1,063 research outputs found

    Optimal Collision/Conflict-free Distance-2 Coloring in Synchronous Broadcast/Receive Tree Networks

    Get PDF
    This article is on message-passing systems where communication is (a) synchronous and (b) based on the "broadcast/receive" pair of communication operations. "Synchronous" means that time is discrete and appears as a sequence of time slots (or rounds) such that each message is received in the very same round in which it is sent. "Broadcast/receive" means that during a round a process can either broadcast a message to its neighbors or receive a message from one of them. In such a communication model, no two neighbors of the same process, nor a process and any of its neighbors, must be allowed to broadcast during the same time slot (thereby preventing message collisions in the first case, and message conflicts in the second case). From a graph theory point of view, the allocation of slots to processes is know as the distance-2 coloring problem: a color must be associated with each process (defining the time slots in which it will be allowed to broadcast) in such a way that any two processes at distance at most 2 obtain different colors, while the total number of colors is "as small as possible". The paper presents a parallel message-passing distance-2 coloring algorithm suited to trees, whose roots are dynamically defined. This algorithm, which is itself collision-free and conflict-free, uses Δ+1\Delta + 1 colors where Δ\Delta is the maximal degree of the graph (hence the algorithm is color-optimal). It does not require all processes to have different initial identities, and its time complexity is O(dΔ)O(d \Delta), where d is the depth of the tree. As far as we know, this is the first distributed distance-2 coloring algorithm designed for the broadcast/receive round-based communication model, which owns all the previous properties.Comment: 19 pages including one appendix. One Figur

    The Energy Complexity of Broadcast

    Full text link
    Energy is often the most constrained resource in networks of battery-powered devices, and as devices become smaller, they spend a larger fraction of their energy on communication (transceiver usage) not computation. As an imperfect proxy for true energy usage, we define energy complexity to be the number of time slots a device transmits/listens; idle time and computation are free. In this paper we investigate the energy complexity of fundamental communication primitives such as broadcast in multi-hop radio networks. We consider models with collision detection (CD) and without (No-CD), as well as both randomized and deterministic algorithms. Some take-away messages from this work include: 1. The energy complexity of broadcast in a multi-hop network is intimately connected to the time complexity of leader election in a single-hop (clique) network. Many existing lower bounds on time complexity immediately transfer to energy complexity. For example, in the CD and No-CD models, we need Ω(log⁥n)\Omega(\log n) and Ω(log⁥2n)\Omega(\log^2 n) energy, respectively. 2. The energy lower bounds above can almost be achieved, given sufficient (Ω(n)\Omega(n)) time. In the CD and No-CD models we can solve broadcast using O(log⁥nlog⁥log⁥nlog⁥log⁥log⁥n)O(\frac{\log n\log\log n}{\log\log\log n}) energy and O(log⁥3n)O(\log^3 n) energy, respectively. 3. The complexity measures of Energy and Time are in conflict, and it is an open problem whether both can be minimized simultaneously. We give a tradeoff showing it is possible to be nearly optimal in both measures simultaneously. For any constant Ï”>0\epsilon>0, broadcast can be solved in O(D1+Ï”log⁥O(1/Ï”)n)O(D^{1+\epsilon}\log^{O(1/\epsilon)} n) time with O(log⁥O(1/Ï”)n)O(\log^{O(1/\epsilon)} n) energy, where DD is the diameter of the network

    Many-to-One Communication Protocol for Wireless Sensor Networks

    Get PDF
    This paper proposes a novel communication protocol, called Many-to-One Sensors-to-Sink (MOSS), tailored to wireless sensor networks (WSNs). It exploits the unique sensors-to-sink traffic pattern to realize low-overhead medium access and low- latency sensors-to-sink routing paths. In conventional schedule-based MAC protocols such as S-MAC, sensor nodes in the proximity of the event generate reports simultaneously, causing unreliable and unpredictable performance during a brief but critical period of time when an event of interest occurs. MOSS is based on time division multiple access (TDMA) that avoids energy waste due to collisions, idle listening and overhearing and avoids unreliable behavior mentioned above. A small test-bed consisting of 12 TelosB motes as well as extensive simulation study based on ns-2 have shown that MOSS reduces the sensor-to-sink latency by as much as 50.5% while consuming only 12.8 ∌ 19.2% of energy compared to conventional TDMA algorithm

    Optimal Multi-TDMA Scheduling in Ring Topology Networks

    Get PDF
    A scheduling algorithm will be proposed for wireless ring topology networks, utilizing time division multiple access (TDMA) with possible simultaneous operation of nodes. The proposed algorithm finds the optimal schedule to minimize the turnaround time for messages in the network. The properties of the algorithm are mathematically analyzed and proven, and practical test results are also provided

    Making Self-Stabilizing any Locally Greedy Problem

    Full text link
    We propose a way to transform synchronous distributed algorithms solving locally greedy and mendable problems into self-stabilizing algorithms in anonymous networks. Mendable problems are a generalization of greedy problems where any partial solution may be transformed -- instead of completed -- into a global solution: every time we extend the partial solution we are allowed to change the previous partial solution up to a given distance. Locally here means that to extend a solution for a node, we need to look at a constant distance from it. In order to do this, we propose the first explicit self-stabilizing algorithm computing a (k,k−1)(k,k-1)-ruling set (i.e. a "maximal independent set at distance kk"). By combining multiple time this technique, we compute a distance-KK coloring of the graph. With this coloring we can finally simulate \local~model algorithms running in a constant number of rounds, using the colors as unique identifiers. Our algorithms work under the Gouda daemon, which is similar to the probabilistic daemon: if an event should eventually happen, it will occur under this daemon
    • 

    corecore