8 research outputs found

    Secure Communication Model for Dynamic Task Offloading in Multi-Cloud Environment

    Get PDF
    As the data is increasing day-by-day, the mobile device storage space is not sufficient to store the complete information and also the computation capacity also is a limited resource which is not sufficient for performing all the required computations. Hence, cloud computing technology is used to overcome these limitations of the mobile device. But security is the main concern in the cloud server. Hence, secure communication model for dynamic task offloading in multi-cloud environment is proposed in this paper. Cloudlet also is used in this model. Triple DES with 2 keys is used during the communication process between the mobile device and cloudlet. Triple DES with 3 keys is used by the cloudlet while offloading the data to cloud server. AES is used by the mobile device while offloading the data to the cloud server. Computation time, communication time, average running time, and energy consumed by the mobile device are the parameters which are used to evaluate the performance of the proposed system, SCM_DTO. The performance of the proposed system, SCM_DTO is compared with ECDH-SAHE and is proved to be performing better

    Cardiovascular Disease Prediction Using ML and DL Approaches

    Get PDF
    Healthcare is very important aspects of human life. Cardiovascular disease, also known as the coronary artery disease, is one of the many deadly infections that kill people in India and around the world. Accurate predictions can prevent heart disease, but incorrect predictions can be fatal. Therefore, here this paper describes a method for predicting cardiovascular disease that makes use of Machine Learning (ML) and Deep Learning (DL). In this paper, SMOTE-ENN (Synthetic Minority Oversampling Technique Edited Nearest Neighbor) was used to equalize the distribution of training data. The K-Nearest Neighbor method (KNN), Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), XGBoost (Extreme Gradient Boosting), Artificial Neutral Network (ANN), and Convolutional Neutral Network (CNN) are among the classifiers used in this paper. From Public Health Dataset required data is collected and focused on recognizing the best approach for predicting the disease in preliminary phase. This experiment end results show that the use of Artificial Neural Networks can be of much useful in prediction with better accuracy (95.7%) than compared to any other ML approaches

    Detecting Defective Bypass Diodes in Photovoltaic Modules using Mamdani Fuzzy Logic System

    Get PDF
    In this paper, the development of fault detection method for PV modules defective bypass diodes is presented. Bypass diodes are nowadays used in PV modules in order to enhance the output power production during partial shading conditions. However, there is lack of scientific research which demonstrates the detection of defective bypass diodes in PV systems. Thus, this paper propose a PV bypass diode fault detection classification based on Mamdani fuzzy logic system, which depends on the analysis of Vdrop, Voc , and Isc obtained from the I-V curve of the examined PV module. The fuzzy logic system depends on three inputs, namely percentage of voltage drop (PVD), percentage of open circuit voltage (POCV), and the percentage of short circuit current (PSCC). The proposed fuzzy system can detect up to 13 different faults associated with defective and non-defective bypass diodes. In addition, the proposed system was evaluated using two different PV modules under various defective bypass conditions. Finally, in order to investigate the variations of the PV module temperature during defective bypass diodes and partial shading conditions, i5 FLIR thermal camera was used

    Field programmable gate array based sigmoid function implementation using differential lookup table and second order nonlinear function

    Get PDF
    Artificial neural network (ANN) is an established artificial intelligence technique that is widely used for solving numerous problems such as classification and clustering in various fields. However, the major problem with ANN is a factor of time. ANN takes a longer time to execute a huge number of neurons. In order to overcome this, ANN is implemented into hardware namely field-programmable-gate-array (FPGA). However, implementing the ANN into a field-programmable gate array (FPGA) has led to a new problem related to the sigmoid function implementation. Often used as the activation function for ANN, a sigmoid function cannot be directly implemented in FPGA. Owing to its accuracy, the lookup table (LUT) has always been used to implement the sigmoid function in FPGA. In this case, obtaining the high accuracy of LUT is expensive particularly in terms of its memory requirements in FPGA. Second-order nonlinear function (SONF) is an appealing replacement for LUT due to its small memory requirement. Although there is a trade-off between accuracy and memory size. Taking the advantage of the aforementioned approaches, this thesis proposed a combination of SONF and a modified LUT namely differential lookup table (dLUT). The deviation values between SONF and sigmoid function are used to create the dLUT. SONF is used as the first step to approximate the sigmoid function. Then it is followed by adding or deducting with the value that has been stored in the dLUT as a second step as demonstrated via simulation. This combination has successfully reduced the deviation value. The reduction value is significant as compared to previous implementations such as SONF, and LUT itself. Further simulation has been carried out to evaluate the accuracy of the ANN in detecting the object in an indoor environment by using the proposed method as a sigmoid function. The result has proven that the proposed method has produced the output almost as accurately as software implementation in detecting the target in indoor positioning problems. Therefore, the proposed method can be applied in any field that demands higher processing and high accuracy in sigmoid function outpu

    MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network

    Get PDF
    Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE), where all devices are connected to the web. Large scale networking benefits the community by increasing connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an ‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’.MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a visualization technique where the disassembled malware code is converted into gray images, as well as use of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment results are promising as the proposed method includes ISSP with F-RCNN training. Overall training time of learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is also performed in less time. The fusion of image and statistical parameter enhances system performance with greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used to analyze system performance, which is available on the Kaggle website. An overall average classification accuracy of 98.12% is achieved by the proposed method

    Scalable and Efficient Network Anomaly Detection on Connection Data Streams

    Get PDF
    Everyday, security experts and analysts must deal with and face the huge increase of cyber security threats that are propagating very fast on the Internet and threatening the security of hundreds of millions of users worldwide. The detection of such threats and attacks is of paramount importance to these experts in order to prevent these threats and mitigate their effects in the future. Thus, the need for security solutions that can prevent, detect, and mitigate such threats is imminent and must be addressed with scalable and efficient solutions. To this end, we propose a scalable framework, called Daedalus, to analyze streams of NIDS (network-based intrusion detection system) logs in near real-time and to extract useful threat security intelligence. The proposed system pre-processes massive amounts of connections stream logs received from different participating organizations and applies an elaborated anomaly detection technique in order to distinguish between normal and abnormal or anomalous network behaviors. As such, Daedalus detects network traffic anomalies by extracting a set of significant pre-defined features from the connection logs and then applying a time series-based technique in order to detect abnormal behavior in near real-time. Moreover, we correlate IP blocks extracted from the logs with some external security signature-based feeds that detect factual malicious activities (e.g., malware families and hashes, ransomware distribution, and command and control centers) in order to validate the proposed approach. Performed experiments demonstrate that Daedalus accurately identifies the malicious activities with an average F_1 score of 92.88\%. We further compare our proposed approach with existing K-Means and deep learning (LSTMs) approaches and demonstrate the accuracy and efficiency of our system

    Anomaly-based network intrusion detection enhancement by prediction threshold adaptation of binary classification models

    Get PDF
    Network traffic exhibits a high level of variability over short periods of time. This variability impacts negatively on the performance (accuracy) of anomaly-based network Intrusion Detection Systems (IDS) that are built using predictive models in a batch-learning setup. This thesis investigates how adapting the discriminating threshold of model predictions, specifically to the evaluated traffic, improves the detection rates of these Intrusion Detection models. Specifically, this thesis studied the adaptability features of three well known Machine Learning algorithms: C5.0, Random Forest, and Support Vector Machine. The ability of these algorithms to adapt their prediction thresholds was assessed and analysed under different scenarios that simulated real world settings using the prospective sampling approach. A new dataset (STA2018) was generated for this thesis and used for the analysis. This thesis has demonstrated empirically the importance of threshold adaptation in improving the accuracy of detection models when training and evaluation (test) traffic have different statistical properties. Further investigation was undertaken to analyse the effects of feature selection and data balancing processes on a model’s accuracy when evaluation traffic with different significant features were used. The effects of threshold adaptation on reducing the accuracy degradation of these models was statistically analysed. The results showed that, of the three compared algorithms, Random Forest was the most adaptable and had the highest detection rates. This thesis then extended the analysis to apply threshold adaptation on sampled traffic subsets, by using different sample sizes, sampling strategies and label error rates. This investigation showed the robustness of the Random Forest algorithm in identifying the best threshold. The Random Forest algorithm only needed a sample that was 0.05% of the original evaluation traffic to identify a discriminating threshold with an overall accuracy rate of nearly 90% of the optimal threshold."This research was supported and funded by the Government of the Sultanate of Oman represented by the Ministry of Higher Education and the Sultan Qaboos University." -- p. i
    corecore