
Collision-Free Network Exploration∗

Jurek Czyzowicz † Dariusz Dereniowski ‡ Leszek Gąsieniec § Ralf Klasing ¶

Adrian Kosowski ‖ Dominik Pająk ∗∗

Abstract

A set of mobile agents is placed at different nodes of a n-node network. The agents syn-
chronously move along the network edges in a collision-free way, i.e., in no round may two agents
occupy the same node. In each round, an agent may choose to stay at its currently occupied
node or to move to one of its neighbors. An agent has no knowledge of the number and initial
positions of other agents. We are looking for the shortest possible time required to complete the
collision-free network exploration, i.e., to reach a configuration in which each agent is guaranteed
to have visited all network nodes and has returned to its starting location.

We first consider the scenario when each mobile agent knows the map of the network, as well
as its own initial position. We establish a connection between the number of rounds required for
collision-free exploration and the degree of the minimum-degree spanning tree of the graph. We
provide tight (up to a constant factor) lower and upper bounds on the collision-free exploration
time in general graphs, and the exact value of this parameter for trees. For our second scenario,
in which the network is unknown to the agents, we propose collision-free exploration strategies
running in O(n2) rounds for tree networks and in O(n5 log n) rounds for general networks.

keywords: mobile agents, network exploration, synchronous agents

1 Introduction

The graph searching problem is a task of central importance in many contexts, including network
maintenance, terrain patrolling, and robotics. Its different aspects have been thoroughly investigated,
cf. [12]. The rendezvous search problem has been often presented as a game with two mobile players
walking within the search space and having the common goal of arriving at the same time at the same

∗Research partially supported by by the ANR project DISPLEXITY (ANR-11-BS02-014) and by NCN under
contract DEC-2011/02/A/ST6/00201. This study has been carried out in the frame of “the Investments for the future”
Programme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02). Dariusz Dereniowski has been partially supported by a
scholarship for outstanding young researchers founded by the Polish Ministry of Science and Higher Education. An
extended abstract of this work appeared in Proc. 11th Latin American Theoretical INformatics Symposium (LATIN
2014), LNCS 8392, pp 342-354 [9].
†Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada
‡Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk,

Poland. E-mail: deren@eti.pg.gda.pl
§University of Liverpool, Liverpool L69 3BX, UK. E-mail: l.a.gasieniec@liverpool.ac.uk
¶CNRS, LaBRI, Université de Bordeaux, 33405 Talence, France. E-mail: ralf.klasing@labri.fr
‖LIAFA, Inria Paris-Rocquencourt, 75013 Paris, France. E-mail: adrian.kosowski@inria.fr
∗∗Department of Computer Science at the Faculty of Fundamental Problems of Technology, Wrocław University of

Science and Technology, 50-370 Wrocław, Poland

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

location (see [4]). On the other hand, the exploration problem consists in examining all elements of
the search space by a mobile agent (e.g. visiting all graph nodes or traversing all its edges), e.g., in
order to find a hidden target (see [1, 21]).

In this paper we consider a graph searching problem in which each of a set of mobile agents must
explore a given undirected graph, in such a way that two agents may never visit the same node of the
graph at the same time. This property of the model, which we call collision avoidance, is motivated by
the fact that the processes executed by mobile agents (software agents or physical robots) sometimes
require exclusive access to network resources. Our problem may have practical applications. For
example, mobile software agents may need exclusive access to a node’s resources when updating its
data. Robots (or nano-robots) distributing interacting chemical or pharmacological agents within
a battlefield or a human body must avoid to be simultaneously present at a small distance apart.
Individuals, one of which is highly infectious or socially conflicting should avoid a meeting. This
problem has been studied in [20] for the case of tree networks. A question related to the offline
version for our problem has been given some attention in the context of routing (cf. [3]).

In our considerations, time is divided into synchronous rounds. Initially, each agent is placed
at a different node and in each round it may choose to move to a neighboring node or to stay
motionless. The agents are independent in the sense that they cannot communicate and none of
them knows the number of other agents, their initial placement in the graph, and is unaware of the
current location of the other agents. The agents move independently, and each of them executes
the same algorithm. The effectiveness of the algorithm is measured in terms of the collision-free
exploration time, i.e., the number of rounds until all potentially existing agents are certain to have
completed the exploration and returned to their initial location. Details of our model are discussed
at the end of this section.

1.1 Our results

We consider two scenarios, differing in the amount of global information about the network topology
which is available to each agent. Our results are summarized in Table 1.

For the first scenario, considered in Section 2, we assume that a map of the network is a priori
known to the agents. We show that a collision-free exploration strategy exists for any graph, and
provide efficient solutions for trees and general graphs. We start by considering the case of trees,
proposing a strategy which involves the simultaneous activation of agents located at the endpoints
forming a matching in some optimal edge-coloring of the tree. This strategy is shown to yield
optimal exploration time. We then extend this approach from the case of trees to the case of general
graphs, by requiring that the agents perform exploration using only the edges of a well-chosen
spanning tree of the graph. Somewhat surprisingly, it turns out that this approach is asymptotically
the best possible, i.e., within a constant factor of the optimum. To prove the corresponding lower
bound on the collision-free exploration time in graphs, we establish a tight connection between our
problem and the fractional relaxation of the LP formulation of the minimum-degree spanning tree
problem.

In the second scenario, discussed in Section 3, we deal with synchronous agents possessing only
local knowledge about the graph to explore. In particular, no knowledge of the size of the graph is
assumed. We suppose that each agent executes a local, distributed algorithm, in every round making
a decision based on the information concerning the currently occupied node and the identifiers of
the neighboring nodes. For this scenario, we show that a collision-free exploration is always feasible
in finite time and we give algorithms for trees and general graphs. Our collision-free exploration

2

Scenario Tree General graph

With complete map:
n∆(G)

Thm. 2.2

Θ(n∆∗(G))
Thm. 2.4

With local knowledge:
O(n2)

Thm. 3.1

O(n5 log n)

Thm. 3.2

Table 1: The time of optimal collision-free graph exploration. ∆(G) denotes the maximum degree
of a node in graph G, and ∆∗(G) = ∆(T), where T is a minimum-degree spanning tree of G.

strategies are of length O(n2) for trees and O(n5 log n) for arbitrary graphs, and make use of the
application of universal exploration sequences.

Throughout the paper, we assume that the strategies for collision-free exploration are required
to return the agent to their initial location. This assumption allows us to see our strategies as
an analogue of the classical Traveling Salesman Problem with mutually-exclusive salesmen on an
unweighted graph, and also allows the agents to engage in perpetual (periodic) exploration of the
graph. After minor modification of the proofs, all the results presented in Table 1 also hold up to
constant factors for the variant of the problem in which agents may end exploration at an arbitrary
node of the graph.

1.2 Related work

We remark that a similar process was studied in a different context by [20], who obtained a Θ(∆n)
bound for trees. Herein, we provide our own analysis of this case for the sake of completeness. We
then generalize this analysis to the case of arbitrary graphs, and also to the case where agents do
not have a map of a graph. Our analysis for trees shows in a simple way that the number of steps
required in a tree is precisely ∆n.

The offline setting of our question is related to the following problem (cf. [3]), which was studied
in the context of routing. Each vertex of a given graph is initially occupied by a “pebble”, which
has to be moved to a destination, so that the destinations of different pebbles are different. In every
synchronous round a set of edges is selected and the pebbles at each edge endpoints are interchanged.
[3] attempts to minimize the number of rounds so that all pebbles reach their destination, giving
lower and upper bounds for different classes of graphs. The routing model of [3] inherently implies
the usage of matchings - the technique that we choose to apply in some results of our paper. The 3n
upper bound for trees given in [3] was improved to 1

2n+O(log n) in [23]. [18] and [22] independently
extended this model to allow more than one pebble per origin and destination node.

The offline version of our problem is also related to a graph parameter called acquaintance time
of a graph, recently introduced in [7] and defined as follows. Consider a graph G whose each node
is initially occupied by an agent. In each round, a matching M in G is selected and for each e ∈M ,
the two agents occupying the endpoints of e switch places, i.e., each of them slides along e from
its current position to the other endpoint of e. If, at any point, two agents occupy two adjacent
nodes, then they are called acquainted. The acquaintance time of G is the minimum number of
rounds for which there exists a sequence of matchings that guarantees that each pair of agents
becomes acquainted. In [5], the authors show an upper bound of O(∆n) on the acquaintance time

3

of a graph, where ∆ is the maximum degree and n is the number of nodes of the graph. Similarly
to our approach, this result is obtained by forcing the agents to move along edges of a spanning tree
of G and, an upper bound of 20∆n on the acquaintance time of a tree gives the general bound. We
note that this problem was also studied in the context of random graphs, see [10, 17, 19].

For the (classical) graph exploration problem with local knowledge, a lot of attention has been
given to exploration in anonymous networks, in which the agent, when located at a node, has
to decide on its next move based only on its own local memory state, the local port ordering at
the node, and the port by which it entered the current node. It has been shown in [13] that an
agent must be equipped with at least n states (i.e., Ω(log n) bits of memory) to be able to explore
all anonymous graphs with n nodes. On the positive side, unknown anonymous graphs can be
deterministically explored by following so called universal traversal/exploration sequences. These
exist for any number of nodes, and have polynomial length [2]. The exploration time obtained using
such an approach is O(n5 log n), i.e., a factor of about n2 greater than the (expected) cover time of
a corresponding random walk.

The problem of graph exploration without collisions was also studied in the case when two
agents also collide when traversing one edge in opposite directions. In [6] the authors study the
maximal number of agents that can explore graph without collisions in a synchronous setting. The
asynchronous Look-Compute-Move model is considered in [8] where the authors study the maximal
and minimal number of agents that are necessary and sufficient to solve the problem for a ring. In
both these papers it is assumed that each agent can observe (or compute) the positions of the other
agents.

1.3 Model and definitions

We assume that the nodes of each n-node network have unique identifiers in {1, . . . , n}. The identifier
of a node v is denoted by id(v). Several agents are initially located at pairwise different nodes of
the network. The initial position of each agent a is denoted by home(a). Each agent is unaware of
the number and initial positions of the other agents, and all agents are given the same algorithm
that determines their behavior in the subsequent rounds.

Each agent can perceive the identifier id(v) of the currently occupied node v and can perceive
the identifiers of all neighbors of v. Moreover, the agent can distinguish the edges incident to v
according to the identifiers of the nodes located at the endpoints of the edges. The latter assumption
is necessary to properly perform the navigation in a node labeled network.

The agents are synchronous and hence the time is divided into rounds of equal duration. Each
round is divided into two stages. In the first stage each agent a makes a decision (by executing
its algorithm) that determines its behavior in the second stage of the round. The decision can be
three-fold: it may decide to stay in this particular round at the currently occupied node, to move
from the currently occupied node to one of its neighbors, or decide that its exploration is completed.
In the second stage of the round, all agents simultaneously perform the action corresponding to their
decision. If, as a result, two agents located at some adjacent nodes u and v decide to move from
u to v and from v to u, respectively, then they traverse the same edge in this round, but remain
unaware of this event, i.e., the two agents do not communicate and do not perceive each other. We
require that the algorithm given to the agents ensures the following:
• at the end of each round no two agents are present on the same node of the network,
• by the end of some round t ≥ 0, all the agents have decided that the exploration is completed,
• each agent has visited each node of the network in one of the rounds 1, . . . , t,

4

• each agent a is present at home(a) at the end of round t.
Note that, in this setting, the execution of the agent’s algorithm (and thus the behavior of the
agent) only depends on the input to the algorithm and on the identifiers of the nodes visited by the
agent. Thus, in particular, an agent is unable to ever discover the initial or current position of any
other agent or the number of agents in the network.

With respect to additional information available to the agents, we study two scenarios in this
work: either the agents have no prior knowledge of network topology and no knowledge of global
parameters, or the complete map of the network is given to all agents. In the latter case the map
consists of node identifiers, but provides no information on the locations of other agents. Note that
if, together with a complete map of the network, all agents receive as an input information on the
initial positions of all agents, then our exploration problem becomes similar to the off-line routing
problems considered e.g. in [3, 22, 23].

Let G = (V (G), E(G)) be any network. For any node v of G let NG(v) be the set of neighbors of
v in G. We use the symbol ∆(G) to denote the degree of G, defined as ∆(G) = max{|NG(v)| : v ∈
V (G)}. (|NG(v)| is called the degree of v.) Given a set of edges X ⊆ E(G), define G[X] to be the
network with nodes in V (G) and edges in X, G[X] = (V (G), X). Note that G[X] is not necessarily
connected. A connected network H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a connected
component of G if there exists no connected network H ′ such that V (H) ⊆ V (H ′) ⊆ V (G) and
E(H) ⊆ E(H ′) ⊆ E(G) and H 6= H ′.

Any sequence R = (v0, v1, . . . , vl) of nodes of a network G is called a route in G if vi = vi−1 or
{vi, vi−1} is an edge of G for each i = 1, . . . , l. We say that l is the length of R and we write Ri = vi
for each i = 0, . . . , l. The route R covers G if for each node v of G there exists i ∈ {0, . . . , l} such
that v = Ri. The route R is closed if R0 = Rl, where l is the length of R. Let a be an agent. We
say that the route R of length l is a route of a if:

(i) R0 = home(a) and a is present at Ri at the end of round i, i = 1, . . . , l, and
(ii) a does not move in any round r > l.

We say that a route R of length l is an exploration strategy for a if
(i) R is a route of a,
(ii) R is closed,
(iii) R covers G.

Two routes R and R′ of length l are collision-free if Ri 6= R′i for each i = 0, . . . , l. Let A =
{a1, . . . , ak}, 1 ≤ k ≤ n, be the set of agents that are initially located at the nodes of G. Let R(a)
be the exploration strategy for each agent a ∈ A. We say that R(a1), . . . ,R(ak) are collision-free if
R(ai) and R(aj) are collision-free for each i, j ∈ {1, . . . , k}, i 6= j. Let t be the minimum integer such
that for each set of agents placed arbitrarily on the nodes of G there exist collision-free exploration
strategies, each of length at most t, for the agents. Then, t is called the collision-free exploration
time of G.

2 Network exploration with a map

In this section we consider the problem of collision-free exploration in the case when each agent is
given a complete map of the network to be explored. We start by discussing the simpler case of
tree networks in Subsection 2.1, and in Subsection 2.2 we generalize our approach from trees to
arbitrary networks, showing its asymptotic optimality by proving a corresponding lower bound.

5

2.1 Tree exploration with a map

We start with some notation and two preliminary lemmas that are the main tool in the analysis of
an algorithm given in this section.

Given a tree network T , we say that a function c : E(T)→ {1, . . . , d} is a d-edge-coloring of T if
c(e) 6= c(e′) for any two adjacent edges in T .

Let d be an integer, let c be a d-edge-coloring of G, and let v be any node of G. Define
T (v, d, c) = (v0, v1, v2, . . .) to be an infinite route in G starting at v such that:
(i) if c({vi−1, u}) 6= 1 + (i− 1) mod d for each neighbor u of vi−1 in G, then vi = vi−1,
(ii) if c({vi−1, u}) = 1 + (i− 1) mod d for some neighbor u of vi−1, then vi = u.
Then, define T l(v, d, c), l ≥ 0, to be the prefix of T (v, d, c) of length l, and T l

i (v, d, c) to be vi for
each i = 0, . . . , l.

3

1

(a)

v

1

2

3

45

6

1

4

6

2

2
5 9−13

14

19

20

2836−40

35

41

48

49

56

27

76−78

80

86

81−85

1

8

58

59−63

64

66

67−71

72

65,73−74

15−16,90

89

17

79

55

42

21

34
22−26

29−33

43−47

50−54

57

75

18,87−88

7

2−6(b)

Figure 1: (a) a 15-node tree network T with a 6-edge-coloring c; (b) the route T dn(v, d, c) =
T 90(v, 6, c) = (v0, . . . , v90) encoded as follows: an integer i that is a label of an arc going from u to
v indicates that vi = v and vi−1 = u; an integer label i of a node u of T means that vi = vi−1 = u.

We now give two preliminary lemmas in which we prove that if u and v are two distinct nodes
of T , then the routes T dn(u, d, c) and T dn(v, d, c) are collision-free, and each of them is closed and
covers the tree network.

Lemma 2.1. Let T be a tree network. If c is a d-edge-coloring of T , then for any two distinct
nodes u and v of T the routes T l(u, d, c) and T l(v, d, c) are collision-free for each l ≥ 0.

Proof. Let l ≥ 0 be fixed arbitrarily. Denote T l(u, d, c) = (u0, u1, . . . , ul) and T l(v, d, c) =
(v0, v1, . . . , vl).

We prove by induction on i = 0, . . . , l that T i(u, d, c) and T i(v, d, c) are collision-free. By
assumption, u 6= v and by definition, T 0(u, d, c) = (u) and T 0(v, d, c) = (v). Hence, the claim
follows for i = 0.

Assume that the claim holds for some i ∈ {0, . . . , l − 1} and we prove it for i+ 1. If ui = ui+1

and vi = vi+1, then the proof is completed. Thus, ui 6= ui+1 or vi 6= vi+1 and assume without loss
of generality that the former occurs. By construction of T (u, d, c), c({ui, ui+1}) = 1 + (imod d).
If ui+1 = vi, then from the construction of T (v, d, c) we obtain that vi+1 = ui and consequently

6

ui+1 6= vi+1 as required. If ui+1 6= vi, then vi+1 6= ui+1, because ui 6= vi and c is an edge-coloring of
T .

Lemma 2.2. Let T be a tree network and let d be an integer. If c is a d-edge-coloring of T and v
is a node of T , then the route T dn(v, d, c) is closed and covers T .

Proof. Consider T to be rooted at v and let Tu to be a subtree of T induced by u and all its
descendants for each u ∈ V (T). Assume without loss of generality that T consists of at least two
nodes. Denote T (v, d, c) = (v0, v1, v2, . . .).

We prove by induction on the subtree size that for each u ∈ V (T), if i ∈ {0, . . . , dn} is the
minimum index such that vi = u, then (vi, . . . , vi+s) is closed and covers Tu, where s = |V (Tu)|d− 1.

We first consider the case of a single node tree Tu. Since |V (T)| > 1, u has a parent u′. By
the definition of T (v, d, c), c({u, u′}) = 1 + (i− 1) mod d. Let s ≥ 0 be the maximum index such
that vi = vi+1 = · · · = vi+s. Such an s exists because there exists j > i such that c({u, u′}) =
1 + jmod d. Clearly, vi+s+1 = u′. We obtain that s ≥ d− 1, because otherwise 1 + (i+ s) mod d =
c({vi+s, vi+s+1}) = c({u, u′}) = 1+(i−1) mod d, and hence (s+1) mod d = 0, which is a contradiction.
Moreover, vi+d = u′, because 1 + (i+ d− 1) mod d = 1 + (i− 1) mod d. Hence, s = d− 1 as required.

Consider any rooted subtree Tu, |V (Tu)| > 1, and suppose that the claim holds for any subtree
with less than |V (Tu)| nodes. We first consider the case when u 6= v.

Let u1, . . . , up, p ≥ 1, be the children of u in Tu. By the definition of edge-coloring, d ≥ ∆(T),
and hence p ≤ d. Let u′ be the parent of u in T , and assume without loss of generality that for
some 1 ≤ q ≤ p

c({u, u′}) < c({u, u1}) < · · · < c({u, uq}) and c({u, uq+1}) < · · · < c({u, up}) < c({u, u′}). (1)

Let ij be the minimum index such that vij = uj , j = 1, . . . , p. By the induction hypothesis,
R(uj) = (vij , . . . , vij+sj) is closed and covers Tuj , where sj = |V (Tuj)|d− 1, for each j = 1, . . . , p.

First we prove that for each j = 1, . . . , p it holds vij+sj+1 = u. Let j ∈ {1, . . . , p} be selected
arbitrarily. By the choice of ij , vij 6= vij−1. Since v0 is the root of T , u = vij−1. This implies that

c({u, uj}) = c({vij−1, vij}) = 1 + (ij − 1) mod d. (2)

Note that

1 + (ij + sj) mod d = 1 + (ij + |V (Tuj)|d− 1) mod d = 1 + (ij − 1) mod d. (3)

By the fact that R(uj) is closed, uj = vij+sj . Hence, by (2) and (3),

c({uj , u}) = c({vij+sj , vij+sj+1}) = c({uj , vij+sj+1}).

Since, c is an edge-coloring of T , vij+sj+1 = u as required.
Let C(uj) be the maximal subsequence of T dn(v, d, c) starting with vij+sj+1 and with all elements

equal u, j = 1, . . . , p. By (1) and by construction of T (v, d, c),

C(uj) = (vij+sj+1, . . . , vij+1−1) for each j = 1, . . . , p− 1. (4)

Define C(u0) and C(up) to be the maximal subsequences of T dn(v, d, c) starting with vi and vip
respectively, with all elements equal u. Note that the definition of C(u0) is correct, because vi = u.
By (4),

(vi, . . . , vi+s) = C(u0),R(u1), C(u1),R(u2), C(u2), . . . ,R(up), C(up),

7

where

s =

p∑
j=0

|C(uj)|+
p∑

j=1

|R(uj)| − 1 = 2p+

p∑
j=0

(|C(uj)| − 1) +

p∑
j=1

(|V (Tuj)|d− 1). (5)

The sum
∑p

j=0(|C(uj)| − 1) equals, informally speaking, the number of two consecutive appearances
of u in (vi+1, . . . , vi+s). By (1), this sum equals d− p− 1, because c is a d-edge-coloring of T and u
is not the root of T . Hence, by (5),

s = d− 1 +

p∑
j=1

|V (Tuj)|d = d(1 +

p∑
j=1

|V (Tuj)|)− 1 = |V (Tu)|d− 1.

Finally, if u = v, then the proof is analogous, and the fact that u has no parent implies that∑p
j=0(|C(uj)| − 1) = d− p. Hence, we obtain that s = dn when u is the root, which completes the

proof.

It remains to observe that the considered routes can be implemented as exploration strategies.
Indeed, each agent a is able to construct some d-edge-coloring c of T (the same for all agents, e.g.,
lexicographically first with respect to some chosen ordering of all colorings) with d = ∆(T), and
hence it is able to ‘follow’ T n∆(T)(home(a),∆(T), c). We formulate this strategy in the form of the
algorithm below.

Algorithm Tree-Exploration(T)
Input: A node-labeled tree network T .

begin
Let v be the initial position of the executing agent.
Compute the lexicographically first ∆(T)-edge-coloring c of T
for each round r ← 1 to n∆(T) do
if there exists an edge {v, u} such that c({v, u}) = 1 + (r − 1) mod ∆(T) then move
from v to u in round r, set v ← u.
else stay at v in round r.

end Tree-Exploration

For an agent a following Algorithm Tree-Exploration, its route is of length n∆(T), and given
as Rn∆(T)(a) = T n∆(T)(home(a),∆(T), c), where c is the ∆(T)-edge-coloring computed in the
Algorithm. Consequently, taking into account Lemmas 2.1 and 2.2, we have the following.

Proposition 2.1. Let T be a tree network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially
located at pairwise different nodes of T . Suppose that the agent ai uses Algorithm Tree-Exploration
to compute its route Rn∆(T)(ai), for each i = 1, . . . , k. Then, Rn∆(T)(a1), . . . ,Rn∆(T)(ak) are
exploration strategies, and are collision-free.

It turns out that there exist no shorter collision-free exploration strategies than those constructed
with Algorithm Tree-Exploration.

Theorem 2.2. The collision-free exploration time of any n-node tree network T is precisely equal
to n∆(T).

8

Proof. The upper bound follows from Proposition 2.1. Now, we prove the lower bound, i.e., that
the collision-free exploration time of T is at least n∆(T). Let u be a fixed node of degree ∆(T)
in T . First assume that there are n agents in T . We say that an agent a is active in round r if a
goes from v to u in round r for some v ∈ NT (u). In each round at most one agent is active. For
each agent a there exist at least ∆(T) rounds in which a is active, because the route of a needs
to be closed and T is a tree. Since there are n agents in total, we obtain that there are at least
n∆(T) rounds in which an agent is active. This proves that there exists an agent a that is active in
round n∆(T), and hence its exploration strategy is of length at least n∆(T). Finally, observe that
a constructs the same route regardless of the number of agents present in the network. This is due
to the fact that T and id(home(a)) is the entire input to the algorithm that a executes.

We finish this section by remarking on the complexity of Algorithm Tree-Exploration. For any
tree network T on n nodes, there exists a ∆(T)-edge-coloring of T and it can be computed in
O(n)-time. Consequently, the total time of an agent’s local computations when running Algo-
rithm Tree-Exploration is O(n∆(T)).

2.2 General network exploration with a map

We say that T is a spanning tree of G if T is a tree such that V (T) = V (G) and E(T) ⊆ E(G).
Then, T is a minimum degree spanning tree of G if T is a spanning tree of G and the degree of T is
minimum over the degrees of all spanning trees of G. Define ∆∗(G) = ∆(T), where T is a minimum
degree spanning tree of G. We propose the following solution to the collision-free exploration
problem.

Algorithm Network-Exploration(G)
Input: A node-labeled network G.

begin
Compute the lexicographically first minimum-degree spanning tree T ∗ of G.
Call Algorithm Tree-Exploration(T ∗).

end Network-Exploration

Proposition 2.3. Let G be a network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially located
at pairwise different nodes of G. Suppose that the agent ai uses Algorithm Network-Exploration to
compute its route R(a), i = 1, . . . , k. Then, R(a1), . . . ,R(ak) are collision-free exploration strategies
of length n∆∗(G).

Now, the following theorem implies that our result is asymptotically tight, i.e., it implies that
Algorithm Network-Exploration constructs exploration strategies whose length is within a constant
factor from the optimum.

Theorem 2.4. The collision-free exploration time of any network G is Θ(n∆∗(G)).

Proof. The fact that the collision-free exploration time of G is O(n∆∗(G)) follows from Proposi-
tion 2.3.

Now, we prove the lower bound of Ω(n∆∗(G)). Observe that if ∆∗(G) ≤ 3, then the theorem
follows, because each exploration strategy must be of length Ω(n). To finish the proof, suppose that
there exist exploration strategies for the agents, such that the length of each exploration strategy is
at most n(∆∗(G)− 3)/2.

9

For each node v of G let Ev = {{v, u} : u ∈ NG(v)}. Consider the following linear program (LP)
with variables (xe : e ∈ E(G)), which satisfies the following set of constraints [11, 16]:

∑
e∈E(G)

xe = n− 1 (6)

∑
e∈E(G[S])

xe ≤ |S| − 1, for each S ⊆ V (G) (7)

∑
e∈Ev

xe ≤ t, for each v ∈ V (G) (8)

0 ≤ xe ≤ 1, (9)

where t is an integer and n is the number of nodes of G. Any solution to the above problem is called
a fractional spanning tree of degree t of G. Informally speaking, if (xe : e ∈ E(G)), is a solution to
(6)-(9), then xe is the ‘fraction’ of the edge e that is included in the resulting fractional spanning
tree. Note that any integer solution, i.e. the one in which xe ∈ {0, 1} for each e ∈ E(G), is a
spanning tree of degree at most t of G.

Suppose that n agents a1, . . . , an are present in the network G. Let R(a1), . . . ,R(an) be some
collision-free exploration strategies for the agents. Suppose that the length of each exploration
strategy is at most nt/2. Based on these exploration strategies, we now construct a solution to
the LP in (6)-(9). For each i = 1, . . . , n, let Ti be any spanning tree of G such that if e ∈ E(Ti),
then there exists a round r such that e = {Rr−1(ai),Rr(ai)} (in other words, ai traverses e in some
round). Such a Ti exists, because R(ai) covers G, i = 1, . . . , n. Define:

fi(e) =

{
1/n, if e ∈ E(Ti)

0, if e /∈ E(Ti)
and xe =

n∑
i=1

fi(e) for each e ∈ E(G). (10)

Now, we prove that xe’s defined in (10) form a solution to the LP in (6)-(9).
First note that

∑
e∈E(G) fi(e) = (n−1)/n for each i = 1, . . . , n, because fi assigns 1/n to exactly

n− 1 edges of G, which follows from the fact that Ti is a spanning tree of G, i = 1, . . . , n. Thus, (6)
holds.

Now, let S ⊆ V (G) be selected arbitrarily. For each i = 1, . . . , n, |E(Ti)∩E(G[S])| = |E(Ti[S])| ≤
|S| − 1, because Ti[S] is, by definition, a collection of node-disjoint trees on set S. Hence, (7) follows.

Let v be any node of G and let X = Ev ∩ (E(T1) ∪ · · · ∪ E(Tn)). For each r there exist at most
two edges in X traversed by an agent in round r. Hence,∑

e∈X

n∑
i=1

fi(e) ≤
nt

2
· 2

n
= t.

Note that if e ∈ Ev \X, then
∑n

i=1 xe = 0. This proves that (8) holds.
Finally, (9) follows directly from (10).
We have proved that the existence of exploration strategies of length nt/2 implies the existence

of a solution to (6)-(9). Moreover, we have the following.
Claim ([16]). If there exists a solution to (6)-(9), then there exists an integer solution to

(6),(7),(9) with the additional constraint∑
e∈Ev

xe ≤ t+ 2 for each v ∈ V (G)

10

which replaces (8).
We remark that such an integer solution defines a spanning tree of G, given by the set of edges

{e ∈ E(G) : xe = 1}.
In view of the definition of xe’s in (10), it follows that if there exist exploration strategies of

length at most nt/2 for the n agents, then there exists a spanning tree T ∗ of G, and the degree
of T ∗ is at most t + 2. By assumption, there exist in G exploration strategies of length at most
n(∆∗(G)− 3)/2, hence, putting t = ∆∗(G)− 3, it follows that G has a spanning tree of degree at
most ∆∗(G)− 1, a contradiction with the definition of ∆∗(G).

We finish this section with a complexity remark. Finding a minimum-degree spanning tree is in
general an NP-hard problem. We can, however, modify the approach to obtain an exploration strategy
of length n(∆∗(G) + 1) that can be computed efficiently. We make use of a O(mnα(m,n) log n)-time
algorithm that for a given G finds its spanning tree T of degree ∆(T) ≤ ∆∗(G) + 1, where m
and n are, respectively, the number of edges and nodes of G, and α is the inverse Ackermann
function [14]. By using the tree T in Algorithm Network-Exploration instead of T ∗ we obtain an
exploration strategy of length n(∆∗(G) + 1) for agent a, and this strategy is computed in time
O(mnα(m,n) log n). On the other hand, computing the precise value of collision-free exploration
time is a hard problem.

Proposition 2.5. The problem of deciding, for a given network G and integer l, whether the
collision-free exploration time of G is at most l, is NP-complete.

Proof. By Theorem 2.4, the collision-free exploration time of G is bounded by a polynomial in
the size of the graph. Thus, a solution to the problem is an exploration strategy whose length is
polynomial in n and thus it can be constructed in nondeterministic polynomial time and therefore
the problem is in NP.

We prove that the problem is NP-complete already for the special case of l = n, where n is the
number of nodes of G. The proof is by reduction from the Hamiltonian cycle problem [15]. We
argue that there exists a Hamiltonian cycle in G if and only if the collision free exploration time of
G is n.

If such a Hamiltonian cycle C = v1-v2-· · · -vn-v1 exists, then one constructs an exploration
strategy R(a) for an agent a with home(a) = vi by taking

R(a) = (vi, vi+1, . . . , vn, v1, . . . , vi−1, vi).

Clearly, R(a) is a route of length n in G, because C is a cycle. Also, R(a) is closed and covers G.
Moreover, if for another agent a′ we have home(a′) 6= vi, then R(a) and R(a′) are collision-free.

Now suppose that the collision-free exploration time of G equals n. Let a be any agent initially
occupying any node of G and take an exploration strategy R(a) of length n for a. Since R(a) covers
G, Ri(a) 6= Ri−1(a) for each i = 1, . . . , n. By the fact that R(a) is closed, R0(a) = Rn(a). Hence,
R(a) is a cycle of length n in G as required.

3 Local network exploration

In this section we consider the problem of collision-free exploration in the setting when the agents
do not receive any information about the network in which they operate, in particular, the agents do
not know n, the size of the network. Recall that we assume, that each node v ∈ V is equipped with

11

a unique identifier id(v) ∈ {1, 2, . . . , n}, and each agent located at v is only aware of the identifier
id(v) and the identifiers of the neighbors of v at the endpoints of respective edges incident to v. In
Section 3.1 we consider tree networks, and in Section 3.2 we show how any network can be explored.

Let G be any network. For the purposes of this section we introduce an edge-labeling function
id′ defined as

id′({u, v}) = id(u) + id(v) for each {u, v} ∈ E(G). (11)

We recall without proof the following essential property of function id′.

Lemma 3.1. Let G be any n-node network. Then, id′ is a 2n-edge-coloring of G.

3.1 Local exploration of tree networks

In this section we provide an algorithm which defines collision-free routes of agents, and is guaranteed
to perform exploration if the explored network is a tree. For any integer b ≥ 2 define the following
sequence of integers U(b) = (1, . . . , 2b, . . . , 1, . . . , 2b), where 1, . . . , 2b is repeated b times, and
let Ui(b), i ∈ {1, . . . , 2b2}, be its i-th element.

Define phase p, as the sequence of rounds (1 +
∑p−1

j=1 |U(2j)|, . . . ,
∑p

j=1 |U(2j)|) and denote by
`(p) = |U(2p)| the number of rounds of phase p. Note that

`(p) = 22p+1 for each p ≥ 1, (12)

and that phase p consists of the rounds in which the behavior of any agent a is determined in the
p-th iteration of the ‘while’ loop of its execution of Local-Tree-Exploration, whenever p does not
exceed the total number of iterations executed.

Recall that an agent upon vising a node v receives a list of identifiers of all neighbors of v. Hence,
during each phase, the executing agent can compute two sets of node identifiers. In the first set,
the agent stores the identifiers of all nodes it visited during the phase, while in the second set it
stores the identifiers of each neighbor of each node it visited. Then, we have that these two sets
are equal if and only if the agent visited all nodes of the network. Thus, the agent is aware if it
visited all nodes during a phase and can correctly determine the condition in the ‘while’ loop in
Algorithm Local-Tree-Exploration.

Algorithm Local-Tree-Exploration
begin

Let v be the initial position of the executing agent a.
b← 2
r ← 0
while not all nodes have been visited so far do {start a new phase}
for s← 1 to |U(b)| in round r + s do
if there exists an edge {v, u} such that id(u) ≤ b

and id(v) ≤ b and id′({v, u}) = Us(b)
then move from v to u {in round r + s}; set v ← u.
else stay at v. {in round r + s}

end for
r ← r + |U(b)|
b← 2b

end while
Backtrack all previous moves, i.e., a moves from v to u in round r+ i if and only if a moved
from u to v in round r − i+ 1 for each i = 1, . . . , r.

end Local-Tree-Exploration

12

Before continuing we make a remark on the backtracking mechanism used at the end of Algo-
rithm Local-Tree-Exploration. It is assumed that the executing agent records in its local memory
for each round i′: the identifier of the node occupied at the beginning of round i′, the identifier
of the node occupied at the end of round i′, and the round number i′. Thus, during backtracking
the agent is able to determine that in a round i′ it moved from a node with identifier x to a node
with identifier y. Denote x = id(u) and y = id(v). If id(u) = id(v), then no move was performed in
round i′ which means that in this particular round during backtracking the agent also stays idle.
Otherwise, by construction, the agent being present at v is able to determine in the neighborhood
of v the node with identifier id(u) and therefore correctly perform the move from v to u during
backtracking. Note that the backtracking is performed to ensure that the executing agent is located
at its initial position at the end of the strategy since there is no guarantee that the agent returns to
its initial position at the end of a phase, in particular at the end of the last phase.

Denote by R(a, p) the route of an agent a restricted to its moves in phase p, p ≥ 1.
We denote by Tp the subgraph of T induced by all edges e whose endpoints have identifiers at

most 2p, Tp = T [{{u, v} ∈ E(T) : id(u) ≤ 2p ∧ id(v) ≤ 2p}].
Finally, define ` = 2

∑dlog2 ne
p=1 `(p).

We now prove that each agent a moves in phase p ‘inside’ the connected component T ′ of Tp
that contains the vertex occupied by a at the beginning of phase p.

Lemma 3.2. Let p ≥ 1 be an integer, let T be a tree network and let a be an agent. Let v be
the vertex occupied by a at the beginning of phase p. Then, R(a, p) is a route in the connected
component of Tp that contains v, and R(a, p) = T `(p)(v, 2p+1, id′).

Proof. First we argue that R(a, p) is a route in the connected component T ′ of Tp that contains the
node v. The agent a performs its moves in phase p as a result of the execution of the p-th iteration
of the ‘while’ loop of Algorithm Local-Tree-Exploration. The value of the variable b in this p-th
iteration equals 2p. Hence, if a decides to move from a node v to a node u in some round of phase
p, then id(u) ≤ 2p and id(v) ≤ 2p. Thus, {u, v} is an edge of Tp, and therefore {u, v} ∈ E(T ′).

To conclude that R(a, p) = T `(p)(v, 2p+1, id′), note that, by Lemma 3.1, id′ restricted to T ′ is a
2p+1-edge-coloring of T ′. Thus, the lemma follows from the definition of T and from the formulation
of Algorithm Local-Tree-Exploration.

Note that the length of the route R(a, p) of a in phase p is bounded by `(p), hence is, in general,
‘unrelated’ to the number of nodes of T ′. For this reason, T ′ need not be completely explored.
However, by the definition of Tp, we have that Tp = T (and T ′ = T) if and only if p ≥ dlog2 ne. We
use this observation to show that all agents perform backtracking and stop after exactly the same
phase p = dlog2 ne, and that in this phase each of them visits all nodes of T .

Lemma 3.3. Let T be a n-node tree network. For each agent a the number of iterations of the ‘while’
loop of Algorithm Local-Tree-Exploration executed by a equals dlog2 ne. Moreover, R(a, dlog2 ne)
covers T .

Proof. If p ∈ {1, . . . , dlog2 ne − 1}, then Tp 6= T . Hence, Tp is not connected and, by Lemma 3.2,
R(a, p) does not cover T . The agent a determines this fact, e.g., by recording, in a set X,
the identifiers of all nodes adjacent to the nodes of its route in phase p, R(a, p). Then, due
to the connectedness of T , X contains an identifier such that the corresponding node is not
in R(a, p) and consequently a starts executing the (p + 1)-st iteration of the ‘while’ loop of
Algorithm Local-Tree-Exploration.

13

Now, let p = dlog2 ne, and so Tp = T . Due to Lemma 3.2, R(a, p) = T `(p)(u, 2p+1, id′),
where u is the node occupied by a at the beginning of phase p. By the formulation of Algo-
rithm Local-Tree-Exploration and by (12), `(p) = 22p+1 ≥ 2n2 ≥ 2n∆(T). By Lemma 2.2, R(a, p)
covers T , because, due to Lemma 3.1, id′ is a 2n-edge-coloring of T .

We now argue that the agents will never meet while moving during any given phase p.

Lemma 3.4. Let a and a′ be any two agents, let T be a tree network, and let p ≥ 1 be an integer.
The routes R(a, p) and R(a′, p) are collision-free.

Proof. Let u and u′ be the nodes occupied by a and a′, respectively, at the beginning of phase p. By
the formulation of Algorithm Local-Tree-Exploration, the moves of both agents in phase p are deter-
mined in the p-th iteration of the ‘while’ loop of their executions of Algorithm Local-Tree-Exploration.
If u and u′ belong to different connected components of Tp, then due to Lemma 3.2 the routes
R(a, p) and R(a′, p) are collision-free. Hence, assume that u and v are in the same connected
component T ′ of Tp. By Lemma 3.2, the routes in T ′ are given as R(a, p) = T `(p)(u, 2p+1, id′) and
R(a′, p) = T `(p)(u′, 2p+1, id′). Thus, the proof is complete in view of Lemma 2.1.

Theorem 3.1. Let T be a tree network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially located
at pairwise different nodes of T . Suppose that the agent ai uses Algorithm Local-Tree-Exploration
to compute its route R`(ai), for each i = 1, . . . , k. Then, R`(a1), . . . ,R`(ak) are collision-free
exploration strategies of length O(n2).

Proof. By Lemma 3.3, each route R`(ai), i = 1, . . . , l covers T in at least one phase. Since
the route performed by each agent is closed due to the backtracking steps included in Algo-
rithm Local-Tree-Exploration, R`(ai) is an exploration strategy for ai. Taking into account that
the phases of all agents are perfectly synchronized in each phase, and that the agents perform
backtracking and stop after exactly the same phase dlog2 ne, it follows from Lemma 3.4 that their
exploration strategies are collision-free. Finally, from the definition of ` we have ` = O(n2).

3.2 Local exploration of general networks

For the purposes of analysis, we introduce some auxiliary notation concerning the so-called anonymous
graph model. In this model nodes are anonymous, and each edge has two port numbers assigned,
each to one of its endpoints, in such a way that the ports at edges incident to any node form a set
of consecutive integers, starting from 1. An agent located at a node v can only perform its next
move based on the local port numbers.

Before continuing, we provide several comments and informal intuitions concerning this model.
First note that a collision-free exploration is, in general, impossible in arbitrary anonymous port-
labeled networks. (This is the case, for example, for two agents located initially in symmetric, and
thus indistinguishable, positions at the endpoints of a 3-node path.) However, we will overcome this
difficulty by designing an auxiliary port-labeled network A(G) based on the node-labeled network G,
that has the property that each edge has identical port numbers at both of its endpoints, and in such
a case the collision-free exploration will be guaranteed to exist. The behavior of an agent can be seen
as navigating in our node-labeled network G by navigating in the underlying ‘virtual’ port-labeled
network A(G). In particular, the function id′ defined in (11) provides both port numbers for each
edge. Hence, each agent, while present at any node v can compute the port number of the edges

14

incident to v. Then, the agent ‘simulates’ its next move in the port-labeled network and, based on
that, performs the move in the node-labeled network.

As a tool for our analysis we use the theory of universal sequences (formal definitions are provided
below) that has been developed for regular port-labeled networks. Such a universal sequence, once
computed by all agents, is then used to find a collision-free exploration strategy in the port-labeled
network. In view of our earlier comment, the latter results in the collision-free exploration strategy
in the node-labeled network.

We say that a network is d-regular if all nodes of the network have degrees equal to d. Given
a port-labeled network A and a node v of A, we say that an agent a initially located at v follows
a sequence of integers U = (x1, . . . , xl), with 1 ≤ xi ≤ d for i = 1, . . . , l, if for each i = 1, . . . , l, in
round i the agent a performs a move along the edge with port number xi at its current node. By a
slight extension of notation, we allow a port-labeled network to have self-loops (with exactly one
port number assigned to the loop); a traversal of the self-loop is assumed not to change the location
of the agent.

We say that a sequence U of integers is (n, d)-universal if for each node v of each regular n-node
network A of degree d, an agent initially placed at v visits each node of A by following U . Aleliunas
et al. [2] have shown non-constructively that for each n > 0 and d > 0, there exists a (n, d)-universal
sequence of length O(d2n3 log n) for networks with self-loops. Note that a (n, d)-universal sequence
can be computed (rather inefficiently) by examining all sequences of the considered length and for
each such candidate sequence one can generate all n-node port-labeled regular networks of degree d.
Once a sequence U and a network A are selected, it can be tested if following U from each node of
A results in visiting all nodes of A.

Given a node-labeled network G, we define the corresponding port-labeled network A(G)
so that there exists a bijection ϕ : V (G) → V (A(G)) such that {u, v} ∈ E(G) if and only if
{ϕ(u), ϕ(v)} ∈ E(A(G)), and for each {u, v} ∈ E(G) the port numbers at both endpoints of edge
{ϕ(u), ϕ(v)} ∈ E(A(G)) are equal to id′({u, v}). Since, according to Lemma 3.1, id′ is an edge-
coloring of G, no two edges of A(G) sharing a node have the same port number at this node. Then,
for each node u ∈ V (G) we add 2n − |NG(u)| loops at ϕ(u) in A(G). As a result, the degree of
each node of A(G) is 2n, and the length of the universal sequences constructed following [2], which
we will use when exploring A(G), will not exceed O(n5 log n). In what follows, we will identify
exploration of G with exploration of A(G).

The algorithm will use a similar concept of exploring a growing subgraphs in consequtive phases
as in algorithm Local-Tree-Exploration. The difference is that during a phase instead of a sequence
U(b), we will use here some universal exploration sequence.

Theorem 3.2. There exists an algorithm that allows any set of agents located initially at distinct
nodes of any network G, and having no information about G, to compute collision-free exploration
strategies of length O(n5 log n).

Proof. Consider an execution of Algorithm Local-Tree-Exploration such that the sequence U(b)
defined in Subsection 3.1 is replaced by a (b, 2b)-universal sequence. By [2], such a sequence exists
and is of length O(n5 log n). We argue that for this modified algorithm, the route R(a) of each
agent a is a collision-free exploration strategy of G.

First, observe that R(a) is a well-defined route, because, due to the formulation of Algorithm
Local-Tree-Exploration, the agent a does check if an edge {v, u} exists before moving from v to u
in any round. Now we argue that R(a) covers G. Consider phase p = dlog2 ne that consists of

15

the rounds in which the moves of a are determined in the p-th iteration of the ‘while’ loop of
Algorithm Local-Tree-Exploration. We have that id(v) ≤ b for each node v of G, because b ≥ n
in this particular iteration. Let a′ be an agent that follows U(b) in A(G), starting at the node
ϕ(v′) such that v′ is the node occupied by a at the beginning of phase p. By the formulation of
Algorithm Local-Tree-Exploration, the agent a moves from v to u in round s of phase p if and only if
id′({u, v}) = Us(b). By the definition of A(G), the port number of {ϕ(u), ϕ(v)} at ϕ(v) is Us(b).
Hence, a goes from v to u in round s of phase p if and only if a′ goes from ϕ(v) to ϕ(u) in A(G)
in round s. Since U(b) is (b, 2b)-universal and b ≥ n in phase p, the route of a in phase p covers
G, regardless of the position of a at the beginning of phase p. Finally, the fact that R(a) is closed
is due to the formulation of Algorithm Local-Tree-Exploration (a backtracks its moves performed
during the execution of the ‘while’ loop).

Let a and a′ be two agents initially placed at distinct nodes of G. We prove that their routes
R(a) and R(a′) are collision-free. Similarly as in the proof of Lemma 3.3 one can argue that the
number of phases for each agent equals dlog2 ne. Hence, it is enough to analyze the moves of a and a′

in an arbitrarily selected phase p ∈ {1, . . . , dlog2 ne}. Suppose that a moves from v to u in round s
of phase p. This implies that id′({u, v}) = Us(b). If a′ is located at u at the beginning of this round,
then a′ moves from u to v in round s of phase p, because it also verifies that id′({u, v}) = Us(b). Also,
two agents cannot simultaneously move from v to u and from v′ to u for two different nodes v and
v′, because id(v) 6= id(v′) and therefore id′({v, u}) = id(v) + id(u) 6= id(v′) + id(u) = id′({v′, u}).

To complete the proof, observe that for each agent a the length of its route is at most

2

dlog2 ne∑
i=1

|U(2i)| =
dlog2 ne∑
i=1

O(25i log 2i) = O(n5 log n).

4 Final remarks

We have shown that, in our model, a solution to the collision-free exploration problem is always
feasible, even when the agents only have local knowledge. This should be sharply contrasted with
asynchronous variants of the problem (when agents do not have synchronized clocks or may perform
an asynchronous meeting in the middle of an edge), in which a solution is not always feasible. This
is the case even for the fully symmetric scenario on the two-node line, where two agents starting
from the two nodes cannot complete exploration without swapping, thus implying the possibility of
asynchronous meeting.

One type of open question is whether the collision-free exploration problem remains feasible
when some weaker model is assumed, but the agents have additional knowledge about the topology
of the network, or an additional mechanism for breaking symmetries.

References

[1] S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Comput., 29(4):1164–
1188, 2000.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual

16

Symposium on Foundations of Computer Science, FOCS’79, pages 218–223, Washington, DC,
USA, 1979. IEEE Computer Society.

[3] N. Alon, F. R. K. Chung, and R. L. Graham. Routing permutations on graphs via matchings.
In STOC, pages 583–591, 1993; also SIAM J. Discrete Math. 7(3): 513-530, 1994.

[4] S. Alpern and S. Gal. Theory of Search Games and Rendezvous. Kluwer Acad. Publ., 2003.

[5] O. Angel and I. Shinkar. A tight upper bound on acquaintance time of graphs. CoRR,
abs/1307.6029, 2013.

[6] R. Baldoni, F. Bonnet, A. Milani, and M. Raynal. Anonymous graph exploration without
collision by mobile robots. Inf. Process. Lett., 109(2):98–103, 2008.

[7] I. Benjamini, I. Shinkar, and G. Tsur. Acquaintance time of a graph. CoRR, abs/1302.2787,
2013.

[8] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration
without chirality. In N. A. Lynch and A. A. Shvartsman, editors, DISC, volume 6343 of Lecture
Notes in Computer Science, pages 312–327. Springer, 2010.

[9] J. Czyzowicz, D. Dereniowski, L. Gąsieniec, R. Klasing, A. Kosowski, and D. Pająk. Collision-
free network exploration. Technical report http://hal.inria.fr/hal-00736276, 2012.

[10] A. Dudek and P. Pralat. Acquaintance time of random graphs near connectivity threshold.
arXiv, abs/1405.3252, 2014.

[11] J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127–136, 1971.

[12] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph searching.
Theor. Comput. Sci., 399(3):236–245, 2008.

[13] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345(2-3):331–344, 2005.

[14] M. Fürer and B. Raghavachari. Approximating the minimum-degree steiner tree to within one
of optimal. J. Algorithms, 17(3):409–423, 1994.

[15] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[16] M. X. Goemans. Minimum bounded degree spanning trees. In FOCS, pages 273–282, 2006.

[17] W. B. Kinnersley, D. Mitsche, and P. Pralat. A note on the acquaintance time of random
graphs. Electr. J. Comb., 20(3):P52, 2013.

[18] D. Krizanc and L. Zhang. Many-to-one packed routing via matchings. In COCOON, pages
11–17, 1997.

[19] T. Müller and P. Pralat. The acquaintance time of (percolated) random geometric graphs.
arXiv, abs/1312.7170, 2013.

17

[20] Y. Nakaminami, T. Masuzawa, and T. Herman. Self-stabilizing agent traversal on tree networks.
IEICE Transactions, 87-D(12):2773–2780, 2004.

[21] P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. Algorithms, 33(2):281–295,
1999.

[22] G. E. Pantziou, A. Roberts, and A. Symvonis. Many-to-many routings on trees via matchings.
Theor. Comput. Sci., 185(2):347–377, 1997.

[23] L. Zhang. Optimal bounds for matching routing on trees. In SODA, pages 445–453, 1997.

18

