a modified XCSF variant which we used to employ a heuristic for prioritizing
the test cases. We further pushed XCSF’s performance by incorporating experience replay. We coined
the result XCSF-ER. We benchmarked XCSF-ER against a state of the art artificial neural network
for the task [6] which is also used by Netflix [108]. Thereby we could not only empirically show that
our method has an equivalent performance, but is in most cases superior in terms of performance.

An issue that both the artificial neural network and the raw XCSF faced is that the correct reward
function is only known a posteriori which is problematic in practice as a favorable reward function
should be known from the start of the project. Our XCSF-ER is capable to overcome this issue and
we are able to recommend two reward functions a priori.

We further asked ourselves the question if acquired knowledge for one test project can be reused
for another one. This is of importance as enterprises usually do not only develop one product. We
developed a simplistic population transformation and showed experimentally that transfer learning
for this test use case is possible. It is worth mentioning that we know of no work previous to ours
that employs transfer learning for test case prioritization.

We extended the evaluation of our approach by incorporating active robustness measurements
which is a OC KPI to estimate how fast a method / system recovers if a disturbance causes a per-
formance breakdown. We extended this OC analysis by additionally considering the average recovery
time. Further, we measured how frequently such performance breakdowns occur which we deem as
necessary since a pure recovery speed / time analysis leaves out the important information how often
these events occur. We could show that for a bandwidth of performance goals our approach has high
recovery speeds, short recovery durations and events occur fairly seldom.
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6 Runtime Efficiency Considerations

In chapter 5 we exclusively focused on designing an LCS which computes test suites that satisfy testing
metrics. Another vital task is to calculate the test suite in a reasonable amount of time due to the
following two reasons:

• The problem at hand is a time critical problem. Too long search times might erase the advantage
of a crucial test suite with low execution time.

• The test suite is not constant but must be continuously recomputed and it is not known when
new CI builds are started. This makes computing the test suite ahead of time hard to realize.

We exclusively focus on the matching step as empirical studies indicate that it is the computation-
ally most expensive step [126–129]. Further, theoretical runtime analysis underlines this fact [130].

In order to achieve runtime cutdowns we employ parallelism. A key constraint of our problem
domain is that we do not know the target hardware architecture where our later testing system might
run. We do not know if it has a graphical processing unit (GPU) or with what kind of processor it
is equipped. This forces us to design an approach that is hardware independent. We therefore make
the minimalistic assumptions that the underlying computing device has a multicore-processor and an
interface to program it. These are conditions that are valid for a vast range of desktop processors (e. g.
all of Intel’s i-series processors and AMD Ryzen processors have several cores) and even for cheaper
platforms such as Raspberry Pi this is the case. Further, threading libraries are a standard in major
programming languages such as C++, C#, Java or Python.

The goal of being hardware-independent is not limited to our use case. It is of general interest when
designing parallel programs. Mattson et al. [131] defined it as a goal when designing a parallelization
strategy. Independence from the underlying hardware enables the ease reuse of the approach on other
architectures. Mattson et al. [131] further demand that programs should be comprehensible which they
interpret as easy to maintain and test. We also take this goal into account by designing a simplistic
parallelization approach. Furthermore, one must also take the original goal of any parallelization into
account: Creating a speed up for the problem at hand. Thus the design of a parallelization can be
seen as a multi-objective optimization problem. This naturally means that there might be tradeoffs
between the objectives, for example if we improve the hardware independence, we might slow down
the program.

The matching process is for most LCS highly similar [66, 130]. Thus we define algorithms on a
high level which can be reused for a variety of LCS. In order to have a more general overview on the
parallelization to be introduced we focus on simulated states and the most widespread LCS (XCS
classifier system). The simulation enables an easy evaluation of different hyperparameters which have
an influence on the runtime of the matching process such as the size of the match set or the dimension
of the problem space.

6.1 Related Work

Parallel programming is not only a field of research for computer scientists. It often involves the
development of specialized hardware such as GPUs which may later be used not only for graphics
programming, but also for different tasks like neural networks [132]. GPUs are also used for Google’s
machine learning framework tensorflow and there have also been first steps of exploiting GPUs to speed
up XCS [128, 129]. The latter requires an Nvidia GPU that can be programmed via compute unified
device architecture (CUDA) which has been designed to be used within Fortran, C and C++. CUDA
uses its own parallel programming approach which requires knowledge of the hardware structure of
the GPU that is used. Hence a CUDA program that is optimized towards one type of GPU might be
a bad choice for another one [133]. Also, the CUDA implementation must be optimized towards the
type of LCS that is used. However CUDA has not only been applied to XCS, but also to other LCS
such as BioHEL [134].

Another approach for XCS is to exploit single instruction multiple data (SIMD) instructions for
matching [126]. Further bitfields are used to reduce the memory needed to save classifiers. SIMD
instructions can be seen as special commands for vector operations. The used instruction set is widely
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available for AMD and Intel processors, but on the other hand it requires to use the original XCS with
ternary conditions. In this setting a state is a binary vector and the conditions are a vector where
each entry has either the value 0, 1 or #. 0 and 1 indicate that the corresponding entry of the state
must be 0 or 1 and # is defined as a “don’t care” symbol. The latter entry accepts both 0 and 1.
This may speed up the matching for the original formulation of XCS, but not in all problems states a
purely binary and there are various extensions of XCS such as the XCSF that we use for testing. A C
approach has been used for the implementation. Another approach for XCS does not involve parallel
programming at all. Gilles et al. [127] exploited XOR commands to speed up the matching of XCS.

It is worth mentioning that optimizing machine learning algorithms is a lucrative task and has
come into the focus of several companies. For example Apache TVM is an open source project for
optimizing neural networks for a target hardware [135]. The project is supported by major companies
such as Nvidia, Amazon, Microsoft, Intel, ARM and AMD. Other closed source companies such as
AU Zone offer entire SDKs to develop and optimize neural networks for a target architecture [136].
However, we were unable to find similar technology for LCS.

In summary, existing parallelization attempts for LCS are designed towards a specific hardware
family (e. g. Nvidia GPUs) or certain desktop CPUs. There is no generic approach that offers some
level of abstraction of the underlying hardware. Further expert knowledge is required for the concrete
implementation (e. g. sufficient knowledge of CUDA or the processor instruction set). The approaches
exclusively focus on the speed up objective. These approaches achieve vast successes and can provide
high speed-ups (90 for the SIMD approach [126], 12 and 18 for the different GPU approaches [128,129]).
However, their hardware dependencies render them unfeasible for our use case. Hence we saw the need
for an easy to implement hardware-independent approach.

6.2 Algorithmic Design

When a parallel program is designed, an initial step is usually to identify which resources are shared
between threads and where race conditions can occur [131]. We identified the match set as a possible
shared resource. Threads may search the population for matching classifiers and sporadically insert
the found ones in the match set. We realize the match set as a list. We have identified two strategies
in order to overcome the aforementioned race condition:

1. A lock can be used to only allow one thread at a time to access the match set.

2. Each thread gets a local match set and after the entire population has been searched the local
match sets are merged.

A lock is a standard mechanism which can be used to protect shared resources as it only allows one
thread at at time to acquire it [137]. If the match set is rather big, then the second approach leads to
fewer accesses of the lock than the first. The merge step of the second method might lead to many
threads trying to write to the global match set at the same time.

In order to calculate the match set, the entire population must be traversed. Each element should
only be checked once. Hence, the population should be split in order to get chunks of equal size for
each thread. Thus we introduce a task model for the matching based on a separation of the population.
We describe our top level behaviour in Algorithm 17. For the created tasks we examine both solutions
for race conditions later on. The first approach is described in Algorithm 18 and the other one in
Algorithm 19.

The designed algorithms do not rely on any specific version of LCS and, with traditional methods
of object oriented programming, reusability of the matching method can be assured. For example,
by using inheritance for classifiers and by calling the method of the abstract base class inside the
algorithm. Furthermore, we examined the programming languages C++, C#, Java, R and Python
and all of these have a threading and a lock mechanism which enables a developer to implement the
designed algorithms directly. Hence no source code in another programming language is necessary
that must be wrapped for usage.
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Algorithm 17: Creation of tasks for the matching.

input : Population P , state s, n threads
output: Match Set

1 match set = { }
2 chunk size = floor(|P |/n threads)
3 for i = 0; i< n threads; i+ + do
4 thread i find matching for P[i ∗ chunk size] to P[min((i+ 1) ∗ chunk size, |P |)]
5 end
6 return match set

Algorithm 18: Matching of a task using a lock whilst inserting a new classifier.

input : Population P , state s, start, end
1 for i = start; i< end; i+ + do
2 if s fullfills conditions of P [i] then
3 lock()
4 insert P [i] to match set
5 unlock()

6 end

Algorithm 19: Matching of a task using a lock and local lists.

input : Population P , state s, start, end
1 local list = { }
2 for i = start; i< end; i+ + do
3 if s fullfills conditions of P [i] then
4 insert P [i] to local set

5 end
6 lock()
7 merge local list with global match set
8 unlock()
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6.3 Experiments

The duration of a matching method depends on several parameters. If the population or the di-
mensionality of the state vector becomes larger, the sequential filter process’ runtime is rising as its
complexity is linear in the population size and the state space’s dimension. The runtime of a parallel
program also depends on the number of used threads and the number of race conditions that occur.
The latter correlates in our case with the size of the resulting match set and the former is examined to
determine how well the program scales if more resources are available. Thus we examine the influence
of these four magnitudes on the performance in terms of the algorithm’s speed up (compared to the
sequential process).

For our XCSF for ATCS the dimension is fixed. Further, the match set size is induced by the
dataset and the current population at hand. In order to have widened view on our parallelization
we consider a simulation and the vanilla XCS (where these issues do not occur). If we create a
classifier that shall not match the given state, we draw an index i uniformly at random and set the
i-th condition of the classifier to the opposite of the state. Further, the non-matching classifiers are
distributed uniformly over the population.

Overall we consider population sizes from 10, 000 to 150, 000 and increase the size by 10, 000.
We use the dimensions 3, 6, 9, ...24. We use an Intel i7 processor with up to 12 virtual cores for
our experiments and use 2, 4, 6, ..., 12 threads for our experiments to examine the scalability of our
algorithms. We simulate that 1, 2, 3, ... 30 percent of the population match the given state. This
leads to 21, 600 different experimental settings. We perform 100 iterations for each combination of
the described magnitudes.

We once more published the source code that corresponds to the experiments:

https://github.com/LagLukas/para_matching

6.3.1 Scalability

The scalability of a parallel program is its ability to increase its speed up when more resources such
as threads or cores are added [137]. As multicore processors can highly vary in the number of cores,
this is an important question for us to examine. In Figure 23 and Table 23 we aggregate our results
into one dimensional data (grouped by the number of threads). On the x-axis is the number of used
threads and on the y-axis is the speed up in comparison to the sequential matching. For each of our
two parallel algorithms we visualize the average speed up and the speed ups within two times the
standard deviations10. In our experiments utilizing only few threads, the algorithm with a simple lock
exceeds Algorithm 19, but starting from about eight threads the matching method with local lists
turns out to overtake the lock-based approach. Furthermore there seems to be no more growth in
terms of performance after more than ten threads for the method using a simple lock. Algorithm 19
seems to scale better and even with the maximum number of parallel threads for our processor there
still seems to be no saturation. For both methods the variance increases with a higher number of used
threads.

Table 23: Aggregated speed ups (rounded to the third decimal, best values highlighted) and their
standard variance.

Threads 2 4 6 8 10 12
mean simple lock 1.905 2.102 2.254 2.386 2.438 2.436
σ simple lock 0.084 0.185 0.234 0.269 0.274 0.280

mean local list 1.732 1.913 2.15 2.376 2.582 2.774
σ local list 0.085 0.163 0.209 0.241 0.290 0.327

10We decided to display the results ±2σ as the data is normal distributed and the two sigma rule indicates that we
thereby show about 95 percent of the values that occur.
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Figure 23: Speed up ±2σ of both algorithms compared to sequential matching. Aggregated over all
considered dimensions, population sizes, and sizes of the match set.

For this first overview we aggregated a lot of results into one graph and table. It leaves out a more
fine-grained evaluation of the influence of the magnitudes considered. The number of race conditions
that occur have an impact on the program’s runtime as we briefly mentioned previously. In our case
the number of race conditions correlates with the number of threads and the relative match set size.
The higher the threads the more threads might try to acquire the match set lock. If more classifiers
match the given situation then more of them need to be inserted.

We directly compare both methods by plotting the difference in terms of speed up in Figure 24
and the corresponding variance in Figure 25. The approach using local lists is becoming more and
more superior with a rising number of race conditions (more threads and matching classifiers). On
the other hand, if only a few threads are available and the match sets tend to be rather small, the
usage of Algorithm 18 can lead to slightly better results on average, but there is also a certain degree
of variance in the results. This points to the need of statistical testing. For this an ANOVA analysis is
usually suitable, but it requires a homogeneity of the variances and that is not the case here. Hence,
we decided to compare each group individually using an unpaired two-sided Student t-test. This
requires normally distributed data which we could verify using a Shapiro Wilk test. We test the null
hypothesis that the use of a simple lock is superior to the use of local lists for each group. We reject
the null hypothesis at a significance level of 0.05. We visualized these results in Figure 26. Here we
can see that, for most cases, we cannot reject the null hypothesis. We can verify our hypothesis that
our method with local lists becomes more and more superior when the number of race conditions is
rising. The usage of local lists is already superior if the match set is about 13 percent the size of the
population when we fully exploit our processor.

Tables which contain the corresponding raw numbers are in the Appendix C. In short the speed
ups for both algorithms are always above 1.5 and peak at about 3.6. Hence we are always better than
the sequential variant.

Overall, out of our scalability experiments we can state that both parallel algorithms lead to a
certain speed up. We could verify that when the number of available threads and the approximate
match set’s size are rising, there is a tendency that the usage of local lists becomes superior. Note, we
did not use the most powerful multicore processor. Under the assumption that this effect continues
for processors with more cores such as server CPUs, then this algorithm can be superior for even
smaller match sets if the maximum number of parallel threads is used. On the other hand, for smaller
multicore processors, the usage of a simple lock also leads to a certain speed up. Hence one can
choose one of our algorithms depending on the number of available cores whilst still having a certain
abstraction from the concrete hardware that is used and having an independence from which kind of
LCS is used.
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Figure 24: Difference in speed up between Algorithm 19 (local lists) and Algorithm 18 (simple lock)
varying over threads and relative match set size.

Figure 25: Variance of difference in speed up between Algorithm 19 (local lists) and Algorithm 18
(simple lock).

6.3.2 Variation of the Problem Size

LCS problems can differ in the dimension of the state and the population size may also vary. Hence
we focus on the evaluation of our results grouped by the population size and the dimension of the
state. Here we are using the maximum number of threads.

70



6 RUNTIME EFFICIENCY CONSIDERATIONS

Figure 26: P values of the null hypothesis that Algorithm 18 (simple lock) is superior to Algorithm
19 (local list).

Figure 27: Difference in speed up between Algorithm 19 and Algorithm 18 varying over population
size and dimension.

In terms of raw speed ups the results for both algorithms vary between 2.4 and 3. The total
overview is once more in Appendix C. Generally both methods benefit from rising population sizes
but a rising dimension slows them down. The latter has a higher impact on the lock based approach.

We once more focus on examining the difference between the two introduced methods. The com-
parison can be seen in Figure 27 and the corresponding variance in Figure 28. There, the method
with a simple lock is always inferior to the other one, but the results are not purely deterministic and
contain some variance. Thus, we once more prefer additional statistical tests. In order to be consistent
to our previous evaluation, we use Student t-tests again. Our null hypothesis for every group is again
that Algorithm 18 is superior to Algorithm 19 (significance level of 0.05). Here we could reject the
null hypothesis for every group. Thus in this experiment the use of local lists is superior to the use of
a simple lock if we fully exploit our processor.
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Figure 28: Variance of the difference in speed up between Algorithm 19 and Algorithm 18.

6.3.3 Results in the Context of LCS

Most publications about parallelizing LCS focus on the matching step [126, 128, 134]. Abedini et
al. [128] performed some measurements about its proportion and, depending on the problem, it roughly
takes between 20 and 80 percent of the total runtime of XCS. Hence, depending on the problem to be
solved, there is still a reasonable sequential part of the program. We could achieve speed ups between
2.4 and 3.1 when we fully exploit our CPU. Thus, if we use this approximation of the matching’s
runtime relative to the total runtime of XCS we would save worst case 11.6 percent of the total
runtime and best case 54.19 percent of the total runtime by applying Algorithm 19. This might even
be improved if a processor with more cores is used.

In parallel programming, Amdahl’s law [138] defines how much runtime improvement for a program
is possible. It states if a program has a part that can be parallelized and costs sequentially p time and
the other parts cannot or will not be parallelized and cost q time, then the runtime will always be at
least q. On the other hand the maximum time that we can save is p. If we put our former numbers
in context of Amdahl’s law, we achieve a runtime saving of at worst 58.33 and at best 67.74 percent
of p.

6.4 Chapter Summary

Several parallelization attempts for LCS exist. All that we found focus on the matching step as it
is known to be the computationally most expensive step of this class of machine learning methods.
These achieve vast runtime reductions in terms of speed up. However, on the shady side they require
a specific hardware accelerator and the expert knowledge to program it. This renders the approaches
unfeasible for our testing use case and generally neglects other parallel programming objectives.

We presented two parallel matching algorithms. These are easy to implement in most languages,
only having the preconditions that the underlying system has a multicore processor and that the used
programming language offers basic functionality for parallel programming. Further our matching
algorithms are suitable for most LCS. This enables fast integration into existing LCS.

Our level of abstraction comes at a cost. Approaches that use a specific hardware accelerator,
LCS, and work with a system level programming language achieve higher speed ups as they can fully
exploit the underlying hardware. However, if we plug our measured speed ups into the estimated
matching runtimes of Abedini et al. [128], we can still cut down between 58.33 and 67.74 percent of
the matching’s runtime for XCS.
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We examined the scalability of our algorithms as well. For one of our approaches we could not
observe a saturation in terms of speed up with our processor. Our experiments further showed that our
approach with a simple lock is suitable for smaller multicore CPUs and if a larger CPU is available,
we recommend the usage of the algorithm using local lists. Also we only used a CPU from the
medium price sector. We expect our algorithms to perform even better if a superior processor is used.
Furthermore, the hardware independence enables us to employ the methods for our CI testing use
case.
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The previous chapter leaves one important issue open. How do we deliver the value created by our
RL approach to the customer? From our experience testers are not necessarily software developers or
machine learning experts. Hence they might lack the skills to build a software that exploits our ML
techniques for their testing process.

Based on the previous discussions regarding CI and testing one can infer that the challenges faced
in software testing are similar to the ones identified by the OC community. In testing we also have
to deal with an ever changing environment (the software and the test cases at hand are changing)
where we have to continuously adapt in order to achieve our goals. OC intends to overcome this
challenge by giving agents / subsystems large degrees of freedom in their decision making process.
Agents autonomously make local decisions in order to fulfill common goals and are capable of adapting
to environmental changes. In testing each CI pipeline can be seen as a subsystem (for different test
levels or similar products). Together with the high automatisation that is necessary for a CI process
we deem these OC design approaches as desirable.

Within this chapter we discuss how we adapted the MLOC architecture from chapter 2.3. We go
layer by layer and show how we used the existing design pattern and where we changed it. We further
give insight about other OC ideas which came into the focus of our interest.

7.1 Productive Layer

The SuOC is the DUT which may be anything between a software component and a full product (e. g.
a car or a web application). It is interfaced via a test framework such as Google test [124]. Engineers
write or generate tests that are available as source code. These automated tests are maintained in
a repository and can be executed using the corresponding testing framework. It conceptually makes
sense to move the overall process of rule generation to this layer (and thus out of layer 1). In context
of the original MLOC template, values can often be observed in a sample rate of some clock time,
for example every 300 ms. However, here we differ since our time unit is not motivated by physics or
embedded systems. Our time axis is the CI cycle.

7.2 Reactive Layer

In layer 1, the observer senses the available test cases and at the end of the CI cycles the results of
those executed. Further, it collects CI metadata to give the controller a more detailed knowledge of
the available test cases. For each test, it stores its

• test history: A vector of previous test outcomes, for example [failed, failed, passed, failed].

• last execution: A test might not be executed every CI cycle. The observer thus stores the
time step (i.e. the CI cycle) the test has been performed last.

• execution times: Encountered durations of the test case which can be used to approximate
the test case’s duration.

as described in the state space of the test agent (in chapter 5.2).
The observer can estimate the test case’s duration based on the execution time. Together with the

test history, this signal can be used to estimate whether it is a short test that often fails or whether
it is a rather long test that usually passes. The last execution can be used to guide exploration: For
example, it allows to check whether a previously passing test that has not been run for quite a while
still passes or has begun to fail more frequently.

Our reactive layer contains another abstraction mechanism: it generalizes from the given testing
framework. We deem this as necessary since there are different testing frameworks for specific test
levels. For example National Instrument’s test stand [139] is designed to be used on system test level
and is capable of integrating various hardware for manipulating and examining the DUT. On the other
hand, Google test [124] is developed to be a raw software unit testing framework. The abstraction
from the test engine enables the reusability of the system across several test levels and makes its
components independent of the test level.
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Figure 29: Interaction of layer 1 with the DUT using the test abstraction layer. The green box
represents the observer and the red box the controller. Together they form layer 1.

The acquired information about the tests is given to the controller which uses it to compute an
appropriate test suite that takes the available execution time into account. We perform our selection
using our XCSF-TL variant as an agent and once more follow the workflow described in Figure 15.
Hence we first prioritize all tests and then collect the test cases greedily according to the prioritization
and the time budget. Afterwards we execute the selected tests.

After executing the test cases, their results as well as additional CI metadata (durations, CI
cycle) are retrieved and the observer combines the information and uploads them to a database (DB).
This makes the data reusable for the succeeding CI cycle. We visualized the entire flow of data and
separation of the building blocks of our layer 1 in Figure 29. For the sake of simplicity, we regard the
DUT and the test engine as one block.

7.3 Reflection Layer

As mentioned in chapter 2.3, layer 2 usually creates rules for situations where the system lacks experi-
ence. We slightly deviate from the template in that our system does not create new rules solely using
a metaheuristic and that it does not evaluate them in a simulation. We also create classifiers using
the TL and ER approach described in chapter 5.2. Additionally we exploit idle times of the CI build
servers that are not under full load then we use the free time to train the system. Thereby we just
run another CI cycle. We regard this as more favorable than performing simulations since we prefer
real data over simulated data.

In our system, learning is solely performed using ER and TL, both of which are part of layer 2.
TL is additionally used when the system is created the first time as we transfer knowledge from a
pretrained XCSF instead of creating a new population entirely at random.

The system might further benefit from other testing activities. For example, before shipping
software to customers, all tests are run. The data created in the process can be used for additional
training and evaluation of the quality of the proposed rules. This data has the advantage that the
complete knowledge of the outcome of all tests is available (other than during our system’s runtime,
where only a subset of tests is executed at any time).

We summarized the behaviour of the reflection layer schematically in Figure 30. The match set
observer checks if the size of the match set (set of rules that fit to the given state) is too small. If
this is the case, it requests matching rules from neighbouring systems (using the collaboration layer)
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Figure 30: Interaction of layer 2 with layer 1 and neighbouring systems. The green box represents the
observer and the red box the controller. Together they form layer 2.

and injects them into the TL component of the controller which inserts the transformed rules into
the match set (hence giving them to layer 1). The ER buffer saves past experiences and periodically
sends a random batch to the controller in order to refine the rule basis. It is worth mentioning that
the third mechanism attributed to layer 2 (exploitation of idle times) is not part of Figure 30. This is
due to us following a keep it simple stupid (KISS) approach and simply running complete CI cycles
during idle times which results in the system not having knowledge of whether the CI cycle’s purpose
is training or actual application.

7.4 Collaboration Layer

The collaboration layer enables the testers to set two goals. 1) the time budget for the test suite 2) A
reward function for the XCSF-based agent.

Figure 31: Interaction of the collaboration layer with the remaining parts of the system.

Test engineers are not the only users of the autonomous testing system as described here. Software
developers, quality assurance (QA), and project managers often need knowledge of the status quo of
testing as well. Hence the monitoring of systems such as ours is a part of some kind of overall
project reporting. In order to meet this requirement, our system’s logging is integrated into a global
monitoring system which is realized as a dashboard app.
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Collaboration with other systems can be enabled using some form of message-based communication
or shared memory. We decided to use the latter since neighbouring systems solely exchange rules. We
maintain the populations of individual XCSFs in a software artifact managment system called Jfrog
Artifactory [140].

We summarized the interaction of the collaboration layer in Figure 31. One can see there that
collaboration is limited to the reflection layer. Additionally the reflection layer is the only section
whose goals can be set. Further, it displays the stakeholders and our change to a global monitoring
system11. The content outlined by the dashed lines represents an individual agent which may work
autonomously.

It is also worth discussing what a neighbouring system in our context is. From a mathematical
point of view, neighbouring means closeness in terms of some distance or similarity measure. We
instead use closeness from a testing and development perspective. We search the populations of other
XCSFs of different variants of the same product12 and different test levels of it. This simple heuristic
limits the search time whilst enabling the reuse of rules. If the reflection layer requests matching
rules, an exhaustive search through the neighbourhood is performed after which the rules found are
transformed as described in Algorithm 16 and then provided to the reactive layer.

7.5 Autonomy & Self-Organization

In OC, a certain degree of autonomy is desired in order to deal with the encountered complexity of
the task. A system is regarded as autonomous if its decisions are solely based on an internal control
mechanism. Neither full autonomy is desired as the system would become uncontrollable nor full
external control is wished (this would lead to a maintainance overhead). This goal is also desirable
from a CI perspective since this DevOps practice requires a high amount of automatisation which can
be seen as a side-effect of a system with a high degree of autonomy.

OC measures of autonomy relate the number of parameters which are set by the internal control
mechanism to the number of parameters set by external influences (e. g. testers that change some
goals). In our current implementation the configuration space consists out of the test cases that can
be run, the time budget and the reward function to be used.

The test suite to be run is computed by our modified XCSF. If n tests are available then the
chosen test suite can be encoded as a bit vector of length n (the i-th entry indicating the i-th test
shall be executed or not). Note, that this encoding is common in the testing context [41]. The time
budget can be encoded as a floating point variable of constant length cb and the reward function using
an ID which also has a constant size cr (e. g., if the reward functions are maintained in some enum
datatype). Both of these constants are also measured in bits.

In OC, the static degree of autonomy α is defined as follows:

α =
Vint − Vext

Vint
(36)

where:

• Vint corresponds to the internal variability of the system which in our case corresponds to the
number of tests n.

• Vext is the external variability which corresponds to the number of external control variables
(here, cr and cb) and internal parameters that are changed externally (e. g., by corrective mea-
sures).

α has a maximum value of one and a high value indicates a high degree of autonomy.
The externally changed internal parameters are in our use case the test cases manually set or

excluded by the test engineers. We could observe that this has, up to now, never been done by our
testers. Thus we can compute α as follows:

α =
n− cr − cb

n
(37)

11In the original MLOC variant the monitoring focuses on one isolated agent.
12For example Bosch and Siemens home appliances are from the same producer and a Bosch home appliance often

shares many things with a Siemens one.
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Within the projects of our industrial partner we often observed several hundreds of test cases, some-
times even several thousands. Hence n is by far the dominating factor which leads to a value of α
close to one. Therefore, we employed a system with a high degree of autonomy which enables user
control, allowing to disable the autonomy in extreme situations. It is worth mentioning that, next to
the static degree of autonomy, there exists the dynamic degree of autonomy measure [141]. It differs
from the static one by only taking the bits into account that are applied at a fixed time t. Within
our current projects we could not observe yet that the testers often changed the time budget and the
reward function was only set at the start. Thus we can make similar observations for the dynamic
degree of autonomy.

In OC autonomy is linked to self-organization [29] (as it often occurs for autonomous, distributed
systems). There are multiple ways to define self-organization. One focuses on the number of control
mechanisms k, their distribution among the j agents and the agents’ degree of autonomy. As seen in
the prior paragraph, our system is highly autonomous. Self-organization in an OC context requires
at least a partially distributed system (which is true for ours). Each of our agents has two control
mechanisms by design (one for the reactive layer and one for the reflection layer), hence k = 2j.
Systems with these properties are said to be strongly self-organizing [29].

Another way of measuring self-organization can be applied if no full knowledge of the designed sys-
tem is available. In such scenarios, if the communication between the individual elements is observed,
communication graphs are constructed and evaluated. However, since we have detailed knowledge of
our system, we were able to use the aforementioned, more straightforward approach [29].

It is worth mentioning that self-organisation itself is not a quality indicator. There are both
examples of self-organisation that lead to undesired effects or help to achieve a system goal [29].
Here the different agents can only communicate by exchanging experienced rules which we showed is
beneficial for the system’s performance [16]. Hence we regard this form of self-organisation as rather
positive.

7.6 Getting the OC System to the Customer

After performing the systems engineering task of proposing an architecture as well as developing the
underlying ML approach, the concrete software has to be written and delivered to the customer. In
concrete we did this for the MASON test framework of BSH Hausgeräte GmbH. The test framework
is built on top of pytest, for test versioning Git (combined with Github) is in use and Jenkins is
employed to enable the CI process.

We implemented the presented architecture in Python. We maintain the build software in a
company-wide Python package index13. This enables test engineers to use the standard package
installer called PIP to retrieve the software. We distribute it under the name test abstraction layer
and to automatically install the newest version an user only has to execute the following command:

pip i n s t a l l t e s t a b s t r a c t i o n l a y e r

Thereby the testers can use the installation tool that they are familiar with. It is worth mentioning
that the software is platform independent and can be used on Linux and Windows.

The software can be used as a command line tool which we gave the name Q auto as analogy to
Q of the James Bond movies. Q is the scientist that equips agents such as James Bond with the
necessary tools to perform their job. This is more or less the same that our software does as it works
on, next to the agent role itself, the tasks of cleaning and storing the CI data, using the test framework
etc.. The tool can be called as follows:

Q auto <<pipe l ine name>> <<CI cyc le>>

where:

• pipeline name: The unqiue name of the pipeline, e.g. sw test product42.

• CI cycle: The current CI cycle (an integer).

13This means you cannot install it from the public package index, but only as a BSH employee.
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The pipeline name and CI cycle are mainly used to store the test’s outcome in an unique way. Further
the XCSF’s classifier population is versioned using the pipeline name and CI cycle.

It is worth mentioning that the command line tool also supports additional arguments which
correspond to possible settings of the underlying test framework. These commands are just handed
over to a call of the test framework and thereby we enable the testers to use the options that they
want (e. g. set some test log levels).

Additional necessary configuration information such as the reward function to be used or the time
budget are saved in an .ini file of the test git repository. The testing department within BSH specified
a location for the file in order to fit their testing process. It is automatically loaded from there. It
specifies the time budget and the reward function.

The test engineers within BSH use Jenkins to enable their CI process. Jenkins enables users to
specify the steps of a pipeline using a script (similar to batch or shell scripts). This script language
enables the integration of our system in the CI process as follows:

1. Copy paste the .ini file template to the git test repository (perhaps adapt the time budget).

2. Run the pip command in order to install the software to the pipeline’s test environment.

3. Run the Q auto command.

Hence an easy integration is achieved by solely copying a file and executing two commands.
In order to give this usage information to the customer we relied on GitHub which is a web

application for version control that uses Git. GitHub has the feature to host a documentation as a
web page which we used in order to share the documentation. We used a Sphinx documentation as
it supports different designs and has a out-of the box search functionality. We provide an example
snapshot in Figure 32.

Figure 32: Example snapshot of the first page of our software documentation. On the left side is the
table of contents and a searchbar.

The hosted webpage furthermore has the advantage that the newest documentation is always
hosted and thereby confusion due to deprecated documentations that are stored locally are avoided.
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The documentation is further automatically updated whenever we build a new version of the software
(which we also do using a CI process).

We briefly want to mention that we did not publish the source code which implements the sys-
tem described in this section since the code contains strictly confidential BSH data (e. g. database
credentials or other login data). Corporate rules forbid this.

We do not want to confine to showing the documentation and installation procedure. We also
want to give a brief, rather informal insight on how the system performs in practice. Therefore we
display the performance of our three BSH pilot projects: A dishwasher user interface (DC UI), the
system test of a dishwasher (DC ST) and an oven control and power module (CPM).

The CPM has tests for about 3 hours (123 tests), the DC ST contains tests for 14 hours (1,869
tests) and the DC UI for about 16 hours (about 40,000 tests). It is worth outlining that the UI has
so many tests as it checks various screens in 26 different languages. There the tests are rather short
(in contrast to the other two).

We cannot evaluate the system’s performance using NAPFD as it requires the knowledge of the
outcomes of all possible tests (and not just of the executed ones). Thus we need another measure that
may be applied in practice. We measure it using a KPI that we coin the failure velocity at cycle i:

TS f
i

C × TSi
(38)

which computes the percentage of failed tests (among the executed ones) divided by the employed
time budget (C is normalized by the execution time of all tests). Hence it takes an analogy to velocity.
However, we do not measure how far we went per time but how many failing tests our system can
find in the given time. Thus the KPI takes both objectives into account.

Figure 33: Failure velocity for the three BSH pilot projects.

Figure 33 displays the failure velocity for the three aforementioned projects. It is worth mentioning
that the individual graphs end earlier as no newer results are available for them. Further we can see
variations over the up to 40 CI cycles observed and upon performance breakdowns the system is
capable to recover as we could see in the robustness experiments in chapter 5. Further we can see
that the project’s structure has an impact on the system’s performance which is something that we
also observed in the previous evaluation. Here we decided to use a logarithmic scale for our KPI as it
is not normalized and might have high values (see DC UI) which on the other hand slightly dampens
the visible learning effect of the system. Further in the middle of the timeline the testers decided to
downgrade the available testing time (roughly by half) and the system is still capable to have higher
values in terms of our KPI. The BSH testers further experimented with the time budget on DC ST
by making it smaller and even set it there for a few cycles to a minute (which lead to the break-downs
in cycle 8 and 9). Afterwards it was increased again and the system recuperated. However, what
one should take from the plot is that the OC system is capable to detect failing tests and is also
shows some robustness on this first samples. We keep it at this level as there is definitely a need for
a long-term evaluation after the system ran several months.
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7.7 Related Work

The work presented directly exploits OC methods which can be traced back to the first observer
controller architecture described by Richter et al. [5]. We make use of the refined multi layer observer
controller architecture [142]. Our MLOC adaptation differs from the one described by Tomforde et
al. [142] as we do not rely on a simulation in the reflection layer and that we perform the entire learning
process in that layer. Further we restricted communication with other agents on the reflection layer
(exchange of rules). In the OC book [29] it is further proposed to monitor the agents in isolation.
However, we further integrated the monitoring in BSH global system in order to ease the review of
the big testing picture. The most striking difference is that we employ the MLOC pattern for a
non-embedded systems use case.

OC concepts itself are related to another field coined autonomic computing (AC) [143]. The AC
movement started out as an IBM project in 2003 and focused on solving growing complexity in large-
scale datacenters. AC has simultaneously come up with the idea to build adaptive systems which
have certain self-x capabilities. The main AC architecture is known as monitor, analyse, plan, execute
(MAPE) and highly overlaps with observer controller approaches. The monitor and analyse parts are
more or less the observer whilst the plan and execute components can be seen as a controller. For a
closer discussion of the main differences we refer the reader to [29,144].

7.8 Chapter Summary

Within this chapter we moved from a pure machine learning point of view to a systems engineering
perspective. We outlined that the problems that the test use case implies are similar to the ones
that OC tries to solve on an abstract level. Hence we employed OC methods to model a system
for this use case which makes use of the ML techniques developed. Thereby we moved beyond the
typical embedded system use cases that OC tries to solve. Thus we underlined OC concepts are not
necessarily bound to these kinds of systems.

The test system itself relies on the multi-layer observer controller architecture which is a standard
pattern in OC [29]. We described how we adopted this approach and where we changed some things.
We went layer by layer and elaborated where we put which ML technique that we developed and how
we aligned it with the testing use case.

We further discussed the system’s degree of autonomy and self-organization capabilities. We
underlined that the architecture leads to no detrimental self-organization and furthermore has a high
degree of autonomy which fits well to CI since this software development approach requires a high
degree of automatization. The latter is a mere side-effect of a high degree of autonomy.

We also gave insight about the concrete software that we delivered to the customer. There we
underlined the encapsulation of the system. A test engineer requires no knowledge of OC or ML in
order to use it. In order to integrate our software into a pipeline a tester only has to copy paste two
lines of code into his pipeline script. Further, a configuration file must be maintained together with
the tests itself (there the tester can specify the time budget). Thus we created a black box system
which can be quickly integrated in existing CI pipelines within the company. Additionally we gave a
first brief insight about the system’s performance in practice.
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8 Towards Corrective Testing

The previous chapters heavily focused on a test case perspective and how to refine test suites. However,
if an issue with the product is detected it still has to be reported to the development team. The
engineers then react and try to fix the issue. A proposed fixed version is retested and in case of an
unsuccessful repair attempt this entire loop has to be performed again. We visualized this in Figure
34. It would be more elegant if the issue could be fixed automatically.

Figure 34: Traditional workflow of testing.

In BSH Home Appliances many software components are configurable and have to fulfill a specified
behaviour. This is for example the case for the generic touch interface software used within BSH. It is
a configurable signal processing component which detects touch events based on measured capacities.
As it is a part of an embedded system it must satisfy regulations of any electric device. This includes
for example electromagnetic compatibility (EMC) [145]. This set of laws states that a device must
function properly even if it is disturbed by electromagnetic noise (to a certain level). We examined
if we could successfully automate the entire aforementioned trial and repair loop. Thus a form of
corrective testing would be created. Thereby we model the task as an optimization problem and rely
on a genetic algorithm to solve it. Hence the chapter provides a preliminary study if corrective testing
is possible.

8.1 Problem Description

BSH uses capacitive touch which is the most widespread technology with a market share of 74% in
2017 [146]. Capacitive touch roughly works the same way as a plate condensator. The touch sensor
is one plate and the human finger the other one. If the finger comes closer to the sensor then the
capacity increases. If the finger moves away then the capacity decreases. This capacity signal may be
used to detect if the user tapped the touch screen or in other words: A touch event occured.

The touch interface (TI) consists out of a microcontroller to scan the capacity on the panel (by
computing a score value) and then process the measured signal. Based on it computes if there has
been a touch event or not (see Figure 35).

Figure 35: Working principle of a capacitive touch device.
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The signal processing part of BSH consists out of a pipeline of operators. These operators have in
total 15 different parameters which have to be configured. The BSH touch is a proprietary technology
and thus we are not allowed to give a deeper insight.

At time t the TI senses a capacitive signal C(t). The TI then processes it and is configured with
a parameterization p ∈ Z15. Note, the parameters are integers as a form of digital signal processing
is employed. Further let b(C,p) be the binary output of the filterchain (touch yes or no). Let τ(t) be
the actual physical touch.

Our test scenario introduces various forms of noise onto C(t) and leads to a time series of mea-
surements. Let N be the sample size.

A given configuration p should be capable to detect the introduced touch events which can be
measured as follows:

TP (p) =
|{0 ≤ t ≤ N |τ(t) = 1 ∧ τ(t) = b(C(t),p)}|

|{0 ≤ t ≤ N |τ(t) = 1}|
(39)

The measure TP is an adaption of the true positive rate to the use case.
Additionally the configured filter should detect correctly if there was no touch event at all:

TN(p) =
|{0 ≤ t ≤ N |τ(t) = 0 ∧ τ(t) = b(C(t),p)}|

|{0 ≤ t ≤ N |τ(t) = 0}|
(40)

TN corresponds to the true negative rate.
Our objective function is based on the two aforementioned measures and can be computed as

follows:
TP (p) + TN(p)

2
(41)

The factor 2 is used for a normalization and thus its values range from 0 (worst) to 1 (best). If a value
of 1 is achieved then the calibrated filter pipeline does not miss a single touch event and it correctly
recognizes if no touch is introduced onto the device. If a touch event is not detected or a touch event
is falsely recognized, the value declines. Thus the objective function is to be maximized. It is worth
mentioning that the objective function is also coined fitness function in evolutionary computation [97]
and is not be confused with fitness of a classifier of an LCS. We follow this naming convention for the
rest of this chapter.

8.2 Employed Genetic Algorithm

Genetic algorithms are metaheuristics which rely on a population of solutions. In every iteration they
refine the population by selecting two solutions, combining them (which is known as crossover) and
then changing them randomly with a certain probability (which is known as mutation) [81]. This is
done to create two solutions which are then injected to the population. If a predefined population
size is exceeded then two solutions are deleted. This process is repeated until a stopping criterion is
reached. Here we stop when a fixed search time is exhausted. A corresponding pseudocode is displayed
in Algorithm 20.

For our GA we use a k-tournament selection. Thus we draw k random solutions from the population
and choose the one with the highest fitness. This is repeated twice in order to get two solutions x
and y that will be used for the crossover operation. For the latter we use a one-point crossover to
generate two new solutions. The operator chooses an integer r from {1, 2, .., 15} uniformly at random
which serves as a breakpoint. The first child x̃ receives the first r entries from x and the last 15− r
entries from y:

x̃i =

{
xi i ≤ r
yi i > r

(42)

For the second child ỹ this is reversed (first r entries from y, remaining entries from x).
We apply a creep mutation. Each element gets a new value with a probability of µ. Further, an

elitist deletion mechanism is used and thus the elements with the worst fitness are deleted.
We initialize our population entirely at random, but we take the datatype of each filter parameter

into account. For example if a parameter is modelled as an unsigned integer which is saved in a byte
then we draw a value from 0 to 255 uniformly at random.
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Algorithm 20: GA as pseudocode

1 P = create initial population()
2 while stopping criterion is not met do
3 Choose x, y from P via selection
4 Create x̃, ỹ from x, y via crossover
5 Mutate x̃, ỹ using µ
6 insert x̃, ỹ to P
7 if population capacity exceeds limit then
8 perform deletion

9 end
10 return one of the best solutions of P

8.3 Evaluation

For these experiments we rely both on data acquired in our laboratory as well as on simulated one.
Within our first tryouts we observed that the GA is highly sensitive regarding its hyperparameters
(for this problem). Thus we start with a dedicated hyperparameter study. We run the optimization
in a simulation as the signal processing component is pure software and can also easily be run on a
normal computer (and not a microcontroller). Thus whenever the GA proposes a new configuration
we run the signal processing with the measured data and proposed parameterization. This has the
advantage that the higher clockrate of a desktop computer can be exploited (which is beneficial for
the experiment’s duration).

We repeat every experiment that we conduct thirty times and represent averaged results. Fur-
thermore we give the GA a search time of two hours. For our experiments we used a Dell OptiPlex
XE3 with 32GB RAM and an Intel i7 8700 processor and it was not used for anything else during the
evaluation.

8.3.1 Hyperparameter Study

As mentioned before the hyperparameters have a crucial impact on the GA [28]. Thus we decided
to evaluate the effect of different hyperparameter combinations on the GA’s performance. For k we
consider {5, 10, ..., 35}, for the population sizes |P | {250, 500, ..., 1500} and for the mutation probability
µ {0.01, 0.02, ..., 0.06}.

We use an ideal, noise-free simulated signal C(t). This is done by creating touch events of different
lengths. We also introduce phases of different length where no touch has been introduced. The signal
is a sequence of 100 touch ON and touch OFF phases. It starts and ends with an OFF phase. The
ON phase has a random duration of between 30 and 80 time stamps. We use the 10 starting and 10
ending time steps to let the signal level rise from OFF to ON and from ON to OFF respectively. This
is modelled as a linear function, for example for the rising signal:

C(t) = OFF +
ON

10
∗ (t− t0) (43)

where t0 is the start of increasing signal slope. The length of the OFF phase is also created randomly
and ranges from 50 to 500 time steps. Thus longer sections where no one interacts with the TI can be
simulated. For our test dataset we perform the same generation procedure but only create 10 touch
ON and touch OFF phases.

In our later experiments we rely on different data. Thus the hyperparameters that we choose
within this study are not overfitted to one of the later datasets.

We give a short overview about the fitness values achieved in Table 24. We created the table based
on the average values achieved for each hyperparameter combination. It displays minima, maxima,
quartiles, mean values and the standard deviation on the training and test dataset. We can observe a
high variety for the achieved fitness values on both datasets (the minima and maxima differ up to 25
percent). This underlines the sensitivity of our GA with respect to its hyperparameters. The majority
of the fitness range is covered by half of the considered combinations as we can see by the displayed
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Table 24: High level fitness overview. Values rounded to the fifth digit.

train dataset test dataset

Maximum 0.94895 0.94961
Minimum 0.68822 0.59832

Mean 0.86883 0.82119
Standard deviation 0.07271 0.06730

1. Quartile 0.81703 0.77135
Median 0.89924 0.83441

3. Quartile 0.92848 0.87174

Table 25: Top five hyperparmeter combinations and their median fitness.

k µ |P | fitness train fitness test

35 0.05 750 0.94895 0.93637
30 0.03 750 0.94875 0.93647
30 0.03 250 0.94874 0.93655
30 0.06 1000 0.94839 0.94961
25 0.05 1250 0.94040 0.94788

quartiles. The fitness values of the remaining combinations are closer. This variability can also be
seen in the standard deviation which is between 6.7 and 6.9 percent. On the test dataset the mean
and the median are similar but on the training dataset there is a gap of 5 percent between the two
due to outliers.

The prior analysis lacks the link to the combinations’ location in the hyperparameter space. We
focus on the top five training fitness combinations due to the high dimensionality (mutation probability,
population size, tournament k, fitness value). We displayed these in Table 25. On these we can see
that a high fitness value on the training dataset can lead to high values on the test dataset. For
example the parameter combination with the highest test fitness is also within the table. The worst of
our top five combinations is still better than the aforementioned 3.Quartiles which further underlines
the GA’s sensitivity. Generally our GA benefits from a high k and thus a longer search through the
population to find a parent is being performed. For the mutation probability we can observe medium
and high values. For the population size we can notice nearly the full considered range of values.
It is worth mentioning that on the top five worst hyperparameter combinations the population sizes
and mutation probabilities are low and the tournament k is high. The weak performance might be
traced back to a non-diverse population. Based on Table 25 we fixed k to 30 and visualized the fitness

Figure 36: Fitness values on the test dataset for tournament k = 30.
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(a) Fitness region on the top.

(b) Fitness region on the right.

Figure 37: Fitness at the corner regions.

landscape (on the test dataset) in Figure 36 (as the best test set performance is achieved with k = 30
and a good performance on the training dataset can also be observed). There is a small sweetspot
for population sizes of 500 to 750. Furthermore we can identify higher fitness plateaus on the right
and on the top of the plot. We decided to analyse these regions further. The corresponding plots are
shown in Figures 37 (a) and (b). We can see that both regions are isolated local optima and no gain
in fitness can be observed if we go further in either direction.

Based on our hyperparameter study we set k to 30, the mutation probability to 0.06 and the
maximum population size to 1000 for the succeeding experiments. We decided to use this combination
as it achieved the highest fitness value on the test dataset and is close to the best performance on the
training dataset (there is only a difference of 0.00056).

8.3.2 Simulated Noise

We extend our setting from the hyperparameter study by introducing noise to the simulated signal.
We decided to use white noise which is common in signal processing [147] and time series analysis [148].

We employ the noise in our simulation by generating Gaussian distributed random variables ε(t)
with mean zero and standard deviation σ and adding them to C(t). Thus we observe the following
noisy signal:

C(t) + ε(t) (44)
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Table 26: Results for different Gaussian noise and EMC noise. Iteration related metrics are rounded
to integers. The remaining measures are rounded to the fifth digit.

σ = 10 σ = 15 σ = 20 σ = 25 EMC

fitness of manual calibration (test dataset) 0.96512 0.97109 0.96450 0.96792 0.97081
median fitness GA (test dataset) 0.97763 0.98954 0.99141 0.99249 0.97560

deviation fitness GA (test dataset) 0.15849 0.14793 0.00635 0.08988 0.00851
fitness of manual calibration (train dataset) 0.96495 0.96383 0.96356 0.96013 0.76109

median fitness GA (train dataset) 0.97987 0.98987 0.99127 0.99164 0.97174
deviation fitness GA (train dataset) 0.00401 0.00400 0.00107 0.00131 0.00579

median of iterations until human level 129 142 75 67 67
standard deviation of iterations until human level 81 154 68 65 68

We employ different sigmas {10, 15, 20, 25}. Hence we consider four different training datasets here.
It is worth mentioning that the noise-free signal C(t) ranges from 0 to 100 in our simulation. Each
training and test dataset contains the same number of ON and OFF phases as in the hyperparameter
study. Furthermore the durations of each phase are created in the same way.

We display the achieved results in columns 2 to 5 of Table 26. We display the different median
fitness values achieved (on both train and test dataset). Additionally the table holds the fitness values
achieved by the manual calibration. We can see that if we consider the median value the GA approach
always leads to better results on both the training and the test dataset. However, one should keep
in mind that the GA does not always have a constant output as can be derived from the non-zero
standard deviation. Thus we additionally perform a Wilcoxon ranksum test in order to verify our
hypothesis. It is worth mentioning that this statistical test has no preconditions that need to be
checked. We measured a p-value below 10−30 which we regard as significant and thus we infer that
in this experiment the GA’s parameters lead to higher fitness values than the manually determined
ones.

Table 26 additionally contains information about the number of iterations necessary until the
evolutionary algorithm surpasses the human approach’s performance on the datasets. Generally we can
observe that the GA needs a rather low number of iterations until it exceeds the manual configuration.
The magnitude depends on the considered noise level which we confirmed using an additional Friedman
test (with a significance level of 0.05).

8.3.3 Electromagnetic Noise

Within our last experiment we switched our focus on real data collected from our lab where we
examined a cooktop prototype. We acquired it by setting up a robot cell and noise generator which
interacted with the touch interface (introducing various forms of noise, performing touch events and
observing the TI). We focused on a noise family which is known as injected current in electrical
engineering. We decided to concentrate on this noise class as the touch development team regards
it as the most challenging one. For details on this test we refer the reader to the corresponding
standard [149].

Our EMC dataset consists out of 129, 759 samples and we used the first 90 percent for training
and the remaining 10 percent for validation. It contains 202 ON and OFF phases.

We display the results in the column “EMC” of Table 26. Again we can observe that our GA
leads to more precise parameters on both the training and the test dataset. We once more perform
an additional Wilcoxon ranksum test to verify this hypothesis. We examine the nullhypothesis “The
manual configuration is superior to the configurations found by the GA on the training and the test
dataset”. We computed a p-value of less than 10−8 which we regard as significant. Thus we reject the
nullhypothesis and accept the alternative hypothesis that the GA leads to more precise calibrations.
It is worth mentioning that this low p-value is not only due to the performance gap on the training
dataset. If we would examine both datasets in isolation then we could still observe a p-value of less
than 10−6 on the training dataset and of about 0.01 on the test dataset.
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Figure 38: Learning process of the GA plus minus standard deviation on the EMC data. The plot
further contains the fitness of the manual calibration on both the training and validation datasets.

We already mentioned a considerable performance gap between the manual configuration and the
ones found by our GA if the training dataset is considered. There is a sequence of touch events in
the dataset with high noise levels that the TI using the manually determined parameters fails to
recognize. However, this is not the case if we employ the parameters found by our GA (the TI is
capable of detecting these events using the GA’s calibration).

For our EMC experiment we can see once more that the GA outperforms the human at this task
rather quickly. The median iterations necessary to achieve this is less than one hundred. However,
we decided to give a more fine-grained overview on the learning process in Figure 38. It displays the
average fitness plus minus its standard deviation at each step. We additionally added the performance
of the manually determined calibration (on the training- and test dataset) to the plot.

We can observe a large variation at the beginning which is gradually declining over time. This
is due to the creation of several hundred random solutions for initialization of the population. This
might lead to starting solutions that already have decent fitness values. Generally the GA already
starts at rather high fitness values (of about 90 percent) which it can gradually improve. Furthermore
we can see that there is some variation in the number of iterations performed in the two hours (as
there is a fitness drop after about 240 iterations which does not happen if one run of our elitist GA
is evaluated in isolation). Even though the GA has a search time of two hours it only performs up
to 250 iterations per search. This is due to the computational cost of the fitness function. Whenever
we want to evaluate a solution we have to process about 117,000 samples of the training dataset. For
each sample the signal processing component must be executed. Thus an evaluation of the fitness
function costs several seconds execution time.

8.3.4 Qualitative Remarks

In our experiments we could show that our method is capable of outperforming a manual approach
and we could achieve recognition rates of 97 to 99 percent on the respective validation set. However,
we did not discuss if these seemingly high values can be considered as good or not. Thus we take a
closer look at the performance achieved.

For most samples we observed the behaviour shown in Figure 39. The plot displays the output
of the configured filter chain as well as the touch events detected using the force sensor which was
attached on to the robot in our lab (to measure τ(t)). In this example we can see that our configuration
detects touch events correctly but prolongs them. The examined filterchain contains a low pass filter
to tackle noise [150]. This filter element has the side effect that it delays the signal slightly which
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Figure 39: Example of prolonged touch events due to a low pass filter (on the EMC data).

explains this observation. Our fitness level works at the sample level which explains why we do not
achieve a recognition rate of 100 percent. We sample fast (at about 10 ms) and thus we deem these
prolonged touch events as acceptable. In fact the highest prolongation that we found was about 150
ms.

It is worth mentioning that the parameterization provided by the GA cannot deal with unlimited
noise. If the noise level becomes too high then we observed that our configuration may miss out
touch events. However, we made similar observations with the manual calibration that fulfills the
industry standard [149]. Thus we focused on a setting that satisfies the industry standard within the
experiments.

8.4 Related Work

The use case presented can also be seen as a calibration task. There is already a variety of work on
calibrations using metaheuristics available [151–154]. Many of them rely on GAs. Due to their success
we decided to use one of them. A curious reader of previous chapters might formulate the question
why we did not use a germinal center artificial immune system here. The heuristic is designed to work
on solutions that are encoded as binary vectors (entries that are either 0 or 1) which is just not the
case here.

GAs have also been employed for various signal processing tasks such as active noise control or
early forms of speech recognition [155]. Their work shares some similarity as they use a GA to fine-
tune single filter components, but these are only using a few configurable parameters (up to 5). We
optimize several filter components in parallel which have to interact with each other. Optimizing
several interacting elements is a challenging task as shown in the study of Doerr et al. [156] who focus
on fine-tuning several PID controllers.

The idea of corrective testing is deeply related to the OC concept of self-healing [29]. A self-healing
system can recognize a flaw and perform corrective measures. A key distinction is rooted in the
system boundary. Here the corrective action has an external source and not an internal one. Another
difference is in the time when corrective measures take place. Here it is within the development stage
and for self-healing systems it is throughout the system’s lifetime.

8.5 Chapter Summary

Within this chapter we opened up the research direction of corrective testing. Thereby we understand
that testing goes beyond only finding the errors. It should also repair the product at hand and hence
reduce the stress which is put on the development team.

Based on our industry experience we saw that many software components are frequently reused
and only need to be reconfigured to fit for example a new hardware or use case. An example for this
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the BSH touch software which is used in all of its appliances ranging from cooktops over washing
machines to coffee machines. We modelled the testing and configuration of the touch device as an
optimization problem and employed a GA to the task.

In our experiments we could observe that GA was capable of detecting bad configurations and was
able to manipulate the parameterization until the touch interface was functioning as desired and could
fulfill industry standards. Furthermore, the configurations performed better than the ones detected
manually. Thus we see this small study as a first proof of concept that corrective testing is possible.
It is worth mentioning that the project itself is continued by BSH corporate innovation.
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9 Conclusion

Within this chapter we briefly revisit the thesis and discuss its results. Furthermore an outlook about
future research directions and engineering applications is given.

9.1 Summary

We started our thesis by making an observation about how products have changed throughout the
last decades. We could observe a move from mechanical components to more and more software
and electronical ones. This leads to more challenges for software development, especially in software
testing. These novel features cause an increase in the number of tests that need to be specified,
implemented and executed. The thesis focused on how this complexity can be handled using artificial
intelligence.

We started our journey by examining test specifications. These contained the information which
requirements are covered by a test case. We aimed at identifying redundant tests which are the ones
whose requirements are already covered by other tests. It turned out that the underlying optimization
problem is the minimum set cover problem which is known to be NP-hard. Thus we looked at the
technical state of the art regarding MSCP approximation algorithms. We reimplemented and analysed
a series of corresponding metaheuristics. Thereby we encountered vast differences in terms of runtime
and approximation quality (some might even have an exponential runtime). We chose the most
promising one (GCAIS) and improved its algorithmic structure to overcome its problems. Thereby
we could reduce its runtime and memory consumption drastically. We employed our improved variant
to test specifications for costly manual tests of BSH Home Appliances. Thereby we could identify a
considerable number of redundant tests which do not need to be executed.

We continued by taking a look at semi-automated testing. There test engineers are closely ob-
serving the system under test (in our case embedded systems). Thereby they rely on a subset of all
automated tests. We developed a multi-criteria selection approach which builds upon the GCAIS from
the test specification use case. We deemed this as desirable since one of the objectives is mathemati-
cally a variation of the MSCP on which GCAIS performs so well. We employed the metaheuristic to
find small test suites that are capable to detect errors and cover a variety of functionality. Algorith-
mically we improved its initialization approach by introducing a multi-axis initialization which leads
to a diverse starting population. We evaluated our modified approach in a series of experiments using
industrial data and there we could prevail against a variety of other approaches including a NSGA-II
variant specialised for the problem at hand. However, the search time was high (due to the number
of tests) which we deem as problematic for a fully automated approach. In order to overcome this
issue we developed a test case selection GUI where the tester may perform a preselection (based on
their expert knowledge). GCAIS assists the selection by computing a test suite on the reduced search
space. The aforementioned GUI has been delivered to the BSH oven testing team who work in a
semi-automated way.

We shifted our focus to automated testing as part of a continuous integration process. CI has
become a crucial part of agile software development and focuses on frequent integration of each
developer’s source code in order to ensure quality. Thereby a set of crucial test cases has to be
computed which has a bounded execution time (in order to have a quick insight into the software at
hand). This can be achieved by prioritizing and selecting test cases accordingly. A novel paradigm to
achieve this is to employ reinforcement learning and a state of the art method is an artificial neural
network approach which has also found its way into major companies such as Netflix. The used
neural network, datasets and experiments are publicly available. We evaluated LCS as an alternative
approach and relied on the aformentioned datasets and source code. This we could compare, ceteris
paribus, with the neural network. We iteratively improved our LCS approach and achieved the
following milestones (in terms of machine learning):

1. A first attempt using XCS which showed that LCSs have potential for the use case.

2. We moved to continuous actions (priorities) with the usage of XCSF. In order to enable this we
developed a simplistic heuristic for the agent’s policy which is based on the approximation of a
value function. This improved the performance significantly.
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3. An open point of the pure XCSF approach was that the correct reward function is not known
a priori which makes it hard to use it in practice. We overcame the issue by incorporating
experience replay and based on that we are able to recommend a reward function.

4. We were the first to be capable to reuse the test prioritization knowledge gained for one project
to another. We achieved this by developing a straightforward transfer learning approach for
XCSF’s population.

The final LCS empirically outperforms the neural network which was originally proposed. We also
evaluated the first industrial data from BSH and could see that our approach also outperforms the
neural network on this dataset.

We moved beyond traditional KPIs for test case prioritization and took a look at quality measures
from OC. We evaluated the approach’s active robustness which is a form of recovery speed that is
measured when the performance breaks down. We further examined the duration until the agent has
recovered. We extended the set of OC KPIs by introducing a frequency measure in order to evaluate
how often these events take place. All the aforementioned measures depend on a target performance
level and we evaluated all possible values and could identify a vast range of utilities where our agent
is robust, the frequency is low and its recovery durations are low.

We further analysed how LCS can be made faster in terms of runtime. For our use case we do
not know the target hardware architecture. Hence we developed and evaluated two parallelization
algorithms which may run on any computing device which has a multicore processor. We focused on
the computationally most intense step, the matching, and could achieve runtime cuts for a vast range
of problem structures. We were able to reduce the cost of computing a priority to less than 20 ms
which enables us to quickly compute a test suite. The approach can be used for most types of LCSs.

A machine learning approach alone does not generate any value. It must be wrapped and delivered
as an usable piece of software. A key part of any software is its architecture which must carefully
consider the challenges and requirements that arise from the problem at hand. We observed that due
to agile processes the software underlies constant changes and so do the tests. Hence the agent lives in
an ever changing environment and the prioritization must be continuously adapted. OC is a systems
engineering discipline that focused on use cases which face these challenges. It has mainly focused on
embedded systems and not testing. However, many of the concepts such as the design approaches are
independent from embedded systems. This enabled us to rely on these ideas. We wrapped our agent
in a slightly adapted MLOC architecture in order to get our innovation to the tester. We further
gave insight in how we built and delivered the final software product to the test engineers in BSH. It
can be used as a command line tool which can be installed using a one-line command. Further, it is
configured using an .ini file which specifies general things such as the available execution time. The
tester requires no knowledge about RL or OC. Thereby we delivered an easy to use product. As a
side-effect we showed that concepts of OC are not limited to embedded systems.

We further took a first step beyond traditional testing which only concerns itself with a test case
level. We examined if we could already include corrective measures in order to enhance the degree of
automatization. For a first proof of concept we examined the generic BSH touch software. We were
able to automatically test and correct the examined product (a cooktop) until it behaved as specified.

9.2 Outlook

From a pure scientific point of view the open source mentality of this thesis enables other researches
to benchmark their novel approaches against the ones presented. However, it also enables others to
extend and improve our methodologies. We determined the following possible directions:

• There has not yet been a parallelization of GCAIS. Further Skyline research might be employed
to perform a successful parallelization. For example the divide and conquer approach mentioned
by Börzsönyi [99] can serve as a basis. In the long run this might reduce the search time.

• Stein [119] showed in a series of experiments that interpolation can be beneficial for LCS such
as XCS(F). This might be the case for ATCS as well if the correct form of interpolation is used.
There are also the first steps to combine interpolation with ER in order to boost the learning
process [157]. A similar approach could lead to advances here.
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• The performance of the XCSF variant presented is limited by the amount of information which
the signal holds (in our case the test case metadata). The performance might be enhanced
by feeding XCSF with additional information (e. g. software version control history to give an
insight about which software components are affected).

It is further worth mentioning that BSH corporate innovation has taken over the touch interface
project where we made a first proof of concept regarding corrective testing. They plan to enhance
the solution to further include other criteria such as the accuracy of the position (of the touch event
detected).

From an engineering perspective we are currently rolling out our OC system into the global test
process of BSH. We started by integrating the system into three pilot projects and based on the insight
of these first attempts we iteratively extend and improve the software at hand. Thus the future focus
is more on the pure engineering part.
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men, Fuzzy-Systeme und Bayes-Netze, 2nd ed., ser. Computational Intelligence. Wiesbaden:
Springer Vieweg, 2015.

[86] L. W. Jacobs and M. J. Brusco, “Note: A local-search heuristic for large set-covering problems,”
Naval Research Logistics (NRL), vol. 42, no. 7, pp. 1129–1140, 1995.

[87] D. Minotra, “A Study of Heuristic-Algorithms for Set-Covering Problems,” 06 2008.

[88] R. Eberhart and J. Kennedy, “A new Optimizer using Particle Swarm Theory,” in MHS’95.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Oct
1995, pp. 39–43.

103



REFERENCES

[89] B. Xue, S. Nguyen, and M. Zhang, “”A New Binary Particle Swarm Optimisation Algorithm for
Feature Selection”,” in Applications of Evolutionary Computation, A. I. Esparcia-Alcázar and
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Appendices

A Solving ATCS using XCS(F)

This appendix chapter visually displays the performance in terms of NAPFD which we achieved using
XCS and XCSF (and comparing them with the neural network of Spieker et al. [6]) [13,14] in Figure
40. The succeeding tables hold p-values for several Student t-tests which compare the performance
of the individual agents with each other. Student t-test have precondition that the data is normal
distributed. We verified this using Shapiro-Wilk tests (with a significance level of 0.05).
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Figure 40: Comparison of XCSF with XCS and the neural network of Spieker et al. [6]. The figure
considers three different datasets as described in Table 15. Visually XCS is already better than the
neural network in several combinations of reward function / dataset. XCSF improves performances
even more as it uses continuous actions. However an open issue is still that the performance vastly
differs from reward function to reward function.

Table 27: P-values for paired Student t-tests. Values below 0.05 are marked bold. The null hypothesis
is that XCS is superior to XCSF.

Paint Control IOF/ROL GSDTSR
rfc 0.00523 0.25042 0.0002
rtcf 0.30446 0.32404 0.00091
rtrk 0.00192 0.14235 0.00001
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A SOLVING ATCS USING XCS(F)

Table 28: P-values for paired Student t-tests. Values below 0.05 are marked bold. The null hypothesis
is that the neural network is superior to XCSF.

Paint Control IOF/ROL GSDTSR
rfc 0.0 0.01473 0.0
rtcf 0.99999 0.00015 0.0
rtrk 0.0 0.00078 0.0

Table 29: P-values for paired Student t-tests. Values below 0.05 are marked bold. The null hypothesis
is that the neural network is superior to XCS.

Paint Control IOF/ROL GSDTSR
rfc 0.0000 0.3847 0.0030
rtcf 0.9999 0.0012 0.0000
rtrk 0.0000 0.4227 0.0000
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B Robustness for Failcount Reward

This appendix section shows the visual results for the robustness of the CI agent (if the failcount
reward is employed). This consists out of the estimation of the active robustness (Figure 41), the
average recovery time (Figure 42) and the frequency of recovery events (Figure 43). Thereby we
consider different utility thresholds (0-100 percent).

It is worth mentioning that the visual evaluation of these results as well as the statistical ones lead
to the same results as for the timerank reward (which we discussed in detail in chapter 5).

Figure 41: Estimation of the active robustness.
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Figure 42: Estimation of the average recovery time.

Figure 43: Event frequency of utility break-ins.
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C SPEED UPS FOR XCS

C Speed Ups for XCS

The chapter gives insight about the speed ups achieved for various combinations of match size, num-
ber of threads, dimension and population sizes. Thereby it contains additional information for the
evaluation of the parallelization approaches defined in chapter 6.

Tables 30 and 31 display the speed ups for different combinations of population size and dimension
(results aggregated over the different match sizes considered and using the maximum number of threads
of the processors = 12). Tables 32 and 33 give insight about the speed ups for different combinations
of threads and match sizes (results aggregated over all considered dimensions and population sizes).

Table 30: Speed up ± 2σ (rounded to the third decimal) of the algorithm using local lists (Algorithm
19) for varying population size and dimension. The best and worst values of a column is highlighted
in bold.

size\dim 3 6 9 12 15 18 21 24
10000 2.811 ± 0.205 2.717 ± 0.214 2.618 ± 0.185 2.559 ± 0.176 2.512 ± 0.165 2.471 ± 0.162 2.42 ± 0.133 2.401 ± 0.137
20000 2.926 ± 0.215 2.84 ± 0.247 2.748 ± 0.225 2.678 ± 0.218 2.634 ± 0.198 2.566 ± 0.191 2.521 ± 0.159 2.496 ± 0.158
30000 2.995 ± 0.212 2.888 ± 0.241 2.793 ± 0.212 2.717 ± 0.201 2.66 ± 0.182 2.619 ± 0.174 2.575 ± 0.169 2.539 ± 0.149
40000 3.014 ± 0.213 2.915 ± 0.247 2.823 ± 0.236 2.764 ± 0.232 2.707 ± 0.213 2.663 ± 0.194 2.614 ± 0.188 2.584 ± 0.173
50000 3.015 ± 0.209 2.906 ± 0.225 2.843 ± 0.243 2.761 ± 0.203 2.727 ± 0.21 2.675 ± 0.2 2.628 ± 0.171 2.595 ± 0.164
60000 3.007 ± 0.223 2.929 ± 0.249 2.854 ± 0.247 2.797 ± 0.246 2.73 ± 0.223 2.681 ± 0.199 2.636 ± 0.193 2.611 ± 0.185
70000 3.071 ± 0.246 2.986 ± 0.26 2.896 ± 0.249 2.839 ± 0.243 2.778 ± 0.23 2.723 ± 0.216 2.679 ± 0.201 2.641 ± 0.18
80000 3.069 ± 0.242 2.98 ± 0.259 2.905 ± 0.266 2.841 ± 0.263 2.774 ± 0.228 2.717 ± 0.206 2.672 ± 0.193 2.64 ± 0.196
90000 3.06 ± 0.219 2.97 ± 0.236 2.889 ± 0.224 2.824 ± 0.222 2.749 ± 0.199 2.701 ± 0.183 2.659 ± 0.181 2.625 ± 0.172
100000 3.044 ± 0.235 2.963 ± 0.26 2.888 ± 0.262 2.821 ± 0.245 2.766 ± 0.234 2.722 ± 0.215 2.687 ± 0.215 2.644 ± 0.19
110000 3.039 ± 0.236 2.963 ± 0.252 2.88 ± 0.245 2.806 ± 0.235 2.746 ± 0.205 2.719 ± 0.205 2.669 ± 0.179 2.634 ± 0.17
120000 3.039 ± 0.231 2.958 ± 0.263 2.892 ± 0.266 2.825 ± 0.252 2.77 ± 0.233 2.724 ± 0.225 2.671 ± 0.199 2.65 ± 0.199
130000 3.045 ± 0.227 2.968 ± 0.265 2.888 ± 0.241 2.839 ± 0.255 2.754 ± 0.202 2.705 ± 0.182 2.683 ± 0.194 2.639 ± 0.165
140000 3.034 ± 0.228 2.961 ± 0.26 2.882 ± 0.25 2.832 ± 0.247 2.768 ± 0.214 2.722 ± 0.2 2.67 ± 0.189 2.65 ± 0.19
150000 3.035 ± 0.227 2.956 ± 0.25 2.882 ± 0.243 2.821 ± 0.239 2.755 ± 0.204 2.718 ± 0.193 2.676 ± 0.188 2.647 ± 0.182

Table 31: Speed up ± 2σ (rounded to the third decimal) of the algorithm using a simple lock (Al-
gorithm 18) for varying population size and dimension. The best and worst values of a column is
highlighted in bold.

size\dim 3 6 9 12 15 18 21 24
10000 2.31 ± 0.092 2.288 ± 0.112 2.259 ± 0.095 2.281 ± 0.094 2.289 ± 0.1 2.285 ± 0.097 2.264 ± 0.09 2.272 ± 0.104
20000 2.408 ± 0.11 2.403 ± 0.14 2.38 ± 0.142 2.393 ± 0.135 2.407 ± 0.132 2.393 ± 0.142 2.376 ± 0.128 2.36 ± 0.131
30000 2.458 ± 0.128 2.439 ± 0.146 2.397 ± 0.118 2.419 ± 0.133 2.413 ± 0.109 2.42 ± 0.125 2.405 ± 0.129 2.386 ± 0.138
40000 2.465 ± 0.137 2.459 ± 0.178 2.417 ± 0.164 2.456 ± 0.172 2.461 ± 0.161 2.461 ± 0.16 2.448 ± 0.165 2.429 ± 0.161
50000 2.457 ± 0.135 2.428 ± 0.141 2.413 ± 0.164 2.43 ± 0.132 2.463 ± 0.159 2.467 ± 0.162 2.445 ± 0.153 2.432 ± 0.148
60000 2.46 ± 0.155 2.433 ± 0.162 2.401 ± 0.173 2.446 ± 0.174 2.456 ± 0.162 2.46 ± 0.169 2.453 ± 0.169 2.439 ± 0.172
70000 2.504 ± 0.169 2.479 ± 0.167 2.44 ± 0.149 2.492 ± 0.168 2.494 ± 0.161 2.504 ± 0.178 2.491 ± 0.168 2.469 ± 0.172
80000 2.467 ± 0.181 2.43 ± 0.185 2.414 ± 0.187 2.458 ± 0.196 2.471 ± 0.177 2.47 ± 0.169 2.457 ± 0.166 2.455 ± 0.19
90000 2.463 ± 0.158 2.423 ± 0.142 2.4 ± 0.148 2.438 ± 0.143 2.442 ± 0.136 2.461 ± 0.146 2.451 ± 0.148 2.438 ± 0.152
100000 2.474 ± 0.153 2.44 ± 0.175 2.416 ± 0.192 2.464 ± 0.181 2.482 ± 0.186 2.49 ± 0.186 2.489 ± 0.201 2.465 ± 0.173
110000 2.457 ± 0.163 2.431 ± 0.181 2.402 ± 0.154 2.437 ± 0.144 2.458 ± 0.131 2.48 ± 0.167 2.467 ± 0.146 2.449 ± 0.151
120000 2.453 ± 0.159 2.431 ± 0.185 2.413 ± 0.178 2.458 ± 0.191 2.48 ± 0.188 2.489 ± 0.189 2.476 ± 0.182 2.468 ± 0.19
130000 2.479 ± 0.168 2.448 ± 0.179 2.418 ± 0.159 2.481 ± 0.178 2.465 ± 0.13 2.477 ± 0.14 2.486 ± 0.157 2.466 ± 0.157
140000 2.461 ± 0.182 2.432 ± 0.184 2.412 ± 0.174 2.462 ± 0.178 2.471 ± 0.155 2.49 ± 0.167 2.471 ± 0.169 2.464 ± 0.172
150000 2.45 ± 0.157 2.417 ± 0.166 2.389 ± 0.136 2.45 ± 0.174 2.456 ± 0.144 2.471 ± 0.154 2.468 ± 0.165 2.465 ± 0.17
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Table 32: Speed up ± 2σ (rounded to the third decimal) of the algorithm using local lists (Algorithm
19) for varying number of threads and match set size. The best and worst values of a column is
highlighted in bold.

relative match set size\threads 2 4 6 8 10 12
1 2.481 ± 0.063 3.09 ± 0.246 3.214 ± 0.305 3.31 ± 0.376 3.374 ± 0.405 3.47 ± 0.475
2 2.392 ± 0.05 2.939 ± 0.215 3.105 ± 0.308 3.218 ± 0.422 3.255 ± 0.465 3.35 ± 0.604
3 2.315 ± 0.041 2.764 ± 0.164 2.971 ± 0.325 3.034 ± 0.369 3.076 ± 0.428 3.071 ± 0.387
4 2.242 ± 0.033 2.633 ± 0.155 2.811 ± 0.268 2.859 ± 0.311 2.897 ± 0.351 2.914 ± 0.378
5 2.184 ± 0.032 2.497 ± 0.111 2.651 ± 0.217 2.697 ± 0.228 2.71 ± 0.275 2.671 ± 0.201
6 2.11 ± 0.026 2.388 ± 0.112 2.514 ± 0.166 2.538 ± 0.173 2.57 ± 0.221 2.555 ± 0.192
7 2.049 ± 0.022 2.261 ± 0.077 2.405 ± 0.137 2.43 ± 0.14 2.428 ± 0.159 2.418 ± 0.141
8 1.983 ± 0.019 2.196 ± 0.082 2.285 ± 0.104 2.311 ± 0.117 2.323 ± 0.13 2.304 ± 0.113
9 1.918 ± 0.016 2.103 ± 0.051 2.185 ± 0.087 2.213 ± 0.096 2.206 ± 0.096 2.303 ± 0.12
10 1.866 ± 0.013 2.039 ± 0.059 2.103 ± 0.07 2.126 ± 0.076 2.128 ± 0.087 2.353 ± 0.126
11 1.814 ± 0.012 1.957 ± 0.033 2.023 ± 0.057 2.041 ± 0.058 2.166 ± 0.086 2.407 ± 0.136
12 1.772 ± 0.01 1.897 ± 0.038 1.955 ± 0.046 1.972 ± 0.048 2.202 ± 0.093 2.45 ± 0.14
13 1.725 ± 0.009 1.833 ± 0.023 1.89 ± 0.04 1.963 ± 0.049 2.245 ± 0.096 2.497 ± 0.145
14 1.69 ± 0.008 1.784 ± 0.024 1.843 ± 0.035 1.985 ± 0.046 2.286 ± 0.099 2.543 ± 0.145
15 1.648 ± 0.007 1.742 ± 0.018 1.786 ± 0.029 2.032 ± 0.052 2.334 ± 0.101 2.587 ± 0.152
16 1.619 ± 0.007 1.706 ± 0.021 1.742 ± 0.024 2.074 ± 0.056 2.377 ± 0.108 2.637 ± 0.157
17 1.588 ± 0.006 1.66 ± 0.016 1.72 ± 0.023 2.105 ± 0.054 2.412 ± 0.105 2.642 ± 0.146
18 1.557 ± 0.006 1.636 ± 0.018 1.756 ± 0.024 2.144 ± 0.057 2.453 ± 0.107 2.687 ± 0.157
19 1.525 ± 0.005 1.6 ± 0.012 1.793 ± 0.025 2.185 ± 0.059 2.494 ± 0.109 2.74 ± 0.166
20 1.507 ± 0.005 1.581 ± 0.015 1.826 ± 0.027 2.206 ± 0.055 2.518 ± 0.109 2.79 ± 0.173
21 1.481 ± 0.004 1.54 ± 0.011 1.854 ± 0.027 2.237 ± 0.054 2.521 ± 0.109 2.83 ± 0.184
22 1.461 ± 0.004 1.517 ± 0.011 1.888 ± 0.028 2.276 ± 0.058 2.567 ± 0.122 2.871 ± 0.19
23 1.438 ± 0.004 1.493 ± 0.009 1.917 ± 0.029 2.307 ± 0.059 2.61 ± 0.119 2.922 ± 0.205
24 1.42 ± 0.004 1.47 ± 0.009 1.947 ± 0.028 2.337 ± 0.058 2.656 ± 0.129 2.965 ± 0.214
25 1.401 ± 0.004 1.449 ± 0.008 1.979 ± 0.031 2.356 ± 0.054 2.699 ± 0.138 2.978 ± 0.194
26 1.384 ± 0.003 1.469 ± 0.008 2.014 ± 0.032 2.389 ± 0.064 2.734 ± 0.141 2.99 ± 0.215
27 1.369 ± 0.003 1.496 ± 0.009 2.037 ± 0.031 2.431 ± 0.067 2.77 ± 0.143 3.027 ± 0.223
28 1.358 ± 0.003 1.521 ± 0.009 2.071 ± 0.034 2.471 ± 0.074 2.794 ± 0.157 3.06 ± 0.229
29 1.338 ± 0.003 1.545 ± 0.009 2.09 ± 0.033 2.494 ± 0.072 2.817 ± 0.168 3.086 ± 0.243
30 1.327 ± 0.003 1.573 ± 0.009 2.121 ± 0.035 2.532 ± 0.079 2.828 ± 0.169 3.109 ± 0.25

Table 33: Speed up ± 2σ (rounded to the third decimal) of the algorithm using a simple lock (Algo-
rithm 18) for varying number of threads and match set size. The best and worst values of a column
is highlighted in bold.

relative match set size\threads 2 4 6 8 10 12
1 2.533 ± 0.062 3.071 ± 0.267 3.353 ± 0.396 3.622 ± 0.569 3.632 ± 0.479 3.627 ± 0.52
2 2.494 ± 0.051 3.031 ± 0.273 3.303 ± 0.434 3.578 ± 0.697 3.585 ± 0.658 3.629 ± 0.781
3 2.456 ± 0.041 2.927 ± 0.233 3.207 ± 0.475 3.405 ± 0.641 3.437 ± 0.663 3.395 ± 0.587
4 2.415 ± 0.033 2.831 ± 0.226 3.054 ± 0.391 3.226 ± 0.525 3.256 ± 0.552 3.271 ± 0.619
5 2.371 ± 0.031 2.716 ± 0.159 2.9 ± 0.306 3.049 ± 0.373 3.058 ± 0.427 3.016 ± 0.345
6 2.305 ± 0.025 2.623 ± 0.16 2.762 ± 0.228 2.872 ± 0.268 2.905 ± 0.335 2.903 ± 0.343
7 2.248 ± 0.021 2.495 ± 0.106 2.646 ± 0.186 2.746 ± 0.214 2.748 ± 0.248 2.753 ± 0.255
8 2.185 ± 0.018 2.431 ± 0.11 2.522 ± 0.138 2.615 ± 0.177 2.63 ± 0.198 2.627 ± 0.202
9 2.118 ± 0.016 2.332 ± 0.068 2.417 ± 0.116 2.506 ± 0.14 2.504 ± 0.143 2.495 ± 0.095
10 2.062 ± 0.013 2.264 ± 0.077 2.336 ± 0.095 2.411 ± 0.111 2.414 ± 0.13 2.511 ± 0.076
11 2.005 ± 0.011 2.18 ± 0.043 2.25 ± 0.076 2.317 ± 0.086 2.359 ± 0.068 2.477 ± 0.068
12 1.957 ± 0.01 2.118 ± 0.049 2.186 ± 0.061 2.246 ± 0.071 2.36 ± 0.053 2.424 ± 0.062
13 1.909 ± 0.009 2.051 ± 0.028 2.12 ± 0.054 2.163 ± 0.046 2.327 ± 0.047 2.375 ± 0.06
14 1.873 ± 0.008 2.0 ± 0.032 2.074 ± 0.048 2.169 ± 0.032 2.288 ± 0.045 2.337 ± 0.058
15 1.829 ± 0.007 1.959 ± 0.023 2.012 ± 0.04 2.17 ± 0.03 2.257 ± 0.043 2.301 ± 0.058
16 1.8 ± 0.007 1.921 ± 0.028 1.967 ± 0.033 2.146 ± 0.029 2.229 ± 0.044 2.275 ± 0.06
17 1.768 ± 0.006 1.869 ± 0.021 1.917 ± 0.027 2.117 ± 0.028 2.205 ± 0.04 2.282 ± 0.057
18 1.736 ± 0.005 1.845 ± 0.024 1.939 ± 0.022 2.098 ± 0.027 2.184 ± 0.041 2.279 ± 0.045
19 1.703 ± 0.005 1.809 ± 0.016 1.954 ± 0.019 2.079 ± 0.027 2.165 ± 0.042 2.216 ± 0.038
20 1.685 ± 0.005 1.789 ± 0.02 1.947 ± 0.019 2.055 ± 0.025 2.178 ± 0.043 2.153 ± 0.034
21 1.657 ± 0.004 1.744 ± 0.014 1.927 ± 0.017 2.047 ± 0.025 2.173 ± 0.031 2.098 ± 0.034
22 1.636 ± 0.004 1.72 ± 0.015 1.916 ± 0.018 2.035 ± 0.025 2.154 ± 0.029 2.04 ± 0.033
23 1.612 ± 0.004 1.696 ± 0.011 1.895 ± 0.017 2.025 ± 0.025 2.114 ± 0.024 1.997 ± 0.035
24 1.594 ± 0.004 1.67 ± 0.012 1.886 ± 0.016 2.014 ± 0.025 2.084 ± 0.023 1.955 ± 0.038
25 1.574 ± 0.004 1.648 ± 0.01 1.874 ± 0.016 2.014 ± 0.024 2.051 ± 0.02 1.949 ± 0.038
26 1.558 ± 0.003 1.653 ± 0.008 1.867 ± 0.017 2.013 ± 0.021 2.019 ± 0.018 2.003 ± 0.034
27 1.542 ± 0.003 1.668 ± 0.006 1.858 ± 0.016 1.997 ± 0.018 1.991 ± 0.017 1.97 ± 0.028
28 1.53 ± 0.003 1.677 ± 0.006 1.846 ± 0.017 1.973 ± 0.015 1.964 ± 0.016 1.937 ± 0.025
29 1.509 ± 0.003 1.667 ± 0.005 1.842 ± 0.016 1.944 ± 0.014 1.94 ± 0.015 1.906 ± 0.024
30 1.496 ± 0.003 1.662 ± 0.005 1.839 ± 0.017 1.924 ± 0.013 1.943 ± 0.014 1.876 ± 0.024
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