492 research outputs found

    A Dirichlet Process based type-1 and type-2 fuzzy modeling for systematic confidence bands prediction

    Get PDF
    This paper presents a new methodology for fuzzy logic systems modeling based on the Dirichlet process Gaussian mixture models (DPGMM). The proposed method simultaneously allows for the systematic elicitation of confidence bands as well as the automatic determination of model complexity. This work is new since existing fuzzy model elicitation techniques use ad hoc methods for confidence band estimations, which do not meet the stringent requirements of today's challenging environments where data are sparse, incomplete, and characterized by noise as well as uncertainties. The proposed approach involves an integration of fuzzy and Bayesian topologies and allows for the generation of confidence bands based on both the random and linguistic uncertainties embedded in the data. Additionally, the proposed method provides a “right-first time approach” to fuzzy modeling as it does not require an iterative model complexity determination. In order to see how the proposed framework performs across a variety of challenging data modeling problems, the proposed approach was tested on a nonlinear synthetic dataset as well as two real multidimensional datasets generated by the authors from materials science and bladder cancer studies. Results show that the proposed approach consistently provides better generalization performances than other well-known soft computing modeling frameworks-in some cases, improvements of up to 20% in modeling accuracy were achieved. The proposed method also provides the capability to handle uncertainties via the generation of systematic confidence intervals for informing on model reliability. These results are significant since the generic methodologies developed in this paper should help material scientists as well as clinicians, for example, assess the risks involved in making informed decisions based on model predictions

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    Bioregions in marine environments: Combining Biological and Environmental Data for Management and Scientific Understanding

    Get PDF
    Bioregions are important tools for understanding and managing natural resources. Bioregions should describe locations of relatively homogenous assemblages of species occur, enabling managers to better regulate activities that might affect these assemblages. Many existing bioregionalization approaches, which rely on expert-derived, Delphic comparisons or environmental surrogates, do not explicitly include observed biological data in such analyses. We highlight that, for bioregionalizations to be useful and reliable for systems scientists and managers, the bioregionalizations need to be based on biological data; to include an easily understood assessment of uncertainty, preferably in a spatial format matching the bioregions; and to be scientifically transparent and reproducible. Statistical models provide a scientifically robust, transparent, and interpretable approach for ensuring that bioregions are formed on the basis of observed biological and physical data. Using statistically derived bioregions provides a repeatable framework for the spatial representation of biodiversity at multiple spatial scales. This results in better-informed management decisions and biodiversity conservation outcomes.Peer reviewe
    corecore