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A scheduling algorithm will be proposed for wireless ring topology networks, utilizing time division multiple access (TDMA) with
possible simultaneous operation of nodes. The proposed algorithm finds the optimal schedule to minimize the turnaround time
for messages in the network.The properties of the algorithm are mathematically analyzed and proven, and practical test results are
also provided.

1. Introduction

Sensor networks consist of sensor nodes which can measure
various parameters of their environment, make computa-
tions, and communicate with each other. Sensor nodes are
resource constrained devices, but despite the simplicity of
a single device the whole network can solve various tasks
efficiently, where the use of other kind of systems is inefficient
or impossible [1].

Data dissemination is a common service in wireless
sensor networks. Communication patterns may differ greatly
in networks depending on the application.Themost common
tasks are as follows:

(i) convergecast, where information fromnetwork nodes
is directed to a sink node; this is a typical task in data
collection applications;

(ii) broadcast, where information from a source node is
transmitted to all network nodes, usedmainly to send
commands into the network;

(iii) peer-to-peer, where any node can send information to
any other node; used in distributed computing, where
local communication is required.

A special kind of broadcast is when any node can serve
as source; thus the communication pattern is any-to-all.
This pattern was used for example in decentralized security
systems, when all nodes were able to make decisions, based

upon all the available information in the network. A possible
solution is the ring topology, where information flows along
a circle in the network [2]. This paper focuses on this
communication pattern.

Communication networks use either contention based or
contention free channel accessmechanisms.The advantage of
contention based protocols is their dynamism and simplicity.
Nodes can compete for channel access when communication
is required; thus channel bandwidth is allocated on demand.
However, when channel demand is high, frequent collisions
may severely decrease network efficiency [3]. Due to the
inherently asynchronous nature of contention based commu-
nication, in many implementations nodes are continuously
switched on, which has a negative impact on power efficiency.
To decrease the effect of idle listening, many sophisticated
MAC protocols have been developed, for example, RAW [4],
S-MAC [5], and 𝜇-MAC [6].

Contention free or schedule based protocols use preallo-
cation schemes (e.g., time division multiple access, TDMA);
thus the communication can be performed in the preallo-
cated slots, avoiding collisions. However, systems with fixed
assignments may be inefficient, when the preassigned slots
are poorly utilized. This problem can be handled by on-
demand assignment at the price of network overhead [7].

Efficient TDMA schedules provide optimal performance,
where optimality may be defined by various design objec-
tives, depending on the application requirements. Design
objectives can be short schedule length, minimal latency,
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or minimal power consumption, just to name few (see [8]
for a comprehensive list). To achieve the desired design
objectives, time slices may be used by multiple nodes to
transmit messages, if these transmissions do not interfere
with each other. Such reuse of time slots will be referred to
as multi-TDMA schedule, which is an NP-complete problem
in general [9]. Various heuristics were proposed to calculate
multi-TDMA schedules, most of them providing solutions,
which are suboptimal, but still acceptable in practice. A
review on TDMA protocols in wireless sensor networks can
be found in [9]. The most widely studied topology is tree
topology [8], but other topologies (e.g., line and star) were
also examined [10]. TDMA scheduling in ring topology, to
our best knowledge, was not specifically studied.

TDMA scheduling in ring networks, when only one node
can transmit in a time slot, is a trivial task in itself. In this case
consecutive nodes in the network are assigned to consecutive
time slots in the schedule. We will refer to this simple case
as linear scheduling. The problem, however, becomes much
more complicated, when network characteristics allowmulti-
TDMA schedule. In this paper, we provide algorithms that
are able to efficiently solve the multi-TDMA scheduling
problem in ring topology, with minimal worst-case message
turnaround time, as design objective.

Note that message turnaround time, in our approach,
includes not only the time themessage spends in the network
(usually used as design objective) but also the delay from
the appearance of the information (e.g., measurement by a
sensor) to the injection of the message into the network.
We call this approach Minimum Worst Case Turnaround
Time (MWCTT) problem. Since both delay components in
worst case depend on the parameters of TDMA schedule,
the schedule may be optimized to include both components,
providing more realistic objective for time-critical systems.

The novelties of the paper are the following.

(i) The Minimum Worst Case Turnaround Time prob-
lem is defined.

(ii) A novel scheduling algorithmwill be proposed which
supports multi-TDMA scheduling in ring topology
networks. The proposed algorithm guarantees opti-
mal scheduling for the MWCTT problem and still
has polynomial computational complexity. The cor-
rectness, complexity, and performance of the pro-
posed algorithm will be mathematically analyzed and
proven.

(iii) An accelerated version of the optimal scheduling
algorithm will also be introduced. The accelerated
version also provides optimal solution but requires
much shorter computational time in most practical
cases.

(iv) The performances of the proposed algorithms are
compared to a reference naive breadth first search
algorithm.

(v) The properties of the generated optimal schedules are
also analyzed in terms of speed and power consump-
tion.

(vi) The performance of the generated schedules are com-
pared, using the proposed algorithm and a reference
method.

In Section 2 related work is reviewed. In Section 3 a
mathematical formalization will be given, including the
definition of theMWCTTproblem, followedby the definition
of the new scheduling algorithms for multi-TDMA rings,
and finally the properties of the algorithms (optimality and
complexity) will be proven. In Section 4 further analytical
properties (delivery time and power consumption) will be
discussed, along with a performance comparison. Section 5
provides test results, and the performance of the proposed
algorithms is analyzed using real implementation. Section 6
concludes the paper.

2. Related Work

Most TDMA scheduling algorithms use the high level pro-
tocol model, where a connectivity graph represents the
network, the vertices, and edges corresponding to nodes and
communication links, respectively. In this model the goal
is to create a schedule where two constraints are satisfied:
(𝐶
1
) a node cannot receive and transmit at the same time

slot, and (𝐶
2
) two transmissions are not allowed to interfere

with each other; that is, if more transmitters are scheduled
in the same time slot, no link can be present from a
transmitter to the receiver of another transmitter [11]. Some
algorithms use the physicalmodel, where the communication
links and potential collisions are more accurately modelled
by the signal-to-interference-plus-noise-ratio, resulting in
potentially more accurate, but usually more complicated,
models. In general, protocol-based models provide more
pessimistic results, where as much as 30 percent of the
network capacity may be lost, compared to accurate physical
model-based scheduling [12].

Depending on the application requirements, TDMA
design objectivesmay be very different. In applications, where
message latency is important, TDMA schedulers use latency-
related metrics, for example, schedule length, or average
message latency [9, 10, 13]. In networks, where large amount
of data must be delivered, throughput capacity [14] and
fairness [15] may be maximized. In many applications energy
utilization and thus network lifetime is a key design factor;
in these cases energy efficiency is the main design objective
[16, 17]. Some solutions address multiobjective scheduling
[8, 13, 18].

The most widely studied network topology is tree topol-
ogy (e.g., [8, 19]), but also line [10] and arbitrary topologies
[11] were investigated. Scheduling algorithms also consider
various datamodels.Most networks are designed to primarily
perform data collection (convergecast) or data dissemination
(broadcast) tasks [10], but other objectives, for example,
small round trip delays, were addressed as well [20]. Some
algorithms take into consideration varying data intensity as
well [10, 21].

The TDMA scheduling problem is known to be NP-
complete, since it is equivalent to the graph coloring problem
[8, 9]. Since the problem is hard to solve in general, several
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approximate solutions were proposed to provide computable
schedules, even if they are suboptimal. The scheduling
problem in most cases may be transformed to coloring of
the conflict graph, the nodes of which are edges of the
connectivity graph, and its edges represent conflicting links,
according to constraints 𝐶

1
and 𝐶

2
[11]. Since the coloring

problem is NP-complete in general, various heuristics were
proposed. For tree topologies, in [9] two heuristics were
proposed, the effectiveness of which was shown to depend on
packet generation density in the network. In [22] the conflict
graph was expanded to represent the size of the subtree,
connected to a parent node, and the coloring was done on
the expanded conflict graph, using an approximate coloring
algorithm.

In [19] the Minimum Information Gathering Time Prob-
lem was solved, providing shortest time schedule for data
collection applications, where each node sends one message
in every period towards a sink node.Theoptimal solutionwas
provided for line and tree topologies, for general networks
heuristics were proposed. A similar problem was solved in
[21], using Integer Linear Programming formulation.

A unified approach was proposed in [11] for a wide class
of channel assignment problems, including TDMA. In this
framework the search for the solution is aided by a heuristic
labelling step, which is followed by the graph coloring step,
where the order of the coloring is determined by the labels.
The scheduler is simple and fast but the optimum is not
guaranteed.

Ring topology networks are special type of a broadcast
networks, where every node can send information to every
other node (all to all) [23]. A ring is selected from the
communication graph (Hamiltonian cycle), along which is a
linear TDMA schedule is generated.

Creating a ring in an ad hoc wireless network is not
a trivial problem; it is equivalent to finding a Hamiltonian
cycle in the connectivity graph of the network, which is
not only NP-hard in general, but not constant approximable
even in special cases like cubic Hamiltonian graphs [24].
Based on Pósa’s seminal rotational algorithm [25], several
heuristics have been proposed to enhance the efficiency
of the search method, for example, by applying precheck
mechanisms to increase the probability of the right choices
during the search [26], or by avoiding backtracking [27].
Fiedler vectors can be used to find pseudo-Hamiltonian
cycles [28]. A semiautomatic heuristic approach, especially
the one designed for connectivity graphs of sensor networks,
was proposed in [29].

TDMA in ring topology was addressed in [30], where the
clocks of the nodes were automatically and evenly distributed
to create a stable TDMA ring network. Extended ring topolo-
gies were used in [23] to represent network hierarchy. A
heuristic TDMAscheduling algorithm for such extended ring
topologies was proposed in [31]. The heuristic approaches
provide in most cases practically acceptable results, but they
cannot guarantee optimal scheduling.

In this paper multi-TDMA scheduling in ring topology
networks is addressed, where multiple nodes are allowed to
transmit in the same time slot, if network topology allows
collision-free communication. The goal is to find optimal
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Figure 1: Timing diagram of a linear TDMA schedule for 16 nodes.
Each node uses exclusively one time slice for transmission. Two
periods are shown, each requiring 16 time slices.

schedule with shortest turnaround time, as design objective.
We will prove that optimal multi-TDMA scheduling is pos-
sible in polynomial time, and two scheduling algorithms will
be proposed and analyzed.

3. Linear and Multi-TDMA Scheduling

3.1. Basic Principles. The TDMA approach uses dedicated
time slices for the transmitter nodes to avoid collisions.
The linear round-robin TDMA operates with a predefined
periodic schedule. The periods are divided into time slices
and each time slice is assigned to one transmitter-receiver
pair. The nodes are arranged in a cycle. In the first time slice
the first transmitter node transmits a packet to its neighbor,
and in every later time slice the node that has just received
the message in the previous time slice transmits a packet to
its neighbor. In the last time slice the last node will transmit
to the first one and this period is repeated, as shown in the
example with 16 nodes in Figure 1. The figure indicates time
instants when nodes are transmitting. In linear round-robin
TDMA the number of time slices in a period is equal to the
number of nodes.

Multi-TDMA allows more nodes to transmit at the same
time, provided the transmitters do not disturb themessages of
each other. Figures 2 and 3 show two possible multi-TDMA
schedules for 16 nodes. In Figure 2 the length of the period
is 6 and the period must be repeated 3 times in order that a
message reaches all nodes in the network and arrives back to
node 1. In Figure 3 the period length is 7 and 4 periods are
required to deliver a message to all of the nodes and return it
back to node 1. In both examples maximum 3 nodes transmit
at the same time. (Naturally nodes scheduled for the same
time slices must not interfere with each other.)

Utilization of multi-TDMA networks can be advanta-
geous if short message delay is required. Suppose that a node
detects an event and sends a message about it to the network.
For the linear TDMA schedule in Figure 1, the worst case
turnaround time from the detection until all nodes receive
the message and it gets back to the source node is 32 time
slots; the source node must wait at most 16 time slots from
the detection until its scheduled transmission time slot and
then 16 time slots are required to propagate the message to
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Figure 2: Timing diagram of a multi-TDMA schedule for 16 nodes.
Independent transmissions are scheduled for the same time slice. A
period requires 𝑐 = 6 time slices. In this example 𝑘 = 3 periods are
required to deliver a message from any node to all other nodes.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

Tr
an

sm
itt

in
g 

no
de

Time

Figure 3: Timing diagram of a multi-TDMA schedule for 16 nodes.
Independent transmissions are scheduled for the same time slice. A
period requires 𝑐 = 7 time slices. In this example 𝑘 = 4 periods are
necessary for a message to turn around.

all other nodes and get it back. In Figure 2, where multi-
TDMA schedule is used, the worst case turnaround time is
only 24 time slots (6 time slices to start the transmission and
3⋅6 to propagate themessage). Note that inappropriatemulti-
TDMA schedules may give larger propagation delay than the
linear schedule, as in the example of Figure 3, where the worst
case delay is 35 (7 + 4 ⋅ 7) time slots.

3.2. Design Objective. The multi-TDMA scheduling to be
proposed implements a data dissemination service, where the
information, originating at any node, is disseminated to every
other node in the network, along the path defined by the ring
topology.

The design objective is to minimize the worst case
turnaround time, introducing the Minimum Worst Case
Turnaround Time (MWCTT) problem. The MWCTT is
measured from the time point when the information (e.g.,
measurement or alert) to be disseminated appears asyn-
chronously in the initiator node, to the time point when
messages in the ring topology network reach the initiator
node again. This scenario models the real-life situation when
a node sends an alert to the network and waits for the
reactions of other nodes.

As shown in Section 3.1,MWCTT consists of two compo-
nents. First the initiator node has to wait for its transmission
time slice, which requires 𝑐 time slices in worst case, where
𝑐 is the lenght of a period, for example, in Figure 2, 𝑐 = 6,
while in Figure 3, 𝑐 = 7. Note that the worst case scenario
is when the information to be disseminated appears at the
initiator node just after it has begun its transmission. After
the initiator node transmitted the message into the network,
the message must reach all the other nodes and arrive back to
the initiator node, which requires 𝑘 ⋅ 𝑐 time slices, where 𝑘 is
the necessary number of the repetitions of the periods (e.g., in
Figure 2, 𝑘 = 3, while in Figure 3, 𝑘 = 4). Thus the worst case
dissemination time is equal to WCTT = 𝑐 + 𝑐 ⋅ 𝑘 = 𝑐 ⋅ (𝑘 + 1)

time slices. The goal of the scheduling is to minimize WCTT.

3.3. Mathematical Formalization. Thenetwork is represented
by a connectivity graph 𝐶 = (𝑁, 𝐿), where𝑁 denotes the set
of vertices corresponding to the sensor nodes and 𝐿 denotes
the set of edges representing the links between nodes. The
cardinality of𝑁 is denoted by 𝑛.

The 𝑙𝑞 : 𝐿 → (0, 1] link quality function shows the
quality of the links according to a predefined metric. Only
the links with link quality greater than a threshold 𝑧 should
be used for communication. 𝐿

𝐶
denotes the set of possible

communication links:

𝐿
𝐶
= {𝑝 ∈ 𝐿 | 𝑙𝑞 (𝑝) > 𝑧} , (1)

and the 𝐶
𝐶
communication graph is defined as follows:

𝐶
𝐶
= (𝑁, 𝐿

𝐶
) . (2)

Note that the weaker links also have to be considered
in multi-TDMA scheduling, because even weaker signal
strength levels may cause collisions when a receiver hears
multiple transmitters at the same time.

Figure 4 shows a 16-node example, where continuous
lines denote good links (with 𝑙𝑞 > 𝑧), while dashed lines
denote weaker links (with 0 < 𝑙𝑞 ≤ 𝑧).

In the discussed communication model each node trans-
mits to the next node; therefore, a Hamiltonian cycle must
exist in 𝐶

𝐶
. Without loss of generality it can be assumed that

𝑁 = {𝑁
1
, . . . , 𝑁

𝑛
} and the edges of the Hamiltonian cycle

are (𝑁
1
, 𝑁
2
), (𝑁
2
, 𝑁
3
), . . . , (𝑁

𝑛−1
, 𝑁
𝑛
), (𝑁
𝑛
, 𝑁
1
), as shown in

Figure 4 for 𝑛 = 16.

3.4. Definitions

Definition 1. Each node 𝑁
𝑖
transmits to its receiver node,

denoted by 𝑟(𝑁
𝑖
):

𝑟 (𝑁
𝑖
) = 𝑁

(𝑖 mod 𝑛)+1. (3)

Definition 2. The 𝐺
𝐼
= (𝑁, 𝐼) transmission-interference graph

(or constraint graph) represents transmitter interferences.
There is an edge between two nodes if they should not
transmit in the same time slice, because of 𝐶

1
and 𝐶

2
; that

is,

(𝑝, 𝑞) ∈ 𝐼 if (𝑝, 𝑟 (𝑞)) ∈ 𝐿 or (𝑞, 𝑟 (𝑝)) ∈ 𝐿 or

𝑞 = 𝑟 (𝑝) or 𝑝 = 𝑟 (𝑞) .
(4)
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Figure 4: A possible connectivity graph (continuous and dashed
lines) and communication graph (continuous lines only).
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Figure 5: The schedule connection graph for the example shown in
Figure 3.The schedule itself is represented by 𝑆

1
, 𝑆
2
, . . . , 𝑆

7
. Its width

is 4, as shown by the 4 monochromatic paths.

Definition 3. A set of nodes in 𝐺
𝐼
is polite if all nodes in the

set can transmit in the same time slice without collision. POL
is the set of the polite transmitter-sets; that is,

POL = {𝑇 ⊆ 𝑁∀𝑝, 𝑞 ∈ 𝑇, 𝑝 ̸= 𝑞 : (𝑝, 𝑞) ∉ 𝐼} . (5)

Definition 4. A schedule is a sequence of node-sets 𝑆 =

(𝑆
1
, . . . , 𝑆

𝑙
), where 𝑆

𝑖
⊆ 𝑁 and 𝑙 is the length of the schedule,

such that 𝑆
𝑖
contains the transmitting nodes for the 𝑖th time

slice of the schedule. Each node transmits exactly once in the
sequence to its receiver node; that is,

1 ≤ 𝑖 < 𝑗 ≤ 𝑙 : 𝑆
𝑖
∩ 𝑆
𝑗
= 0, ∀𝑖, 𝑗,

⋃

1≤𝑖≤𝑙

𝑆
𝑖
= 𝑁.

(6)

Figure 5 shows the schedule shown in Figure 3, where
𝑆
1
= {𝑁
1
, 𝑁
11
}, 𝑆
2
= {𝑁
2
, 𝑁
5
, 𝑁
12
}, 𝑆
3
= {𝑁
3
, 𝑁
6
, 𝑁
14
}, 𝑆
4
=

{𝑁
4
, 𝑁
7
, 𝑁
13
}, 𝑆
5
= {𝑁
8
}, 𝑆
6
= {𝑁
9
, 𝑁
15
}, and 𝑆

7
= {𝑁
10
, 𝑁
16
}.

Note that the schedule describes the operation of the
network for exactly one period; such periods are repeated
periodically and in each period the nodes are operated
according to the schedule.

Definition 5. To a given schedule 𝑆, a schedule connection
graph 𝐽(𝑆) = (𝑁, 𝑌) is defined, where

(𝑝, 𝑞) ∈ 𝑌 if ∃𝑖, 𝑗 : 𝑖 < 𝑗, 𝑝 ∈ 𝑆
𝑖
, 𝑞 ∈ 𝑆

𝑗
, 𝑞 = 𝑟 (𝑝) . (7)

The meaning of edge (𝑝, 𝑞) is that node 𝑞 can retransmit
the message received from node 𝑝, in a subsequent time slice
in the same period. Figure 5 shows the schedule connection
graph as well, for the schedule shown in Figure 3. There is
an edge between node 2 and node 3, because the message
received from node 2 in time slice 2 can be retransmitted by
node 3 to node 4 in time slice 3, in the same period. Similarly,
node 4 can transmit to node 5 in the same period; therefore,
there is an edge between node 3 and node 4. But node 5
cannot retransmit the message, received from node 4, in the
same period: node 5 can transmit only in time slice 2 of the
next period. Therefore, there is no edge between node 4 and
node 5.

Definition 6. The width of schedule 𝑆 is the number of
independent components in the schedule connection graph
𝐽(𝑆).

In Figure 5 the width of the schedule is 4. Note that the
width has an important practical meaning. If the width of the
schedule is 𝑘 then the schedule must be repeated 𝑘 times in
order to deliver a packet from any node to all other nodes.

Definition 7. Assuming that the Hamiltonian cycle has been
partitioned into connected parts (i.e., subpaths), a segment is
the node-set of any of those parts.

Note that the independent paths in the schedule con-
nection graph are (independent) segments. In Figure 5 red,
blue, green, and brown paths correspond to independent
segments. Thus the following definition naturally follows.

Definition 8. For any 𝑘-wide schedule a segmentation 𝑅 =

(𝑅
1
, . . . , 𝑅

𝑘
) can be defined on the Hamiltonian cycle,

where 𝑅
𝑖
= (𝑅

𝑖,1
, . . . , 𝑅

𝑖,𝑙𝑖
) is a segment such that (𝑅

1,1
,

. . . , 𝑅
1,𝑙1
, . . . , 𝑅

𝑘,1
, . . . , 𝑅

𝑘,𝑙𝑘
) = (𝑁

1
, . . . 𝑁

𝑛
), where the length

of the 𝑖th segment is 𝑙
𝑖
and the vertices of 𝑅

𝑖
are denoted with

𝑅
𝑖,1
, . . . , 𝑅

𝑖,𝑙𝑖
.

Note that a 𝑘-wide schedule contains 𝑘 independent
segments, such that the union of the segments is𝑁.

In Figure 6 the segmentation for the schedule of Figure 5
is shown.

Definition 9. Given a segmentation 𝑅, the state 𝑃 = ⟨𝑅
1,𝑖1
,

𝑅
2,𝑖2
, . . . , 𝑅

𝑘,𝑖𝑘
⟩ is a list of nodes where node 𝑅

𝑗,𝑖𝑗
, 0 ≤ 𝑖

𝑗
≤ 𝑙
𝑗

is the node which transmitted for the last time in segment 𝑗.
If in segment 𝑗 there was no transmission yet then notation
𝑅
𝑗,0

= ⊗ is used. The state representing that no transmission
has occurred yet is denoted by ⟨⊗, ⊗, . . . , ⊗⟩ = (⊗)

𝑘
. The 𝑖th

element of state 𝑃, corresponding to segment 𝑅i, is denoted
by 𝑃[𝑖].

For the construction of a 𝑘-wide schedule the directed
graph 𝐴

𝑅
= (G, 𝐷) is used. The vertices in 𝐴

𝑅
denote the
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Figure 6: Segmentation of the Hamiltonian cycle.

1 2 3 4 4 4 4

5 6 7 8 9 10

11 12 12 13131313

141414 15 16

Figure 7: A subgraph of the state graph. The highlighted path leads
to an optimal schedule.

states of the schedule. The edges of the graph define possible
sequences of states representing valid schedules.

Notice that state transition (𝑃, 𝑄) ∈ 𝐷means that the set
of actual transmitters is

𝑘

⋃

𝑖=1

({𝑄 [𝑖]} \ {𝑃 [𝑖]}) . (8)

The highlighted part of Figure 7 shows the states and state
transitions corresponding to the schedule in Figure 5. The
state graph starts from state (⊗)

4
= ⟨⊗, ⊗, ⊗, ⊗⟩. After the time

slice corresponding to 𝑆
1
, nodes 1 and 11 are the nodes which

transmitted for the last time from their segments (from the
other two segments no transmission has happened yet); thus
the corresponding state is ⟨𝑁

1
, ⊗,𝑁
11
, ⊗⟩. After the time slice

of 𝑆
2
nodes 2, 5, and 12 were the last transmitters in their

segments, resulting state ⟨𝑁
2
, 𝑁
5
, 𝑁
12
, ⊗⟩. After the time slice

of 𝑆
3
nodes 3, 6, 12, and 14 are the last transmitters, with the

corresponding state of ⟨𝑁
3
, 𝑁
6
, 𝑁
12
, 𝑁
14
⟩. Note that no node

transmitted from the segment of node 12 (along the green
path in Figure 5) in the actual time slice; therefore, in this case
node 12 remains in the state.

The formal definition of 𝐴
𝑅
is as the follows.

Definition 10. For a segmentation 𝑅 = (𝑅
1
, . . . , 𝑅

𝑘
), 𝐴
𝑅
=

(G, 𝐷) is called the state graph of segmentation 𝑅. The nodes
in the node setG of𝐴

𝑅
represent the states which may occur

in a schedule compatible with 𝑅. The edges of the state graph
are defined as follows.

(𝑃, 𝑄) ∈ 𝐷 if

(TR1) ∀𝑖 : 𝑄[𝑖] ̸= ⊗ ∧ 𝑃[𝑖] = ⊗ ⇒ 𝑄[𝑖] = 𝑅
𝑖,1
; that is, in

any segment 𝑅
𝑖
the first node (𝑅

𝑖,1
) will transmit for

the first time;
(TR2) ∀𝑖 : 𝑃[𝑖] ̸= ⊗ ⇒ 𝑄[𝑖] ̸= ⊗. It expresses the trivial

requirement that if once a node has transmitted in
a segment, any later time there is one node in that
segment, which transmitted for the last time;

(TR3) ∀𝑖 : 𝑃[𝑖] ̸= ⊗ ⇒ 𝑉 ∨ 𝑊, where 𝑉 = (𝑄[𝑖] = 𝑃[𝑖]),
𝑊 = (𝑃[𝑖] = 𝑅

𝑖,𝑗
∧ 𝑄[𝑖] = 𝑅

𝑖,𝑗+1
∧ 𝑗 < 𝑙

𝑖
); that is, after

a node transmits in the segment, its receiver node will
transmit either in the next time slice (condition𝑊), or
in a later time slice, in which case the currently latest
transmitter node remains unchanged (condition 𝑉);

(TR4) (⋃𝑘
𝑖=1
({𝑄[𝑖]} \ {𝑃[𝑖]})) ∈ POL; that is, only a polite

transmitter-set is allowed to transmit in one time
slice.

Rules (TR1)–(TR4) are the tracing rules.

3.5. The FSS Algorithm. In this section first the fixed-seg-
mentation-scheduler (FSS) then the optimal-multi-TDMA-
scheduler (OMTS) algorithm will be introduced.

The pseudocode of the FSS algorithm is shown in
Pseudocode 1. Notes on notations are the following.

(i) 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝐿) removes the first element of list 𝐿, while
𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝐿,𝑋) adds 𝑋 to the end of list 𝐿, see lines
(16), (21), and (27).

(ii) 𝑟𝑒V𝑒𝑟𝑠𝑒(𝐿) returns reverse of list 𝐿.
(iii) 𝑝𝑎𝑟𝑒𝑛𝑡(𝑄) represents the state fromwhich state𝑄was

traced; see lines (22) and (26).

The input of the algorithm consists of the connectivity
graph𝐶, the communication graph𝐶

𝐶
, and the segmentation

𝑅 = (𝑅
1
, . . . , 𝑅

𝑘
). The algorithm builds a graph 𝐴

𝑅
= (Ĝ, 𝐷),

where Ĝ ⊆ G, 𝐷 ⊆ 𝐷, and 𝐷 is represented by the 𝑝𝑎𝑟𝑒𝑛𝑡()
mapping; see lines (17)–(22) of the FSS algorithm.

During the iterationsG contains states which are reached
by breadth-first search (traced nodes), and O contains states,
already in G, from which breadth-first search was not
continued yet (open nodes).

In the beginning the listO of opennodes contains only the
empty set (line (14)) and in each iteration the algorithm traces
all possible combinations of transmitting nodes (line (18))



Mathematical Problems in Engineering 7

FIXED-SEGMENTATION-SCHEDULER (FSS)
(1) input
(2) 𝐶 = (𝑁, 𝐿): connectivity graph
(3) 𝐶

𝐶
= (𝑁, 𝐿

𝐶
): communication graph

(4) R = {𝑅
1
, . . . , 𝑅

𝑘
}: set of segments

(5) variables
(6) Ĝ: set of traced nodes in 𝐴
(7) O: list of open nodes in 𝐴
(8) 𝑃: the currently traced node
(9) 𝑇: a possible combination of transmitting segments
(10) 𝑄: set of possible nodes with directed arc from node 𝑇
(11) 𝑝𝑎𝑟𝑒𝑛𝑡: mapping from nodes to nodes
(12) begin
(13) Ĝ = {(⊗)

𝑘
}

(14) O = ((⊗)
𝑘
)

(15) while 𝐸
𝑅
∉ O

(16) 𝑃 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(O)

(17) foreach 𝑇 in P(R) \ 0

(18) 𝑄 = {𝑅
𝑖,1
: 𝑅
𝑖
∩ 𝑃 = 0, 𝑅

𝑖
∈ 𝑇} ∪ {𝑟(𝑅

𝑖,𝑗
) : 𝑅
𝑖
∩ 𝑃 = {𝑅

𝑖,𝑗
}, 𝑅
𝑖
∈ 𝑇}

(19) if (𝑃, 𝑄) satisfies the tracing rules and 𝑄 ∉ Ĝ:
(20) Ĝ ← Ĝ ∪ 𝑄

(21) 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(O, 𝑄)

(22) 𝑝𝑎𝑟𝑒𝑛𝑡(𝑄) ← 𝑃

(23) 𝑄 = 𝐸
𝑅

(24) 𝑆 = ()

(25) while 𝑄 ̸= (⊗)
𝑘

(26) 𝑃 = 𝑝𝑎𝑟𝑒𝑛𝑡(𝑄)

(27) 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑆, ⋃
𝑘

𝑖=1
({𝑄[𝑖]} \ {𝑃[𝑖]}))

(28) 𝑄 = 𝑃

(29) return 𝑟𝑒V𝑒𝑟𝑠𝑒(𝑆)
(30) end

Pseudocode 1: The pseudocode of the FSS algorithm.

that satisfy the tracing rules (lines (19)–(21)).The schedule is
reconstructed from the series of states in𝐴

𝑅
from endstate𝐸

𝑅

to start-state (⊗)
𝑘
in a backwards manner (lines (23)–(28)).

Note that the FSS algorithm calculates the optimum
schedule for a given segmentation. The OMTS algorithm
enumerates all the possible segmentations and calls the FSS
algorithm for each segmentation.

The pseudocode of the OMTS algorithm is shown in
Pseudocode 2. Lines without asterisks give the basic OMTS
algorithm. With all lines, including those with asterisk, an
accelerated version is given with early cuts (OMTS-A).

The input of the algorithm consists of the connectivity
graph 𝐶, communication graph 𝐶

𝐶
, and maximal width

𝑘max. Variable 𝑙𝑒𝑛 stores the length of the shortest known
schedule; it is set to∞ at the beginning (line (12)). The basic
algorithm iterates on widths 𝑘 from 𝑘max down to 1 (line
(13)); every possible 𝑘-tuple is generated as a starting node
for the segmentations (line (15)). List 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 stores the
starting points of the segments (line (16)), while mapping
𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ stores the length of the longest segment for
the corresponding 𝑘-tuples (lines (17)-(18)). The algorithm
iterates on the list 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 (line (20)) and generates
the actual segmentations (line (22)). For each segmentation

the FSS algorithm is executed (line (23)) which returns the
shortest schedule 𝑆

𝑅
for the given segmentation.

While the OMTS algorithm evaluates all possible seg-
mentations, the OMTS-A algorithm does not call FSS for
those cases which trivially results in longer schedules than
the current best schedule; since the length of the longest
segment is a lower bound for the length of any schedule,
during the iterations those segmentations are considered,
for which 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ < 𝑚𝑎𝑥𝑆𝑐ℎ𝑒𝑑𝐿𝑒𝑛 (see lines (21),
(27), and (28)). To increase the efficiency of the early cuts,
the segmentations are sorted by 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ before the
iterations (lines (17)–(19)).

3.6. Algorithm Properties

Lemma 11. For a given (𝑅
1
, . . . , 𝑅

𝑘
) = ((𝑅

1,1
, . . . , 𝑅

1,𝑙1
), . . . ,

(𝑅
𝑘,1
, . . . , 𝑅

𝑘,𝑙𝑘
)) segmentation, endstate 𝐸

𝑅
= ⟨𝑅
1,𝑙1
, 𝑅
2,𝑙2
, . . . ,

𝑅
𝑘,𝑙𝑘
⟩ gives the last state of all possible schedules, that is, the last

node in all possible paths in the state graph corresponding to the
given segmentation.

Proof. Eachnode has to transmit exactly once in the schedule;
therefore, from each segment each node has to be present in
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OPTIMAL-MULTI-TDMA-SCHEDULER
(OMTS AND OMTS-A∗)
(1) input
(2) 𝐶 = (𝑁, 𝐿): connectivity graph
(3) 𝐶

𝐶
= (𝑁, 𝐿

𝐶
): communication graph

(4) 𝑘max: maximum width of the schedule
(5) variables
(6) 𝑚𝑖𝑛𝑆𝑐ℎ𝐿𝑒𝑛: the length of the shortest known schedule
(4) 𝑘: the actually considered width
(5) 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠: list of starting 𝑘-tuples of the traced segmentations
(6) 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ: length of the longest segment in a segmentation
(7) 𝐵: a starting 𝑘-tuple of a segmentation
(8) 𝑅: a segmentation
(9) 𝑆

𝑅
: an optimal schedule for 𝑅

(10) 𝑆: an optimal schedule
(11) begin
(12) 𝑚𝑖𝑛𝑆𝑐ℎ𝑒𝑑𝐿𝑒𝑛 = ∞

(13) for 𝑘 = 𝑘max downto 1
(14) 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 = ()

(15) foreach 𝐵 in {𝐵 : 𝐵 ⊆ 𝑁 ∧ |𝐷| = 𝑘}

(16) 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 = 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠, 𝐵)

(17)∗ 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ(𝐵) =

(18)∗ max((𝑗 − 𝑖 + 𝑛) mod 𝑛), 𝑖 ̸= 𝑗,𝑁
𝑖
, 𝑁
𝑗
∈ 𝐵

(19)∗ sort 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 by 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ𝑠 increasing order
(20) foreach 𝐵 in 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠

(21)∗ if 𝑚𝑎𝑥𝑆𝑒𝑔𝐿𝑒𝑛𝑔𝑡ℎ(𝐵) ⋅ (𝑘 + 1) < 𝑚𝑖𝑛𝑆𝑐ℎ𝑒𝑑𝐿𝑒𝑛
(22) 𝑅 = (𝑅

1
, . . . , 𝑅

𝑘
) : 𝑅
𝑖,1
∈ 𝐵, 1 ≤ 𝑖 ≤ 𝑘

(23) 𝑆
𝑅
= FSS(𝐶, 𝐶

𝐶
, 𝑅)

(24) if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆
𝑅
) ⋅ (𝑘 + 1) < 𝑚𝑖𝑛𝑆𝑐ℎ𝑒𝑑𝐿𝑒𝑛

(25) 𝑆 = 𝑆
𝑅

(26) 𝑚𝑖𝑛𝑆𝑐ℎ𝑒𝑑𝐿𝑒𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆
𝑅
) ⋅ (𝑘 + 1)

(27)∗ else
(28)∗ break (foreach)
(29) return 𝑆

(30) end

Pseudocode 2: The pseudocode of the OMTS and the OMTS-A algorithms.

at least one state. If a node from a segment is present in state
𝑃, and (𝑃, 𝑄) is an edge of the state graph, then 𝑄 will also
contain a node from that segment. From each segment nodes
appear in increasing order in states belonging to a schedule.
Therefore, the last state belonging to a schedule will contain
the last nodes from each segment.

Lemma 12. The shortest schedule for a given segmentation𝑅 =

((𝑅
1,1
, . . . , 𝑅

1,𝑙1
), . . . , (𝑅

𝑘,1
, . . . , 𝑅

𝑘,𝑙𝑘
)) corresponds to states on

a shortest path in graph 𝐴
𝑅
from (⊗)

𝑘
to the endstate 𝐸

𝑅
.

Proof. For a given segmentation each transition of the state
graph describes a time slice of a possible schedule. Thus the
length of the schedule is equal to the length of a path in the
state graph from (⊗)

𝑘
to the endstate 𝐸

𝑅
, and any shortest

path from (⊗)
𝑘
to the endstate 𝐸

𝑅
corresponds to one of the

shortest schedules.

The next lemma guarantees the existence of at least one
valid schedule.

Lemma 13. For every 𝑃 ̸= 𝐸
𝑅
there exists a state 𝑄 =

⟨𝑅
1,𝑗1
, 𝑅
2,𝑗2
, . . . , 𝑅

𝑘,𝑗𝑘
⟩ where (𝑃, 𝑄) satisfies the tracing rules.

Proof. Since 𝑃 ̸= 𝐸
𝑅
, there exists 𝑖 such that 𝑅

𝑖,𝑗𝑖
̸= 𝑅
𝑖,𝑙𝑖
.

Let 𝑄[𝑖] = 𝑅
𝑖,𝑗𝑖+1

and 𝑄[𝑘] = 𝑅
𝑘,𝑗𝑘

, 𝑘 ̸= 𝑖. In this case
(𝑃, 𝑄) satisfies the tracing rules since only one node (𝑅

𝑖,𝑗𝑖+1
)

is transmitting.

Definition 14. For a given state 𝑃 = ⟨𝑅
1,𝑖1
, 𝑅
2,𝑖2
, . . . , 𝑅

𝑘,𝑖𝑘
⟩ and

endstate 𝐸
𝑅
= ⟨𝑅
1,𝑙1
, 𝑅
2,𝑙2
, . . . , 𝑅

𝑘,𝑙𝑘
⟩ the distance between 𝑃

and 𝐸
𝑅
is defined as 𝐷(𝑃) = ∑

𝑘

𝑘=1
𝑙
𝑘
− 𝑖
𝑘
. Note that 𝐷(𝑃) = 0

if and only if 𝑃 = 𝐸
𝑅
.

Lemma 15. For every two states𝑃 = ⟨𝑅
1,𝑖1
, 𝑅
2,𝑖2
, . . . , 𝑅

𝑘,𝑖𝑘
⟩ and

𝑄 = ⟨𝑅
1,𝑗1
, 𝑅
2,𝑗2
, . . . , 𝑅

𝑘,𝑗𝑘
⟩, where (𝑃, 𝑄) satisfies the tracing

rules, Δ
𝐷
< 0, where Δ

𝐷
= 𝐷(𝑄) − 𝐷(𝑃).

Proof. Consider Δ
𝐷

= 𝐷(𝑄) − 𝐷(𝑃) = ∑
𝑘

𝑚=1
(𝑙
𝑚
− 𝑗
𝑚
) −

∑
𝑘

𝑚=1
(𝑙
𝑚
− 𝑖
𝑚
) = ∑
𝑘

𝑚=1
((𝑙
𝑚
− 𝑗
𝑚
) − (𝑙
𝑚
− 𝑖
𝑚
)) = ∑

𝑘

𝑚=1
(𝑖
𝑚
− 𝑗
𝑚
).
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According to (TR3) either 𝑗
𝑚
− 𝑖
𝑚
= 0 (case 𝑉) or 𝑗

𝑚
−

𝑖
𝑚
= 1 (case𝑊), for all𝑚. Since at least one value of the state

changes (case𝑊), Δ
𝐷
< 0.

Lemma 16. The FSS algorithm stops; that is, eventually 𝐸
𝑅
∈

O and also 𝐸
𝑅
∈ Ĝ.

Proof. Let us define 𝐷min(O) = min(𝐷(𝑂[𝑖])) and 𝑖min =

argmin
𝑖
(𝐷(𝑂[𝑖])), 1 ≤ 𝑖 ≤ |O|, in each iteration.

Since the algorithm traces elements of queue O after each
other (see lines (15)–(23)), in each iteration it is true that the
actual state O[𝑖min] will be traced after 𝑖min iterations. Thus
according to Lemmas 13 and 15, after 𝑖min iterations𝐷min will
decrease.

Repeating this process results in decreasing series of
𝐷min(O) integer values, thus 𝐷min(O) eventually reaches 0,
where necessarily 𝐸

𝑅
∈ O (and also 𝐸

𝑅
∈ Ĝ; see lines

(21)-(22)). The iteration stops in line (15) and the algorithm
terminates after executing lines (23)–(30).

Theorem 17. The list of states, generated by algorithm FSS
corresponds to a shortest schedule for the given segmentation.

Proof. Let 𝐴
𝑅
= (Ĝ, 𝐷) be the schedule connection graph

generated by the FSS algorithm. (Note that edges in 𝐷 are
implicitly represented by the 𝑝𝑎𝑟𝑒𝑛𝑡mapping.)

The algorithm starts with the node (⊗)
𝑘
(see line (13));

therefore, 𝐴R contains the start-state (⊗)
𝑘
. According to

Lemma 16, 𝐴
𝑅
also contains the endstate 𝐸

𝑅
.

The search mechanism of the algorithm (breadth-first
search) provides the shortest path from the start-state to the
endstate. Since the algorithm applies the tracing rules (see
line (19)), therefore, 𝐴

𝑅
⊆ 𝐴
𝑅
; thus the 𝐴

𝑅
component

of 𝐴
𝑅
, built by the algorithm, contains the shortest path

in 𝐴
𝑅
from (⊗)

𝑘
to 𝐸
𝑅
. According to Lemma 12 this path

corresponds to one of the shortest paths for the given
segmentation.

Theorem 18. The OMTS and OMTS-A algorithms find an
optimal schedule for the MWCTT for a given node set, link
set, communication link set triplet (𝑁, 𝐿, 𝐿

𝐶
), and amaximum

width 𝑘.

Proof. The OMTS algorithm tries every possible segmen-
tation for the given communication graph. According to
Theorem 17 the FSS algorithm finds the shortest schedule for
each given segmentation. Therefore, OMTS finds the global
optimum.

The OMTS-A algorithm also enumerates every possible
segmentations but skips the cases where the result would
trivially be worse than the current best. Thus OMTS-A also
finds an optimal solution.

Theorem 19. If the number of nodes in the communication
graph is 𝑛 then the computational complexity of the OMTS
algorithm is a polynomial function of 𝑛 for a given maximum
width 𝑘

𝑚𝑎𝑥
.

Proof. The FSS algorithm traces each state in lines (15)–(22).
The 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 operation can run in constant time. The cardi-
nality ofP(R) \ 0 is constant for a given 𝑘; thus the number
of iterations in the loop of lines (17)–(22) is also constant.
The set operations, checking of tracing rules, queue, andmap
updates in the body of the loop in lines (18)–(22) have atmost
𝑂(𝑛) complexity for a given 𝑘. Therefore, the complexity of
tracing any state is 𝑂(𝑛).

Let the number of states traced by the FSS algorithm
(i.e., the number of iterations performed by the loop in lines
(15)–(22)) be denoted by 𝐼FSS. 𝐼FSS clearly cannot be more
than the number of all possible states. Let us consider a 𝑘-
wide segmentation 𝑅 with segment lengths of 𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑘
.

Then the 𝑖th element of a state can be either 𝑅
𝑖,1
, or

𝑅
𝑖,2
, . . . , or 𝑅

𝑖,𝑙𝑖
or ⊗ (𝑙

𝑖
+ 1 possibilities). Therefore the 𝐼FSS

number of possible states for segmentation 𝑅 is

𝐼FSS,𝑅 = (𝑙1 + 1) ⋅ (𝑙2 + 1) , . . . , (𝑙𝑘 + 1) . (9)

Using the inequality of arithmetic and geometric means

𝐼FSS,𝑅 ≤ (
𝑙
1
+ 𝑙
2
+ ⋅ ⋅ ⋅ + 𝑙

𝑘
+ 𝑘

𝑘
)

𝑘

= (
𝑛 + 𝑘

𝑘
)

𝑘

, (10)

which has the complexity of𝑂(𝑛𝑘). Taking into consideration
the complexity of tracing one state (𝑂(𝑛)), the complexity of
the FSS algorithm is

𝐶FSS (𝑛) = 𝑂 (𝑛
𝑘
⋅ 𝑛) = 𝑂 (𝑛

𝑘+1
) . (11)

The 𝐼OMTS number of iterations when FSS is called in the
OMTS algorithm is equal to the sum of the numbers of 𝑚-
wide segmentations, where𝑚 = 1, 2, . . . , 𝑘:

𝐼OMTS (𝑛) = (
𝑛

𝑘
) + (

𝑛

𝑘 − 1
) + ⋅ ⋅ ⋅ + (

𝑛

1
)

< 𝑛
𝑘
+ 𝑛
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑛
1
< 𝑘 ⋅ 𝑛

𝑘
.

(12)

Therefore,

𝐼OMTS (𝑛) = 𝑂 (𝑛
𝑘
) , (13)

and the complexity of the OMTS algorithm can be computed
from 𝐼OMTS and 𝐶FSS as

𝐶OMTS (𝑛) = 𝑂 (𝑛
𝑘
⋅ 𝑛
𝑘+1

) = 𝑂 (𝑛
2𝑘+1

) . (14)

4. Analytical Results

To compare the scheduling methods, measurement metrics
are defined.

4.1. Turnaround Time. Turnaround time, denoted with 𝑇
𝑇
is

the time required to deliver a packet from a node to all other
nodes and get it back to the source node.

In linear TDMA scheduling the worst case delivery time
can easily be calculated for an 𝑛-node network, as follows.
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In the network asynchronous events occur (e.g., measure-
ments), for which events the network reacts by sending
messages (e.g., alerts). After this event, the node first has to
wait for its transmission time slice. The worst case is when
the node transmitted just before the measurement event,
thus it has to wait a full period (𝑛 time slices) for the next
transmission time. Second, at most 𝑛 time slices are required
for the message to turn around. Therefore, in the worst case
the delivery time is

𝑇
𝑇,linear = 2𝑛. (15)

For a 𝑘-wide multi-TDMA schedule a lower bound can
be calculated. Let 𝑐 be the length of the period. In the worst
case a node has to wait for 𝑐 time slices to transmit and 𝑘 ⋅ 𝑐
time slices are required for the message to turn around; thus

𝑇
𝑇,multi = 𝑐 + 𝑘 ⋅ 𝑐 = (𝑐 + 1) ⋅ 𝑐. (16)

The length of the periodmust be at least the size of the largest
segment in the segmentation; therefore, the following lower
bound can be given for 𝑐:

𝑐 ≥
𝑛

𝑘
. (17)

Therefore,

𝑇
𝑇,multi ≥

𝑘 + 1

𝑘
𝑛 > 𝑛 =

𝑇
𝐷,linear

2
. (18)

Note that the maximal gain in delivery time is approxi-
mately 2, compared to linear TDMA scheduling. The lower
bound is a good approximation, when

(i) the segmentation contains segments with equal size,
(ii) in all time slices one node transmits from each

segment,
(iii) 𝑘 is large.

4.2. Power Consumption. Power consumption can be consid-
ered in two different ways. The energy, which is necessary to
deliver a packet from a node to all other nodes is denoted by
𝐸packet,linear for the linear TDMA and𝐸packet,multi for themulti-
TDMA scheduling. The average energy consumed in a time
slice is denoted by 𝐸avg,linear and 𝐸avg,multi for linear andmulti-
TDMA, respectively.

In our model energy 𝐸
𝑡𝑥
is necessary to transmit and 𝐸

𝑟𝑥

to receive a packet, regardless of other parameters (e.g., link
quality).

In both linear and multi-TDMA scheduling each mea-
surement is transmitted by each node exactly once. In each
time slice 𝐸

𝑡𝑥
is required for the transmission and 𝐸

𝑟𝑥

is required for the reception of the message containing
the measurement. Thus the energy required to broadcast a
measurement can be calculated with the following equation
for both the linear and the multi-TDMA scheduling:

𝐸packet,linear = 𝐸packet,multi = 𝑛 ⋅ (𝐸𝑡𝑥 + 𝐸𝑟𝑥) . (19)

In linear TDMA scheduling in each time slice exactly one
node transmits and one node receives the message; thus the
average energy consumption is

𝐸avg,linear = 𝐸𝑡𝑥 + 𝐸𝑟𝑥. (20)

In multi-TDMA scheduling each node will receive and
transmit once in a period; therefore, the multi-TDMA
requires the same energy amount in a period with length 𝑐 as
the linear TDMA for a longer period with length 𝑛. Thus the
average energy consumption for themulti-TDMA scheduling
can be calculated with the following equation:

𝐸avg,multi =
𝑛

𝑐
⋅ (𝐸
𝑡𝑥
+ 𝐸
𝑟𝑥
) =

𝑛

𝑐
⋅ 𝐸avg,linear. (21)

Thus the price of faster delivery time is the increase in
energy consumption. Since 𝑐 ≥ 𝑛/𝑘,

𝐸avg,multi ≤ 𝑘 ⋅ 𝐸avg,linear. (22)

The average energy consumption is largest when all the
segments are equal and there is one transmitter from each
segment in each time slice; in this case the multischeduler
algorithm consumes 𝑘 timesmore energy than the linear one.

5. Test Results

5.1. Computation Time. To test the computational complexity
of the scheduling algorithms, both the OMTS and OMTS-A
algorithms were implemented in Perl. For reference a brute-
force algorithm was also implemented, which did not use the
proposed states. For test cases random graphs with controlled
numbers of node (𝑛) and link (𝑏) were generated, as follows.
𝑛 nodes were placed randomly in a square-shaped area and
𝑛 links for the Hamiltonian cycle were added. Afterwards
𝑏 − 𝑛 additional links were added iteratively between the two
nodes, which had the shortest distance and no existing link
yet. In the test 𝑐 was chosen as 15% of all the possible number
of links; that is, 𝑏 = 0.15 ⋅ (𝑛 ⋅ (𝑛 − 1)/2). The value of 𝑛 varied
from 10 to 100. For each 𝑛, 10 different random topologies
were generated and the average and standard deviation of the
runtimes of the three algorithmsweremeasured, where it was
feasible. The test platform was a LenovoThinkpad T430 with
an Intel Core i5-3210M CPU at 2.5 GHz and 8GB RAM. In
the tests 𝑘 = 3 was used. The results are shown in Table 1,
where the average and standard deviation values are listed for
each experiment. The results are also plotted in Figure 8 in a
logarithmic scale, showing the results of all the experiments.

The brute-force algorithm quickly reached the feasibility
limit of one day at 𝑛 = 15, the OMTS algorithm could
compute schedules for 𝑛 = 40, while OMTS-A was usable
even for 𝑛 = 100. The speed differences are clearly shown in
Figure 8: the computational time of the brute-force algorithm
increases with the number of nodes much faster than in the
case of the proposed algorithms. The behavior of algorithms
OMTS and OMTS-A are similar, but due to the early cuts,
the complexity of OMTS-A is two orders of magnitude lower.
Notice the higher variance of OMTS-A, which is due to the
fact that the efficiency of early cuts depends largely on the
actual topology.
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Table 1: Computation times of algorithms OMTS, OMTS-A, and
brute-force (bf).

𝑛
𝑡OMTS (s) 𝑡OMTS-A (s)

𝑡bf (s)Avg. Std. dev. Avg. Std. dev.
10 0.3 0.01 0.005 0.005 4.7
11 0.5 0.004 0.014 0.007 28.5
12 0.9 0.02 0.033 0.01 161.4
13 1.5 0.02 0.023 0.01 1578
14 2.3 0.03 0.07 0.05 21 182
15 3.6 0.03 0.08 0.03 —
20 23 0.2 0.22 0.3 —
25 101 0.8 0.6 1.1 —
30 383 33 2.6 0.7 —
40 2380 71 19 25 —
50 12 434 280 107 52 —
60 — — 228 122 —
70 — — 1736 261 —
80 — — 7404 3091 —
90 — — 11 029 2462 —
100 — — 64 066 23 836 —
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Figure 8: Computation times of algorithmsOMTS (green), OMTS-
A (red), and brute-force (blue).

For 𝑘 = 3, used in the tests, the theoretical complexity
of the OMTS and OMTS-A algorithms is 𝑂(𝑛

7
), which

corresponds well to the measurement results for 𝑛 ≥ 20.

5.2. Performance Comparison. The proposed method is
compared to a graph coloring based reference algorithm
described in [11]. An example network with 16 nodes was
constructed, where 15 nodes form a cycle with symmetrical
connections between the neighbors and all nodes in the
cycle have symmetrical connection to the central node; see
Figure 9(a).The connectivity graph with a Hamiltonian cycle
is shown in Figure 9(a) with straight and dashed lines, respec-
tively. From the connectivity graph and theHamiltonian cycle
the constraint graph is constructed for the method described
in [11] with constraints 𝐶

1
and 𝐶

2
, as shown in Figure 9(b).
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Figure 9: (a) The connectivity graph of the test network (straight
lines) and the Hamiltonian cycle (dashed lines). (b) The constraint
graph of the network according to the model described in [11].

Although themethod described in [11] contains heuristics
to solve the graph coloring problem, in the example of
Figure 9 the optimal coloring was found. In Figure 10(a) the
constraint graph is colored with 3 colors, which is indeed
the minimum, because the graph contains triangles. The
sequence of the colors was chosen to be purple → green →

blue; that is, purple nodes transmit in time slices 𝑡 = 3𝑚 + 1,
green nodes transmit in time slices 𝑡 = 3𝑚+2 and blue nodes
transmit in time slices 𝑡 = 3𝑚 (𝑚 ∈ N).
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Figure 10: The coloring of the graph according to the method
described in [11] (a) and the proposed method (b).

The optimal schedule found by the proposed OMTS
algorithm for the same network is shown in Figure 10(b).The
optimum was found at 𝑘 = 3 and the graph is colored with 4
colors, with sequence of purple → green → blue → orange.

The timing diagrams of the reference and the proposed
algorithms are shown in Figure 11. The arrows denote the
transmission of the information originating from node 1; the
dashed vertical lines denote the point, where this information
reaches all nodes and is returned back to node 1.

In Figure 11(a) the timing diagram for the reference
algorithm is shown. After the information to be disseminated
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Figure 11: The timing diagram of the schedule generated by the
reference algorithm (a) and the proposed algorithm (b).

first appears at node 1, the node has towait for its transmission
time slice, which requires 3 time slices in the worst case. From
that point the information reaches node 1 again in the 23rd
time slice. Thus the propagation of the information requires
3 + 23 = 26 time slices.

In Figure 11(b) the timing diagram for the proposed
OMTS algorithm is shown. In worst case, node 1 has to wait
4 time slices to transmit, and the information reaches the last
node in the 20th time slice. Thus with this schedule 4 + 20 =
24 time slices are required to disseminate the information
originating from node 1. The example clearly illustrates the
ability of the OMTS algorithm to find the optimal solution in
ring topology networks, where messages must be propagated
to all other nodes.

6. Conclusion

The Minimum Worst Case Turnaround Time problem was
defined. A novel algorithm (OMTS) was proposed for ring-
topology networks to compute multi-TDMA schedules for
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the MWCTT problem. The algorithm was proven to find
the optimal schedule (with the shortest turnaround time),
which, in worst case, provides the fastest means to distribute
information from any node to all other nodes and back to
the source node in the network. It was proven that the multi-
TDMA scheduling can provide at most twofold acceleration
with respect to linear scheduling, at a price of increased
energy consumption.

An accelerated version of the algorithm (OMTS-A) was
also proposed, which narrows the search space during run-
time using heuristics but still guarantees the optimal solution.

In addition to the mathematical analysis of the proposed
algorithms, extensive tests were performed to compare the
performances of the proposed algorithms and the conven-
tional (brute-force) search method. While the brute-force
algorithm can be used for small networks only (less than 15
nodes), the proposed algorithm can solve problemswith even
100 nodes in reasonable time.

The performance of the designed schedule was also
compared to that of another algorithm. In case of the
MWCTT problem the proposed solution was able to find
better (optimal) schedule.
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[31] Á. Orosz, G. Róth, and G. Simon, “Efficient TDMA scheduling
algorithms for sensor networks containing multiple rings,” in
Proceedings of the IEEE 8th International Symposium on Intelli-
gent Signal Processing (WISP ’13), pp. 126–130, Funchal, Portu-
gal, September 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


