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22 Abstract
23 Bioregions are important tools for understanding and managing natural resources. Bioregions 

24 should describe where relatively homogenous assemblages of species, enabling managers to better 

25 regulate activities that might affect these assemblages. Many existing bioregionalisation 

26 approaches, which rely on expert derived, delphic comparisons or environmental surrogates do not 

27 explicitly include observed biological data in such analyses.  We highlight that for 

28 bioregionalisations to be useful and reliable for systems scientists and managers, bioregionalisations 

29 need to be based on biological data, include an easily understood assessment of uncertainty, 

30 preferably in a spatial format matching the bioregions, and be scientifically transparent and 

31 reproducible. Statistical models provide a scientifically robust, transparent and interpretable 

32 approach for ensuring that bioregions are formed based on observed biological and physical data. 

33 Using statistically-derived bioregions provides a repeatable framework for the spatial representation 

34 of biodiversity at multiple spatial scales. This results in better informed management decisions and 

35 biodiversity conservation outcomes.

36
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37 Introduction
38 The distribution of species is a function of many controlling influences operating at a diversity of 

39 scales, including environmental heterogeneity and stability in space and time (Rohde 2007), genetic 

40 and evolutionary history (Webb et al. 2002), intra- and inter-specific species interactions such as 

41 predation, competition and facilitation (Polechová & Barton 2005), dispersal dynamics (Ronce 

42 2007), and environmental disturbances (Sheil 2016). Irrespective of history, the present patterns can 

43 be organised spatially creating a biogeography (Last et al. 2010; Ebach & Parenti 2015). With 

44 knowledge of where all species exist, scientists would be in a better position to understand why 

45 species are distributed as they are, a fundamental line of biogeographic inquiry. Moreover, 

46 managers would be in a better position to manage species and their assemblages for a variety of 

47 applications, including the conservation and sustainable use of biodiversity and ecosystems, and 

48 their associated goods and services. 

49

50 The quantity and quality of observations of data required to precisely understand where all species 

51 are located is impractical to achieve. This is particularly so in ecosystems that are vast and 

52 inaccessible, such as our focus: the marine ecosystem. All individual species cannot be surveyed, 

53 and, even for well-studied species, complete knowledge on their distributions remains highly 

54 uncertain. From a scientific perspective, knowledge of the distribution of species is still 

55 fundamentally lacking, despite long-term, ongoing efforts to compile observational datasets for a 

56 broad range of taxonomic groups (e.g. Ocean Biogeographic Information System; Grassle 2000). 

57 Consequently, to better understand how species are placed within their environment, tools like 

58 species distribution models are used to describe their distributions (Guisan & Zimmermann 2000). 

59 When considering a few species, the use of individual species distribution models is a logical 

60 approach to describe their distributions. However, with many species in a geographical region, 

61 researchers may want to move beyond individual species’ distributions and better understand the 

62 distributions of species assemblages, communities, ecosystems and bioregions (Fig 1a; Ferrier & 

63 Guisan 2006; Warton et al. 2015). To do this, scientists often engage in biogeographic 

64 classification, otherwise known as bioregionalisation, ecoregionalisation, zoogeographic 

65 classification, and ecological mapping (Ebach & Parenti 2015). Here we consider that 

66 bioregionalisations are a biological and physical partitioning of geographic space based on the 

67 spatial distribution of multiple species, communities, ecosystems, or other biological characteristics. 

68 This description shares many concepts with approaches such as vegetation classification, ecosystem 

69 characterisation, ecoregions and fisheries regions (Begg et al. 1999).

70

Page 3 of 24

https://mc.manuscriptcentral.com/bioscience

BioScience Pre-Publication--Uncorrected Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft M
anuscript

71 Bioregions are a simplification (a model) of the true distribution of multiple species that share a 

72 similar ecological and abiotic preference and sometimes an evolutionary history. Bioregion maps 

73 may be useful for managing multiple different human activities in a region because they simplify 

74 complex information into a form that humans are inherently good at understanding (May 1976). 

75 Bioregions should define the key physical and biological attributes of a region, provide a simplified 

76 understanding of the ecosystems and can be an effective way to compare geographic differences in 

77 species composition from local to global scales (Fig. 1b). Bioregions can help contextualise spatial 

78 management in a framework that is transparent for decision-making. Decision makers often need to 

79 know the spatial extent of biological diversity in order to assess a management action in the context 

80 of the biological component of interest (Fig. 1c).  Bioregional classifications provide the 

81 fundamental building blocks to inform the most appropriate management tools for any geographic 

82 area (CBD 2010). Managers might want to assess the impact of human activity (Leaper et al. 2012), 

83 gauge the representativeness of a protected area system (Brunckhorst & Bridgewater 1995), or 

84 establish representative monitoring programs (Hutchings et al. 2009), within and across bioregions.

85

86 Herein, we advocate for the continued development of statistical bioregions to increase scientific 

87 understanding of the distribution of biodiversity and to support resource management. We identify 

88 the desired characteristics of bioregions, emphasising the importance of appropriate statistical 

89 methods in their derivation. We provide a case study in the marine environment to demonstrate one 

90 example of how a statistical bioregionalistion can be conducted. As implementation of management 

91 based on biogeographic classification continues to be developed, there is a need for rigorous, 

92 transparent and well-accepted statistical biogeographic characterisations to deliver improved 

93 management tools to support sustainable use and conservation at local, national and global levels. 

94

95 The current state of marine bioregionalisation approaches 

96 Bioregionalisations often rely heavily on physical, spatial or biological surrogates to describe the 

97 distribution of more complex assemblages, communities, ecosystems or bioregions. This approach 

98 has been implemented with both expert knowledge (UNESCO 2009) and statistical modelling 

99 (Reygondeau et al. 2017; Sayre et al. 2017). These approaches are useful across broad geographic 

100 regions where equivalent biological data are lacking or too sparse to inform reliable biological 

101 models (Beier & Albuquerque 2015), if their uncertainty is recognised and presented. Global 

102 marine bioregional maps have been produced, which ecologically partition the planet based on only 

103 abiotic characteristics (environmental drivers) rather than in combination with biotic distributions 
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104 (UNESCO 2009; Longhurst 2010; Sayre et al. 2017). These maps attempt to depict ecological 

105 zonations based on environmental variation and are often labelled ‘ecoregions’. Despite the term 

106 ‘ecoregions’, we stress that these are not ecological, because there is no explicit link to biological 

107 data. They do, however, provide a useful partitioning of environment, which might be better coined 

108 as ‘enviro-regions’. An example of this is the Global Open Oceans and Deep Seabed (GOODS; 

109 UNESCO 2009) biogeographic classification that assumes that ocean basins delineate species. 

110 However, at least for some taxa this assumption, which seems quite plausible at face-value, is not 

111 supported by more recent research (O’Hara et al. 2011).

112

113 Recent work by Sayre et al., (2017) provides an example of ‘enviro-regions’ – regions based on 

114 physical data. This physical regionalisation is both broad-scale (global) and relatively fine-

115 resolution (1/4° across the globe). Compared to bioregions, ‘enviro-regions’ are relatively easy to 

116 create as physical data are usually more accessible and comprehensive. These environmental 

117 regionalisations can correlate with variation in biotic distributions and are assumed to be 

118 representative of biotic distributions. However, some studies have demonstrated less partitioning of 

119 geographic space with the inclusion of biological data (Woolley et al. 2013), suggesting that species 

120 might persist at broader ranges of environmental variation than the variation generated from 

121 physical data alone. Other studies have shown the danger of over-prediction when using physical 

122 data alone, without a better understanding of the biology of the species or community, important 

123 physical environmental variables may be lacking from the analysis (Anderson et al. 2016). It 

124 follows that addition of biological and ecological information can improve delineation of ecological 

125 patterns, through improved accuracy, granularity and reduced bias (Warton et al. 2015).

126

127 Biological information is often incorporated into bioregionalisations as expert-derived products 

128 (Spalding et al. 2007; UNESCO 2009; Longhurst 2010) and in such form rarely includes estimates 

129 of uncertainty (Robinson et al. 2017). In such cases, bioregion boundaries are outlined by experts 

130 (humans), often as part of a committee, and likely influenced by anthropogenic requirements (e.g. 

131 fisheries regions and stocks; Begg et al. 1999; Longhurst 2010). Good examples of this are fisheries 

132 areas that reflect governance boundaries and consequently might not accurately describe the 

133 distributions of species or ecosystems of interest (Department of the Environment and Heritage, 

134 2006). Expert-derived bioregionalisations are typically quite coarse resolution and often broad in 

135 spatial extent (Ekman 1953). While expert information is often easily communicated and is 

136 applicable in situations where data are inadequate, it may not be objective or reproducible. 

137
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138 An alternative approach (which could be based on physical or expert-derived data), is to use 

139 statistical models that estimate the distribution and content of bioregions based on biological and 

140 physical data. Increasingly improved global datasets that incorporate remotely sensed information 

141 (including both satellites and autonomous platforms to provide information on the surface and sub-

142 surface physical properties) are reducing the need to rely on physical surrogates or expert-derived 

143 processes when generating bioregions. Much of the difficulty in producing a bioregion stems from 

144 relating (dense) interpolated physical data layers to (sparser) biological data. 

145

146 What data can inform statistical bioregions?
147 The generation of bioregions requires data. The three main types of data for bioregionalisation are 

148 biological data, physical data and expert-derived knowledge (which itself is usually a mental model 

149 based on the first two data types). The volume and variety of biological and physical datasets are 

150 increasing, and in many areas, we have reached a key point in time where bioregionalisation can 

151 now evolve towards data-driven analyses and products based on observed data and expressed with 

152 accompanying measures of uncertainty. 

153

154 Physical data have many desirable features which make them good datasets for informing 

155 bioregionalisation; notably good spatial coverage. ‘Physical data’ is a term we use here to represent 

156 many types of environmental, abiotic, geomorphic or spatial data used to inform the classification 

157 of biological data and represent the physical world. The main sources of synoptic physical data 

158 include remotely sensed data, model outputs and interpolations of in situ physical data. At broad 

159 spatial scales, most remotely sensed data for marine habitats comes from satellites, and in situ 

160 physical data which has been collected at discrete locations in time, which is modelled and then 

161 predicted across space based on these observations. These datasets can come with inherent biases 

162 which are often overlooked in broad-scale modelling (Foster et al. 2012). Despite this, physical data 

163 can be used to inform the distribution of biological data. Like approaches such as species 

164 distribution models, we can generate bioregions based on model relationships between the physical 

165 and biological data (Foster et al. 2013). 

166

167 Biological data comes in many forms, such as genes, traits, populations, species and higher 

168 taxonomic units. For our purposes, we will focus on biological data that can be readily incorporated 

169 in statistical models to build bioregions or components of bioregions. This largely constrains us to 

170 the use of observational data about species (and/or Operational Taxonomic Units) in time and 

171 space. These observations can be grouped into two broad categories; data from scientific surveys 
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172 and ad-hoc datasets (Graham et al. 2004). Scientific survey data tends to be more systematic and are 

173 usually more suitable for scientific endeavours. They include information on the amount of 

174 biological material (presence-absence, abundance or biomass) at relatively fine taxonomic 

175 resolutions and can include additional biological data like genetic information and/or trait 

176 information. The short-coming of survey data in marine environments is that they usually focus on 

177 relatively small geographical regions, however there are exceptions to this rule (Edgar & Stuart-

178 Smith 2014). Ad-hoc datasets come from a variety of sources, including museum records and 

179 citizen science programs. Generally, they are collected without a rigorous scientific survey design 

180 (Warton & Shepherd 2010). Often the location where species were observed is recorded, but 

181 corresponding information on absences, survey effort and observation methods are generally 

182 lacking. These data are widely referred to as ‘presence-only’ data and are included in biodiversity 

183 databases such as Ocean Biogeographic Information System (OBIS; Grassle 2000; ). Presence-only 

184 data obtained from biogeographic databases are widely used for modelling broad scale biodiversity 

185 patterns. This is because they have the greatest spatial coverage at regional and global scales, 

186 however the lack of an appropriate sampling design, and the frequent lack of recorded absences, 

187 means that they should be treated with care in statistical biogeographic models, or indeed any 

188 inference (Beck et al. 2014). 

189 Expert opinion has had a prominent role in the development of bioregions (Ekman 1953). This is 

190 because a major limiting factor to developing many broad-scale bioregionalisations has been the 

191 lack of biological (and to a lesser extent, physical) data. Therefore, past bioregionalisation efforts 

192 have heavily relied on expert elicitation from taxonomists, marine ecologists, biogeographers and 

193 stake-holders to delineate important biogeographic regions based on the current status of literature 

194 and local knowledge. Expert opinion is still likely to play an important role in bioregional analyses, 

195 as it contains implicit information on a region and how species might be distributed within it, as 

196 well as an understanding of the biases associated with different data types or surveys.  One major 

197 issue with expert-based bioregionalisations is reproducibility and assessing the uncertainty in 

198 predictions, as expert knowledge is a synthesis of mental, rather than statistical, models. However, 

199 there are promising methods that can explicitly include expert knowledge as prior information into 

200 statistical models, which we discuss below.

201

202 Developing statistical bioregions
203 A bioregion can be defined as a geographic region with some relatively constant biological 

204 characteristics, while the biology across different bioregions are relatively different (Brunckhorst & 

205 Bridgewater 1995). This definition is intuitively appealing in its logic, but it is not specific enough 
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206 to guide formal data analysis. To formalise it, we need to define characteristics of a bioregion and 

207 specify how they should reflect in biological data. A formal definition of bioregions enables their 

208 description in the context of their spatial domain and their relationships to physical data, which can 

209 be used as explanatory variables to inform a model. Under all appropriate statistical approaches, we 

210 suggest a useful characteristic of a bioregion is an area in which the community composition (the 

211 set of species attributes, such as their abundances) is approximately constant. Different bioregions 

212 are characterised by different community composition and their respective relationships to the 

213 physical data (Fig. 1). A similar formal definition was introduced by Ter Braak et al. (2003) and 

214 Foster et al. (2013) using presence and absence data, and expanded to count and biomass data of 

215 each species to include a constant abundance within each bioregion (Foster et al. 2017). However, 

216 such a definition requires careful implementation when the data arise from samples that have 

217 different areal or temporal units of measurement. In such cases, the scale of the data is different and 

218 must be adjusted for during the analysis – generally using an offset in the model (e.g. Foster et al. 

219 2017). However, using quantities such as probability of occurrence needs to be interpreted with 

220 information on how the data were collected to effectively describe the probability with reference to 

221 the sampling unit (Warton & Shepherd 2010). Like most classification approaches we assume that 

222 once bioregions are defined, the species composition remains constant per bioregion.  

223

224 Currently, there are many statistical approaches available to classify biological data in to 

225 bioregions. However, the choice of which approach to take will often be dictated by the type of data 

226 available and the inferences the researchers wish to make. We suggest a useful delineation of 

227 possible approaches into the following four categories (like those suggested by Ferrier & Guisan 

228 2006)

229 1. Predict First, then Group: A two-step procedure that involves predicting the value of each 

230 species at a grid of locations and then clustering those predictions. The environmental 

231 conditions are incorporated in the first step through species distribution models (Guisan & 

232 Zimmermann 2000), which output species prediction maps. The set of individual species 

233 maps are used as inputs into a spatial clustering analysis in a second step. There are multiple 

234 model choices available for each step of this analysis. For the prediction step, any kind of 

235 species distribution modelling procedure appropriate for the input data could be used 

236 (Guisan & Zimmermann 2000).  For the clustering step, the analytical method should ideally 

237 have methods that will help inform the number of bioregions/clusters (e.g. k-means 

238 clustering or model-based clustering; Fraley & Raftery 2002).
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239 2. Jointly Predict, then Group: This is an extension of the previous method, where recent 

240 developments in joint species distribution modelling (Thorson et al. 2016; Ovaskainen et al. 

241 2017; Vanhatalo et al. 2018) enable the joint estimation of multiple species and their 

242 interspecific correlations (Thorson et al. 2016; Ovaskainen et al. 2017; Vanhatalo et al. 

243 2018).  Predictions from the multispecies JSDM are passed to an appropriate clustering 

244 method to group species into regions. This remains a two-step procedure for delineating 

245 bioregions and does not explicitly aim for spatially contiguous regions (Ovaskainen et al. 

246 2017).

247 3. Group First, and then Predict: Another two-step approach involves first clustering 

248 biological data alone, and then predicting the clusters into unsampled locations using a 

249 variant of a ‘species’ distribution model (Miller & Franklin 2002; Ohmann & Gregory 2002; 

250 Vogiatzakis & Griffiths 2006).  These are similar steps to the previous methods but are 

251 performed in the reverse order. Like before, there are multiple choices for appropriate 

252 methods to be used in each step. 

253 4. Analyse Simultaneously: Perform both clustering and spatial predictions within a single 

254 model that defines the assumptions/requirements of a bioregion, propagates uncertainty 

255 throughout the process and appropriately handles the multivariate spatial data (Ter Braak et 

256 al. 2003; Foster et al. 2013, 2017; Valle et al. 2014). 

257 Each method has its positive and negative attributes, but some are inappropriate for certain 

258 situations. The choice among them will depend on the kind of results required and the kind of data 

259 available. As we describe above, there are two main sources of biological data, those that come 

260 from scientific surveys and those collected in an ad-hoc manner. Currently, many of these methods 

261 have been described and build on scientific survey datasets, where the collection of biological data 

262 is relatively consistent between observations. This means that for many of these approaches 

263 systematic sampling is required to generate robust bioregional outputs. Currently, the ‘Predict First, 

264 then Group’ approach is one of the few approaches which can assemble bioregions based on ad-hoc 

265 data. This approach allows for the development and prediction of species-specific presence-only 

266 models (Warton & Shepherd 2010). These single species predictions can then be classified into 

267 bioregions based on species which have similar ad-hoc collection sightings. At a broad geographical 

268 extent, the use of the ‘Predict First, then Group’ approach is useful with reference to presence-only 

269 datasets and methods account for issues associated with variability in occurrence records (Warton & 

270 Shepherd 2010). Broad scale bioregionalisations have been achieved using multiple presence-only 

271 species distribution models, which are then clustered to provide insight into major biogeographical 

272 configuration (O’Hara et al. 2011; El-Gabbas & Dormann 2018). These approaches still suffer from 
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273 a range of issues, especially related to observational biases in occurrence record data. Correcting for 

274 observational and taxonomic biases in broad scale occurrence data is an active area of statistical 

275 research (Renner et al. 2015).

276

277 Some commonly used ‘Predict First, then Group’ approaches are based on biological distances (e.g. 

278 Bray-Curtis dissimilarity). These are fed into regression type models to predict biological 

279 dissimilarities in unobserved regions, based on site-pair differences in the physical data (Ferrier & 

280 Guisan 2006), and subsequently classified into similar ecological regions or clusters. This approach 

281 fails to capture several key statistical principles making it inappropriate as a statistical method for 

282 bioregional classification: Firstly, they do not model the observed data, but rather an algorithmic 

283 abstraction of it (dissimilarities), which means that concepts like mean-variance relationships are 

284 often violated (Warton et al. 2012). Secondly, the model likelihoods are often inappropriately 

285 specified as it is based on models for single observations, not pairs of observations; so derived 

286 metrics from the likelihood such as information criteria and deviance are unreliable (Warton et al. 

287 2015). Thirdly, they typically ignore uncertainty or are unable to compute it directly (Woolley et al. 

288 2016). 

289

290 Recent development of joint species distribution models has seen their application in specific 

291 ecological and biogeographic contexts. Joint species distribution models (JSDMs) are a powerful 

292 extension to the ‘Predict First, then Group’ approach, because they jointly estimate the covariance 

293 between species, which improves prediction and provides insight into how species are related and 

294 structured (Hui et al. 2013; Thorson et al. 2016). They require subsequent clustering on the species 

295 predictions, which if done with appropriate clustering methods, should produce reliable results. 

296 While these powerful approaches are at the cutting edge of ecological statistics, they currently fail 

297 to propagate the uncertainty from the species level predictions through to the bioregional 

298 classification step (Ovaskainen et al. 2017). As a result, their predicted bioregional classifications 

299 lacks an estimate of uncertainty in the bioregional predictions, however this information can be 

300 obtained at the species level (Warton et al. 2015). 

301

302 The ‘Group First, then Predict’ method suffers from many of the criticisms, and benefits from 

303 similar strengths, to those of the ‘Predict First, then Group’ method. A positive, compared to 

304 ‘Predict First, then Group’, is that the number of prediction models is greatly reduced. This enables 

305 the analyst to really focus on fitting good models and diagnosing them well (Miller & Franklin 
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306 2002; Vogiatzakis & Griffiths 2006). Unlike the ‘Predict First, then Group’ method, grouping first 

307 currently restricts completely the use of ad-hoc data as methods to cluster only presences are 

308 undeveloped. This severely limits the breadth of applications it is available for. Lastly, both the 

309 ‘Group First, then Predict’ and the ‘Predict First, then Group’ methods typically fail to propagate 

310 uncertainty from the data through to the final bioregional classification.

311

312 Examples of the ‘Analyse Simultaneously’ bioregional methods have recently emerged (Dunstan et 

313 al. 2011; Foster et al. 2013, 2017). These approaches build upon the concepts of modelling physical 

314 and biological data together, but do the prediction and clustering within a single model. These 

315 approaches model observed data directly and transfer the variance of the data all the way through to 

316 final bioregional prediction (Woolley et al. 2013; Hill et al. 2017). 

317

318 We argue for the purposes of bioregionalisation using a model which is designed specifically for 

319 estimating bioregions should be used. The ‘Analyse Simultaneously’ approaches can account for 

320 inter-dependencies between biological and physical data when estimating bioregional classifications 

321 (Foster et al. 2013, 2017). Researchers might achieve what they consider ecologically informative 

322 regionalisation using any of these four approaches, but must be aware of the information lost at 

323 each modelling step in a bioregional analysis (Hill et al. In Prep).

324

325 Case study
326 To illustrate how one might implement a statistical bioregionalisation, we present a 

327 bioregionalisation of fish on the North-West shelf of Australia. The analysis was performed using 

328 an extension of the Regions of Common Profiles (RCP) model (Foster et al. 2013) that allows for 

329 spatial coherency (Vanhatalo et al. In Review) and is an example of an ‘Analyse Simultaneously’ 

330 method. There are several important decisions which need to be considered when developing these 

331 approaches. Firstly, from a biological perspective we need to consider the number of species to 

332 include in the model and what are the minimum number of observations a species requires to be 

333 included. As a rule of thumb, multiple species models such as JSDM and mixture models can 

334 handle rarer species compared to single species models (Hui et al. 2013; Norberg et al. 2019). In 

335 this case study, the entire dataset consisted of 854 demersal trawls taken in depths of 20 to 450 m 

336 from October 1986 to August 1997. Each trawl sampled approximately the same amount of seabed, 

337 so no adjustment is necessary for varying sample effort. We based the bioregionalisation on 253 

338 teleost and chondrichtyan species, from a total of 579 species. We chose this subset as of species as 
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339 they were observed in a least 15 or more trawls. As a rule of thumb, multiple species models such 

340 as JSDM and mixture models can handle rarer species compared to single species models (Hui et al. 

341 2013; Norberg et al. 2019). Species observed in fewer trawls could have been included in the 

342 analyses if the distribution of rare (and potentially threatened) species was a management priority. 

343 However, the inclusion of these species would likely add additional noise making it harder to 

344 extract relevant information. 

345

346 As per the biological data, the choice of physical data used as covariates in the modelling will have 

347 important ramifications for the bioregionalisation produced. Ideally, the covariates used in the 

348 model should best describe the environmental and abiotic factors which characterise each species 

349 distribution. For our case study, we chose intra-annual standard deviation (SD) of nitrate, intra-

350 annual SD of dissolved oxygen, annual mean of salinity, intra-annual SD of silicate and intra-annual 

351 SD of sea surface temperature as physical data to define bioregions (see Foster et al., 2013 for 

352 details). Intra-annual variation can be important to ecological systems as it measures the range of 

353 environmental conditions that a single location may encounter. In this example, we did not include 

354 information on geomorphic data like soft and hard substrate. These types of variables are likely to 

355 be important for describing marine species distributions and will help inform species distributions 

356 and assemblages which respond strongly to physical features, rather than environmental gradients 

357 (like azonal ecosystems in terrestrial environments; Olson et al. 2001). It is quite plausible that 

358 different bioregions can exist in the same covariate space. In these instances, this would likely be an 

359 effect of missing covariates, which could be added to an analysis (if available) to help differentiate 

360 bioregions. Different physical data will tend to operate on different spatial and temporal scales 

361 which could have important implications for bioregionalisation and the variation of assemblages 

362 (Austin 2002). 

363

364 The number of groups chosen during the bioregionalisation process can drastically change the 

365 bioregional outcomes (Miller 1996). In the RCP approach we estimated the number of groups from 

366 the data based on the model likelihood. Using a single step, sites are grouped based on the species 

367 composition and their relationship to the physical data.   The model likelihood was then used to 

368 inform the number of groups based on Bayesian Information Criterion (BIC; Burnham & Anderson 

369 2004). Our model identified four bioregions. Choosing the number of groups which best represents 

370 the available data appears to be one of the key advantages of the ‘Analyse Simultaneously’ method.  

371 Other approaches can generate similar groupings, but they must be done in a two-step process, 
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372 which potentially divorces the link between the biological data and number of groups (Hill et al. In 

373 Prep). 

374

375 In this analysis we kept outputs simple for illustration purposes, but note that this analysis can 

376 provide more complex outputs. We present a discrete (or hard) classification by assigning site labels 

377 based on the most probable bioregion at that site, even though the probability of each site belonging 

378 to each bioregion (RCP group) is estimated. The discrete clustered bioregions are given in Fig. 2b, 

379 which suggests that there is a coastal region, an inner continental shelf bioregion, a patchy mid-

380 shelf bioregion, and an outer shelf and slope bioregion. Greater information can be gained by 

381 examining the probabilities of each bioregion being present across the same study region (Figs. 2c-

382 f). There appears to be quite high probability for Bioregion 1 throughout the entire shallow and 

383 medium-water environment and this overlaps substantially with Bioregions 3 and 4. Conversely, the 

384 deep-water bioregion (Bioregion 2) appears to have a sharp boundary where the continental margin 

385 descends more steeply. Uncertainty maps are available for the probabilistic prediction, as illustrated 

386 for Bioregion 3 (See Fig. 3a-c). There are many spatial locations where the predicted presence of 

387 this bioregion has low certainty. This is evidenced by the interval estimates (95% confidence 

388 interval), Fig. 3a and Fig. 3c, covering the probabilities between (almost) zero and (almost) one.  

389 However, there are locations where the probability is certain. These include locations where the 

390 bioregion is not (e.g. in the deeper and shallowest water) and locations where there is high 

391 confidence in the prediction.

392

393 To understand the predicted biological content of each bioregion, we can inspect its species profile. 

394 An example, again for Bioregion 3, is given in Fig. 3d: this Bioregion is represented by a small 

395 number of species that are very likely present (probability of observation > 0.5); a moderate number 

396 of species that are moderately likely to be found; and many species that are unlikely to be present. 

397 Summing these probabilities gives an indication of species richness in the bioregion. In this case, 

398 we would expect to encounter approximately 37 species each time a trawl is performed at a site 

399 estimated to have high probability (probability of observation > 0.5) of belonging to this bioregion. 

400 The species profiles also enable contrasts between bioregions based on their biological content, the 

401 profile is the prevalence of every species in each bioregion (we have depicted the profile as a line in 

402 Fig. 3, but the identities and their prevalence can be compared across regions; e.g. Hill et al. 2017): 

403 if two bioregions share a similar species profile, then they are less different than two bioregions that 

404 do not.
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405

406 Statistical bioregionalisations offer a robust means for identifying, framing and predicting the 

407 distribution of biodiversity patterns. The example above shows how quantifying the distributions of 

408 multiple species can be distilled into bioregional predictions. These predictions and their associated 

409 uncertainties can be assessed against management actions or industrial activities within a bioregion 

410 (Fig. 1). 

411

412 How do statistical bioregions help improve management decisions?
413 The choice to undertake a bioregionalisation process is often driven by the desire to understand how 

414 multiple species are assembled and how best to manage them (Fig. 1a). It is important that 

415 information obtained from a bioregionalisation analysis be directly applicable to the current 

416 management or scientific question at hand and it should be presented with an appropriate level of 

417 detail so that it can be understood by those who use it. To us, key considerations in this context 

418 include: 

419 (i) Identify which species are likely to be found in each bioregion (noting that some species 

420 may be found in multiple bioregions). Understanding the membership of species to each 

421 bioregion is a critical step for management because it gives managers the capacity to 

422 identify which species will be affected by activities (protective or threatening) in a region. 

423 We can see from figure one (Fig. 1b), that many of the species are present across multiple 

424 bioregions, but their relative intensity is specific to each region. It is this combination of 

425 predicted abundances (or prevalence) for a set of species which represents the community 

426 composition present within that bioregion relative to the variation in the physical data (e.g. 

427 environmental gradients). For all bioregional approaches, except ‘enviro-regionalisation’, 

428 the species composition of groups can be identified. For all the two-step approaches species 

429 in groups can be identified by summarising the observed species’ data at classified survey 

430 sites, while the ‘analyse simultaneously’ approach we can estimate the species membership 

431 from parameters in the models and the associated uncertainty that each species belongs to a 

432 bioregion. Reporting estimates of species density (or prevalence) and the uncertainties 

433 associated with those estimates, will further help managers avoid or protect critical areas 

434 within a bioregion(s) where key species or assemblages need to be managed (Fig. 1b).

435

436 (ii) Identify which physical data characterise each bioregion. All approaches should enable the 

437 characterisation of physical data used to describe each bioregion (except for expert derived). 
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438 Like describing species membership, the two-step approach can summarise the observed 

439 environmental data at classified survey site. While the one-step approach can report these 

440 characteristics via model parameters (Hill et al. 2017). 

441

442 (iii) Identifying the number of bioregions is an important part of any bioregionalisation process. 

443 Choosing the number of bioregions is often driven by the requirements of managers or is 

444 chosen to reflect governance boundaries (Department of the Environment and Heritage, 

445 2006). Ideally, the number of bioregions should be informed by the data, the ‘Analyse 

446 Simultaneously’ approach is currently the only approach which can estimate the number of 

447 groups with reference to the original data. Having said this, all approaches should perform 

448 similarly if the number of bioregions is known (Hill et al. In Prep). When the number of 

449 bioregions is unknown, additional information like phylogeny might help inform this step 

450 (Ebach & Parenti 2015). 

451

452 (iv) Bioregional classification should be undertaken using a transparent analytical process, so 

453 that it is clear to an interested onlooker what was done, why certain decisions were made 

454 and what assumptions (ecological and statistical) these decisions reflect. This is a clear 

455 advantage of statistical bioregionalisation over expert derived or delphic approaches. Under 

456 all statistical bioregional approaches the steps from data, through to analysis, outputs and 

457 interpretation can be clearly reported and reproduced based on the data and methods used.

458

459 (v) Bioregional classification should be updatable with the availability of new information, so 

460 that the bioregions can be updated in a coherent and consistent manner when additional data 

461 become available. This is clearly an advantage of all statistical bioregionalisation 

462 approaches where outputs are derived based on modelled data and clearly reported steps and 

463 assumptions in a way that expert-derived products are not. 

464

465 (vi) Understanding how uncertainty informs confidence in the location of bioregions, along 

466 with the confidence in the description of physical and biological characteristics within each 

467 bioregion (Brown 1998; Fiorentino et al. 2018). Assessments of uncertainty and variance are 

468 already standard in many management actions, for example fisheries ecosystem-based 

469 management (Koen-Alonso et al. 2019) and are likely to become more important in 

470 bioregionalisation decision-making, where economic, social and biodiversity values are 

471 often traded to meet competing objectives. Uncertainty helps modellers, ecologists, 

472 managers understand how reliable a bioregional classification might be, what its limitations 
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473 are (e.g. for widely ranging species) and should be based on the propagation of variance 

474 from the data through to the estimated model. It is important to recognise that many 

475 management processes (e.g. design of a representative marine reserve network, or an 

476 environmental offset program), require stability from bioregional analyses, especially over 

477 the time period that policies are being developed. Defining a coherent and consistent process 

478 to update bioregionalisations is an important aspect of their value to government.

479

480 Future directions for statistical bioregions
481 Throughout this paper we have advocated the use of data informed statistical bioregionalisations. 

482 We acknowledge that a lack of quantitative data has been a limiting factor in many cases, leading to 

483 the use of physical data or expert knowledge to characterise bioregions (Reygondeau et al. 2017). 

484 The availability of biological occurrence data is escalating rapidly with improved data sharing and 

485 collection technologies.  However, broad-scale biological datasets frequently contain significant 

486 biases and error, such as spatial bias in where occurrences were recorded (near major human 

487 populations) and an over representation of rare species (taxonomists are inherently interested in rare 

488 species) and gear or observer selectivity (Graham et al. 2004). These present challenges which need 

489 to be addressed when developing broad scale bioregional models.  In our case study, we used 

490 biological data collected in a systematic and consistent way, meaning that abundances (presence 

491 and absence) of species was explicitly recorded. If these data had been ad-hoc collections, we 

492 currently would not have been able to use RCP model approach to describe bioregions, as the model 

493 has not been correctly formulated to handle presence-only occurrence data where absences are not 

494 systematically recorded. With a lack of recorded absences, an appropriate model would be a spatial 

495 point process (Cressie 1993). Under a situation where we only had presence-only data from ad-hoc 

496 surveys, we might choose to use a ‘Predict First, then Group’ approach where we generate many 

497 point process species distribution models independently and then undertake a clustering of the 

498 species Poisson point process predictions across the seafloor to generate bioregions (e.g. O’Hara et 

499 al. 2011). Future work that can extend presence-only species distribution models (Warton & 

500 Shepherd 2010) to multiple species might provide a promising solution. However, as is the case 

501 with single-species presence-only approaches, the underlying biases will need to be clearly 

502 documented to make users aware of their potential effects in the outputs. Another promising field of 

503 statistical model development consists of augmented approaches that combine ad-hoc and scientific 

504 survey data to generate more robust predictions without having to remove potentially biased ad-hoc 

505 occurrence records (Fithian et al. 2015; Renner et al. 2015). Such augmented models could possibly 

506 be expanded to accommodate multiple species to inform statistical bioregionalisation.
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507

508 Throughout this manuscript we have largely focused on species as the biological data for 

509 bioregionalisation. But it is plausible that these methods could be extended to encapsulate other 

510 sources and types of biological data. For example, a similar approach to the RCP model we 

511 described in the case study, has been used to understand population genetic structure in stocks of 

512 commercially valuable fisheries (Grewe et al. 2015). Similar models could be extended to multiple 

513 species, to understand where genetic populations for numerous species are differentiating. For 

514 example, the development of eDNA sampling protocols appears to be a promising area where 

515 bioregionalisation could be undertaken on Operational Taxonomic Units, to describe the 

516 biogeography of important groups such as bacteria and phytoplankton (Rees et al. 2014). Genetic 

517 data can also be used to understand the evolutionary processes that shape the distributions of extant 

518 species (Webb et al. 2002; Ebach & Parenti 2015) and is an important source of historical 

519 information we have largely ignored. The development of new multiples species models (JSDMs) 

520 which can explicitly include information on species traits and phylogeny is likely to facilitate new 

521 bioregionalisations which incorporate the role of historical processes with reference to observed 

522 species in a joint model (Ives & Helmus 2011; Ovaskainen et al. 2017).

523

524 Until comprehensive and broad-scale biological datasets preclude its utility, expert knowledge can 

525 continue to play a powerful role in bioregional analyses. We acknowledge the importance of expert 

526 knowledge as an information source in many cases, but suggest that it be included as informative 

527 prior information in a Bayesian framework where possible (Gelman et al. 2013). An effective way 

528 to do so might be to elicit information from experts with the aid of probability training (Hosack et 

529 al. 2017). Under such an approach, the development of priors based on expert option inform 

530 bioregional outputs in low data situations, but as greater volumes of biological data become 

531 available, bioregion predictions will increasingly shift towards data driven outcomes. 

532

533 Conclusion

534 Statistical bioregions can be used to frame existing ecosystem-based approaches and provide novel 

535 insight into how biodiversity is structured.  The development of statistical bioregions, and the 

536 methodological developments which underpin them, can help build upon existing bioregional 

537 classifications by reducing the ambiguity in what a bioregion is, which we have formally defined, 

538 along with how this definition can be matched to data. These bioregions add consistency and 
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539 reproducibility of classifications over approaches like expert elicitation, whilst making direct 

540 assessment of bioregions and the information contained within them derived directly from the data 

541 used to generate them. Assessing uncertainty in the quality of the estimated model can improve the 

542 decision making based on these bioregionalisations. The implementation of statistical bioregions 

543 provides a robust path forward for many scientific problems, but to do so, will require that 

544 taxonomists, ecologist, biogeographers, statisticians and stakeholders to work on a common set of 

545 problems and integrate their skills into a coherent set of meaningful bioregional products that serve 

546 their unique purposes (e.g. scientific inquiry, management, or spatial planning).
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717 Figure 1. Why do we need bioregions, how can be describe them from data and how can 
718 bioregions can be used to manage biodiversity in a region? A) For the management of a single 
719 species (or stock) it is often clear how we might model its distribution. But, as the number of 
720 species increases it becomes more challenging to model and interpret hundreds to thousands of 
721 species. B) Statistical bioregionalisations offer a solution, as they help contextualise and simplify 
722 complex ecosystems or species assemblages into units that are understandable and describe the 
723 physical and biological characteristics present in each bioregion. Knowledge on the distribution of 
724 biological and physical data can be formally incorporated into statistical models and then be used to 
725 distil bioregional level predictions or species assemblages. The colour and the numeric value of the 
726 species depicted in each bioregion represents the predicted intensity of each species in that region. 
727 We can see that some species occur across multiple regions, but their intensities are specific to each 
728 bioregion. Although all species will have a predicted intensity within each bioregion, for plotting 
729 purposes we have excluded species from the figure where their predicted intensity is effectively 
730 zero. C) Once bioregions have been quantified, the distributions of the bioregions and the species 
731 therein can be assessed with reference to uses in that region. Bioregions can then help inform 
732 decisions about human activities in a region with reference to their impacts on species assemblages 
733 within bioregions.
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734

735

736 Figure 2. Bioregionalisation of the North-West Shelf area of Australia. (A) Shows where the region is. (B) Shows a set of 4 discrete (hard-
737 clustered) bioregions. (C)-(F) Shows the estimated probability of observing each bioregion in each location.  Note that blue colour corresponds to low 
738 probability (zero) and red to high (one).  Results obtained after applying the regions of common profiles (RCP; Foster et al. 2013), as implemented in 
739 Vanhatalo et al (in review).
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740

741 Figure 3. Further details for Bioregion 3. (A) Lower interval estimate of probability of each site belonging to Bioregion 3. (B) Mean estimate 
742 of probability. (C) Upper interval of probability. (D) The profile of species within Bioregion 3 -- species have been ordered according to their 
743 overall prevalence (across all bioregions), each species’ identity is preserved and can be used to understand the composition of each bioregion 
744 (e.g. Hill et al. 2017). Results obtained by applying the methods in Foster et al., (2013) as implemented in Vanhatalo et al (in review).
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