
ANOMALY-BASED NETWORK INTRUSION DETECTION

ENHANCEMENT BY PREDICTION THRESHOLD

ADAPTATION OF BINARY CLASSIFICATION MODELS

Amjad Mohamed Al Tobi

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2018

Full metadata for this thesis is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this thesis:
http://hdl.handle.net/10023/17050

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://creativecommons.org/licenses/by/4.0/

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/17050
https://creativecommons.org/licenses/by/4.0/

Anomaly-Based Network Intrusion

Detection Enhancement by Prediction

Threshold Adaptation of Binary

Classification Models

Thesis by

Amjad Mohamed Al Tobi

University of

St Andrews

This thesis is submitted in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY (PhD)

at the UNIVERSITY OF ST ANDREWS

November 2018

Copyright © 2018 by Amjad M. Al Tobi

i

ABSTRACT

Network traffic exhibits a high level of variability over short periods of time. This variability

impacts negatively on the performance (accuracy) of anomaly-based network Intrusion

Detection Systems (IDS) that are built using predictive models in a batch-learning setup. This

thesis investigates how adapting the discriminating threshold of model predictions, specifically

to the evaluated traffic, improves the detection rates of these Intrusion Detection models.

Specifically, this thesis studied the adaptability features of three well known Machine

Learning algorithms: C5.0, Random Forest, and Support Vector Machine. The ability of these

algorithms to adapt their prediction thresholds was assessed and analysed under different

scenarios that simulated real world settings using the prospective sampling approach. A new

dataset (STA2018) was generated for this thesis and used for the analysis.

This thesis has demonstrated empirically the importance of threshold adaptation in improving

the accuracy of detection models when training and evaluation (test) traffic have different

statistical properties. Further investigation was undertaken to analyse the effects of feature

selection and data balancing processes on a model’s accuracy when evaluation traffic with

different significant features were used. The effects of threshold adaptation on reducing the

accuracy degradation of these models was statistically analysed. The results showed that, of the

three compared algorithms, Random Forest was the most adaptable and had the highest

detection rates.

This thesis then extended the analysis to apply threshold adaptation on sampled traffic subsets,

by using different sample sizes, sampling strategies and label error rates. This investigation

showed the robustness of the Random Forest algorithm in identifying the best threshold. The

Random Forest algorithm only needed a sample that was 0.05% of the original evaluation traffic

to identify a discriminating threshold with an overall accuracy rate of nearly 90% of the optimal

threshold.

iii

DECLARATION

Candidate’s Declarations

I, AMJAD MOHAMED HAMDAN AL TOBI, do hereby certify that this thesis, submitted for the

degree of PhD, which is approximately 59,400 words in length, has been written by me, and

that it is the record of work carried out by me, or principally by myself in collaboration with

others as acknowledged, and that it has not been submitted in any previous application for any

degree.

I was admitted as a research student at the UNIVERSITY OF ST ANDREWS in September 2014.

I, AMJAD MOHAMED HAMDAN AL TOBI, received assistance in the writing of this thesis in

respect of grammar and spelling, which was provided by UNA BARTLEY (freelance

proofreader).

I received funding from an organisation or institution and have acknowledged the funder(s) in

the full text of my thesis.

Signature of Candidate:

Date: 20 November 2018

Supervisor’s Declaration

I, DR. ISHBEL M. DUNCAN, hereby certify that the candidate has fulfilled the conditions of the

Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

Signature of Supervisor:

Date: 20 November 2018

v

PERMISSION FOR PUBLICATION

In submitting this thesis to the UNIVERSITY OF ST ANDREWS we understand that we are giving

permission for it to be made available for use in accordance with the regulations of the

UNIVERSITY LIBRARY for the time being in force, subject to any copyright vested in the work

not being affected thereby. We also understand, unless exempt by an award of an embargo as

requested below, that the title and the abstract will be published, and that a copy of the work

may be made and supplied to any bona fide library or research worker, that this thesis will be

electronically accessible for personal or research use and that the library has the right to migrate

this thesis into new electronic forms as required to ensure continued access to the thesis.

I, AMJAD MOHAMED HAMDAN AL TOBI, confirm that my thesis does not contain any third-party

material that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of this

thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Signature of Candidate:

Date: 20 November 2018

Signature of Supervisor:

Date: 20 November 2018

vii

UNDERPINNING RESEARCH DATA OR

DIGITAL OUTPUTS

Candidate’s Declarations

I, AMJAD MOHAMED HAMDAN AL TOBI, understand that by declaring that I have original

research data or digital outputs, I should make every effort in meeting the University’s and

research funders’ requirements on the deposit and sharing of research data or research digital

outputs.

Signature of Candidate:

Date: 20 November 2018

Research data underpinning this thesis are available at

Full STA2018 dataset:

[http://dx.doi.org/10.17630/c5f31888-9db5-4ac0-a990-3fd17dcfe865].

Digital outputs underpinning this thesis are available at

Experiment codes: https://github.com/elud074/phdExperiments

STA2018 generation codes: https://github.com/elud074/STA2018

Underpinning Research Data or Digital Outputs

viii

Permission for publication of underpinning research data or digital outputs

We understand that for any original research data or digital outputs which are deposited, we are

giving permission for them to be made available for use in accordance with the requirements

of the University and research funders, for the time being in force.

We also understand that the title and the description will be published, and that the underpinning

research data or digital outputs will be electronically accessible for use in accordance with the

license specified at the point of deposit, unless exempt by award of an embargo as requested

below.

The following is an agreed request by candidate and supervisor regarding the publication of

underpinning research data or digital outputs:

Embargo on all of electronic files for a period of 2 years on the following ground(s):

• Publication would preclude future publication

Supporting statement for embargo request

I and my supervisor planning to publish the dataset in a journal.

Signature of Candidate:

Date: 20 November 2018

Signature of Supervisor:

Date: 20 November 2018

ix

FUNDING

This research was supported and funded by the GOVERNMENT OF THE SULTANATE OF OMAN

represented by the MINISTRY OF HIGHER EDUCATION and the SULTAN QABOOS UNIVERSITY.

NOTE ON WEB RESOURCES

Where Web based resources are cited via footnotes or references, these resources were checked

and verified and were accessible upon the date of the thesis’ submission. However, due to the

nature of such resources their longevity cannot be guaranteed. Such references have only been

used where citations to more traditional Peer-Reviewed published material were not possible.

xi

ACKNOWLEDGEMENTS

All praise be to ALMIGHTY ALLAH, the GRACIOUS, the MERCIFUL and the Lord of all worlds,

who granted me the will to pursue my studies and blessed me to accomplish this dream. All

deepest gratitude to his slave and messenger MOHAMMED (Peace Be Upon Him).

I would like, first and foremost, to convey my gratefulness to my supervisor, DR. ISHBEL M.

DUNCAN for accepting to supervise my PhD research, as well as for her continuous guidance,

mentoring and support. To all those weekly meetings, encouragement to question science and

challenge myself even more, I say from the bottom of my heart: Thank you.

My sincere gratitude is extended to my second supervisor, PROF. SALEEM BATTI for all the

wisdom he provided and the valuable remarks that contributed in refining this thesis.

I would like to express my appreciation to my friends who I have been privileged to be

surrounded by. Those who always supported me and provided me with required encouragement

to keep pushing myself beyond the limits. My special thanks to my esteemed fellow PhD

students; YASIR ALGUWAIFLI, KHAWAR SHEHZAD, HUSSEIN BAKRI, DR. PERCY PEREZ ARUNI,

and HAIFA AL NASSERI.

I also would like to thank all of the members in the Machine Learning Reading (MLR) group,

whom I have always gained from their deep and enlightening discussions. My special thanks to

DR. LEI FANG, who has formed the group and to all his help in understanding the complex math

behind this domain. Thanks to DR. MARK-JAN NEDERHOF for his deep insights and efforts in

sharing his understandings with the rest of the group and for the valuable time he devoted in

providing me with important feedbacks. My sincere thanks are extend as well to DR. JUAN YE

for her valuable comments that helped improve this thesis.

Many thanks are given to everyone in the following units in the UNIVERSITY OF ST ANDREWS

whom I might not know them in person, but their commitment and efforts have made my

experience throughout my PhD the most pleasant and fruitful journey. Thanks to the

administration of the Computer Science School; the IT support team (FixIT); the Centre for

Acknowledgements

xii

Academic, Professional and Organisational Development (CAPOD); iELS team; Systems

Research Group (SRG).

To my family, all my gratefulness and gratitude are extended. All my warm thanks to my

beloved mother who always remembered me in her prayers. To my father, thank you for your

endless encouragement that ignited the passion in my heart to seek knowledge and wisdom. To

both of you I dedicate this humble work.

To the mate of my soul, my treasured and beloved wife, JALILA K. AL TOBI, thank you for

lighting the candle in dark moments to see the path and being on my side all the way to the end

of the tunnel.

Last but not the least, my special thanks and gratefulness are extended to my country who gave

me the opportunity to continue my further studies and pursuit my dream to do my PhD. This

research was supported and funded by the GOVERNMENT OF THE SULTANATE OF OMAN

represented by the MINISTRY OF HIGHER EDUCATION, whom without their scholarship this thesis

would not have existed.

AMJAD M. AL TOBI

The University of St Andrews

November 2018

xiii

CONTENTS

Abstract .. i

Declaration... iii

Permission for Publication ... v

Underpinning Research Data or Digital Outputs .. vii

Acknowledgements ... xi

Contents ... xiii

List of Figures ... xvii

List of Tables ... xxiii

Listings ... xxvii

Chapter 1: Introduction ... 1

1.1 Problem Statement ... 2

1.2 Motivation .. 4

1.3 Scope of the Research .. 5

1.4 Research Hypothesis and Questions .. 7

1.5 Research Approach .. 9

1.6 Contributions ... 9

1.7 Research Output ... 12

1.8 Thesis Structure ... 12

Chapter 2: Literature Review and State of the Art .. 15

2.1 Intrusion Detection (ID) ... 15

2.2 Datasets .. 25

2.3 Evaluation of Intrusion Detection Systems ... 36

2.4 Related Work and Research Gaps.. 46

2.5 Summary .. 58

Chapter 3: Experimental Overview ... 59

3.1 Overview of Experiments .. 60

3.2 Overview of Classification/Machine Learning algorithms .. 62

3.3 Methods Used for Analysis .. 73

3.4 Limitations ... 82

3.5 Summary .. 83

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models ... 85

Contents

xiv

4.1 Problem Statement .. 85

4.2 Proposed Solution.. 86

4.3 Datasets ... 88

4.4 Experimental Setting ... 92

4.5 Results and Discussion .. 94

4.6 Limitations... 107

4.7 Summary ... 108

Chapter 5: UNB ISCX 2012 Dataset Transformation .. 109

5.1 ISCX2012 Dataset Description ... 110

5.2 Transformation Process ... 112

5.3 Details of Validation and Labelling Phase .. 122

5.4 Server Specifications ... 137

5.5 Limitations... 138

5.6 Summary ... 139

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network

Intrusion Detection .. 143

6.1 Introduction ... 143

6.2 Proposed Solution.. 149

6.3 Datasets ... 152

6.4 Experimental Setting ... 159

6.5 Results and Discussion .. 162

6.6 Limitations... 175

6.7 Summary ... 177

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data 179

7.1 Introduction ... 179

7.2 Proposed Solution.. 182

7.3 Experimental Setting ... 184

7.4 Results and Discussion .. 187

7.5 Limitations... 207

7.6 Summary ... 209

Chapter 8: Conclusion .. 211

8.1 Main Findings.. 212

8.2 Future Work .. 216

8.3 Reflective/Closing Remarks .. 220

Appendix (A) Results of Chapter 4 (First) Experiment ... 221

A.1. C5.0 .. 222

A.2. Random Forest ... 223

 Contents

xv

A.3. Support Vector Machine (SVM) .. 225

Appendix (B) Results of Chapter 6 (Second) Experiment ... 227

B.1. Selected Features .. 227

B.2. Models Results .. 233

Appendix (C) Results of Chapter 7 (Third) Experiment .. 243

C.1. Results of Every Day .. 243

C.2. Models GAR Plots .. 262

Appendix (D) Feature Descriptions of STA2018 Dataset .. 267

D.1. Basic Features ... 268

D.2. Connection-Based Features .. 275

D.3. Time-Based Features .. 286

D.4. Class Feature ... 295

References .. 297

xvii

LIST OF FIGURES

Figure 2.1: Plot of the confusion matrices for dummy data with 100 instances (negative

(class 0) = 10 instances and positive (class 1) = 90 instances) at different

cutoff (threshold) values. (a) Cutoff (threshold) is 0. (b) Cutoff (threshold) is

0.5. (c) Cutoff (threshold) is 1. .. 44

Figure 2.2: ROC curves for two dummy datasets with a different number of instances;

D100 has 100 instances while D1000 has 1000 instances. For each dataset 10%

of its instances are negative (class 0) while the remaining 90% are positive

(class 1). ... 45

Figure 3.1: Schematic overview of the experiments undertaken .. 61

Figure 3.2: Example of a decision tree of dummy network traffic data with two classes

{attack and normal}. (a) Returns the class label. (b) Returns the probability

of classes. ... 63

Figure 3.3: Main phases of Random Forest algorithm ... 68

Figure 3.4: Example of SVM on two dimensional dummy data, where a1, a2, a3: input data

points (vectors), w: normal vector to the hyperplane (weight vector) and b:

bias. (a) Perfectly separable dataset. (b) Dataset separation with soft margin. 69

Figure 3.5: Data transformation from 2D in input space to 3D in the feature space using

a kernel function. The figure was reproduced with some modification from

Statnikov et. al [305].. 72

Figure 3.6: K-folds Cross-Validation process. ... 80

Figure 3.7: Friedman’s Test computation and interpretation ... 81

Figure 4.1: Command used to generate File 1 of SEA dataset. .. 91

Figure 4.2: Command used to generate File 1 of AGR dataset. ... 92

Figure 4.3: The experiments’ phases diagram. ... 93

Figure 4.4: G-Mean accuracy curves of the 10 runs of the 10-folds Cross-Validation

experiments for the three datasets (gureKDD, SEA and AGR) using three

classification algorithms. (a) C5.0. (b) Random Forest. (c) SVM. 96

Figure 4.5: Critical differences plot of the pairwise Nemenyi comparison test for the full

datasets 10-folds Cross-Validation experiment. .. 98

Figure 4.6: G-Mean Accuracy Curves for the C5.0 Algorithm (for gureKDD data see

Table A.1, SEA data see Table A.2 and AGR data see Table A.3) 100

Figure 4.7: G-Mean Accuracy Curves for Random Forest Algorithm (for gureKDD data

see Table A.4, SEA data see Table A.5 and AGR data see Table A.6) 102

Figure 4.8: G-Mean Accuracy Curves for the SVM Algorithm (for gureKDD data see

Table A.7, SEA data see Table A.8 and AGR data see Table A.9) 104

List of Figures

xviii

Figure 4.9: Critical differences plot of the pairwise Nemenyi comparison test for the

cutoff (threshold) adaptation experiment. ... 106

Figure 5.1: Dataset preparation phases .. 113

Figure 5.2: Onut’s Feature Classification Schema [15] ... 117

Figure 5.3: ISCX2012 number of class connections for each simulation day 119

Figure 5.4: Generation of synthetic instances using the SMOTE algorithm 120

Figure 5.5: Features in the flow files (XML) in all analyses. .. 124

Figure 5.6: Connection matching by mapping keys .. 127

Figure 6.1: Illustration of the information system extension with fake features/variable. 147

Figure 6.2: Figures adapted from Lex et al. [372]. (a) Examples of slicing and

aggregation, including aggregation ‘by degree’ which is used in this chapter.

(b) Example of a set relationship encoded by columns from the matrix, where

the sets that contribute to every exclusive intersection are represented by

filled dark circles connected by a line. .. 156

Figure 6.3: Plots of feature sets’ intersections using the MDA measure (a) Day Features’

intersections using the MDA measure on the original (imbalanced) data. (b)

Day Features’ intersections using the MDABalance measure on the balanced

data. ... 157

Figure 6.4: Plots of feature sets’ intersections using the MDG measure (a) Day Features’

intersections using the MDG measure on the original (imbalanced) data. (b)

Day Features’ intersections using the MDGBalance measure on the balanced

data. ... 158

Figure 6.5: Experimental phases diagram. ... 160

Figure 6.6: Graphical illustration of pairwise comparisons from the Friedman Test results

for different threshold effects (optimal or adaptive cutoff) after applying the

Nemenyi test (95% confidence level) (a) Nemenyi test for different

thresholds. (b) Nemenyi test for different algorithms. (c) Nemenyi test for

different feature sets. (d) Nemenyi test for different training data balances. 165

Figure 6.7: Nemenyi test (95% confidence level) on the C5.0 algorithm models using

different feature sets and different data balances after applying the adaptive

cutoff approach. ... 168

Figure 6.8: Nemenyi test (95% confidence level) on the RF algorithm models using

different feature sets and different data balances after applying the adaptive

cutoff approach. ... 170

Figure 6.9: Nemenyi test (95% confidence level) on SVM algorithm models using

different feature sets and different data balances after applying the adaptive

cutoff approach. ... 172

Figure 6.10: Comparison plot of the average performance of every C5.0, RF and SVM

model for every feature set and data balance combination. 174

Figure 7.1: Example comparing fixed threshold (solid black vertical line - Thr0.5) with

adapted prediction thresholds (maroon, blue and orange vertical lines). 180

 List of Figures

xix

Figure 7.2: Example comparing two predictions (maroon and blue). Vertical solid lines

represent the optimal threshold of these predictions and the vertical dotted

lines represent the sample cutoffs. ... 185

Figure 7.3: Median of G-Mean Accuracy Ratios (GAR) of the C5.0 models predictions

under different sampling strategies (number of bins), sample sizes and error

rates. ... 189

Figure 7.4: Average number of unique thresholds for the predictions of C5.0 models, and

their ranges... 190

Figure 7.5: Results of multiple Nemenyi tests (95% confidence level) on different

sampling strategies (B1, B10, B20, B50 and B100) using the C5.0 predictions

under different error rates (0%, 1%, 5% and 10%). .. 192

Figure 7.6: Results of multiple Nemenyi tests (95% confidence level) of different

sampling size (10% to 0.0001%) using the C5.0 predictions under different

error rates (0%, 1%, 5% and 10%). ... 193

Figure 7.7: Median of G-Mean Accuracy Ratios (GAR) of the RF models predictions

under different sampling strategies (number of bins), sample sizes and error

rates. ... 194

Figure 7.8: Average number of unique thresholds for the predictions of the RF models,

and their ranges. ... 195

Figure 7.9: Results of multiple Nemenyi tests (95% confidence level) on different

sampling strategies (B1, B10, B20, B50 and B100) using the RF predictions under

different error rates (0%, 1%, 5% and 10%). .. 196

Figure 7.10: Results of multiple Nemenyi tests (95% confidence level) on different

sampling sizes (10% to 0.0001%) using RF predictions under different error

rates (0%, 1%, 5% and 10%). .. 198

Figure 7.11: Median of G-Mean Accuracy Ratios (GAR) of the predictions of the SVM

models under different sampling strategies (number of bins), sample sizes and

error rates. .. 199

Figure 7.12: Average number of unique thresholds for the predictions of the SVM models

and their ranges. ... 200

Figure 7.13: Results of multiple Nemenyi tests (95% confidence level) on different

sampling strategies (B1, B10, B20, B50 and B100) using the SVM predictions

under different error rates (0%, 1%, 5% and 10%). .. 202

Figure 7.14: Results of multiple Nemenyi tests (95% confidence level) on different

sampling sizes (10% to 0.0001%) using the SVM predictions under different

error rates (0%, 1%, 5% and 10%). ... 204

Figure 7.15: Illustrative plots of the effect of erroneous sample labels on threshold shift

(a) C5.0 predictions (b) RF and SVM predictions. .. 205

Figure 7.16: Critical Difference plots for the different ML algorithm samples under

different error rates. ... 207

Figure B.1: Comparison plot of the performance of C5.0 models (G-Mean Accuracy) for

every training day in the STA2018 dataset between the optimal (CV) and

adaptive cutoffs. ... 235

List of Figures

xx

Figure B.2: Comparison plot of the performance of RF models (G-Mean Accuracy) for

every training day in the STA2018 dataset between the optimal (CV) and

adaptive cutoffs. .. 238

Figure B.3: Comparison plot of the performance of SVM models (G-Mean Accuracy) for

every training day in the STA2018 dataset between the optimal (CV) and

adaptive cutoffs. .. 241

Figure C.1: Day 2 (12/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 244

Figure C.2: Day 3 (13/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 245

Figure C.3: Day 4 (14/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 246

Figure C.4: Day 5 (15/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 247

Figure C.5: Day 6 (16/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 248

Figure C.6: Day 7 (17/Jun) results for the C5.0 models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. ... 249

Figure C.7: Day 2 (12/Jun) results for the RF models. (a) Plots of G-Mean Accuracy Ratio

(GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error rate

of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error rate of

10%. .. 250

Figure C.8: Day 3 (13/Jun) results for the RF models. (a) Plots of G-Mean Accuracy Ratio

(GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error rate

of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error rate of

10%. .. 251

Figure C.9: Day 4 (14/Jun) results for the RF models. (a) Plots of G-Mean Accuracy Ratio

(GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error rate

of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error rate of

10%. .. 252

Figure C.10: Day 5 (15/Jun) results for the RF models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

 List of Figures

xxi

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 253

Figure C.11: Day 6 (16/Jun) results for the RF models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 254

Figure C.12: Day 7 (17/Jun) results for the RF models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 255

Figure C.13: Day 2 (12/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 256

Figure C.14: Day 3 (13/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 257

Figure C.15: Day 4 (14/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 258

Figure C.16: Day 5 (15/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 259

Figure C.17: Day 6 (16/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 260

Figure C.18: Day 7 (17/Jun) results for the SVM models. (a) Plots of G-Mean Accuracy

Ratio (GAR) of Day 6 models at an error rate of 0%. (b) GAR plots at an error

rate of 1%. (c) GAR plots at an error rate of 5%. (d) GAR plots at an error

rate of 10%. .. 261

Figure C.19: Medians of G-Mean Accuracy Ratios (GAR) of C5.0 models for every

feature set and data balance type combination. (a) Medians at an error rate of

0%. (b) Medians at error rate of 1%. (c) Medians at an error rate of 5%. (d)

Medians at an error rate of 10%. ... 263

Figure C.20: Medians of G-Mean Accuracy Ratios (GAR) of RF models for every feature

set and data balance type combination. (a) Medians at an error rate of 0%. (b)

Medians at error rate of 1%. (c) Medians at an error rate of 5%. (d) Medians

at an error rate of 10%. .. 264

Figure C.21: Medians of G-Mean Accuracy Ratios (GAR) of SVM models for every

features set and data balance type combination. (a) Medians at an error rate

List of Figures

xxii

of 0%. (b) Medians at error rate of 1%. (c) Medians at an error rate of 5%.

(d) Medians at an error rate of 10%. ... 265

xxiii

LIST OF TABLES

Table 2.1: Confusion Matrices. (a) Confusion matrix for binary classification which is a

special case of multiple classes. (b) Confusion matrix for multiple classes. 39

Table 2.2: Confusion matrices of dummy data with 100 instances (negative = 10 instances

and positive = 90 instances) at different cutoff (threshold) values. (a) Cutoff

(threshold) is 0. (b) Cutoff (threshold) is 0.5. (c) Cutoff (threshold) is 1. 39

Table 3.1: Factors and levels of every experiment. .. 75

Table 3.2: Runtime in seconds between kernel and linear SVM setups on a 10% subset of

Day 2 (12/Jun) and Day 3 (13/Jun) of the STA2018 dataset 79

Table 3.3: Class labels mapping for SVM algorithm. .. 79

Table 4.1: Number of connection classes in every file in the gureKDD dataset 90

Table 4.2: Number of instances’ classes in every file in the SEA dataset 91

Table 4.3: Number of instances’ classes in every file in the AGR dataset............................... 92

Table 4.4: Average model performances (AUC and G-Mean Accuracy), the average

Optimal Cutoff value (at which maximum G-Mean Accuracy was reached)

and their standard deviation of the 10-folds Cross-Validation (10 repetitions)

 ... 96

Table 4.5: Model G-Mean accuracies arrangements of the 10-folds Cross-Validation on

the full dataset for Friedman’s test. ... 97

Table 4.6: Results of the pairwise Nemenyi comparison test for the full datasets 10-folds

Cross-Validation experiment. .. 97

Table 4.7: Algorithms’ medians and mean ranks for the full datasets 10-folds Cross-

Validation experiment. .. 98

Table 4.8: Models G-Mean accuracies arrangements for Friedman’s test for phase two of

the experiments. ... 105

Table 4.9: Results of the pairwise Nemenyi comparison test for the cutoff (threshold)

adaptation experiment. ... 105

Table 4.10: Algorithms’ medians and mean ranks based on threshold adaptation effect. 106

Table 5.1: UNB ISCX 2012 dataset files. .. 111

Table 5.2: Packet counts comparison for all Bro, PCAP and XML files 116

Table 5.3: Basic features used in Onut’s schema to extend the features set 118

Table 5.4: Indexes of eliminated features ... 122

Table 5.5: Example of total packets in every communication direction 123

Table 5.6: IPv6 address as in PCAP files ... 128

List of Tables

xxiv

Table 5.7: Number of duplicate connections ... 130

Table 5.8: Comparison of number of labels between authored paper, XML files, and

PCAP files ... 131

Table 5.9: Example of a split connection ... 132

Table 5.10: Example of XML connections .. 133

Table 5.11: Example of number of XML packet for each communication direction 133

Table 5.12: Number of non-matched flows in the XML Files ... 134

Table 5.13: Number of unique IP:PORTs in the PCAP and XML files 134

Table 5.14: Example of connections with the wrong direction ... 135

Table 5.15: Example of a UDP Connection’s wrong direction ... 135

Table 5.16: Number of connections with zero source packets .. 136

Table 5.17: Number of connections with the wrong number of packets 137

Table 6.1: Categorical (factor) features eliminated from the feature importance evaluation

phase. ... 148

Table 6.2: Number of classes of instances for each day’s file of the STA2018 dataset. 153

Table 6.3: Number of shared selected features for each two day pair after using the Mean

Decrease of Accuracy (MDA) importance measure on the original and

balanced versions of the data. ... 154

Table 6.4: Number of shared selected features for each two day pair using the Mean

Decrease Gini (MDG) importance measure on the original and balanced

versions of the data. ... 154

Table 6.5: Number of features in all intersection areas (slices) of an aggregation degree

for every feature set and their proportions in relation to the total number of

unique features within each feature set. .. 159

Table 6.6: Model’s average performance for different ML algorithms, feature sets and

data balances. .. 167

Table 7.1: Number of sampled instances for each sample size used in these experiments. .. 187

Table A.1: C5.0 model’s performance on gureKDD dataset with various effects (before

and after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 222

Table A.2: C5.0 model’s performance on SEA dataset with various effects (before and

after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 222

Table A.3: C5.0 model’s performance on AGR dataset with various effects (before and

after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

 List of Tables

xxv

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 223

Table A.4: Random Forest (RF) model’s performance on gureKDD dataset with various

effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold

G-Mean Accuracy); FT (File optimal Threshold); FA (File threshold G-Mean

Accuracy). Shaded cells are the 10-folds Cross-Validation results from the

model generation phase. .. 223

Table A.5: Random Forest (RF) model’s performance on SEA dataset with various effects

(before and after threshold adaptation). MT (Model optimal Threshold); CA

(Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean

Accuracy); FT (File optimal Threshold); FA (File threshold G-Mean

Accuracy). Shaded cells are the 10-folds Cross-Validation results from the

model generation phase. .. 224

Table A.6: Random Forest (RF) model’s performance on AGR dataset with various

effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold

G-Mean Accuracy); FT (File optimal Threshold); FA (File threshold G-Mean

Accuracy). Shaded cells are the 10-folds Cross-Validation results from the

model generation phase. .. 224

Table A.7: SVM model’s performance on gureKDD dataset with various effects (before

and after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 225

Table A.8: SVM model’s performance on SEA dataset with various effects (before and

after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 225

Table A.9: SVM model’s performance on AGR dataset with various effects (before and

after threshold adaptation). MT (Model optimal Threshold); CA (Cross-

validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT

(File optimal Threshold); FA (File threshold G-Mean Accuracy). Shaded cells

are the 10-folds Cross-Validation results from the model generation phase. 226

Table B.1: The performance of models (G-Mean Accuracy) for the original and adapted

cutoff (threshold) for the C5.0 algorithm. ... 234

Table B.2: Performance of the models (G-Mean Accuracy) for the original and adapted

cutoffs (threshold) for the Random Forest (RF) algorithm. 237

Table B.3: The performance of models (G-Mean Accuracy) for the original and adapted

cutoffs (thresholds) for SVM algorithm. ... 240

Table C.1: Figures map of the results of the third experiment. .. 243

xxvii

LISTINGS

Listing 3.1: Pseudocode of main stages of Random Forest algorithm 66

Listing 4.1: Pseudocode of threshold adaptation process and the selections of the optimal

threshold for the evaluated data ... 88

Listing 5.1: Pseudo code of connection labelling through mapping connections between

PCAP and XML ... 127

Listing 5.2: Pseudo code of comparing number of packets between PCAP and XML

connections .. 133

Listing 6.1: Pseudo code of the feature selection function. .. 149

Listing 6.2: Pseudo code of the experimental phases. .. 161

Listing 7.1: Pseudo code of the experiments run for the results of each ML algorithm. 186

1

1

Chapter 1: Introduction

Chapter One

Introduction

Computer security, now called cyber security, has been a focus of research since the beginning

of the digital computer age. Numerous research papers and applications have been written and

developed proposing solutions to combat threats and to protect information systems. With the

introduction of the Internet, more services have been provided remotely, which has led to

increased dependence of users, business and governments on third party services. This

dependence has promoted new and more sophisticated types of attacks, making the task of

protecting and securing systems more challenging. As a consequence, the Internet has become

a digital war zone for politicians and governments, as well as business competitors. Persistent

digital warfare and/or information gathering imposes a greater risk than ever on systems and

services, including individuals’ private information.

Many authors including Cherdantseva and Hilton [2] have identified a set of key goals for

cybersecurity that should be met by all systems: confidentiality, integrity, availability,

accountability, non-repudiation, auditability, authenticity & trustworthiness, privacy and

correctness [3-7]. However, every day these stated security goals are flagrantly violated by

breaches and security incidents which raises questions about the capability of existing security

systems.

Chapter 1: Introduction

2

Intrusion Detection Systems (IDS) are one of the many tools used in the cyber security field.

Their main purpose, as an essential line of defence, is to detect security attacks targeting the

critical networks, systems or data that they monitor. They aim to detect and report any violation

by an external intruder or system insider, of the security goals highlighted above.

1.1 Problem Statement

Everyday advancements in technology, such as mobile devices, cloud computing and the

Internet of Things (IoT), bring with them novel challenges and threats. As the majority of these

technologies provide their services over communication networks, new challenges have

emerged. For example, very large amounts of data are generated and exchanged across these

networks that require faster processing. In addition, with various kinds of services sharing the

same communication media, traffic diversity has become another challenge for detecting and

profiling threats. Traffic encryption has added yet another layer of sophistication to any analysis

task. Such challenges, and many more, have posed an immense burden on security analysts in

analysing traffic and identifying threats in order to develop the right counter measures. As a

result, researchers have aimed at exploring new tools, techniques and strategies to address such

limitations.

Artificial Intelligence (AI), Machine Learning (ML) and Data Mining (DM) methods are some

of the key research topics currently being explored to address some of the many cyber security

requirements, particularly in the area of anomaly-based Intrusion Detection (ID). These

methods became more pervasive than before in real world applications due to the advancement

in technology, and are now being used in many different domains such as autonomous vehicles,

directing advertising, healthcare, product recommendations, stock markets and speech or face

recognition. The use of these methods aims to address the many limitations in human

capabilities and conventional technologies in handling the massive amounts and existing

diversity of digital data.

 1.1 Problem Statement

3

One of the most pressing challenges in this domain is the traffic evolution over time and the

capability of these methods to adapt to such changes. This is because network traffic is not

stable through time, due to changes in services, where new services are introduced and old ones

are removed, as well as changes to users and their behaviours. Although many recent studies

and solutions have been conducted and proposed, that have made remarkable progress in

addressing these concerns, plenty of work and opportunities still remain.

Ever evolving traffic makes the process of building ID models a particularly challenging task

as learning all possible variations of traffic patterns for all different kinds of traffic and users is

an impossible quest. Therefore, there is a pressing need to make intelligent detection methods

adaptable to traffic variability.

In a typical (batch-based) scenario, a network-based anomaly ID model would be built to

protect specific environment from attackers. The model building phase would require some

training data that were previously captured from old traffic to generate the ID model, which

would be tuned and set to detect anomalous behaviours. However, as such a model is used to

analyse a new real traffic it will suffer from high false alarms and low detection accuracy. These

phenomena are usually caused by the changes in network patterns, which would lead to an early

phasing out of such a model and a triggering of model regeneration or updating phase. This

could be linked to the inefficiency of using a fixed discriminating threshold for such ID models.

For example, a network under high volume attacks, such as Denial of Service (DoS) or scan

attacks, would have different class (normal to attack) distributions than when it is under low

volume but stealthy attacks such as SQL injection and Command-and-Control (C&C).

Therefore, this thesis is intended to address this problem by investigating the effect of adapting

the discriminating threshold (specifically to the evaluated network traffic) on the accuracy (i.e.

the Geometric Mean of Accuracy) of such models and compare the results with the use of a

fixed threshold. This investigation will be done by comparing such effects on traffic collected

Chapter 1: Introduction

4

at different times with existing variability. Further, the ability of different types of ML

algorithms to adapt to traffic changes will be analysed.

1.2 Motivation

The key impact of ever evolving LAN network traffic is linked to the difficulty of building ID

models that can address all possible variations in traffic patterns. This in turn is linked partially

to the challenge imposed in collecting training data for every imaginable scenario.

Traditionally, the model development process would use a training data to build a detection

model which can then be used to predict future data. However, as traffic evolves over time, the

learned model would usually experience a large decline in detection rate. As a result, new data

would be needed to train another model.

As will be illustrated in more detail in the coming chapters; most of the learning and

classification methods are based on a number of key assumptions [8, 9], such as: (i) the equal

representation of classes, (ii) the equal representation of sub-concepts for a specific class, (iii)

the similar class-conditional distributions of all classes, and (iv) the pre-defining and knowledge

of all the values of the attributes for all records in the dataset. With traffic evolution the reality

is that most, if not all, of these assumptions are violated in real environments, as new traffic

will start to exhibit different statistical properties to those of the training data.

Traffic evolution can introduce unpredictable differences between the training data and the

testing data. These differences can take various forms; for example, class distributions might

differ in the new data than those used to build the ID model, and even new classes might emerge

over time. In addition, class balance (also known as data balance) can play an important role on

the accuracy of constructed models, which could be affected as a result of pattern changes.

Traffic variability may also bring about differences in feature importance. These effects

(collectively or individually) might render the learnt model outdated sooner than anticipated.

 1.3 Scope of the Research

5

However, the current methods to deal with these effects (in a batch-based setup) will attempt to

generate a new model, which may consume additional resources in collecting and labelling new

data to be used to learn that new model.

Many studies have attempted to address some of these issues in real-time setups by tuning the

detection parameters of the ID models, while others have introduced ensemble methods for data

stream setups. However, there is insufficient empirical work to analyse the threshold adaptation

of model predictions in binary batch-learning (offline learning) setups, which refers to the

process of building an ID model using the entire training data (full-batch learning); or when the

model is updated or rebuilt after certain update criterion is met (mini-batch learning), such as

the lapse of a specific time period or after a number of training instances have been

collected [10].

The low detection accuracy of such score-based anomaly ID models, in batch-learning setup,

could be linked to the use of a fixed discriminating threshold, which in turn could result in an

inaccurate reading of the accuracy that is far lower than their actual optimal accuracy. This

might explain the early termination of such ID models. As a result, adapting the discriminating

threshold to the predictions of the evaluated network traffic would provide an accurate reading

of the actual accuracy of the ID model. Understanding this may lead to an improvement in

detection accuracy and hence an extension in the lifespan of the ID models.

1.3 Scope of the Research

The main objective of this thesis is to improve the accuracy (i.e. the Geometric Mean of

Accuracy) of a score-based anomaly Intrusion Detection (ID) model. To this end, the key

approach undertaken by this research to fulfil this objective is by tuning the discriminating

threshold specifically to the predictions of the network traffic evaluated by such a model.

Chapter 1: Introduction

6

In other words, it is intended to evaluate the potential of prediction threshold adaptation to

improve the accuracy (i.e. the Geometric Mean of Accuracy) of binary anomaly ID models

developed using various ML algorithms for batch-based tasks. This study focuses on detecting

anomalies (intrusions) in Local Area Network (LAN) traffic, where the payload (content) of

such traffic is out of the scope of this thesis. The traffic of such networks are assumed to be

fully captured with no (or negligible) packet loss, at a strategic location with full visibility of

exchanged communications of the monitored (protected) information systems.

In this thesis no IDS evaluation measures other than the accuracy of the system is addressed.

To explain further, as this thesis is focussed on batch-based ID models, the timeliness measure,

which measures the total delay between the start time of the attack and the response time of the

system [11], is out of the scope. Similarly, as binary ID models form the core subject of this

study, there will be no focus on the completeness measure, which evaluates the coverage of the

intrusion space, that is to assess if an IDS (detection model) can detect all or most of the

attacks [11]. Moreover, as this thesis aimed to examine each detection model independently it

does not address the interoperability measure, which assesses the capability of an IDS to

correlate information from multiple sources [12] or to interoperate with other IDS in a

multi-IDS environment [13].

System scalability and resources utilisation (CPU and memory) are also out of the interest of

this thesis. These issues are considered as engineering problems that can be the focus of future

studies.

The following list provides an explanation or description of some of the key terms used

throughout this thesis:

• A training dataset is the data used to learn or build a ID model.

 1.4 Research Hypothesis and Questions

7

• An evaluation or test dataset refers to the data that are assessed by the detection

(classification) models or used to evaluate these models.

• The validation data describes the data used to set or fine tune the parameters of the ID

models.

This work assumes existing variability between the network traffic used as the training data and

the test data, where no specific time interval has been defined for such variability to occur.

However, measuring the degree of variability (drift) is out of the scope of this study. Moreover,

this research assumes that the labels of the validation data will be available whenever they are

needed, and that the source of these labels is not pre-specified. Hence, these labels can come

from another IDS or security analyst.

1.4 Research Hypothesis and Questions

The following core research hypothesis has been evaluated and tested in this thesis:

 “In a binary batch-learning setup, prediction accuracy of a score-

based anomaly intrusion detection model can be improved by

adapting the discriminating threshold specifically for the predictions

of the evaluated network traffic.”

Examining this hypothesis requires the investigation process to address various levels of

statistical differences between the training data and the test data, in order to consider diverse

model development scenarios that echo real world practices, and to analyse the feasibility of

the threshold adaptability approach based on a small sampled subset of the overall data. To

investigate the hypothesis above, the following questions have been addressed:

Chapter 1: Introduction

8

Q1. How will the detection accuracy of an adaptive discriminating threshold of the

predictions of a batch binary-based anomaly ID model compare to the accuracy of

a fixed threshold?

Conventional methods will set a prediction threshold for a detection model only once

where this threshold will be used to classify future data regardless of any new patterns

(drifts). This question is investigated empirically (in Chapter 4) by comparing model

detection accuracies using fixed and adaptive thresholds. These models are trained and

evaluated with datasets, which have controlled degrees of similarities and differences

between their statistical properties (concept drifts).

Q2. Can the adaptation of the discriminating threshold improve the accuracy of a

binary-based anomaly ID model when evaluated network traffic has different salient

features than those used to build the predictive model?

Currently, model development might be performed after some analysis tasks, such as

feature selection or data balancing. The aim of these tasks is to improve model detection,

however, most of these tasks have to be performed on the training data available at the

time. When such models are then used to evaluate new data, their prediction performance

(accuracy) may diminish as a result of statistical differences of such data, which could

have different sets of important features to those used to build the model. Chapter 6

introduces an empirical study to address this question and investigates the effect of

threshold adaptation in such scenarios, when a newly generated dataset has been used (as

outlined in Chapter 5) for these analyses.

Q3. Can the optimal discriminating threshold be identified using a labelled small sample

of the evaluated network traffic under the batch-learning setup?

 1.5 Research Approach

9

Threshold adaptation requires knowledge of the true labels of the evaluated dataset to

optimise for some performance measure (i.e. Geometric Mean of Accuracy). However,

labelling all of the evaluation data (network traffic) in a domain like network security

would be a nearly impossible task. Chapter 7 outlines an experiment undertaken to study

threshold adaptation using a small subset that is sampled from the dataset being evaluated.

To answer this question, the effects of different sample sizes and sampling strategies on

the adaptation process were analysed, in addition to exploring which of the ML

algorithm’s models were more suitable for the adaptation process. It also investigated the

effect of different error rates (of the sample’s true labels) on the threshold tuning process.

1.5 Research Approach

The discussion in this thesis describes an empirical study undertaken to address the research

hypothesis set out above and its related research questions. It provides evidence on the

usefulness of the proposed approach on various datasets (synthetic and domain specific) using

different ML algorithms (C5.0, Random Forest and Support Vector Machine). A factorial

research design was employed to meet the aim of this study. Further details of the decisions

made during this research are provided in Chapter 3.

1.6 Contributions

The following list highlights the key novel contributions of this thesis to the current state of

knowledge in this field:

• Scientific contributions:

C1. A new evaluation method was employed to assess the performance of models, by

performing prospective sampling (as discussed in Chapter 2 and, applied in

Chapter 4 and Chapter 6) instead of the conventional K-folds Cross-Validation

method. This new evaluation technique mimics real world setups.

Chapter 1: Introduction

10

C2. A proof of concept analysis was conducted using different ML algorithms (C5.0,

Random Forest and Support Vector Machine) with synthetic datasets to compare the

capability of models to predict test data that had different statistical properties to the

training data. The analysis revealed that the Random Forest (RF) algorithm was the

most accurate and the most adaptable of the three algorithms (Chapter 4).

C3. A thorough analysis of the performance (detection accuracy) of the three ML

algorithms was conducted, and the Random Forest (RF) algorithm was the best at

classifying new traffic in the STA2018 dataset (Chapter 6). This analysis included

the evaluation of different models (with different sets of features and data balances)

for every ML algorithm.

C4. An analysis of the performance of the different ML algorithms on different network

traffic (with changing behaviour) revealed that the performance of these ID models

did not reach their optimal capacity if their predictions were not adapted for the newly

evaluated traffic (Chapter 6).

C5. An investigation was conducted to analyse adapting the discriminating threshold of

model predictions using a (small) random sample of the evaluation traffic

(Chapter 7). This investigation revealed that this approach was able to correctly

adapting a model’s predictions with more than 95% of their optimal accuracy when

the true labels of only 10% of the original data were used for this correction

(threshold tuning) task. Different sample sizes were tested and the predictions of the

Random Forest (RF) models were able to use a sample as small as 0.05%, of the

evaluated dataset, to compute an adaptive threshold with up to 90% of the overall

accuracy of the optimal threshold.

 1.6 Contributions

11

C6. A deeper analysis was conducted to investigate the performance (detection accuracy)

differences between various ML algorithms in order to investigate the causes of

differences in their model detection capabilities (Chapter 7). Most existing studies

compare the performance of different ML algorithms but they do not extend their

analysis to the level of prediction results retuned by these models. This study

extended its analysis to investigate why such differences could occur, and as a result,

revealed a possible relationship between the number of unique prediction scores and

their ranges (returned by ID models) in the overall performance of these model.

• Practical contribution:

C7. An evaluation of the generation process of the KDD 1999 dataset, which revealed

the faulty nature of this dataset. In addition, the evaluation demonstrated a novel way

of linking connections from KDD 1999 to their originals in the DARPA 1998 dataset

(Paper is accepted for publication [1]).

C8. A new dataset was generated (STA2018) by transforming the network traces of the

UNB ISCX Intrusion Detection Evaluation DataSet 2012 [14] into a suitable format

for ML and DM tasks (Chapter 5). The generation process used traffic trace files to

extract 193 basic features, which were then expanded to 550 features by employing

Onut’s feature classification schema [15]. Every record in the resultant dataset

profiled an independent connection, making it suitable for ML algorithms. This

dataset will be publicly available.

C9. A number of faults in the labelled flow files of the UNB ISCX Intrusion Detection

Evaluation DataSet 2012 were identified and outlined, and these faults have been

communicated to the authors of this dataset (Chapter 5).

Chapter 1: Introduction

12

C10. Basic feature extraction was scripted using Bro [16] software (Chapter 5). In

addition, related parts in Onut’s feature classification schema [15] were implemented

from scratch using Java. The full source code will be publicly available for

researchers.

C11. An extension was made to the visual illustration of the Critical Difference Plots, first

proposed by Demšar [17] (Chapter 7). The extended version (Multi-CD) combines

multiple Critical Difference Plots into a single figure, so that any changes in the

ranking of various factors under different effects are more pronounced.

1.7 Research Output

Al Tobi, Amjad, and Duncan, Ishbel. KDD 1999 Generation Faults: A Review and Analysis.

Journal of Cyber Security Technology, 2018. [1].

1.8 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2: presents the background to this field of research and introduces related topics

discussed within the thesis. It also highlights the key problems and solutions in this

area and the latest work related to these issues.

Chapter 3: provides an overview of every experiment conducted in the thesis, and an

introductory background of every ML algorithm used in the experimental evidence.

It also discusses the analysis methods, the adopted research design and the chosen

statistical tests that are used in all experiments of this thesis.

Chapter 4: establishes a Proof of Concept (PoC) for the core focus of this thesis. It details the

experiments conducted to address the first research question, which investigated the

feasibility of threshold adaptation for model predictions of evaluation datasets with

 1.8 Thesis Structure

13

various degrees of statistical similarities to the training data used to learn the ID

model.

Chapter 5: provides a detailed discussion on the generation of the STA2018 dataset. It

describes the preparation of the data and the process of transforming raw network

traffic from the UNB ISCX 2012 [14] dataset into a suitable format for ML

algorithms. The resultant dataset (STA2018) contains labelled records for seven

days of simulation traffic, where each connection (session) is profiled using 550

features. The STA2018 dataset was subsequently used in later experiments.

Chapter 6: presents the experiments undertaken to investigate the second research question.

They aimed to examine the effect of threshold adaptation (tuning), specifically to

the evaluated data, on the overall performance of the models and compare the

performance to the use of a fixed threshold. This analysis included various model

development setups that aimed to emulate real-life practices.

Chapter 7: addresses the third research question by exploring the potential of selecting the

optimal threshold for the whole evaluation data by using a randomly sampled

subset. The true labels of the small subset were used to set the prediction threshold

for the entire test data. This chapter also analyses and compares the effect of various

factors, such as sample size, sampling strategies and labelling error rates, on the

optimal threshold selection for each of the analysed ML algorithms under different

model setups.

Chapter 8: concludes with a summary of the main results and findings from this research, and

suggests some potential areas for future studies.

2

15

Chapter 2: Literature Review and State of the Art

Chapter Two

Literature Review and State of the Art

Computer security was raised as a concern nearly fifty years ago by James P. Anderson in

1972 [18, 19]. Anderson stressed the urgent need for research and development in this field to

ensure secure information systems. In 1980, early research led to the introduction of the concept

of ‘Intrusion Detection’ (ID) [20]. The term intrusion is used to describe any illegal endeavour

to gain access to, or to manipulate, information, or any attempt to sabotage a system by making

it inaccessible, unusable or unreliable.

In a landmark piece of work to automate the detection process, Denning [11] proposed the first

ID model which formed the basis for all subsequent advancements in the field. This chapter

introduces ID and discusses the present state of affairs in this area of research.

2.1 Intrusion Detection (ID)

Intrusion Detection Systems (IDS) are important in the security paradigm of any information

system to protect systems from internal and external threats [21]. Their aim is to distinguish

between legitimate and anomalous actions [22, 23]. As a result, many different types of IDS

exist, including commercial and open source systems. IDS can be classified either by their

physical positioning or by their detection methods, both of which are explored in more detail

in the following discussion.

Chapter 2: Literature Review and State of the Art

16

2.1.1 Types of Intrusion Detection

The physical positioning of different IDS defines their role in the overall security structure of

an organisation. There are two main categories of IDS based on their position: host-based and

network-based IDS.

2.1.1.1 Host-based IDS (HIDS)

Host-based IDS (HIDS) are used to monitor activities at the host level [22, 24, 25]. In such

systems, all the network traffic, resource utilisation and audit trails of a specific device are

monitored to detect any suspicious activities or attack attempts [26]. Such systems monitor the

internal activities of a system (CPU, RAM, processes, files, etc.) [27]. However, they could

induce an overhead on the performance of the monitored host due to their consumption of

resources [21]. In addition, they require extra resourcing and effort to be deployed on every

host [21]. For instance, in a Cloud environment, this deployment could extend to include every

Virtual Machine (VM) running in every hypervisor [28].

2.1.1.2 Network-based IDS (NIDS)

With the increased use of network services, different types of intrusions and attacks have started

to emerge, resulting in a growing need for Network-based IDS (NIDS). These systems are

usually deployed in a strategic position [21] where they can monitor and analyse the traffic

exchanged to protect multiple systems. NIDS are faced with a high volume and a wide diversity

of traffic. This could impose greater complexity in detecting intrusions as trade-off to their ease

of implementation and deployment [26, 29]. Encrypted traffic adds another layer of complexity

to these systems as in many such cases the traffic needs to be decrypted before being

analysed [28]. Furthermore, in a Cloud environment, the NIDS could experience serious

limitations when the virtual network inside a hypervisor comes under attack, i.e. if the NIDS

has no visibility over that virtual network [28], as a result of its deployment outside the

hypervisor. Nikolai and Wang [30] have proposed a Hypervisor-based Cloud IDS to address

such limitations.

 2.1 Intrusion Detection (ID)

17

Every advance in technology, such as Clouds and the Internet-of-Things (IoT), adds more

challenges to the list of problems that need to be addressed. The recent growing interest in

detecting attacks on wireless networks is driven by their widespread deployment as well as their

vulnerability to attacks compared to wired networks [25].

2.1.2 Methods of Intrusion Detection

The detection mechanism which defines the core functionality of IDS can be categorised into

two primary methods: misuse-based and anomaly-based.

2.1.2.1 Misuse-based Detection

Misuse-based IDS (such as Signature-based or Knowledge-based IDS) match known dubious

patterns, which are termed as definition of attacks [25, 31], with actual observed activities, such

as recorded behaviours in audit trails or network traffic. This matching process is usually

accomplished by translating known system vulnerabilities [23] and intrusive patterns into some

form of signatures. Although, this approach is effective in detecting known attacks, it fails to

detect new (zero-day) intrusions [27] or even variants of known attacks [23, 31-34], such as

polymorphic worms [26, 35]. Many researchers have proposed solutions in attempts to address

this issue, such as alert verification [36, 37], proactive approach [38] and ensemble of multiple

classifiers [39].

Another challenge facing this approach is signature definition as it is difficult to define

signatures that cover every system vulnerability [23] and all variations of a possible attack [32,

33]. These systems consume time in maintaining the knowledge base due to the required effort

in keeping patterns or signatures up to date [25]. Despite the many limitations of these types of

IDS, most of the existing solutions (both commercial and open source) such as Snort1 and

Suricata2 fall into this category. Various techniques are used in misuse detection methods, such

1 https://www.snort.org/
2 https://suricata-ids.org/

Chapter 2: Literature Review and State of the Art

18

as pattern recognition, rule-based expert system, Data Mining, etc [31]. The use of DM

techniques can be controversial as many researchers apply them in a misuse context, while

others use them for anomaly detection.

Many of the misuse methods, such as pattern matching for signature-based IDS, require high

computational resources where their utilization to process the vast amounts of network traffic

forms a bottleneck. Therefore, techniques such as those proposed by Bellekens et al. [40] which

use the General Purpose Graphics Processing Unit (GPGPU), could provide a promising

solution to address this problem for this kind of IDS due to the efficient computational

processing abilities of the GPGPU.

2.1.2.2 Anomaly Detection

The core functionality of anomaly-based (or behaviour-based) IDS is based on building a

profile of the normal activities for the system [25, 28, 31]. The main problem with this approach

is the concept of ‘normality’ which could provide an appropriate solution if it can be defined

accurately. This approach assumes that all intrusive (anomalous) activities must deviate from a

normal pattern [21, 23, 28, 32, 33, 41]. It also assumes that anomalous activities are rare in

comparison to normal ones. As a result, many researchers have attempted to solve this problem

by introducing formal models that express the relationships between the core parameters

involved in the system dynamics [12] to build a formal model of normality. Every activity

evaluated with such a model is then classified as an anomaly if it deviates from the normal

pattern [21, 31].

However, anomaly-based techniques suffer from a large number of false alarms [23] because

of their inability to adapt to constantly changing events [25]. Also, due to the underlying

assumption of the rarity of the anomalous activities, many of these techniques become

erroneous (high false alarm rates) when anomalies hit the system in large quantities [12]. This

weakness calls into question and challenges the applicability of these techniques in a production

 2.1 Intrusion Detection (ID)

19

setting and could explain the dominance of signature-based IDS in such environments. Also, as

Modi et al. [28] have pointed out, many of these techniques would require a longer time to

identify intrusive activities. As such, Buczak and Guven [27] consider misuse-based detection

methods to be ‘proactive’ due to their continuous checking of activity signatures against known

attack patterns, while anomaly-based techniques are considered ‘reactive’.

There has been a growing interest in anomaly-based techniques due to advancements in this

field, the continuous enhancement of physical resources, and the ability of these methods to

detect novel (zero-day) intrusions [21, 23, 25, 31]. Any novel attacks that are detected can be

used to develop signatures for the misuse-based IDS [27], if required. Some of the main

techniques used in anomaly-based methods are discussed in more detail below.

Various approaches have been studied and investigated to address anomaly-based detection. In

this area, the most commonly used techniques are statistical, cluster-based and

classification-based methods [31]. Many of the anomaly-based methods are applied to different

placement types, such as host-based or network-based types, but their aim is to detect any

deviation from the norm. Various ML and DM techniques are used for these tasks. Although,

many of these ML and DM techniques are used in both misuse and anomaly detection methods,

the usage method defines their context. In misuse-based detection, ML and DM techniques are

used to generate signatures and patterns of attacks that can be used later to detect these attacks,

whereas anomaly-based detection uses these techniques to build models to define the normal

behaviour. These models are then used to detect any activities that deviate from the norm and

flag them as anomalies. Some of the key methods used in these techniques are outlined in more

detail below.

Many of statistical methods used to analyse traffic are based on the theory of abrupt

changes [12]. These methods basically work by measuring the means and standard deviations

of certain variables to flag anomalous behaviours when they exceed predefined thresholds or

Chapter 2: Literature Review and State of the Art

20

probabilities [25]. They monitor activities and profile them statistically based on measuring

specific variables for an extended period of time [31]. After that, any sudden or unexpected

events, which cause significant deviation, are reported [42]. Such models are more useful to

detect threats of high volume, i.e. DoS and probing attacks, where more stealthy attacks will

have a high probability to evade their net. As a result, Staniford et al. [43] proposed the Stealthy

Port scan and Intrusion Correlation Engine (SPICE) which uses statistical techniques to detect

stealthy port scans by applying a frequency-based mechanism that assigns higher anomaly

scores to those packets that are observed less frequently. Many other methods are discussed in

the literature such as Hierarchical Intrusion Detection (HIDE) [44]; Packet Header Anomaly

Detection (PHAD) [45]; PAYL [46]; LERAD [47]; and Flow-based Statistical Aggregation

Scheme (FSAS) [48]. One of the main drawbacks of these methods is that they can also be

trained by an adversary.

Clustering-based methods aim to group instances (network connections or activities) into

collections called clusters [12]. These methods are based on the assumption that similar

instances should be close to each other and apart otherwise [27]. With these methods, no prior

knowledge is required of the labels or classes (unsupervised) [24], and normal instances are

assumed to be the larger cluster [23]. Bhuyan et al. [12] suggest that these techniques are best

performed at the exploration stage of the DM process. Many clustering methods are discussed

in the context of IDS, such as hierarchical clustering [49] k-means [50], Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [51], Simple Logfile Clustering Tool

(SLCT) [52] and many more. Clustering methods do not require training which saves effort for

a system administrator in collecting and labelling data [27]. However, data dimensionality may

impose serious limitations on these techniques at high dimensions, because most of them are

based on using distances between data points as an evaluation measure, a measure which loses

accuracy as the number of dimensions increases [31]. Furthermore, at higher dimensions, many

 2.1 Intrusion Detection (ID)

21

features will not be meaningful for certain clusters which means cluster-based techniques suffer

from the local feature relevance problem. This means that global feature filtering or selection

will not be satisfactory as different clusters could form in different subspaces [53].

Classification-based techniques are used to assign instances into one of a number of

predefined categories (or classes) [23, 26]. These techniques can perform binary (normal or

attack) or multi-class classification [31]. Many of these techniques have been explored in

detecting anomalous network traffic using K-Nearest Neighbour (KNN) [54], Decision Trees

(DT) [55], Support Vector Machine (SVM) [56], Neural Network (NN) [57] and Bayes

Classifier [58] amongst other techniques. Classification methods tend not to suffer at higher

dimensions as their outcomes show more stable results than cluster-based techniques. However,

unlike cluster-based methods, they require labelled training data to build their prediction models

[12]. In addition, class distribution (balance) in training data could impose a challenge on the

learning capabilities of these techniques [12], an issue which is discussed further in

Section 2.2.3.2. Moreover, they tend to mainly suffer from their high consumption of

resources [12]. A number of studies have proposed various solutions to address this problem,

such as selecting the best subset of salient features (see Section 2.2.3.1) which would result in

a large improvement in resource utilization [29]. Bhuyan et al. [12] have argued that

classification-based techniques cannot predict novel attacks until retraining with the new

attacks has been performed. This assumption is based on granular level classification, where

every type of anomaly is categorised into one class. More holistic forms of classification, such

as binary classification, could be able to predict new types of attacks under a more general

attack class. Some of the well-known systems that employ classification principles include

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [59], Automated Data

Analysis and Mining (ADAM) [60] and Dynamically Growing Self-Organizing Tree

(DGSOT) [61].

Chapter 2: Literature Review and State of the Art

22

According to Bhuyan et al. [12], the research community are more focused on and most

interested in classification-based techniques. Their popularity stems from their flexibility in

training and testing process, as well as their high detection rates for known attacks conditioned

on the appropriate setting of their prediction threshold. Although this fact, i.e. appropriate

threshold setting, is known in the field, to the best of the obtained knowledge, no research has

been conducted to analyse this in greater depth and to study the effect of threshold adaptation

under different parameters.

2.1.3 Hybrid and specialised approaches

A number of hybrid systems have been proposed to address the limitations of each ID type or

method individually by combining multiple techniques [31] in order to achieve more extensive

and more accurate detection [25], and to detect the known and unknown threats [12]. As a result,

many systems have tried to exploit the advantages and strengths of various methods by:

combining misuse and anomaly detection [62-68]; combining multiple anomaly-based

detectors [69-71]; or even combining all approaches together (misuse, anomaly, host-based and

network-based) [72]. Although these hybrid approaches help in building better IDS,

unfortunately they tend to suffer from a high computational cost [28]. However, with advances

in technology, they are starting to dominate the research field [27].

The new technological advancements, such as Big Data and the Internet of Things (IoT), have

brought new challenges with them due to the explosion of information. Many proposals have

been put forward to address the security concerns surrounding these problems, such as

Collaborative Intrusion Detection Systems (CIDS) {centralized [73-76], hierarchical [44, 77-

79], distributed [80-87]}, [21], Wireless-based IDS (WIDS) [25] and Cloud-based IDS

{Hypervisor-based IDS} [88], etc.

 2.1 Intrusion Detection (ID)

23

Due to the diversity of network traffic as a result of so many services, more specialised IDS

have started to emerge, such as application-based IDS (i.e. email, FTP, HTTP) [89, 90],

protocol-based IDS (i.e. TCP) [91, 92], and content or payload-based IDS [93, 94].

As technology advances, more sophisticated IDS are being proposed which combine

approaches from multiple domains to address specific technological limitations. Such

sophisticated approaches could cause difficulties in classifying solutions into a specific class or

category. Therefore, other approaches and techniques are discussed in the literature on how to

address the ID problem. They include, but are not limited to, Ensemble-based [95, 96], Fusion-

based [97], Big Data [98], Genetic Algorithms (GA) [99-104], Self-Organizing Map

(SOM) [105-107], Artificial Neural Networks (ANN) [108-112], Artificial Immune Systems

(AIS) [113-116], Fuzzy sets [117-124], Rough sets [125-129], Ant Colony [130-132], and

ontology and logic-based [133, 134] approaches.

2.1.4 Batch versus Ensemble Intrusion Detection

All of the approaches and methods discussed above were initially proposed to produce pattern

signatures or prediction models in a batch-learning setting, where a finite dataset was used in

the learning task [135]. However, with the explosion of data, more challenges have emerged

that have in turn introduced new fields and trends in handling Big Data, which are known as

ensemble or data stream methods. Traditional (batch-learning) methods of using learning

algorithms to develop predictive models has been one of the areas affected due to their inability

to handle many challenges. Although data stream is not the focus of this thesis, it has been

introduced here to illustrate the new trends in the area and to introduce some of the key terms

in the field, given that some of these terms also affect conventional (batch-learning) methods

of developing prediction model.

In their seminal review, Gomes et al. [135] listed a number of the challenges faced by the

conventional (batch-learning) ML and DM techniques. Amongst many of these challenges,

Chapter 2: Literature Review and State of the Art

24

which data stream methods aim to resolve, are the enormous volumes of data that need to be

processed, limited time and memory resources, the emergence of new classes over time, and

temporal dependencies [136]. However, the most significant problems which have a direct

effect on predictive models are concept drift and feature drift.

Concept drift [137] is a term used to describe the situation in which data distribution varies

over time [138]. It has been categorised by Aggarwal [139] into four groups: abrupt,

incremental, gradual, or recurring. Concept drift describes the nature or phenomena of network

traffic and is often neglected in studies which investigate anomaly-based network IDS in a

conventional (batch-learning) setup.

The term Feature drift refers to the relevance of features over time [140, 141] as changes in

data patterns will incur varying levels of relevance of features. In other words, when a group of

features becomes irrelevant (or relevant) to the learning process at a certain point, then feature

drift has occurred [142].

A lot of research has emerged to look at ensemble learning for data streams to address these

issues, in addition to the proposal of many methods, techniques and frameworks, such as,

Massive Online Analysis (MOA)3 [143]. Such lines of research are based on the assumption

that building a strong prediction model is a challenging task and, therefore, developing multiple

weak models is feasible in order to boost the models by strategically training and uniting them

to create a strong model [144-147]. In these ensemble or data stream techniques when a concept

or feature drift is detected, new models are built and the least performing models will be

discarded.

3 https://moa.cms.waikato.ac.nz/

 2.2 Datasets

25

2.2 Datasets

Datasets provide important means to conduct empirical evaluations and to undertake

comparative analyses of various methods and techniques. However, the network security

domain, especially the network ID field, lacks good quality datasets to analyse and test new

techniques and algorithms. Many factors contributing to this, including the fast evolution of

this field [31]. The highly evolving and changing nature of network traffic and the vast amount

of different attack types introduced on a daily basis, have made any attempt to keep producing

up to date, good quality data a daunting task. As a result, many recent studies use datasets that

are outdated and as old as KDD 1999. Another factor is related to privacy concerns; while many

real and up to date datasets have been used in various studies they have not been made publicly

available because of such concerns. Furthermore, to the best of the author’s knowledge, there

are no datasets that simulate intrusions with new technologies such as a cloud environment or

the IoT. Therefore, finding a recent study similar to the one undertaken by Deng et al. [148]

(who discussed security issues and ID within IoT applications by conducting analyses based on

the KDD 1999 dataset), would raise concerns about its findings.

While there are many publicly available datasets, most of them are over a decade old although

they are still being used in the most recent studies. In general, in addition to the lack of datasets

in the ID domain, the existing datasets have many limitations, such as lack of wide range and

up-to-date attacks. The sections below list the most widely known datasets and benchmarks.

2.2.1 Raw datasets

Many of the widely known datasets used in network ID studies contain raw data. These data

usually consist of pure network traffic and traces between hosts and services. Some of them

contain the host’s audit files which are also in a raw format. The ML and DM techniques require

this data to be pre-processed in order to extract the required features and attributes before they

can be used to produce predictive models.

Chapter 2: Literature Review and State of the Art

26

DARPA datasets4 were the first of their kind to be publicly available for researchers. They

were generated as part of an evaluation task of various Intrusion Detection Systems. They were

a result of a joint project between the Air Force Research Laboratory (AFRL/SNHS), Defence

Advanced Research Projects Agency (DARPA ITO) and the MIT Lincoln Laboratory. This

project generated three sets of data: DARPA 1998, DARPA 1999 and DARPA 2000. However,

the most widely used dataset in the literature is DARPA 1998. These datasets include raw data

from host audits and network traffic traces.

The UNIBS-2009 dataset5 consists of three days of network traces from twenty workstations.

These traces were collected on the edge router of the campus network at the University of

Brescia in Italy. This traffic contains multiple services and protocols, such as Web, Mail, Skype,

Peer-to-Peer applications (BitTorrent and Edonkey) and many other protocols. For this dataset,

all payloads were stripped off and all of the addresses were anonymised.

UNB datasets6 were generated by a leading team in this field. There are multiple datasets

available at the time of writing this thesis, such as ISCX IDS 2012, CIC IDS 2017, ISCX VPN-

nonVPN traffic and the ISCX Botnet datasets. Both the ISCX IDS 2012 and the CIC IDS 2017

datasets consist of seven days of network traffic captures, where the traces contain full captures

and payloads, and are not anonymised. They contain a variety of traffic using up-to-date

services with recent types of attack scenarios.

Other datasets can be found from various sources such as DEFCON7 [149], CAIDA8 [150] and

LBNL9 [151]. However, these datasets have a number of limitations in comparison to the ones

discussed above. For example, the captures of DEFCON and CAIDA are very small and consist

4 https://www.ll.mit.edu/ideval/data/index.html
5 http://netweb.ing.unibs.it/~ntw/tools/traces/
6 http://www.unb.ca/cic/datasets/index.html
7 https://www.defcon.org/
8 http://www.caida.org/
9 https://www.icir.org/enterprise-tracing/Overview.html

 2.2 Datasets

27

of traffic for short periods. They are targeted on a specific scenario and contain particular

attacks [12]. The LBNL dataset is limited only to header traces and all packets are anonymised,

which could result in a distortion of the topological structure of the network. TUIDS10 is another

dataset [152-154] that is discussed in a few publications by its authors.

2.2.2 Processed (pre-formatted) datasets

As most of the ML and DM algorithms and techniques cannot handle raw data, it is necessary

to convert them into a suitable format. Some of the datasets outlined in the literature are used

for that purpose and many of them are much used in several studies.

The KDD Cup 199911 [155, 156] is the most famous and most commonly used dataset in the

domain of network ID. This dataset is a transformation of network traces from the

DARPA 1998 dataset. The transformation aimed to process the raw data into a format suitable

for ML and DM tasks so that every connection in the network traces was profiled with 41

features. The transformed dataset consists of multiple attack types that are categorised into four

classes: probing; DoS; remote to local (R2L); and user to root (U2R). All the records in this

dataset have no host addresses and their chronological order is distorted as their start times were

stripped off. Regardless of these limitations and the many criticisms discussed in various

studies, this dataset has been used in recent studies, up to and including 2018. However,

Tavallaee et al. [157] have analysed this dataset and investigated its poor performance, and they

proposed some fixes by removing redundant records, resulting in a variant called NSL-KDD.

A thorough analysis and investigation of the KDD Cup 1999 dataset can be found in Al Tobi

and Duncan [1], where far more serious limitations, other than redundant records, have been

identified.

10 TUIDS is not accessible as the authors do not respond to access requests and all links, provided in their

publications to the dataset, are broken.
11 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Chapter 2: Literature Review and State of the Art

28

In 2006, the Kyoto datasets12 were generated by extracting 24 statistical features from the raw

traffic of a honeypot system deployed at Kyoto University in Japan [158]. Extracted features

include non-anonymised host addresses. However, as this dataset only contains traffic that was

directed to the honeypots, this restricts the view of that network’s traffic [159]. All of its normal

traffic was simulated by generating DNS and mail traffic, which does not make it a realistic

representation of real world traffic.

The GureKddcup13 [160-162] dataset was put forward in 2008 by Perona et al. [161]. It is a

retransformation of the DARPA 1998 dataset and is similar to the KDD Cup 1999 dataset.

However, this transformation is much cleaner as it avoided many of the limitations of the KDD

Cup 1999 dataset (such as redundant records, the availability of host addresses and connection

timestamps). Although this dataset has existed for a long time, it is not as widely used in studies

as the KDD Cup 1999.

The Sperotto’s (Twente) dataset was generated in 2009 by Sperotto et al. [163] by capturing

traffic through a honeypot deployed in the network of the University of Twente. The honeypot

provided three services (OpenSSH, Apache web server and Proftp) and was directly connected

to the internet. Although 98% of its flows are labelled, it contains limited attacks compared to

other available datasets.

The UNSW-NB15 dataset14 was created by Moustafa and Slay [164, 165] using the IXIA

PerfectStorm tool to generate a mixture (benign and anomalous) of modern network traffic.

This dataset contains nine different attack types: Fuzzers; Analysis; Backdoors; DoS; Exploits;

Generic; Reconnaissance; Shellcode; and Worms. It contains a total of 31 hours of simulation

12 http://www.takakura.com/Kyoto_data/
13 http://www.sc.ehu.es/acwaldap/gureKddcup/
14 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

 2.2 Datasets

29

time (16 hours in the first day and 15 hours in the second day) with a total of 1,140,044

connection records, with each record profiled using 49 features.

While there are many other datasets, KDD Cup 1999 and NSL-KDD are the most commonly

used in the literature. However, as pointed out by Catania and Garino [31], many studies have

used their own datasets which have not subsequently been made publicly available. This was

confirmed by Abt and Baier [166] who showed in their study that only 10% of the papers they

surveyed had released their datasets. Moreover, in many cases, no detailed information had

been provided on the process of generating these datasets, which undermines a key principle of

scientific research, the replicability of experiments [31]. Despite this, many frameworks for

proper and replicable dataset generation have been proposed [14, 166-168].

2.2.3 Common issues and pre-processing tasks

Prior to any training phase, datasets could undergo some pre-processing phases to address issues

related to the data itself or the model generation stage. Such pre-processing includes data

cleaning which involves dealing with missing, noisy and incomplete values. It might also

include data transformation, such as normalisation and standardisation. The main pre-

processing tasks which have a direct influence on model performance are feature selection and

data (class) balancing. Each of these issues is reviewed next.

2.2.3.1 Feature selection

Feature selection is one of the most important tasks in the data analytics process. It aims to

reduce model complexity and generation time by selecting salient features that best capture

patterns within the data. It also removes redundant and irrelevant features that could reduce the

generalisation capability of a model and thus avoid the problem of overfitting [169, 170].

Avoiding the curse of dimensionality [171] (where the number of features are greater than the

number of instances in the dataset) is another important reason for performing a feature

Chapter 2: Literature Review and State of the Art

30

selection process as some algorithms are particularly susceptible to this problem, causing the

learned model to overfit [171].

It is worth noting that feature selection is different from dimension reduction. In feature

selection the best subset of features is selected, while dimension reduction creates a new

combination of features by projecting the original feature space into a new low dimensional

feature space. Principal Component Analysis (PCA) and Singular Value Decomposition

(SVD) [172-174] are the most common dimension reduction techniques. However, dimension

reduction methods are out of scope of this thesis due to their limitations. For example, these

methods make it difficult to determine the level of influence of any individual feature. These

methods also require the data to be pre-processed (i.e. normalised) as unpredictable issues might

arise when data with different scales is used.

Feature selection algorithms generally fall into one of three categories: wrapper, filter, or

embedded methods [172]. Wrapper methods [173-176] evaluate a subset (group) of features

using a predictive model, which is assessed using hold-out (discussed in Section 2.3.1) data

that were not used in the training phase of the model. Based on the error rates of these models,

the feature subsets (groups) are assigned a score. As the wrapper method is considered a search

problem, different search methods are applied throughout the selection process, such as, best-

first [177, 178], random hill-climbing [177, 179], and forward and backward passes [180-182].

These methods suffer from intensive computations as a result of fitting models for every

evaluated subset of features.

Filter methods [173, 174, 183, 184] use statistical measures, known to be fast to compute, as

their evaluation criteria rather than the model’s performance i.e. accuracy. These measures

usually attempt to assess how useful a feature might be. However, as this assessment is not

linked to the model’s performance, the selection process is not usually adjusted for a specific

type of model. This method can lead to the selection of more general features which, in turn,

 2.2 Datasets

31

can result in the generation of models with lower powers of prediction. There are many

measures used in this group such as Relief-based Algorithms [185-187], Mutual

Information [188, 189], minimum-Redundancy-Maximum-Relevance (mRMR) [190], Chi

squared test [191-193], Information Gain, Correlation Coefficient scores and many others.

Following the use of these methods, scores are assigned to every feature. The selection or

elimination of features using this method is based on the ranking of their scores.

Embedded methods [173, 174, 194, 195] aim to address the limitations of wrapper and filter

methods by generating models while simultaneously selecting the features that will best

contribute to their performance. The most common of these approaches are regularisation

methods such as, Least Absolute Shrinkage and Selection Operator (LASSO) [196], Ridge

Regression [197] and Elastic net regularization (which combines the first two) [198] along with

many more. The computational complexity of the embedded method tends to fall between the

wrapper approaches and the filter approaches.

Lashkari et al. [199] applied two feature selection techniques in their study. They used the

WEKA15 DM software to select the key features from 23 time-based features to predict the

service type of Tor traffic. The first technique (CfsSubsetEval+BestFirst) used the BestFirst

search algorithm to select the best subset of features based on their evaluation criterion which

employed the Correlation-based Feature Subset Selection (CfsSubsetEval)16 [200]. In the

second technique (Infogain+Ranker), features were evaluated using the information gain before

being ranked by their weights. The point at which the largest weight decrease occurred between

two consecutive features was used as the cutoff point to select features with higher weights.

This study showed that reduced feature sets were as able to build models with predictive power

15 https://www.cs.waikato.ac.nz/~ml/weka/
16 http://weka.sourceforge.net/doc.dev/

Chapter 2: Literature Review and State of the Art

32

as full feature sets. However, in this study, feature selection did not take account of traffic

variability as the data were divided randomly into training (80%) and evaluation (20%) sets.

In another study, Aljawarneh et al. [201] proposed a hybrid model composed of multiple base

learners, where a vote algorithm with Information Gain was used to combine the probability

distribution in order to select the salient features that increased the accuracy of the model as a

whole. The selected features were then used to build multiple classifiers, where the best

classifier (based, on its performance on the validation data) was selected. However, careful

analysis of their work has revealed that a fixed threshold was used to select features with a

weight higher than 0.4, which raises doubts over this approach under variable traffic patterns.

Ambusaidi et al. [202] proposed an algorithm to analytically select optimal features based on

mutual information. The proposed algorithm has the capability to handle features with linear

and nonlinear dependencies. Features selected by this algorithm have been tested on a Least

Square Support Vector Machine based IDS (LSSVM-IDS) using different datasets (KDD Cup

99, NSL-KDD and Kyoto 2006+ datasets). The resulting feature subsets led to an increase in

accuracy and a reduction in computational cost. However, the comparisons they made with

other approaches was limited to the results and figures that had already been published of the

compared state-of-the-art models and methods. Also, there was no statistical comparison to

determine the significance of any differences.

In contrast to the studies which discuss the importance of feature reduction, and based on the

observation of the high detection rates of the Maximum Entropy [203] and PHAD [45] detectors

of portscan attacks, Ashfaq et al. [204] suggested using a high dimensional feature space to

improve detection. They argued that limiting detectors to specific features could reduce their

accuracy as a result of changing traffic patterns. However, this suggestion is limited to a specific

family of attacks and generalising it requires careful testing, as extending the feature space

could slow the detectors.

 2.2 Datasets

33

Ambroise and McLachlan [205] have pointed out the importance of undertaking the feature

selection stage during the training phase when the Cross-Validation technique (discussed in

Section 2.3.1) is applied. This is to avoid any bias in the selected features which would be

mirrored in the accuracy of the predictions.

2.2.3.2 Data (class) balancing

The class imbalance problem corresponds to the phenomenon whereby classes in a training

dataset are not equally represented [8, 206, 207]. This phenomenon is common in the domain

of network ID, where normal traffic forms the larger majority class. Veeramachaneni et al. [98]

estimated in an enterprise setup, which was based on the characteristics of the data ingested by

their proposed platform, that attack cases form less than 0.1%. This irregularity can affect the

learning capability of many ML and DM algorithms, resulting in predictive models that favour

the majority class.

A number of solutions are proposed in the literature to address this issue, however, the most

common ones are:

• Data sampling methods

o Under-sampling techniques reduce the number of samples in the majority class

until they match the size of the other class(es) [206]. The most common under-

sampling techniques are the Random Under-Sampling (RUS) [206] and Tomek

Links (TL) [208]. However, many alternative under-sampling methods exist

which employ various techniques, such as Clustering-Based [209, 210],

Evolutionary Algorithms (EAs) [211] and Genetic Algorithm (GA) [212].

However, the under-sampling approach can lead to information loss, as part of

the dataset will be wasted and not used.

Chapter 2: Literature Review and State of the Art

34

o Over-sampling techniques work the opposite way; they increase the number of

underrepresented (minority) class(es) to match the size of the majority

class [206]. Randomly resampling minority instances and the Synthetic

Minority Over-sampling Technique (SMOTE) [207] are the most common of

these techniques. Since the introduction of the SMOTE algorithm, multiple

variations of it have been proposed, such as Borderline-SMOTE [213] and safe-

level SMOTE [214]. Other techniques use different procedures in their over-

sampling methods, such as Mahalanobis distance-based [215] and density-based

clusters (DBSCAN) [216]. He et al. [217] proposed an adaptive variation of

SMOTE known as ADASYN, which generates more synthetic samples of

minority instances which are more difficult to learn than the easier ones.

However, over-sampling could slow the model learning task as the number of

samples increase. Also, the SMOTE technique and its derivations could

introduce noise into the data by generating non-representative samples, which

may not contribute to the learning task.

• Learning parameter control methods

o Cost function based approaches are used to assign a larger cost (weight) to

misclassified minority instances than those of the majority class. However, these

methods have some limitations in addressing the imbalance problem in multi-

class cases, due to the exponential growth of the parameter tuning space which

increases with the number of classes [8]. Also the selection of the right cost value

is subject to an iterative process and in many cases requires subjective decisions

from domain experts.

o One-class anomaly learning methods are used to build a prediction model

using one of the classes in the training phase [218-220]. These models will flag

 2.2 Datasets

35

any deviation from the learned class as an anomaly. Das et al. [8] highlighted

the suitability of these methods for domains with very high imbalance ratios.

However, as pointed out by Yu [221], to learn an accurate boundary for the

required concept (class), these methods require a greater number of that

concept’s samples [222]. Also, the adaptability of these methods to changes in

data over time requires further investigation.

Many other techniques were listed in the seminal review by Das et al. [8], such as Boundary

Shifting methods, Active Learning and Kernel Perturbation techniques. The review also listed

some hybrid approaches that combine different techniques, such as data sampling methods and

controlling the parameters of the learning algorithms. Furthermore, the over-sampling and

under-sampling techniques listed above, along with many others, can be found in various

known software, such as a python package17 provided by Lemaître et al. [223] that encompasses

all of these techniques.

An excellent systematic study was conducted by Japkowicz and Stephen [224] to compare

different methods used to address class imbalance (over-sampling, under-sampling and

cost-modifying) on different ML algorithms (C5.0, Neural Networks and Support Vector

Machines). They concluded that there are four main factors that affect class imbalance: the

degree of class imbalance; the complexity of the concept represented by the data; the overall

size of the training set; and the classifier involved. In the study of Japkowicz and Stephen noted

that, sensitive classifiers showed an inverse relationship between the size of the training set and

the level of class imbalance, whereas the degree of class imbalance behaved positively relative

to the complexity of the concept. The study showed that of the three algorithms, the C5.0

algorithm was the most sensitive to class imbalance, while SVM was the least sensitive. Finally,

17 https://github.com/scikit-learn-contrib/imbalanced-learn

Chapter 2: Literature Review and State of the Art

36

they showed that over-sampling, which was more useful than under-sampling, improved

sensitive classifiers, whereas it had the opposite effect on insensitive classifiers.

2.3 Evaluation of Intrusion Detection Systems

Various evaluation methods and measures have been proposed and used to assess the

performance of prediction models. The following subsections present the main methods and

measures that are commonly used to evaluate different IDS.

2.3.1 Evaluation methods

Evaluation methods describe the approaches used to carry out model learning and the testing

tasks used to assess the performances of these models. Most of these approaches are related to

the method used to split the data when such evaluations are undertaken.

Fielding and Bell [225] discussed the different data partitioning strategies used in experiments

and evaluations. These strategies are:

• The Resubstitution method which uses the same dataset for both training and testing

phases. According to the literature available, this method is not used (and should be

prohibited) in many fields, such as Computer Science, because of its tendency to overfit and

to report overly optimistic results.

• The Prospective sampling method is used by obtaining a new sample data after the model

generation phase is over. This method is not a commonly used evaluation practice in

anomaly-based detection.

• The Bootstrapping method is used to sample instances with replacement to create bootstrap

samples. Each one of these samples is then used to build a predictive model, which will be

tested on the remaining instances that were not selected. As recommended by Verbyla and

Litvaitis [226], this process should be repeated many times, i.e. 200 or 1000 times, and the

mean of all performances should be reported. Although this technique is a built-in function

 2.3 Evaluation of Intrusion Detection Systems

37

of some algorithms, such as Random Forest and C5.0, it is not a very common method of

assessing the performance of ML and DM models and techniques. This could be attributed

to the large data sizes used in the ID domain, where model development and assessment

incurs high computational costs.

• The Randomization method is used to sample instances without replacement to obtain

random samples, so that the evaluation process and subsequent reporting follows the same

approach as the bootstrapping method. Similar to bootstrapping, this method is not

commonly used, as a variation of it is performed by undertaking multiple runs of the k-folds

method, as discussed next.

• The K-fold partitioning method is the most common evaluation exercise in the IDS

domain. It is performed by partitioning the data into K (usually K>2) splits, so that K-1 sets

can be used to build a prediction model and only one part is used to test the model [227].

This process is repeated for every partition in what is known as the K-folds Cross-Validation

process so that the mean of all the K performances is reported. This method has two special

cases:

o The Leave-One-Out (L-O-O) method (also known as jackknife sampling) sets K to

the number of samples (N). In this method, a model is trained on N-1 samples and

tested on only one instance. It is common in this method to repeat the model

generation and testing N times, which makes the process very slow when the number

of samples is very large. As a result this method is not commonly used in

anomaly-based IDS research.

o The Hold-out (external) method sets K=2 so that the dataset will be split into two

parts, with one part used for training and the other for testing. However, this

partitioning does not have to be a fifty-fifty split as various strategies can be applied.

Chapter 2: Literature Review and State of the Art

38

As the K-folds Cross-Validation process is commonly used to split data into K partitions at

random, this process could result in partitions that are statistically similar to each other. Hence,

possible variability in the patterns of network traffic over time will become distorted. This could

explain the high performance of the different learning algorithms discussed in the literature.

Further investigation into the effects of this method on concept drift is required and a

comparison to other sampling methods, such as Prospective Sampling [225, 228], is needed.

In general, evaluating the effectiveness of an IDS depends on the availability of information

about new or known intrusions. The difficulty in this is that it relies on human expertise to

assess any potential security vulnerability and to provide the best response to such intrusions.

As Corona et al. [26] highlighted, there are no standard methods to govern these types of

evaluations.

Furthermore, these techniques are usually applied in a batch learning process, as real time IDS

handle data as they flow.

2.3.2 Evaluation measures

This section provides an overview of the main evaluation measures and metrics widely used to

assess classification models and algorithms.

2.3.2.1 Confusion matrix

Many performance assessments of classification models in a supervised learning task are

computed using basic counts of a table known as a confusion (error) matrix [229]. Without

restriction to the order, the columns in this matrix contain the number of instances of every

actual class (label) in the classified data, while the rows contain the number of instances of

every class as predicted by the model. Table 2.1 (a) and (b) show the structures of these

matrices for binary and multi classification problems respectively, where the binary matrix is a

special case of the multi-class table. Table 2.1-(a) presents four basic measures for binary

classification:

 2.3 Evaluation of Intrusion Detection Systems

39

• True Positive (TP): represents the number of positive (class 1) instances that were correctly

predicted by the model to be positive (class 1).

• True Negative (TN): represents the number of negative (class 0) instances that were

correctly predicted by the model to be negative (class 0).

• False Positive (FP): represents the number of negative (class 0) instances that were

misclassified by the model to be positive (class 1).

• False Negative (FN): represents the number of positive (class 1) instances that were

misclassified by the model to be negative (class 0).

Actual

Prediction
+ve -ve

+ve TP FP

-ve FN TN

Actual

Prediction
c1 c2 ⋯ cn

c1 c1,1 c1,2 ⋯ c1,n

c2 c2,1 c2,2 ⋯ c2,n

⋮ ⋮ ⋮ ⋱ ⋮

cn cn,1 cn,2 ⋯ cn,n

(a) (b)
Table 2.1: Confusion Matrices. (a) Confusion matrix for binary classification which is a special case of multiple classes. (b) Confusion matrix

for multiple classes.

These measures are then used to compute many other complex measures, which can provide a

better assessment of the performances of the prediction models, such as, Accuracy, Geometric

Mean of Accuracy, F1 score (known as the Harmonic mean of Precision and Sensitivity) and

Matthews Correlation Coefficient (MCC), etc [229].

To illustrate this concept, the following example (Table 2.2) presents three confusion matrices

for dummy data that contain 100 instances, ten of which are negative (class 0) with the

remaining 90 being positive (class 1). The term cutoff is explained later in Section 2.3.3.

Actual

Prediction
+ve -ve

+ve 90 10

-ve 0 0

Actual

Prediction
+ve -ve

+ve 47 6

-ve 43 4

Actual

Prediction
+ve -ve

+ve 0 0

-ve 90 10

(a) (b) (c)
Table 2.2: Confusion matrices of dummy data with 100 instances (negative = 10 instances and positive = 90 instances) at different cutoff

(threshold) values. (a) Cutoff (threshold) is 0. (b) Cutoff (threshold) is 0.5. (c) Cutoff (threshold) is 1.

Chapter 2: Literature Review and State of the Art

40

The following subsection presents some of the measures that can be derived from these

confusion matrices.

2.3.2.2 Accuracy

In the literature, Accuracy is the most popular measure to assess model performance and to

compare different models [229]. It basically measures the proportion of instances that are

correctly classified (TP and TN) to the total number of instances in the dataset. Eq.(2.1) is used

to compute accuracy for binary models and Eq.(2.2) is the general formula for a multiclass

model. The accuracies of the example data presented in Table 2.2 of every matrix (a, b and c)

are 90%, 51% and 10% respectively. This measure forms a very poor measurement when an

imbalanced dataset is evaluated, as illustrated in the above example. Although the first table

has an accuracy rate of 90% it failed to detect any of the negative cases as all instances were

predicted to be positive. This example illustrates the limitation of this measure in assessing

model performance if the data used are highly skewed. More appropriate measures are available

and are discussed next.

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 Eq.(2.1)

𝑎𝑐𝑐 =
∑ 𝑐𝑖,𝑖

𝑛
𝑖=1

∑ ∑ 𝑐𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 Eq.(2.2)

2.3.2.3 Other common measures

The following evaluation measures are some of the most commonly used to assess the

performance of binary classification results. Unlike the accuracy measure, these measures

cannot be extended to multi-class problems. They are derived from the values in the binary

confusion matrix, as in Table 2.1-(a).

 2.3 Evaluation of Intrusion Detection Systems

41

Sensitivity represents the proportion of positive (class 1) instances that are correctly

classified [229]. This measure is also known as the True Positive Rate (TPR), the detection

rate or recall (Eq.(2.3)).

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq.(2.3)

Specificity represents the proportion of negative (class 0) instances that are correctly

classified [229]. It is also called the True Negative Rate (TNR) (Eq.(2.4)).

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Eq.(2.4)

Precision is a common measure in information retrieval and in the document classification

domain. It represents the proportion of instances predicted as positive (class 1) that are actually

positive [229]. This measure is also known as the Positive Predictive Value (PPV) (Eq.(2.5)).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq.(2.5)

The F-measure is another common measure and is calculated based on the combination of

precision and recall measures [229]. However, Hand and Christen [230] recently revealed a

major conceptual weakness in this measure and urged researchers to find an alternative. This

measure is also known as the F1 score or the Harmonic mean of Precision and Sensitivity

(Eq.(2.6)).

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 Eq.(2.6)

2.3.2.4 Geometric Mean of Accuracy

The Geometric Mean (G-Mean) of Accuracy [231] metric aims to address the limitations of

the normal accuracy measure when dealing with imbalanced datasets. It measures the geometric

Chapter 2: Literature Review and State of the Art

42

mean of the accuracy of each class. This measure computes the classification accuracies of

every class separately and then computes their geometric mean. For binary classification,

Eq.(2.7) is used to calculate the G-Mean accuracy. Eq.(2.8) shows the general formula used to

compute this measure for multi-class problems, where ca,b is the number of class b instances

that were predicted as a and n is the total number of classes. Calculating the G-Mean Accuracy

of the examples in Table 2.2 (a, b and c) produces the following results: 0%, 46% and 0%

respectively. Both tables (a) and (c) that were classifying all instances into one class have

attained a 0% G-Mean Accuracy as one of the other classes had zero accuracy. It is also worth

noting that even table (b) scored less than the accuracy measure. If a model predicts all classes

perfectly, then the G-Mean of Accuracy will be one.

𝑔𝐴𝑐𝑐 = √𝐴+𝑣𝑒 × 𝐴−𝑣𝑒 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Eq.(2.7)

𝑔𝐴𝑐𝑐 = √∏
𝑐𝑖,𝑖

∑ 𝑐𝑗,𝑖
𝑛
𝑗=1

𝑛

𝑖=1

𝑛

 Eq.(2.8)

Although this measure was first proposed by Kubat and Matwin [231] few studies have used it

to assess and compare the performance of different models. However, a number of recent

studies in network ID domain have started to use it [232-234].

2.3.3 Threshold related measures

Almost all ML algorithms used for classification problems can return predictions in two forms;

by predicated class (label) or by probability (score). When instructed to return the class label,

the label of the class with the higher probability will be returned. Whereas if the class

probability is returned, the user can vary the discriminating cutoff (threshold) at which class

 2.3 Evaluation of Intrusion Detection Systems

43

labels are assigned. For example, in a binary classification problem {attack, normal} a model

might return a probabilities vector for a tested instance as (attack:0.35, normal:0.65). If the

cutoff value is set to default i.e attack ≥ 0.5, then this instance will be classified as normal.

However if this threshold is set lower, such as attack ≥ 0.32, then it will be labelled as an attack.

The cutoff (threshold) value is usually varied to maximise some measurement such as the

prediction accuracy, or to minimise another, such as false rates. Varying the cutoff (threshold)

value will generate different values in the confusion matrix as instances change classes

accordingly, and the measurement result can be calculated at every cutoff point. This varying

process is usually undertaken at the training phase to set models parameters, i.e. the cutoff

(threshold) value, and to assess and compare model performances using different evaluation

measures, such as the Receiver Operating Characteristic (ROC) and the Area Under the ROC

Curve (AUC). Beguería [235] suggested the use of these two measures to address the dramatic

effect of the class imbalance problem on many common validation statistics such as the

confusion matrix and accuracy.

This is illustrated by the example presented in Table 2.2 which shows the classification results

of a dummy model with different cutoff (threshold) values: 0, 0.5 and 1. Figure 2.1 presents

these tables as graphs so that the prediction (on the y-axis) is the probability that an instance is

positive (class 1), while the actual (on the x-axis) is the true label of that instance. Cutoff

(threshold) values zero and one are the extreme cases at which instances will be classified into

one class or the other.

Chapter 2: Literature Review and State of the Art

44

(a) (b) (c)

Figure 2.1: Plot of the confusion matrices for dummy data with 100 instances (negative (class 0) = 10 instances and positive (class 1) = 90

instances) at different cutoff (threshold) values. (a) Cutoff (threshold) is 0. (b) Cutoff (threshold) is 0.5. (c) Cutoff (threshold) is 1.

2.3.3.1 Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) Curve [236] is a graphical representation of

a model’s performance at different cutoffs (thresholds). It plots the False Positive Rate (FPR)

(x-axis) against the True Positive Rate (TPR) (y-axis) for every discriminating cutoff

(threshold) value used to assign instances to their class (see Figure 2.2). A model with good

prediction ability will have a ROC curve that goes towards the upper left-hand corner, so that

the closer this curve gets to the top left-hand corner, i.e point (0.0, 1.0), the better its

performance [237]. The closer the curve is to the diagonal dotted line, i.e line (x=y), the worse

the model will be, as it will be no better than a random guess.

Figure 2.2 provides an example of two different ROC curves for two different models. The

ROC curve of a dataset with 100 instances (D100) shows a very weak model as that curve is very

close to the dotted line. These data points are the same as those presented in Table 2.2 and

Figure 2.1. The ROC curve for the data with 1,000 instance (D1000) shows a much stronger

performance as this curve is further from the dotted line.

 2.3 Evaluation of Intrusion Detection Systems

45

Figure 2.2: ROC curves for two dummy datasets with a different number of instances; D100 has 100 instances while D1000 has 1000 instances.

For each dataset 10% of its instances are negative (class 0) while the remaining 90% are positive (class 1).

2.3.3.2 Area Under the Curve (AUC)

The Area Under the Curve (AUC) is used to measure a binary model’s performance based on

calculating the area under the ROC curve [229]. It provides a summary of the ROC curve and

measures how well a model can distinguish between two groups [(positive, negative) or (attack,

normal)] [238, 239]. However, this summary can lead to a loss of information about the trade-

off between the True Positive Rate (TPR) and the False Positive Rate (FPR). In a perfect

classification the AUC will reach one, whereas a poor classifier will have an AUC value of

around 0.5, as the TPR increases linearly with the FPR [240]. Another key feature of this

measure is its independence of the proportion of classes in the data, which makes it immune to

the imbalanced data problem [240]. Therefore, AUC is commonly used to compare the

performance of multiple models, as it can assess the discriminative power of each prediction

model [241]. However, many researchers have criticised its use for model comparison as it is

noisy when used as a classification measure [242-244]. Instead, they suggest interpreting AUC

as a way to assess the probability that a model will rank a randomly chosen positive instance

higher than a negative one. As illustrated by Figure 2.2, the dummy model developed using

Chapter 2: Literature Review and State of the Art

46

dataset D100 has an AUC of 0.411, which is very close to 0.5, while the one trained on data D1000

attained an AUC of 0.85.

2.4 Related Work and Research Gaps

At an early stage, researchers realised that the performance of IDS were tightly related to the

behavioural patterns of users as well as the characteristics of various underlying services and

protocols. Therefore, anomaly-based methods were introduced to address possible deviations

from normal behaviours in order to flag intrusions. In addition, many researchers understood

that for various reasons these anomaly-based methods suffered from high false alarms. The key

reason for this was their inability to adapt themselves to changes in data patterns over time. As

a result, many proposals have been put forward to address this issue, including methods that

adapt to such changes. Hence, many studies have suggested various approaches, such as model

updating and rule tuning techniques. Many others have looked into the benefits of using

adaptive or tuneable thresholds for the IDS measures to flag anomalies rather than relying on

fixed thresholds. The following subsection presents the key work in this area.

2.4.1 Threshold adaptation

Lucchetti [245] stressed the importance of the continual tuning of system rules in the context

of market practices, in order to be able to identify potential new risks. This scenario shares an

important feature with network traffic, in that patterns are continually changing over time,

which requires models to be adaptable [31]. Hence, Chen et al. [246] suggested undertaking

threshold tuning for the predictions of classification methods that generate a quantitative output

(score), so that the threshold can be set at different values to assign class labels. As a result,

Catania and Garino [31] suggested performing tuning on statistical-based models whenever a

change in network traffic patterns is detected by making adjustments to the normal model.

In an attempt to understand the importance of the right threshold selection on the performance

of prediction models, Freeman and Moisen [247] investigated 11 optimisation criteria on

 2.4 Related Work and Research Gaps

47

threshold selection by assessing the prevalence and kappa18 for the data of 13 tree species. They

concluded that the species that were the most sensitive to threshold selection either have a low

prevalence or a poor model quality. These findings can be projected onto the situation in

network traffic, where, usually, anomalous traffic forms a minority compared to normal traffic

and many anomaly detection methods have been developed based on this core assumption.

Furthermore, due to the evolving nature of traffic, the quality of detection models tends to

deteriorate over time. Therefore, threshold adaptation could help to improve the quality of these

models before they get phased out.

To address model tuning, the conventional (batch-learning) modelling process usually has two

main phases, training and testing. At the modelling stage, training (learning) data are used to

build a prediction model, which is then used to predict the test (evaluation) data. However,

Buczak and Guven [27] stressed the importance of having three phases, and introduced an

intermediate (validation) stage. In this three phase setup, Buczak and Guven [27] suggested that

the training data are used to build multiple models using different ML/DM algorithms with

different parameters. The validation data could then be used to select the best model(s) and to

estimate their errors before they are used to predict or classify the testing data. Buczak and

Guven [27] recommended that the selected model should not be fine-tuned (model parameter

tuning) based on how it performed on the test data, to avoid reporting overly optimistic results

i.e. reporting accuracy rates that might not be true for another test dataset. Although the

recommendation not to modify model parameters based on the test data is a reasonable design

practice, many of the recommended adaptive real-time systems (see Section 2.4.1.2) perform

tuning on detection rules. Therefore, threshold tuning based on the prediction scores of a model

could provide a tool to tune the system over time. However, the single fine-tuning

recommendation may not be appropriate as it appears to be based on the assumption that test

18 The Kappa measure is used to assess the inter-rater reliability (agreement) between two raters (classifiers) [386].

Chapter 2: Literature Review and State of the Art

48

datasets, including future unseen data, have similar statistical properties; which is not a valid

assumption given the variable nature of network traffic.

Similarly, in an attempt to find the right discriminating threshold for the detection model,

Beguería [235] suggested the use of validation data. The selected threshold is then used to

classify the records in the evaluation/test data based on their scores returned by the prediction

model. However, this suggestion does not appear to take into account the variability of

behaviour in input (traffic) data over time, much like the single fine-tuning recommendation by

Buczak and Guven [27].

Most of the model tuning and adaptability to pattern changes in network traffic in the field of

ID can be categorised into three main themes which are outlined below.

2.4.1.1 Batch learning

Yang [248] proposed score-based local optimisation (SCut) as a strategy to select a threshold

based on optimising a performance measure, such as accuracy. In other words, SCut is the

threshold at which a performance measure would be maximised or minimised. To the best of

the obtained knowledge, no studies have explored model adaptation for changes in network

traffic by tuning the threshold of the predictions of a model within a batch-learning setup.

Lakhina et al. [249] used the Principal Component Analysis to separate a high-dimensional

space of network traffic measurements into disjoint subspaces. Each subspace corresponded to

normal or anomalous network settings. They used a fixed threshold (3σ deviation from the

mean) to separate the principal axes into normal and anomalous sets and found that the first

four principal components represented the normal subspace for the cases they analysed. This

study did not address the variability of traffic over time, and so requires further analysis of the

performance when traffic conditions vary.

 2.4 Related Work and Research Gaps

49

In an attempt to investigate the effect of threshold tuning on multi-class predictions, Fan and

Lin [250] concluded the effectiveness of tuning approaches on the performance of classification

techniques. They used the 5-folds Cross-Validation technique to evaluate these effects, despite

the fact that, as discussed earlier, the Cross-Validation technique may not maintain any

statistical differences between the training and the testing data (Section 2.3.1), leading to overly

optimistic results. They analysed the effect of different optimisation metrics (macro-average

F-measure, micro-average F-measure and exact match ratio) on the overall performance of the

selected threshold. They then investigated this tuning approach using validation data without

considering whether such tuning was required for every independent evaluation process or

whether the selected threshold could be used for future evaluations performed by the prediction

model. Similarly, Pillai et al. [251] investigated the issue of threshold selection for multi-label

classification problems by optimising the F-measure and Precision-Recall curve. They used

5-folds Cross-Validation on five datasets to validate their results. They compared the results

obtained on the evaluation/testing data by using the optimal threshold that had been selected on

the basis of the validation data. However, they did not extend their analysis to compare their

results with those where the threshold had been tuned for the testing data. They concluded that

selecting an optimal threshold based on maximising the micro-F measure can lead to overfitting.

Koyejo et al. [252] investigated the optimisation of a binary classifier using different metrics

where they proposed an approach to identify the optimal threshold based on the conditional

probability of the positive class. However, in this approach the search for the optimal threshold

was performed using training and validation data. Yan et al. [253] pointed out that this search

requires prior knowledge of the optimal classifier, which is usually unknown in reality. As a

result, Yan et al. [253] identified two key properties (Karmic property and the

Threshold-Quasi-Concavity property), for which they have shown, theoretically, that the Bayes

optimal classifier is a threshold function of the conditional probability of a positive class. On

Chapter 2: Literature Review and State of the Art

50

this basis, they proposed a novel threshold estimator. As with previous approaches, these works

do not seem to assume a change in data over time (concept drift), as the threshold is only set

once using the validation set. In general, nearly all approaches in the batch-learning methods,

adopt the recommendations of using a single validation dataset to select the right threshold as

suggested by Beguería [235] and, Buczak and Guven [27], where this adaptation is only applied

once.

2.4.1.2 Real-time learning

In an early study, Eskin et al. [254] proposed an adaptive Host-based ID model generation.

Their framework, which is similar to that of Honig et al. [255], recommends the aggregation of

all data, such as system calls collected by sensors from every monitored host, into a single data

warehouse. This data can then be used to train detection models, which can in turn be distributed

to hosts to detect intrusions. The adaptability of this framework is in the deployment of models

on the hosts. However, this framework uses a fixed threshold to flag anomalies without

addressing the variability between the hosts. Also it shows a scalability limitation, as with the

amounts of data generated by the monitored hosts, storing such data will become a serious issue

over time.

Hossain and Bridges [256] proposed a framework for adaptive IDS using fuzzy Data Mining.

This framework aims to minimise the human intervention in the adjustments of the profiles

used to describe normal traffic by the IDS. The tuning process is designed to operate on a real-

time IDS. Hossain et al. [257] evaluated this framework by using a sliding window to update

the profile, so that the updating process used the data that fell within that time window. Some

heuristics were used to decide when the updating process should be triggered. For their analysis

they used a 10 week capture of real network traffic from the Computer Science Department at

Mississippi State University. Within this period some simulated portscan attacks were

performed. There are no details in the study about the nature of the collected traffic. Also, it

 2.4 Related Work and Research Gaps

51

seems that they considered all traffic, other than those postscans, as benign. These experiments

were designed to detect known attacks, however the system produced results that the authors

could not explain, which could be attributed to the lack of controls over the traffic that was

analysed.

Jung et al. [258] developed a Threshold Random Walk (TRW) algorithm to detect random

portscan attacks in a real-time setup, based on the observations of the state (successful or

unsuccessful) of connection attempts from a remote host to newly-visited local addresses. They

modelled accesses to the monitored systems using a random walk on one of two possible sets

of probabilities, which were specific to their detection principle. Each of these two probabilities

was used for one of the boundary thresholds (i.e. the lower and upper thresholds). However,

this model assumed that all distinct connection attempts had the same likelihood of success,

while no correlation between these attempts was assumed. Further, as Ali et al. [259] pointed

out, threshold adaptation was only performed on the upper boundary of the likelihood ratio

which was based on previously observed instances, while the lower boundary was fixed.

Idé and Kashima [260] investigated the development of an IDS to detect anomalies in multi-

tier systems, such as web-based systems. They modelled the system using a weighted graph, so

that the service activities were subsequently used to extract a feature vector, which was

computed using the principal eigenvector of the eigenclusters of the graph. They defined an

anomaly measure by using a derived probability distribution i.e. an approximation of the von

Mises-Fisher distribution, where at a critical probability boundary the threshold value was

adaptively updated. As this IDS models service activities in the system, where the directions of

these activities are assumed to be stable, services which are rarely used may not benefit from

its detection capabilities. As a result, services run by careful adversaries, such as

Command-and-Control (C&C) might not be flagged up.

Chapter 2: Literature Review and State of the Art

52

Yu et al. [261] proposed an automatically tuning IDS (ATIDS) system, which used feedback

from the security officer about encountered false predictions to automatically tune the threshold

of the rule-sets of their rule-based prediction model in real-time. This system is dependent on

the human resource available, which might impose a challenge when security officers are

overwhelmed by alarms. Therefore, Yu et al. [262] proposed an extension that adjusts the

number of alarms flagged to security operators based on their abilities. Although this extension

minimised the burden on security officers, the overall performance of the system was limited

by the time it took to provide feedback. That is, delayed feedbacks could hamper the

performance due to the delayed adaptation. This system also failed to cope with drastic changes

in system behaviour, as the tuning process is performed on the rules level of the detection

model, where these rules set might not be representative of the new behaviour due to concept

or feature drift (see Section 2.1.4).

An outstanding study by Ali et al. [259] proposed a generic threshold tuning algorithm so that

the detection threshold of any score-based Anomaly Detection Systems (ADS) could be

adapted. In their approach, statistical and information theoretic analyses were undertaken on

the anomaly scores produced by multiple network-based ADSs (PHAD [45], Maximum-

Entropy [203], Sequential Hypothesis Testing and PAYL [46]) and host-based ADSs

(Anomalous Sequence Detector [263], a Machine Learning based Detector [264] and Sequence

Alignment based Detectors [265, 266]). These analyses aimed at revealing consistent structures

of time correlation during periods of normal activities. They used Markov chains to model the

observed time correlation structure, and these Markov chains used a stochastic monitoring

framework to tune thresholds for the detection of the ADS as per the real-time measurements.

In an attempt to protect the system from sporadic changes and evasion attacks, and to enhance

its resilience, some statistical techniques were used. However, this approach targeted anomalies

that cause a detectable variability in traffic patterns due to their high volume, such as

 2.4 Related Work and Research Gaps

53

UDPFlood, TCP SYN Flood and TCP SYN portscans attacks. This approach is designed for

score-based real-time detectors (not batch) as they quantify the anomaly score based on a

comparison between the learned profile and the run-time profile.

In an attempt to keep up to date with the latest technological advancements, Chou and

Wang [267] proposed an adaptive network IDS for Cloud environments. They claimed that

their system had the capability to perform automatic labelling of raw network traffic (normal

and anomalous). This claim was based on the fact that they had used a spectral clustering

algorithm (unsupervised learning) to cluster the unlabelled network traffic so that the clusters

could later be used as labels to construct a decision tree-based detection model. As the spectral

algorithm clustered the incoming traffic, these clusters (labelled data) were used to improve the

original detector and to adapt it to the network environment by building a new detector.

Although the authors claimed that this system was developed for Cloud environments, they

used DARPA 2000 and KDD 1999 datasets in their experiments, without any justification as to

why such data had been selected for this scenario. They also proposed an unsound experimental

design which overlooked any DDoS attacks in DARPA 2000, claiming that this type of attack

would generate lots of connections, fearing that it could defy the core assumption of the rarity

of attacks. This decision calls into question how their system would perform in a real life setup

as such assumptions are not guaranteed in production environments. It also appears that they

based their study on the assumption that the patterns of the attack traffic were different and as

such, could be separated out from those of normal flows, as the decision tree model was

developed on the clusters formed by the spectral clustering algorithm.

Agosta et al. [268] introduced a distributed Anomaly Detection System (ADS) to detect worm

threats. This system employed a threshold adaptation technique, to compare it with the

performance of a fixed threshold. This study concluded that the adaptive threshold technique

Chapter 2: Literature Review and State of the Art

54

was far superior. However, these techniques were specifically designed for this type of attack

and the ability to generalise these results to other class of threats is debatable.

Gu et al. [269] devised a framework to measure the effectiveness of IDS quantitatively. This

method is based on quantifying the feature representation capability, classification information

loss and overall Intrusion Detection capability of an IDS using a set of information-theoretic

metrics. These metrics perform fine-grained evaluations of IDS and offer an assessment tool to

compare multiple IDS to their specific components, not just based on their overall

performances. Gu et al. discuss the importance of dynamic fine-tuning over static fine-tuning

to address the issue of traffic variability over time. Thus, their framework introduced dynamic

fine-tuning by dividing the time series into a number of intervals so that the tuning process is

performed based on maximising the ID capability for each interval. However, Strasburg et al.

[270] have raised concerns about the practical effectiveness of such a model in IDS

development.

Jyothsna and Rama Prasad [271] studied a meta-heuristic assessment model, which aimed to

set a threshold for random normal behaviour in real-time, by estimating the degree of intrusion

scope threshold from a given network transaction. At the same time the model aimed to identify

any new intrusions in the network. Feature selection based on feature correlation methods were

performed to reduce processing and time costs. However, this approach did not cater for the

effect of concept drift on the selected features over time, and hence, on a model’s performance.

2.4.1.3 Data stream learning

In the counterpart techniques (data stream) to batch modelling methods, concept drift is a core

feature that is considered in the modelling process. Therefore, in their seminal work

Bifet et al. [272] proposed a new data stream framework which aimed to address concept drift

by employing ensemble methods using various Bagging techniques. They later developed this

framework into an open source software known as Massive Online Analysis (MOA) [143].

 2.4 Related Work and Research Gaps

55

Masud et al. [273] proposed a classification method to address concept drift in data classes, that

is, the emergence of unseen classes (labels). This is because, usually, new class labels require

a longer time to be provided with new training data to rebuild the base detection models.

Therefore, Masud et al. applied some clustering concepts to measure the distance between

known classes and new data instances so that this technique could flag up these new instances

as anomalies. However, Farid et al. [274] stated that such models would need to gather a large

number of test instances to determine their similarities and differences in order to identify any

novel classes.

In an earlier study in the same line of research, Masud et al. [275] proposed another detection

approach for novel classes that used an adaptive threshold and the Gini Coefficient for outlier

detection. For every classification model, the adaptive threshold technique defined a slack space

outside its decision margin. Hence test instances that lay beyond that slack space were

considered outliers, otherwise they are considered of the same class. These outliers were further

tested using the discrete Gini Coefficient to determine whether they were noise or a novel class.

However, the proposed approach is unable to distinguish between the novel classes if multiple

new classes have emerged, as well as it does not cater for other types of evolution, such as

feature drift [276].

In order to automatically determine the optimal parameters of an anomaly detector (AD) Cretu-

Ciocarlie et al. [277] enhanced the training phase by introducing a self-calibration stage. Their

method consisted of applying ensemble methods to unsupervised learning techniques to build

micro-models. A weighted voting scheme on labels returned by these micro-models was used

to compute a final class decision. In this method, automatic adaptation of the voting threshold

is performed, where this threshold measures the degree of strictness or relaxation of the system

by defining the minimum number of votes needed to accept the packet being tested. However,

this approach could result into an Anomaly Detector (AD) that might be subject to attack as an

Chapter 2: Literature Review and State of the Art

56

adversary could train it. This approach seems to fail to differentiate between a real change in

traffic patterns and an ongoing crafted attack aimed at skewing the majority votes of the micro-

models.

Chen et al. [278] suggested the offline mining of an old data stream to build high-quality models

for every recurrent concept. When concept drift is later detected in a data stream, it could then

be evaluated to identify the type of concept so that the traffic could be passed to the most

suitable pre-built model to classify the traffic in that stream. This technique claims to achieve

high rates of accuracy because of the high-order models. However, it assumes that there is a

finite number of concepts to be modelled. This assumption is challenged by the high volume

and diversity of network traffic. In addition, as the number of concepts grow over time this

could form a bottleneck to the scalability of the system.

In a more recent work, Gomes et al. [279] proposed an Adaptive Random Forest (ARF)

algorithm that was suitable for evolving data streams. This algorithm has the potential to

address concept drift by adapting itself to any changes. The adaptation is performed by

replacing any outdated trees in the forest with new trees that have been grown (trained) in the

background.

2.4.2 Research gaps

As presented, the importance of adaptation to pattern variability has mainly been addressed in

the context of real-time and data stream problems. Most of the adaptation and tuning approaches

for real-time based systems target certain classes of attack which are formed of abrupt patterns,

such as DoS attacks. As these attacks introduce high variability into traffic patterns, much

research has attempted to detect them and fine tune the system accordingly. In most cases, these

tuning approaches would aim for adapting the IDS detection parameters to increase or decrease

thresholds of these parameters. However, Catania and Garino [31] pointed out that most of the

adaptation approaches are aware of the high network variability and the proposed methods

 2.4 Related Work and Research Gaps

57

provide the required adaptability features to adjust for the targeted anomalies. Similarly, in the

data stream field, most of the proposed approaches suggest building new detection models to

adapt to such changes [259].

As for the batch-learning tasks, in an ideally designed experiment, adaptation is undertaken

only once for the prediction model using validation data [27, 280]. Validation data is used to

estimate class distributions in order to calculate the optimal threshold for the prediction model.

However, in a real life setup these distributions are not fixed, which renders such approaches

ineffective. Furthermore, using a fixed threshold for predictive models could result in an

inaccurate reading of the model’s performance which could in turn lead to the selection of

weaker models or an early phasing out of good models. However, no study exists to investigate

continuous adaptation for every evaluation/test data based on the ground truth of a

representative sampled subset to be used as a validation data to set the threshold accordingly.

Therefore, further investigation is needed to study such an approach and to examine the effect

of the size of sampled validation data on the overall performance of such an adaptation.

Moreover, in batch-learning approaches, there is a reliance on the K-folds Cross-Validation

technique to evaluate models and when attempting to address the pattern change problem,

validation data is the alternative suggested approach. Such an approach is used to select the best

threshold based on the optimisation of some measure, such as the accuracy, for the prediction

model. However, no study has investigated how a fixed threshold will behave under different

setups. Also, as model development is based on various decisions taken in relation to the

training data (such as feature selection and data balancing), it is important to analyse how such

decisions might affect the model performance when traffic changes over time and causes

concept or feature drift. It is also important to address whether the threshold (tuning) adaptation

of model predictions have any effect on eliminating or mitigating such limitations.

Chapter 2: Literature Review and State of the Art

58

This chapter also listed commonly used datasets to evaluate various IDS; most of the recent

studies still rely on the KDD cup 1999 and NSL-KDD datasets, due to the lack of suitable

alternatives. Although, more up to date datasets are available, most of them are in a raw format

making them unsuitable for ML and DM learning tasks. As such, there is a need to transform

an up to date dataset following a clearly defined, validated and reproducible transformation

process.

2.5 Summary

This chapter has presented an overview of the different types of ID and the different methods

used in the ID domain. It has also listed the datasets most widely used to evaluate ID as well as

the various evaluation methods and the most commonly used measures. This chapter has

highlighted the importance of model adaptation/tuning to address the evolving nature of

network traffic in order to maintain acceptable levels of detection performances. It has also shed

light on the latest developments in this area of research and identified a number of gaps that

need to be addressed and investigated further.

The aim of this thesis is to investigate the effect of discriminating threshold adaptation on the

accuracy (i.e. the Geometric Mean of Accuracy) of score-based anomaly ID models in batch-

learning setups. This adaptation will be analysed and evaluated under different scenarios using

three different types of ML algorithms. As this threshold adaptation is expected to improve the

accuracy of the ID models, it should provide an accurate reading of the optimal accuracy of the

detections of these models. This will result in maintaining the ID models for a longer time as

they will be phased out less frequently, and hence save valuable resources.

3

59

Chapter 3: Experimental Overview

Chapter Three

Experimental Overview

After previously discussing the current field of network ID and exploring the main problems in

this area around open research, some of the key research gaps are now addressed in this thesis.

This chapter introduces the research strategy and the empirical techniques employed in the

experiments conducted to address some gaps.

The hypothesis underlying this research is, “in a binary batch-learning setup, prediction

accuracy of a score-based anomaly intrusion detection model can be improved by adapting

the discriminating threshold specifically for the predictions of the evaluated network traffic.”.

In order to address this hypothesis, three main experiments were conducted. Each experiment

aimed to provide a deeper insight into the research problem by providing an empirical analysis

for one aspect of the main research question. Three different ML algorithms (C5.0, Random

Forest and Support Vector Machine) were evaluated and analysed using various datasets and

model development setups.

Although each relevant chapter provides a detailed description of the data and methods used in

the experiments, this chapter provides an overview of those methods in addition to discussing

some of the experiments’ common features.

Chapter 3: Experimental Overview

60

The chapter is divided into four main sections: an overview of every experiment; an overview

of each of the ML algorithms used in the experiments; a brief description of the experimental

methods and analyses used; and finally, an outline of the main limitations, alongside a summary

of the chapter.

3.1 Overview of Experiments

As discussed in Chapter 2, there are various ways to adapt prediction models to variability in

network traffic, such as in real-time and data stream methods. However, batch-learning setups

are the least researched in that domain, although they are important to detect novel attacks that

cannot usually be detected by other methods. Some kinds of attacks are better detected in a

batch mode to increase the detection rate rather than attempt faster detection in real-time with

a higher failure rate. With this approach, there is no need to change or tune any of a model’s

parameters as long as its predictions are in the form of a probability score. In this sense,

threshold adaptation does not require any modification to the anomaly detection model. The

detection model is thus treated as a black-box, as the adaptation is performed to its predictions

and not to its detection parameters.

This section provides an overview of each of the main experiments which are outlined in more

detail in the coming chapters. Figure 3.1 illustrates the sequence, and the relationship, between

the various chapters that detail the experiments.

3.1.1 Experiment 1

The first experiment examined the effect of threshold adaptation on the overall performance of

a detection model. It set out to provide a Proof of Concept (PoC) by comparing three

well-known ML algorithms to determine which was the most adaptable, that is tuneable. This

experiment used the same datasets and the same ML algorithms in two different kinds of setup,

each of which reported different results.

 3.1 Overview of Experiments

61

Figure 3.1: Schematic overview of the experiments undertaken

The first setup employed a 10-folds Cross-Validation to train and test the prediction models.

The second setup used a prospective sampling approach to build models by using a 10-folds

Cross-Validation on a subset of the data so that the models generated could be used to evaluate

data with similar and, separately, differing statistical properties (concepts). The performances

of the models in the second setup were compared before and after adapting the discriminating

threshold for the evaluation data.

3.1.2 Experiment 2

The usual model development could be governed by some decisions made to improve some

performance measures, i.e. speed or detection rate. Such decisions, which might involve

executing a feature selection and/or a data balancing stage, are usually based on the analysis

that will be conducted on the training data. As such, when new evaluation data are used the

performance of the models may not be satisfactory, leading to a phasing out of those models

Experiments

Exp. 1

(Chapter 4)
PoC - Threshold Tuning

Data Preparation

(Chapter 5)
New Dataset

Exp. 2

(Chapter 6)
Feature & Concept Drift

Exp. 3

(Chapter 7)
Threshold Selection

Chapter 3: Experimental Overview

62

and the generation of new ones. However, such models may still be able to maintain high

performances if they are adapted to the new concept that is introduced in the new data.

The discussion of this thesis considers threshold adaptation and investigated which of the three

ML algorithms was the most adaptable to changes in the network patterns given that pre-

decisions (feature selection and data balance) are taken based on the training data. Those

decisions provide different setups for the new data rather than those used to build the model.

3.1.3 Experiment 3

The aim of this experiment, in this thesis, is to demonstrate the importance of adapting the

prediction threshold for every individual evaluation dataset to maximise a model’s

performance. It investigates whether such threshold adaptation can be performed based on

validation data that is sampled from the original population of the evaluation data. This third

experiment therefore investigated the effect of the size of the data sample and the sampling

technique in determining the optimal threshold for the evaluation (test) data. As such, the

validation data will require the knowledge of the true labels of its samples; this experiment

therefore investigated the effect of introducing different error levels into the true labels to assess

the effectiveness of threshold tuning under such conditions.

3.2 Overview of Classification/Machine Learning algorithms

For all of the experiments conducted in this thesis, three common classification algorithms that

are widely used for batch-learning were analysed, evaluated and compared, to address the

anomaly network detection. These algorithms were C5.0, Random Forest and Support Vector

Machine (SVM); this section provides an overview of each of these algorithms.

3.2.1 Decision Trees (C5.0)

C5.0 is a classification algorithm [281] based on decision trees. It is an improved version of the

well-known C4.5 algorithm and addresses many of the latter’s limitations. In comparison to its

 3.2 Overview of Classification/Machine Learning algorithms

63

predecessor, the C5.0 algorithm has a lower error rate due to its use of ‘boosting’, a technique

to aggregate the results of multiple weak models (trees) to form a strong one [282]. Also, as

C5.0 generates smaller trees, it consumes less resources, such as memory, and performs faster

execution. Unlike C4.5, the C5.0 algorithm also avoids overfitting noisy data [283].

Decision trees are used in classification problems to build a deterministic data structure that is

formed of decision rules for a particular domain [284]. Such trees are composed of nodes and

leaves. At the node level, a decision is made to split the data into two subsets based on a single

feature (different splitting criteria are discussed next). Each subset is then used to build a

subtree. In contrast, at the leaf level, the final classification decision is based on the path

traversed from root to leaf; these decisions can be either, a ‘class’ (label), or ‘probabilities’

(score) of classes as illustrated in Figure 3.2.

(a) (b)

Figure 3.2: Example of a decision tree of dummy network traffic data with two classes {attack and normal}. (a) Returns the class label. (b)

Returns the probability of classes.

3.2.1.1 Tree splitting criteria

The performance of different decision trees is tightly related to the splitting criteria used in

building these trees. The main aim of these splitting processes is to maximise the purity of the

classes in the subsets. In other words, purity measures how well the classes have been separated

after the splitting rule has been applied. Many different metrics are used to measure purity, such

Chapter 3: Experimental Overview

64

as the Gini impurity [285, 286] or information gain [287] for classification problems, and mean

square error [285] or variance reduction [288] for continuous variables, etc.

Gini impurity measures the probability of misclassifying a randomly selected instance from a

dataset if the distribution of labels (in the subset) has been used to randomly classify this

instance [285]. This measure reaches zero when all instances within a subset are of the same

class (pure). It is computed using Eq.(3.1).

𝐼𝐺(𝑝) = 1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

Eq.(3.1)

where, 𝑝𝑖 is the proportion of instances labelled as class i, and J is the total number of classes.

Information gain is used to select (recursively at each sub-tree) the best feature at which to

apply splitting; the best feature being the one that provides the highest information gain [285].

This will ensure that relevant features are evaluated near the root of the tree (the top). This

measure uses an entropy concept to compute purity, which is referred to as information.

Entropy computes the degree of randomness of classes, or, in other words, it measures

impurity, which is computed with Eq.(3.2).

𝐻(𝑇) = 𝐼𝐸(𝑝1, 𝑝2, ⋯ , 𝑝𝐽) = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝐽

𝑖=1

Eq.(3.2)

where, 𝐻(𝑇) is the entropy of a tree T, IE is the expected information constant, 𝑝𝑖 is the

proportion of instances labelled as class i, and J is the total number of classes.

Information gain computes the difference between the information of the dataset (at each node)

before and after splitting a specific feature. In other words, it measures the level of expected

reduction in uncertainty (impurity or entropy) in the prediction of the sub-tree if the splitting is

performed on a given feature [287, 289]. Eq.(3.3) is used to compute this measure.

𝐼𝐺(𝑇, 𝑥) = 𝐻(𝑇) − 𝐻(𝑇|𝑥) Eq.(3.3)

 3.2 Overview of Classification/Machine Learning algorithms

65

where 𝑇 is the tree, 𝑥 is the feature being evaluated, 𝐼𝐺(𝑇, 𝑥) is the information gain, 𝐻(𝑇) is

the entropy of the parent tree and 𝐻(𝑇|𝑥) is the weighted sum of the entropy of the sub-trees.

One of the main drawbacks of the purity measure is that it could result in building decision trees

that over-fit the dataset as a result of selecting features with a large number of distinct values

which have high mutual information. Such features could be the connection number that

uniquely identifies connections in the dataset. This criterion is used in the ID3 algorithm [290],

which is one of the predecessors of the C5.0.

The Information gain ratio aims to address the limitations of the information gain metric. It

reduces the bias towards features with a large number of distinct values by penalising the

selection of a feature based on the number and size of its branches. However, this criterion

might result in favouring features with very low information values [291]. This is the criterion

used in both the C4.5 algorithm and its improved version, the C5.0 algorithm.

3.2.1.2 Tree pruning

As building decision trees usually over-fits the training data, tree pruning is performed. In

C5.0, tree pruning is performed by removing parts of the tree that are predicted to have a high

error rate [292]. In this pruning process every subtree is evaluated to determine whether it will

be replaced with a leaf or a node. There are many factors that influence the pruning process

which in turn affect the overall performance of the produced model (tree). Therefore, setting

the values of these parameters should be undertaken with care at the tuning phase.

3.2.2 Random Forest (RF)

Random Forest (RF) is basically formed of multiple decision trees that are grown using a

combination of ‘Bagging’ and the random selection of features (subspace). Bagging (Bootstrap

aggregating) is a technique that aims to improve the performance (accuracy and stability) of

ML algorithms and to reduce variances and the chances of overfitting [293, 294]. The basic

principle behind this technique is to build multiple prediction models and use their aggregated

Chapter 3: Experimental Overview

66

predictions to produce a final prediction. It works by applying uniform random sampling with

a replacement (known as a ‘bootstrap’) from the training dataset to produce a new dataset,

which will be used to build a prediction model. The default settings of RF produce a new dataset

with the same number of instances as the original training dataset. This sampling is repeated

nTree times producing as many bootstrap samples. Each of these bootstraps will then be used

to build a prediction model, resulting in a total of nTree models (decision trees).

After a bootstrap sample is produced, a decision tree is generated. In RF, only a random

selection of features (subspace), with no replacement, are evaluated at every node to decide the

best split, rather than using the full features set as in the C5.0 algorithm. Usually the number of

these random features, mtry, is far less than the original number of features.

Out-Of-Bag (OOB) data are the data instances left after a bootstrap sample has been generated.

These OOB data are usually used in the internals of RF to estimate and monitor the errors of

the decision tree and its strength, as well as the correlation between different trees. Feature

importance is also measured using these internal estimates. Listing 3.1 shows a pseudocode of

the Random Forest algorithm [295].

Algorithm: Random Forest (RF)
Input: X = {(𝑥1, 𝑦1), ⋯ , (𝑥𝑁 , 𝑦𝑁)}, nTree = 500, 𝑚𝑡𝑟𝑦 = ⌊√𝑝⌋

Result: RF model

1 for (1 ≤ 𝑖 ≤ nTree) do
2 �́�𝑖 = Bootstrap sample from 𝑋 (Sample N random instances with replacement)
3 �́�𝑖

𝑂𝑂𝐵 = 𝑋 − �́�𝑖 (Out-Of-Bag samples – instances not in the bootstrap sample)
4 Build tree 𝑇𝑖 {
5 - Use �́�𝑖 as training data to build the tree,
6 - At every node use randomly selected (with no replacement) 𝒎𝒕𝒓𝒚 features
7 to determine best splits,
8 }
9 Use �́�𝑖

𝑂𝑂𝐵 samples to compute internal estimates of tree 𝑇𝑖 (errors, strength,
10 correlation, features importance)
11 done

Listing 3.1: Pseudocode of main stages of Random Forest algorithm

The final prediction of the forest is performed by running each instance down all decision trees

in the forest. The results of all these trees are then aggregated to form the final decision. For

 3.2 Overview of Classification/Machine Learning algorithms

67

numerical predictions, the average or the weighted average of the results of all trees is returned,

whereas, for classification problems, the majority vote or the probability of the classes is

returned. There are many different existing methods in computing these probabilities, such as

the proportion of classes returned by the trees or the average of their probability estimates [296].

The latter is the method implemented in the “Ranger” package used in all experiments in this

thesis [297].

Acording to Witten et al. [298], as cited by Resende and Drummond [299], the RF algorithm

has a low training time complexity and fast prediction time. It also has the capability to handle

missing data efficiently which means it does not require the data to be pre-processed

beforehand, nor does it require the data to be scaled or normalised. Also, due to the

bootstrapping feature, the algorithm can handle imbalanced data and rare cases (because of

resampling) quite efficiently [300]. It also provides two measures that rate the importance of

every feature: the Mean Decrease of Accuracy (MDA); and the Mean Decrease Gini

(MDG) [284].

As RF can run more slowly as the number of trees increase, a careful tuning of its main

parameters is needed to maintain the required performance. One of the main drawbacks of this

algorithm is that its results are difficult to interpret as its model complexities are high. This is

due to the number of trees and the randomisation in the sampling of training instances and

features [301]. The key stages of the Random Forest algorithm are illustrated in Figure 3.3.

3.2.3 Support Vector Machine (SVM)

The Support Vector Machine (SVM) [302] is one of the most popular classification algorithms

used for supervised learning tasks in ML. Its development is based on the structural risk

minimisation principle [301]. An excellent description of this algorithm can be found in

Vapnik’s book [303]. In SVM, each data instance is represented geometrically as a vector (ℛp)

Chapter 3: Experimental Overview

68

F
ig

u
re

 3
.3

:
M

a
in

 p
h

a
se

s
o

f
R

a
n
d
o

m
 F

o
re

st
 a

lg
o

ri
th

m

 3.2 Overview of Classification/Machine Learning algorithms

69

in p-dimensional space - 𝑥 = (x1, ⋯ , xp) ∈ 𝑋 ⊂ ℛ𝑝. SVM attempts to find a linear surface

(hyperplane) - or a line in 2D space - that separates the instances into two classes y ∈ {-1, 1},

where this separating hyperplane has the largest distance between the edge points of each class.

These edge points define the border lines for each class as per the following Eq.(3.4):

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (−) 𝑙𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, | 𝑤. 𝑥 + 𝑏 = −1

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (+) 𝑙𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, | 𝑤. 𝑥 + 𝑏 = +1

Eq.(3.4)

where, 𝑥 is an edge point in the training data that lies on the border line of a class, and 𝑏 is

(offset) the distance from the origin to the decision boundary (𝑤. 𝑥 + 𝑏 = 0) [302]. The edge

points also define the width of the margin between those border lines.

These points (vectors) are used to define and outline (support) the separating hyperplane and

are called the support vectors. The minimum required number of these points is (p+1). For

example, in a two-dimensional space, at least 3 data points (vectors) will be the closer to this

line and at an equal distance from it, i.e. points 𝑎1, 𝑎2 and 𝑎3 in Figure 3.4 (a). If any, or all,

of these points (support vectors) are removed from the dataset, the separating hyperplane will

take a different shape.

(a) (b)

Figure 3.4: Example of SVM on two dimensional dummy data, where a1, a2, a3: input data points (vectors), w: normal vector to the hyperplane

(weight vector) and b: bias. (a) Perfectly separable dataset. (b) Dataset separation with soft margin.

Chapter 3: Experimental Overview

70

As there could be many separating hyperplanes that might separate positive cases from negative

cases, the SVM algorithm searches for a decision boundary with the maximum margin. The

width of this margin is the sum of the distances from that decision boundary to the parallel

hyperplanes that contain the closest positive and negative training points (support

vectors) [304].

The SVM classifier depends on computing w, which is a normal vector perpendicular to the

separating hyperplane (decision boundary). This normal vector, precomputed as Eq.(3.5)

presents:

𝑤 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

Eq.(3.5)

where, 𝜆𝑖 are Lagrange multipliers produced at the training phase using data with N training

samples. The normal vector is also known as the weights vector [305] which can loosely be

thought of as similar to the 𝛽 coefficients in any regression problems that contain the

standardised estimates of variances of dependent and independent variables. Omitting the

complex details of calculation and formulas derivation, SVM classification is performed by

evaluating which side of the hyperplane a test instance (vector) will fall into, as Eq.(3.6) shows:

𝑆𝑉𝑀(�̂�) = {
−1, 𝑤. �̂� + 𝑏 < 0
+1, 𝑤. �̂� + 𝑏 ≥ 0

Eq.(3.6)

where, �̂� is a test instance, and 𝑏 is (offset) the distance from the origin to the decision boundary

(𝑤. 𝑥 + 𝑏 = 0) [302] that is precomputed at the training phase.

The classification is usually carried out by checking the sign of the results returned by the above

formula for every instance in the testing data. Where the result is greater than 0 (a positive sign)

it will be classified as class 1, but where it is less than 0 (a negative sign) it will be classified as

class -1.

 3.2 Overview of Classification/Machine Learning algorithms

71

To address complex datasets where a perfect separating hyperplane does not exist, soft margins

are used - see Figure 3.4 (b). For a soft margin, some cost value (C) is passed to the SVM

function to allow some violation of the boundary by permitting some levels of mixing between

classes. Having a large cost value (C) will increase the margin size which will in turn increase

the mixing zone. In this case, the support vectors will not be the ones that are nearest the

separating hyperplane, rather they will be on the margin or on the wrong side of the boundary.

The tuning parameter (C) has an effect on the variance; small cost values with high variances

tend to lead to overfitting, whereas large cost values will reduce variance but show a tendency

towards underfitting [306].

One of the main advantages of SVM is that it does not suffer from the “Curse of

Dimensionality” as many other ML algorithms do. The “Curse of Dimensionality” refers to the

case where the number of observations are far less than the number of features in the dataset.

Many ML algorithms tend to suffer from overfitting in this case, which can usually be resolved

by a feature reduction process. The ability of SVM to avoid overfitting is linked to its ability to

select the right regularisation parameter (or cost value (C)), and the right kernel, due to its

carefully tuned parameters for non-linear problems [307]. Also, as SVM errors depend on

adjusting the margin which separates the data points in the fitted model rather than the number

of features, feature reduction is not required to avoid overfitting as it is in many other ML

algorithms.

Some problems will not be linearly separable where SVM cannot produce a good model for

such data. These data will therefore require some transformation from input (data) space into

higher dimensional (feature) space. The data can be made linearly separable using what is

known as kernel methods or functions which can perform such a transformation (Figure 3.5).

The resultant separating hyperplane can be expressed using the inner products of the

vectors [308]. Some known kernels, like polynomial [309] and Radial Basis Function

Chapter 3: Experimental Overview

72

(RBF) [310] kernels, are used for such a transformation. Using kernels will incur optimisation

costs. In the linear version of SVM, the optimisation process is focused on the tuning parameter

(C), but when a kernel is used, all its tuning parameters need to be taken into account [310].

Figure 3.5: Data transformation from 2D in input space to 3D in the feature space using a kernel function. The figure was reproduced with

some modification from Statnikov et. al [305]

Some SVM implementations can return the probability of the class. Different implementations

will use different techniques to compute such probabilities. For example, Platt [311] proposed

a mapping technique to convert the SVM classification into probabilities by using logistic

regression. However, this technique has been criticised for not being a true probability and

Gaussian processes have been suggested as an alternative [312]. The Platt approach was

adopted, with some improvements in the SVM library [313] used for the experiments in this

thesis.

SVM processing speed is affected by the kernel used, as some kernels will perform more

operations in the transformation phase, which will slow the SVM’s speed. For example, the use

of a Radial Basis Function (RBF) kernel in a classification problem will run very slowly, as this

kernel calculates the distances to all support vectors rather than using a hyperplane

equation [314].

 3.3 Methods Used for Analysis

73

SVM’s biggest limitation, as noted by Burges [315], is selecting the right kernel. He also points

to the size and speed limitations of both training and testing phases. However, a considerable

advancement in this area has been achieved as many researchers, such as Lin [316], have

developed a number of fast SVM implementations to address this issue. Unlike Random Forest,

SVM requires the pre-processing of data to handle cases, such as missing data, and the

transformation of categorical data into a suitable numerical format (as SVM only handles

numerical data). Transforming (standardizing, normalizing or scaling) the data will have an

effect on the results of SVM, and therefore data transformation before training and testing is

always recommended.

3.3 Methods Used for Analysis

This section presents the core experimental design employed in all of the experiments

undertaken in this thesis. It also sets out the decisions relating to data selection, the preparation

requirements, and the parameter settings of the ML algorithms.

3.3.1 Research design

The study performed in this thesis employed a factorial research design and experimental

evaluation to assess the performance (i.e. the Geometric Mean of Accuracy) of the models of

the three ML algorithms under various setups. The choice of design was driven by the desire to

investigate every possible combination, at every level, of all of the factors, on the overall

performance of the developed models. In addition, the design was chosen so as to study the

relationship between various factors to identify which ML algorithm was the most adaptable to

a change in pattern (concept) in the network traffic over time. Table 3.1 shows the different

factors and their levels for every experiment undertaken in this thesis.

3.3.2 Selection of datasets

A number of datasets were used over the course of this research, including synthetic data and

simulated domain specific (network flow) data.

Chapter 3: Experimental Overview

74

Experiments Factors Levels

Exp.1 ML Algorithm 3 [C5.0, RF, SVM]

Thresholds 2 [fixed, adaptive]

Exp.2 ML Algorithm 3 [C5.0, RF, SVM]

Data Balance 2 [balanced, imbalanced]

Feature sets 5 [Full, MDA, MDG, MDABal., MDGBal.]

Thresholds 2 [fixed, adaptive]

Exp.3 ML Algorithm 3 [C5.0, RF, SVM]

Data Balance 2 [balanced, imbalanced]

Feature sets 5 [Full, MDA, MDG, MDABal., MDGBal.]

Sample size
11

[10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%,

0.005%, 0.001%, 0.0005%, 0.0001%]

Bins (sampling strategy) 5 [B1, B10, B20, B50, B100]

Errors 4 [0%, 1%, 5%, 10%,]
Table 3.1: Factors and levels of every experiment.

3.3.2.1 Existing Datasets

As the first experiment aimed to investigate the potential of prediction threshold adaptation in

addressing the issue of concept drift between training and evaluation datasets, synthetic and

domain specific (network flow) datasets were used. The synthetic datasets, SEA [317] and

AGR [318], were chosen as they provided the control required over concept drift (between data

files) to analyse the effect of threshold adaptation on model predictions when the evaluation

data were either of the same or of a different concept to the training data used to build the

prediction model. This analysis was extended to the domain specific dataset (gureKDD [160-

162]) to investigate the effectiveness of the adaptation approach in a near to real life scenario.

The gureKDD was selected over the KDD Cup 1999 and NSL-KDD datasets for two main

reasons: firstly, the gureKDD dataset maintains the chronological order of every connection,

which makes it possible to split connections based on their time; secondly, the KDD Cup 1999

dataset has a large number of limitations (listed in Al Tobi and Duncan [1]) including

miscalculated values, which raised doubts over its suitability.

As the decision to use these synthetic datasets was based on the need to generate different levels

of concept differences, the data files generated from each of these datasets had different

combinations of similar and differing concepts. Similarly, gureKDD was divided into multiple

 3.3 Methods Used for Analysis

75

files using a time window of one week which resulted in different network patterns (concepts)

in the traffic for each week. A detailed discussion on data generation, preparation and

descriptions is provided in Chapter 4.

3.3.2.2 Newly Generated Dataset

As set out in Chapter 2, there are many limitations in the publicly available datasets. In

addition, as the aim in this thesis is to extend the analysis to data that were more up to date and

more representative of real network traffic, a new dataset was generated by transforming the

flows of the ISCX2012 dataset [14] into a suitable format for ML algorithms.

The resultant dataset, called STA2018, profiled every connection using 550 features and can be

used as balanced or imbalanced (original) data. The decision to transform the ISCX2012 dataset

was governed by its availability at the time. It was also the best option out of all of the available

datasets. For instance, the ISCX2012 dataset contains modern traffic with full captures. In

addition, unlike many other datasets, it provided a reasonable number of simulation days

(seven). Although the DARPA datasets have more simulation days than ISCX2012, the traffic

included in those datasets is very old, does not represent real network traffic and is very limited.

For example, one day of the ISCX2012 captures equals the whole of DARPA in size.

Data records from the resultant dataset (STA2018) were grouped by day so that every data file

aggregated all of the connections within that simulation day. Overall, the transformation process

had five main stages: basic-features extraction; validation and labelling; extending the

basic-features; balancing; and cleaning-up. Full details of the transformation are discussed in

Chapter 5.

The large number of features space combined with having a balanced version of the data made

it possible to analyse the effect of various decisions such as feature selection and data balancing,

which are usually taken at the model development stage. Many of these decisions were based

on the overall performance of the prediction models that were developed and tested using the

Chapter 3: Experimental Overview

76

available training data. This was especially the case when new data with a different concept

(and hence, with different important features) were evaluated with the models generated.

Therefore, using this dataset made the analysis of the effect of predictions threshold adaptation

on these models more systematic.

3.3.3 Parameter setting for the ML algorithms

As stated by Bhuyan et al. [12], classification-based methods usually produce better results than

unsupervised learning, such as clustering methods, due to the use of data labels at the training

stage. However, as shown by Laskov et al. [319], the accuracy of the supervised learning

algorithms could deteriorate when their models are faced with novel attacks. Therefore, three

well-known classification algorithms in the domain of ID were investigated, namely C5.0,

Random Forest (RF) and Support Vector Machine (SVM) [see Section 3.1]. These algorithms

were used to process the training data in order to learn a classification (prediction) model, which

was then tested on the evaluation (test) data with different statistical properties (concept). The

performance of these models were analysed before and after threshold adaptation to examine

their ability to adapt to changing traffic patterns and to detect novel attacks. The following

subsections provide further details about the packages used and the parameter settings for each

of the algorithms used.

3.3.3.1 C5.0 algorithm

The “c50” package {version 0.1.0-24} [320] in the R environment [321] was used in this thesis.

All experiments used the default settings of this algorithm, with the 10-trials option

(trials = 10) set to return the results of the classification as a probability score

(type = "prob") when the model was used to predict the evaluation (test) data.

3.3.3.2 Random Forest

The “ranger” package {version 0.8.0} [297, 322] in the R environment [321] was used over the

course of this research. This package was selected because of its fast implementation of RF in

 3.3 Methods Used for Analysis

77

C++. All experiments used the default settings of 500 trees (nTree) to grow, and with the

number of features to evaluate at every node being the square root of the total number of features

in the dataset (mtry = ⌊√𝑝⌋), where p is the number of features. The algorithm was instructed

to return results in the form of classification probabilities (probability = TRUE).

3.3.3.3 Support Vector Machine (SVM)

The open source SVM package (LiblineaR) {version 2.10-8} [323, 324] in the R software [321]

was used in these experiments. This package executes an optimized linear version of SVM. All

experiments used the default settings of L2-regularized logistic regression linear model type

(type = 0) with the cost set to one (cost = 1).

The choice to use the linear version of SVM was driven by the very large differences in the

runtime of experiments between its linear and nonlinear kernel versions. Some preliminary

experimentations have been conducted to compare the two versions. Table 3.2 presents the

runtimes (in seconds) of the kernel SVM (with type = 2 [radial basis function], cost = 2 and

gama = 2) and the linear SVM (with cost = 2). These experiments were performed on 10%

subsets of Day 2 (12/Jun) and Day 3 (13/Jun) of the STA2018 dataset. This table shows the

large difference between the two versions where the linear version of SVM is much faster. It

also shows that the runtime of the kernel SVM grows exponentially as the number of instances

increase, especially when the data is balanced.

As SVM can only handle numerical data, it was necessary to pre-process the data before the

training or testing phase took place. Therefore, all categorical (nominal) features were

converted into dummy attributes, so that every value for each of the levels of these categorical

features was converted into an independent feature that contained a ‘zero’ or a ‘one’ [325].

Another pre-processing stage, as recommended by the SVM library package [323, 326], was to

standardise the data. Therefore, every feature in the training data was standardised (as per

Chapter 3: Experimental Overview

78

 Day 2 (12/Jun)

10%

Day 3 (13/Jun)

10%

 Kernel

Cost=2 , Gama=2

Linear

Cost=2

Kernel

Cost=2 , Gama=2

Linear

Cost=2

 Time

Sec.
(imbalanced)

Time

Sec.
(balanced)

Time

Sec.
(imbalanced)

Time

Sec.
(balanced)

Time

Sec.
(imbalanced)

Time

Sec.
(balanced)

Time

Sec.
(imbalanced)

Time

Sec.
(balanced)

Fold 1 3,330 16,602 4 4 4,186 23,693 4 6

Fold 2 3,505 12,101 2 4 3,463 21,595 4 4

Fold 3 3,385 12,309 2 6 4,054 20,559 2 6

Total
(seconds)

10,220 41,012 8 14 11,703 65,847 10 16

Table 3.2: Runtime in seconds between kernel and linear SVM setups on a 10% subset of Day 2 (12/Jun) and Day 3 (13/Jun) of the STA2018

dataset

Eq.(3.7)). The standardisation parameters (the mean and standard deviation) of the training

data, which is utilized to build the classification model, were used to standardise the features of

the test data before being classified by the model:

�̇� =
𝑥 − 𝜇

𝜎

Eq.(3.7)

where, �̇� is the new standardised value, x is the actual value to be standardised, 𝜇 is the mean

and 𝜎 is the standard deviation of a feature column.

In addition, all class labels were mapped for every dataset as shown in Table 3.3.

Dataset Class label SVM label

SEA and AGR groupA -1

 groupB +1

gureKDD and STA2018 Attack -1

 Normal +1
Table 3.3: Class labels mapping for SVM algorithm.

3.3.4 Evaluation measures

As discussed in Chapter 2, many of the common evaluation measures suffer in model

performance assessment when imbalanced data are used. It has also been shown that network

traffic exhibits an imbalance of traffic classes i.e. more normal traffic exists than anomalous

traffic [98]. In an attempt to avoid this problem, the Geometric Mean (G-Mean) of Accuracy

[231] metric (see Section 2.3.2.4) was adopted throughout this thesis. This measure was used

 3.3 Methods Used for Analysis

79

as the main measure to evaluate the performance of all of the models developed in all

experiments in this thesis.

3.3.5 Performance assessment techniques

Cross-Validation is a technique used to estimate a model’s performance and to assess how its

results could be generalised for unseen datasets [327-329]. This technique addresses the issue

of data shortage when the holdout technique (for training and testing sets) loses important

modelling or testing capability [330]. It can also be used to assess the expected performance of

a prediction model in a real environment. In addition, it is a very useful technique to avoid

overfitting problems, the situation that arises when the model perfectly predicts the data used

to generate the classification model, but fails to generalise to new data. It is also a useful

technique to identify and fine tune the main parameters of the model [331]. As discussed in

Section 2.3.1, there are many types of Cross-Validation techniques, ranging from

‘leave-one-out’ to ‘holdout’ methods, but the most popular one is the K-folds Cross-Validation.

In K-folds Cross-Validation (Figure 3.6), the dataset is randomly divided into K parts. A model

is then trained using K-1 parts and tested on the remaining part. This process is repeated K

times, so that each one of the K parts is only used once as test data. The model’s overall

performance is estimated by aggregating the performance of the K models (through averaging

or a majority vote). Although this evaluation method is frequently cited in the literature, it

requires a long time to process as larger values of K are used. Also, as discussed in Chapter 2,

it could provide overly optimistic results due to the random division of datasets.

Despite these drawbacks, the K-folds Cross-Validation technique was used in all experiments

at every model building (training) stage to estimate the prediction thresholds for every

developed model as per the recommendation of Ambroise and McLachlan [205].

Chapter 3: Experimental Overview

80

Figure 3.6: K-folds Cross-Validation process.

Prospective sampling [225], as discussed in Section 2.3.1, is a technique underused in batch-

learning tasks in the domain of network ID. However, this was the sampling approach used in

this thesis to evaluate the performance of the generated models, by assessing them using

evaluation (test) data collected at a different time from the training data. This evaluation method

aimed to mirror real life, given that models are usually trained on data that have been collected

in the past to predict future data.

3.3.6 Statistical evaluation

Normality tests were used to assess whether or not the data was following a normal distribution.

Such tests are useful in selecting the right statistical analysis tests, such as parametric or

non-parametric tests. As a result, in order to assess the normality of the results prior to analysis,

the Shapiro-Wilk normality test [332] was used. However, this test is limited in its ability to

handle more than 5,000 records. Therefore, in such cases (as in Experiment 3 and discussed in

Chapter 7) the Anderson-Darling normality test [333, 334] was used instead.

 3.3 Methods Used for Analysis

81

Friedman’s test [335, 336] is a non-parametric test used to assess the difference between

treatments or effects during multiple test trials, without assuming a specific distribution in the

data. This test involves ranking the observations in each row, then computing the mean of the

ranked observations across treatments/effects (for each column).

Parametric tests, such as ANOVA, require asserting some assumptions before they can be

applied. One of these assumptions is that the data should be normally distributed. As this core

assumption could not be made for these experiments, a non-parametric approach was applied

to analyse the results. Using an example, the following figure (Figure 3.7) illustrates how the

Friedman test works.

Figure 3.7: Friedman’s Test computation and interpretation

If the Friedman test indicates that there is a significant difference between treatments/effects,

post-hoc tests [337] can then determine which of these treatments/effects are significantly

different by comparing the differences between their mean ranks. In these experiments, the

Nemenyi post-hoc test [338] was used to calculate pairwise comparisons for different

Chapter 3: Experimental Overview

82

treatments and to determine which pairs’ differences were statistically significant. To visualise

these differences Demšar [17] proposed the Critical Difference Plot; in this plot, any two effects

joined by a line indicates that they are not statistically different (see Figure 3.7).

3.4 Limitations

There are a number of unavoidable limitations introduced in this thesis related to many factors,

such as the data selection and the adopted research design. Firstly, the experiments only focus

on synthetic data and simulated network traffic. No real network traffic was used. This is

because high variability exists in real traffic and the true state of the traffic would be unknown

which would render the analysis unreliable due to the lack of control required over various

variables and parameters.

Secondly, the analyses only measured a model’s performance by evaluating its accuracy i.e. the

Geometric Mean of Accuracy, so no speed or resource utilisations were considered. This was

due to the fact that the core aim of the thesis was to investigate the effect of threshold adaptation

on model performance i.e. accuracy. Other efficiency factors were considered engineering

issues and out of scope.

Thirdly, the choice of the factorial research design limited the number of ML algorithms that

could be compared. As the factorial design could have resulted in an exponential growth in the

number of performed experiments and analyses required, it was decided to limit the number of

ML algorithms to the three most widely known ones.

Finally, although the main drawback of the factorial experiment design was the large number

of treatment-level combinations which would then require a similar number of experimental

units (records), this drawback did not affect the experiments conducted as all combinations

were represented. However, with such a high number of factor level combinations, analysis

became difficult and necessitated a complicated interpretation of the results. In addition, more

 3.5 Summary

83

time was needed than anticipated to undertake the experiments to address all of the

combinations.

3.5 Summary

As noted above, the aim of this thesis is to create a better understanding of the interplay between

discriminative threshold adaption of model predictions and the overall performance of a model

(its Geometric Mean of Accuracy) to predict anomalies in local network traffic with different

levels of concept or feature drifts. A further aim was to demonstrate that threshold adaptation

for evaluation/test data can be achieved through optimising a performance measure based on

validation data that is randomly sampled from and representative of the whole population

(evaluation/test data). An empirical approach was therefore used to investigate the use of fixed

threshold for model predictions and assess whether they undermine the real prediction power

of a detection model. This investigation studied the effect of threshold tuning on prediction

models developed with different ML algorithms and various setup scenarios. As such, three

main questions formed the basis of the research:

• How will the detection accuracy of an adaptive discriminating threshold of the

predictions of a batch binary-based anomaly ID model compare to the accuracy of a

fixed threshold?

• Can the adaptation of the discriminating threshold improve the accuracy of a binary-

based anomaly ID model when evaluated network traffic has different salient features

than those used to build the predictive model?

• Can the optimal discriminating threshold be identified using a labelled small sample of

the evaluated network traffic under the batch-learning setup?

The remainder of this thesis addresses these questions. The study consists of an incremental

empirical investigation, where the findings of one question are used as an input to the next.

4

85

Chapter 4: Adaptive Cutoff (Threshold) for

Prediction Models

Chapter Four

Adaptive Cutoff (Threshold) for

Prediction Models

This chapter provides an analysis of binary (attack or normal) batch-based classification

problems using a prospective sampling approach. In this approach, each experimental dataset

is divided into subsets (batches) whereby each one is used to generate a binary prediction model

to be tested on other subsets. This experiment aims to investigate the extent to which a detection

model can be utilised to classify previously unseen data using only small parts of the data to

build the learning model. It also aims to shed light on a serious limitation in assessing model

prediction performance i.e. that a model’s performance is highly related to the evaluation data

used to assess the model and should not be generalised as a single measure for the model. Also,

model performance on evaluation data should be analysed separately and not on a pre-set

threshold which was determined using some validation dataset or some form of

Cross-Validation technique.

4.1 Problem Statement

A model generation process usually requires as many examples as possible to produce accurate

models. For a model to perform well, training and evaluation datasets should exhibit similar

statistical properties. As statistical similarity changes over time (known as concept drift [138,

140, 141, 339, 340]), the predictive power of these models should become less accurate.

Therefore, the common practice in batch predictive analytics requires the use of large datasets

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

86

in model generation. Such practice aims for a dataset that would manifest as many statistical

properties of future unseen data as possible. In practice, this requirement is difficult to satisfy,

especially in dynamic environments, such as inter alia network traffic, the stock market,

self-driving vehicles or spam filters.

Many solutions have attempted to address this issue by devising tools and techniques to learn

from an evolving data stream [135, 279, 341]. Although this area of research is starting to

produce potential solutions, it is beyond the scope of this thesis which is focused on binary

batch learning.

All proposed methods using predictive analytics and ML for (batch or stream) classification

problems use the same basic principle in tackling the problem by using a vector of variables

𝒙 = (𝐱𝟏, ⋯ , 𝐱𝒑) of an unlabelled record to assign it to one of the predetermined classes 𝒚 ∈

{𝒄𝟏, ⋯ , 𝒄𝒏} [341].

This chapter evaluates the extent to which a detection model that was trained on a small subset

can predict larger subsets of the same domain/problem, for example, in network domains where

a model is developed using one day/week for network traffic to predict future days/weeks. The

evaluation in this chapter compares the G-Mean Accuracy and the Area Under the ROC

Curve (AUC) of these models due to their insensitivity to data imbalance.

4.2 Proposed Solution

This chapter investigates an approach that attempts to address a real life setup, where the

training data (known as labelled data) are much smaller than the evaluation data (unlabelled

data). It analyses the effect of this approach by adapting the classification results of a binary

predictive model on evaluation data in order to maximise its performance on real data as well

as to achieve a more accurate and reliable reading of that model’s performance. This will give

the model producers (system analysts) the ability to accurately determine when a prediction

 4.2 Proposed Solution

87

model is no longer valid and when model updating is required. This approach uses the

prospective sampling technique to evaluate models [225] (see Section 2.3.1), where a

predictive model is evaluated using data collected at a different time to that of the training data,

such as a day/week.

The experiments to test the potential of this approach, outlined in this chapter, had two stages.

In the first stage, the well-known 10-folds Cross-Validation technique was performed on

aggregated parts of every dataset’s files using different classification algorithms. This stage

aimed to identify the algorithms’ optimal performance on different datasets when training and

testing data exhibit the same statistical properties as data that are randomly sampled from the

same (aggregated) population. Such models should be expected to achieve the highest

performance measures. This stage aims at evaluating the following hypothesis: “there is no

statistically significant difference in model performances (G-Mean accuracies) between the

different algorithms”.

In the second stage, each subset of a dataset was used to generate a prediction model (using the

same classification algorithms). The 10-folds Cross-Validation technique was used at the model

generation to compute the optimal discriminating threshold for the overall predictive model.

Every generated model was tested on the remaining subsets separately within the dataset. Two

performance readings of every model were recorded at this stage using the same measure

(G-Mean Accuracy); one was based on the original model’s threshold computed at the

generation phase, and the second, on its performance after threshold adaptation on the

evaluation (test) subset. This stage aimed to depict real life situations where training and testing

datasets have different statistical properties. As a result the following hypothesis is to be tested:

“there is no statistically significant difference in model performances (G-Mean accuracies)

before and after cutoff (threshold) adaptation between the different algorithms”.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

88

The threshold adaptation is performed to find the cutoff point at which the G-Mean Accuracy

is the maximum. Listing 4.1 presents the computation process used in finding the adapted

threshold for every evaluated dataset based on the prediction scores returned by the prediction

models and its known labels.

Algorithm: Threshold Adaptation
Input: preds=Model predictions of the data , labels=data labels
Result: thradpt.=The adapted threshold

1 preds <- sort(preds) // sort the predictions list of the data in an ascending order
2 labels <- sort(labels) // sort the labels list of the data as their predictions' order
3
4 thradpt. <- 0
5 gAcc.best <- 0
6
7 for prd in preds do
8 fp <- getFP(preds, labels, prd) // get the FALSE POSITIVE at threshold prd
9 tp <- getTP(preds, labels, prd) // get the TRUE POSITIVE at threshold prd
10 fn <- getFN(preds, labels, prd) // get the FALSE NEGATIVE at threshold prd
11 tn <- getTN(preds, labels, prd) // get the TRUE NEGATIVE at threshold prd
12
13 tpr <- (tp / (tp+fn))
14 tnr <- (tn / (tn+fp))
15
16 gAcc <- sqrt(tpr * tnr)
17
18 if(gAcc > gAcc.best){
19 thradpt. <- prd // set the adapted threshold at the point gAcc is maximum
20 gAcc.best <- gAcc
21 }
22
23 done
24
25 return(thradpt.), // Return the adapted threshold

Listing 4.1: Pseudocode of threshold adaptation process and the selections of the optimal threshold for the evaluated data

Further details about the experiments’ setups and configurations are presented in Section 4.4.

Every generated model was trained for binary classification and configured to return the

probability of the class rather than the class label. An advantage of using class probability was

the flexibility it offered in computing a model’s performance at different prediction thresholds

and in determining the point of maximum performance.

4.3 Datasets

This section provides an overview of the datasets used in the experiments outlined in this

chapter. Two synthetic datasets (SEA and AGR) [317, 318] were generated randomly,

 4.3 Datasets

89

alongside one domain specific dataset (gureKDD) [160-162]. The latter is a transformation of

the network traffic of the DARPA 1998 dataset which is similar to KDD 1999 but much cleaner.

4.3.1 gureKDDcup

gureKddcup [160-162] (referred throughout this chapter as gureKDD) is a transformation of

the raw network traffic of the DARPA 1998 dataset [342] into a suitable format for ML tasks,

where every connection is described using a set of features. This transformation is similar to

the KDD 1999 dataset [156] but much richer. All connections in this dataset can be linked back

to their origin in DARPA traces and every connection has a unique ID that helps identify the

chronological order of all connections. Traffic payloads are available in separate files labelled

by connection ID. Therefore, all connections in this dataset are chronologically separable and

can be divided by day, week, etc.

For these experiments, all traffic (over a seven week period) was segregated into a time window

of a week, which resulted in seven files. Every file contained the network traffic of that week

(Monday-Friday). Every connection in these files was profiled using 41 features; 3 of which

were nominal (protocol_type, service and flag), 6 were binary features, 15 were continuous

(real) features, and 17 were integer features. These features were divided into four main groups:

intrinsic (basic) features [1-9]; content-based features [10-22]; time-based features [23-31]; and

connection-based features [32-41].

Each connection was labelled as either normal or as one of the 35 different attacks. These

attacks were grouped into four main classes: DOS, Probing, Remote-to-Local or

User-to-Root. In these experiments, the data were pre-processed so all different attack types

were grouped and labelled as ‘attack’ to produce binary classes. Table 4.1 presents a statistical

summary of the connection class types for each of the seven weeks.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

90

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Total

Normal 177,889 186,706 72,676 98,627 128,516 247,699 217,743 1,129,856

Attack 21 2,084 215,693 15,319 475,787 703,662 217,072 1,629,638

DOS 16 1,002 207,896 1,171 465,825 684,741 207,035 1,567,686

PROBE 0 1,027 7,757 12,366 9,941 18,017 10,031 59,139

R2L 1 55 39 1,752 0 881 2 2,730

U2R 4 0 1 30 21 14 4 74

Anomaly 0 0 0 0 0 9 0 9

Total 177,910 188,790 288,369 113,946 604,303 951,361 434,815 2,759,494

Table 4.1: Number of connection classes in every file in the gureKDD dataset

Table 4.1 shows the number of normal and attack connections for each week or file and also

presents the breakdown of attack by class for each data file. It clearly shows a different class

balance in each week, For example, Week 1 (file 1) was the worst as it contains only 21

(0.0118%) attacks.

4.3.2 SEA

A Streaming Ensemble Algorithm (SEA) generator [317] in the MOA framework [143] was

used to generate a data stream with three continuous features (X1, X2, X3). Each feature had a

range between 0 and 10, although only features, X1 and X2, influence the class value. Instances

were produced by randomly generating points (X1, X2) in a two dimensional space. Instances

were labelled as groupA, if X1+X2 > θ, and as groupB, if X1+X2 ≤ θ, where X1 and X2 were the

first two features and θ was a threshold. There were four functions which would label the

instances differently based on their threshold values between the two classes (function 1 sets

θ=8, function 2 uses θ=9, function 3 sets θ=7, and function 4 sets θ=9.5) [343]. The SEA

generator’s default setting was used to add 10% noise classes. Six different data streams (files)

were produced: function 1 was used to generate two streams (file 1 and file 2); function 2 was

used to generate two other streams (file 3 and file 4); and a combination of function 1 and

function 2 was used to generate two streams (file 5 and file 6). For every file, calls to these

functions used different seed values to set the seed of the random generator function to generate

 4.3 Datasets

91

new random instances. Figure 4.1 presents an example of the command line call to generate

File 1 with the SEA stream generator.

java -cp moa.jar -javaagent:sizeofag-1.0.0.jar moa.DoTask
 "WriteStreamToARFFFile -m 200000 -f f1.arff -s (generators.SEAGenerator -f 1 -i 1)"

WriteStreamToARFFFile Parameters:
 -m : "Maximum number of instances to write to file."
 -f : "Destination ARFF file name."
 -s : "Stream to write."

generators.SEAGenerator Parameters:
 -f : "Classification function used to assign instances with class labels."
 -i : "Seed for random generation of instances."

Figure 4.1: Command used to generate File 1 of SEA dataset.

Each stream consisted of 200,000 instances. This dataset was used to analyse the effect of

different statistical properties (concept drift) between training and testing data on the model’s

performance. Table 4.2 lists the number of instances of each class in every file in this dataset.

 File 1 File 2 File 3 File 4 File 5 File 6 Total

groupA 71,609 71,298 85,190 84,965 78,295 77,913 469,270

groupB 128,391 128,702 114,810 115,035 121,705 122,087 730,730
Table 4.2: Number of instances’ classes in every file in the SEA dataset

4.3.3 AGR

The AGRAWAL generator [318] in the MOA framework [143] was used to generate a data

stream with nine features (X1, …, X9), six of which were nominal (factor) and three of which

were continuous. This generator had ten different functions to assign the produced instances to

one of two different classes, based on the values of their different features. The following

examples illustrate the labelling rules of the two functions that were used in generating this

dataset:

Function 1: - if (age < 40 OR age ≥ 60) then groupA else groupB ,

Function 2: - if (age < 40){ if (50K ≤ salary ≤ 100K) then groupA else groupB },

- else if (age < 60){ if (75K ≤ salary ≤ 125K) then groupA else groupB },

- else{ if (25K ≤ salary ≤ 75K) then groupA else groupB } ,

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

92

Each function increases the level of complexity as it uses additional features and complex rules

to label the instances [344]. The generator’s default setting was used to add 10% noise classes

by introducing a disturbance factor that added a deviation value (following uniform random

distribution) to the original feature’s values. Six data streams were produced: Function 1 was

used to generate two streams (File 1 and File 2); Function 2 was used to generate two other

streams (File 3 and File 4); and a combination of function 1 and function 2 was used to generate

two more streams (File 5 and File 6). All function calls used different seeds to randomly

generate different instances for each file. Each stream consisted of 200,000 instances.

Figure 4.2 provides an example of the command line used to generate the data of File 1 in this

dataset.

java -cp moa.jar -javaagent:sizeofag-1.0.0.jar moa.DoTask
 "WriteStreamToARFFFile -m 200000 -f f1.arff -s (generators.AgrawalGenerator -f 1 -i 1)"

WriteStreamToARFFFile Parameters:
 -m : "Maximum number of instances to write to file."
 -f : "Destination ARFF file name."
 -s : "Stream to write."

generators.AgrawalGenerator Parameters:
 -f : "Classification function used to assign instances with class labels."
 -i : "Seed for random generation of instances."

Figure 4.2: Command used to generate File 1 of AGR dataset.

Table 4.3 presents a summary of the labels frequency in every file for this dataset.

 File 1 File 2 File 3 File 4 File 5 File 6 Total

groupA 134,572 134,457 76,577 76,947 105,301 105,785 633,639

groupB 65,428 65,543 123,423 123,053 94,699 94,215 566,361
Table 4.3: Number of instances’ classes in every file in the AGR dataset

4.4 Experimental Setting

The experiments discussed in this chapter have been evaluated, in terms of classification

performance, using G-mean Accuracy and AUC. These experiments were executed in two

different phases as explained below and illustrated in Figure 4.3.

 4.4 Experimental Setting

93

Figure 4.3: The experiments’ phases diagram.

In the first phase, all the files in each dataset (gureKDD, SEA and AGR) were merged to form

the total population of the dataset. The merged dataset was then used to produce binary

classification (prediction) models using three different algorithms (C5.0, Random Forest and

SVM). Models were assessed using 10-folds Cross-Validation. This stage looked at the

conventional method of model development, where training and testing data display the same

statistical properties as they are randomly sampled from the same population. The model’s final

prediction threshold (optimal cutoff) was computed by aggregating all the fold’s predictions

and finding the point at which maximum G-mean Accuracy was reached. An experiment for

every combination of dataset and algorithm was repeated ten times.

In the second stage, every file (subset) in the dataset problem was used to generate a single

model, and this model was tested on the remaining files (subsets) within the dataset. The aim

of this strategy was to address the classification performance of the generated models where

training and testing data had different statistical properties.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

94

To identify any statistically significant differences between the models at each phase, the

Friedman test was used with significance level α=0.05, to assess the null hypothesis, “there

were no statistical differences between models”.

Experiments were performed on a “Dell C5220 PowerEdge Rack Servers” cluster, which had

12 micro servers. Each micro server has dual quad-core Intel Xeon 3.4GHz CPUs, 16GB RAM,

two 500GB SATA disks, and two Gigabit Ethernet interfaces.

4.5 Results and Discussion

These experiments started out by comparing the detection performances of three different,

well-known algorithms in ML (C5.0, Random Forest and SVM) on three different datasets

(gureKDDcup, SEA and AGR). In this set of experiments the conventional method of 10-folds

Cross-Validation technique was applied to the merged files of each dataset, where the maximum

G-mean Accuracies of these models and the best cutoff values had been reported. Each

experiment was repeated ten times. As the results showed only a minimal variability (see

Table 4.4) there was no need to do more repetitions.

In the second set of experiments, the same datasets and algorithms were used to generate

detection models but in scenarios that were similar to natural settings (prospective sampling

technique). In these experiments, models were generated on a subset of the dataset using the

10-folds Cross-Validation technique to set these models’ parameters i.e. the cutoff. These

models were then used to evaluate the remaining files in the dataset. Two G-mean accuracy

values were computed for every combination of prediction model and evaluation data. The first

G-mean accuracy was obtained when the model’s pre-set cutoff value, which was calculated

using the 10-folds Cross-Validation, was used to predict the data file. The second G-mean

accuracy value was calculated based on the maximum accuracy reached when the prediction

cutoff value was adapted to the evaluated data file.

 4.5 Results and Discussion

95

4.5.1 10-folds Cross-validation on Full Data

This section presents the results from using the full data for each dataset (gureKDD, SEA and

AGR) in model generation using 10-folds Cross-Validation on the three algorithms (C5.0,

Random Forest and SVM).

Table 4.4 presents the mean performances of the ten trials of the 10-folds Cross-Validation in

terms of the G-Mean Accuracy and the Area Under the ROC Curve (AUC) of the three

algorithms (C5.0, Random Forest and SVM). It also shows the mean of the optimal cutoff

values of the ten runs at which maximum G-Mean Accuracies were reached.

In general, all algorithms should reach similar accuracies for their respective datasets. However,

in the artificial dataset AGR, SVM failed to perform anywhere close to C5.0 or Random Forest

(showing a difference of almost 15% - see Table 4.4). This could have been down to the nature

of the dataset, which could be non-linearly separable as a linear version of SVM was used in

this analysis. Further investigation would have been needed to analyse the effect of data

transformation using some kernel functions on non-linear versions of the SVM implementation.

However, that would have been beyond the scope of this experiment. In general, Random Forest

is capable of improving detection performance on all datasets.

Generally, the performance of all algorithms on gureKDD was the highest, followed by those

on the SEA dataset. The AGR dataset was the worst in reaching high detection accuracy. This

fact is clearly illustrated by the plots in Figure 4.4 which show the G-Mean Accuracy curve

against the cutoff values for all datasets. These plots show the ten runs in a lighter colour and

the mean of these runs in solid colour. They also show the optimal cutoff values for each dataset

under the tested algorithm.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

96

 T
a

b
le

 4
.4

:
A

ve
ra

g
e

m
o
d

el
 p

er
fo

rm
a

n
ce

s
(A

U
C

 a
n
d

 G
-M

ea
n

 A
cc

u
ra

cy
),

 t
h

e
a

ve
ra

g
e

O
p
ti

m
a

l
C

u
to

ff
 v

a
lu

e
(a

t
w

h
ic

h
 m

a
xi

m
u

m
 G

-M
ea

n
 A

cc
u

ra
cy

 w
a
s

re
a

ch
ed

)
a
n

d
 t

h
ei

r
st

a
n
d

a
rd

 d
ev

ia
ti

o
n
 o

f
th

e

1
0

-f
o
ld

s
C

ro
ss

-V
a

li
d

a
ti

o
n
 (

1
0

 r
ep

et
it

io
n

s)

(c
)

F
ig

u
re

 4
.4

:
G

-M
ea

n
 a

cc
u

ra
cy

 c
u

rv
es

 o
f

th
e

1
0

 r
u

n
s

o
f

th
e

1
0

-f
o
ld

s
C

ro
ss

-V
a

li
d
a

ti
o

n
 e

xp
er

im
en

ts
 f

o
r

th
e

th
re

e
d
a
ta

se
ts

 (
g
u

re
K

D
D

,
S

E
A

 a
n

d
 A

G
R

)
u

si
n
g

 t
h

re
e

cl
a

ss
if

ic
a
ti

o
n

 a
lg

o
ri

th
m

s.

(a
)

C
5

.0
.

(b
)

R
a
n

d
o

m
 F

o
re

st
.
(c

)
S

V
M

.

(b
)

(a
)

g
u

re
K

D
D

0.
99

99
±0

.0
0.
99
98

±0
.0

0.
53

22
±0

.0
12

2
0.

99
99

±0
.0

0.
99
98

±0
.0

0.
47

14
3

±0
.0

12
6

0.
99

91
±0

.0
0.

99
47

±0
.0

0.
58

79
±0

.0
02

2

S
E

A
0.

88
51

±0
.0

00
1

0.
85

68
±0

.0
00

2
0.

29
59

±0
.0

07
0

0.
94

52
9

±0
.0

00
1

0.
89
51

±0
.0

00
2

0.
23

28
9

±0
.0

01
1

0.
88

56
±0

.0
0.

86
21

±0
.0

0.
43

54
±0

.0
00

1

A
G

R
0.

83
2

±0
.0

00
1

0.
71
62

±0
.0

00
3

0.
53

22
±0

.0
04

4
0.

71
03

±0
.0

00
1

0.
65

79
8

±0
.0

00
1

0.
77

00
4

±0
.0

01
1

0.
56

21
±0

.0
0.

56
27

±0
.0

0.
51

44
±0

.0
00

2

A
U

C

G
-M

e
a

n

A
c
c
u

ra
c
y

O
p

ti
m

a
l

C
u

to
ff

C
5

.0
R

a
n

d
o
m

 F
o
re

st
S

V
M

A
U

C

G
-M

e
a

n

A
c
c
u

ra
c
y

O
p

ti
m

a
l

C
u

to
ff

A
U

C

G
-M

e
a

n

A
c
c
u

ra
c
y

O
p

ti
m

a
l

C
u

to
ff

 4.5 Results and Discussion

97

The performance of every run of the 10-folds Cross-Validation on the full datasets was

rearranged into a matrix and analysed using the Friedman test to evaluate any

significantdifferences between the algorithms used. The non-shaded part of Table 4.5 sets out

the model performances of every run as a matrix.

Dataset Run C5.0 SVM RF

gureKDD

1

⋮
10

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

SEA

1

⋮
10

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

AGR

1

⋮
10

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Table 4.5: Model G-Mean accuracies arrangements of the 10-folds Cross-Validation on the full dataset for Friedman’s test.

Friedman’s test was used to analyse whether the difference between these algorithms was

significant. The tested hypothesis was, “there is no statistically significant difference in model

performances (G-Mean accuracies) between the different algorithms”. This test revealed that

there was a significant difference between the different algorithms applied to these datasets

under the 10-folds Cross-Validation approaches, χ2(2) = 26.7, p = 0.000 < 0.05. The follow up

Nemenyi post-hoc test revealed that the algorithms were all different from each other, as

illustrated in Table 4.6, which shows that the p-values of all pairwise comparisons, were less

than 0.05.

 C5.0 SVM

SVM 0.027 -

RF 0.027 0.000
Table 4.6: Results of the pairwise Nemenyi comparison test for the full datasets 10-folds Cross-Validation experiment.

Figure 4.5 presents these results in a graph, shows that no two algorithms were joined by a line,

which indicates that the differences between the algorithms were statistically significant.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

98

Figure 4.5: Critical differences plot of the pairwise Nemenyi comparison test for the full datasets 10-folds Cross-Validation experiment.

Table 4.7 presents the medians of each algorithm’s performance (G-Mean Accuracy) as well

as their mean ranks. Figure 4.5 shows that Random Forest is highly ranked, whereas SVM

scored the lowest.

 C5.0 RF SVM

Median 0.857 0.895 0.862

1st Quantile 0.716 0.658 0.563

3rd Quantile 1.000 1.000 0.995

Mean Rank 2.000 1.333 2.667

Table 4.7: Algorithms’ medians and mean ranks for the full datasets 10-folds Cross-Validation experiment.

4.5.2 Subset-to-Subset (File-to-File)

This experiment aimed to evaluate the capabilities of different algorithms (C5.0, Random

Forest, SVM) in classifying instances with different statistical properties to those used in

producing the models. This evaluation was conducted by measuring each model’s performance

in terms of G-Mean Accuracy.

This section shows the results of using a subset of data from each dataset (gureKDD, SEA, and

AGR) in model generation using the three algorithms, where each generated model was used

to evaluate the remaining parts of the dataset. For each subset, a model was generated, and the

optimal cutoff and G-Mean accuracy were reported using 10-folds Cross-Validation. Also, the

predicted G-Mean accuracy of each remaining subset was reported where the models’ optimal

 4.5 Results and Discussion

99

cutoff was used and compared with the G-Mean accuracy of the adapted cutoff for that subset.

This experiment aimed to analyse the effect of cutoff adaptation on the evaluated data and to

assess how such adaptations would compare with the use of the optimal cutoff on model

performance.

Plots of the G-Mean accuracy present the performance of the prediction model (MDLk), that

was trained using Filek, on the files in the dataset (Filei≠k) that were not used in producing that

model. In Figure 4.6, Figure 4.7 and Figure 4.8 each model’s performance, based on the

Cross-Validation technique, is illustrated with a solid line; other individual performance

evaluations are depicted with dotted lines.

4.5.2.1 C5.0:

Algorithm C5.0 has the worst performance on the first file in the gureKDD dataset even at

Cross-Validation evaluation during the model generation stage (Figure 4.6). This is due to the

fact that this file has the least number of attacks and is the most imbalanced of the files. It

consists of only 21 attacks which formed 0.0118% of the total traffic in that file. Therefore, the

generated model using this file was not able to predict any instances in other files. Where the

number of attacks in other files increased with a proportionate balance, the model performances

improved under this algorithm.

As the SEA and AGR datasets are composed of only six files each, there is no illustration of

model 7 for these datasets in the plot. Generally, applying this approach followed the same

pattern as the first experiment (10-folds Cross-Validation), where performance on gureKDD

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

100

 F
ig

u
re

 4
.6

:
G

-M
ea

n
 A

cc
u

ra
cy

 C
u

rv
es

 f
o
r

th
e

C
5

.0
 A

lg
o

ri
th

m
 (

fo
r

g
u

re
K

D
D

 d
a

ta
 s

ee
 T

a
b

le
 A

.1
,
S
E

A
 d

a
ta

 s
ee

 T
a
b
le

 A
.2

 a
n
d

 A
G

R
 d

a
ta

 s
ee

 T
a
b
le

 A
.3

)

 4.5 Results and Discussion

101

resulted in the highest accuracy followed by the SEA dataset; the worst performing dataset was

the AGR.

Also in both datasets (SEA and AGR), models performed best when files exhibited the same

statistical properties, denoted in these experiments by the same generating functions. For

example, where MDL1 used File 1 as training data it predicted instances in File 2 with a high

performance and vice versa (as both files were generated using the same function). This is also

applicable for Files 3 and 4 in predicting each other. Where files contain mixed behaviours, the

prediction performance dropped sharply.

Section A.1 in Appendix (A) presents the results of each model on every file generated by each

of the different algorithms. These tables show that the performance of all of these models

improved when the cutoff (threshold) was adapted for the evaluation dataset, rather than using

a pre-calculated one.

4.5.2.2 Random Forest (RF)

It was expected that Random Forest (RF) would perform well on the first file of the gureKDD

dataset despite its low number of attack connections. Unlike C5.0, the performance of RF in

modelling this file was linked to the bootstrap stage, where instances were sampled from the

population with replacement. This means that duplicates of the 21 attack connections were

sampled many times which increased the predictability of the built trees (Figure 4.7).

After careful examination of the results, as presented in Appendix (A) (see Section A.2), one

can see, especially in the synthetic data (SEA and AGR), that when a testing file has similar

statistical properties to the model, its performance will not increase much even after cutoff

adaptation. However, when it has different statistical properties, the adaptation process boosts

the prediction leading to an accurate evaluation of a model’s performance.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

102

 F
ig

u
re

 4
.7

:
G

-M
ea

n
 A

cc
u

ra
cy

 C
u

rv
es

 f
o
r

R
a

n
d
o

m
 F

o
re

st
 A

lg
o

ri
th

m
 (

fo
r

g
u
re

K
D

D
 d

a
ta

 s
ee

 T
a

b
le

 A
.4

,
S

E
A

 d
a
ta

 s
ee

 T
a

b
le

 A
.5

 a
n

d
 A

G
R

 d
a

ta
 s

ee
 T

a
b

le
 A

.6
)

 4.5 Results and Discussion

103

Furthermore, the effect of the adaptation process was more tangible in gureKDD than in the

synthetic data, as this dataset exhibited both different patterns and varying statistical properties

between files. For example, Table A.4 in Appendix (A) shows that MDL1, which was trained

on File 1, reached a G-Mean accuracy of 67.33% on File 5 when the original cutoff (threshold)

of the model was used, but applying the adaptation process to this threshold increased its

performance to 99.37%.

4.5.2.3 SVM

SVM performed the worst on the AGR dataset in comparison to the other algorithms

(Figure 4.8). This could have been the result of the non-linear nature of this dataset as discussed

previously. The non-linearity was not picked up by the SVM linear implementation used in

these experiments. In general, the cutoff (threshold) adaptation showed a similar effect in

improving the models’ performances compared to using the model’s optimal threshold.

The findings of the experiments in this section illustrate the importance of the adapted cutoff

value to the data-model pairs in achieving an accurate reading of each model’s performance.

To assess the significance of any differences between the models before and after the adaptation

of the threshold, the Friedman test was performed.

In order to use the Friedman test, the G-Mean accuracy values were formatted into a matrix as

Table 4.8 shows the arrangement. The unshaded part of Table 4.8 was submitted to the

Friedman test function. Every row in this matrix contains the G-Mean accuracies after testing

MDLi on Filej≠i, where two values for every algorithm were recorded before (original) and after

(adaptive) the threshold adaptation. All the values in this matrix are presented in the tables of

in Appendix (A); each model’s performance before the cutoff adaptation is denoted by Model

Threshold G-Mean Accuracy (MA), and after adaptation as File Threshold G-Mean Accuracy

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

104

 F
ig

u
re

 4
.8

:
G

-M
ea

n
 A

cc
u

ra
cy

 C
u

rv
es

 f
o
r

th
e

S
V

M
 A

lg
o

ri
th

m
 (

fo
r

g
u

re
K

D
D

 d
a

ta
 s

ee
 T

a
b

le
 A

.7
,
S
E

A
 d

a
ta

 s
ee

 T
a
b
le

 A
.8

 a
n
d

 A
G

R
 d

a
ta

 s
ee

 T
a
b
le

 A
.9

)

 4.5 Results and Discussion

105

(FA). For every algorithm there was a total of 102 different measures for each treatment (before

and after threshold adaptation). The statistical data were composed of 42 measures (7 models ×

6 evaluations) for gureKDD, and 30 measures (6 models × 5 evaluations) for each of the SEA

and AGR datasets. Hence, the resulting matrix is 102 × 6.

 C5.0 SVM RF

Dataset Model Test file
Original

Threshold

Adaptive

Threshold

Original

Threshold

Adaptive

Threshold

Original

Threshold

Adaptive

Threshold

gureKDD

⋮

MDLi

⋮

⋮

Filej≠i

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

SEA

⋮

MDLi

⋮

⋮

Filej≠i

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

AGR

⋮

MDLi

⋮

⋮

Filej≠i

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Table 4.8: Models G-Mean accuracies arrangements for Friedman’s test for phase two of the experiments.

Friedman’s test was used to assess whether the difference between the different algorithms was

significant before and after threshold adaptation. The tested hypothesis was, “there is no

statistically significant difference in model performances (G-Mean accuracies) before and

after cutoff (threshold) adaptation between the different algorithms”. This test revealed that

there was a significant difference between the different algorithms before and after threshold

adaptation, χ2(5) = 217.7, p = 0.000 < 0.05.

To identify which algorithms were different, a Nemenyi post-hoc test was carried out to

calculate the pairwise comparisons. Table 4.9 shows the results of this test.

 C5.0 SVM RF

Original

Threshold

Adaptive

Threshold

Original

Threshold

Adaptive

Threshold

Original

Threshold

C5.0 Adaptive

Threshold
0.000 - - - -

SVM

Original

Threshold
0.642 0.000 - - -

Adaptive

Threshold
0.000 0.999 0.000 - -

RF

Original

Threshold
0.029 0.023 0.000 0.011 -

Adaptive

Threshold
0.000 0.000 0.000 0.000 0.000

Table 4.9: Results of the pairwise Nemenyi comparison test for the cutoff (threshold) adaptation experiment.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

106

Figure 4.9 presents the critical differences between the different algorithms before and after

cutoff adaptation as a plot. The plot shows that when the cutoff was adapted for the evaluated

dataset, the SVM and C5.0 algorithms were no different to each other. They showed the same

behaviour even when cutoff adaptation was not performed, but the cutoff adaptation increased

their performances (G-Mean Accuracy). In general, all algorithms were ranked higher when

cutoff adaptation was performed, with the Random Forest algorithm always outperforming the

other two.

Figure 4.9: Critical differences plot of the pairwise Nemenyi comparison test for the cutoff (threshold) adaptation experiment.

Table 4.10 presents the median of every algorithm’s performance (G-Mean Accuracy) based

on the threshold adaptation effect. Figure 4.9 illustrates the mean ranks presented in Table 4.10

as a plot.

 No Threshold Adaptation Adaptive Threshold

 C50 RF SVM C50 RF SVM

Median 0.832 0.849 0.821 0.861 0.884 0.862

1st Quantile 0.689 0.721 0.515 0.746 0.787 0.566

3rd Quantile 0.877 0.939 0.888 0.949 0.991 0.903

Mean Rank 4.598 3.804 5.000 2.990 1.676 2.931

Table 4.10: Algorithms’ medians and mean ranks based on threshold adaptation effect.

 4.6 Limitations

107

4.6 Limitations

Although the experiments in this chapter have shown the advantages of adapting the cutoff

(threshold) for the evaluated data, there are a number of noticeable limitations. The analysis

focuses on binary classification problems with no attempt made to extend the findings to multi

classification problem, i.e. type of attacks (DOS, Port Scan, SQL injection, etc.). The analysis

concentrated on the batch-based classification problem because this is the focus of this thesis.

Other limitations are related to the number of the algorithms that were evaluated and the choices

made with respect to the implementation of some of these algorithms. For example, the SVM

linear implementation was used in these experiments, which could explain the poor

performance of this algorithm on some datasets, such as AGR. This work could have been

extended to use some kernels to transform the dataset into higher dimensions to improve SVM’s

performance. However, due to time limitations, it is planned that this task will be undertaken

sometime in the future.

The algorithms were run using their default settings, with no tuning of their parameters, to

improve the models’ performance. For example, algorithm C5.0 was run with 10-trials only

although an increased number of trials could have resulted in an improved performance. While

parameter settings could be regarded as an engineering issue, future studies could be conducted

to analyse the effect of different settings on the cutoff (threshold) adaptation task.

Another serious limitation of these experiments was the number of datasets used; only three

datasets were used in this analysis including a very old dataset i.e. gureKDD. This limitation is

addressed in the next chapter where a newer and more recent dataset is generated and tested.

Despite the state and number of datasets used, an extended analysis was undertaken as a result

of the multiple model evaluations performed by dataset partitioning.

Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models

108

4.7 Summary

This chapter has presented an analysis of the adaptive cutoff (threshold) approach, which

provides an accurate reading of the performance of models generated on a training data and

those used to evaluate data with different statistical properties (concept drift). The results from

this analysis demonstrated the following:

• An adaptive cutoff (threshold) approach results in better classification performance than a

fixed threshold.

• Using a single cutoff (threshold) will lead to misleading results, which could result in a

decision to terminate a good prediction model which only required some tuning.

• This approach may not improve a model’s performance when the testing data exhibits the

same statistical properties as the training data.

In Chapter 6 a more in-depth analysis is undertaken to assess the applicability of this approach

to a more domain specific problem (network ID), that is, where a more recent and much more

realistic dataset has been generated. In that chapter, a thorough analysis is outlined of the effect

of different feature set sizes and the data balance on the proposed approach.

5

109

Chapter 5: UNB ISCX 2012 Dataset Transformation

Chapter Five

UNB ISCX 2012 Dataset

Transformation

After identifying problems with the KDD 1999 dataset - as outlined in Al Tobi and Duncan [1]

- it was necessary to find an alternative dataset. With no satisfactory dataset available, it was

decided to generate a new one. This chapter sets out how a new dataset was generated by

transforming the UNB ISCX 2012 Intrusion Detection Evaluation Data Set [14], which will

be referred to throughout the thesis as ISCX2012. The result of this transformation was a

structured dataset (named STA2018) in which every record described each connection

(between two hosts) using 550 features [549 independent variables plus one dependent (class)

variable].

The main reasons to generate this dataset are to have as clean and as validated a dataset as

possible. The resultant dataset (STA2018) captured every ICMP, TCP and UDP packet in the

ISCX2012 dataset. It also maintained the chronological order of every connection which will

help future studies as the ordered data can capture different traffic behaviour and network

patterns. It also provided balanced labelled connections by generating synthetic samples, which

were also identifiable. In addition, each record in the resultant dataset can easily be linked back

to the original ISCX2012 dataset, as the timestamp and host addresses were maintained.

Chapter 5: UNB ISCX 2012 Dataset Transformation

110

5.1 ISCX2012 Dataset Description

The generation of the ISCX2012 dataset followed a systematic approach, in which datasets are

created using profiles of real networks, as proposed by Shiravi et al. [14]. These profiles are

composed of general representations of network behaviours. For instance, the profile of a host

will consist of the distribution of exchanged packets, connection durations, etc. Such profiles

are used by agents that are programmed to generate traffic, which will simulate the traffic of a

real network. These profiles can be shared without privacy concerns so other researchers can

then generate new traffic based on these profiles.

Two main profiles were generated to produce the network traffic, alpha-profile and beta-

profile. Alpha-profiles were used to describe attack scenarios, whereas beta-profile were used

to profile network events and behaviours (hosts and services).

After profiles for known applications such as, HTTP, FTP, SMTP/IMAP and SSH, had been

generated, they were executed by agents within an infrastructure to generate the ISCX2012

dataset. The network used to generate the traffic was formed of six main LANs. Four different

LANs accommodated 21 workstations (using different versions of Windows) which formed the

interconnected network. The fifth LAN was dedicated to the servers to provide four important

services: web; email; DNS and Network Address Translation (NAT) services. The sixth LAN

was used for administration purposes such as, monitoring and controlling the network setup.

To eliminate noise, all of the traffic in the sixth LAN was not captured. All of the transmitted

traffic was mirrored to three devices that provided redundant capturing (e.g. tcpdump);

Intrusion Detection Systems (IDS) (e.g. Snort); IDS management systems (e.g. QRadar,

OSSIM); and visualization systems (e.g. ntop).

The traffic capturing process lasted seven days, from Friday (11/June/2010) to Thursday

(17/June/2010). This simulation created seven PCAP files with labelled flow (XML) files (see

Table 5.1). Every XML file contained the label of each connection in the corresponding PCAP

 5.1 ISCX2012 Dataset Description

111

file. This simulation consisted of four main attack scenarios: inside network infiltration; HTTP

Denial of Service (DoS) using the Slowloris tool; a Distributed Denial of Service (DDoS)

attack using an IRC Botnet; and brute force SSH.

Date PCAP files
Labelled flow

(XML) files
Description19

Size

(GB)
Fri 11/Jun/2010 testbed-11jun.pcap Normal Activity. No malicious activity 16.1

Sat 12/Jun/2010 testbed-12jun.pcap TestbedSatJun12Flows.xml Normal Activity. No malicious activity 4.22

Sun 13/Jun/2010 testbed-13jun.pcap TestbedSunJun13Flows.xml Infiltrating the network from inside +

Normal Activity
3.95

Mon 14/Jun/2010 testbed-14jun.pcap TestbedMonJun14Flows.xml HTTP Denial of Service + Normal Activity 6.85

Tue 15/Jun/2010 testbed-15jun.pcap TestbedTueJun15-1Flows.xml

TestbedTueJun15-2Flows.xml

TestbedTueJun15-3Flows.xml

Distributed Denial of Service using an IRC
Botnet

23.4

Wed 16/Jun/2010 testbed-16jun.pcap TestbedWedJun16-1Flows.xml
TestbedWedJun16-2Flows.xml

TestbedWedJun16-3Flows.xml

Normal Activity. No malicious activity 17.6

Thu 17/Jun/2010 testbed-17jun.pcap TestbedThuJun17-1Flows.xml
TestbedThuJun17-2Flows.xml

TestbedThuJun17-3Flows.xml

Brute Force SSH + Normal Activity 12.3

Table 5.1: UNB ISCX 2012 dataset files.

Unfortunately, the ISCX2012 dataset had a limited number of attack types as it only contained

these four named scenarios. Also, the traffic labels did not provide any information about the

attack type as it used binary labelling {Normal and Attack} and made no further distinctions. It

also offered a limited number of services in comparison to DARPA 1998. However, the

ISCX2012 contained traffic that was more plausible for a modern network. This was especially

the case in relation to traffic load and exchanged content as it used a realistic network set-up,

and its traffic was generated using profiles from real networks as discussed earlier. Its traffic

included a complete capture of all payloads as well as all of the interactions within and between

LANs [14].

The ISCX2012 dataset has been made publicly available by its authors and a copy was obtained

and used for the transformation outlined in this chapter. Table 5.1 lists the files that were

provided within the ISCX2012 dataset. For every traffic trace (PCAP) file there was one or

more labelled flow (XML) files, apart from the Friday file (11/Jun/2010) as it consisted of

19 http://www.unb.ca/cic/datasets/ids.html

Chapter 5: UNB ISCX 2012 Dataset Transformation

112

normal traffic only. Each XML file described every connection in the PCAP file using 19

features, where the label (Normal or Attack) was provided by the <Tag> element.

5.2 Transformation Process

There were five phases to the transformation of the ISCX2012:

1. Basic-features extraction: every PCAP file was processed using Bro software [16] to

extract 193 features for every ICMP, TCP and UDP connection. These features

consisted of information that can be extracted from frame and packet headers such as

the source and destination IP addresses and ports, connection duration, transport

protocol etc.

2. Validation and connection labelling: the accurate capture of every (ICMP, TCP, UDP)

packet in every PCAP file was validated, then every processed connection (in the PCAP

files) was matched to its corresponding flow in the XML file using the label provided

{Attack, Normal}.

3. Extend the basic-features: every connection was processed to derive two sets of

features (time-based and connection-based). Deriving these features depended on the

chronological order of the original connections. Onut’s feature classification

schema [15] was used in this phase.

4. Balance: synthetic records (connections) were generated to balance the number of

Normal and Attack connections in the dataset. This balancing phase used the SMOTE

algorithm [207] (see Section 5.2.4).

5. Clean up: any useless features were removed, before source and destination zone

features were added, to reduce the large address space.

 5.2 Transformation Process

113

The resultant dataset (STA2018) can be used as a balanced version or can be focused on the

original version of the data, as every connection is uniquely distinguishable and all of the

synthetic connections are identifiable.

Each one of the phases outlined above is described and discussed in more detail below.

Figure 5.1 illustrates the flow of this process, where the numbers in the output result of every

phase represent the number of features in the processed resultant data.

Figure 5.1: Dataset preparation phases

Chapter 5: UNB ISCX 2012 Dataset Transformation

114

5.2.1 Basic features extraction

As shown in Figure 5.1, during the first phase every PCAP file in the ISCX2012 dataset [14]

was processed in order to extract all the connection basic features for the ICMP, TCP and UDP

traffic. A Bro [16] script was implemented for this process. The extraction of these features was

limited to header parameters (within a connection) and did not go into payload level for several

reasons, including encrypted traffic issues and privacy concerns.

At this stage, a total of 193 features were extracted [Features {1-2, 4-5, 7-12, 15-144} in

Appendix (D)]. These features ranged from the addresses and ports numbers of the hosts

involved in the connection set-up, to connection duration and the number of exchanged packets

and byte sizes. Some of these features extracted the same information from different levels of

the Bro IDS [16]. For example, connection duration, {duration and bro_duration}, and the

number of packets and byte features were extracted using the packet and connection event

handlers in Bro. As Bro uses different engines to process this information at different levels, it

was necessary to include both views in the features set.

These extracted basic features were divided into the following main groups:

• IP protocol type:

o IPv4 connections’ related features (32 features, three of which were deleted –

see Section 5.2.5);

o IPv6 related features (34 features, 27 of which were deleted – see Section 5.2.5).

• Transport protocol type:

o ICMP related features (2 features, one of which was deleted – see Section 5.2.5);

o TCP related features (62 features, 21 of which were deleted – see Section 5.2.5);

o UDP related features (8 features).

 5.2 Transformation Process

115

Where a connection was an IPv4 type, then all IPv6 related features were set to zero and vice

versa. This same process was applied to the transport protocol type features. For example,

where a connection was a TCP type, then all ICMP and UDP features were set to zero.

In this phase, Bro’s default setting for a TCP connection’s start time had been overridden to use

the timestamp of the first SYN packet. Bro’s default settings use the last SYN packet in the

hand-shake phase to mark the start time of connections. All other settings were set to the default,

including any TCP connection timing out after being idle for more than 5 minutes.

In the design of the Bro script, TCP connections are treated as statefull connections with the

Bro’s default engine settings deciding which sequence of packets are grouped as a single

connection. Although UDP is not a session-based protocol, Basu et al. (2001) [345] suggested

the construction of a session view for such traffic, as it would be useful to detect low-profile

probes and novel DoS attacks. Therefore, the Bro UDP connection event handler was used

which bundles together a sequence of exchanged UDP packets between two hosts into one

connection, based on some heuristic and service profiles. All ICMP traffic was treated as

stateless connections and every packet was treated as a single connection. Although Bro is able

to aggregate a sequence of exchanged ICMP packets into a single connection if they meet

certain criteria, it was decided to use the stateless nature of the traffic in the generated dataset.

This process is similar to the KDD 1999 design in profiling the DARPA 1998 network traffic.

5.2.2 Validation and labelling

This stage aimed to validate the information extracted by Bro scripts. As such, a Perl script was

implemented to count all existing packets and their types in the PCAP files and to compare

these totals with what had been processed by Bro (see columns Bro and PCAP in Table 5.2).

This comparison showed that the transformed data captured every ICMP, TCP and UDP packet

correctly, as the totals matched.

Chapter 5: UNB ISCX 2012 Dataset Transformation

116

Table 5.2: Packet counts comparison for all Bro, PCAP and XML files

BRO PCAP XML

ARP - 14501 -

ICMP 4,316 4,316 icmp_ip

IGMP - 14 igmp

TCP 21,361,138 21,361,138 tcp_ip

UDP 306,793 306,833 udp_ip

(40 Frag.)

HOPOPT 12 ip

ICMPv6 12 0 ipv6icmp

UDP 1,459 1,459 0.0.0.0

ARP - 13,088 - -

ICMP 343 343 343 icmp_ip

IGMP - 60 60 igmp

TCP 5,816,735 5,816,735 5,796,554 tcp_ip

UDP 142,158 142,230 143,105 udp_ip

(72 Frag.)

HOPOPT 58 58 ip

ICMPv6 60 2 2 ipv6icmp

UDP 1,464 1,464 1,457 0.0.0.0

ARP - 14,771 - -

ICMP 2,299 2,299 4,598 icmp_ip

IGMP - 43 86 igmp

TCP 5,613,966 5,613,966 11,169,824 tcp_ip

UDP 130,818 130,822 263,702 udp_ip

(4 Frag.)

HOPOPT 39 78 ip

ICMPv6 39 0 0 ipv6icmp

UDP 1,209 1,209 2,412 0.0.0.0

ARP - 14,339 - -

ICMP 2,130 2,130 2,126 icmp_ip

IGMP - 14 14 igmp

TCP 8,924,769 8,924,769 8,922,334 tcp_ip

UDP 705,942 705,965 698,797 udp_ip

(23 Frag.)

HOPOPT 10 10 ip

ICMPv6 10 0 0 ipv6icmp

UDP 1,426 1,426 1,429 0.0.0.0

ARP - 14,502 - -

ICMP 14,031 14,031 14,035 icmp_ip

IGMP - 79 79 igmp

TCP 33,734,618 33,734,618 33,758,426 tcp_ip

UDP 1,218,233 1,218,287 1,228,442 udp_ip

(54 Frag.)

HOPOPT 78 78 ip

ICMPv6 78 0 0 ipv6icmp

UDP 1,447 1,447 1,447 0.0.0.0

ARP - 14,785 - -

ICMP 1,379 1,379 1,379 icmp_ip

IGMP - 14 14 igmp

TCP 24,230,487 24,230,487 24,192,695 tcp_ip

UDP 345,959 345,961 347,344 udp_ip

(2 Frag.)

HOPOPT 10 10 ip

ICMPv6 10 0 0 ipv6icmp

UDP 1,428 1,428 1,428 0.0.0.0

ARP - 16,422 - -

ICMP 2,080 2,080 2,080 icmp_ip

IGMP - 24 24 igmp

TCP 17,029,774 17,029,774 17,066,126 tcp_ip

UDP 260,896 260,935 262,237 udp_ip

(39 Frag.)

HOPOPT 24 24 ip

ICMPv6 24 0 0 ipv6icmp

UDP 1,425 1,425 1,418 0.0.0.0

1
7

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
5

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
6

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
3

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
4

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
1

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

1
2

-J
u

n

IP
v

4

IP
v

4

IP
v

6

IP
v

6

 5.2 Transformation Process

117

This stage also aimed to match every processed connection with its original label from the XML

files of the ISCX2012 dataset. This was not a straight forward task as a number of problems

were identified with the XML files during the validation stage. These challenges were addressed

on a case by case basis. Following this stage, there were 193 features and one label (class)

feature. A detailed list of the validation steps and each of the problems that arose is presented

in Section 5.3, which also discusses how these problems were addressed.

5.2.3 Extending the features space

During this phase, a feature engineering technique was applied, to derive new features, based

on the extracted basic features of various types of connections within a network. These newly

derived features aimed to find similarities between different connections. Therefore, this phase

has used Onut’s feature classification schema [15], which provides large amounts of

information by deriving features, ranging from packet-level to connection-level views of

network traffic. The part of this schema related to derived connection-level features (the shaded

parts in Figure 5.2) was adopted in this work in order to extend the basic features by deriving

Time-based and Connection-based features.

Figure 5.2: Onut’s Feature Classification Schema [15]

Chapter 5: UNB ISCX 2012 Dataset Transformation

118

Time-based features aimed to detect bursty attacks and used a sliding window of 5 seconds to

compute these derived features (220 features). Connection-based features targeted stealthy

attacks and used a sliding window of 100 connections to derive the same features (220 features).

This classification schema was implemented in Java as the original implementation could not

be obtained from the author. This implementation used the basic features listed in Table 5.3 to

derive all 440 features. Details of every feature can be found in the feature descriptions table in

Appendix (D). It is worth noting that the basic features, tcp_src_flags_URG_flags and

tcp_dst_flags_URG_flags, were deleted at the cleaning phase, after the extending phase, after

being identified as useless.

No. Feature name No. Feature name

1 start_time 99d tcp_src_flags_URG_flags

2 src_ip 100 tcp_src_flags_ACK_flags

4 src_prt 101 tcp_src_flags_PSH_flags

5 dst_ip 102 tcp_src_flags_RST_flags

7 dst_prt 103 tcp_src_flags_SYN_flags

10 protocol 104 tcp_src_flags_FIN_flags

17 src_bytes 120b tcp_dst_flags_URG_flags

18 dst_bytes 121 tcp_dst_flags_ACK_flags

19 src_pkts 122 tcp_dst_flags_PSH_flags

20 dst_pkts 123 tcp_dst_flags_RST_flags

24 bro_service 124 tcp_dst_flags_SYN_flags

 125 tcp_dst_flags_FIN_flags

Table 5.3: Basic features used in Onut’s schema to extend the features set

5.2.4 Balancing the dataset

As the developers of ISCX2012 attempted to produce a dataset that resembled reality, the

dataset following this transformation was highly imbalanced, with far fewer attack connections

than normal ones, as illustrated in Figure 5.3. The ratio of Normal to Attack cases had an

imbalance as high as (54,547:1) on Day 6 (16/Jun/2010).

 5.2 Transformation Process

119

Figure 5.3: ISCX2012 number of class connections for each simulation day

Using such a dataset with this kind of imbalance could result in biased models. There are many

techniques to address this issue as discussed in Chapter 2, including: using evaluation measures

other than accuracy (such as, balanced-accuracy or G-Mean Accuracy); over or under sampling

techniques; different cost (penalising) approaches; and/or the generation of new synthetic

samples.

This work adopted the approach of generating synthetic samples, as it provided the flexibility

for researchers to include or omit the generated samples in future studies.

Synthetic samples were generated using the DMwR package [346, 347], which includes the

Synthetic Minority Over-sampling Technique (SMOTE) algorithm [207], in R software [321].

The SMOTE algorithm works, as Chawla et al. [207] detailed, by randomly sampling a new

Chapter 5: UNB ISCX 2012 Dataset Transformation

120

instance from the line segments that connects one of the minority (Attack) observations to any

or all of its K minority nearest neighbours. To generate a new synthetic instance, as Eq.(5.1)

shows, the algorithm calculates the difference between the minority sample and its nearest

neighbour using their feature vectors. A random number (between 0 and 1) is multiplied by that

difference, and the total is added to the feature vector of the minority observation under

consideration.

𝑥𝑠 = 𝑟(𝑥 − 𝑥𝑘𝑖
) + 𝑥

Eq.(5.1)

where 𝑥𝑠 is a new synthetic instance, 𝑥 is the actual minority sample, 𝑥𝑘𝑖
 is one of the K minority

nearest neighbours of 𝑥 and 𝑟 is a random number between zero and one. This process is

repeated until the targeted number of synthetic samples are generated. Figure 5.4 illustrates an

example of the SMOTE algorithm in a two-dimensional space, with the blue points representing

the synthetic samples that were generated at random from the line connecting two minority (+)

instances. This algorithm was executed with its default parameters, with K=5 nearest

neighbours used to generate the new samples.

Figure 5.4: Generation of synthetic instances using the SMOTE algorithm

 5.2 Transformation Process

121

In this phase, the SMOTE algorithm was used to generate synthetic samples of Attack

connections only. The number of these samples was the difference between the number of

Normal instances and the number of Attack instances (Nnormal - Nattack) in every simulation day

except the first day (which only contained normal traffic). Any synthetic instances that

duplicated an original instance were removed.

During this phase, two extra features (“synthetic” and “origOrder”) were added to the new

dataset. The “synthetic” feature was used to identify every synthetic connection by setting its

value to one (yes) or zero (no) otherwise. The “origOrder” feature contained the order number

of every actual record (connection) as it appeared in the original data file and zero for every

synthetic sample. These features were added to help researchers identify any synthetic instances

but need to be removed when any learning or prediction processes are taking place.

5.2.5 Cleaning the dataset

The main objective of this phase was to reduce the feature space by eliminating any useless

features. A quick analysis was conducted of every feature in the dataset to identify any non-

changing (single value) features. During this analysis the number of unique values for every

feature in each simulation file was counted. If a feature was found to contain the same value in

all of the data files, or to be useful in only one data file, it was eliminated. This analysis revealed

that there were 88 useless features, all of which were removed from the final dataset resulting

in a total of 548 features (547 features + 1 class). Table 5.4 lists these eliminated features and

their index numbers [which also appear in the feature description tables in Appendix (D)].

During the last stage of this phase two more features were generated (src_zone and dst_zone),

which are source and destination topological zones {“GLOBAL”, “MULTICAST”, “UNICAST”,

“UNKNOWN”, “LOCAL”, “LAN1”, “LAN2”, “LAN3”, “LAN4”, “LAN5”, “LAN6”}. These two features

reduced the address space of the source and destination columns, and guarded against the

Chapter 5: UNB ISCX 2012 Dataset Transformation

122

 Total feature Feature’s indexes

Basic features 53 20a, 50a, 53a, 64a, 79a, 79b, 79c, 79d, 79e,

79f, 79g, 79h, 79i, 82a, 86a, 86b, 86c, 86d,

86e, 86f, 86g, 86h, 86i, 86j, 86k, 86l, 86m,

86n, 86o, 86p, 86q, 87a, 99a, 99b, 99c, 99d,

104a, 107a, 107b, 107c, 107d, 107e, 107f,

119a, 120a, 120b, 125a, 128a, 128b, 128c,

128d, 128e, 128f

Connection based features 19 372a, 375a, 376a, 395a, 400a, 405a, 405b,

405c, 405d, 450a, 450b, 455a, 505a, 505b,

510a, 533a, 539a, 539b, 539c

Time based features 16 194a, 199a, 204a, 204b, 204c, 204d, 249a,

249b, 254a, 304a, 304b, 309a, 332a, 338a,

338b, 338c
Table 5.4: Indexes of eliminated features

profiling of network traffic being too specific (biased) in relation to certain connections. The

end result of this phase was a feature set of 550 features (549 features + 1 class). A complete

list of the extracted and derived features, along with their descriptions, is provided in

Appendix (D); the deleted features have been distinguished by concatenating a sequence of

alphabetic characters by their order number as well as being marked in red and italicized. (The

deleted features were kept in the list of features for reference purposes.)

5.3 Details of Validation and Labelling Phase

This section details the validation and labelling phase. As the processing steps for validation

and labelling were very similar, they were undertaken in one phase.

This phase validated the results from Bro to ensure every connection in the PCAP files had

been extracted correctly. Every connection was labelled with the correct tag provided by the

flow description files (XML).

The steps, findings, and resolutions of the validation stage are discussed next. The labelling

process was conducted by mapping the connections from Bro with their matches in the XML

files. This mapping exercise faced a number of difficulties that were identified during

validation.

 5.3 Details of Validation and Labelling Phase

123

Before any validation process could take place, all of the PCAP files were pre-processed and

some basic information was formatted into a tabular form. This pre-processing generated a text

file with all packet directions and their counts for every PCAP file. These text files were used

in the later stages to conduct the analyses discussed below. Table 5.5 provides an example of

such a text file.

ip_version protocol source_ip source_port destination_ip destination_port packets_count
4 tcp 12.180.55.140 80 192.168.2.106 2460 169
4 tcp 192.168.2.106 2460 12.180.55.140 80 109
4 tcp 12.180.55.140 80 192.168.2.106 2461 111
4 tcp 192.168.2.106 2461 12.180.55.140 80 70
4 udp 116.197.169.12 53 192.168.5.122 19195 1
4 udp 192.168.5.122 19195 116.197.169.12 53 1
4 udp 116.197.169.12 53 192.168.5.122 4807 1
4 udp 192.168.5.122 4807 116.197.169.12 53 1
4 igmp 192.168.4.120 224.0.0.22 2
4 igmp 192.168.4.121 224.0.0.22 12
4 icmp 192.168.5.122 98.124.196.1 3
4 icmp 209.210.145.86 192.168.5.122 1

Table 5.5: Example of total packets in every communication direction

It is worth noting that this example lists the packet directions not the connections between hosts.

For example, in Table 5.5, the packet directions and counts of the first record between host

(12.180.55.140:80) and (192.168.2.106:2460) could form one or multiple connections. It states

that a total of 169 packets were transmitted from 12.180.55.140:80 to 192.168.2.106:2460. This

formatting is useful to determine, later in the validation stage, which direction or connection

group has inconsistent counts.

All XML files were then converted into a tabular format and saved in text files. This step

reduced the size of files and eliminated any unwanted information ahead of the analysis. Each

XML flow record was represented by the 14 features listed in Figure 5.5. The “duration”

feature (stopDateTime - startDateTime) was computed using the converting script as it was not

present in the XML files.

All references to the PCAP and XML files in the discussion below refer to these files.

Chapter 5: UNB ISCX 2012 Dataset Transformation

124

startDateTime : Connection start time
stopDateTime : Connection finish time
Duration : Connection duration in seconds (computed by the script)
protocolName : Protocol name used by this connection {igmp, ip, udp_ip, icmp_ip, tcp_ip, ipv6icmp}
src_ip : IP address of the machine that started this connection (source)
src_port : Source port number
dst_ip : IP address of the destination machine
dst_port : Destination port number
appName : Application name used to establish this connection
src_pckts : Number of packets sent by the source machine
src_bytes : Total bytes sent by the source machine
dst_pckts : Number of packets sent by the destination machine
dst_bytes : Total bytes sent by the destination machine
conn_tag : Connection status {Normal, Attack}

Figure 5.5: Features in the flow files (XML) in all analyses.

5.3.1 Validation

In order to validate the results obtained from Bro, a two phased validation was undertaken. In

the first phase, a general packet count was made of every IP protocol {IPv4, IPv6} versus

every transport protocol {ICMP, TCP, etc.} for each PCAP file. A Perl script was implemented

and executed to parse the PCAP files; self validation was undertaken by counting the size of

every frame processed and comparing the total size of all frames with the total size of the PCAP

file in order to check that every packet had been successfully processed. The results from this

analysis were compared with the results from Bro (src_packets and dst_packets features) to

ensure every targeted packet had been correctly captured and processed. Table 5.2 sets out the

number of packets for Bro and PCAP. It shows that Bro successfully detected all targeted

packets. Minor differences, especially in the UDP connections, were the result of fragmented

packets, which Bro usually reassembled before passing them on to the event handler.

Another difference arose in the ICMP traffic within the IPv6 connections. A careful analysis

revealed that all of the HOPOPT packets (IPv6 packet with hop-by-hop option is being set) in

the IPv6 traffic were basically ICMP packets, which should have been handled by each of the

hosts receiving these HOPOPT packets. Bro’s parser was therefore able to extract these

 5.3 Details of Validation and Labelling Phase

125

ICMPv6 packets, a fact which can be confirmed by comparing the number of packets in both

protocols in Table 5.2.

The second phase aimed to provide further validation of the results obtained by Bro. In this

phase, the number of packets in every direction was computed. A Perl script was implemented

and executed to construct a list of all the communication directions and the number of packets

transmitted in each direction using the results from Bro. They were then compared with the

communication directions of the PCAP files that had been pre-processed, as the example shown

in Table 5.5. This analysis revealed that Bro failed to determine the right direction of some

UDP packets for only two of the UDP connections. A manual analysis of this issue revealed a

bug in Bro’s UDP analyser which did not handle certain UDP connections in the correct way.

5.3.2 Labelling

After validating the results from Bro, the same validation process was undertaken on the

labelled flow (XML) files within the ISCX2012 dataset. This validation process revealed a

number of problems with these files which are listed in Section 5.3.3.

These problems made the labelling process more challenging, as linking connections between

PCAP and XML was not straightforward. For example, it was not possible to use time as part

of the mapping keys as the XML files had used a human readable time format; this format did

not extend timestamp precision - after conversion - as the ones in the PCAP files. Also the time

difference between converted times and the PCAP’s timestamps were inconsistent between one

connection and another. Therefore, matching keys, such as the

key (start_time,src_ip:port,dst_ip:port) was not helpful.

For these reasons and the problems discussed in Section 5.3.3, the strategy outlined below was

developed to enable the correct mapping of connections, and hence, an accurate labelling

process. This strategy assumed that every connection in the dataset (PCAP) was normal except

Chapter 5: UNB ISCX 2012 Dataset Transformation

126

for those which were labelled as attacks in the XML files. The mapping process therefore

focused on matching connections between PCAP and XML by their chronological order.

In this mapping process, all connections between two hosts were aggregated by a single key.

The best matching key for this process was a combination of transport protocol {ICMP, TCP,

UDP} and the sorted hosts’ addresses and ports. As a result, every key was of the form

KEY(protocol, IP1:PORT1, IP2:PORT2). For ICMP traffic, only transport protocol and IP

addresses were used to form the key (KEY(protocol, IP1, IP2)).

Listing 5.1 illustrates the labelling process for PCAP connections. Every connection in the

PCAP was added to one of the connection sets mapped by one key, as presented by lines 1-10.

The same mapping process was applied to all connections in the XML file (lines 12-22) to

produce a key-connections map for the XML connections. Finally, as shown in lines 24-29,

key-connections maps for all PCAP and XML connections were compared, and every

connection with the key keyi in PCAP was mapped to its chronologically matched connection

with the matching key keyj in XML. This mapping process is further illustrated in Figure 5.6.

5.3.3 Problems with labelled flow (XML) files

This section sets out the main problems that were identified with the ISCX2012 dataset. It is

worth noting that all these issues were communicated to the authors, but no response was

received from them. All of the problems listed below were found in the labelled flow (XML)

files, which had been used to label connections in the PCAP files. Due to the diverse range of

issues, most had to be addressed individually.

Problem 1: Wrong total byte value

It is not clear how the authors of the dataset calculated the “src_bytes” and “dst_bytes”

(<totalSourceBytes> and <totalDestinationBytes>) for each connection in the XML files. It

 5.3 Details of Validation and Labelling Phase

127

Algorithm: Label PCAP connections
Input:

Result:

pcap.connections, xml.connections

labelled PCAP connections

1 pcap.keyMaps <- {}
2 for (conn in pcap.connections) do
3 key <- [connproto, sort(connsrc_IP, conndst_ip)]
4 if(connproto == "tcp" || connproto == "udp")
5 key <- [connproto, sort(connsrc_IP:connsrc_port, conndst_IP:conndst_port)]
6
7 id <- connid
8
9 pcap.keyMaps[key] <- pcap.keyMaps[key] ∪ {id}
10 done
11
12 xml.keyMaps <- {}
13 for (conn in xml.connections) do
14 key <- [connproto, sort(connsrc_IP, conndst_ip)]
15 if(connproto == "tcp" || connproto == "udp")
16 key <- [connproto, sort(connsrc_IP:connsrc_port, conndst_IP:conndst_port)]
17
18 id <- connid
19 label <- connlabel
20
21 xml.keyMaps[key] <- xml.keyMaps[key] ∪ {id,label}
22 done
23
24 for (keyi in pcap.keyMaps) do
25 if(keyi exists in xml.keyMaps && labels in xml.keyMaps[keyi] has Attack)
26 label chronologically matched connections between xml.keyMaps[keyi] and pcap.keyMaps[keyi]
27 else
28 label connections in pcap.keyMaps[keyi] as Normal
29 done

Listing 5.1: Pseudo code of connection labelling through mapping connections between PCAP and XML

pcap.keyMaps
 : :
 ├── keyi
 │ ├── conni,1
 │ ├── conni,2
 │ ├── :
 │ └── conni,n
 :

xml.keyMaps
 : :
 ├── keyj
 │ ├── connj,1,Normal
 │ ├── connj,2,Attack
 │ ├── :
 │ └── connj,n,Attack
 :

Figure 5.6: Connection matching by mapping keys

was not possible to match the values of those features for every connection with any number of

bytes in the PCAP files on any level (frame bytes, IP bytes, or payload bytes). As it was not

possible to use these two features in the process that matched the PCAP connections and the

XML flows, they were discarded and removed from any further analysis or matching process.

Chapter 5: UNB ISCX 2012 Dataset Transformation

128

Problem 2: Wrong IPv6 addresses (0.0.0.0)

During the transformation process, it was possible to identify connections with an invalid source

and destination IP address as their addresses were “0.0.0.0”. For example, filtering all

connections in the XML files, where the protocol name was either “ip” or “ipv6icmp” resulted

in the following source and destination IP addresses:

• <destination>0.0.0.0</destination>

• <source>0.0.0.0</source>

Based on this finding, which was supported by the ICMPv6 connections in the

TestbedSatJun12Flows.xml, it was assumed that every connection with an “0.0.0.0” IP

address was an IPv6 connection. Using this assumption, matching the number of packets

between PCAP and XML files became much more consistent, especially for UDP connections.

This analysis, as set out in Table 5.2 (see columns PCAP and XML), revealed that all flows in

XML with the protocol name “ip” were IPv6 flows where the packet protocol number was set

to zero (HOPOPT). It also revealed that none of the IPv6 addresses (i.e. those that were present

in the PCAP files) had ever appeared in any of the labelled flow files. Table 5.6 lists all of the

unique IPv6 addresses as detected in the PCAP files.

Simulation day IPv6 Addresses set

12/Jun/2010 fe80:0:0:0:5c29:ff4:d3e7:b80d
ff02:0:0:0:0:0:0:16
ff02:0:0:0:0:0:0:2
ff02:0:0:0:0:0:1:2
ff02:0:0:0:0:0:1:3

13/Jun/2010 - 17/Jun/2010 fe80:0:0:0:5c29:ff4:d3e7:b80d
ff02:0:0:0:0:0:0:16
ff02:0:0:0:0:0:1:2
ff02:0:0:0:0:0:1:3

Table 5.6: IPv6 address as in PCAP files

Based on these findings all flows with the protocol name “ip” were treated as IPv6 in the

matching process. It was fortunate there were not any attack connections within this group of

traffic, as it would have been impossible to label them.

 5.3 Details of Validation and Labelling Phase

129

Problem 3: Duplicate connections in labelled flow (XML) files

Table 5.2 (see columns PCAP and XML) compares the total number of packets in each XML

file with the number in each PCAP file for each day. The table highlights where there were

more packets in the XML files than actually existed (italic, underlined and in red). Further

investigations were then undertaken to identify any duplicate connections in those labelled

flows (XML) files.

Table 5.7 shows the number of connections and any copies (duplicates) in those XML files.

For example, for the TestbedMonJun14Flows.xml file (14/Jun/2010), the information in the

table can be interpreted as follows:

• 171,322 unique connections,

• There were 26 different connections with 2 copies (instances) each,

• There were 2 other connections with 3 copies (instances) each,

In this analysis, a full connection record -with all its fields’ values as in these XML files- was

used to match other records. If two connection records differed by a single character or digit,

they were not matched. As Table 5.7 shows, all of the labelled flow (XML) files contained

duplicate records, apart from the TestbedThuJun17-*.xml file (17/Jun/2010), while the

TestbedSunJun13Flows.xml file (13/Jun/2010) was the worst file in terms of duplication, as

it had no unique record. All duplicates were removed before the matching process took place.

Problem 4: Mismatched connection label counts between paper[14] and XML files

In an attempt to validate the total number of labels, a comparison was made between the number

of classes (i.e. the number of connections that had been classified as Normal as opposed to

Attack) for every simulation day in the labelled flow (XML) files, and those presented in the

Chapter 5: UNB ISCX 2012 Dataset Transformation

130

Simulation day
Number of

connections

Number

of copies

12/Jun/2010 133,191 1

1 2

13/Jun/2010 136,584 2

550 4

24 6

2 8

14/Jun/2010 171,322 1

26 2

2 3

15/Jun/2010 570,744 1

474 2

2 3

16/Jun/2010 522,241 1

8 2

2 3

17/Jun/2010 397,595 1
Table 5.7: Number of duplicate connections

authors’ paper [14]. Table 5.8 (see columns Paper and XML) shows the number of mismatched

counts (in red italic), although the total number of connections (Normal+Attack) adds up.

Table 5.8 also presents the number of labels in the transformed dataset (Bro columns), based

on the transformation view of connections. It shows that the number of attack connections in

the Saturday and Monday traffic files were greater than those in the authored paper and XML.

An investigation into this issue revealed that this was due to the fact that the XML files had

bundled more packets into connections than they were supposed to. These packets should have

been split into more connections as they were not complete connections. However, it seems that

whatever tool the authors of the ISCX2012 dataset used did not follow network standards and

that has produced the opposite effect to the split connections problem as discussed below under

Problem 5. For example, a comparison of the attack connections in Monday’s (14/Jun/2010)

traffic between Bro and XML, and the number of packets involved in these connections,

revealed that Bro identified fewer packets than the XML file. In Bro’s results, out of 6,422

attack connections there were a total of 141,926 TCP packets, while in the XML file there were

 5.3 Details of Validation and Labelling Phase

131

165,755 packets in 3,721 TCP attack connections. Another reason for this phenomenon is the

fact that some of the ICMP connections in the XML files aggregated exchanged sequences of

ICMP packets between two hosts, whereas the Bro script used to process the PCAP files treated

every ICMP packet as a single connection.

 Tag Count

 Paper [14] XML Bro

 Normal Attack Normal Attack Normal Attack

Fri 11 JUN 378,667 0

Sat 12 JUN 131,111 2,082 131,107 2,086 164,545 2,123

Sun 13 JUN 255,170 20,358 255,170 20,358 168,947 10,037

Mon 14 JUN 167,609 3,771 167,604 3,776 213,798 6,422

Tue 15 JUN 534,320 37,378 534,238 37,460 633,388 35,260

Wed 16 JUN 522,263 0 522,252 11 600,017 11

Thu 17 JUN 392,392 5,203 392,376 5,219 409,090 4,959
Table 5.8: Comparison of number of labels between authored paper, XML files, and PCAP files

Extending this analysis to the description provided on the dataset’s website [348], the

description was found to be misleading. Table 5.1 summarises this description, which reported

the traffic of days, Sat (12/Jun/2010) and Wed (16/Jun/2010), as “Normal Activity. No malicious

activity”. However, the published paper and the XML files showed contradictory figures.

With all these discrepancies it was apparent that the labelled flows (XML) reflected the ground

truth of the traffic and the labels provided were used to tag the transformed dataset.

Problem 5: Split connections

Even after removing duplicate connections from the XML files, the process of matching PCAP

and XML connections was not consistent. A further analysis revealed that there were multiple

connections in the XML files that should have been grouped as a single connection. For

example, in TestbedTueJun15-*.xml (15/Jun/2010) the 28 connections set out in Table 5.9

initially formed only one connection. This was confirmed by testing the PCAP file for the

simulation day on BRO [16], TSHARK [349] and TCPTRACE [350] tools, where all of these

Chapter 5: UNB ISCX 2012 Dataset Transformation

132

had treated the packets exchanged between those hosts with those port numbers

(192.168.2.110:3311 and 192.168.2.112:6667) as a single connection.

2010-06-15T15:53:17 2010-06-15T15:54:52 tcp_ip 192.168.2.110 3311 192.168.2.112 6667 IRC 9 726 10 2186 Attack
2010-06-15T15:56:30 2010-06-15T15:56:31 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T15:58:07 2010-06-15T15:59:44 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 5 397 3 222 Attack
2010-06-15T16:01:19 2010-06-15T16:01:55 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 10 1096 8 549 Attack
2010-06-15T16:03:21 2010-06-15T16:04:47 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 9 1070 8 558 Attack
2010-06-15T16:06:18 2010-06-15T16:07:56 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:09:32 2010-06-15T16:09:32 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:11:10 2010-06-15T16:12:47 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:14:24 2010-06-15T16:14:24 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:16:01 2010-06-15T16:17:38 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:19:15 2010-06-15T16:20:51 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:22:27 2010-06-15T16:22:27 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:24:03 2010-06-15T16:25:39 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:27:16 2010-06-15T16:28:53 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:30:30 2010-06-15T16:30:30 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:32:06 2010-06-15T16:33:43 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:35:19 2010-06-15T16:36:56 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:38:31 2010-06-15T16:38:32 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:40:08 2010-06-15T16:41:43 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:43:21 2010-06-15T16:44:57 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:46:34 2010-06-15T16:46:34 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:48:10 2010-06-15T16:49:46 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:51:22 2010-06-15T16:53:00 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:54:35 2010-06-15T16:54:35 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T16:56:11 2010-06-15T16:57:48 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T16:59:24 2010-06-15T17:01:00 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack
2010-06-15T17:02:37 2010-06-15T17:02:37 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack
2010-06-15T17:04:13 2010-06-15T17:06:45 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 9 1260 7 495 Attack

Table 5.9: Example of a split connection

As can be seen from Table 5.9, the gap between every two connections is around 90 seconds.

It seems that whatever tool the authors used to analyse these PCAP files timed out any TCP

connection after 90 seconds or so, which is an unreasonable timeout period for a TCP

connection. Therefore, in order to address this problem, the number of connections for every

two hosts in the XML files was compared with their respective PCAP files. Any difference in

the number of connections triggered the aggregation process, which grouped these XML split

connections into a single connection.

Problem 6: Connection with non-existing IP addresses

While it was acceptable to find a connection in a PCAP file but not in an XML file, finding a

connection in an XML file but not in a PCAP file raised concerns about the reliability of the

XML files. Therefore, during the validation stage of the transformation process, the packet

directions and their counts were reconstructed using the relevant fields from the labelled flow

(XML) files. The packet directions were then compared with those in the PCAP files (which

had been pre-processed earlier and are shown in Table 5.5) to identify all of the connections

with non-existing IP addresses, as illustrated by Listing 5.2.

 5.3 Details of Validation and Labelling Phase

133

Algorithm: Packets counts of PCAP and XML connections
Input:

Result:

pcap.packets, xml.connections

Packet counts comparison between PCAP and XML

1 pcktCounts <- {}
2 for (pckt in pcap.packets) do
3 key <- [pcktproto, pcktsrc_IP, pcktdst_ip]
5 if(pcktproto == "tcp" || pcktproto == "udp")
5 key <- [pcktproto, pcktsrc_IP:pcktsrc_port, pcktdst_IP:pcktdst_port]
6
7 pcap.pcktCounts[key] <- pcap.pcktCounts[key] + 1
8 done
9
10 xml.pcktCounts <- {}
11 for (conn in xml.connections) do
12 key1 <- {connproto, connsrc_IP, conndst_ip}
13 key2 <- {connproto, conndst_ip, connsrc_IP}
14 if(connproto == "tcp" || connproto == "udp") do
15 key1 <- {connproto, connsrc_IP:connsrc_port, conndst_ip:conndst_port}
16 key2 <- {connproto, conndst_ip:conndst_port, connsrc_IP:connsrc_port}
17 done
18
19 xml.pcktCounts[key1] <- xml.pcktCounts[key1] + connsrc_packets
20 xml.pcktCounts[key2] <- xml.pcktCounts[key2] + conndst_packets
21 done
22
23 Compare packets counts between pcap.packets and xml.pcktCounts

Listing 5.2: Pseudo code of comparing number of packets between PCAP and XML connections

This analysis filtered out many connections, including all IPv6 flows. For example, Table 5.10

presents part of two records as they appeared in the labelled flow (XML) files.

... protocolName src_ip src_port dst_ip dst_port ... src_pckts ... dst_pckts ...
... tcp_ip 192.168.1.104 22441 216.246.64.49 80 ... 17 ... 11 ...
... tcp_ip 192.168.1.104 22445 216.246.64.66 80 ... 108 ... 99 ...

Table 5.10: Example of XML connections

These two connections were translated into the following format as set out in Table 5.11 so

they could be matched with PCAP records for that simulation day. This was done in order to

determine whether a similar packet direction existed in the PCAP files, and if it did, to check

whether the number of packets matched.

ip_version protocol source_ip source_port destination_ip destination_port packet_count
4 tcp 192.168.1.104 22441 216.246.64.49 80 17
4 tcp 216.246.64.49 80 192.168.1.104 22441 11
4 tcp 192.168.1.104 22445 216.246.64.66 80 108
4 tcp 216.246.64.66 80 192.168.1.104 22445 99

Table 5.11: Example of number of XML packet for each communication direction

Chapter 5: UNB ISCX 2012 Dataset Transformation

134

Table 5.12 presents the total number of connections for the labelled flow (XML) files for every

simulation day in which at least one of its addresses or ports did not match any of those in the

PCAP file. These totals also include all IPv6 connections.

Simulation day
Number of

connections

12/Jun/2010 654

13/Jun/2010 564

14/Jun/2010 475

15/Jun/2010 360

16/Jun/2010 442

17/Jun/2010 1,897
Table 5.12: Number of non-matched flows in the XML Files

A further analysis was performed to identify the number of matching and missing IP:PORT

combinations between the PCAP and XML files. Table 5.13 presents the results of this analysis.

The PCAP/XML cells show the number of unique IP:PORT combination that were present in

both files. The PCAP/-XML cells show the number of unique IP:PORTs that did not exist in

the XML files but were present in the PCAP files and vice versa for the -PCAP/XML cells.

 XML -XML

Sat 12 Jun
PCAP 96,572 10,557

-PCAP 324 -

Sun 13 Jun
PCAP 83,955 17,767

-PCAP 52 -

Mon 14 Jun
PCAP 118,637 12,659

-PCAP 556 -

Tue 15 Jun
PCAP 181,373 10,847

-PCAP 2,035 -

Wed 16 Jun
PCAP 170,840 7,578

-PCAP 170 -

Thu 17 Jun
PCAP 139,160 6,201

-PCAP 311 -
Table 5.13: Number of unique IP:PORTs in the PCAP and XML files

Some attack connections fell into this latter category which made labelling these connections

difficult. To address this problem, a partial matching strategy was used. This strategy tested all

non-matched XML connections with all non-matched PCAP connections. If any two

 5.3 Details of Validation and Labelling Phase

135

connections partially matched then they were flagged as a possible match for manual checking.

A few cases were mapped manually as only attack connections were used for the matching

process and most of their keys either mapped fully or not at all.

Problem 7: Connections with wrong directions

Further analysis revealed that some connections in the XML files had the wrong direction. For

example, in the labelled flows TestbedSunJun13Flows.xml file (13/Jun/2010), the duplicate

connections set out in Table 5.14 were manually investigated.

startDateTime stopDateTime duration
protoco
lName src_ip

src_
port dst_ip

dst_
port appName

src_
pckt
s

src_
byte
s

dst_
pckt
s

dst_
byte
s

2010-06-13T16:37:36 2010-06-13T16:38:39 63 udp_ip 0.0.0.0 546 0.0.0.0 547 Unknown_UDP 0 0 7 1085
2010-06-13T16:37:36 2010-06-13T16:38:39 63 udp_ip 0.0.0.0 546 0.0.0.0 547 Unknown_UDP 0 0 7 1085

Table 5.14: Example of connections with the wrong direction

By treating these two flows as duplicates and as IPv6 connections, the communication direction

can be represented as follows:

• 0.0.0.0,546 → 0.0.0.0,547, 0 packets

• 0.0.0.0,547 → 0.0.0.0,546, 7 packets

Searching for such patterns in the packet directions of the PCAP files yielded the following

results:

• Pattern “udp,.*,547,.*,546”: returned no results, even though the flow record showed

there were 7 packets sent in this direction,

• Pattern “udp,.*,546,.*,547”: returned the record shown in Table 5.15,

ip_version protocol source_ip source_port destination_ip destination_port packets_count
6 udp fe80:0:0:0:5c29:ff4:d3e7:b80d 546 ff02:0:0:0:0:0:1:2 547 1183

Table 5.15: Example of a UDP Connection’s wrong direction

Chapter 5: UNB ISCX 2012 Dataset Transformation

136

These results showed a mismatch between the total number of packets exchanged. They also

raised concerns about setting the source port for the flow as 546 and the destination port as 547,

when all traffic direction for this flow should have been the other way around.

The main problem in such cases was the extra complication involved in the validation. These

problems might have raised lots of inconsistencies, even if the traffic did not affect the actual

labelling process, as they did not exist in the attack connections.

Problem 8: Connection with source packets ZERO

The example discussed under Problem 7 led to further analysis to identify all the flows with

zero source packet counts. Table 5.16 presents the total number of such connections for each

simulation day. This issue was another reason that packet counts were not used at the labelling

stage to match the connections between the PCAP and the XML flows.

Simulation day
Number of connections with

ZERO source packets

12/Jun/2010 377

13/Jun/2010 706

14/Jun/2010 438

15/Jun/2010 874

16/Jun/2010 1,063

17/Jun/2010 1,481
Table 5.16: Number of connections with zero source packets

Problem 9: Connection with wrong source or destination packet

Further analysis was undertaken to identify any connections where the total number of packets

exchanged did not match those in the PCAP files (Table 5.17). During this analysis the packet

directions were reconstructed from the labelled flow (XML) files and compared with the PCAP

files (see Listing 5.2). All flows used to reconstruct those packet directions that did not match

the number of packets in the PCAP files were flagged up.

 5.4 Server Specifications

137

Simulation day

Number of connections with

the wrong number of

packets

12/Jun/2010 21,428

13/Jun/2010 272,014

14/Jun/2010 22,813

15/Jun/2010 67,439

16/Jun/2010 93,297

17/Jun/2010 45,629
Table 5.17: Number of connections with the wrong number of packets

This mismatch in the number of packets made the process of mapping connections between

PCAP and XML files difficult and would have raised doubts about the validity of the resultant

dataset if it was not explained here.

5.4 Server Specifications

This experiment was run using a server with 2U Supermicro chassis; 8x host-swap 2.5"

SAS/SATA disk bays; Supermicro X8DTU-LN4F+ motherboard; Dual Intel Xeon E5620

(quad core) ; 24GB RAM (6 x 4GB DDR3 ECC RDIMM) ; 4x 1TB SATA (RAID10) and 4x

1Gb Ethernet. It used a Windows Server 2012 R2 Datacentre (64-bit) Operating System [351].

A virtual machine (VM) was created on Hyper-V with 4 Virtual Processors and 4 GB RAM.

This VM was used to host the SecurityOnion (12.04.5.1-20150205) operating system [352],

which had Bro (2.4), Perl (5.18.2) [353], TCPTRACE (6.6.7) [350] and TShark (1.6.7) [349]

installed to run these experiments. Bro was chosen to process the PCAP files because of its

high-speed, extensibility and ability to extract features at multiple levels (frame header, IP

header and transport headers) at the same time. It also had the capabilities to extract the content

of unencrypted traffic if needed. TShark and TCPTRACE were used to validate the results of

Bro’s TCP connections, which provided confirmation that the numbers in the generated dataset

added up for all the targeted traffic. Perl was used to map the processed connections to their

correct labels in the traffic flow provided by the ISCX2012 dataset. “DMwR” package

Chapter 5: UNB ISCX 2012 Dataset Transformation

138

(0.4.1) [346] in R software [321] was used to run the SMOTE algorithm [207] to generate the

synthetic attack traffic.

5.5 Limitations

The transformation process discussed above produced a large dataset in the network security

domain that addressed many of the limitations of other known datasets in the field. However,

there were still a number of limitations to the process that was used.

Firstly, even though the ISCX2012 dataset contained all of the exchanged payload unencrypted,

this transformation did not generate any content based features that were similar to those in

KDD [155], NSL-KDD [157] or gureKDD [160-162]. The decision to make the generation

process generic was taken to avoid any complications in a real life environment, such as

encryption and privacy concerns as explained in Section 5.2.1. In addition, another reason was

the fact that the payload of every service required a different set of features specific to that

service, so producing a general set of features to profile the content of all the different services

would have been challenging. Moreover, this kind of profiling could be addressed through

another line of research, where service specific IDS could be investigated.

Secondly, this transformation adopted the settings suggested by Lee et al. [354-356],

Stolfo et al. [155] and Perona et al. [162] in using a window of 100 connections to derive the

connection-based features and followed the documentation of Onut et al. [15] in using a

window of 5 seconds for the time-based features. It is not clear if these sizes are for all network

traffic and targeted profiling, or whether they should be adapted to set the right window size

for specific traffic. Further investigation is required to analyse the effect of different

connections and different time window sizes on different traffic patterns and attack types.

Thirdly, the SMOTE algorithm was used to generate synthetic traffic and balance the dataset.

However, it is not clear if the SMOTE algorithm was the best choice for a such domain, i.e.

 5.6 Summary

139

network security, as the values of a connection feature are not actually random because of the

standards governed by networking protocols. Any instances generated by the SMOTE

algorithm which introduced randomness could cast doubt on the validity of those samples.

Therefore, as this issue might have affected the quality of the dataset, the generation process

ensured that every connection was identifiable. Researchers can omit these synthetic instances,

or even use the original connections in the dataset, to come up with their own balanced version

using whatever technique best fits their research aim.

Fourthly, the labelling of this dataset used the tags provided within the XML files which only

provide binary options (Normal or Attack). Although, different attack scenarios were

performed in the ISCX2012, further investigation would have been required to distinguish

them. Due to time limitations, the binary labels provided by the flow (XML) files were used.

Finally, this transformation process assumed that all connections in the dataset were normal

except for those labelled otherwise in the XML files. This decision was dictated by the issues

already discussed in relation to the ISCX2012 dataset which effected the mapping and labelling

process. For example, a processed connection (from the transformation process) could have

been mapped to a number of split connections from the XML files (as discussed in Problem 5

in Section 5.3.3), where the split connections had mixed labels. In such cases Attack was used

to label these connections in the resultant dataset.

5.6 Summary

This chapter has outlined the transformation process of the UNB ISCX 2012 dataset into a

KDD-like format. This transformation took into account many of the lessons learned during the

analysis of the KDD 1999 dataset [1] and the investigation of the flow files in the ISCX2012

dataset. These lessons could be summarised as guidelines for dataset generators and authors

who require a comparable transformation as follows:

Chapter 5: UNB ISCX 2012 Dataset Transformation

140

1. Capture every targeted packet. This requirement ensures that no packet is dropped or

neglected without valid reason. In any transformation, the total number of packets in the

original (raw) dataset should match the resultant (transformed) dataset.

2. All values (the number of packets, bytes sizes, durations, timestamps, etc.) should be

computed correctly. This is to address the limitation of using nonstandard tools to

perform packet processing. For this reason, this experiment used well-known software

(Bro) for flow processing. Another possible obstacle is the misconfiguration by the tool

used, which could overlook some traffic which would in turn result in a loss of

information. Also the total number of packets in the PCAP files must be equal to the

sum of packets for all profiled connections. With this overview any mismatches can

then be investigated.

3. Correctly extract every IP address. This is similar to all IPv6 addresses in labelled

flow (XML) files in the ISCX2012 dataset not being processed correctly, resulting in

useless data.

4. Use timestamps rather than the human readable date/time format, (or use both). This is

because the human readable date/time format will not translate accurately or with the

precision of the original timestamp when converted back to match connections.

5. Use multiple standard tools or libraries to ensure the same view of connections and to

provide guidance when any differences arise (TCPTRACE, vs tShark, vs BRO, etc.)

between tools. Differences usually arise when a tool is configured in such a way that it

is not readily accepted in production environments; this could be picked up when

different views of the same traffic are produced by multiple standard tools.

6. Ensure that every flow direction is correctly represented. This is to avoid any

problems due to a code error or a tool bug that might mix up flow processing, and

 5.6 Summary

141

aggregate packets in the wrong direction which would affect the quality of the

transformed data.

7. Transformation should be based on a clear definition of connections. Ensure that

every connection is clearly defined for every targeted protocol, so that the start and end

criteria of such connections are clearly defined. For example, some tools will define a

TCP connection from the first SYN packet to the last FIN packet, while others might

define the start of a connection as being from the successful completion of the

handshake phase to the last FIN packet or a certain idle period. Consistent definitions

will ensure the transformation process is reproducible by other researchers.

As a result of following these guidelines, it is believed that the resultant dataset (STA2018) of

this study provided the most accurate profile for every connection in the UNB ISCX 2012

dataset. The STA2018 will be used for the experiments of the following chapters.

6

143

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

Chapter Six

Effect of Feature Selection and Data

Balance on Adaptive Cutoff for Network

Intrusion Detection

This chapter extends the analysis outlined in Chapter 4 to a domain specific problem, namely,

Network Intrusion Detection. It looks at the effect of data balance and feature selection on

the performance of detection models before and after the adaptive cutoff (threshold) has been

applied to the dataset being evaluated. It also considers the use of different salient features in

combination with data balancing of the training data in developing prediction models using

different ML algorithms (C5.0, Random Forest and SVM). The effects of various combinations

of these parameters on the performance of these models (G-Mean Accuracy) in predicting

traffic with previously unseen attacks, different statistical properties, and different feature sets

are analysed. This analysis is based on a new dataset (STA2018) that was generated specifically

for this analysis and the generation process was outlined in Chapter 5.

6.1 Introduction

As discussed earlier, in Chapter 2, feature selection plays an important role in the model

generation process. However, the features selected for the model generation phase will not

necessarily reflect the same important features of the evaluated data if they introduce different

statistical properties. This phenomenon is widely recognised in highly dynamic environments,

such as network traffic, where traffic on one day is likely to have different important features

to traffic on other days due to changes in traffic patterns. This effect is not usually captured in

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

144

the conventional k-folds Cross-Validation technique when applied to the (dataset) traffic of all

days collectively. That is because the data in such an approach are partitioned using random

sampling, and the models are generated from a larger proportion of the full dataset, where the

feature selection process has been dictated by the overall properties of the full data. In a dynamic

environment, data will evolve through time, producing shifts in feature importance resulting in

different feature sets to those used to train the model. In the data stream domain (which is out

of scope for this project), changes in feature importance is considered an important indication

of concept drift [135, 138, 140, 141, 279, 339, 340], which trigger a model updating/training

phase. This chapter therefore analyses the applicability of the threshold adaptation approach in

reducing, or eliminating, the effects of differences between traffic patterns (concept drift) on

the performances (accuracy) of different prediction models. These models were generated with

different feature sets (which were selected based on the training data alone), and different data

balances. Their performance was then assessed against the traffic from other days, which would

have new patterns with novel attacks and different feature sets.

In the experiments discussed in this chapter, the Random Forest (RF) algorithm, first proposed

by Breiman [171, 357-360], was used for the feature selection task. It is one of the most

important and widely used algorithms in the ML domain, as it can perform many tasks,

including classification and regression. One of the RF’s strongest properties is its ability to rank

features by their importance. RF supports wrapper methods (see Section 2.2.3.1) and can

compute feature importance by two approaches: Mean Decrease of Accuracy (MDA) and

Mean Decrease in Gini (MDG).

6.1.1 Feature importance measures

The Mean Decrease of Accuracy (MDA) [297, 360] is computed by measuring the Out-Of-

Bag (OOB) error for every data record in the training data. The OOB error is the average

classification error for every observation, ni, by trees that did not use this observation (ni) in

 6.1 Introduction

145

their training process [169]. To compute the MDA of features, every feature, Fi, in the training

dataset is shuffled and the OOB error is recalculated. The average error of difference, which is

normalised by these differences’ standard deviation between pre and post shuffling, is used as

an importance score, whereby the higher the error, the higher the importance [297, 360]. In

other words, this measure represents the number, or the proportion, of instances that have been

misclassified as a result of removing feature Fi from the model. This process can take a long

time to execute, depending on the amount of data, the number of features, and the number of

trees in the forest.

The Mean Decrease in Gini (MDG) [297, 360] impurity is another metric used by RF to rank

features; it basically measures the probability of misclassifying (mislabelling) a randomly

selected instance from a set where the set’s label distribution has been used to classify that

instance. Classification trees usually use this metric (Gini impurity) to decide which feature

should be used to perform the split in the fitted tree. In other words, for every feature, Fi, the

Gini impurity (gain of purity) measure is computed, and the feature with the best (or highest)

measure is used to split the tree. Simply put, the usefulness of feature, Fi, is evaluated based on

its ability to split mixed (impure) nodes into single label (pure) nodes. Therefore, the decrease

in node impurity (or increase in purity) for every feature, Fi, that is used in performing tree

splits is averaged out over all the trees in the forest. Finally, features were ranked using this

measure, so that those with a higher decrease in node impurity are regarded as having higher

importance.

Computation using MDG was much faster compared to using the MDA. However, the

computation of feature importance using the MDG method is fast and it presents the average of

purity gain at local splits. As a result, this measure (MDG) may not be good at selecting features

which are able to generalise to different test and evaluation data, as they are more inconsistent

and biased. Also, unlike MDA, it is not linked to the model’s performance. Despite these issues,

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

146

MDA and MDG were used as the core evaluation methods in the feature selection task in this

study.

As with many other feature selection methods, the RF ranks the returned features by their

importance measure, where some selection criteria is performed to set the cut-off point in these

rankings to select the features subset. Deciding where to set this cut-off or how many variables

to use - for the final model generation - needs to be subjected to iterative testing to evaluate

different models with different selected feature sets. As this task would have consumed precious

time, an alternative method was applied.

6.1.2 Feature selection using fake features

Bi et al. [361] have attempted feature selection through introducing a probe to the data by

adding three randomly generated variables (fake features/columns) to the dataset. These fake

features are randomly drawn from a Gaussian distribution [188]. They use a linear SVM to

model the subsets at every iteration of a K-folds Cross-Validation, where variables with nonzero

weights are selected. Any variable (feature) with an average weight below that of the fake

variables is then rejected. This approach does not address weight variability as it only compares

averages.

Similarly, Kursa et al. [362, 363] have proposed a similar approach in which the information

system (training data) is doubled, so that every feature has a shadow feature that is basically a

shuffled version of the original one. Feature importance evaluation is then performed on the

extended system using the RF algorithm. A K-folds Cross-Validation - of at least 10-folds - is

performed at every iteration so that every feature is compared to its shadow using statistical

tests to evaluate the highest performing features. The main drawbacks of this approach are

scalability and speed. Therefore, in this chapter a new approach has been proposed and executed

which combines the core ideas of the two approaches above.

 6.1 Introduction

147

In this approach, as illustrated in Figure 6.1, the information system (training data) is extended

by adding three randomly generated variables (fake features/columns) to the dataset, where

these fake variables are drawn randomly from a Gaussian distribution. A feature importance

evaluation - using the RF algorithm - was performed on the newly extended system and the

importance measures of these random variables were then used as a threshold to reject any

features with a lower importance value than those of the fake variables. In other words, any

feature that performed worse than a random guess was rejected. This comparison was

performed using statistical measures.

 𝐹1 … 𝐹𝑝

𝑐1

⋮
𝑐𝑁

[

𝑥1,1 ⋯ 𝑥1,𝑝

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑝

]
 ➔

 𝐹1 … 𝐹𝑝

𝑐1

⋮
𝑐𝑁

[

𝑥1,1 ⋯ 𝑥1,𝑝

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑝

]

𝐹𝐾1

[

𝑟1,1

⋮
𝑟𝑁,1

]

𝐹𝐾2

[

𝑟1,2

⋮
𝑟𝑁,2

]

𝐹𝐾3

[

𝑟1,3

⋮
𝑟𝑁,3

]

Figure 6.1: Illustration of the information system extension with fake features/variable.

As equal variance between compared groups (feature versus fake variables) is not guaranteed,

and due to the unbalanced design (number of compared importance measures) of these

comparisons, which would have small sample sizes, Welch’s two sample t-test [364, 365] was

used. Comparisons were performed to evaluate the statistical significance of the mean

difference between every feature and the fake variables. The aim of this approach was to speed

up the feature selection stage and to make it independent of human evaluation or fixed

thresholds so that it would be more adaptive to the true nature of the dataset. This study adapts

the approach of Bi et al. [361] to address the limitation of the Kursa et al. [362] method.

Every fake feature was formed of N random values drawn from a Gaussian distribution with a

mean of zero and a standard deviation of one, where N was the number of records in the training

data. These random features were combined with the original dataset and were processed by

the RF algorithm to compute its features importance, using a 3-folds Cross-Validation

technique. A Welch’s t-test statistic comparison was then performed to evaluate whether the

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

148

mean of the importance measures of every feature, Fi, - from the three folds - was statistically

significantly greater than the mean importance of the fake features (with a significance level of

α = 0.05). All features with a mean importance statistically significantly greater than that of the

fake features were selected. The steps of the feature selection stage are illustrated in Listing 6.1.

The Ranger package [297], which is a fast RF implementation in C++, in the R software [321]

was used for these experiments.

In the feature importance evaluation, 15 categorical (factor) features were eliminated, as they

had been added to all the experiments’ model building designs and evaluation process by

default. These features are listed in Table 6.1.

No. Feature No. Feature

2 src_ip 24 bro_service

3 src_zone 31 conn_start

5 dst_ip 32 conn_partial_start

6 dst_zone 33 conn_close

9 ipVersion 34 conn_partial_close

10 Protocol 43 conn_stats_orig_endian_type

11 conn_state 50 conn_stats_resp_endian_type

23 bro_conn_state
Table 6.1: Categorical (factor) features eliminated from the feature importance evaluation phase.

6.1.3 Data balance

Data imbalance is another important issue that affects ML and data analytic tasks. This issue

appears when the data used have more samples of one class than another (binary classification)

- known as majority and minority classes - or non-equal proportions of classes in a multi-

classification problem. This is a well-known issue in domains such as network ID, where

normal connections are far greater than anomalous traffic [366]. This problem affects some

classification methods which perform poorly on minority classes, due to the inability of these

algorithms to detect the distribution of the relative class [367]. A number of methods have been

proposed to address this issue, such as undersampling and oversampling [223, 368, 369] (see

Section 2.2.3.2).

 6.2 Proposed Solution

149

Algorithm: Feature Selection with Fake Features
Input: dataFile, ftrType
Result: Selected Important Features

1 dataFile <- filename, // Name of the data file to be processed
2 ftrType <- ftrMsr, // Features importance measure {MDA or MDG}
3
4 ftrImprtance <- {}, // Initialize list to contain the computed
5 // importance value of every feature
6 ftrSelected <- {}, // Initialize list to contain the selected features
7
8 DS <- load file (fileName), // Load the content of the data file
9 ftrSet <- getDataFeatures(DS), // Get the list of features in the data file
10 N <- num_rows(DS), // Get number of records in the training data
11
12 𝐹𝐾1 <- rand(sample=N, mean=0, sd=1), // Generate 3 lists of random variables where
13 𝐹𝐾2 <- rand(sample=N, mean=0, sd=1), // each list contains N random numbers with
14 𝐹𝐾3 <- rand(sample=N, mean=0, sd=1), // mean=0 and standard deviation=1
15
16
17 newDS <- [𝐷𝑆(𝑁×𝑝) 𝐹𝐾(𝑁×1)

1 𝐹𝐾(𝑁×1)
2 𝐹𝐾(𝑁×1)

3], // Append the fake features to the original data

18 partsDS <- create K partitions of newDS, // Create K partitions to calculate features
19 // importance measures using K-folds Cross-Validation
20
21 // Compute the importance of every feature using K-folds
22 // Cross-Validation and save them in ftrImprtance
23 For fold in K-folds, do
24 trainRcrds <- partsDS[-c(fold)]
25 ftrImprtance[fold,] <- featre_importance(data=newDS[trainRcrds,], measure=ftrMsr)
26 done
27
28 // Evaluate every feature in the data file by comparing its performance
29 // to the performances of the 3 fake features. If the mean importance of
30 // that feature is statistically higher than the mean importance of the
31 // fake features, then add that feature to the selection set.
32 For Fi in ftrSet, do
33 if(ftrImprtance[,Fi] > ftrImprtance[,c(𝐹𝐾1, 𝐹𝐾2, 𝐹𝐾3)] with t.test probability > 0.05){
34 ftrSelected <- ftrSelected ∪ {Fi},
35 }
36
37 done
38
39 return(ftrSelected), // Return the list of selected features

Listing 6.1: Pseudo code of the feature selection function.

The experiments outlined in this chapter employed an oversampling technique and adopted the

SMOTE technique - as discussed in Chapter 5 - to balance the datasets.

6.2 Proposed Solution

This chapter investigates the potential of the adaptive cutoff (threshold) approach in a setup

similar to a real life scenario. In this setup, different binary predictive models were created

using a subset (one day’s traffic) of the dataset with different feature sets (Full, MDA, MDG,

MDABalance and MDGBalance) and different data balances (Original and Balanced). Each of these

models were then used to predict traffic on the other days. These experiments aimed to analyse

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

150

the extent to which the cutoff adaptation technique improved the performance of different

predictive models.

These models were generated using features that differed from those of the evaluated data. The

following is an overview of the main set of features that were selected for each day of traffic

using the STA2018 dataset (see Listing 6.1):

• Full features: this set of features, which had a total of 544 features, contained all the

features of the original transformed dataset (after eliminating five features as detailed in

Section 6.3).

• MDA features: are the set of features selected using the feature importance measure -

Mean Decrease of Accuracy (MDA) - returned by the Random Forest algorithm. The

original (imbalanced) data were used in the evaluation and selection of these features.

• MDG features: are the set of features selected using the feature importance measure -

Mean Decrease Gini (MDG) - returned by the Random Forest algorithm. The original

(imbalanced) data were used in the evaluation and selection of these features.

• MDABalance features: are the set of features selected using the feature importance

measure - Mean Decrease of Accuracy (MDA) - returned by the Random Forest

algorithm. The balanced data were used in the evaluation and selection of these

features.

• MDGBalance features: are the set of features selected using the feature importance

measure - Mean Decrease Gini (MDG) - returned by the Random Forest algorithm. The

balanced data were used in the evaluation and selection of these features.

The number of selected features in each set of features (MDA, MDG, MDABalance and

MDGBalance) was bound to differ from one subset (day file) to another, as feature importance

varied due to the differences in traffic patterns and statistical properties. Note that the size of

 6.2 Proposed Solution

151

the Full features set was the same across all days. A full list of the selected features for each

day is presented in Appendix (B).

In these experiments three algorithms (C5.0, RF and SVM) were used to build ten binary

predictive models each for every data file (subset) in the STA2018 dataset. Five of these models

were generated using the original (imbalanced) data file for the day with five different sets of

features [Full, MDA, MDG, MDABalance and MDGBalance]. The same set of features were then

used to generate another five models using the balanced version of the data. All ten models

were used to evaluate the remaining original (imbalanced) data files, and their performance was

reported in terms of G-Mean Accuracy.

Rodríguez et al. [370] recommend the use of K > 2, in the K-folds Cross-Validation (CV)

technique, for less biased estimations. However, given the large size of the datasets under

consideration, larger values of K (i.e. K=5 or K=10) would have resulted into higher

computational costs for every experimental run. As a result, the 3-folds CV technique was used

to build and set the prediction optimal (CV) threshold for each model. At the evaluation stage,

two readings of the same measure (G-Mean Accuracy) were recorded for the performance of

every model; one was based on the model’s optimal (CV) prediction threshold and the second

on its performance after threshold (cutoff) adaptation of the evaluation (test) data. As noted

earlier, these experiments aimed to mimic real life situations where training and testing datasets

have different statistical properties. Further details about the setup and configuration of the

experiments are presented in Section 6.4.

Every generated model was trained for binary classification and configured to return the

probability for the class rather than for the class label. An advantage of using class probability

is the flexibility that it offers in computing a model’s performance at different prediction

thresholds and thus determine the peak point.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

152

These experiments aim to test the following key hypotheses to evaluate the effect of various

variables:

 Threshold-H0: “there are no statistically significant differences in model performance

(G-Mean accuracies) before and after cutoff (threshold) adaptation has been applied.”

 ML-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different ML algorithms (C5.0, RF and SVM) before and after

cutoff (threshold) adaptation has been applied.”

 Features-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different feature sets (Full, MDA, MDG, MDABal. and MDGBal.)

before and after cutoff (threshold) adaptation has been applied.”

 Balance-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different data balances (Original and Balanced data) before and

after cutoff (threshold) adaptation has been applied.”

The effect of threshold adaptation on the overall accuracy of the predictions of various models

developed using different feature sets and data balances are further analysed by testing the

following hypothesis for every ML algorithm: “there are no statistically significant differences

in the performance (G-Mean accuracies) of models built with different feature sets and

different data balances after a cutoff (threshold) adaptation has been applied.”

6.3 Datasets

All of the experiments outlined in this chapter used the STA2018 dataset which full details of

its generation are provided in Chapter 5. For the analyses set out below, two variations of the

STA2018 dataset were used. The first was the original data extracted from the original

ISCX2012 dataset, as shown in Table 6.2 which sets out the number of connections for each

class for each day. The second version was a balanced version of the STA2018 dataset. For this

dataset, the SMOTE algorithm was used to generate synthetic instances of the attack

connections (minority class) to balance the dataset. (Full details of this process are given in

Chapter 5).

 6.3 Datasets

153

In the experiments outlined below, only days two to seven were used, as the first day was attack

free.

 Day 1
11/Jun

Day 2
12/Jun

Day 3
13/Jun

Day 4
14/Jun

Day 5
15/Jun

Day 6
16/Jun

Day 7
17/Jun

Total

Normal 442,705 164,545 168,947 213,798 633,388 600,017 409,090 2,632,490

Attack 0 2,123 10,037 6,422 35,260 11 4,959 58,812

Total (Original) 442,705 166,668 178,984 220,220 668,648 600,028 414,049 2,691,302

Synthetic 0 162,422 158,910 207,376 598,128 600,006 404,131 2,130,973

Total (Balanced) 442,705 329,090 337,894 427,596 1,266,776 1,200,034 818,180 4,822,275

Table 6.2: Number of classes of instances for each day’s file of the STA2018 dataset.

Originally, the file for each day consisted of 550 features (549 features + 1 class). The added

features of synthetic and origOrder were omitted from the analysis as their only purpose was

to distinguish the original data from the balanced (synthetic) data and to identify the connection

order. Three further features were removed from the analysis (start_time, src_ip and dst_ip),

both to avoid any possibility of overfitting and because of the large number of levels. Removing

these five features resulted in a total of 545 features (544 features +1 class). Any reference to

the Full set of features, thus refers to these 545 features.

The number of features selected for each day is presented in the shaded cells of Table 6.3. The

cells below the diagonal separator set out the total number of shared features for each pair of

days that were selected by using the MDA feature importance measure on the original data.

Whereas, the upper part of the table presents the total number of shared features using the same

measure on the balanced data. For example, using the MDA measure to compute feature

importance for the original data for Day 2 resulted in the selection of 130 features, whereas

using the MDA measure on the balanced version of the same data resulted in the selection of

166 features.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

154

 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
M

D
A

Day 2
166

130

164 150 154 106 105
Day 2

M
D

A
B

a
la

n
ce

d

Day 3
126

507

518

369 369 169 310
Day 3

Day 4
124 352

378

364

335 158 206
Day 4

Day 5
125 356 327

388

368

164 208
Day 5

Day 6
42 59 59 58

170

60

108
Day 6

Day 7
91 345 224 215 41

322

355
Day 7

Table 6.3: Number of shared selected features for each two day pair after using the Mean Decrease of Accuracy (MDA) importance measure

on the original and balanced versions of the data.

The total number of shared features for Day 2 and Day 3 when the original data were used was

126, whereas 164 features were selected when the balanced data were used.

Table 6.4 presents the same comparisons but for the MDG measure. It is worth noting that the

start_time feature was selected for most days by all measures but due to experimental design

decisions this feature was subsequently removed from all model fitting and evaluations to avoid

overfitting problems.

 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

M
D

G

Day 2
119

124

41 37 63 46 61
Day 2

M
D

G
B

a
la

n
ce

d

Day 3
2

137

27

60 60 36 49
Day 3

Day 4
1 0

117

11

60 27 41
Day 4

Day 5
49 1 6

168

113

58 81
Day 5

Day 6
61 1 1 34

84

70

44
Day 6

Day 7
65 12 7 43 38

134

137
Day 7

Table 6.4: Number of shared selected features for each two day pair using the Mean Decrease Gini (MDG) importance measure on the original

and balanced versions of the data.

 6.3 Datasets

155

Table 6.3 and Table 6.4 only present the total number of common features for each two day

pair. An UpSet technique is used to show the detailed intersections between different days of

every set of features. This technique was used instead of a Venn diagram, as the latter fails to

visualise clearly the intersections of a large number of sets.

UpSet [371, 372] is an open-source visualisation technique used to perform quantitative

analyses of sets. It can present set intersections as well as aggregates of intersections. In an

UpSet plot, the total number of a set’s members - the selected features for each day - is presented

in the lower left-hand corner, while the main plot illustrates the aggregation of intersections in

one of three ways: by degree; by pairwise overlap; or by sets. The difference between the three

is illustrated in Figure 6.2-(a).

In this chapter, the aggregation of intersections are illustrated by ‘degree’ i.e. they present the

number of elements in every non-empty slice of the intersection between all sets in increasing

order of degree. For example, in a dataset with k sets, there will be 2k possible

intersections [371, 372]. Each one of those intersections corresponds to an atomic area (slice)

of the Venn diagram. Every exclusive intersection area (slice) is denoted by filled dark circles

connected by a line that indicates which sets are contributing to the formation of this slice.

Figure 6.2-(b) provides an example of all the possible ways to represent the intersections of a

three set relationship.

By comparing the total number of common features (intersections) amongst days using the

same measure, as presented in Table 6.3 and Table 6.4, it can clearly be seen that there are

more common features for different days using the MDA measure than using the MDG

measure. The UpSet plots outlined in Figure 6.3 and Figure 6.4 reveal the same observation.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

156

(a) (b)

Figure 6.2: Figures adapted from Lex et al. [372]. (a) Examples of slicing and aggregation, including aggregation ‘by degree’ which is used
in this chapter. (b) Example of a set relationship encoded by columns from the matrix, where the sets that contribute to every exclusive

intersection are represented by filled dark circles connected by a line.

Figure 6.3-(a), which presents the MDA feature sets, shows that there was only one unique

feature in Day 7 that did not exist in all the other groups, whereas Day 3 had 15 unique features.

The figure also shows that there were a total of 30 features common between all days. The

MDABal. feature set, illustrated in Figure 6.3-(b), shows that balancing the data increased the

number of common features for all days to 69. Figure 6.4 (a) and (b), which presents the MDG

and MDGBal. features sets respectively, shows that the MDG measure resulted in more unique

features for specific days than the MDA measure. In general, the MDA measure resulted in the

selection of more shared features for different days than the MDG measure. Furthermore,

balancing the data increased the number of selected features for each day, resulting in larger

intersections. This can be clearly seen from the number of features in intersections of the same

degree presented in Table 6.5, which summarises the plots in Figure 6.3 and Figure 6.4. As

can be seen from this table, the MDG and MDGBal. feature sets have a higher proportion of

features in intersections of degree 1, which are unique to individual days. This confirms the

behaviour expected of the MDG measure in evaluating features locally as discussed in

Section 6.1.

 6.3 Datasets

157

(a)

(a)

Figure 6.3: Plots of feature sets’ intersections using the MDA measure (a) Day Features’ intersections using the MDA measure on the original

(imbalanced) data. (b) Day Features’ intersections using the MDABalance measure on the balanced data.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

158

(a)

(a)

Figure 6.4: Plots of feature sets’ intersections using the MDG measure (a) Day Features’ intersections using the MDG measure on the original

(imbalanced) data. (b) Day Features’ intersections using the MDGBalance measure on the balanced data.

 6.4 Experimental Setting

159

 Features Sets

 MDA MDG MDABal. MDGBal.

N
u

m
b

er
 o

f

fe
a
tu

re
s

Deg. 1 16 111 19 95

Deg. 2 135 83 110 97

Deg. 3 143 48 128 70

Deg. 4 135 14 121 1

Deg. 5 72 1 82 0

Deg. 6 30 0 69 0

Total
(Proportion of Full 544 features)

531
(97.61%)

257
(47.24%)

529
(97.24%)

263
(48.35%)

P
ro

p
o
rt

io
n

 o
f

fe
a
tu

re
s

Deg. 1 3.01% 43.19% 3.59% 36.12%

Deg. 2 25.42% 32.30% 20.79% 36.88%

Deg. 3 26.93% 18.68% 24.20% 26.62%

Deg. 4 25.42% 5.45% 22.87% 0.38%

Deg. 5 13.56% 0.39% 15.50% 0.00%

Deg. 6 5.65% 0.00% 13.04% 0.00%
Table 6.5: Number of features in all intersection areas (slices) of an aggregation degree for every feature set and their proportions in relation

to the total number of unique features within each feature set.

6.4 Experimental Setting

The experiments discussed in this chapter were evaluated, in terms of classification

performance, using the G-Mean Accuracy measure. The experiments were executed in three

different phases as explained below and illustrated in Figure 6.5. (For greater clarification,

Listing 6.2 presents a pseudo code for these phases.)

Before performing any of the phases, a day’s traffic file (subset) was pre-processed in order to

balance the number of class instances in each file (line 6 in Listing 6.2). As explained earlier,

the SMOTE algorithm was used to generate synthetic instances of the minority class until the

number of instances in both classes were equal to each other.

In the first phase (lines 10-14 in Listing 6.2), every file in the STA2018 dataset (which was

used to generate the models) was evaluated to select two subsets of features using the Mean

Decrease of Accuracy and the Mean Decrease Gini, resulting in the formation of the MDA and

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

160

Figure 6.5: Experimental phases diagram.

MDG sets respectively. The same feature selection criteria were used on the balanced data file

to generate another two sets of features, referred to in this thesis as MDABalanced and

MDGBalanced. By the end of this phase there were four feature sets along with the Full features

set for each training day.

In the second phase (lines 16-25 in Listing 6.2), each day’s traffic used each of the five feature

sets (including the Full features set) to generate a binary classification (prediction) model which

resulted in five different models. The same process was repeated using the balanced data. Each

model generation step used the 3-folds Cross-Validation technique to establish the model’s

optimal (CV) prediction threshold. The final prediction threshold was computed by aggregating

all the fold’s predictions for each model to find the point (threshold) of the maximum G-Mean

 6.4 Experimental Setting

161

Accuracy. By the end of this phase there were ten different binary prediction models for each

day’s traffic.

In the final phase (lines 27-38 in Listing 6.2), every generated model was evaluated against

each day’s traffic from the dataset that had not been used in any of the feature selection or in

the model generation processes. In this phase, to test the data file for each evaluation, the

G-Mean Accuracy was computed using the model’s optimal (CV) threshold and the adapted

cutoff.

Algorithm: Experiment Phases
Input: Dataset
Result: Performance results

1 For Fi in Dataset, do // Process every file Fi in the STA2018 dataset
2 Ftrs.Set[Full] <- {Full.Ftrs} // 544 features
3 Mdls.Set <- {}
4 Rslt.Set <- {}
5
6 Fi.bal <- Balance(Fi) // Generate/get a balanced version of data file Fi with balanced
7 // instances’ classes by generating synthetic instances of
8 // minority class using SMOTE algorithm.
9
10 // Phase 1: features selection...
11 Ftrs.Set[MDA] <- getImportantFtrs(data=Fi, ftrType=MDA) ,
12 Ftrs.Set[MDG] <- getImportantFtrs(data=Fi, ftrType=MDG) ,
13 Ftrs.Set[MDABal.] <- getImportantFtrs(data=Fi.bal, ftrType=MDA) ,
14 Ftrs.Set[MDGBal.] <- getImportantFtrs(data=Fi.bal, ftrType=MDG) ,
15
16 // Phase 2: models generation...
17 // Generate five predictive models using original data with five different sets of features.
18 For ftrsa in Ftrs.Set, do
19 Mdls.Set[Fi, ftrsa] <- generate.Model(data=Fi, features= ftrsa)
20 done
21
22 // Generate five predictive models using balanced data with five different sets of features.
23 For ftrsa in Ftrs.Set, do
24 Mdls.Set[Fi.bal, ftrsa] <- generate.Model(data=Fi.bal, features= ftrsa)
25 done
26
27 // Phase 3: models evaluation...
28 // Perform total of 50 evaluations (5 testing files X 10 predictive models)
29 For Fj≠Fi in Dataset, do
30 // Test every file other than Fi on every one of the 10 prediction models
31 // trained on Fi or Fi.bal
32 For Mdlb in Mdls.Set, do
33 // Get the following results:
34 // 1) G-Mean Accuracy using model’s cutoff (threshold) value,
35 // 2) G-Mean Accuracy using adapted cutoff (threshold) value,
36 Rslt.Set[Fj, Mdlb] <- evaluate(data=Fj, model=Mdlb)
37 done
38 done
39
40 done

Listing 6.2: Pseudo code of the experimental phases.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

162

The whole process was repeated for each of the algorithms being evaluated: C5.0, Random

Forest and SVM.

Experiments were performed on a “Dell C5220 PowerEdge Rack Servers” cluster, which had

12 micro servers. Each micro server ran Scientific Linux 7 on dual quad-core Intel Xeon

3.4GHz CPUs, 16GB RAM, two 500GB SATA disks, and two Gigabit Ethernet interfaces. For

the large data files [Day 5 (15/Jun) and Day 6 (16/Jun)] experiments were run on a Hyper-V

virtual machine with 8 Virtual Processors, 20 GB RAM and 32 GB Swap space. This VM was

used to host the Ubuntu 16.04 (64-bit) Operating System. It was hosted on a server with the

following hardware specifications: 2U Supermicro chassis; 8x host-swap 2.5" SAS/SATA disk

bays; Supermicro X8DTU-LN4F+ motherboard; Dual Intel Xeon E5620 (quad core); 24GB

RAM (6 x 4GB DDR3 ECC RDIMM); 4x 1TB SATA (RAID10); and 4x 1Gb Ethernet. This

machine uses a Windows Server 2012 R2 Datacentre (64-bit) Operating System.

6.5 Results and Discussion

The experiments outlined in this chapter started by comparing the detection performance of

three well known algorithms in ML (C5.0, Random Forest and SVM) on the STA2018 dataset

with different feature sets and different data balances. Every generated model was evaluated

using all of the files (subsets) in the dataset except the one that had been used to generate that

model. Two G-mean accuracy (gAcc) values were computed for every combination of

prediction model and evaluation data. The first G-mean accuracy (𝐠𝐀𝐜𝐜𝑻𝒉𝒓𝑪𝑽
) was the one

obtained after the model’s optimal (CV) cutoff value had been calculated using 3-folds Cross-

Validation to predict the data file. The other G-mean accuracy value (𝐠𝐀𝐜𝐜𝑻𝒉𝒓𝑶𝒑𝒕
) was

calculated based on the maximum accuracy achieved after the prediction cutoff value had been

specifically adapted for the evaluated data file.

 6.5 Results and Discussion

163

This section starts by looking at the effect of the cutoff adaptation by determining the statistical

significance in the performance (G-Mean accuracy) of the models through comparing their

optimal threshold with the adaptive cutoff. The analysis compared the difference between the

two approaches by conducting four Friedman’s tests (with a significance level of α = 0.05): the

first compared the overall difference between the two approaches; the second compared the

difference between the two approaches using different algorithms; the third compared the

difference between the two approaches using different feature sets; and the fourth compared the

difference between the two approaches using different data balances.

The following list shows the hypotheses that were tested and the results returned by the

Friedman tests. [The decision to use the non-parametric Friedman’s test was based on the fact

that the data did not follow a normal distribution, as confirmed by the normality test (Shapiro–

Wilk test) [332] W = 0.7, p-value = 0.000.]

 Threshold-H0: “there are no statistically significant differences in model performance

(G-Mean accuracies) before and after cutoff (threshold) adaptation has been applied.”

χ2(1) = 873.0, p = 0.000 < 0.05 (differences are statistically significant)

 ML-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different ML algorithms (C5.0, RF and SVM) before and after

cutoff (threshold) adaptation has been applied.”

χ2(5) = 747.5, p = 0.000 < 0.05 (differences are statistically significant)

 Features-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different feature sets (Full, MDA, MDG, MDABal. and MDGBal.)

before and after cutoff (threshold) adaptation has been applied.”

χ2(9) = 742.8, p = 0.000 < 0.05 (differences are statistically significant)

 Balance-H0: “there are no statistically significant differences in model performance (G-Mean

accuracies) between the different data balances (Original and Balanced data) before and

after cutoff (threshold) adaptation has been applied.”

χ2(3) = 761.3, p = 0.000 < 0.05 (differences are statistically significant)

As all of these tests showed significant differences, a Nemenyi post-hoc test [373-375] was

conducted to perform pairwise comparisons on the different effects of each test to distinguish

which differences were statistically significant. The results of these pairwise comparisons are

illustrated in Figure 6.6 through critical difference plots.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

164

All of the plots in Figure 6.6 show that the cutoff adaptation effect was significantly different

from the model’s optimal (CV) threshold. They also show that different treatments (ML

algorithm, feature sets and/or data balance) with the adaptive cutoff always ranked higher. Any

insignificant differences fall within the same effect (cutoff adaptation or model’s optimal

threshold). For example, Figure 6.6-(b) shows that there were insignificant differences between

SVM and C5.0 when the cutoff adaptation was applied as well as between RF and SVM when

the model’s optimal threshold was used. Overall, no two treatments of different groups (optimal

or adaptive cutoff) showed any insignificant differences.

Having shown that the models’ performance was ranked significantly higher when the adaptive

cutoff approach was used rather than the optimal (CV) threshold [See Table B.1, Table B.2,

Table B.3, Figure B.1, Figure B.2 and Figure B.3 in Appendix (B)], all subsequent analyses

focus on the results obtained from using the adaptive cutoff.

Each plot in Figure B.1, Figure B.2 and Figure B.3 [presented in Appendix (B)] shows the

performance (G-Mean Accuracy) for each model for each training day for the C5.0, RF and

SVM algorithms respectively. These plots show each model’s performance under different

feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances (Original and

Balanced). Each plot is composed of 10 sub-plots (one for each model) and illustrates the

G-Mean Accuracy for each model after being evaluated using all the other days’ files. For each

evaluation there are two G-Mean Accuracy readings; one is based on the model’s optimal

threshold while the other uses the adapted threshold on the test data. They are represented by

‘CV Cutoff’ and ‘Adp. Cutoff’ curves respectively. In these sub-plots, the first day (along the

x-axis) matches the training day of the main plot and corresponds to the CV results of that

model. In general, all these plots show very clearly that the cutoff adaptation process improved

the performance of the models, while the model’s optimal threshold led to low levels of

accuracy compared to the capabilities of the true model.

 6.5 Results and Discussion

165

(b
)

(d
)

F
ig

u
re

 6
.6

:
G

ra
p
h

ic
a
l

il
lu

st
ra

ti
o
n

 o
f

p
a
ir

w
is

e
co

m
p
a

ri
so

n
s

fr
o

m
 t

h
e

F
ri

ed
m

a
n
 T

es
t

re
su

lt
s

fo
r

d
if

fe
re

n
t

th
re

sh
o
ld

 e
ff

ec
ts

 (
o
p
ti

m
a

l
o

r
a
d

a
p
ti

ve
 c

u
to

ff
)

a
ft

er
 a

p
p
ly

in
g

 t
h

e
N

em
en

yi
 t

es
t

(9
5
%

co
n

fi
d
en

ce
 l

ev
el

)
(a

)
N

em
en

yi
 t

es
t

fo
r

d
if

fe
re

n
t

th
re

sh
o
ld

s.
 (

b
)

N
em

en
yi

 t
es

t
fo

r
d
if

fe
re

n
t

a
lg

o
ri

th
m

s.
 (

c
)

N
em

en
yi

 t
es

t
fo

r
d

if
fe

re
n

t
fe

a
tu

re
 s

et
s.

 (
d

)
N

em
en

yi
 t

es
t

fo
r

d
if

fe
re

n
t

tr
a
in

in
g

 d
a
ta

b
a
la

n
c
e
s.

(a
)

(c
)

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

166

6.5.1 C5.0 Algorithm

The plots in Figure B.1 [see Appendix (B)] for the C5.0 models show different patterns and

behaviours from one training day to another. For example, models trained on Day 2 (12/Jun)

failed to perform well on Day 5 (15/Jun), whereas Day 5 models predicted Day 2 traffic with a

high degree of accuracy. They also showed inconsistent behaviour towards different feature

sets across the days. For example, Day 2 models performed best when the Full feature set was

used. But this pattern was not consistent across all days. This can clearly be seen on the plot of

Day 5 when MDG features were used, and the plot of Day 7 (17/Jun) when MDA or MDABal.

feature sets were used with the balanced training data. One important observation to make is

the poor performance of Day 6 (16/Jun) models when the original training data were used.

These models showed the worst performance due to the low number of attacks in this data file.

When a balanced version of the Day 6 data file was used to build the prediction models,

performances improved. This supports the finding discussed in Chapter 4 about the behaviour

of C5.0 algorithm with imbalanced data. It can also be clearly observed from these plots that

data balancing had a minor effect in improving the performance of models developed using the

C5.0 algorithm, which was further investigated using statistical analysis.

The adapted threshold provided a more accurate reading of a model’s true performance.

Table 6.6 summarises the performance of all the models [which are set out in full in Table B.1

in Appendix (B)]. It presents the average performance for each model on the evaluation data

using the adapted (cutoff) threshold. In the table each row related to the C5.0 algorithm shows

the average performance for every model presented in Table B.1 using the adapted cutoff on

the evaluation data, omitting any performance obtained at the CV stage. The values in bold are

the maximum value for each group of the training data (original or balanced) while the value

that is underlined is the maximum value for that day. For example, the average of the G-Mean

 6.5 Results and Discussion

167

 Original Data Balanced Data

 Full MDA MDG MDABal. MDGBal. Full MDA MDG MDABal. MDGBal.
C

5
.0

Day 2 0.6202 0.2159 0.2159 0.2159 0.2159 0.7091 0.2159 0.2159 0.2159 0.2159

Day 3 0.6904 0.7464 0.7428 0.8693 0.5681 0.7351 0.8660 0.8190 0.7587 0.8124

Day 4 0.5941 0.5837 0.9750 0.7104 0.8424 0.7854 0.7401 0.7311 0.7434 0.7703

Day 5 0.7359 0.6089 0.7994 0.7582 0.5901 0.7494 0.7666 0.9378 0.7623 0.7153

Day 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.4442 0.7932 0.6600 0.7925 0.6600

Day 7 0.7423 0.8719 0.8698 0.8707 0.8762 0.7227 0.9444 0.9092 0.9444 0.8856

R
F

Day 2 0.9566 0.9606 0.9404 0.9698 0.9618 0.9590 0.9353 0.9632 0.9665 0.9372

Day 3 0.9819 0.9786 0.8616 0.9815 0.9241 0.9747 0.9755 0.8065 0.9711 0.9436

Day 4 0.9880 0.9875 0.9014 0.9872 0.9693 0.9831 0.9844 0.8908 0.9828 0.9716

Day 5 0.9715 0.9700 0.9524 0.9709 0.9537 0.9671 0.9708 0.9348 0.9674 0.9658

Day 6 0.8905 0.7305 0.7874 0.8491 0.8540 0.7313 0.7201 0.7385 0.7372 0.7066

Day 7 0.9716 0.9723 0.9719 0.9720 0.9728 0.9691 0.9666 0.9690 0.9675 0.9729

S
V

M

Day 2 0.5441 0.7716 0.7712 0.8036 0.8820 0.8747 0.8653 0.7275 0.8375 0.8596

Day 3 0.8149 0.5564 0.4976 0.5615 0.8143 0.7624 0.9035 0.5528 0.9032 0.6618

Day 4 0.7971 0.8472 0.9500 0.8294 0.8703 0.8927 0.8981 0.9654 0.8902 0.8508

Day 5 0.7292 0.6807 0.6436 0.6666 0.6841 0.6516 0.6264 0.5246 0.6699 0.5846

Day 6 0.8069 0.9558 0.8595 0.8062 0.8049 0.6390 0.8646 0.8588 0.8614 0.8688

Day 7 0.7097 0.7284 0.8540 0.6720 0.8548 0.7363 0.7638 0.9032 0.7640 0.7847

Table 6.6: Model’s average performance for different ML algorithms, feature sets and data balances.

Accuracy values for the Day 2 model, using the Full features set, trained on the original data

is 0.6202 (which is the maximum value for all of the models within the original data group for

that day). Applying the same process to the balanced data group revealed that, for that group,

the Full features set had a maximum average of 0.709. As this value is the maximum for all

models for that day it has been underlined as well.

Friedman’s test was used to assess whether the performance of the C5.0 algorithm’s models

using these features sets with different data balances would be significant after a threshold

adaptation with a significance level of α=0.05 was applied. The tested hypothesis was, “there

are no statistically significant differences in the performance (G-Mean accuracies) of models

built using the C5.0 algorithm with different feature sets and different data balances after a

cutoff (threshold) adaptation has been applied.” This test revealed that there was not enough

evidence to support this hypothesis, χ2(9) = 16.0, p = 0.067 ≮ 0.05.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

168

Figure 6.7: Nemenyi test (95% confidence level) on the C5.0 algorithm models using different feature sets and different data balances after

applying the adaptive cutoff approach.

These tests show that there was no significant effect of one feature set over another when the

C5.0 algorithm was used. In addition, data balancing did not lead to a significant improvement

in a model’s performance. Figure 6.7 shows that the performance of models built using the

balanced training data ranked higher than those generated using the original data. However,

these differences were not statistically significant at the 95% confidence level, as all of the

effects are joined by a line. Figure B.1 in Appendix (B) shows that different behaviours were

exhibited on different days. Models trained on some days performed well when the data was

balanced, whereas other days showed no sign of improvement. Some days appeared to have

been affected by one features set, while other days behaved the same for all feature sets.

Many factors could be behind the volatile behaviour of the C5.0 algorithm. For example,

selected feature sets might not be the best sets for this algorithm; as such, further investigation

into different feature selection techniques is required. Also, this algorithm was executed within

its default parameters, particularly number of trials, which was set at ten. Further tuning of the

number of trials would also benefit from further analysis. In addition, C5.0 algorithms carry out

random sampling by following the boosting technique (which randomly samples weighted

 6.5 Results and Discussion

169

instances). This might have caused C5.0 to overfit the training data which could be one of the

reasons for its overall poor performance in predicting new traffic. Overall, based on the

statistical results returned using Friedman’s test, the C5.0 models ranked low, as illustrated by

Figure 6.6-(b).

6.5.2 RF Algorithm

Another Friedman test was performed to assess the RF algorithm’s models. This test aimed to

determine how these models performed when using different feature sets with different data

balances, and whether the difference in performance was significant after applying the threshold

adaptation with a significance level of α=0.05. The tested hypothesis was, “there are no

statistically significant differences in the performance (G-Mean accuracies) of models built

using the RF algorithm with different features sets and different data balances after the

cutoff (threshold) adaptation has been applied.”

This test revealed that for the RF algorithm there were significant differences between these

features after applying the cutoff (threshold) adaptation, χ2(9) = 38.0, p = 0.000 < 0.05. To

distinguish which of these effects were statistically significant a Nemenyi post-hoc test was

conducted to perform a pairwise comparison as illustrated in Figure 6.8.

Overall, there were no significant differences in the RF’s performance when Full, MDA and

MDABal. feature sets were used. However, the Full features set showed a significant difference

over the MDG and MDGBal. feature sets, which ranked lowest among the feature sets. This

could be due to the nature of the Mean Decrease Gini in selecting local features which have

low generalisation power as discussed earlier. However, even with these low performances, RF

had the highest overall performance. As Figure 6.8 shows the data balance had no significant

effect on the performance of RF. On the contrary, it sometimes negatively affected the

performance of models using the Full feature set with balanced data as their difference to the

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

170

Figure 6.8: Nemenyi test (95% confidence level) on the RF algorithm models using different feature sets and different data balances after

applying the adaptive cutoff approach.

MDG and MDGBal. feature sets became insignificant. This is also evident in the plot for Day 6

in Figure B.2 [set out in Appendix (B)] which showed a lower performance for all models for

that day as the balanced version of data was used. Although that day only had 11 attacks, RF

was able to build good predictive models with good evaluation performance except for Day 4’s

traffic. The ability of RF to learn from Day 6 traffic was linked to its bagging technique, which

randomly samples instances that are used to build its trees. In contrast to C5.0, this sampling

technique prevented RF from overfitting, which in turn produced models with good

generalisation capabilities. This gave RF more chance of detecting novel attacks as

demonstrated in these experiments.

The Random Forest (RF) algorithm showed the best results of the evaluated ML algorithms. As

illustrated in the plots in Figure B.2 [in Appendix (B)], RF’s performance would not have been

better than that of the other algorithms, if the optimal (CV) threshold of its models had been

used to assess their performance. However, with the cutoff adaptation approach, RF’s

performance improved significantly as Table B.2 [in Appendix (B)] shows.

 6.5 Results and Discussion

171

The RF algorithm can take longer to train depending on the complexity of the training data.

However, once the model is built, its evaluation of a new instance is reasonably fast.

As expected, it consumed a lot of resource (memory) at the model building phase and this

consumption increased with the size of the training data. This was a result of the number of

bootstrap samples it generated, which were used to build trees in parallel threads. The resulting

models were quite large compared to the SVM and C5.0 models, and their sizes increased as

the complexity of the training data increased.

Although Table 6.6 shows the highest performance of the RF models was attained when the

Full features set was used, the difference in the average performance of its models was very

small, unlike the performance of the C5.0 and SVM models, which showed higher variations

in performance. Therefore, RF models could be generated using a reduced feature set without

any significant decrease in their average performance (accuracy) but with a significant gain in

speed. Table 6.6 also shows that there was only a high variation in the performance of models

for Day 6; however, given that this day was problematic, with its skewed balance, this level of

performance is more than acceptable. Moreover, in a real life scenario it would not be sensible

to build a model using such data, hence this example is an extreme case, which is presented

here merely to demonstrate that the RF algorithm performed reasonably well.

6.5.3 SVM Algorithm

To assess the difference in the performance of the SVM model using the different feature sets

with different data balances after applying the threshold adaptation, the Friedman test was used

with a significance level of α=0.05. The tested hypothesis was, “there are no statistically

significant differences in the performance (G-Mean accuracies) of models built using the

SVM algorithm with different feature sets and different data balances after the cutoff

(threshold) adaptation has been applied.” This test revealed that there was not enough

evidence to support this hypothesis, χ2(9) = 13.1, p = 0.158 ≮ 0.05.

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

172

Figure 6.9: Nemenyi test (95% confidence level) on SVM algorithm models using different feature sets and different data balances after

applying the adaptive cutoff approach.

The SVM algorithm exhibited similar behaviour to the C5.0 algorithm. All of its statistical tests

revealed insignificant effects between one feature set and another and there was no sign that the

improved performance of its models was influenced by any of the data balancing effects.

Although Figure 6.9 shows that the reduced feature sets ranked higher for this algorithm than

for the Full features set, these differences were statistically insignificant. As with the C5.0

algorithm, different behaviours were exhibited on different days, as illustrated in Figure B.3

[in Appendix (B)], so no consistent pattern could be deduced.

Although the SVM algorithm showed some overall improvement on days when the reduced

feature sets were used instead of the Full features set, this behaviour was not consistent. As a

linear version of SVM was used, this effect could have been caused by the non-linear nature of

the data on those days where SVM failed to perform well. Further investigation would be

required to analyse different kernel transformations of the data to determine the best tuning

parameters or implementation for this algorithm which would fit this domain. Such an

investigation did not take place as part of this study because of the limitations of SVM for non-

linear problems. As kernel functions were used, SVM would take longer to build its prediction

 6.5 Results and Discussion

173

models and longer to predict new instances. This problem might be an obstacle to introducing

SVM into a dynamic and high volume environment, such as network analysis and ID.

In general, although a linear SVM implementation was used in these experiments, it showed

some good results. For example, on average, the performance of models trained on the original

and balanced version of Day 4’s traffic, using MDG features, was above 90%. These results are

presented in Table 6.6 which sets out the average performance of the SVM models. Also the

performance of models trained using the MDA features on the original version of Day 6 traffic

(which only had 11 attacks), was above 89%. With such results, more analysis would be

required to identify the right combination of fast kernel function and parameter tuning to

improve the overall SVM results. This would make it an attractive solution for IDS problems.

Figure 6.10 summarises all of the figures in Appendix (B) (Figure B.1, Figure B.2 and

Figure B.3) and all of the accuracy readings in the tables (Table B.1, Table B.2 and Table B.3)

after the threshold adaptation process was applied. It compares the average performance of all

the C5.0, RF and SVM models. This plot shows the average performance for each day’s model

for all of the tested ML algorithms. The standard error of the average performance for each

model is illustrated by vertical bars. For each algorithm, the mean performance of all models

across all days for every combination of feature sets and data balance type is represented by a

horizontal dashed line. As this plot shows, RF was always the highest performing of the ML

algorithms evaluated. Unlike C5.0 and SVM, RF showed the most stable results with the least

variability. A similar conclusion was reached by Japkowicz and Stephen [221] regarding the

sensitivity of the C5.0 algorithm (see Section 2.2.3.2).

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

174

 F
ig

u
re

 6
.1

0
:

C
o

m
p
a

ri
so

n
 p

lo
t

o
f

th
e

a
ve

ra
g
e

p
er

fo
rm

a
n
ce

 o
f

ev
er

y
C

5
.0

,
R

F
 a

n
d

 S
V

M
 m

o
d

el
 f

o
r

ev
er

y
fe

a
tu

re
 s

et
 a

n
d

 d
a
ta

 b
a
la

n
ce

 c
o

m
b

in
a

ti
o
n

.

 6.6 Limitations

175

6.6 Limitations

Although the findings of these experiments support the findings discussed in Chapter 4, i.e.

that applying a cutoff adaptation to the evaluation (testing) data is important for achieving an

accurate reading of the true performance of a prediction model, there were a number of

unavoidable limitations to these experiments.

Firstly, some limitations are similar to those discussed in Chapter 4, such as the sole focus on

binary classification problems. Also, the best setup for the parameters of different ML

algorithms requires further analysis, such as the optimal number of trials for the C5.0 algorithm

and the use of other non-linear implementations of SVM. These tuning requirements could be

considered engineering issues which require further research in their own right.

Secondly, time constraints played an important role in the decisions taken in relation to the

experimental settings. For example, a decision was taken to use 3-folds Cross-Validation

instead of 10-folds Cross-Validation because of the gain in execution time. Further

investigation into the optimal number of folds could be conducted in a separate study to

determine the best balance between time and accuracy for production environment.

Thirdly, only two feature importance measures were used in the feature selection stage: the

Mean Decrease of Accuracy and the Mean Decrease Gini. Both of these measures were

computed using the RF algorithm, which could have made the selected features ideal for this

algorithm but not for the others. As the results show, with these measures the RF algorithm’s

performance was nearly the same across all selected features. Although this could be regarded

as a limitation, it could equally be argued that each day file had different important features and

despite these differences, RF was able to generalise even when the evaluation data had different

important features. Further investigation is required into what other feature selection techniques

could be used, especially on algorithms other than those evaluated in this study. There are many

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

176

techniques that could be explored, such as correlation-based feature subset selection20 [200],

the use of information gain as an evaluation criterion for the features’ importance21 and the

minimum-redundancy-maximum-relevance (mRMR) feature selection [190, 376, 377].

In addition, there was no analysis of the relationship between the selected features and the

performance of their models. For example, an analysis of the effect of features common to

different days could have identified which features were tightly linked to the performance of

different models. This line of research was not followed as it would have required an analysis

of the full dataset, and the main aim of this study was to mimic real life scenarios where future

traffic is unknown and decisions need to be made on the (training) data available.

Fourthly, only one balancing technique was adopted for these experiments. An evaluation of

different data balancing techniques could determine which technique would best fit the network

ID domain. Using the SMOTE algorithm to generate synthetic connections might not be an

ideal solution for this domain as the connections generated might not represent a valid real

connection. Further analysis is required to determine whether there is any relation between the

balancing technique chosen and the performance of the ML algorithm.

Fifth, the analysis outlined in this chapter was limited because of the structure of the UNB

ISCX2012 dataset. A day was used as the window size to split the traffic into subsets for training

and evaluation purposes. To allow a deeper analysis of the effect of the time window size (i.e.

to extend the time window to weeks or months) on the performance of this approach, a larger

dataset would be needed. Although reducing the time window to hours would have been a valid

option, this approach was not taken because the formation of pure traffic within small window

sizes would have shifted the focus to another domain of research, such as data stream

classification. Also, as this analysis was limited to one dataset due to time constraints, further

20 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CfsSubsetEval.html
21 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html

 6.7 Summary

177

investigation would be required to analyse the effectiveness of this approach on datasets with

diverse traffic. The decision to use this dataset was based on the limited number of existing

transformed datasets, given that the transformation and labelling of a new reliable dataset is a

time consuming task.

Finally, the feature selection process used a statistical comparison to compare the mean

importance of every evaluated feature with the mean performance of the fake variables. This

evaluation assumed that the importance measures would follow a normal distribution which led

to the use of Welch’s two sample t-test. Further analysis is required to evaluate a dynamic

approach of applying the appropriate test (parametric or non-parametric) based on a data

normality check.

6.7 Summary

This chapter has presented a set of experiments undertaken to analyse the effect of applying

cutoff adaptation to evaluation data on the performance of three main ML algorithms: C5.0, RF

and SVM. The analysis investigated the effect of feature selection and data balancing on the

overall performance of models developed using these algorithms before and after cutoff

adaptation. These experiments aimed to simulate real-life setups in terms of how they conducted

their model building and evaluation.

This analysis built models on subsets (traffic for one day) of the data to predict the remaining

parts (traffic for other days). The results of these analyses showed that RF outperformed the

other algorithms in its ability to predict new traffic and the detection of novel anomalies. It also

showed that before cutoff adaptation, all of the ML algorithms performed as poorly as each

other, but that the adaptive cutoff approach increased their overall performance, with RF

performing best. Moreover, RF suffered no significant loss in performance when the reduced

feature sets were used and its predictions did not improve when the data was balanced. This

Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection

178

gives RF the advantage of being able to build models using original data with a reduced feature

set, which will save a considerable amount of time in training and testing, which makes this

algorithm more attractive for such problems.

In these analyses, G-Mean accuracy measures were used as the model assessment criteria to

avoid issues with imbalanced data. The performance of all models was assessed using the non-

parametric Friedman test to identify any significant differences. Cutoff adaptation and the

algorithm used were the most important effects that contributed to any significant difference in

a model’s performance.

Having established the importance of cutoff adaption in determining the performance of a

prediction model, the next chapter will look at a technique to determine the appropriate cutoff

for any dataset being evaluated based on a small randomly selected subset. This subset will then

be labelled and used to set the right adapted cutoff for the whole dataset, even when, as in a real

life problem, all its true labels are not known.

7

179

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

Chapter Seven

Cutoff Selection Based on Evaluating a

Subset of the Test Data

This chapter investigates the selection of an adaptive cutoff (threshold) for evaluation (test)

data, based on the true labels of a random subset, i.e. validation data. It also includes an analysis

of the effect of different sampling sizes in determining the right threshold (cutoff) for the

predictions of different ML models. The analysis also evaluated different sampling

approaches to assess their ability to identify the correct threshold (cutoff) for the whole dataset.

This analysis was conducted using the results of the experiments that were outlined in the

previous chapter (Chapter 6). The G-Mean Accuracy Ratio, which measures the ratio of the

performance (G-Mean Accuracy) of the sample cutoff relative to that of the optimal cutoff of

the full test data, was used as the metric to compare the different effects. Further investigations

were carried out to determine how different error rates (introduced to the labels of the random

small subsets) might affect the identification of the correct discriminating threshold (cutoff).

7.1 Introduction

Previous chapters have demonstrated the importance of the threshold (cutoff) adaptation to

achieve an accurate reading of a model’s performance and to improve predictions in real

environments. As the example illustrated in Figure 7.1 shows, the disadvantage of using a fixed

threshold, such as Thr0.5, is that it undermines the capacity of some good prediction models

which could result in the selection of weaker models. Figure 7.1 presents an example of the

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

180

performance (measured by G-Mean Accuracy) of three dummy predictions (Pred1, Pred2 and

Pred3). It shows that Pred1 delivers higher levels of prediction accuracy at low threshold values,

but that using a fixed threshold, i.e. Thr0.5, subverts its true capacity. Pred2 performs the least

well out of all of the predictions, however, that fixed threshold gives a false reading of its true

performance and shows a marked difference in its levels of accuracy compared to Pred1.

Independently adapting the discriminating threshold for every prediction result leads to more

accurate readings of a model’s true potential (performance). Some predictions such as Pred3 do

not show any significant difference between a fixed and an adapted threshold, however, the

adapted threshold usually offers a higher degree of accuracy. This is not just the case for fixed

thresholds such as Thr0.5, as other fixed thresholds behave the same way. As has been shown in

Chapter 6, threshold adaptation improved the overall performance of all of the prediction

models and showed their true potential.

Figure 7.1: Example comparing fixed threshold (solid black vertical line - Thr0.5) with adapted prediction thresholds (maroon, blue and

orange vertical lines).

 7.1 Introduction

181

The threshold (cutoff) adaptation process outlined above is based on the ground truth (true

labels) of the evaluation data. Unfortunately, this requirement is not available in real life

situations. Therefore, this chapter investigates the potential of determining the best prediction

threshold (cutoff) for an evaluation data using the true labels of a small random sample only.

In the ID domain, the labelling of the small subset can be viewed as an evaluation of a sample

of connections to determine their true states (labels) using the assessment of a security specialist

or the classification of a signature based IDS. This subset will be used to set the correct

threshold (cutoff) for all the traffic, which will then be used to flag anomalies. Hence, these

anomalies can be investigated and analysed to identify novel and unknown attacks, which could

be used to update the signature-based IDS.

Random sampling from the population does not ensure that the sampled data covers the full

range of the prediction probabilities in the population; this is especially the case when a model

produces predictions with low probabilities for unseen data and when the threshold needs to be

adapted for such new test data. Therefore, various sampling strategies, using a binning

technique, were used for the experiments outlined in this chapter. To address the original

probability distribution of the predictions range of a model on the test data, the range was

divided into ‘bins’. Random sampling from every bin thus ensured that the prediction

probability distribution for each sample was close to the probability distribution of the whole

test data. The experiments outlined below compare the performance of different bin sizes to a

normal random sampling approach from the whole population.

These experiments aimed to simulate a real life situation where the labelling of subset samples

would be undertaken by external sources, such as a security expert or a signature-based IDS.

These labels were then used to assess the best cutoff for the whole of the test data. This labelling

process is prone to errors due to a number of external factors, such as human error or false

alarms by the IDS. As a result, these experiments attempted to analyse the effect of different

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

182

error levels on the process of identifying the best threshold (cutoff). This chapter also looks at

the effect of different sample sizes in identifying the best cutoff, of the entire test data, based

on the sampled subset. One of the aims of the experiments was to show the trade-off between

sample size and the correct setting of the cutoff value. This is because the traffic load in a real

life network is enormous, so finding the best cutoff, based on the smallest sample size, would

save a great deal of effort and resource.

7.2 Proposed Solution

This chapter looks at the selection of an adaptive cutoff (threshold) for evaluation data where

the true label is only known for a small, random sample. It provides an analysis of the effect of

different sample sizes (10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%, 0.0005%

and 0.0001%) on the selection of the right threshold (cutoff). It is worth pointing out that the

percentage values should be controlled to draw enough samples that would be sufficiently

representative of the original data (order of magnitude). As the analysed datasets in this study

are large, the use of these small percentages was sufficient. However, for smaller datasets, larger

percentages might be needed.

It is important to note that these experiments stress the importance of performing the sampling

of instances based on the predictions of models rather than the sampling from the original

connections population. This sampling approach is required to capture the distribution of the

predictions which would not have been fully captured when sampling is performed randomly

from the population. In other words, random sampling, from the entire test data, could miss the

small number of anomalous cases as it does not take the full range of the model’s predictions

into account. As a result, a binning sampling strategy is applied and compared with the normal

random sampling approach. In the binning approach, the range of a model’s predictions is

divided into B bins (1, 10, 20, 50 and 100). Samples were then randomly selected from each

 7.2 Proposed Solution

183

bin to ensure good coverage of rare cases. The one-bin (B1) type is the random sampling from

the whole population.

To address the possibility of errors in labelling and in determining the state of sampled

connections (due to human errors or the inability of signature-based IDS to detect novel attacks)

different error rates (0%, 1%, 5% and 10%) were introduced to the true labels of the random

samples. This aimed to identify the effect of such errors -in sample labels- in determining the

best prediction threshold (cutoff) and what is expected on the overall performance of the

adaptive cutoff approach.

These experiments were evaluated using a G-Mean Accuracy Ratio (GAR), which assesses the

quality of the sample cutoff (ThrSmpl) by measuring its closeness to the optimal threshold

(ThrOpt). The GAR measure computes the ratio of the classification performance (G-Mean

Accuracy) of the data, using the sample cutoff (ThrSmpl), to that of the optimal cutoff (ThrOpt),

as presented in Eq.(7.1).

G-Mean Accuracy Ratio (GAR) =
g. accuracy(Data | ThrSmpl)

g. accuracy(Data | ThrOpt)

Eq.(7.1)

The GAR measure ranges between zero and one; the closer the sample cutoff (ThrSmpl) to the

optimal threshold (ThrOpt), the closer the GAR will be to one. As ThrSmpl shifts away from ThrOpt

the GAR will be closer to zero. Figure 7.2 illustrates this with an example of the G-Mean

Accuracy Ratios (GAR) of two dummy predictions. This example shows that the GAR for Pred2

(0.94) is higher than it is for Pred1 (0.90), even though the optimal performance of Pred1 is

higher than that of Pred2. This is because this measure assesses how good the selected cutoff is

in relation to the optimal cutoff for a prediction result, not for the overall prediction

performance.

The effect of different sampling strategy under every tested error rates on selecting the ‘close

to optimal’ threshold has been analysed. This is done by evaluating the following hypothesis

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

184

on the predictions of ID models for every ML algorithm: “there are no statistically significant

differences in the G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the {C5.0, RF,

SVM} model predictions between the different sampling strategies –number of bins- (B1, B10,

B20, B50 and B100) when the sample labels have an {0%, 1%, 5%, 10%} error rate”.

Similar analysis is performed to evaluate the effect of different sample sizes, by testing the

following hypothesis on the predictions of ID models for every ML algorithm: “there are no

statistically significant differences in the G-Mean Accuracy Ratios (GAR) of the sample

cutoffs of {C5.0, RF, SVM} model predictions between the different sample sizes (10% to

0.0001%) when the sample labels have an {0%, 1%, 5%, 10%} error rate”.

Finally, the effects of different error rates on the selection of the ‘close to optimal’ threshold on

the predictions of the ID models of every ML algorithms is analysed by testing the following

hypothesis, “there are no statistically significant differences in the G-Mean Accuracy Ratios

(GAR) of the sample cutoffs of the different ML (C5.0, RF and SVM) model predictions at

different error rates (0%, 1%, 5% and 10%) in the sample labels”.

7.3 Experimental Setting

The experiments presented in this chapter used the prediction results of the models developed

in Chapter 6 on the STA2018 dataset. As noted earlier, the main aim of these experiments was

to evaluate the effectiveness of the threshold (cutoff) setting using a randomly selected subset

of the test data. The true label of this subset was then used to compute the best cutoff value

(Thrsmpl) at which the maximum G-Mean Accuracy could be achieved on this sample. The

Thrsmpl was used to classify the original test data and to compute its classification performance.

The ratio of the classification performance (G-Mean Accuracy) of the Thrsmpl to the optimal

adaptive threshold (Thropt) for the whole of the test data was then computed. This ratio (GAR)

was used to measure how close the subset’s cutoff (Thrsmpl) was to the optimal one.

 7.3 Experimental Setting

185

Figure 7.2: Example comparing two predictions (maroon and blue). Vertical solid lines represent the optimal threshold of these predictions

and the vertical dotted lines represent the sample cutoffs.

Listing 7.1 presents the pseudo code for the experiments run in these assessments. For every

model and evaluation data combination, different samples of various sizes were randomly

selected. These samples were drawn using binning techniques and by randomly introducing

different error rates to their true labels. Each sample was used to set the prediction threshold

(Thrsmpl), and the quality of this threshold was assessed using the GAR metric. Every sampling

process was repeated 100 times and the mean of all of the ratios (GAR) of the 100 repetitions

was recorded and used in the later analysis.

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

186

Algorithm: Threshold Tuning Experiments
Input: MDL=Model predictions , testData=The test data the model predicted
Result: GAR values of sample thresholds (cutoffs)

1 Bin.Set <- {1, 10, 20, 50, 100}
2 Error.Set <- {0%, 1%, 5%, 10%}
3 SampleSize.Set <- {10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%, 0.0005%, 0.0001%}
4 Results.Set <- {}
5
6 For (MDL,testData) results, do // Process every ML (C5.0, RF, SVM) models’
7 // results of the 300 evaluations on
8 // the STA2018 dataset
9 // (6 Days × 10 Models × 5 test data).
10
11 data.labels <- get.labels(testData) // Get the true labels of the test data.
12 data.prdcts <- get.predictions(MDL,testData) // Get model predictions of the test data.
13 adpt.cutoff <- get.bestCutoff(data.prdcts, data.labels) // Get the predictions adapted
14 // optimal threshold (ThrOpt)
15 opt.gAcc <- get.gAcc(data.prdcts, data.labels, adpt.cutoff) // Get the G-Mean Accuracy at
16 // optimal threshold (ThrOpt)
17
18 For bin in Bin.Set, do // Loop 5 times {1 ... 100}.
19 For err in Errors.Set, do // Loop 4 times {0% ... 10%}.
20 For smplSize in SampleSize.Set, do // Loop 11 times {10% ... 0.0001%}.
21 For repeat in (1..100), do // repeat every sampling 100 times.
22 // Select random samples and get their labels and predictions
23 i <- select smplSize instances from every bin of the data.prdcts randomly
24 smpl.labels <- data.labels[i]
25 smpl.prdcts <- data.prdcts[i]
26
27 // Introduce some errors in samples labels randomly
28 if (err > 0)
29 smpl.labels <- swap labels of err instances of smpl.labels randomly
30
31 // Compute best sample cutoff (ThrSmpl) based on sample labels and predictions
32 if (smpl.labels is pure OR cannot find cutoff)
33 smpl.cutoff <- 0.5
34 else
35 smpl.cutoff <- get.bestCutoff(smpl.prdcts, smpl.labels)
36
37 // Compute the G-Mean Accuracy of full data at sample cutoff (ThrSmpl)
38 gAcc <- get.gAcc(data.prdcts, data.labels, smpl.cutoff)
39
40 // Compute G-Mean Accuracy Ratio (GAR) of the test data predictions between
41 // sample cutoff and optimal adapted cutoff.
42 gAcc.ratio <- gAcc ÷ opt.gAcc
43
44 // Add results to file for further analysis.
45 Results.Set <- Results.Set ∪ {MDL, testData, bin, err, smplSize, gAcc.ratio}
46
47 done
48 done
49 done
50 done
51
52 done

Listing 7.1: Pseudo code of the experiments run for the results of each ML algorithm.

The results from the experiments are illustrated in Appendix (C) (Figure C.19, Figure C.20

and Figure C.21). Each figure shows the results for the three ML algorithms using different

error rates (0%, 1%, 5% and 10%); each subplot shows the median of the GAR values for all

of the models with the same feature set and data balance group for that algorithm. The curves

 7.4 Results and Discussion

187

in each subplot for every group illustrate the medians of the different sampling strategies (B1,

B10, B20, B50 and B100) for every sample size (10% to 0.0001%).

Table 7.1 presents the number of sampled instances for every simulation day for every sample

size from the transformed STA2018 dataset.

Table 7.1: Number of sampled instances for each sample size used in these experiments.

7.4 Results and Discussion

These experiments compared the effect of different parameters, i.e. sample size, number of bins

and error rates, in determining the optimal threshold (cutoff) for the predictions of the three

tested ML algorithms (C5.0, RF and SVM) using the evaluation data. Non-parametric

Friedman’s tests (with a significance level of α = 0.05) were used for these comparisons and

the G-Mean Accuracy Ratio (GAR) of the sample cutoffs was used as the evaluation metric.

The decision to use non-parametric tests was driven by the non-normal nature of the result GAR

values used in these evaluations. The Shapiro-Wilk normality test [332] could not have been

used in these experiments due to the size of the experiment results (which exceeded the limit of

5,000 records). Therefore, the Anderson-Darling normality test [333, 334] was used, and

confirmed that the results were not normal; A = 14862.0, p = 0.000.

12-Jun 13-Jun 14-Jun 15-Jun 16-Jun 17-Jun

Normal 164,545 168,947 213,798 633,388 600,017 409,090

Attack 2,123 10,037 6,422 35,260 11 4,959

Total 166,668 178,984 220,220 668,648 600,028 414,049

10% 16,667 17,899 22,022 66,865 60,003 41,405

5% 8,334 8,950 11,011 33,433 30,002 20,703

1% 1,667 1,790 2,203 6,687 6,001 4,141

0.5% 834 895 1,102 3,344 3,001 2,071

0.1% 167 179 221 669 601 415

0.05% 84 90 111 335 301 208

0.01% 17 18 23 67 61 42

0.005% 9 9 12 34 31 21

0.001% 2 2 3 7 7 5

0.0005% 1 1 2 4 4 3

0.0001% 1 1 1 1 1 1

S
a

m
p

le
 S

iz
e

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

188

Due to the number of statistical tests conducted in these analyses, where all of them have shown

significant results, only the key hypotheses are explored in the following discussion. The results

of their Nemenyi post-hoc tests [373-375] (which were used to perform the pairwise

comparisons between different effects to differentiate them) are illustrated with Critical

Difference (CD) plots.

Multi-Critical Difference (M-CD) plots are novel illustration that were developed for the

comparative analysis in this research and have been used in this chapter. These plots are an

aggregation of the multiple CD plots that were used to compare different effects under various

conditions.

7.4.1 C5.0 Algorithm

The plots in Figure 7.3 relate to the C5.0 models. They show the median and interquartile

ranges (first and third quartile) of the GAR values for the sample thresholds under different

parameters (sample size and number of bins). Every subplot shows the results under different

error rates (0%, 1%, 5% and 10%).

As expected, Figure 7.3 clearly shows that the bigger the sample the better the GAR i.e. that

the sample cutoff was the closest to the optimal threshold. However, two unpredicted patterns

emerged. Firstly, higher error rates in the sample labels resulted in a better selection of the

cutoff for C5.0 predictions. As error rates increased, the GAR values for the larger samples

jumped to more than 0.97, while for samples as small as 0.1%, values crossed the 0.9 GAR

point at the 10% error rate. Secondly, the B1 sampling strategy was superior to other sampling

approaches, especially for sample sizes of less than 5%. This advantage was maintained across

increased error rates with a widening gap between B1 and the multi-bin sampling strategies at

lower sampling rates.

 7.4 Results and Discussion

189

Figure 7.3: Median of G-Mean Accuracy Ratios (GAR) of the C5.0 models predictions under different sampling strategies (number of bins),

sample sizes and error rates.

The cause of such unexpected behaviours is linked to the nature of C5.0 models, which

produced low numbers of unique probabilities (thresholds) for their predictions. Figure 7.4

shows the averages of the number of unique probability values (thresholds) returned by every

C5.0 models (generated in Chapter 6) as predictions of the tested data. The blue and red lines

respectively represent the minimum and maximum probabilities (thresholds) within the range

of these predictions. This figure shows that the predictions of the C5.0 models suffered from

having low numbers of unique cutoffs and short ranges. In general, C5.0 models produced far

fewer thresholds than RF and SVM. This caused a shift from one cutoff value to another -in

C5.0 predictions- leading to a step jump which caused many samples to change state in a single

step.

In the RF and SVM predictions these transitions were much smoother due to the high number

of prediction probabilities (thresholds).

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

190

Figure 7.4: Average number of unique thresholds for the predictions of C5.0 models, and their ranges.

As a result of the low number of unique thresholds produced by the C5.0 models, the random

samples tended to include all of the cutoff values returned by these models. Therefore, the

mixed cases (of normal and attack instances) tended to skew the selected cutoff (ThrSmpl) away

from the optimal threshold (ThrOpt) and towards those rarer minority classes (attack) to

maximise the performance measure (G-Mean Accuracy). However, as the error rates increased,

the likelihood of changing the labels of majority instances (normal) will be higher, causing the

sample cutoff (ThrSmpl) to shift towards the optimal threshold (ThrOpt). This resulted in a big

improvement in their GAR values due to the effect of those step jumps. This effect is discussed

in more detail in Section 7.4.4 and illustrated in Figure 7.15-(a) (see Page 205).

Although the GAR curves in Figure 7.3 suggest the B1 sampling strategy was superior to the

multi-bin strategies, statistical analysis was conducted to test the significance of this

observation.

To statistically analyse the differences between various sampling strategies (number of bins)

for the identification of close to optimal threshold, four Friedman’s tests were performed with

 7.4 Results and Discussion

191

a significance level of α=0.05. Each test was performed under a different error rate to test the

hypothesis, “there are no statistically significant differences in the G-Mean Accuracy Ratios

(GAR) of the sample cutoffs of the C5.0 model predictions between the different sampling

strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample labels have an X%

error rate”. These are the results for each test:

• 0% Error : χ2(4) = 411.3, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(4) = 304.5, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(4) = 295.0, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(4) = 247.0, p = 0.000 < 0.05 (differences are statistically significant)

Every one of these tests showed significant differences between the sampling strategies where

a Nemenyi post-hoc test had been conducted to perform a pairwise comparison as illustrated in

the M-CD plots in Figure 7.5.

This plot (Figure 7.5) shows that B1 has no significant differences to both B50 and B100 when

the error rate was between 0% and 5%. However, once the error rate reached 10%, the

differences between most sampling strategies became statistically significant, except for B50

and B100, where B1 remained the best.

Further investigation into the possible cause of this unpredictable result i.e. the superiority of

the B1 sampling strategy, revealed that the models’ predictions for Day 2 (12/Jun) and Day 6

(16/Jun) were the most problematic as a result of them having a very small number of unique

thresholds (see Figure 7.4). This led to a large skewness of ThrSmpl when the multi-bins

strategies are applied due to the presence of many extreme thresholds that were missed by the

B1 approach. The predictions for these two days skewed the overall results. However, the

Friedman test was able to detect the insignificance of this effect, to some extent. The results for

these two days are set out in Figure C.1 and Figure C.5 in Appendix (C) [the reader is referred

to Figure B.1 for further details about the performance plots for C5.0 models for Day 2 and

Day 6 in Appendix (B)].

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

192

Figure 7.5: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the C5.0

predictions under different error rates (0%, 1%, 5% and 10%).

To analyse the effect of different sample sizes on the accuracy of sample cutoffs under various

error rates, four Friedman tests were performed with a significance level of α=0.05. Each tested

the following hypothesis, “there are no statistically significant differences in the G-Mean

Accuracy Ratios (GAR) of the sample cutoffs of C5.0 model predictions between the different

sample sizes (10% to 0.0001%) when the sample labels have an X% error rate”. The results

from these tests are as follow:

• 0% Error : χ2(10) = 4983.6, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(10) = 7470.6, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(10) = 7162.4, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(10) = 6729.7, p = 0.000 < 0.05 (differences are statistically significant)

All of these tests showed significant differences. Figure 7.6 illustrates the M-CD plots of the

pairwise comparisons subsequently conducted using the Nemenyi post-hoc test for every error

rate.

 7.4 Results and Discussion

193

Figure 7.6: Results of multiple Nemenyi tests (95% confidence level) of different sampling size (10% to 0.0001%) using the C5.0 predictions

under different error rates (0%, 1%, 5% and 10%).

These tests showed significant differences between the sample sizes; the bigger the sample, the

higher the ranking it achieved, confirming the observations set out in Figure 7.3. For the smaller

samples (less than 0.05%), the differences were insignificant. Moreover, as the error rate in

sample labels reached 5%, the difference between the sample sizes of 10%, 5%, 1% and 0.5%

became insignificant, including the sample size of 0.1% at an error rate of 10%. The smaller

the sample size, the less representative they were of the original population (test data); this

caused the cutoff ThrSmpl to be selected, which is far from the optimal ThrOpt. The effect of

increasing the error rates for the larger samples is discussed in more detail in Section 7.4.4.

7.4.2 RF Algorithm

Figure 7.7 presents the medians and interquartile ranges for the GAR values of the samples’

cutoffs for the RF predictions. The subplots show the results of different sample sizes and the

number of bins at every error rate (0%, 1%, 5% and 10%).

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

194

Figure 7.7: Median of G-Mean Accuracy Ratios (GAR) of the RF models predictions under different sampling strategies (number of bins),

sample sizes and error rates.

As with the C5.0 predictions, the cutoffs for the larger samples were much better, as they had

higher GAR values - as can be seen in Figure 7.7. However, unlike C5.0, the GAR of the RF

samples dropped as the error rate increased, especially amongst the larger samples (10% to

0.5%). In general, sample sizes below 0.05%, lost their accuracy in selecting close to optimal

cutoffs with their GAR starting to rapidly fall below 0.9. The key difference between the

behaviour of C5.0 and RF is linked to the large number of unique thresholds produced by the

RF models, which are illustrated in Figure 7.8. For this reason, a larger sample size will have

better representation of the original data and will manifest a wider and finer prediction range

with a proportionate number of class labels close to the real data. This led to the selection of

better cutoffs that were close to the optimal threshold. (Further explanations to explore the

effect of the errors are discussed in Section 7.4.4.)

 7.4 Results and Discussion

195

Figure 7.8: Average number of unique thresholds for the predictions of the RF models, and their ranges.

Moreover, as initially anticipated, the B1 sampling strategy exhibited a lower GAR than the

multi-bin sampling approach and these differences were much more obvious amongst the

smaller samples. It was also noticeable that the gap between the B1 and the multi-bin sampling

strategies narrowed as the error rate increased. These findings were further analysed to

determine their significance.

Different sampling strategies (number of bins) were analysed to determine if they have any

differences in finding the best threshold based on their sample cutoffs. Four Friedman tests

were executed with a significance level of α=0.05. Tests were performed for each error rate to

test the following hypothesis, “there are no statistically significant differences in the G-Mean

Accuracy Ratios (GAR) of the sample cutoffs for the RF model predictions between the

different sampling strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample

labels have an X% error rate”. The results from the tests are as follows:

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

196

• 0% Error : χ2(4) = 1499.0, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(4) = 1181.9, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(4) = 900.4, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(4) = 703.9, p = 0.000 < 0.05 (differences are statistically significant)

Figure 7.9 shows the M-CD plots of the Nemenyi post-hoc test, which was subsequently

conducted to identify any differences between the sampling strategies by performing pairwise

comparisons. These plots show that the larger the number of bins, the better the sample cutoff.

The differences between all of the sampling strategies were significant with the larger bins

ranked higher than the smaller ones.

Figure 7.9: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the RF

predictions under different error rates (0%, 1%, 5% and 10%).

This confirms the observations set out in Figure 7.7 which showed that the curve of the B1

strategy was lower than that of the other sampling strategies. As error rates reached 5% and

above, the difference between B1 and B10 became insignificant. This was due to the increase in

the GAR values of the B1 samples, which reduced the gap (between the B1 and B10 lines), as

illustrated in Figure 7.7.

 7.4 Results and Discussion

197

This result is in line with what was expected as a wider prediction range should increase the

level of accuracy of identifying the right discriminating threshold. The key difference between

the C5.0 predictions and those of RF and SVM was the number of unique thresholds produced,

as discussed earlier. As the number of unique cutoffs decreased in the C5.0 predictions, finding

the optimal threshold using a larger number of bins, became less efficient.

Four Friedman tests were performed (with a significance level of α=0.05) to analyse the effect

of different sample sizes on the selected sample cutoffs under various error levels. Each test

assessed the following hypothesis, “there are no statistically significant differences in the

G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the RF model predictions between

the different sample sizes (10% to 0.0001%) when the sample labels have an X% error rate”.

The results from these tests are as follow:

• 0% Error : χ2(10) = 12052.0, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(10) = 11024.0, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(10) = 8799.4, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(10) = 8472.3, p = 0.000 < 0.05 (differences are statistically significant)

All of these tests showed significant statistical differences. Figure 7.10 illustrates the M-CD

plots of the pairwise comparisons that were subsequently conducted using the Nemenyi post-

hoc test.

Like the C5.0 algorithm plots, these plots (Figure 7.10) show significant differences between

different sample sizes. At error rates of 0% and 1%, the larger the sample size, the higher the

ranking. As the error rate reached 5%, some of the small samples (0.5%, 0.1% and 0.05%)

started to become indistinguishable from the larger samples, but once the error rate reached

10%, these small samples became highly ranked and their difference to the larger sample sizes

become significant. However, the smaller samples (less than 0.05%) were always ranked low.

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

198

Figure 7.10: Results of multiple Nemenyi tests (95% confidence level) on different sampling sizes (10% to 0.0001%) using RF predictions

under different error rates (0%, 1%, 5% and 10%).

For these small samples (0.5%, 0.1% and 0.05%) the number of unique thresholds were small,

resulting in step jump effects similar to the C5.0 predictions discussed in Section 7.4.4. This

led to the selection of ThrSmpl that is furthest from ThrOpt. As a result, high error rates caused

many of the majority (normal) instances to change their state, which in turn caused the sample

cutoffs (ThrSmpl) to shift towards the optimal threshold. This can be seen from the increase in

their GAR and their statistical rankings as illustrated in Figure 7.15-(a). However, as the larger

samples had already selected an accurate ThrSmpl (which is the closest to the ThrOpt), higher

error rates resulted in a skewness of this ThrSmpl towards these erroneous cases away from the

optimal threshold, which in turn resulted in a fall in their GAR values. This made any

differences in these samples indistinguishable from those of the small samples [see

Figure 7.15-(a)].

7.4.3 SVM Algorithm

As for the SVM predictions, Figure 7.11 illustrates the medians for the sample GAR results

and their interquartile ranges (first and third quartile). These subplots show the result of

 7.4 Results and Discussion

199

different parameters (sample size and the number of bins) for every error rate (0%, 1%, 5% and

10%).

Figure 7.11: Median of G-Mean Accuracy Ratios (GAR) of the predictions of the SVM models under different sampling strategies (number of

bins), sample sizes and error rates.

Like the C5.0 and RF predictions, the SVM predictions were better at estimating the optimal

threshold when larger sample sizes were used, as illustrated in Figure 7.11. The GAR of the

SVM samples showed a similar trend to the RF samples in terms of error rates. However, the

SVM samples showed a higher sensitivity to errors as their GAR values declined more sharply

when error rates increased. By the time the error rates reached 5% and 10% the GAR fell below

0.9 for the larger sample sizes (10% to 0.5%). This was caused by the large number of unique

probabilities (thresholds) produced by the SVM models, which were much larger than those

produced by the C5.0 and RF models, as can be seen in Figure 7.12. There were nearly as many

of these thresholds as there were instances (connections) in the evaluation data. In other words,

nearly every predicted instance had its own unique probability. Furthermore, these predictions

covered the full range between zero and one with very few fluctuations, unlike the C5.0 and RF

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

200

predictions. The effect of errors on the samples’ cutoff selection is discussed in more detail in

Section 7.4.4.

Figure 7.12: Average number of unique thresholds for the predictions of the SVM models and their ranges.

In a pattern similar to the RF predictions, the GAR values for the SVM samples using a multi-

bin sampling strategy, tended to be higher than the B1 sampling as can be seen in Figure 7.11.

However, initially an unexpected pattern emerged - the SVM samples showed a higher GAR

value for small sample sizes (0.05% to 0.0001%) compared to those for C5.0 and RF. Also, for

the smaller samples (≤ 0.005%), the B1 sampling strategy had higher and more stable GAR

values. This was down to the fact that for these smaller samples, the chances of a pure sample

(single label) being selected was very high. As a result, ThrSmpl could not be identified which

led to the sample being assigned the default cutoff value of 0.5 (Thr0.5) as shown in Listing 7.1

(lines 32-35).

In the multi-bin sampling strategies, the width of the prediction range was taken into

consideration, which resulted in cases being sampled from every interval, which in turn led to

more mixed samples. This resulted in the selection of a cutoff that was far from the optimal

 7.4 Results and Discussion

201

one. To determine the significance of these effects and to explore their contributing factors,

further statistical analysis was undertaken.

The reason for the high GAR values for the smaller SVM samples (0.05% to 0.0001%)

compared to those of the C5.0 and RF samples is related to the nature of the G-Accuracy curve

for the SVM predictions. Most of the SVM prediction ranges were wide (0-1) and the curvature

of their G-Accuracy curves is much flatter in the middle. Setting the sample cutoff (threshold)

for a small sample size to a default of 0.5 (Thr0.5) did not result in a greater decrease in the GAR

rate. This is because a threshold of 0.5 is within the range of most SVM predictions. This is not

the case for most of the C5.0 and RF predictions, where a threshold of 0.5 (Thr0.5) lies at the

edge or outside the range of their predictions as they form shorter intervals. These issues

resulted in very low GAR values that can reach zero in some cases at the default threshold of

0.5 (Thr0.5).

These cases are illustrated in Figure 7.1, where the G-Accuracy curve of the SVM predictions

are similar to the Pred3 curve while the G-Accuracy curves of the C5.0 and RF predictions

would take the shape of Pred1 or Pred2.

An analysis of the different sampling strategies (the number of bins) was conducted to establish

whether there was any difference between the strategies in estimating the best threshold. A

Friedman test was performed (with a significance level of α=0.05) for each error rate, to test

the hypothesis, “there are no statistically significant differences in the G-Mean Accuracy

Ratios (GAR) of the sample cutoffs of the SVM model predictions between the different

sampling strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample labels have

an X% error rate”. The results of the tests are as follows:

• 0% Error : χ2(4) = 29.6, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(4) = 308.3, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(4) = 666.6, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(4) = 764.9, p = 0.000 < 0.05 (differences are statistically significant)

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

202

The M-CD plots in Figure 7.13 illustrate the results from the pairwise comparisons

subsequently generated by a Nemenyi post-hoc test, which was used to identify the differences

between the various sampling strategies.

Figure 7.13: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the

SVM predictions under different error rates (0%, 1%, 5% and 10%).

Figure 7.13 shows that for the SVM models (unlike the C5.0 and RF models) there were

insignificant differences between the different sampling strategies when the sample labels were

accurate (0% error), except in the case of the B10 sampling approach which was ranked the

lowest. As the error rate increased, the differences between the sampling strategies became

more significant with the multi-bin sampling methods starting to become highly ranked. When

the error rate reached 10%, B1 was ranked the lowest, while the higher the number of bins, the

better the ranking.

There were two main reasons for this. The first was an increase in the GAR values for B1. Very

small sample sizes caused an increase in the ranking by the statistical test. The second reason

was the large number of unique thresholds in the SVM predictions. Unlike C5.0 and RF, when

the B1 strategy was applied to the SVM predictions, sample instances did not concentrate at

 7.4 Results and Discussion

203

particular thresholds. As a result, the samples produced had a wider coverage of the prediction

range, which in turn led to a better selection of the sample threshold ThrSmpl (which is very close

to ThrOpt). However, the middle sized samples (1%-0.005%) produced a similar effect to the

C5.0 and RF samples in that the selected samples would have a small number of thresholds.

This was due to the low number of instances sampled, resulting in a step (jump) transition effect

between the thresholds. As the error rate for these samples increased, the GAR for the selected

sample threshold (ThrSmpl) increased and different sampling strategies started to differentiate

from each other. The statistical test took these effects into account and gave a higher ranking to

the multi-bin strategies. In these cases, the larger multi-bins had better GAR values as they

offered better coverage of the prediction range.

The analysis was extended to examine the impact of sample size on the selected sample cutoffs

under various error levels, using the Friedman test (with a significance level α=0.05). Four tests

were undertaken to test the following hypothesis, “there are no statistically significant

differences in the G-Mean Accuracy Ratios (GAR) of the samples’ cutoffs of the SVM model

predictions between the different sample sizes (10% to 0.0001%) when the sample labels have

an X% error rate”. The results of these tests were as follows:

• 0% Error : χ2(10) = 7221.3, p = 0.000 < 0.05 (differences are statistically significant)

• 1% Error : χ2(10) = 6226.3, p = 0.000 < 0.05 (differences are statistically significant)

• 5% Error : χ2(10) = 3515.0, p = 0.000 < 0.05 (differences are statistically significant)

• 10% Error : χ2(10) = 2800.3, p = 0.000 < 0.05 (differences are statistically significant)

All of these tests showed significant differences. Figure 7.14 illustrates the M-CD plots of the

pairwise comparisons subsequently generated using the Nemenyi post-hoc test.

For SVM, Figure 7.14 shows that the differences between the different sample sizes were

statistically significant. As with RF, at low error rates (0% and 1%), the larger the sample size,

the higher the ranking. However, the small sample sizes (0.5%, 0.1% and 0.05%) started to

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

204

show superiority over larger samples (10%, 5% and 1%), with significant differences as the

error rates increased to 5% and beyond.

Figure 7.14: Results of multiple Nemenyi tests (95% confidence level) on different sampling sizes (10% to 0.0001%) using the SVM predictions

under different error rates (0%, 1%, 5% and 10%).

As with the RF predictions, two significant but opposite effects began to happen at the same

time: while there was a reduction in the GAR values of the larger samples, the GAR values of

the small samples (0.5%, 0.1% and 0.05%) increased. These small samples had a few number

of unique thresholds, resulting in the step jump effect discussed earlier.

7.4.4 Closing remarks

Figure 7.15 illustrates the effect of error rates (in the sample labels) on the selection of sample

thresholds for the different ML models.

The experiments outlined in Chapter 6 were configured to return the probability of an instance

(connection) being an attack. Therefore, the lower the probability (of an attack) the higher the

chance that the evaluated connection was normal. As a result, a higher density of normal class

connections were present at the lower end of the prediction scale. Moreover, introducing errors

 7.4 Results and Discussion

205

(a) (b)

Figure 7.15: Illustrative plots of the effect of erroneous sample labels on threshold shift (a) C5.0 predictions (b) RF and SVM predictions.

randomly into these sample labels changed the labels of many of these normal instances into an

attack, resulting in a shift of the threshold towards erroneous cases to maximize the performance

measure (G-Mean Accuracy) as explained earlier. Figure 7.15 illustrates the changes in the

threshold under different scenarios. Figure 7.15-(a) shows the cases behaved in a similar way

to the C5.0 predictions, where the sample cutoff (ThrSmpl) would usually be far from the optimal

threshold (ThrOpt), and errors in the sample labels resulted in a shift of the cutoff towards ThrOpt.

In the RF and SVM predictions, the opposite effect happened [see Figure 7.15-(b)] as the

sample cutoff (ThrSmpl) would originally be the closest to the optimal threshold (ThrOpt) due to

the sample’s good representation of the original data. In such cases, increasing the error rate

introduced a shift that is similar to the previous case, though this shift pushed the sample cutoff

(ThrSmpl) away from the optimal threshold (ThrOpt) which resulted in a fall in the GAR.

There are two key factors that affected the main behaviour of these algorithms’ predictions in

identifying the right threshold, based on the labels of small samples: the number of unique

predictions (probabilities) generated by the models; and the predictions range.

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

206

Overall, in relation to sample size all of the algorithms behaved similarly in determining the

‘close to optimal’ threshold i.e. the larger the sample, the better the estimation. Almost all of

these ML algorithms also displayed the same behaviour in relation to those smaller samples

(i.e. smaller than 0.01%) that were ranked the lowest (as illustrated in Figure 7.6, Figure 7.10

and Figure 7.14). Therefore, the following discussion and analyses will focus on sample sizes

greater than 0.005% (i.e. 10%, 5%, 1%, 0.5%, 0.1% 0.05% and 0.01%).

A final comparison looked at the algorithms’ predictions under different error levels to

determine the best cutoff based on a small subset. For this, a Friedman test was performed (with

a significance level of α=0.05) to test the following hypothesis, “there are no statistically

significant differences in the G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the

different ML (C5.0, RF and SVM) model predictions at different error rates (0%, 1%, 5%

and 10%) in the sample labels”.

As the results showed significant differences - χ2(11) = 18417.0, p = 0.000 < 0.05 - pairwise

comparisons were performed using the Nemenyi post-hoc test. The results of the test are

illustrated in Figure 7.16.

The results show that at an error rate of 1%, RF had the highest ranking while at 0%, RF and

SVM showed insignificant differences. However, as the error rate increased, all of the algorithm

prediction rankings got lower. The C5.0 model predictions showed the worst performance

overall.

In general, as discussed in Chapter 6, the RF models displayed the highest levels of prediction

accuracy rates among the ML algorithms studied. These experiments also showed that sampled

instances are appropriate to estimate the best adaptive prediction threshold. These subsets were

as small as 0.05% of the original evaluation dataset with a GAR close to 0.9, which is a very

 7.5 Limitations

207

Figure 7.16: Critical Difference plots for the different ML algorithm samples under different error rates.

good ratio compared to the other algorithms. Knowing that RF predictions had the highest G-

Mean Accuracy rate means the estimated sample cutoff (ThrSmpl) is able to estimate up to 90%

of the full model’s predictive capacity if its threshold is set to ThrOpt. Also, RF showed the least

sensitivity to error rates in comparison to the two other algorithms. All of these findings make

this algorithm the best of the three for modelling network traffic for ID tasks.

7.5 Limitations

Although the experiments outlined in this chapter investigated the practicality of selecting a

‘close to optimal’ adaptive threshold for evaluation (test) data based on the true label of a small

subset, there were a number of limitations to them.

Firstly, the analysis used a random sampling approach to draw samples from the population

being studied (the evaluation data). Other approaches could have been explored to determine

the best approach for this domain such as: systematic sampling [378]; probability-proportional-

to-size sampling [379, 380]; stratified sampling [288, 381, 382]; or cluster sampling [383, 384].

Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data

208

Secondly, only a stratified sampling method, based on a prediction range using a fixed number

of bins, was investigated. Further analysis would be required to investigate other approaches

which might have better techniques. For example, using some density based functions to

perform a much smoother sampling would have resulted in a more representative subset of the

data based on the models’ predictions.

Thirdly, sampling without replacements was used. Further investigation is required to assess

how sampling performs when it is applied with replacement, i.e. so that the same instances

could be sampled multiple times. Such a method could be applied to the sampled subset to have

better cutoff estimation within a certain confidence interval.

Fourthly, only specific percentages were analysed to examine the effect of the sample size on

the identification of the ‘close to optimal’ adaptive threshold. These percentage values were

sufficient for this study as the datasets used in these analyses were large. However, as the size

of the evaluated data gets smaller larger percentages might be needed to extract representative

samples. Therefore, further investigation is needed in the future to determine the appropriate

sample size given the actual data under consideration.

Finally, a thorough analysis is needed to explore the relationship between the number of unique

cutoffs and the shifts in the threshold as a result of errors. The analysis outlined in this chapter

showed a possible relationship between the two, but a more in-depth analysis of the causes is

required. Such an analysis might result in the development of a model that could determine the

correct number of cases and the best sampling strategy to apply, based on the probabilities

(thresholds) returned by the prediction models. Such a model might ensure better and more

representative samples based on a number of factors including, the range of the predictions, the

number of unique thresholds, density distributions, model parameters and the ML algorithm.

 7.6 Summary

209

7.6 Summary

This chapter outlines a set of empirical analyses which investigated how to determine the best

optimal adaptive threshold for evaluation data. The predictions of various models, developed

using different ML algorithms (C5.0. RF and SVM) with different features sets (Full, MDA,

MDG, MDABal and MDGBal) and different data balances (balanced and non-balanced), were

analysed. The aim of this chapter was to identify the optimal adaptive threshold using the true

label of small subsets so that such an approach could be applied to a real life setup.

The experiments outlined in this chapter analysed how the ‘close to optimal’ thresholds were

identified, based on sampled subsets with different effects: sample size, sampling strategy and

error rates. Sample thresholds were evaluated on their proximity to the optimal threshold. From

these experiments it can be concluded that the larger the sample the better the threshold selected.

Furthermore, it can also be concluded that as the number of bins used to sample instances from

the prediction range increases, the more representative the samples will be, and hence the closer

the cutoff will be to the optimal threshold.

The analysis in this chapter used the G-Mean Accuracy Ratio (GAR) to assess the quality of

the selected cutoffs. The results from these experiments were assessed on this measure using

the non-parametric Friedman’s test to determine whether there were any significant differences

between the effects analysed.

The selected cutoffs of the samples of the RF and SVM predictions were the closest to the

optimal adaptive threshold. The RF samples showed GAR values that were close to 0.9 for

samples as small as 0.05%. Therefore, as the RF models have a very high G-Mean Accuracy,

they will make much more accurate predictions after threshold adaptation than the use of a fixed

threshold when assessing a model’s performance. These results make RF the best out of the

three compared algorithms to model network traffic and detect novel intrusions.

8

211

Chapter 8: Conclusion

Chapter Eight

Conclusion

From the earliest research on Intrusion Detection in 1972, researchers have employed various

methods and techniques to devise systems to detect novel and unknown attacks. Various

methods, such as Machine Learning (ML) and Data Mining (DM), have been used to serve this

quest. However, researchers recognise the limitations of such approaches in addressing the

variability in traffic patterns over time. This has led to further research in this area and a number

of solutions have been proposed to address such limitations. For example, some methods have

been proposed and developed to detect variability and hence adjust the parameters of the

detection model in a real-time setup. Others have proposed ensemble methods to create strong

ID models by aggregating and unifying multiple weak models, which can be replaced when any

change in pattern is detected in a data stream domain.

However, adaptation in batch-learning methods is the area of focus for this thesis as it remains

under-researched. The aim of this thesis is to demonstrate the importance of threshold

tuning/adaptation of the model predictions based on the dataset being evaluated. This is due to

the fact that data evolves over time, especially in dynamic environments, like network traffic,

where changes occur very quickly, which renders ID models redundant faster than they would

be with a fixed threshold.

Chapter 8: Conclusion

212

To this end, in this thesis the following hypothesis has been investigated, as stated in Chapter 1

and Chapter 3:

 “In a binary batch-learning setup, prediction accuracy of a score-

based anomaly intrusion detection model can be improved by

adapting the discriminating threshold specifically for the predictions

of the evaluated network traffic.”

During this research, multiple questions were addressed to piece together a holistic view of the

problem. The study started by investigating the effect of adapting a discriminating threshold for

every evaluation data and comparing the performance (detection accuracy) of models with a

fixed threshold. The potential of threshold adaptation for a domain specific dataset (STA2018),

which was specifically generated for this thesis, was then investigated under various scenarios

that mimicked real life setups. Finally, this study examined the potential of threshold adaptation

based on sampled validation data, where multiple variables had been used to control the

sampling of the data and their effects have been assessed.

8.1 Main Findings

This section provides a summary of the main results of the experiments and analyses conducted

in this thesis.

8.1.1 Importance of threshold adaptation

In a conventional binary batch-learning process, the discriminating threshold of an ID model is

usually set just once using various techniques, such as a K-folds Cross-Validation or an

independent validation (hold-out) data. Once that threshold has been set, it is then be used for

all subsequent predictions undertaken by that model [27]. This study has highlighted both the

shortcoming of such approaches and pointed out the potential of existing problems in estimating

 8.1 Main Findings

213

a model’s actual performance. That is because the statistical properties of the training data are

likely to differ from those of both the validation data and the subsequent evaluation (test) data.

As a result, in this thesis it has been suggested that threshold selection should not be based on

the detection model alone, where the same threshold being used for all subsequent evaluations

and be expected to provide the optimal model predictions. Instead, a discriminating threshold

should be set, based on a combination of the ID model and the evaluated (test) data.

Furthermore, the best threshold should be independently selected for each evaluated dataset,

especially where the threshold selection is based on an optimisation of some performance

criterion. As a result, this study has shown significant statistical differences in model

performance (prediction accuracy) depending on whether a fixed or an adaptive threshold is

used, with a tuned threshold improving model performance.

Three ML algorithms (C5.0, Random Forest and SVM) were compared and showed similar

behaviour in relation to threshold tuning which resulted in significant improvements in the

predictions of their models. However, Random Forest was the best performing algorithm with

the highest detection rates and the least variability after threshold tuning.

In this research it has been concluded that the use of a fixed threshold for model predictions

undermines the actual model performance. Therefore, it is recommended that the discriminating

threshold should be adapted based on a representative sample of the evaluation data. However,

in domains where the statistical differences (or concept drift), between the training data used to

build the ID model and the evaluation (test) data is not high, threshold adaptation will incur an

extra overhead, when a fixed threshold would have sufficed. Therefore, a good measure of

concept drift is required, along with further investigation and research to evaluate what

measures can best detect such drifts and hence help the security analysts understand when to

perform threshold selection.

Chapter 8: Conclusion

214

8.1.2 Threshold adaptation to address feature drift

The model development stage could be performed after some pre-processing phases, such as

feature selection or data balancing, based on the analysis of the available data in order to

improve the efficiency of the models generated. When data with different statistical properties

are used, the results of such processing may not be similar. This is a common scenario in real

life setups where the best features of the training data may not be the same as those of any

future, unseen data. This study therefore investigated such scenarios, and evaluated multiple

models under different setups.

This research concluded that for all of the ML algorithms that were compared under various

model development scenarios, such as feature sets and data balancing, an adaptive threshold

outperforms a fixed threshold. Essentially, threshold tuning based on the evaluated (test) data

can reduce the adverse effects of such pre-processing phases (feature selection and/or data

balancing) in dynamic environments.

In this thesis it has been shown that all of the ML algorithms analysed perform poorly prior to

tuning. However, threshold adaptation increased the accuracy of model performance for all of

the ML algorithms, with the RF algorithm being the most adaptable and showing the best

overall performance. It has also been shown that data balancing does not produce significant

improvements in model performance, except in the case of the C5.0 algorithm in those very

limited instances where training data are highly skewed or imbalanced and have very few

instances or records of the minority class. Similarly, different feature sets did not make a

significant difference to the performance of the ML models, which encouraged the use of small

feature sets without serious degradation in model performance (accuracy). However, with the

RF algorithm, the performance of models that used feature sets selected on the basis of the

Mean Decrease of Gini [for both balanced (MDGBal.) and imbalanced (MDG)] was statistically

 8.1 Main Findings

215

lower than that of models that used other feature groups; this was due to the tendency of the

Mean Decrease of Gini measure to select local features (specific to the training data).

8.1.3 Optimal threshold selection

This study has highlighted the importance of adapting the discriminating threshold for every

evaluation (test) data predictions based on a representative sample of that data. In this thesis

therefore it has been investigated the possibility of identifying the optimal adaptive threshold

for the entire evaluation (test) data using the true labels of a sampled small subset (validation

data). This investigation examined the effect of three key variables - sample size, sampling

strategy and label error rates - on the threshold selected for the sampled validation data. The

quality of the threshold selected was assessed by measuring the ratio of its performance

(accuracy as measured by the Geometric Mean of Accuracy) on the entire evaluation (test) data

relative to that of the optimal threshold (cutoff).

Threshold selection for the predictions of the RF and SVM algorithms, using sampled validation

data, performed the best. For the RF predictions, a sample as small as 0.05% of the original

evaluation (test) data was sufficient to identify a threshold with an accuracy rate of over 90%

of the overall accuracy of the optimal threshold.

All of the algorithms that were compared showed similar results in terms of sample size; the

bigger the sample size, the better the estimated threshold i.e. the nearer it was to the optimal

threshold.

As expected, increased error rates in the sampled validation data resulted in threshold

estimations that furthest from the optimal threshold. The sampled data of SVM predictions

showed greater sensitivity to errors than that of RF predictions. However, the C5.0 predictions

exhibited the opposite effect; as error rates increased the estimated threshold of their sampled

data increased in quality, which is attributed to the inferiority of C5.0 predictions. In general,

the loss of quality due to increased error rates in relation to the threshold selected, was more

Chapter 8: Conclusion

216

evident in larger samples. However, as sample size decreased, the influence of error rates also

decreased.

Stratified sampling strategies, where the prediction range is divided into multiple bins (B10, B20,

B50 and B100) to draw random samples, showed a more positive effect on the quality of the

threshold selected than random sampling (B1). Moreover, the larger the number of bins, the

better the threshold selected. This is due to the better coverage of their prediction ranges, which

results in a more representative validation sample. However, the binning effect became much

more evident as samples got smaller. With sample sizes larger than 1% of the original

population (data), the effect of a multi-bin sampling strategy became indistinguishable.

The relationship between error rates and the number of bins differed from one algorithm to

another. The RF predictions showed a stable pattern with the larger the number of bins the

closer the estimate came to the optimal threshold across all of the error rates tested. The SVM

predictions showed significant differences between sampling strategies as the error rate

increased. However, the C5.0 predictions were surprising; random sampling showed similar

results to a large number of sampling bins, and, as error rates increased, the random sampling

became significantly better at estimating the optimal threshold.

8.2 Future Work

Although the discussion of this thesis has shown the importance of threshold tuning/adaptation

on the predictions of models based on the dataset under evaluation, it has also highlighted some

of the limitations of this approach. Moreover, it is worth noting that, over the course of this

research, more questions have been raised than initially proposed. This section therefore lists

some possible directions for future studies.

 8.2 Future Work

217

8.2.1 Systematic comparison of different evaluation techniques

As outlined in the literature, K-folds Cross-Validation and hold-out are the most widely used

techniques to assess the model performance of various systems and algorithms. However, the

prospective technique, which generates a setup that better mimics real-life, is the most

underutilised evaluation approach. Therefore, a systematic analysis is required to compare all

of these techniques, to understand their true capability to assess models and to identify the best

approach for setting a standard for all analyses in the IDS domain.

8.2.2 Threshold adaptation for multi-class models and other ML

This study has analysed and investigated the effect of prediction threshold tuning in binary

classification setups, an approach which has been shown to significantly improved model

performance. However, no analysis was conducted on multi-class problems. Therefore, one

potential avenue for further investigation is extending the threshold adaptation technique to

multi-class predictions.

This study also analysed three ML algorithms using their default settings. Future studies could

extend this analysis to a more diverse range of ML algorithms and include other performance

criteria, such as speed and resource consumption, to identify the best algorithm(s) for the

network ID domain and the most adaptable to traffic variability.

8.2.3 Threshold adaptation against attack

This study did not consider the security of the IDS that implemented the tuning approach.

Therefore, a further study is needed to analyse the resilience of this approach to attacks that

target IDS, such as sporadic changes and evasion attacks.

8.2.4 Data stream domains

Another possible research avenue is applying the threshold tuning approach to data stream

domains in order to reduce the model generation process as well as to compare its overall

performance and resource utilisation with the state-of-the-art solutions in that domain. It is

Chapter 8: Conclusion

218

expected that in such studies, the ID models will last longer as they will be phased out less

frequently. This is because the ID models will maintain their high performance for longer so

the updating process will not be triggered as often. However, this might require evaluating the

instances in that domain in mini batches to adapt the threshold for each batch, which could slow

the system response.

8.2.5 Data pre-processing

Once this study recognised the effect of traffic variability over time on feature importance

(which can vary between training and evaluation data), it used two measures to assess feature

importance and hence select the salient ones. In this thesis it has been shown that threshold

tuning helped to mitigate or reduce the effect of feature drift. Therefore, further studies could

analyse various feature selection and dimension reduction strategies to evaluate the best

approach for the network ID domain. These studies could also thoroughly investigate which

factors in threshold adaptation could mitigate the effect of feature drift on feature selection or

dimension reduction methods.

Similarly, only one method, SMOTE, was used to address the imbalance effect of the training

dataset on model performance. Therefore, future studies could extend the analysis to investigate

how different approaches could identify the best performing technique with the least time

complexity, as time is a precious requirement for network based IDS.

8.2.6 Validation data sampling

This study has clearly shown the advantage of threshold adaptation in improving model

performance and has investigated an approach to identify the optimal adaptive threshold based

on representative validation data sampled from the entire test data. The true labels of the

sampled data were used to optimise the performance criteria for the selected threshold. Different

sample sizes, strategies and error rates were also investigated to identify the optimal threshold.

 8.2 Future Work

219

A future study could use different sampling techniques to identify the ‘close to optimal’

threshold. It could also investigate the use of multiple thresholds based on different traffic types,

given that model predictions for ICMP traffic differ from those of TCP, and the patterns of

HTTP traffic differ from those of FTP or SMTP. Using a single threshold to classify diverse

traffic patterns might therefore hinder the overall detection performance. As a result, a multiple

thresholds setup is a line of research worth investigating further.

As this study used sampled validation data to identify a close to optimal threshold, it depended

on the quality of the instances sampled. Therefore, a future study could identify the near to

optimal threshold by performing iterative sampling - with replacement - using the sampled

validation data. The average threshold from multiple iterations could then be assessed

statistically to determine its quality.

8.2.7 Drifts measurements

The threshold adaptation process is not required when training and test datasets exhibit the same

statistical properties. More studies are therefore needed to quantify the drift or difference

between datasets by conducting some analysis such as Kullback–Leibler divergence test, so that

such a measure can be used to assess the threshold shift for the test data. Such an approach

could eliminate the need to access the true labels of the validation data, which can be a costly

process.

8.2.8 Further comparisons

As the presented experiments showed that Random Forest algorithm performance was the

highest between compared algorithms and the most adaptive algorithm. Also, knowing that this

algorithm is a type of ensemble algorithms. Future studies could compare different ensemble

type algorithms within the ID domain using the threshold adaptation approach. Further

comparisons could be conducted to compare this approach with some of the state-of-the-art

methods such as data stream methods and semi-supervised techniques (i.e. active learning).

Chapter 8: Conclusion

220

8.3 Reflective/Closing Remarks

A novel approach to evaluating detection models in the network ID field has been outlined in

this thesis, where the use of prospective sampling ensured a close resemblance to real-life

setups. This study also illustrated the gap that exists between the actual performance of ID

models and what is usually believed about their performance when fixed thresholds are used.

The Random Forest (RF) algorithm performed the best in detecting novel attacks and exhibited

the best adaptability traits to changes in network traffic. The SVM algorithm performed second

best in all the analyses conducted. Knowing that a linear version of SVM with its default setting

was used throughout this thesis, a future investigation could explore the potential of this

algorithm to fit the requirements of this domain. Although many studies have shown that C5.0

is comparable to algorithms such as RF and SVM, it scored the worst of all the algorithms,

especially in its ability to adapt to changes in traffic.

As previous studies on IDS have adopted the conventional K-folds Cross-Validation or hold-out

validation techniques in their assessment, their conclusions should be revisited as per the

findings and recommendations of this thesis.

This study has provided several topical and novel contributions to IDS research as outlined in

Chapter 1. The work has demonstrated the value of threshold adaptation in improving the

prediction efficiency (accuracy) of a binary ID model in network anomaly detection. Such

threshold tuning is performed using a representative small sample of the evaluated traffic.

A

221

Appendix (A) Results of Chapter 4 (First)

Experiment

Appendix (A)

Results of Chapter 4 (First) Experiment

This appendix presents the results of the second phase experiments (conducted in Chapter 4)

for every algorithm (C5.0, Random Forest and SVM) with different datasets (gureKDD, SEA

and AGR). In these tables, each row corresponds to the model and every column represents the

file that was used either in building the model or to test the model. The shaded cells present the

results from where a file was used to build a prediction model using the 10-folds Cross-

Validation. Each one of these cells presents two measure: the Model’s optimal Threshold (MT);

and the best G-Mean Accuracy reached, denoted by (CA). Every other (unshaded) cell presents

three different values: the G-Mean accuracy of the model when the pre-computed cutoff

(threshold) was used (MT) before adaptation; the new optimal threshold when it was adapted

specifically to the test data file (FT); and the G-Mean accuracy after adaptation (FA).

Appendix (A) Results of Chapter 4 (First) Experiment

222

A.1. C5.0

This section presents the performance results of C5.0 algorithm on the three different datasets

(gureKDD, SEA and AGR).

 File 1 File 2 File 3 File 4 File 5 File 6 File 7

Model 1
MT:

CA:

0.0001

0.3904

MA:

FT:

FA:

0.0000

0.0000

0.0000

MA:

FT:

FA:

0.0000

0.0000

0.0000

MA:

FT:

FA:

0.0000

0.0000

0.0000

MA:

FT:

FA:

0.0000

0.0000

0.0000

MA:

FT:

FA:

0.0000

0.0000

0.0000

MA:

FT:

FA:

0.0000

0.0000

0.0000

Model 2
MA:

FT:

FA:

0.2181

0.0659

0.8125

MT:

CA:

0.3530

0.9981

MA:

FT:

FA:

0.2108

0.2140

0.9740

MA:

FT:

FA:

0.7154

0.2070

0.9248

MA:

FT:

FA:

0.2162

0.2140

0.9715

MA:

FT:

FA:

0.5786

0.2140

0.9646

MA:

FT:

FA:

0.1850

0.2140

0.9805

Model 3
MA:

FT:

FA:

0.0000

0.2007

0.8884

MA:

FT:

FA:

0.7127

0.1474

0.9150

MT:

CA:

0.5863

0.9995

MA:

FT:

FA:

0.8198

0.3735

0.8997

MA:

FT:

FA:

0.9874

0.6506

0.9956

MA:

FT:

FA:

0.9849

0.6460

0.9928

MA:

FT:

FA:

0.9981

0.3926

0.9994

Model 4
MA:

FT:

FA:

0.8727

0.0847

0.9770

MA:

FT:

FA:

0.4109

0.0856

0.8656

MA:

FT:

FA:

0.9948

0.3384

0.9949

MT:

CA:

0.3037

0.9981

MA:

FT:

FA:

0.9862

0.5781

0.9965

MA:

FT:

FA:

0.9740

0.6865

0.9944

MA:

FT:

FA:

0.9988

0.5321

0.9995

Model 5
MA:

FT:

FA:

0.8448

0.2506

0.9740

MA:

FT:

FA:

0.3315

0.0952

0.7145

MA:

FT:

FA:

0.9963

0.6314

0.9965

MA:

FT:

FA:

0.9107

0.0839

0.9453

MT:

CA:

0.5854

0.9998

MA:

FT:

FA:

0.8525

0.4144

0.9977

MA:

FT:

FA:

0.9995

0.6126

0.9995

Model 6
MA:

FT:

FA:

0.8451

0.3233

0.9997

MA:

FT:

FA:

0.9610

0.3154

0.9948

MA:

FT:

FA:

0.9986

0.6095

0.9989

MA:

FT:

FA:

0.9093

0.2791

0.9128

MA:

FT:

FA:

0.9996

0.5838

0.9997

MT:

CA:

0.5382

0.9998

MA:

FT:

FA:

0.9994

0.5608

0.9994

Model 7
MA:

FT:

FA:

0.8161

0.2371

0.9504

MA:

FT:

FA:

0.9894

0.4086

0.9903

MA:

FT:

FA:

0.8435

0.7801

0.9908

MA:

FT:

FA:

0.8454

0.6245

0.9308

MA:

FT:

FA:

0.9321

0.7427

0.9959

MA:

FT:

FA:

0.9802

0.7330

0.9939

MT:

CA:

0.4664

0.9998

Table A.1: C5.0 model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.4424

0.8731

MA:

FT:

FA:

0.8740

0.4584

0.8744

MA:

FT:

FA:

0.8046

0.1404

0.8517

MA:

FT:

FA:

0.8052

0.1404

0.8522

MA:

FT:

FA:

0.8361

0.1430

0.8502

MA:

FT:

FA:

0.8362

0.1404

0.8503

Model 2
MA:

FT:

FA:

0.8726

0.4338

0.8736

MT:

CA:

0.3845

0.8731

MA:

FT:

FA:

0.8086

0.0733

0.8486

MA:

FT:

FA:

0.8074

0.0736

0.8493

MA:

FT:

FA:

0.8373

0.1561

0.8471

MA:

FT:

FA:

0.8372

0.1561

0.8468

Model 3
MA:

FT:

FA:

0.8320

0.8520

0.8574

MA:

FT:

FA:

0.8319

0.8520

0.8586

MT:

CA:

0.4882

0.8898

MA:

FT:

FA:

0.8896

0.4691

0.8901

MA:

FT:

FA:

0.8592

0.5192

0.8599

MA:

FT:

FA:

0.8593

0.5181

0.8600

Model 4
MA:

FT:

FA:

0.8317

0.9259

0.8612

MA:

FT:

FA:

0.8319

0.9259

0.8617

MA:

FT:

FA:

0.8906

0.4832

0.8906

MT:

CA:

0.4827

0.8902

MA:

FT:

FA:

0.8599

0.5177

0.8603

MA:

FT:

FA:

0.8599

0.5155

0.8603

Model 5
MA:

FT:

FA:

0.8387

0.7024

0.8700

MA:

FT:

FA:

0.8394

0.7030

0.8704

MA:

FT:

FA:

0.8781

0.2805

0.8821

MA:

FT:

FA:

0.8775

0.2805

0.8821

MT:

CA:

0.2959

0.8567

MA:

FT:

FA:

0.8568

0.2948

0.8569

Model 6
MA:

FT:

FA:

0.8391

0.6915

0.8686

MA:

FT:

FA:

0.8395

0.6873

0.8691

MA:

FT:

FA:

0.8762

0.2457

0.8819

MA:

FT:

FA:

0.8759

0.2457

0.8821

MA:

FT:

FA:

0.8563

0.2773

0.8570

MT:

CA:

0.3049

0.8559

Table A.2: C5.0 model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

 Appendix (A) Results of Chapter 4 (First) Experiment

223

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.7225

0.9449

MA:

FT:

FA:

0.9443

0.7171

0.9445

MA:

FT:

FA:

0.4844

0.9374

0.4932

MA:

FT:

FA:

0.4850

0.9383

0.4930

MA:

FT:

FA:

0.6873

0.8237

0.6888

MA:

FT:

FA:

0.6873

0.8212

0.6885

Model 2
MA:

FT:

FA:

0.9447

0.7078

0.9448

MT:

CA:

0.7207

0.9448

MA:

FT:

FA:

0.4835

0.9425

0.4938

MA:

FT:

FA:

0.4829

0.9426

0.4934

MA:

FT:

FA:

0.6871

0.8293

0.6882

MA:

FT:

FA:

0.6867

0.8141

0.6882

Model 3
MA:

FT:

FA:

0.4925

0.2948

0.4932

MA:

FT:

FA:

0.4925

0.2880

0.4929

MT:

CA:

0.3838

0.9341

MA:

FT:

FA:

0.9341

0.3843

0.9341

MA:

FT:

FA:

0.6968

0.2862

0.6984

MA:

FT:

FA:

0.6976

0.2850

0.6990

Model 4
MA:

FT:

FA:

0.4907

0.3032

0.4916

MA:

FT:

FA:

0.4900

0.2537

0.4911

MA:

FT:

FA:

0.9328

0.3757

0.9334

MT:

CA:

0.3917

0.9339

MA:

FT:

FA:

0.6956

0.2813

0.6977

MA:

FT:

FA:

0.6964

0.2628

0.6985

Model 5
MA:

FT:

FA:

0.7114

0.3538

0.7492

MA:

FT:

FA:

0.7114

0.3588

0.7484

MA:

FT:

FA:

0.7382

0.6698

0.7623

MA:

FT:

FA:

0.7386

0.6669

0.7624

MT:

CA:

0.5418

0.7059

MA:

FT:

FA:

0.7079

0.5505

0.7081

Model 6
MA:

FT:

FA:

0.7147

0.3788

0.7463

MA:

FT:

FA:

0.7140

0.3790

0.7459

MA:

FT:

FA:

0.7360

0.6740

0.7626

MA:

FT:

FA:

0.7376

0.6807

0.7628

MA:

FT:

FA:

0.7082

0.5236

0.7085

MT:

CA:

0.5259

0.7101

Table A.3: C5.0 model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

A.2. Random Forest

This section presents the performance results of the Random Forest (RF) algorithm on the three

different datasets (gureKDD, SEA and AGR).

 File 1 File 2 File 3 File 4 File 5 File 6 File 7

Model 1
MT:

CA:

0.0004

0.9987

MA:

FT:

FA:

0.9752

0.0020

0.9777

MA:

FT:

FA:

0.8538

0.0247

0.9914

MA:

FT:

FA:

0.7948

0.0197

0.9423

MA:

FT:

FA:

0.6733

0.0790

0.9937

MA:

FT:

FA:

0.7410

0.0765

0.9929

MA:

FT:

FA:

0.9673

0.0219

0.9952

Model 2
MA:

FT:

FA:

0.3085

0.0021

0.9930

MT:

CA:

0.0682

0.9984

MA:

FT:

FA:

0.9807

0.0620

0.9851

MA:

FT:

FA:

0.9103

0.0259

0.9359

MA:

FT:

FA:

0.9657

0.0634

0.9699

MA:

FT:

FA:

0.9531

0.0651

0.9563

MA:

FT:

FA:

0.9859

0.0491

0.9963

Model 3
MA:

FT:

FA:

0.2182

0.0702

0.9205

MA:

FT:

FA:

0.6430

0.0728

0.9902

MT:

CA:

0.7623

0.9996

MA:

FT:

FA:

0.5304

0.2848

0.9324

MA:

FT:

FA:

0.9898

0.5749

0.9951

MA:

FT:

FA:

0.8262

0.4472

0.9930

MA:

FT:

FA:

0.9815

0.3997

0.9994

Model 4
MA:

FT:

FA:

0.8448

0.0671

0.9970

MA:

FT:

FA:

0.7060

0.0479

0.9894

MA:

FT:

FA:

0.9953

0.4800

0.9966

MT:

CA:

0.2299

0.9983

MA:

FT:

FA:

0.9862

0.4524

0.9990

MA:

FT:

FA:

0.9747

0.6083

0.9947

MA:

FT:

FA:

0.9987

0.4758

0.9995

Model 5
MA:

FT:

FA:

0.8165

0.1205

0.9736

MA:

FT:

FA:

0.6326

0.0100

0.8836

MA:

FT:

FA:

0.9968

0.5226

0.9969

MA:

FT:

FA:

0.9311

0.0468

0.9418

MT:

CA:

0.6004

0.9999

MA:

FT:

FA:

0.9980

0.4297

0.9981

MA:

FT:

FA:

0.9996

0.5539

0.9996

Model 6
MA:

FT:

FA:

0.8863

0.2246

0.9981

MA:

FT:

FA:

0.9542

0.1032

0.9965

MA:

FT:

FA:

0.9989

0.4994

0.9991

MA:

FT:

FA:

0.9082

0.0270

0.9486

MA:

FT:

FA:

0.9998

0.5236

0.9998

MT:

CA:

0.6015

0.9999

MA:

FT:

FA:

0.9994

0.3762

0.9996

Model 7
MA:

FT:

FA:

0.8448

0.0667

0.9754

MA:

FT:

FA:

0.9841

0.1118

0.9908

MA:

FT:

FA:

0.9884

0.4181

0.9986

MA:

FT:

FA:

0.9300

0.3612

0.9352

MA:

FT:

FA:

0.9914

0.4174

0.9970

MA:

FT:

FA:

0.9961

0.3643

0.9974

MT:

CA:

0.3046

0.9999

Table A.4: Random Forest (RF) model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT

(Model optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal

Threshold); FA (File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

Appendix (A) Results of Chapter 4 (First) Experiment

224

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.4249

0.8750

MA:

FT:

FA:

0.8758

0.4352

0.8758

MA:

FT:

FA:

0.8696

0.1905

0.8764

MA:

FT:

FA:

0.8027

0.2857

0.8053

MA:

FT:

FA:

0.8358

0.3469

0.8364

MA:

FT:

FA:

0.8358

0.3492

0.8364

Model 2
MA:

FT:

FA:

0.8752

0.4455

0.8752

MT:

CA:

0.4286

0.8757

MA:

FT:

FA:

0.8026

0.2770

0.8053

MA:

FT:

FA:

0.8680

0.1931

0.8759

MA:

FT:

FA:

0.8357

0.3565

0.8363

MA:

FT:

FA:

0.8357

0.3501

0.8363

Model 3
MA:

FT:

FA:

0.8536

0.3614

0.9113

MA:

FT:

FA:

0.8323

0.6493

0.8338

MT:

CA:

0.4942

0.8920

MA:

FT:

FA:

0.8924

0.4518

0.8926

MA:

FT:

FA:

0.8609

0.5025

0.8610

MA:

FT:

FA:

0.8604

0.5672

0.8607

Model 4
MA:

FT:

FA:

0.8319

0.6519

0.8333

MA:

FT:

FA:

0.8636

0.3710

0.9113

MA:

FT:

FA:

0.8921

0.5081

0.8921

MT:

CA:

0.4795

0.8925

MA:

FT:

FA:

0.8609

0.5323

0.8612

MA:

FT:

FA:

0.8606

0.5489

0.8609

Model 5
MA:

FT:

FA:

0.8389

0.6723

0.8685

MA:

FT:

FA:

0.8393

0.6730

0.8695

MA:

FT:

FA:

0.8782

0.2943

0.8832

MA:

FT:

FA:

0.8786

0.2998

0.8839

MT:

CA:

0.3635

0.8576

MA:

FT:

FA:

0.8572

0.3373

0.8576

Model 6
MA:

FT:

FA:

0.8369

0.6597

0.8691

MA:

FT:

FA:

0.8368

0.6596

0.8695

MA:

FT:

FA:

0.8806

0.3000

0.8829

MA:

FT:

FA:

0.8815

0.3111

0.8835

MA:

FT:

FA:

0.8579

0.3383

0.8579

MT:

CA:

0.3391

0.8574

Table A.5: Random Forest (RF) model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model

optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA

(File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.6669

0.9483

MA:

FT:

FA:

0.9482

0.6423

0.9484

MA:

FT:

FA:

0.4774

0.9975

0.5042

MA:

FT:

FA:

0.4812

0.9954

0.5040

MA:

FT:

FA:

0.6869

0.8261

0.6895

MA:

FT:

FA:

0.6871

0.8361

0.6893

Model 2
MA:

FT:

FA:

0.9488

0.6482

0.9490

MT:

CA:

0.6291

0.9486

MA:

FT:

FA:

0.4788

0.9951

0.5059

MA:

FT:

FA:

0.4762

0.9972

0.5054

MA:

FT:

FA:

0.6858

0.8200

0.6894

MA:

FT:

FA:

0.6856

0.8227

0.6895

Model 3
MA:

FT:

FA:

0.4900

0.2258

0.4939

MA:

FT:

FA:

0.4933

0.3376

0.4940

MT:

CA:

0.4067

0.9387

MA:

FT:

FA:

0.9387

0.3566

0.9395

MA:

FT:

FA:

0.6989

0.3066

0.7007

MA:

FT:

FA:

0.6995

0.3278

0.7019

Model 4
MA:

FT:

FA:

0.4928

0.2955

0.4939

MA:

FT:

FA:

0.4902

0.2093

0.4942

MA:

FT:

FA:

0.9390

0.3897

0.9391

MT:

CA:

0.4040

0.9398

MA:

FT:

FA:

0.6995

0.3192

0.7011

MA:

FT:

FA:

0.6997

0.3007

0.7016

Model 5
MA:

FT:

FA:

0.7208

0.4309

0.7620

MA:

FT:

FA:

0.7212

0.4309

0.7620

MA:

FT:

FA:

0.7401

0.6208

0.7785

MA:

FT:

FA:

0.7402

0.6201

0.7779

MT:

CA:

0.5182

0.7127

MA:

FT:

FA:

0.7144

0.5122

0.7149

Model 6
MA:

FT:

FA:

0.7248

0.4229

0.7607

MA:

FT:

FA:

0.7243

0.4310

0.7608

MA:

FT:

FA:

0.7351

0.6186

0.7788

MA:

FT:

FA:

0.7367

0.6119

0.7805

MA:

FT:

FA:

0.7139

0.5125

0.7140

MT:

CA:

0.5133

0.7129

Table A.6: Random Forest (RF) model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model
optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA

(File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

 Appendix (A) Results of Chapter 4 (First) Experiment

225

A.3. Support Vector Machine (SVM)

This section presents the performance results of the SVM algorithm on the three different

datasets (gureKDD, SEA and AGR).

 File 1 File 2 File 3 File 4 File 5 File 6 File 7

Model 1
MT:

CA:

0.9495

0.9250

MA:

FT:

FA:

0.6471

0.5556

0.6545

MA:

FT:

FA:

0.8171

0.9969

0.9727

MA:

FT:

FA:

0.2401

0.7165

0.3504

MA:

FT:

FA:

0.8974

0.9968

0.9695

MA:

FT:

FA:

0.8250

0.8581

0.9123

MA:

FT:

FA:

0.9665

0.9968

0.9715

Model 2
MA:

FT:

FA:

0.0000

0.9999

0.8253

MT:

CA:

1.0000

0.9869

MA:

FT:

FA:

0.1701

0.9520

0.5024

MA:

FT:

FA:

0.3076

0.9414

0.4525

MA:

FT:

FA:

0.1176

0.9219

0.5163

MA:

FT:

FA:

0.3457

0.9339

0.5285

MA:

FT:

FA:

0.1116

0.9425

0.6131

Model 3
MA:

FT:

FA:

0.8092

0.0070

0.8303

MA:

FT:

FA:

0.7206

0.0009

0.9022

MT:

CA:

0.0134

0.9977

MA:

FT:

FA:

0.7544

0.0004

0.9028

MA:

FT:

FA:

0.9699

0.0647

0.9793

MA:

FT:

FA:

0.9583

0.0272

0.9636

MA:

FT:

FA:

0.9791

0.0571

0.9878

Model 4
MA:

FT:

FA:

0.9195

0.9454

0.9196

MA:

FT:

FA:

0.2794

0.2162

0.6683

MA:

FT:

FA:

0.9678

0.9997

0.9941

MT:

CA:

0.9392

0.9591

MA:

FT:

FA:

0.9766

0.9990

0.9958

MA:

FT:

FA:

0.9783

0.9703

0.9840

MA:

FT:

FA:

0.9867

0.9989

0.9986

Model 5
MA:

FT:

FA:

0.8724

0.0000

0.9757

MA:

FT:

FA:

0.2233

0.0000

0.6778

MA:

FT:

FA:

0.9865

0.0065

0.9922

MA:

FT:

FA:

0.9172

0.0023

0.9339

MT:

CA:

0.0296

0.9992

MA:

FT:

FA:

0.8503

0.0068

0.8507

MA:

FT:

FA:

0.9983

0.0956

0.9985

Model 6
MA:

FT:

FA:

0.8443

0.0065

0.9531

MA:

FT:

FA:

0.2804

0.0077

0.6929

MA:

FT:

FA:

0.9894

0.8938

0.9907

MA:

FT:

FA:

0.9145

0.2803

0.9270

MA:

FT:

FA:

0.9976

0.7580

0.9979

MT:

CA:

0.7049

0.9970

MA:

FT:

FA:

0.9986

0.7158

0.9986

Model 7
MA:

FT:

FA:

0.8165

0.0025

0.8518

MA:

FT:

FA:

0.3163

0.0028

0.8853

MA:

FT:

FA:

0.9944

0.6753

0.9944

MA:

FT:

FA:

0.9107

0.0898

0.9366

MA:

FT:

FA:

0.9960

0.8415

0.9962

MA:

FT:

FA:

0.8476

0.0317

0.9434

MT:

CA:

0.7043

0.9994

Table A.7: SVM model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.4995

0.8763

MA:

FT:

FA:

0.8771

0.4999

0.8771

MA:

FT:

FA:

0.8018

0.3778

0.8936

MA:

FT:

FA:

0.8016

0.3773

0.8941

MA:

FT:

FA:

0.8358

0.3778

0.8617

MA:

FT:

FA:

0.8360

0.3785

0.8615

Model 2
MA:

FT:

FA:

0.8759

0.4949

0.8760

MT:

CA:

0.4951

0.8765

MA:

FT:

FA:

0.8021

0.3734

0.8928

MA:

FT:

FA:

0.8018

0.3731

0.8933

MA:

FT:

FA:

0.8356

0.3766

0.8613

MA:

FT:

FA:

0.8359

0.3764

0.8610

Model 3
MA:

FT:

FA:

0.8319

0.6300

0.8763

MA:

FT:

FA:

0.8320

0.6304

0.8770

MT:

CA:

0.4994

0.8933

MA:

FT:

FA:

0.8939

0.4997

0.8940

MA:

FT:

FA:

0.8615

0.5010

0.8617

MA:

FT:

FA:

0.8613

0.5005

0.8615

Model 4
MA:

FT:

FA:

0.8319

0.6263

0.8763

MA:

FT:

FA:

0.8321

0.6264

0.8769

MA:

FT:

FA:

0.8933

0.4964

0.8933

MT:

CA:

0.4964

0.8938

MA:

FT:

FA:

0.8615

0.4977

0.8616

MA:

FT:

FA:

0.8612

0.4972

0.8613

Model 5
MA:

FT:

FA:

0.8325

0.5602

0.8759

MA:

FT:

FA:

0.8326

0.5598

0.8765

MA:

FT:

FA:

0.8924

0.4337

0.8928

MA:

FT:

FA:

0.8929

0.4342

0.8932

MT:

CA:

0.4358

0.8614

MA:

FT:

FA:

0.8610

0.4361

0.8611

Model 6
MA:

FT:

FA:

0.8331

0.5572

0.8756

MA:

FT:

FA:

0.8332

0.5565

0.8760

MA:

FT:

FA:

0.8914

0.4311

0.8923

MA:

FT:

FA:

0.8918

0.4311

0.8927

MA:

FT:

FA:

0.8612

0.4346

0.8612

MT:

CA:

0.4351

0.8609

Table A.8: SVM model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

Appendix (A) Results of Chapter 4 (First) Experiment

226

 File 1 File 2 File 3 File 4 File 5 File 6

Model 1
MT:

CA:

0.6778

0.5529

MA:

FT:

FA:

0.5614

0.6778

0.5615

MA:

FT:

FA:

0.4695

0.6720

0.5106

MA:

FT:

FA:

0.4676

0.6721

0.5079

MA:

FT:

FA:

0.5148

0.6759

0.5211

MA:

FT:

FA:

0.5112

0.6753

0.5178

Model 2
MA:

FT:

FA:

0.5494

0.6769

0.5498

MT:

CA:

0.6767

0.5479

MA:

FT:

FA:

0.4829

0.6723

0.5045

MA:

FT:

FA:

0.4813

0.6720

0.5032

MA:

FT:

FA:

0.5148

0.6750

0.5174

MA:

FT:

FA:

0.5125

0.6749

0.5161

Model 3
MA:

FT:

FA:

0.4879

0.3848

0.4995

MA:

FT:

FA:

0.4877

0.3871

0.5004

MT:

CA:

0.3492

0.6440

MA:

FT:

FA:

0.6460

0.3463

0.6462

MA:

FT:

FA:

0.5656

0.3510

0.5659

MA:

FT:

FA:

0.5676

0.3553

0.5685

Model 4
MA:

FT:

FA:

0.4862

0.3895

0.4991

MA:

FT:

FA:

0.4861

0.3939

0.5005

MA:

FT:

FA:

0.6450

0.3487

0.6453

MT:

CA:

0.3476

0.6467

MA:

FT:

FA:

0.5652

0.3541

0.5664

MA:

FT:

FA:

0.5673

0.3553

0.5688

Model 5
MA:

FT:

FA:

0.4867

0.5308

0.4990

MA:

FT:

FA:

0.4862

0.5302

0.5003

MA:

FT:

FA:

0.6338

0.5078

0.6348

MA:

FT:

FA:

0.6352

0.5065

0.6365

MT:

CA:

0.5114

0.5598

MA:

FT:

FA:

0.5620

0.5122

0.5623

Model 6
MA:

FT:

FA:

0.4892

0.5345

0.4996

MA:

FT:

FA:

0.4889

0.5345

0.5006

MA:

FT:

FA:

0.6357

0.5118

0.6374

MA:

FT:

FA:

0.6362

0.5104

0.6384

MA:

FT:

FA:

0.5615

0.5140

0.5617

MT:

CA:

0.5159

0.5632

Table A.9: SVM model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model optimal

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase.

B

227

Appendix (B) Results of Chapter 6 (Second)

Experiment

Appendix (B)

Results of Chapter 6 (Second)

Experiment

This appendix lists the results of the second set of experiments performed on the STA2018

dataset and discussed in Chapter 6.

B.1. Selected Features

This section lists the results of the feature selection stage discussed in Section 6.2 (see

Chapter 6). The following tables show the selected features for every simulation day in the

STA2018 dataset for every feature importance measure.

Appendix (B) Results of Chapter 6 (Second) Experiment

228

B.1.1. Day 2 (12/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 131 1, 4, 7, 12, 15, 16, 17, 20, 25, 26, 27, 28, 29, 30, 36, 49, 58, 59, 60, 62, 63, 64, 72, 73, 74, 75, 76, 77, 79,

89, 90, 91, 92, 94, 96, 98, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 114, 116, 117, 118, 121, 122,

125, 126, 127, 134, 137, 138, 141, 142, 144, 149, 150, 151, 154, 155, 158, 168, 177, 178, 179, 180, 182,

196, 199, 201, 209, 214, 220, 222, 226, 232, 233, 235, 237, 239, 241, 264, 265, 268, 269, 273, 275, 277,

279, 281, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 300, 304, 306, 309, 312, 321, 324, 329,

340, 345, 348, 350, 367, 372, 381, 383, 401, 437, 442, 465, 476, 478, 482, 490

MDG 124 4, 7, 12, 15, 16, 17, 18, 19, 22, 25, 26, 27, 30, 35, 36, 37, 38, 40, 44, 45, 49, 57, 58, 59, 60, 62, 63, 64,

72, 73, 74, 75, 76, 77, 79, 88, 89, 90, 91, 92, 94, 97, 98, 99, 100, 101, 105, 106, 109, 110, 111, 112, 114,

116, 117, 118, 121, 122, 125, 126, 127, 134, 137, 138, 139, 141, 142, 143, 147, 151, 153, 156, 158, 162,

177, 178, 179, 180, 181, 182, 196, 198, 199, 203, 204, 209, 222, 226, 231, 233, 237, 239, 241, 251, 261,

263, 264, 268, 269, 273, 275, 277, 286, 287, 288, 289, 290, 292, 293, 294, 295, 300, 306, 329, 340, 345,

350, 380, 381, 383, 476, 478, 506, 530

MDABal. 166 4, 7, 8, 12, 17, 18, 20, 22, 26, 27, 30, 35, 36, 37, 42, 44, 45, 47, 49, 51, 52, 53, 59, 60, 61, 62, 63, 64, 73,

74, 75, 76, 77, 78, 79, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 106, 108, 109, 110, 111, 112, 114,

116, 117, 118, 119, 121, 122, 124, 127, 136, 137, 139, 141, 143, 144, 150, 151, 154, 155, 156, 157, 158,

162, 163, 166, 168, 176, 182, 187, 196, 199, 200, 205, 209, 212, 214, 216, 220, 222, 226, 231, 232, 233,

234, 237, 238, 239, 240, 241, 247, 254, 263, 264, 265, 268, 269, 272, 273, 275, 277, 279, 281, 283, 286,

287, 288, 289, 290, 292, 293, 294, 295, 297, 298, 300, 302, 304, 306, 312, 316, 318, 319, 321, 322, 324,

327, 329, 333, 340, 341, 345, 351, 360, 382, 383, 399, 400, 417, 437, 462, 469, 476, 478, 482, 490, 491,

493, 519, 521, 530, 531, 538, 542, 546

MDGBal. 119 4, 7, 8, 12, 29, 35, 36, 37, 42, 45, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 64, 70, 72, 76, 77, 78, 79, 88, 89,

90, 91, 92, 94, 96, 99, 101, 102, 104, 106, 108, 109, 110, 111, 112, 116, 122, 124, 135, 140, 148, 151,

152, 155, 157, 168, 198, 199, 200, 204, 209, 212, 214, 226, 227, 232, 234, 235, 236, 237, 239, 241, 250,

255, 263, 269, 272, 273, 275, 277, 279, 281, 283, 286, 288, 289, 290, 292, 293, 294, 295, 296, 297, 310,

311, 319, 327, 329, 341, 345, 347, 349, 351, 379, 382, 432, 462, 470, 476, 478, 480, 487, 491, 492, 507,

519, 523, 524, 534, 538

 Appendix (B) Results of Chapter 6 (Second) Experiment

229

B.1.2. Day 3 (13/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 519 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45,

46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,

124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,

167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,

209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,

230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,

251, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,

274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294,

295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317,

318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338,

339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,

360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380,

381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401,

402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422,

423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445,

446, 447, 448, 449, 450, 451, 453, 454, 455, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470,

471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491,

492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512,

513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534,

535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549

MDG 27 7, 202, 230, 284, 312, 327, 335, 340, 344, 348, 390, 403, 406, 408, 413, 431, 445, 447, 453, 459, 485,

513, 516, 518, 528, 545, 549

MDABal. 508 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45,

46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,

123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,

145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,

166, 167, 168, 169, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189,

190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210,

211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232,

233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,

254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,

275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295,

296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316,

317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,

338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358,

359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 374, 375, 376, 378, 379, 382, 383,

385, 386, 387, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407,

408, 410, 411, 412, 413, 414, 416, 417, 418, 421, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435,

436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457,

458, 459, 460, 461, 462, 463, 464, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,

480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 498, 500, 501, 502, 503,

504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524,

525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545,

546, 547, 548, 549

MDGBal. 138 1, 4, 7, 8, 12, 15, 16, 17, 22, 26, 27, 59, 62, 63, 64, 65, 66, 67, 73, 74, 75, 77, 78, 79, 89, 91, 94, 97, 98,

99, 112, 127, 137, 138, 146, 147, 152, 153, 154, 155, 158, 164, 166, 168, 178, 180, 182, 198, 200, 202,

205, 209, 210, 212, 216, 230, 231, 232, 233, 234, 235, 236, 239, 240, 241, 243, 245, 247, 249, 250, 251,

252, 258, 260, 263, 264, 267, 269, 271, 277, 281, 282, 284, 296, 312, 316, 321, 322, 323, 324, 327, 333,

334, 335, 337, 340, 344, 347, 348, 349, 350, 353, 355, 356, 368, 372, 383, 403, 406, 408, 413, 417, 428,

431, 440, 441, 443, 447, 453, 459, 470, 485, 487, 488, 489, 491, 511, 513, 516, 518, 520, 528, 536, 537,

541, 545, 548, 549

Appendix (B) Results of Chapter 6 (Second) Experiment

230

B.1.3. Day 4 (14/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 365 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 38, 40, 44, 45, 46, 47, 48, 49, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 97, 98, 99,

100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126,

127, 131, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,

157, 158, 162, 163, 164, 166, 168, 172, 176, 177, 178, 180, 182, 184, 185, 195, 196, 197, 198, 199, 200,

201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 218, 220, 222, 224, 226, 227,

228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249,

250, 251, 252, 253, 254, 257, 258, 259, 260, 262, 263, 264, 265, 267, 268, 269, 271, 273, 275, 276, 277,

279, 281, 282, 283, 284, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302,

304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,

327, 329, 333, 334, 335, 336, 337, 340, 341, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356,

357, 358, 359, 360, 361, 362, 366, 367, 368, 370, 372, 378, 379, 380, 381, 382, 383, 384, 386, 388, 396,

398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 412, 413, 417, 421, 425, 428, 431, 432, 433, 434,

435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 447, 449, 451, 452, 453, 454, 455, 456, 457, 458,

459, 460, 462, 464, 465, 469, 470, 474, 476, 478, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493,

494, 496, 497, 498, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 524,

525, 528, 530, 534, 535, 536, 537, 538, 541, 542, 545, 546, 548, 549

MDG 11 163, 277, 352, 362, 366, 367, 370, 372, 464, 469, 474

MDABal. 379 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 35, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 51, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 78, 79, 87, 89, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 119, 121, 122,

123, 124, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150,

151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 166, 168, 170, 171, 174, 176, 178, 179,

180, 181, 182, 184, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211,

212, 214, 216, 218, 220, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,

241, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263,

264, 265, 267, 268, 269, 271, 273, 274, 275, 276, 277, 279, 281, 282, 283, 284, 286, 287, 288, 289, 290,

291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313,

314, 315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329, 332, 333, 334, 335, 336, 337, 338, 340, 341,

344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 366, 367,

368, 370, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 387, 396, 397, 398, 399, 400, 401,

402, 403, 404, 405, 406, 407, 408, 412, 413, 417, 421, 423, 425, 428, 431, 432, 433, 434, 435, 436, 437,

439, 440, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 466,

469, 474, 476, 477, 478, 480, 484, 485, 487, 489, 490, 491, 492, 493, 495, 497, 503, 506, 507, 508, 509,

510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 524, 525, 528, 530, 534, 535, 536, 537, 538,

539, 541, 542, 545, 546, 548, 549

MDGBal. 118 1, 4, 7, 8, 12, 15, 16, 17, 18, 22, 25, 26, 27, 28, 37, 47, 58, 59, 60, 65, 66, 67, 72, 73, 74, 75, 89, 90, 91,

97, 98, 99, 103, 104, 105, 106, 112, 114, 137, 140, 146, 147, 149, 150, 152, 153, 154, 155, 157, 158,

162, 163, 164, 166, 168, 178, 179, 198, 205, 216, 227, 235, 242, 251, 256, 259, 264, 268, 269, 273, 277,

283, 286, 287, 288, 289, 291, 294, 297, 298, 300, 308, 316, 319, 322, 323, 324, 327, 334, 337, 340, 350,

352, 356, 357, 362, 366, 370, 372, 379, 397, 398, 406, 412, 417, 435, 436, 437, 452, 457, 460, 464, 469,

474, 487, 528, 541, 549

 Appendix (B) Results of Chapter 6 (Second) Experiment

231

B.1.4. Day 5 (15/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 369 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48,

49, 57, 58, 59, 60, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 89, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126,

127, 131, 132, 135, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 170, 172, 174, 176, 177, 178, 179, 180, 181, 182, 183,

185, 186, 187, 188, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 210, 211, 212, 214, 216,

218, 220, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245,

247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 267, 268, 269, 271,

273, 275, 277, 279, 281, 282, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 300,

302, 304, 305, 306, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329,

333, 334, 335, 336, 337, 338, 340, 341, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358,

359, 360, 361, 362, 363, 366, 367, 368, 370, 372, 373, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385,

386, 388, 389, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 410, 412, 413, 415, 417, 419, 421,

423, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 451, 452, 453,

454, 455, 456, 457, 458, 459, 460, 461, 462, 464, 465, 468, 469, 470, 472, 474, 476, 480, 482, 484, 486,

487, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 506, 507, 509, 510, 511, 512, 514, 515, 516, 517,

518, 519, 520, 522, 523, 524, 525, 528, 530, 534, 535, 537, 538, 539, 541, 542, 546, 548, 549

MDG 114 1, 4, 8, 12, 15, 17, 19, 20, 22, 25, 26, 27, 29, 30, 37, 38, 44, 47, 49, 57, 59, 72, 76, 92, 94, 96, 97, 98, 99,

100, 101, 106, 117, 118, 126, 127, 137, 139, 142, 144, 149, 177, 179, 180, 181, 182, 196, 200, 201, 208,

210, 211, 214, 218, 227, 232, 234, 235, 236, 243, 245, 247, 249, 250, 253, 263, 268, 269, 273, 277, 283,

287, 305, 306, 310, 311, 313, 314, 352, 367, 378, 379, 380, 381, 382, 397, 401, 402, 432, 433, 434, 435,

436, 437, 451, 454, 456, 459, 464, 469, 474, 484, 487, 488, 489, 490, 491, 506, 507, 510, 511, 512, 514,

515

MDABal. 389 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48,

49, 57, 58, 59, 60, 62, 65, 66, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98,

99, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123,

124, 125, 126, 127, 128, 135, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152,

153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 170, 172, 174, 176, 177, 178, 179, 180, 181,

182, 184, 186, 187, 188, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211,

212, 214, 216, 218, 219, 220, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238,

239, 240, 241, 242, 243, 245, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263,

264, 265, 267, 268, 269, 271, 273, 275, 276, 277, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290,

291, 292, 293, 294, 295, 296, 297, 298, 300, 301, 302, 303, 304, 305, 306, 308, 310, 311, 312, 313, 314,

315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329, 330, 333, 334, 335, 336, 337, 338, 340, 341, 345,

347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 366, 367, 368, 370,

372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 387, 389, 396, 397, 399, 400, 401,

402, 403, 404, 405, 406, 407, 409, 412, 413, 415, 417, 419, 420, 421, 422, 425, 427, 428, 429, 431, 432,

433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 451, 452, 453, 454, 455, 456, 457, 459, 460, 461,

462, 464, 465, 469, 470, 472, 474, 475, 476, 478, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491,

492, 493, 494, 495, 496, 497, 498, 504, 506, 507, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520,

521, 522, 523, 524, 525, 528, 530, 534, 535, 536, 537, 538, 539, 542, 546, 548, 549

MDGBal. 169 1, 4, 12, 16, 17, 19, 20, 22, 26, 30, 44, 48, 49, 58, 59, 73, 74, 75, 76, 78, 79, 89, 91, 92, 94, 96, 97, 98,

99, 101, 105, 106, 110, 112, 114, 116, 117, 118, 119, 121, 122, 124, 125, 126, 137, 139, 140, 141, 142,

144, 150, 151, 152, 153, 156, 157, 163, 177, 179, 181, 182, 195, 196, 201, 203, 205, 208, 209, 210, 214,

216, 218, 226, 227, 231, 233, 234, 235, 236, 237, 239, 243, 245, 247, 249, 253, 254, 258, 261, 263, 268,

269, 273, 275, 277, 279, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 300, 304, 305, 306,

310, 311, 315, 316, 318, 321, 322, 323, 324, 329, 334, 336, 337, 341, 345, 347, 348, 354, 356, 357, 360,

361, 367, 380, 381, 382, 383, 397, 401, 402, 412, 428, 433, 436, 437, 451, 455, 457, 459, 469, 476, 478,

487, 488, 489, 490, 491, 492, 493, 494, 506, 507, 511, 512, 519, 520, 530

B.1.5. Day 6 (16/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 60 7, 12, 15, 19, 26, 27, 28, 29, 30, 36, 38, 40, 47, 59, 62, 63, 64, 67, 73, 75, 77, 79, 89, 90, 91, 96, 97, 100,

105, 109, 110, 111, 116, 119, 126, 127, 142, 150, 152, 153, 156, 157, 226, 241, 269, 273, 275, 281, 287,

288, 290, 329, 345, 352, 360, 361, 520, 530, 535, 548

MDG 70 4, 7, 12, 15, 16, 17, 18, 20, 22, 25, 26, 28, 29, 36, 37, 40, 44, 45, 47, 57, 59, 62, 63, 64, 67, 72, 74, 75,

79, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 105, 106, 109, 110, 111, 114, 117, 118, 119, 121, 126, 127,

137, 140, 142, 143, 157, 264, 268, 269, 273, 275, 277, 286, 287, 292, 293, 294, 300, 329, 530

MDABal. 171 1, 4, 7, 8, 15, 16, 19, 22, 25, 29, 30, 35, 36, 37, 38, 40, 44, 45, 47, 48, 49, 55, 57, 59, 62, 63, 64, 72, 73,

75, 76, 77, 79, 88, 89, 90, 91, 92, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110, 111, 112, 114,

116, 117, 118, 119, 121, 122, 124, 126, 127, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149,

150, 151, 152, 153, 154, 155, 156, 157, 205, 209, 210, 216, 222, 226, 227, 231, 232, 233, 234, 235, 236,

237, 239, 241, 243, 245, 247, 249, 251, 253, 256, 258, 259, 261, 263, 264, 265, 268, 269, 273, 275, 277,

279, 281, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 302, 303, 304, 305, 306,

308, 310, 311, 312, 314, 318, 319, 321, 329, 338, 341, 345, 350, 354, 355, 357, 359, 360, 361, 465, 469,

480, 487, 488, 489, 498, 507, 519, 520, 523, 530, 535, 542, 546

MDGBal. 84 4, 7, 12, 30, 36, 45, 62, 63, 64, 76, 77, 88, 89, 90, 91, 96, 97, 99, 104, 109, 110, 111, 114, 126, 127, 137,

138, 141, 143, 144, 147, 150, 151, 152, 153, 157, 209, 226, 231, 232, 233, 234, 235, 241, 247, 249, 253,

258, 261, 263, 265, 269, 275, 277, 279, 284, 286, 287, 288, 290, 291, 292, 293, 295, 297, 298, 310, 312,

313, 315, 321, 324, 341, 345, 349, 354, 360, 361, 469, 480, 506, 520, 542, 546

Appendix (B) Results of Chapter 6 (Second) Experiment

232

B.1.6. Day 7 (17/Jun)

Features

Set

Number of

Features
Features Indexes

MDA 355 4, 7, 12, 17, 20, 21, 25, 27, 29, 30, 35, 36, 38, 41, 42, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 59, 61, 62,

63, 64, 65, 66, 72, 73, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100,

105, 107, 110, 115, 116, 119, 120, 121, 123, 129, 130, 132, 133, 134, 138, 139, 141, 143, 144, 145, 146,

147, 148, 149, 153, 154, 156, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 171, 173, 175, 177, 178,

180, 181, 182, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,

207, 209, 210, 211, 212, 213, 215, 217, 218, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 236,

237, 241, 244, 246, 248, 252, 253, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269,

270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,

294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 317, 318, 319, 320,

322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348,

351, 352, 355, 358, 360, 362, 363, 364, 365, 366, 367, 369, 370, 371, 374, 377, 379, 380, 381, 382, 383,

384, 390, 391, 392, 393, 394, 395, 397, 399, 400, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 414,

416, 417, 418, 419, 421, 422, 423, 424, 426, 427, 429, 430, 431, 433, 434, 436, 437, 440, 442, 444, 445,

446, 447, 448, 449, 450, 452, 453, 456, 457, 462, 463, 464, 466, 467, 469, 471, 472, 473, 474, 475, 477,

478, 479, 481, 484, 485, 486, 489, 490, 491, 492, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507,

509, 511, 513, 515, 517, 518, 521, 526, 527, 528, 529, 530, 531, 532, 533, 536, 537, 538, 539, 540, 541,

542, 543, 544, 545, 547, 549

MDG 138 1, 4, 7, 12, 20, 36, 44, 45, 59, 62, 63, 64, 75, 77, 78, 79, 89, 90, 94, 97, 98, 101, 105, 106, 109, 110, 111,

122, 123, 140, 141, 144, 148, 152, 158, 162, 163, 166, 168, 178, 179, 180, 181, 182, 195, 196, 198, 199,

200, 201, 202, 203, 204, 212, 218, 222, 230, 231, 232, 233, 237, 245, 251, 252, 254, 255, 256, 259, 263,

264, 268, 269, 273, 275, 277, 281, 283, 284, 286, 287, 288, 289, 292, 293, 294, 295, 297, 298, 300, 302,

304, 306, 308, 309, 311, 312, 313, 314, 323, 329, 335, 336, 345, 348, 355, 362, 366, 367, 370, 379, 381,

382, 383, 397, 399, 400, 402, 403, 404, 417, 431, 437, 453, 469, 476, 485, 489, 491, 493, 496, 497, 507,

509, 513, 536, 538, 546, 548

MDABal. 323 1, 4, 7, 12, 16, 20, 21, 26, 28, 29, 30, 35, 36, 37, 41, 42, 44, 47, 49, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63,

64, 66, 70, 72, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 94, 95, 97, 98, 99, 105, 107, 110, 112,

113, 114, 115, 116, 117, 119, 120, 121, 129, 131, 132, 133, 142, 143, 144, 145, 149, 150, 151, 152, 153,

154, 155, 157, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 178, 179, 180, 181, 182, 188, 190,

191, 193, 194, 195, 196, 197, 198, 200, 202, 203, 206, 208, 209, 210, 211, 213, 214, 215, 217, 218, 219,

221, 222, 223, 224, 225, 226, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 241, 243, 244, 245, 246,

247, 248, 249, 251, 260, 261, 263, 264, 265, 266, 268, 269, 270, 273, 275, 277, 278, 279, 280, 281, 282,

283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 300, 302, 303, 304, 305, 306, 311,

312, 313, 314, 316, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 336, 338, 339, 340, 342,

343, 344, 346, 355, 356, 357, 361, 363, 364, 365, 367, 368, 369, 371, 373, 374, 377, 378, 379, 380, 381,

382, 383, 385, 390, 391, 392, 393, 394, 395, 396, 401, 402, 403, 404, 408, 410, 411, 412, 414, 416, 418,

420, 422, 423, 424, 425, 426, 429, 430, 431, 435, 436, 437, 438, 444, 445, 446, 447, 448, 449, 450, 451,

453, 461, 462, 463, 464, 466, 467, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486,

488, 489, 491, 495, 497, 498, 501, 502, 503, 504, 505, 506, 507, 509, 511, 513, 514, 516, 518, 522, 525,

526, 527, 528, 529, 530, 531, 532, 533, 537, 540, 541, 542, 543, 544, 545, 547

MDGBal. 135 1, 4, 7, 15, 20, 26, 35, 48, 49, 57, 59, 61, 62, 63, 64, 69, 70, 71, 74, 76, 77, 79, 90, 91, 99, 109, 110, 111,

113, 114, 116, 119, 121, 128, 137, 140, 142, 146, 151, 152, 158, 178, 180, 181, 182, 196, 201, 204, 205,

209, 210, 222, 226, 235, 237, 238, 241, 242, 250, 255, 261, 263, 264, 265, 269, 275, 277, 279, 281, 286,

287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 300, 302, 304, 305, 306, 310, 311, 312, 315, 316, 321,

323, 329, 336, 337, 341, 347, 350, 356, 357, 361, 367, 370, 379, 380, 381, 383, 402, 403, 404, 428, 431,

432, 434, 437, 462, 464, 474, 476, 480, 488, 489, 490, 491, 495, 497, 507, 512, 513, 514, 515, 519, 523,

537, 548

 Appendix (B) Results of Chapter 6 (Second) Experiment

233

B.2. Models Results

This section lists the results of the model evaluations of the experiments discussed in

Section 6.5 (see Chapter 6).

B.2.1. C5.0 (Decision Trees) Results

Table B.1 presents the results of the experiments using the C5.0 algorithm. Each shaded cell

of Table B.1 contains the maximum G-Mean Accuracy achieved at the CV stage, where the

model’s threshold was set. Every other cell contains two performance measures. The top

measure is the model’s performance on the test subset (the day file) when its optimal (CV)

cutoff was used and the second measure is the model’s performance when the cutoff was

adapted for the test data. The measure in bold is the greater of the two measures.

Figure B.1 shows the performance (G-Mean Accuracy) for each model for each training day

for the C5.0 algorithm. Each plot shows models performances (in every sub-plot) under

different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances (Original

and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that day’s model after being

evaluated using all the other days’ files (along the x-axis). For each evaluation there are two

G-Mean Accuracy readings; one is based on the model’s optimal threshold (‘CV Cutoff’ in red

colour) while the other uses the adapted threshold (‘Adp. Cutoff’ in blue colour) on the test

data. The first day (along the x-axis) matches the training day of the main plot and corresponds

to the CV results of that model.

Appendix (B) Results of Chapter 6 (Second) Experiment

234

Table B.1: The performance of models (G-Mean Accuracy) for the original and adapted cutoff (threshold) for the C5.0 algorithm.

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.0099 0.0176 0.0053 0.8062 0.0568 0.0100 0.0241 0.0053 0.8995 0.0562

0.5882 0.5045 0.0148 0.9999 0.9934 0.9044 0.6387 0.0144 1.0000 0.9879

0.5967 0.8106 0.0105 0.0000 0.9477 0.9014 0.8661 0.0130 0.6304 0.7753

0.9745 0.9137 0.0211 0.5650 0.9776 0.9487 0.9043 0.0134 0.9652 0.8440

0.0375 0.9373 0.0000 0.0000 0.0316 0.9916 0.9249 0.0129 0.9985 0.7109

0.9937 0.9507 0.0130 0.9514 0.0616 0.9931 0.9271 0.0176 0.9989 0.9900

0.9982 0.0000 0.0216 0.9045 0.0875 0.8820 0.0100 0.3610 0.8523 0.7759

0.9993 0.1950 0.4956 0.9999 0.9895 0.9934 0.1419 0.6242 0.9966 0.9907

0.0000 0.0000 0.0000 0.0000 0.0000 0.9910 0.0200 0.0250 0.0479 0.7458

0.0000 0.0000 0.0000 0.0000 0.0000 0.9988 0.1485 0.0278 0.0480 0.9980

0.9901 0.9151 0.4357 0.0043 0.9998 0.9956 0.3826 0.3916 0.0092 0.9999

0.9945 0.9413 0.7629 0.0132 0.9998 0.9962 0.9210 0.6703 0.0258 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.9814 0.5062 0.2146 0.7327 0.1403 0.5278 0.8504 0.8807 0.8344 0.8673

0.9845 0.5720 0.7332 0.9890 0.4531 0.7520 0.8558 0.9420 0.8395 0.9405

0.1127 0.8999 0.0402 0.3013 0.0283 0.7905 0.9193 0.0790 0.9985 0.0647

0.6653 0.9476 0.3447 0.8502 0.1108 0.9882 0.9299 0.3659 0.9992 0.4175

0.9902 0.0100 0.0983 0.8528 0.0550 0.9087 0.0100 0.6697 0.9478 0.8538

0.9990 0.4568 0.4944 0.9504 0.1438 0.9857 0.0378 0.8277 0.9896 0.9923

0.0000 0.0000 0.0000 0.0000 0.0000 0.9808 0.0141 0.0128 0.0473 0.0532

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.8035 0.4143 0.7486 0.9999

0.9923 0.8980 0.4348 0.0485 0.9998 0.9469 0.1264 0.0249 0.7837 1.0000

0.9976 0.9286 0.4498 0.9837 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.1309 0.8138 0.5949 0.0000 0.6922 0.4031 0.8976 0.5522 0.5120 0.7539

0.8279 0.8979 0.7917 0.4171 0.7796 0.8978 0.9092 0.6895 0.7127 0.8859

0.6496 0.9160 0.9906 0.0000 0.9976 0.5688 0.8835 0.9049 0.0000 0.9666

0.9799 0.9246 0.9912 0.9815 0.9977 0.8639 0.9026 0.9100 0.0000 0.9792

0.9208 0.0200 0.0176 0.0000 0.9611 0.9927 0.0141 0.3249 0.8519 0.9978

0.9896 0.2523 0.8186 0.9529 0.9836 0.9961 0.8160 0.8821 0.9965 0.9982

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0000 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993

0.9943 0.8910 0.4342 0.0485 0.9999 0.9867 0.9068 0.4390 0.5440 0.9525

0.9976 0.9253 0.4423 0.9837 1.0000 0.9944 0.9142 0.6559 0.9853 0.9962

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.9849 0.5069 0.8782 0.5156 0.4736 0.7077 0.6074 0.5015 0.7124 0.0816

0.9876 0.5967 0.9296 0.9843 0.8484 0.8853 0.8378 0.8607 0.7731 0.4364

0.1337 0.9435 0.0580 0.3013 0.0245 0.9852 0.6290 0.0627 0.9958 0.4256

0.6646 0.9492 0.9824 0.8496 0.1062 0.9906 0.9232 0.1455 0.9971 0.6606

0.9984 0.1142 0.0993 0.7977 0.0568 0.8156 0.0100 0.0278 0.7368 0.3558

0.9995 0.4586 0.7236 0.9367 0.6729 0.9888 0.1569 0.6789 0.9954 0.9915

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0125 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9985 0.8062 0.4115 0.7465 0.9996

0.9923 0.8952 0.4348 0.0485 0.9998 0.9873 0.1978 0.0892 0.7895 0.9999

0.9976 0.9285 0.4445 0.9829 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.2910 0.6145 0.1415 0.0000 0.4229 0.8819 0.8189 0.9222 0.5312 0.6688

0.4477 0.8308 0.7589 0.0000 0.8031 0.8896 0.8388 0.9300 0.5783 0.8254

0.6499 0.9485 0.9764 0.3011 0.0567 0.9824 0.9265 0.7625 0.8510 0.0615

0.9342 0.9497 0.9799 0.9918 0.3565 0.9826 0.9265 0.9326 0.9341 0.0756

0.9673 0.0158 0.1048 0.7977 0.0531 0.8201 0.0000 0.0736 0.8510 0.4139

0.9985 0.4339 0.4977 0.9522 0.0680 0.9485 0.1562 0.7646 0.9005 0.8068

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0000 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993

0.9929 0.1801 0.0729 0.7814 0.9997 0.9883 0.0064 0.0139 0.0533 0.9998

0.9954 0.9267 0.4813 0.9778 1.0000 0.9900 0.9054 0.5412 0.9913 1.0000

1.0000

0.9975

0.9815

0.9823

0.9702

0.9838

0.4606

0.9977

0.9813

0.9998

0.9997

1.0000

0.9972

0.9165

0.9656

1.0000

0.9999

0.4606

0.9969

0.9431

0.9998

0.9998

1.0000

0.9974

0.9800

0.9826

1.0000

0.9998

0.4606

0.9977

0.9802

0.9998 1.0000

0.9820

0.9803

0.99730.9976

0.9811

0.9827

0.9998

0.9833

0.9802

0.9977

0.4606

1.0000

0.9999

0.9998 0.9998

1.0000

0.9974

0.9805

0.9821

1.0000

0.9998

0.4606

0.9999 1.0000

M
D

G
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

A
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

MDL 7

M
D

G

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

A

MDL 2

MDL 3

MDL 4

MDL 5

MDL 5

MDL 6

MDL 7

F
u

ll

MDL 6

Original Balance

MDL 2

MDL 3

MDL 4

0.9996

0.9834

0.9999

 Appendix (B) Results of Chapter 6 (Second) Experiment

235

Figure B.1: Comparison plot of the performance of C5.0 models (G-Mean Accuracy) for every training day in the STA2018 dataset between

the optimal (CV) and adaptive cutoffs.

Appendix (B) Results of Chapter 6 (Second) Experiment

236

B.2.2. Random Forest (RF) Results

Table B.2 presents the results of the experiments using the Random Forest (RF) algorithm.

Each shaded cell of Table B.2 contains the maximum G-Mean Accuracy achieved at the CV

stage when the model’s threshold was set. Every other cell contains two performance measures.

The top measure is the model’s performance on the test subset (the day file) when its optimal

(CV) cutoff was used and the second one is the performance when the cutoff was adapted to

the test data. The measure in bold is the greater of the two measures.

Figure B.2 shows the performance (G-Mean Accuracy) for each model for each training day

for the Random Forest (RF) algorithm. Each plot shows models performances (in every sub-

plot) under different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances

(Original and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that day’s model

after being evaluated using all the other days’ files (along the x-axis). For each evaluation there

are two G-Mean Accuracy readings; one is based on the model’s optimal threshold (‘CV Cutoff’

in red colour) while the other uses the adapted threshold (‘Adp. Cutoff’ in blue colour) on the

test data. The first day (along the x-axis) matches the training day of the main plot and

corresponds to the CV results of that model.

 Appendix (B) Results of Chapter 6 (Second) Experiment

237

Table B.2: Performance of the models (G-Mean Accuracy) for the original and adapted cutoffs (threshold) for the Random Forest (RF)

algorithm.

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.0042 0.0279 0.0482 1.0000 0.0602 0.0100 0.0216 0.0476 0.9535 0.0559

0.9272 0.9478 0.9094 1.0000 0.9987 0.9293 0.9413 0.9257 1.0000 0.9987

0.9521 0.9213 0.6884 0.8560 0.9411 0.9663 0.9191 0.7498 0.9530 0.9758

0.9932 0.9739 0.9577 0.9870 0.9976 0.9925 0.9688 0.9340 0.9793 0.9987

0.9428 0.9301 0.8425 0.8832 0.9404 0.9762 0.9237 0.8991 0.9268 0.9688

0.9945 0.9560 0.9920 0.9998 0.9978 0.9948 0.9471 0.9858 0.9997 0.9882

0.9997 0.0133 0.0648 0.9535 0.0585 0.9888 0.2259 0.6808 0.9934 0.9925

0.9999 0.9205 0.9395 1.0000 0.9976 0.9971 0.9156 0.9302 0.9998 0.9926

0.9912 0.0000 0.0250 0.0479 0.0568 0.0217 0.0100 0.0125 0.0053 0.0142

1.0000 0.9120 0.5737 0.9671 0.9998 0.9999 0.8685 0.6837 0.1048 0.9998

0.9964 0.9140 0.4314 0.7864 1.0000 0.0217 0.0100 0.0125 0.0341 0.5279

0.9979 0.9351 0.9340 0.9911 1.0000 0.9998 0.9381 0.9319 0.9755 1.0000

0.0463 0.0279 0.0482 1.0000 0.0585 0.0100 0.0216 0.0476 0.8528 0.0564

0.9308 0.9417 0.9322 1.0000 0.9983 0.9281 0.9504 0.7999 1.0000 0.9984

0.9790 0.9636 0.9089 0.9570 0.9890 0.9683 0.9197 0.8158 0.8781 0.9282

0.9895 0.9738 0.9490 0.9844 0.9963 0.9927 0.9690 0.9336 0.9839 0.9983

0.9493 0.9374 0.8913 0.8956 0.9448 0.9463 0.9269 0.8882 0.9024 0.9467

0.9947 0.9557 0.9917 0.9971 0.9984 0.9948 0.9449 0.9889 0.9993 0.9942

0.9997 0.0141 0.0872 0.9535 0.0619 0.9891 0.2439 0.6620 0.9935 0.9933

0.9999 0.9162 0.9388 1.0000 0.9951 0.9996 0.9218 0.9411 0.9981 0.9935

0.9983 0.0100 0.0250 0.0479 0.0568 0.0217 0.0100 0.0176 0.0053 0.0142

1.0000 0.8553 0.4649 0.3326 0.9999 1.0000 0.9320 0.4956 0.1731 1.0000

0.9933 0.9309 0.4459 0.9875 1.0000 0.0217 0.0100 0.0125 0.0367 0.4053

0.9971 0.9360 0.9370 0.9911 1.0000 0.9998 0.9355 0.9280 0.9699 1.0000

0.0452 0.0279 0.0482 1.0000 0.0585 0.0100 0.0216 0.0473 0.8528 0.0561

0.9296 0.9317 0.8425 1.0000 0.9982 0.9287 0.9457 0.9430 1.0000 0.9984

0.5035 0.9171 0.6307 0.0000 0.7868 0.5308 0.9051 0.5622 0.0000 0.6543

0.8340 0.9185 0.8195 0.7887 0.9471 0.8000 0.9112 0.7204 0.7087 0.8924

0.7032 0.9160 0.9856 0.0000 0.9884 0.6800 0.8996 0.9829 0.0000 0.9531

0.7703 0.9242 0.9913 0.8236 0.9974 0.8676 0.9000 0.9829 0.7499 0.9538

0.1390 0.0100 0.0254 0.6742 0.0375 0.9897 0.0223 0.5450 0.9999 0.3540

0.9992 0.8518 0.9138 0.9996 0.9976 0.9926 0.8016 0.8817 1.0000 0.9982

0.9982 0.0000 0.0250 0.0479 0.0568 0.0217 0.0100 0.0125 0.0053 0.0142

1.0000 0.8573 0.4349 0.6449 0.9998 1.0000 0.8710 0.7446 0.0767 1.0000

0.9926 0.9353 0.4493 0.9911 0.9999 0.0217 0.0100 0.0125 0.0136 0.4116

0.9972 0.9357 0.9354 0.9912 1.0000 1.0000 0.9376 0.9377 0.9700 1.0000

0.0418 0.0279 0.0482 1.0000 0.0586 0.0100 0.0216 0.0473 0.8528 0.0559

0.9331 0.9434 0.9739 1.0000 0.9985 0.9277 0.9460 0.9603 1.0000 0.9985

0.9758 0.9558 0.8755 0.8884 0.9777 0.9742 0.9122 0.8515 0.8980 0.9522

0.9933 0.9747 0.9604 0.9826 0.9965 0.9919 0.9715 0.9103 0.9833 0.9983

0.9505 0.9349 0.8801 0.8903 0.9464 0.9508 0.9275 0.8870 0.8912 0.9422

0.9947 0.9560 0.9913 0.9960 0.9982 0.9945 0.9442 0.9897 0.9991 0.9864

0.9996 0.0141 0.0671 0.9535 0.0619 0.9868 0.2331 0.6778 0.9933 0.9934

0.9999 0.9163 0.9402 0.9999 0.9984 0.9973 0.9141 0.9344 0.9969 0.9941

0.9947 0.0000 0.0250 0.0479 0.0568 0.0217 0.0100 0.0125 0.0053 0.0142

1.0000 0.8610 0.4367 0.9482 0.9998 1.0000 0.8753 0.4526 0.3582 1.0000

0.9955 0.9148 0.4329 0.9083 1.0000 0.0217 0.0100 0.0125 0.0465 0.9535

0.9976 0.9366 0.9349 0.9907 1.0000 0.9997 0.9335 0.9364 0.9680 1.0000

0.0457 0.0279 0.0482 1.0000 0.0585 0.0100 0.0216 0.0473 0.8528 0.0560

0.9257 0.9409 0.9439 1.0000 0.9983 0.9272 0.9512 0.8091 1.0000 0.9984

0.9795 0.9346 0.8227 0.8250 0.8990 0.9710 0.8950 0.7824 0.7985 0.8641

0.9849 0.9556 0.8257 0.9309 0.9231 0.9892 0.9517 0.8583 0.9215 0.9974

0.9571 0.9339 0.8879 0.8889 0.9422 0.9438 0.9313 0.8991 0.9096 0.9547

0.9923 0.9540 0.9696 0.9346 0.9962 0.9947 0.9411 0.9752 0.9521 0.9949

0.9975 0.0141 0.0330 0.9535 0.0531 0.9881 0.0903 0.6163 0.9931 0.9366

0.9993 0.8693 0.9049 0.9995 0.9954 0.9941 0.9133 0.9340 0.9951 0.9927

0.9952 0.0141 0.0250 0.0479 0.0568 0.0217 0.0100 0.0125 0.0053 0.0142

1.0000 0.8642 0.4449 0.9611 0.9999 1.0000 0.8675 0.5907 0.0747 1.0000

0.9970 0.9036 0.4303 0.0505 1.0000 0.0217 0.0100 0.0125 0.0053 0.4273

0.9974 0.9391 0.9365 0.9908 1.0000 1.0000 0.9339 0.9412 0.9893 1.0000

0.9829

0.9981

1.0000

1.0000

0.8906

1.0000

0.9827

0.9981

1.0000

1.0000

1.0000

1.00001.0000

1.0000

1.0000

0.9848

0.9978

0.9432

0.9981

0.9780

1.0000

0.9826

0.9848

1.0000

1.0000

0.9698

1.0000

1.0000

0.9978

1.0000

0.9849

0.9827

0.9981

1.0000

1.00001.0000

1.0000

0.9978

0.9824

0.9848

1.0000

1.0000

0.9978

0.9827

0.9850

1.0000

1.00001.0000

M
D

G
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

0.9826

1.0000

0.9850

0.9981

1.0000

M
D

A
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

G

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

A

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

Original Balance

F
u

ll
MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7 1.0000

1.0000

0.9978

0.9827

0.9849

1.0000

0.9848

Appendix (B) Results of Chapter 6 (Second) Experiment

238

Figure B.2: Comparison plot of the performance of RF models (G-Mean Accuracy) for every training day in the STA2018 dataset between the

optimal (CV) and adaptive cutoffs.

 Appendix (B) Results of Chapter 6 (Second) Experiment

239

B.2.3. Support Vector Machine (SVM) Results

Table B.3 presents the results of the experiments using the Support Vector Machine (SVM)

algorithm. Each shaded cell of Table B.3 contains the maximum G-Mean Accuracy reached

at the CV stage at which the model’s threshold was set. Every other cell contains two

performance measures. The top measure is the model’s performance on the test subset (day file)

when its optimal (CV) cutoff was used and the second one is the performance when the cutoff

was adapted to the test data. The measure in bold is the greater of the two measures.

Figure B.3 shows the performance (G-Mean Accuracy) for each model for each training day

for the Support Vector Machine (SVM) algorithm. Each plot shows models performances

(in every sub-plot) under different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and

data balances (Original and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that

day’s model after being evaluated using all the other days’ files (along the x-axis). For each

evaluation there are two G-Mean Accuracy readings; one is based on the model’s optimal

threshold (‘CV Cutoff’ in red colour) while the other uses the adapted threshold (‘Adp. Cutoff’

in blue colour) on the test data. The first day (along the x-axis) matches the training day of the

main plot and corresponds to the CV results of that model.

Appendix (B) Results of Chapter 6 (Second) Experiment

240

Table B.3: The performance of models (G-Mean Accuracy) for the original and adapted cutoffs (thresholds) for SVM algorithm.

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.1630 0.3695 0.0573 0.9857 0.9681 0.9076 0.5294 0.6040 0.9997 0.8786

0.1756 0.3977 0.1891 0.9875 0.9703 0.9137 0.5622 0.9011 0.9999 0.9966

0.5133 0.5184 0.3624 0.7800 0.8279 0.4939 0.4641 0.4042 0.4023 0.4473

0.9312 0.5200 0.8053 0.9517 0.8661 0.8235 0.6112 0.7456 0.8289 0.8026

0.3545 0.9161 0.0538 0.9182 0.4942 0.1242 0.7312 0.0160 0.0000 0.0200

0.9397 0.9457 0.3852 0.9589 0.7560 0.9154 0.9405 0.7563 0.9677 0.8836

0.0000 0.1026 0.7030 0.0000 0.7385 0.0000 0.1387 0.5176 0.4249 0.7042

0.8674 0.1761 0.8065 0.9531 0.8429 0.9490 0.1474 0.5208 0.9242 0.7166

0.9806 0.8750 0.6296 0.0575 0.9985 0.3346 0.0282 0.0216 0.1027 0.5148

0.9913 0.8931 0.6411 0.5101 0.9990 0.9978 0.1468 0.2367 0.9575 0.8563

0.9820 0.1070 0.4882 0.0599 0.9532 0.9860 0.0489 0.1797 0.9667 0.9995

0.9906 0.2143 0.6021 0.7417 0.9997 0.9931 0.1611 0.5437 0.9843 0.9995

0.9206 0.4812 0.0542 0.9534 0.0585 0.6143 0.4374 0.2112 0.9534 0.0568

0.9224 0.7470 0.1977 0.9999 0.9911 0.6945 0.7889 0.8507 1.0000 0.9921

0.0000 0.8553 0.0237 0.8381 0.1051 0.9330 0.8737 0.4306 0.7185 0.8755

0.2443 0.8658 0.0382 0.9337 0.6997 0.9621 0.8743 0.8487 0.9143 0.9184

0.6177 0.9447 0.4665 0.9038 0.0722 0.1466 0.9397 0.9226 0.0000 0.0317

0.9725 0.9454 0.5871 0.9978 0.7330 0.8707 0.9413 0.9360 0.9749 0.7675

0.0000 0.0307 0.5224 0.0000 0.0000 0.9178 0.1268 0.5203 0.0000 0.0000

0.9743 0.1444 0.6106 0.9529 0.7213 0.9865 0.1812 0.5285 0.9433 0.4924

0.9953 0.8535 0.7474 0.9685 0.0568 0.9992 0.8966 0.3735 0.9686 0.0568

0.9993 0.9134 0.8951 0.9806 0.9908 0.9992 0.9242 0.4774 0.9821 0.9402

0.2622 0.0691 0.5673 0.8781 0.9515 0.9795 0.1287 0.2820 0.9669 0.9526

0.9931 0.1308 0.6090 0.9117 0.9971 0.9922 0.1891 0.6485 0.9902 0.9989

0.7706 0.6099 0.0429 0.9998 0.0602 0.6713 0.4638 0.0480 0.9534 0.0568

0.7912 0.8736 0.1953 0.9999 0.9962 0.7400 0.4888 0.4182 1.0000 0.9905

0.0000 0.6141 0.0000 0.0000 0.0000 0.0000 0.6555 0.0000 0.0000 0.0000

0.5136 0.6847 0.5639 0.3726 0.3531 0.5481 0.6685 0.5900 0.3930 0.5643

0.8259 0.7480 0.9870 0.9831 0.9910 0.9773 0.8656 0.9834 0.9888 0.9888

0.9675 0.8062 0.9879 0.9927 0.9956 0.9833 0.8665 0.9884 0.9928 0.9958

0.0000 0.0331 0.7649 0.9528 0.0000 0.0803 0.0695 0.4730 0.9479 0.0647

0.9378 0.1450 0.7727 0.9967 0.3657 0.7791 0.1176 0.4839 0.9935 0.2488

0.9994 0.0895 0.0250 0.8181 0.0585 0.9916 0.0000 0.0210 0.7853 0.0550

0.9996 0.8718 0.5703 0.9710 0.8849 0.9992 0.8828 0.4595 0.9673 0.9852

0.0000 0.9120 0.4510 0.6801 0.9519 0.8579 0.9096 0.5099 0.9655 0.9517

0.9742 0.9201 0.6205 0.7580 0.9974 0.9903 0.9100 0.6328 0.9849 0.9982

0.8373 0.6823 0.0727 0.9999 0.0585 0.9202 0.4744 0.0480 0.9999 0.0778

0.8590 0.8670 0.2976 0.9999 0.9943 0.9307 0.5384 0.7213 1.0000 0.9972

0.0000 0.7562 0.0237 0.8247 0.2069 0.9366 0.8781 0.4806 0.7460 0.8900

0.3185 0.7765 0.0382 0.9415 0.7326 0.9593 0.8804 0.8301 0.9235 0.9226

0.8749 0.9298 0.4613 0.9512 0.0837 0.1365 0.9384 0.9123 0.0000 0.0245

0.9727 0.9416 0.5578 0.9957 0.6791 0.8578 0.9399 0.9160 0.9818 0.7552

0.0000 0.0223 0.4724 0.0000 0.0000 0.9151 0.1754 0.5767 0.0000 0.0000

0.9745 0.1443 0.5477 0.9531 0.7137 0.9868 0.2139 0.6023 0.9410 0.6056

0.9789 0.0479 0.5601 0.9336 0.1291 0.5956 0.7399 0.2373 0.1566 0.0492

0.9940 0.3377 0.7603 0.9640 0.9749 0.9984 0.9135 0.4465 0.9562 0.9925

0.0795 0.0582 0.6014 0.3942 0.9982 0.6721 0.1356 0.4007 0.9694 0.9529

0.9902 0.1513 0.6418 0.5782 0.9986 0.9925 0.2104 0.6328 0.9849 0.9992

0.9263 0.7197 0.0474 0.9534 0.0585 0.8279 0.4580 0.0484 0.9998 0.0776

0.9311 0.9164 0.5652 0.9999 0.9974 0.9140 0.5588 0.8278 0.9999 0.9976

0.8727 0.6410 0.3583 0.7586 0.8608 0.5333 0.4830 0.4616 0.6226 0.7089

0.9800 0.7587 0.5333 0.9002 0.8995 0.8954 0.4834 0.4654 0.6894 0.7755

0.1225 0.9035 0.7684 0.0000 0.0316 0.1238 0.9446 0.8969 0.0000 0.0245

0.9823 0.9435 0.9535 0.9851 0.4872 0.8983 0.9449 0.8983 0.8981 0.6145

0.0307 0.0141 0.6289 0.7384 0.0000 0.8877 0.0518 0.0889 0.0000 0.0000

0.9694 0.1687 0.6689 0.9521 0.6616 0.9827 0.1426 0.3074 0.9714 0.5188

0.9978 0.0100 0.7001 0.5854 0.1670 0.7335 0.8746 0.3746 0.9650 0.0531

0.9996 0.2816 0.7927 0.9595 0.9908 0.9961 0.9199 0.4683 0.9665 0.9930

0.0000 0.6830 0.8442 0.5596 0.9527 0.8509 0.1288 0.2795 0.9692 0.9990

0.9320 0.7189 0.8991 0.7260 0.9978 0.9921 0.2576 0.6870 0.9873 0.9994

1.0000

0.9999

0.9765

0.9997

0.9994

0.9961

0.9814

0.9997

0.9357

0.9092

0.9849

0.9792

1.0000

0.99950.9998

0.9999 0.9995

1.0000

0.9914

0.9999

0.9950

0.8851

0.9391

1.0000

1.0000

0.9809

0.9810

0.9957

0.9998

0.9998

1.0000

0.9958

0.9801

0.9780

1.0000

0.9996

0.9994

0.9761

0.9791

0.9924

1.0000

0.9996

0.9995

0.9695

0.9781

0.9900

0.9999

1.0000

0.9957

0.9810

0.9807

1.0000

M
D

G
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

A
B

a
l.

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

1.0000

M
D

G

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

M
D

A

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7

Original Balance
F

u
ll

MDL 2

MDL 3

MDL 4

MDL 5

MDL 6

MDL 7 0.9999

0.9996

0.9809

1.0000

0.9754

0.9800

0.9913

 Appendix (B) Results of Chapter 6 (Second) Experiment

241

Figure B.3: Comparison plot of the performance of SVM models (G-Mean Accuracy) for every training day in the STA2018 dataset between

the optimal (CV) and adaptive cutoffs.

C

243

Appendix (C) Results of Chapter 7 (Third)

Experiment

Appendix (C)

Results of Chapter 7 (Third)

Experiment

This appendix documents the outcomes of the third set of experiments presented in Chapter 7,

which discussed the identification of the optimal threshold for an evaluation data using a small

subset as a validation dataset.

C.1. Results of Every Day

This section lists the result G-Mean Accuracy Ratio (GAR) plots of every simulation day for

every ML algorithm. The following Table C.1 maps the figures to their related ML algorithm

and simulation day.

Simulation Day
ML Algorithm

C5.0 RF SVM
Day 2 - Sat 12 Jun Figure C.1 Figure C.7 Figure C.13

Day 3 - Sun 13 Jun Figure C.2 Figure C.8 Figure C.14

Day 4 - Mon 14 Jun Figure C.3 Figure C.9 Figure C.15

Day 5 - Tue 15 Jun Figure C.4 Figure C.10 Figure C.16

Day 6 - Wed 16 Jun Figure C.5 Figure C.11 Figure C.17

Day 7 - Thu 17 Jun Figure C.6 Figure C.12 Figure C.18
Table C.1: Figures map of the results of the third experiment.

Appendix (C) Results of Chapter 7 (Third) Experiment

244

(b
)

(d
)

F
ig

u
re

 C
.1

:
D

a
y

2
 (

1
2

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

245

(b
)

(d
)

F
ig

u
re

 C
.2

:
D

a
y

3
 (

1
3

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

246

(b
)

(d
)

F
ig

u
re

 C
.3

:
D

a
y

4
 (

1
4

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

247

(b
)

(d
)

F
ig

u
re

 C
.4

:
D

a
y

5
 (

1
5

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

248

(b
)

(d
)

F
ig

u
re

 C
.5

:
D

a
y

6
 (

1
6

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

249

(b
)

(d
)

F
ig

u
re

 C
.6

:
D

a
y

7
 (

1
7

/J
u
n

)
re

su
lt

s
fo

r
th

e
C

5
.0

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

250

(b
)

(d
)

F
ig

u
re

 C
.7

:
D

a
y

2
 (

1
2

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d
el

s.
 (

a
)

P
lo

ts
 o

f
G

-M
ea

n
 A

cc
u

ra
cy

 R
a

ti
o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

251

(b
)

(d
)

F
ig

u
re

 C
.8

:
D

a
y

3
 (

1
3

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d
el

s.
 (

a
)

P
lo

ts
 o

f
G

-M
ea

n
 A

cc
u

ra
cy

 R
a

ti
o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

252

(b
)

(d
)

F
ig

u
re

 C
.9

:
D

a
y

4
 (

1
4

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d
el

s.
 (

a
)

P
lo

ts
 o

f
G

-M
ea

n
 A

cc
u

ra
cy

 R
a

ti
o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

253

(b
)

(d
)

F
ig

u
re

 C
.1

0
:

D
a

y
5

 (
1
5

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

254

(b
)

(d
)

F
ig

u
re

 C
.1

1
:

D
a

y
6

 (
1
6

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

255

(b
)

(d
)

F
ig

u
re

 C
.1

2
:

D
a

y
7

 (
1
7

/J
u
n

)
re

su
lt

s
fo

r
th

e
R

F
 m

o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n

 A
cc

u
ra

cy
 R

a
ti

o
 (

G
A

R
)

o
f

D
a

y
6
 m

o
d

el
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

256

(b
)

(d
)

F
ig

u
re

 C
.1

3
:

D
a

y
2

 (
1
2

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

257

(b
)

(d
)

F
ig

u
re

 C
.1

4
:

D
a

y
3

 (
1
3

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

258

(b
)

(d
)

F
ig

u
re

 C
.1

5
:

D
a

y
4

 (
1
4

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

259

(b
)

(d
)

F
ig

u
re

 C
.1

6
:

D
a

y
5

 (
1
5

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

260

(b
)

(d
)

F
ig

u
re

 C
.1

7
:

D
a

y
6

 (
1
6

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

261

(b
)

(d
)

F
ig

u
re

 C
.1

8
:

D
a

y
7

 (
1
7

/J
u
n

)
re

su
lt

s
fo

r
th

e
S

V
M

 m
o
d

el
s.

 (
a

)
P

lo
ts

 o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
 (

G
A

R
)

o
f

D
a
y

6
 m

o
d
el

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0
%

.
(b

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r
ra

te
 o

f
1
%

.
(c

)
G

A
R

 p
lo

ts
 a

t
a

n
 e

rr
o

r

ra
te

 o
f

5
%

.
(d

)
G

A
R

 p
lo

ts
 a

t
a
n

 e
rr

o
r

ra
te

 o
f

1
0

%
.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

262

C.2. Models GAR Plots

The results of the experiments discussed in Chapter 7 are illustrated in this section as G-Mean

Accuracy Ratio (GAR) plots for every ML algorithm. Each one of the figures (Figure C.19,

Figure C.20 and Figure C.21) shows the results for one of the three ML algorithms (C5.0, RF

and SVM) respectively. Each one of the plots (a, b, c and d) in every figure shows the results

using different error rates (0%, 1%, 5% and 10%). Where each subplot shows the median of the

GAR values for all of the models with the same feature set and data balance group for that

algorithm. The curves in each subplot for every group illustrate the medians of the different

sampling strategies (B1, B10, B20, B50 and B100) for every sample size (10% to 0.0001%).

 Appendix (C) Results of Chapter 7 (Third) Experiment

263

C.2.1. C5.0 (Decision Trees) Results

(b
)

(d
)

F
ig

u
re

 C
.1

9
:

M
ed

ia
n

s
o

f
G

-M
ea

n
 A

cc
u
ra

cy
 R

a
ti

o
s

(G
A

R
)

o
f

C
5

.0
 m

o
d
el

s
fo

r
ev

er
y

fe
a
tu

re
 s

et
 a

n
d
 d

a
ta

 b
a
la

n
ce

 t
yp

e
co

m
b
in

a
ti

o
n
.

(a
)

M
ed

ia
n

s
a
t

a
n
 e

rr
o

r
ra

te
 o

f
0

%
.

(b
)

M
ed

ia
n

s
a

t
er

ro
r

ra
te

 o
f

1
%

.

(c
)

M
ed

ia
n

s
a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
M

ed
ia

n
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

Appendix (C) Results of Chapter 7 (Third) Experiment

264

C.2.2. Random Forest (RF) Results

(b
)

(d
)

F
ig

u
re

 C
.2

0
:

M
ed

ia
n

s
o

f
G

-M
ea

n
 A

cc
u

ra
cy

 R
a
ti

o
s

(G
A

R
)

o
f

R
F

 m
o
d

el
s

fo
r

ev
er

y
fe

a
tu

re
 s

et
 a

n
d

 d
a
ta

 b
a
la

n
ce

 t
yp

e
co

m
b
in

a
ti

o
n
.

(a
)

M
ed

ia
n

s
a
t

a
n
 e

rr
o
r

ra
te

 o
f

0
%

.
(b

)
M

ed
ia

n
s

a
t

er
ro

r
ra

te
 o

f
1

%
.

(c
)

M
ed

ia
n

s
a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
M

ed
ia

n
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

 Appendix (C) Results of Chapter 7 (Third) Experiment

265

C.2.3. Support Vector Machine (SVM) Results

(b
)

(d
)

F
ig

u
re

 C
.2

1
:

M
ed

ia
n
s

o
f

G
-M

ea
n
 A

cc
u

ra
cy

 R
a
ti

o
s

(G
A

R
)

o
f

S
V

M
 m

o
d

el
s

fo
r

ev
er

y
fe

a
tu

re
s

se
t

a
n
d
 d

a
ta

 b
a
la

n
ce

 t
yp

e
co

m
b

in
a
ti

o
n

.
(a

)
M

ed
ia

n
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

0
%

.
(b

)
M

ed
ia

n
s

a
t

er
ro

r
ra

te
 o

f
1
%

.

(c
)

M
ed

ia
n

s
a

t
a
n

 e
rr

o
r

ra
te

 o
f

5
%

.
(d

)
M

ed
ia

n
s

a
t

a
n

 e
rr

o
r

ra
te

 o
f

1
0
%

.

(a
)

(c
)

D

267

Appendix (D) Feature Descriptions of STA2018 Dataset

Appendix (D)

Feature Descriptions of STA2018

Dataset

This appendix lists the 638 features that were extracted from the UNB ISCX 2012 dataset and

derived using Onut’s schema [15]. A description is provided for each of the features. All

features deleted at the clean-up phase are marked (in red italics) and their sequence number has

been concatenated with a sequence of letters.

The following is a summary of the features generated and/or deleted at every transformation

stage (they have been placed in order of number of the resultant dataset, i.e. STA2018.):

• Basic-features extraction: a total of 193 features were extracted at this phase. These

features had the sequences {1-2, 4-5, 7-12, 15-144}.

• Validation and connection labelling: this phase added one more variable which was

the class feature and included the label {Normal or Attack} for every connection.

• Extend: this phase extended the feature space by deriving the following features groups

(all of the descriptions of these extended features are taken from Onut’s PhD

thesis [385]):

o Connection-based features: a total of 220 features were derived and start with

“DFMC_*” (this code represented the path of the tree presented in Figure 5.2 as

coded by Onut [15, 385]). These features had the sequence {145-348}

Appendix (D) Feature Descriptions of STA2018 Dataset

268

o Time-based features: a total of 220 features were derived and start with “DFMT_*”

(this code represents the path of the tree presented in Figure 5.2 as coded by

Onut [15, 385]). These features had the sequence {349-549}

• Balance: a total of two features (synthetic and origOrder) were added at this stage to

distinguish the original connections from the synthetic connections. The sequences of

these features are {13-14} and they were added to the basic features.

• Clean up: two features were added at this stage: src_zone and dst_zone. Their

sequences are {3 and 6} and they were added to the basic features group. Also, a total

of 88 useless features were removed at this stage: 53 from basic-features; 19 from the

connection-based features group; and 16 from the time-based group.

D.1. Basic Features

No. Feature Description
1 start_time Timestamp of connection start time.

2 src_ip Source IP address of a connection.

3 src_zone The topological zone of the source host {GLOBAL, MULTICAST,

UNICAST, UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5, LAN6}

4 src_prt Source port number of a connection.

5 dst_ip Destination IP address of a connection.

6 dst_zone The topological zone of the destination host {GLOBAL,

MULTICAST, UNICAST, UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5,

LAN6}

7 dst_prt Destination port number of a connection.

8 duration Duration in seconds of a connection. This is the time difference

between timestamps of the first and last packet of a connection.

9 ipVersion IP version (IPv4 or IPv6) of a connection.

10 protocol Transport protocol used for a connection (ICMP, TCP, UDP,

etc)

11 conn_state Bro label of connection state (13 different states in total). This

will be the last known state of a connection 22.

12 service The application protocol of a connection as detected by Bro.

13 synthetic One (1) if synthetic connection and zero (0) otherwise.

22 https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info

 Appendix (D) Feature Descriptions of STA2018 Dataset

269

No. Feature Description
14 origOrder The original sequence number of connections and 0 for all

synthetic connections

15 src_ip_bytes Total IP bytes sent by source host.

16 dst_ip_bytes Total IP bytes sent by destination host.

17 src_bytes Total payload bytes sent by source host.

18 dst_bytes Total payload bytes sent by destination host.

19 src_pkts Total packets sent by source host.

20 dst_pkts Total packets sent by destination host.

20a wrong_fragment Number of wrong fragment packets as defined by Bro. There

are 8 fragment related cases as identified by Bro internal

implementation (excessively_large_fragment, excessively_small_fragment,

fragment_inconsistency, fragment_overlap, fragment_size_inconsistency,

fragment_protocol_inconsistency, incompletely_captured_fragment and

fragment_with_DF) 23

21 urg Number of total urgent TCP packets within a connection.

22 bro_duration Duration in seconds of a connection as returned by Bro.

23 bro_conn_state Bro label of connection state (13 different states in total). This

will be the last known state of a connection. 24

24 bro_service The application protocol of a connection as detected by Bro’s

internal engine.

25 bro_src_ip_bytes Total IP bytes sent by source host as detected by Bro’s internal

engine.

26 bro_dst_ip_bytes Total IP bytes sent by destination host as detected by Bro’s

internal engine.

27 bro_src_bytes Total payload bytes sent by source host as detected by Bro’s

internal engine.

28 bro_dst_bytes Total payload bytes sent by destination host as detected by

Bro’s internal engine.

29 bro_src_pkts Total packets sent by source host as detected by Bro’s internal

engine.

30 bro_dst_pkts Total packets sent by destination host as detected by Bro’s

internal engine.

31 conn_start Connection NORMAL start {0, 1}

32 conn_partial_start Connection PARTIAL start {0, 1}. This is usually raised by

Bro when it detects the start of a new active TCP connection

without seeing the initial handshake 25.

33 conn_close Connection NORMAL close {0, 1}

34 conn_partial_close Connection PARTIAL close {0, 1}. This is usually raised by

Bro when one of the communicating hosts attempt to close an

inactive TCP connection with a FIN handshake or an RST

packets 25.

35 conn_weird Number of WEIRD events raised by a connection. This event

is raised by Bro when an abnormal activity is detected within a

certain connection 26.

36 conn_content_weird Number of WEIRD events raised by the content of a

connection.

37 conn_stats_orig_num_pkts Total packets sent by source host as computed by Bro’s

statistics event 27.

23 https://github.com/bro/bro/blob/master/src/Frag.cc
24 https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info
25 https://www.bro.org/sphinx/scripts/base/bif/plugins/Bro_TCP.events.bif.bro.html
26 https://www.bro.org/sphinx/scripts/base/bif/event.bif.bro.html
27 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-endpoint_stats

Appendix (D) Feature Descriptions of STA2018 Dataset

270

No. Feature Description
38 conn_stats_orig_num_rxmit Total retransmitted packets sent by source host as computed by

Bro’s statistics event.

39 conn_stats_orig_num_rxmit_bytes Total retransmitted bytes sent by source host as computed by

Bro’s statistics event.

40 conn_stats_orig_num_in_order Total in-order packets sent by source host as computed by

Bro’s statistics event.

41 conn_stats_orig_num_out_order Total out-of-order packets sent by source host as computed by

Bro’s statistics event.

42 conn_stats_orig_num_repl Total replicated packets (last packet was sent again) sent by

source host as computed by Bro’s statistics event.

43 conn_stats_orig_endian_type Endian type used by the source host. {ENDIAN_UNKNOWN, ENDIAN_BIG,

ENDIAN_LITTLE, ENDIAN_CONFUSED}

44 conn_stats_resp_num_pkts Total packets sent by destination host as computed by Bro’s

statistics event 28.

45 conn_stats_resp_num_rxmit Total retransmitted packets sent by destination host as

computed by Bro’s statistics event.

46 conn_stats_resp_num_rxmit_bytes Total retransmitted bytes sent by destination host as computed

by Bro’s statistics event.

47 conn_stats_resp_num_in_order Total in-order packets sent by destination host as computed by

Bro’s statistics event.

48 conn_stats_resp_num_out_order Total out-of-order packets sent by destination host as computed

by Bro’s statistics event.

49 conn_stats_resp_num_repl Total replicated packets (last packet was sent again) sent by

destination host as computed by Bro’s statistics event.

50 conn_stats_resp_endian_type Endian type used by the destination host. {ENDIAN_UNKNOWN,

ENDIAN_BIG, ENDIAN_LITTLE, ENDIAN_CONFUSED}

50a ip4_src_hl_change Number of changes in Header Length field in source IPv4

packets within a connection 29.

51 ip4_src_hl_current Last seen value of Header Length field in source IPv4 packet

of a connection.

52 ip4_src_hl_max Maximum value detected of Header Length field in source

IPv4 packet of a connection.

53 ip4_src_hl_min Minimum value detected of Header Length field in source IPv4

packet of a connection.

53a ip4_src_tos_change Number of changes in Type of service field in source IPv4

packets within a connection.

54 ip4_src_tos_current Last seen value of Type of service field in source IPv4 packet

of a connection.

55 ip4_src_tos_max Maximum value detected of Type of service field in source

IPv4 packet of a connection.

56 ip4_src_tos_min Minimum value detected of Type of service field in source

IPv4 packet of a connection.

57 ip4_src_len_change Number of changes in packet Length field in source IPv4

packets within a connection.

58 ip4_src_len_current Last seen value in packet Length field in source IPv4 packet of

a connection.

59 ip4_src_len_max Maximum value detected in packet Length field in source IPv4

packet of a connection.

60 ip4_src_len_min Minimum value detected in packet Length field in source IPv4

packet of a connection.

61 ip4_src_ttl_change Number of changes in Time To Live field in source IPv4

packets within a connection.

62 ip4_src_ttl_current Last seen value in Time To Live field in source IPv4 packet of

a connection.

28 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-endpoint_stats
29 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip4_hdr

 Appendix (D) Feature Descriptions of STA2018 Dataset

271

No. Feature Description
63 ip4_src_ttl_max Maximum value detected in Time To Live field in source IPv4

packet of a connection.

64 ip4_src_ttl_min Minimum value detected in Time To Live field in source IPv4

packet of a connection.

64a ip4_dst_hl_change Number of changes in Header Length field in destination IPv4

packets within a connection.

65 ip4_dst_hl_current Last seen value in Header Length field in destination IPv4

packet of a connection.

66 ip4_dst_hl_max Maximum value detected in Header Length field in destination

IPv4 packet of a connection.

67 ip4_dst_hl_min Minimum value detected in Header Length field in destination

IPv4 packet of a connection.

68 ip4_dst_tos_change Number of changes in Type of service field in destination IPv4

packets within a connection.

69 ip4_dst_tos_current Last seen value in Type of service field in destination IPv4

packet of a connection.

70 ip4_dst_tos_max Maximum value detected in Type of service field in destination

IPv4 packet of a connection.

71 ip4_dst_tos_min Minimum value detected in Type of service field in destination

IPv4 packet of a connection.

72 ip4_dst_len_change Number of changes in packet Length field in destination IPv4

packets within a connection.

73 ip4_dst_len_current Last seen value in packet Length field in destination IPv4

packet of a connection.

74 ip4_dst_len_max Maximum value detected in packet Length field in destination

IPv4 packet of a connection.

75 ip4_dst_len_min Minimum value detected in packet Length field in destination

IPv4 packet of a connection.

76 ip4_dst_ttl_change Number of changes in Time To Live field in destination IPv4

packets within a connection.

77 ip4_dst_ttl_current Last seen value in Time To Live field in destination IPv4

packet of a connection.

78 ip4_dst_ttl_max Maximum value detected in Time To Live field in destination

IPv4 packet of a connection.

79 ip4_dst_ttl_min Minimum value detected in Time To Live field in destination

IPv4 packet of a connection.

79a ip6_src_class_change Number of changes in Traffic class field in source IPv6 packets

within a connection 30.

79b ip6_src_class_current Last seen value of Traffic class field in source IPv6 packet of a

connection.

79c ip6_src_class_max Maximum value detected of Traffic class field in source IPv6

packet of a connection.

79d ip6_src_class_min Minimum value detected of Traffic class field in source IPv6

packet of a connection.

79e ip6_src_flow_change Number of changes in Flow label field in source IPv6 packets

within a connection.

79f ip6_src_flow_current Last seen value of Flow label field in source IPv6 packet of a

connection.

79g ip6_src_flow_max Maximum value detected of Flow label field in source IPv6

packet of a connection.

79h ip6_src_flow_min Minimum value detected of Flow label field in source IPv6

packet of a connection.

79i ip6_src_len_change Number of changes in Payload length field in source IPv6

packets within a connection.

30 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip6_hdr

Appendix (D) Feature Descriptions of STA2018 Dataset

272

No. Feature Description
80 ip6_src_len_current Last seen value of Payload length field in source IPv6 packet

of a connection.

81 ip6_src_len_max Maximum value detected of Payload length field in source

IPv6 packet of a connection.

82 ip6_src_len_min Minimum value detected of Payload length field in source IPv6

packet of a connection.

82a ip6_src_hlim_change Number of changes in Hop limit field in source IPv6 packets

within a connection.

83 ip6_src_hlim_current Last seen value of Hop limit field in source IPv6 packet of a

connection.

84 ip6_src_hlim_max Maximum value detected of Hop limit field in source IPv6

packet of a connection.

85 ip6_src_hlim_min Minimum value detected of Hop limit field in source IPv6

packet of a connection.

86 ip6_src_exts Boolean value to identify if any of source IPv6 packet of a

connection is an Extension header chain.

86a ip6_dst_class_change Number of changes in Traffic class field in destination IPv6

packets within a connection 31.

86b ip6_dst_class_current Last seen value of Traffic class field in destination IPv6 packet

of a connection.

86c ip6_dst_class_max Maximum value detected of Traffic class field in destination

IPv6 packet of a connection.

86d ip6_dst_class_min Minimum value detected of Traffic class field in destination

IPv6 packet of a connection.

86e ip6_dst_flow_change Number of changes in Flow label field in destination IPv6

packets within a connection.

86f ip6_dst_flow_current Last seen value of Flow label field in destination IPv6 packet

of a connection.

86g ip6_dst_flow_max Maximum value detected in Flow label field in destination

IPv6 packet of a connection.

86h ip6_dst_flow_min Minimum value detected in Flow label field in destination IPv6

packet of a connection.

86i ip6_dst_len_change Number of changes in Payload length field in destination IPv6

packets within a connection.

86j ip6_dst_len_current Last seen value of Payload length field in destination IPv6

packet of a connection.

86k ip6_dst_len_max Maximum value detected in Payload length field in destination

IPv6 packet of a connection.

86l ip6_dst_len_min Minimum value detected in Payload length field in destination

IPv6 packet of a connection.

86m ip6_dst_hlim_change Number of changes in Hop limit field in destination IPv6

packets within a connection.

86n ip6_dst_hlim_current Last seen value of Hop limit field in destination IPv6 packet of

a connection.

86o ip6_dst_hlim_max Maximum value detected in Hop limit field in destination IPv6

packet of a connection.

86p ip6_dst_hlim_min Minimum value detected in Hop limit field in destination IPv6

packet of a connection.

86q ip6_dst_exts Boolean value to identify if any of destination IPv6 packet of a

connection is an Extension header chain.

87 icmp_src_icmp_type Type of source ICMP packet.

87a icmp_dst_icmp_type Type of destination ICMP packet.

88 tcp_src_hl_change Number of changes in header length field in source TCP

packets within a connection.

31 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip6_hdr

 Appendix (D) Feature Descriptions of STA2018 Dataset

273

No. Feature Description
89 tcp_src_hl_current Last seen value in header length field in source TCP packet of

a connection.

90 tcp_src_hl_max Maximum value detected in header length field in source TCP

packet of a connection.

91 tcp_src_hl_min Minimum value detected in header length field in source TCP

packet of a connection.

92 tcp_src_dl_change Number of changes in data length field in source TCP packets

within a connection.

93 tcp_src_dl_current Last seen value in data length field in source TCP packet of a

connection.

94 tcp_src_dl_max Maximum value detected in data length field in source TCP

packet of a connection.

95 tcp_src_dl_min Minimum value detected in data length field in source TCP

packet of a connection.

96 tcp_src_win_change Number of changes in window field in source TCP packets

within a connection.

97 tcp_src_win_current Last seen value of window field in source TCP packet of a

connection.

98 tcp_src_win_max Maximum value detected in window field in source TCP

packet of a connection.

99 tcp_src_win_min Minimum value detected in window field in source TCP packet

of a connection.

99a tcp_src_flags_NS_flags Total number of source TCP packets in a connection with NS

flag.

99b tcp_src_flags_CWR_flags Total number of source TCP packets in a connection with

Congestion Window Reduced (CWR) flag.

99c tcp_src_flags_ECE_flags Total number of source TCP packets in a connection with ECE

flag.

99d tcp_src_flags_URG_flags Total number of source TCP packets in a connection with

Urgent (URG) flag.

100 tcp_src_flags_ACK_flags Total number of source TCP packets in a connection with

Acknowledgment (ACK) flag.

101 tcp_src_flags_PSH_flags Total number of source TCP packets in a connection with Push

(PSH) flag.

102 tcp_src_flags_RST_flags Total number of source TCP packets in a connection with

Reset (RST) flag.

103 tcp_src_flags_SYN_flags Total number of source TCP packets in a connection with

Synchronize (SYN) flag.

104 tcp_src_flags_FIN_flags Total number of source TCP packets in a connection with FIN

flag.

104a tcp_src_0_flags Total number of source TCP packets in a connection with no

flag is set.

105 tcp_src_1_flags Total number of source TCP packets in a connection with 1

flag set.

106 tcp_src_2_flags Total number of source TCP packets in a connection with 2

flags set.

107 tcp_src_3_flags Total number of source TCP packets in a connection with 3

flags set.

107a tcp_src_4_flags Total number of source TCP packets in a connection with 4

flags set.

107b tcp_src_5_flags Total number of source TCP packets in a connection with 5

flags set.

107c tcp_src_6_flags Total number of source TCP packets in a connection with 6

flags set.

107d tcp_src_7_flags Total number of source TCP packets in a connection with 7

flags set.

107e tcp_src_8_flags Total number of source TCP packets in a connection with 8

flags set.

Appendix (D) Feature Descriptions of STA2018 Dataset

274

No. Feature Description
107f tcp_src_9_flags Total number of source TCP packets in a connection with 9

(ALL) flags set.

108 tcp_dst_hl_change Number of changes in header length field in destination TCP

packets within a connection.

109 tcp_dst_hl_current Last seen value in header length field in destination TCP

packet of a connection.

110 tcp_dst_hl_max Maximum value detected in header length field in destination

TCP packet of a connection.

111 tcp_dst_hl_min Minimum value detected in header length field in destination

TCP packet of a connection.

112 tcp_dst_dl_change Number of changes in data length field in destination TCP

packets within a connection.

113 tcp_dst_dl_current Last seen value in data length field in destination TCP packet

of a connection.

114 tcp_dst_dl_max Maximum value detected in data length field in destination

TCP packet of a connection.

115 tcp_dst_dl_min Minimum value detected in data length field in destination

TCP packet of a connection.

116 tcp_dst_win_change Number of changes in window field in destination TCP packets

within a connection.

117 tcp_dst_win_current Last seen value in window field in destination TCP packet of a

connection.

118 tcp_dst_win_max Maximum value detected in window field in destination TCP

packet of a connection.

119 tcp_dst_win_min Minimum value detected in window field in destination TCP

packet of a connection.

119a tcp_dst_flags_NS_flags Total number of destination TCP packets in a connection with

NS flag.

120 tcp_dst_flags_CWR_flags Total number of destination TCP packets in a connection with

Congestion Window Reduced (CWR) flag.

120a tcp_dst_flags_ECE_flags Total number of destination TCP packets in a connection with

ECE flag.

120b tcp_dst_flags_URG_flags Total number of destination TCP packets in a connection with

Urgent (URG) flag.

121 tcp_dst_flags_ACK_flags Total number of destination TCP packets in a connection with

Acknowledgment (ACK) flag.

122 tcp_dst_flags_PSH_flags Total number of destination TCP packets in a connection with

Push (PSH) flag.

123 tcp_dst_flags_RST_flags Total number of destination TCP packets in a connection with

Reset (RST) flag.

124 tcp_dst_flags_SYN_flags Total number of destination TCP packets in a connection with

Synchronize (SYN) flag.

125 tcp_dst_flags_FIN_flags Total number of destination TCP packets in a connection with

FIN flag.

125a tcp_dst_0_flags Total number of destination TCP packets in a connection with

no flag is set.

126 tcp_dst_1_flags Total number of destination TCP packets in a connection with

1 flag set.

127 tcp_dst_2_flags Total number of destination TCP packets in a connection with

2 flags set.

128 tcp_dst_3_flags Total number of destination TCP packets in a connection with

3 flags set.

128a tcp_dst_4_flags Total number of destination TCP packets in a connection with

4 flags set.

128b tcp_dst_5_flags Total number of destination TCP packets in a connection with

5 flags set.

128c tcp_dst_6_flags Total number of destination TCP packets in a connection with

6 flags set.

 Appendix (D) Feature Descriptions of STA2018 Dataset

275

No. Feature Description
128d tcp_dst_7_flags Total number of destination TCP packets in a connection with

7 flags set.

128e tcp_dst_8_flags Total number of destination TCP packets in a connection with

8 flags set.

128f tcp_dst_9_flags Total number of destination TCP packets in a connection with

9 (ALL) flags set.

129 udp_src_ulen_change Number of changes in length field in source UDP packets

within a connection.

130 udp_src_ulen_current Last seen value in length field in source UDP packet of a

connection.

131 udp_src_ulen_max Maximum value detected in length field in source UDP packet

of a connection.

132 udp_src_ulen_min Minimum value detected in length field in source UDP packet

of a connection.

133 udp_dst_ulen_change Number of changes in length field in destination UDP packets

within a connection.

134 udp_dst_ulen_current Last seen value in length field in destination UDP packet of a

connection.

135 udp_dst_ulen_max Maximum value detected in length field in destination UDP

packet of a connection.

136 udp_dst_ulen_min Minimum value detected in length field in destination UDP

packet of a connection.

137 conn_max_pkts_gap_time Maximum time gap between exchanged packets within a

connection.

138 conn_min_pkts_gap_time Minimum time gap between exchanged packets within a

connection.

139 src_max_pkts_gap_time Maximum time gap between source packets within a

connection.

140 src_min_pkts_gap_time Minimum time gap between source packets within a

connection.

141 src_total_pkts_gap_time Total time gap between source packets within a connection.

142 dst_max_pkts_gap_time Maximum time gap between destination packets within a

connection.

143 dst_min_pkts_gap_time Minimum time gap between destination packets within a

connection.

144 dst_total_pkts_gap_time Total time gap between destination packets within a

connection.

D.2. Connection-Based Features

No. Feature Description

145 DFMC_totalConnections Total number of connections in a 100 connection window.

146 DFMC_same_src_hosts_count Number of connections with the same source host as a current

connection in a 100 connection window.

147 DFMC_diff_src_hosts_count Number of connections with a different source host to the

current connection in a 100 connection window.

148 DFMC_same_dst_hosts_count Number of connections with the same destination host as a

current connection in a 100 connection window.

149 DFMC_diff_dst_hosts_count Number of connections with a different destination host to the

current connection in a 100 connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

276

No. Feature Description

150 DFMC_same_srv_count Number of connections with the same service as a current

connection in a 100 connection window.

151 DFMC_diff_srv_count Number of connections with a different service to the current

connection in a 100 connection window.

152 DFMC_same_src_hosts_PCT Percentage of connections with the same source host as the

current connection in a 100 connection window.

153 DFMC_diff_src_hosts_PCT Percentage of connections with a different source host to the

current connection in a 100 connection window.

154 DFMC_same_dst_hosts_PCT Percentage of connections with the same destination host as a

current connection in a 100 connection window.

155 DFMC_diff_dst_hosts_PCT Percentage of connections with a different destination host to

the current connection in a 100 connection window.

156 DFMC_same_srv_PCT Percentage of connections with the same service as a current

connection in a 100 connection window.

157 DFMC_diff_srv_PCT Percentage of connections with a different service to the

current connection in a 100 connection window.

158 DFMCB_1 Number of TCP connections between the same hosts as a

current connection in a 100 connection window.

159 DFMCB_2 Number of UDP connections between the same hosts as a

current connection in a 100 connection window.

160 DFMCB_3 Number of ICMP connections between the same hosts as a

current connection in a 100 connection window.

161 DFMCB_4 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

source port as the current connection in a 100 connection

window.

162 DFMCB_5 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

source port as the current connection in a 100 connection

window.

163 DFMCB_6 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

destination port as the current connection in a 100 connection

window.

164 DFMCB_7 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

destination port as the current connection in a 100 connection

window.

165 DFMCB_8 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current source port as the current connection in a 100

connection window.

166 DFMCB_9 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current source port as the current connection in a 100

connection window.

167 DFMCB_10 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current destination port as the current connection in a 100

connection window.

168 DFMCB_11 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current destination port as the current connection in a

100 connection window.

169 DFMCB_12 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

source port as the current connection in a 100 connection

window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

277

No. Feature Description

170 DFMCB_13 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

source port as the current connection in a 100 connection

window.

171 DFMCB_14 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

destination port as the current connection in a 100 connection

window.

172 DFMCB_15 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

destination port as the current connection in a 100 connection

window.

173 DFMCB_16 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current source port as the current connection in a 100

connection window.

174 DFMCB_17 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current source port as the current connection in a 100

connection window.

175 DFMCB_18 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current destination port as the current connection in a 100

connection window.

176 DFMCB_19 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current destination port as the current connection in a

100 connection window.

177 DFMCB_20 Number of TCP packets with source IP=current destination IP

and destination IP=current source IP as the current connection

in a 100 connection window.

178 DFMCB_21 Number of TCP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 100 connection window.

179 DFMCB_22 Total TCP bytes of packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 100 connection window.

180 DFMCB_23 Total TCP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 100 connection window.

181 DFMCB_23a Average (DFMCB_22/DFMCB_20) TCP bytes of packets with

source IP=current destination IP and destination IP=current

source IP as the current connection in a 100 connection

window.

182 DFMCB_23b Average (DFMCB_23/DFMCB_21) TCP bytes of packets with

source IP=current source IP and destination IP=current

destination IP as the current connection in a 100 connection

window.

183 DFMCB_24 Number of UDP packets with source IP=current destination IP

and destination IP=current source IP as the current connection

in a 100 connection window.

184 DFMCB_25 Number of UDP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 100 connection window.

185 DFMCB_26 Total UDP bytes of packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 100 connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

278

No. Feature Description

186 DFMCB_27 Total UDP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 100 connection window.

187 DFMCB_27a Average (DFMCB_26/DFMCB_24) UDP bytes of packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 100

connection window.

188 DFMCB_27b Average (DFMCB_27/DFMCB_25) UDP bytes of packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 100 connection

window.

189 DFMCB_28 Number of ICMP packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 100 connection window.

190 DFMCB_29 Number of ICMP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 100 connection window.

191 DFMCB_30 Total ICMP bytes of packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

192 DFMCB_31 Total ICMP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 100 connection window.

193 DFMCB_31a Average (DFMCB_30/DFMCB_28) ICMP bytes of packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 100

connection window.

194 DFMCB_31b Average (DFMCB_31/DFMCB_29) ICMP bytes of packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 100 connection

window.

194a DFMCB_32 Number of TCP (URG) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

195 DFMCB_33 Number of TCP (ACK) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

196 DFMCB_34 Number of TCP (PSH) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

197 DFMCB_35 Number of TCP (RST) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

198 DFMCB_36 Number of TCP (SYN) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

199 DFMCB_37 Number of TCP (FIN) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 100 connection window.

199a DFMCB_38 Number of TCP (URG) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

200 DFMCB_39 Number of TCP (ACK) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

201 DFMCB_40 Number of TCP (PSH) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

279

No. Feature Description

202 DFMCB_41 Number of TCP (RST) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

203 DFMCB_42 Number of TCP (SYN) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

204 DFMCB_43 Number of TCP (FIN) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 100 connection window.

204a DFMCB_44 Number of Echo (type 8) ICMP packets with source

IP=current source IP and destination IP=current destination

IP as the current connection in a 100 connection window.

204b DFMCB_45 Number of Echo (type 8) ICMP packets with source

IP=current destination IP and destination IP=current source

IP as the current connection in a 100 connection window.

204c DFMCB_46 Number of Destination Unreachable (type 3) ICMP packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 100 connection

window.

204d DFMCB_47 Number of Destination Unreachable (type 3) ICMP packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 100

connection window.

205 DFMCOS_1 Number of TCP connections with source IP=current source IP

in a 100 connection window.

206 DFMCOS_2 Number of UDP connections with source IP=current source IP

in a 100 connection window.

207 DFMCOS_3 Number of ICMP connections with source IP=current source

IP in a 100 connection window.

208 DFMCOS_4 Number of TCP connections with destination IP=current

source IP in a 100 connection window.

209 DFMCOS_5 Number of UDP connections with destination IP=current

source IP in a 100 connection window.

210 DFMCOS_6 Number of ICMP connections with destination IP=current

source IP in a 100 connection window.

211 DFMCOS_7 Number of TCP connections with source IP=current source IP

and destination port=current destination port in a 100

connection window.

212 DFMCOS_8 Number of TCP connections with source IP=current source IP

and destination port!=current destination port in a 100

connection window.

213 DFMCOS_9 Number of TCP connections with destination IP=current

source IP and destination port=current destination port in a 100

connection window.

214 DFMCOS_10 Number of TCP connections with destination IP=current

source IP and destination port!=current destination port in a

100 connection window.

215 DFMCOS_11 Number of TCP connections with source IP=current source IP

and destination port=current source port in a 100 connection

window.

216 DFMCOS_12 Number of TCP connections with source IP=current source IP

and destination port!=current source port in a 100 connection

window.

217 DFMCOS_13 Number of TCP connections with destination IP=current

source IP and destination port=current source port in a 100

connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

280

No. Feature Description

218 DFMCOS_14 Number of TCP connections with destination IP=current

source IP and destination port!=current source port in a 100

connection window.

219 DFMCOS_15 Number of UDP connections with source IP=current source IP

and destination port=current destination port in a 100

connection window.

220 DFMCOS_16 Number of UDP connections with source IP=current source IP

and destination port!=current destination port in a 100

connection window.

221 DFMCOS_17 Number of UDP connections with destination IP=current

source IP and destination port=current destination port in a 100

connection window.

222 DFMCOS_18 Number of UDP connections with destination IP=current

source IP and destination port!=current destination port in a

100 connection window.

223 DFMCOS_19 Number of UDP connections with source IP=current source IP

and destination port=current source port in a 100 connection

window.

224 DFMCOS_20 Number of UDP connections with source IP=current source IP

and destination port!=current source port in a 100 connection

window.

225 DFMCOS_21 Number of UDP connections with destination IP=current

source IP and destination port=current source port in a 100

connection window.

226 DFMCOS_22 Number of UDP connections with destination IP=current

source IP and destination port!=current source port in a 100

connection window.

227 DFMCOS_23 Number of TCP connections with SYN packets where source

IP=current source IP in a 100 connection window.

228 DFMCOS_24 Number of TCP connections with SYN packets where

destination IP=current source IP in a 100 connection window.

229 DFMCOS_25 Number of TCP connections with RST packets where source

IP=current source IP in a 100 connection window.

230 DFMCOS_26 Number of TCP connections with RST packets where

destination IP=current source IP in a 100 connection window.

231 DFMCOS_27 Number of TCP packets with destination IP=current source IP

in a 100 connection window.

232 DFMCOS_28 Number of TCP packets with source IP=current source IP in a

100 connection window.

233 DFMCOS_29 Total bytes of TCP packets with destination IP=current source

IP in a 100 connection window.

234 DFMCOS_30 Total bytes of TCP packets with source IP=current source IP in

a 100 connection window.

235 DFMCOS_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets

with destination IP=current source IP as the current connection

in a 100 connection window.

236 DFMCOS_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets

with source IP=current source IP as the current connection in a

100 connection window.

237 DFMCOS_31 Number of UDP packets with destination IP=current source IP

in a 100 connection window.

238 DFMCOS_32 Number of UDP packets with source IP=current source IP in a

100 connection window.

239 DFMCOS_33 Total bytes of UDP packets with destination IP=current source

IP in a 100 connection window.

240 DFMCOS_34 Total bytes of UDP packets with source IP=current source IP

in a 100 connection window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

281

No. Feature Description

241 DFMCOS_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets

with destination IP=current source IP as the current connection

in a 100 connection window.

242 DFMCOS_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets

with source IP=current source IP as the current connection in a

100 connection window.

243 DFMCOS_35 Number of ICMP packets with destination IP=current source

IP in a 100 connection window.

244 DFMCOS_36 Number of ICMP packets with source IP=current source IP in a

100 connection window.

245 DFMCOS_37 Total bytes of ICMP packets with destination IP=current

source IP in a 100 connection window.

246 DFMCOS_38 Total bytes of ICMP packets with source IP=current source IP

in a 100 connection window.

247 DFMCOS_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets

with destination IP=current source IP as the current connection

in a 100 connection window.

248 DFMCOS_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets

with source IP=current source IP as the current connection in a

100 connection window.

249 DFMCOS_39 Number of Destination Unreachable (Type 3) ICMP packets

with destination IP=current source IP in a 100 connection

window.

249a DFMCOS_40 Number of Echo Reply (Type 0) ICMP packets with source

IP=current source IP in a 100 connection window.

249b DFMCOS_41 Number of TCP (URG) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

250 DFMCOS_42 Number of TCP (ACK) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

251 DFMCOS_43 Number of TCP (PSH) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

252 DFMCOS_44 Number of TCP (RST) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

253 DFMCOS_45 Number of TCP (SYN) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

254 DFMCOS_46 Number of TCP (FIN) packets with destination IP=current

source IP as the current connection in a 100 connection

window.

254a DFMCOS_47 Number of TCP (URG) packets with source IP=current source

IP as the current connection in a 100 connection window.

255 DFMCOS_48 Number of TCP (ACK) packets with source IP=current source

IP as the current connection in a 100 connection window.

256 DFMCOS_49 Number of TCP (PSH) packets with source IP=current source

IP as the current connection in a 100 connection window.

257 DFMCOS_50 Number of TCP (RST) packets with source IP=current source

IP as the current connection in a 100 connection window.

258 DFMCOS_51 Number of TCP (SYN) packets with source IP=current source

IP as the current connection in a 100 connection window.

259 DFMCOS_52 Number of TCP (FIN) packets with source IP=current source

IP as the current connection in a 100 connection window.

260 DFMCOD_1 Number of TCP connections with source IP=current

destination IP in a 100 connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

282

No. Feature Description

261 DFMCOD_2 Number of UDP connections with source IP=current

destination IP in a 100 connection window.

262 DFMCOD_3 Number of ICMP connections with source IP=current

destination IP in a 100 connection window.

263 DFMCOD_4 Number of TCP connections with destination IP=current

destination IP in a 100 connection window.

264 DFMCOD_5 Number of UDP connections with destination IP=current

destination IP in a 100 connection window.

265 DFMCOD_6 Number of ICMP connections with destination IP=current

destination IP in a 100 connection window.

266 DFMCOD_7 Number of TCP connections with source IP=current

destination IP and destination port=current destination port in a

100 connection window.

267 DFMCOD_8 Number of TCP connections with source IP=current

destination IP and destination port!=current destination port in

a 100 connection window.

268 DFMCOD_9 Number of TCP connections with destination IP=current

destination IP and destination port=current destination port in a

100 connection window.

269 DFMCOD_10 Number of TCP connections with destination IP=current

destination IP and destination port!=current destination port in

a 100 connection window.

270 DFMCOD_11 Number of TCP connections with source IP=current

destination IP and destination port=current source port in a 100

connection window.

271 DFMCOD_12 Number of TCP connections with source IP=current

destination IP and destination port!=current source port in a

100 connection window.

272 DFMCOD_13 Number of TCP connections with destination IP=current

destination IP and destination port=current source port in a 100

connection window.

273 DFMCOD_14 Number of TCP connections with destination IP=current

destination IP and destination port!=current source port in a

100 connection window.

274 DFMCOD_15 Number of UDP connections with source IP=current

destination IP and destination port=current destination port in a

100 connection window.

275 DFMCOD_16 Number of UDP connections with source IP=current

destination IP and destination port!=current destination port in

a 100 connection window.

276 DFMCOD_17 Number of UDP connections with destination IP=current

destination IP and destination port=current destination port in a

100 connection window.

277 DFMCOD_18 Number of UDP connections with destination IP=current

destination IP and destination port!=current destination port in

a 100 connection window.

278 DFMCOD_19 Number of UDP connections with source IP=current

destination IP and destination port=current source port in a 100

connection window.

279 DFMCOD_20 Number of UDP connections with source IP=current

destination IP and destination port!=current source port in a

100 connection window.

280 DFMCOD_21 Number of UDP connections with destination IP=current

destination IP and destination port=current source port in a 100

connection window.

281 DFMCOD_22 Number of UDP connections with destination IP=current

destination IP and destination port!=current source port in a

100 connection window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

283

No. Feature Description

282 DFMCOD_23 Number of TCP connections with SYN packets where source

IP=current destination IP in a 100 connection window.

283 DFMCOD_24 Number of TCP connections with SYN packets where

destination IP=current destination IP in a 100 connection

window.

284 DFMCOD_25 Number of TCP connections with RST packets where source

IP=current destination IP in a 100 connection window.

285 DFMCOD_26 Number of TCP connections with RST packets where

destination IP=current destination IP in a 100 connection

window.

286 DFMCOD_27 Number of TCP packets with destination IP=current

destination IP in a 100 connection window.

287 DFMCOD_28 Number of TCP packets with source IP=current destination IP

in a 100 connection window.

288 DFMCOD_29 Total bytes of TCP packets with destination IP=current

destination IP in a 100 connection window.

289 DFMCOD_30 Total bytes of TCP packets with source IP=current destination

IP in a 100 connection window.

290 DFMCOD_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets

with destination IP=current destination IP as the current

connection in a 100 connection window.

291 DFMCOD_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets

with source IP=current destination IP as the current connection

in a 100 connection window.

292 DFMCOD_31 Number of UDP packets with destination IP=current

destination IP in a 100 connection window.

293 DFMCOD_32 Number of UDP packets with source IP=current destination IP

in a 100 connection window.

294 DFMCOD_33 Total bytes of UDP packets with destination IP=current

destination IP in a 100 connection window.

295 DFMCOD_34 Total bytes of UDP packets with source IP=current destination

IP in a 100 connection window.

296 DFMCOD_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets

with destination IP=current destination IP as the current

connection in a 100 connection window.

297 DFMCOD_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets

with source IP=current destination IP as the current connection

in a 100 connection window.

298 DFMCOD_35 Number of ICMP packets with destination IP=current

destination IP in a 100 connection window.

299 DFMCOD_36 Number of ICMP packets with source IP=current destination

IP in a 100 connection window.

300 DFMCOD_37 Total bytes of ICMP packets with destination IP=current

destination IP in a 100 connection window.

301 DFMCOD_38 Total bytes of ICMP packets with source IP=current

destination IP in a 100 connection window.

302 DFMCOD_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets

with destination IP=current destination IP as the current

connection in a 100 connection window.

303 DFMCOD_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets

with source IP=current destination IP as the current connection

in a 100 connection window.

304 DFMCOD_39 Number of Destination Unreachable (Type 3) ICMP packets

with destination IP=current destination IP in a 100 connection

window.

304a DFMCOD_40 Number of Echo Reply (Type 0) ICMP packets with source

IP=current destination IP in a 100 connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

284

No. Feature Description

304b DFMCOD_41 Number of TCP (URG) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

305 DFMCOD_42 Number of TCP (ACK) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

306 DFMCOD_43 Number of TCP (PSH) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

307 DFMCOD_44 Number of TCP (RST) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

308 DFMCOD_45 Number of TCP (SYN) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

309 DFMCOD_46 Number of TCP (FIN) packets with destination IP=current

destination IP as the current connection in a 100 connection

window.

309a DFMCOD_47 Number of TCP (URG) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

310 DFMCOD_48 Number of TCP (ACK) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

311 DFMCOD_49 Number of TCP (PSH) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

312 DFMCOD_50 Number of TCP (RST) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

313 DFMCOD_51 Number of TCP (SYN) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

314 DFMCOD_52 Number of TCP (FIN) packets with source IP=current

destination IP as the current connection in a 100 connection

window.

315 DFMCG_1 Total number of TCP connections in a 100 connection window.

316 DFMCG_2 Total number of UDP connections in a 100 connection

window.

317 DFMCG_3 Total number of ICMP connections in a 100 connection

window.

318 DFMCG_4 Number of TCP connections with source or destination

port=current destination port in a 100 connection window.

319 DFMCG_5 Number of TCP connections with source or destination

port!=current destination port in a 100 connection window.

320 DFMCG_6 Number of UDP connections with source or destination

port=current destination port in a 100 connection window.

321 DFMCG_7 Number of UDP connections with source or destination

port!=current destination port in a 100 connection window.

322 DFMCG_8 Total number of exchanged TCP packets in a 100 connection

window.

323 DFMCG_9 Total number of exchanged UDP packets in a 100 connection

window.

324 DFMCG_10 Total number of exchanged ICMP packets in a 100 connection

window.

325 DFMCG_11 Number of TCP connections with destination port=current

source port in a 100 connection window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

285

No. Feature Description

326 DFMCG_12 Number of UDP connections with destination port=current

source port in a 100 connection window.

327 DFMCG_13 Number of TCP connections with source port=current source

port in a 100 connection window.

328 DFMCG_14 Number of UDP connections with source port=current source

port in a 100 connection window.

329 DFMCG_15 Number of TCP connections with destination port=current

destination port in a 100 connection window.

330 DFMCG_16 Number of UDP connections with destination port=current

destination port in a 100 connection window.

331 DFMCG_17 Number of TCP connections with source port=current

destination port in a 100 connection window.

332 DFMCG_18 Number of UDP connections with source port=current

destination port in a 100 connection window.

332a DFMCG_19 Number of TCP (URG) packets in a 100 connection window.

333 DFMCG_20 Number of TCP (ACK) packets in a 100 connection window.

334 DFMCG_21 Number of TCP (PSH) packets in a 100 connection window.

335 DFMCG_22 Number of TCP (RST) packets in a 100 connection window.

336 DFMCG_23 Number of TCP (SYN) packets in a 100 connection window.

337 DFMCG_24 Number of TCP (FIN) packets in a 100 connection window.

338 DFMCG_25 Number of Destination Unreachable (Type 3) ICMP packets in

a 100 connection window.

338a DFMCG_26 Number of Echo Reply (Type 0) ICMP packets in a 100

connection window.

338b DFMCG_27 Number of Destination Unreachable (Type 3) ICMP

connections in a 100 connection window.

338c DFMCG_28 Number of Echo Reply (Type 0) ICMP connections in a 100

connection window.

339 DFMCG_29 Number of TCP connection with SYN packets and destination

port=current source port in a 100 connection window.

340 DFMCG_30 Number of TCP connection with SYN packets and source

port=current source port in a 100 connection window.

341 DFMCG_31 Number of TCP connection with SYN packets and destination

port=current destination port in a 100 connection window.

342 DFMCG_32 Number of TCP connection with SYN packets and source

port=current destination port in a 100 connection window.

343 DFMCG_33 Number of TCP connection with RST packets and destination

port=current source port in a 100 connection window.

344 DFMCG_34 Number of TCP connection with RST packets and source

port=current source port in a 100 connection window.

345 DFMCG_35 Number of TCP connection with RST packets and destination

port=current destination port in a 100 connection window.

346 DFMCG_36 Number of TCP connection with RST packets and source

port=current destination port in a 100 connection window.

347 DFMCG_37 Total number of TCP connections with SYN packets in a 100

connection window.

348 DFMCG_38 Total number of TCP connections with RST packets in a 100

connection window.

Appendix (D) Feature Descriptions of STA2018 Dataset

286

D.3. Time-Based Features

No. Feature Description
349 DFMT_totalConnections Total number of connections in a 5 second window.

350 DFMT_same_src_hosts_count Number of connections with the same source host as a current

connection in a 5 second window.

351 DFMT_diff_src_hosts_count Number of connections with a different source host to the

current connection in a 5 second window.

352 DFMT_same_dst_hosts_count Number of connections with the same destination host as a

current connection in a 5 second window.

353 DFMT_diff_dst_hosts_count Number of connections with a different destination host to the

current connection in a 5 second window.

354 DFMT_same_srv_count Number of connections with the same service as a current

connection in a 5 second window.

355 DFMT_diff_srv_count Number of connections with a different service to the current

connection in a 5 second window.

356 DFMT_same_src_hosts_PCT Percentage of connections with the same source host as a

current connection in a 5 second window.

357 DFMT_diff_src_hosts_PCT Percentage of connections with a different source host to the

current connection in a 5 second window.

358 DFMT_same_dst_hosts_PCT Percentage of connections with the same destination host as a

current connection in a 5 second window.

359 DFMT_diff_dst_hosts_PCT Percentage of connections with a different destination host to

the current connection in a 5 second window.

360 DFMT_same_srv_PCT Percentage of connections with the same service as a current

connection in a 5 second window.

361 DFMT_diff_srv_PCT Percentage of connections with a different service to the

current connection in a 5 second window.

362 DFMTB_1 Number of TCP connections between the same hosts as a

current connection in a 5 second window.

363 DFMTB_2 Number of UDP connections between the same hosts as a

current connection in a 5 second window.

364 DFMTB_3 Number of ICMP connections between the same hosts as a

current connection in a 5 second window.

365 DFMTB_4 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

source port as the current connection in a 5 second window.

366 DFMTB_5 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

source port as the current connection in a 5 second window.

367 DFMTB_6 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

destination port as the current connection in a 5 second

window.

368 DFMTB_7 Number of TCP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

destination port as the current connection in a 5 second

window.

369 DFMTB_8 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current source port as the current connection in a 5

second window.

370 DFMTB_9 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

 Appendix (D) Feature Descriptions of STA2018 Dataset

287

No. Feature Description
port!=current source port as the current connection in a 5

second window.

371 DFMTB_10 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current destination port as the current connection in a 5

second window.

372 DFMTB_11 Number of TCP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current destination port as the current connection in a 5

second window.

372a DFMTB_12 Number of UDP connections with source IP=current source

IP, destination IP=current destination IP and source

port=current source port as the current connection in a 5

second window.

373 DFMTB_13 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

source port as the current connection in a 5 second window.

374 DFMTB_14 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port=current

destination port as the current connection in a 5 second

window.

375 DFMTB_15 Number of UDP connections with source IP=current source IP,

destination IP=current destination IP and source port!=current

destination port as the current connection in a 5 second

window.

375a DFMTB_16 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current source port as the current connection in a 5

second window.

376 DFMTB_17 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current source port as the current connection in a 5

second window.

376a DFMTB_18 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port=current destination port as the current connection in a 5

second window.

377 DFMTB_19 Number of UDP connections with source IP=current

destination IP, destination IP=current source IP and source

port!=current destination port as the current connection in a 5

second window.

378 DFMTB_20 Number of TCP packets with source IP=current destination IP

and destination IP=current source IP as the current connection

in a 5 second window.

379 DFMTB_21 Number of TCP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 5 second window.

380 DFMTB_22 Total TCP bytes of packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 5 second window.

381 DFMTB_23 Total TCP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 5 second window.

382 DFMTB_23a Average (DFMCB_22/DFMCB_20) TCP bytes of packets with

source IP=current destination IP and destination IP=current

source IP as the current connection in a 5 second window.

Appendix (D) Feature Descriptions of STA2018 Dataset

288

No. Feature Description
383 DFMTB_23b Average (DFMCB_23/DFMCB_21) TCP bytes of packets with

source IP=current source IP and destination IP=current

destination IP as the current connection in a 5 second window.

384 DFMTB_24 Number of UDP packets with source IP=current destination IP

and destination IP=current source IP as the current connection

in a 5 second window.

385 DFMTB_25 Number of UDP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 5 second window.

386 DFMTB_26 Total UDP bytes of packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 5 second window.

387 DFMTB_27 Total UDP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 5 second window.

388 DFMTB_27a Average (DFMCB_26/DFMCB_24) UDP bytes of packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 5 second

window.

389 DFMTB_27b Average (DFMCB_27/DFMCB_25) UDP bytes of packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 5 second window.

390 DFMTB_28 Number of ICMP packets with source IP=current destination

IP and destination IP=current source IP as the current

connection in a 5 second window.

391 DFMTB_29 Number of ICMP packets with source IP=current source IP and

destination IP=current destination IP as the current connection

in a 5 second window.

392 DFMTB_30 Total ICMP bytes of packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

393 DFMTB_31 Total ICMP bytes of packets with source IP=current source IP

and destination IP=current destination IP as the current

connection in a 5 second window.

394 DFMTB_31a Average (DFMCB_30/DFMCB_28) ICMP bytes of packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 5 second

window.

395 DFMTB_31b Average (DFMCB_31/DFMCB_29) ICMP bytes of packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 5 second window.

395a DFMTB_32 Number of TCP (URG) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

396 DFMTB_33 Number of TCP (ACK) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

397 DFMTB_34 Number of TCP (PSH) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

398 DFMTB_35 Number of TCP (RST) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

399 DFMTB_36 Number of TCP (SYN) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

289

No. Feature Description
400 DFMTB_37 Number of TCP (FIN) packets with source IP=current source

IP and destination IP=current destination IP as the current

connection in a 5 second window.

400a DFMTB_38 Number of TCP (URG) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

401 DFMTB_39 Number of TCP (ACK) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

402 DFMTB_40 Number of TCP (PSH) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

403 DFMTB_41 Number of TCP (RST) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

404 DFMTB_42 Number of TCP (SYN) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

405 DFMTB_43 Number of TCP (FIN) packets with source IP=current

destination IP and destination IP=current source IP as the

current connection in a 5 second window.

405a DFMTB_44 Number of Echo (type 8) ICMP packets with source

IP=current source IP and destination IP=current destination

IP as the current connection in a 5 second window.

405b DFMTB_45 Number of Echo (type 8) ICMP packets with source

IP=current destination IP and destination IP=current source

IP as the current connection in a 5 second window.

405c DFMTB_46 Number of Destination Unreachable (type 3) ICMP packets

with source IP=current source IP and destination IP=current

destination IP as the current connection in a 5 second window.

405d DFMTB_47 Number of Destination Unreachable (type 3) ICMP packets

with source IP=current destination IP and destination

IP=current source IP as the current connection in a 5 second

window.

406 DFMTOS_1 Number of TCP connections with source IP=current source IP

in a 5 second window.

407 DFMTOS_2 Number of UDP connections with source IP=current source IP

in a 5 second window.

408 DFMTOS_3 Number of ICMP connections with source IP=current source

IP in a 5 second window.

409 DFMTOS_4 Number of TCP connections with destination IP=current

source IP in a 5 second window.

410 DFMTOS_5 Number of UDP connections with destination IP=current

source IP in a 5 second window.

411 DFMTOS_6 Number of ICMP connections with destination IP=current

source IP in a 5 second window.

412 DFMTOS_7 Number of TCP connections with source IP=current source IP

and destination port=current destination port in a 5 second

window.

413 DFMTOS_8 Number of TCP connections with source IP=current source IP

and destination port!=current destination port in a 5 second

window.

414 DFMTOS_9 Number of TCP connections with destination IP=current

source IP and destination port=current destination port in a 5

second window.

415 DFMTOS_10 Number of TCP connections with destination IP=current

source IP and destination port!=current destination port in a 5

second window.

Appendix (D) Feature Descriptions of STA2018 Dataset

290

No. Feature Description
416 DFMTOS_11 Number of TCP connections with source IP=current source IP

and destination port=current source port in a 5 second window.

417 DFMTOS_12 Number of TCP connections with source IP=current source IP

and destination port!=current source port in a 5 second

window.

418 DFMTOS_13 Number of TCP connections with destination IP=current

source IP and destination port=current source port in a 5

second window.

419 DFMTOS_14 Number of TCP connections with destination IP=current

source IP and destination port!=current source port in a 5

second window.

420 DFMTOS_15 Number of UDP connections with source IP=current source IP

and destination port=current destination port in a 5 second

window.

421 DFMTOS_16 Number of UDP connections with source IP=current source IP

and destination port!=current destination port in a 5 second

window.

422 DFMTOS_17 Number of UDP connections with destination IP=current

source IP and destination port=current destination port in a 5

second window.

423 DFMTOS_18 Number of UDP connections with destination IP=current

source IP and destination port!=current destination port in a 5

second window.

424 DFMTOS_19 Number of UDP connections with source IP=current source IP

and destination port=current source port in a 5 second window.

425 DFMTOS_20 Number of UDP connections with source IP=current source IP

and destination port!=current source port in a 5 second

window.

426 DFMTOS_21 Number of UDP connections with destination IP=current

source IP and destination port=current source port in a 5

second window.

427 DFMTOS_22 Number of UDP connections with destination IP=current

source IP and destination port!=current source port in a 5

second window.

428 DFMTOS_23 Number of TCP connections with SYN packets where source

IP=current source IP in a 5 second window.

429 DFMTOS_24 Number of TCP connections with SYN packets where

destination IP=current source IP in a 5 second window.

430 DFMTOS_25 Number of TCP connections with RST packets where source

IP=current source IP in a 5 second window.

431 DFMTOS_26 Number of TCP connections with RST packets where

destination IP=current source IP in a 5 second window.

432 DFMTOS_27 Number of TCP packets with destination IP=current source IP

in a 5 second window.

433 DFMTOS_28 Number of TCP packets with source IP=current source IP in a

5 second window.

434 DFMTOS_29 Total bytes of TCP packets with destination IP=current source

IP in a 5 second window.

435 DFMTOS_30 Total bytes of TCP packets with source IP=current source IP in

a 5 second window.

436 DFMTOS_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets

with destination IP=current source IP as the current connection

in a 5 second window.

437 DFMTOS_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets

with source IP=current source IP as the current connection in a

5 second window.

438 DFMTOS_31 Number of UDP packets with destination IP=current source IP

in a 5 second window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

291

No. Feature Description
439 DFMTOS_32 Number of UDP packets with source IP=current source IP in a

5 second window.

440 DFMTOS_33 Total bytes of UDP packets with destination IP=current source

IP in a 5 second window.

441 DFMTOS_34 Total bytes of UDP packets with source IP=current source IP

in a 5 second window.

442 DFMTOS_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets

with destination IP=current source IP as the current connection

in a 5 second window.

443 DFMTOS_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets

with source IP=current source IP as the current connection in a

5 second window.

444 DFMTOS_35 Number of ICMP packets with destination IP=current source

IP in a 5 second window.

445 DFMTOS_36 Number of ICMP packets with source IP=current source IP in a

5 second window.

446 DFMTOS_37 Total bytes of ICMP packets with destination IP=current

source IP in a 5 second window.

447 DFMTOS_38 Total bytes of ICMP packets with source IP=current source IP

in a 5 second window.

448 DFMTOS_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets

with destination IP=current source IP as the current connection

in a 5 second window.

449 DFMTOS_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets

with source IP=current source IP as the current connection in a

5 second window.

450 DFMTOS_39 Number of Destination Unreachable (Type 3) ICMP packets

with destination IP=current source IP in a 5 second window.

450a DFMTOS_40 Number of Echo Reply (Type 0) ICMP packets with source

IP=current source IP in a 5 second window.

450b DFMTOS_41 Number of TCP (URG) packets with destination IP=current

source IP as the current connection in a 5 second window.

451 DFMTOS_42 Number of TCP (ACK) packets with destination IP=current

source IP as the current connection in a 5 second window.

452 DFMTOS_43 Number of TCP (PSH) packets with destination IP=current

source IP as the current connection in a 5 second window.

453 DFMTOS_44 Number of TCP (RST) packets with destination IP=current

source IP as the current connection in a 5 second window.

454 DFMTOS_45 Number of TCP (SYN) packets with destination IP=current

source IP as the current connection in a 5 second window.

455 DFMTOS_46 Number of TCP (FIN) packets with destination IP=current

source IP as the current connection in a 5 second window.

455a DFMTOS_47 Number of TCP (URG) packets with source IP=current source

IP as the current connection in a 5 second window.

456 DFMTOS_48 Number of TCP (ACK) packets with source IP=current source

IP as the current connection in a 5 second window.

457 DFMTOS_49 Number of TCP (PSH) packets with source IP=current source

IP as the current connection in a 5 second window.

458 DFMTOS_50 Number of TCP (RST) packets with source IP=current source

IP as the current connection in a 5 second window.

459 DFMTOS_51 Number of TCP (SYN) packets with source IP=current source

IP as the current connection in a 5 second window.

460 DFMTOS_52 Number of TCP (FIN) packets with source IP=current source

IP as the current connection in a 5 second window.

461 DFMTOD_1 Number of TCP connections with source IP=current

destination IP in a 5 second window.

462 DFMTOD_2 Number of UDP connections with source IP=current

destination IP in a 5 second window.

Appendix (D) Feature Descriptions of STA2018 Dataset

292

No. Feature Description
463 DFMTOD_3 Number of ICMP connections with source IP=current

destination IP in a 5 second window.

464 DFMTOD_4 Number of TCP connections with destination IP=current

destination IP in a 5 second window.

465 DFMTOD_5 Number of UDP connections with destination IP=current

destination IP in a 5 second window.

466 DFMTOD_6 Number of ICMP connections with destination IP=current

destination IP in a 5 second window.

467 DFMTOD_7 Number of TCP connections with source IP=current

destination IP and destination port=current destination port in a

5 second window.

468 DFMTOD_8 Number of TCP connections with source IP=current

destination IP and destination port!=current destination port in

a 5 second window.

469 DFMTOD_9 Number of TCP connections with destination IP=current

destination IP and destination port=current destination port in a

5 second window.

470 DFMTOD_10 Number of TCP connections with destination IP=current

destination IP and destination port!=current destination port in

a 5 second window.

471 DFMTOD_11 Number of TCP connections with source IP=current

destination IP and destination port=current source port in a 5

second window.

472 DFMTOD_12 Number of TCP connections with source IP=current

destination IP and destination port!=current source port in a 5

second window.

473 DFMTOD_13 Number of TCP connections with destination IP=current

destination IP and destination port=current source port in a 5

second window.

474 DFMTOD_14 Number of TCP connections with destination IP=current

destination IP and destination port!=current source port in a 5

second window.

475 DFMTOD_15 Number of UDP connections with source IP=current

destination IP and destination port=current destination port in a

5 second window.

476 DFMTOD_16 Number of UDP connections with source IP=current

destination IP and destination port!=current destination port in

a 5 second window.

477 DFMTOD_17 Number of UDP connections with destination IP=current

destination IP and destination port=current destination port in a

5 second window.

478 DFMTOD_18 Number of UDP connections with destination IP=current

destination IP and destination port!=current destination port in

a 5 second window.

479 DFMTOD_19 Number of UDP connections with source IP=current

destination IP and destination port=current source port in a 5

second window.

480 DFMTOD_20 Number of UDP connections with source IP=current

destination IP and destination port!=current source port in a 5

second window.

481 DFMTOD_21 Number of UDP connections with destination IP=current

destination IP and destination port=current source port in a 5

second window.

482 DFMTOD_22 Number of UDP connections with destination IP=current

destination IP and destination port!=current source port in a 5

second window.

483 DFMTOD_23 Number of TCP connections with SYN packets where source

IP=current destination IP in a 5 second window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

293

No. Feature Description
484 DFMTOD_24 Number of TCP connections with SYN packets where

destination IP=current destination IP in a 5 second window.

485 DFMTOD_25 Number of TCP connections with RST packets where source

IP=current destination IP in a 5 second window.

486 DFMTOD_26 Number of TCP connections with RST packets where

destination IP=current destination IP in a 5 second window.

487 DFMTOD_27 Number of TCP packets with destination IP=current

destination IP in a 5 second window.

488 DFMTOD_28 Number of TCP packets with source IP=current destination IP

in a 5 second window.

489 DFMTOD_29 Total bytes of TCP packets with destination IP=current

destination IP in a 5 second window.

490 DFMTOD_30 Total bytes of TCP packets with source IP=current destination

IP in a 5 second window.

491 DFMTOD_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets

with destination IP=current destination IP as the current

connection in a 5 second window.

492 DFMTOD_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets

with source IP=current destination IP as the current connection

in a 5 second window.

493 DFMTOD_31 Number of UDP packets with destination IP=current

destination IP in a 5 second window.

494 DFMTOD_32 Number of UDP packets with source IP=current destination IP

in a 5 second window.

495 DFMTOD_33 Total bytes of UDP packets with destination IP=current

destination IP in a 5 second window.

496 DFMTOD_34 Total bytes of UDP packets with source IP=current destination

IP in a 5 second window.

497 DFMTOD_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets

with destination IP=current destination IP as the current

connection in a 5 second window.

498 DFMTOD_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets

with source IP=current destination IP as the current connection

in a 5 second window.

499 DFMTOD_35 Number of ICMP packets with destination IP=current

destination IP in a 5 second window.

500 DFMTOD_36 Number of ICMP packets with source IP=current destination

IP in a 5 second window.

501 DFMTOD_37 Total bytes of ICMP packets with destination IP=current

destination IP in a 5 second window.

502 DFMTOD_38 Total bytes of ICMP packets with source IP=current

destination IP in a 5 second window.

503 DFMTOD_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets

with destination IP=current destination IP as the current

connection in a 5 second window.

504 DFMTOD_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets

with source IP=current destination IP as the current connection

in a 5 second window.

505 DFMTOD_39 Number of Destination Unreachable (Type 3) ICMP packets

with destination IP=current destination IP in a 5 second

window.

505a DFMTOD_40 Number of Echo Reply (Type 0) ICMP packets with source

IP=current destination IP in a 5 second window.

505b DFMTOD_41 Number of TCP (URG) packets with destination IP=current

destination IP as the current connection in a 5 second window.

506 DFMTOD_42 Number of TCP (ACK) packets with destination IP=current

destination IP as the current connection in a 5 second window.

Appendix (D) Feature Descriptions of STA2018 Dataset

294

No. Feature Description
507 DFMTOD_43 Number of TCP (PSH) packets with destination IP=current

destination IP as the current connection in a 5 second window.

508 DFMTOD_44 Number of TCP (RST) packets with destination IP=current

destination IP as the current connection in a 5 second window.

509 DFMTOD_45 Number of TCP (SYN) packets with destination IP=current

destination IP as the current connection in a 5 second window.

510 DFMTOD_46 Number of TCP (FIN) packets with destination IP=current

destination IP as the current connection in a 5 second window.

510a DFMTOD_47 Number of TCP (URG) packets with source IP=current

destination IP as the current connection in a 5 second window.

511 DFMTOD_48 Number of TCP (ACK) packets with source IP=current

destination IP as the current connection in a 5 second window.

512 DFMTOD_49 Number of TCP (PSH) packets with source IP=current

destination IP as the current connection in a 5 second window.

513 DFMTOD_50 Number of TCP (RST) packets with source IP=current

destination IP as the current connection in a 5 second window.

514 DFMTOD_51 Number of TCP (SYN) packets with source IP=current

destination IP as the current connection in a 5 second window.

515 DFMTOD_52 Number of TCP (FIN) packets with source IP=current

destination IP as the current connection in a 5 second window.

516 DFMTG_1 Total number of TCP connections in a 5 second window.

517 DFMTG_2 Total number of UDP connections in a 5 second window.

518 DFMTG_3 Total number of ICMP connections in a 5 second window.

519 DFMTG_4 Number of TCP connections with source or destination

port=current destination port in a 5 second window.

520 DFMTG_5 Number of TCP connections with source or destination

port!=current destination port in a 5 second window.

521 DFMTG_6 Number of UDP connections with source or destination

port=current destination port in a 5 second window.

522 DFMTG_7 Number of UDP connections with source or destination

port!=current destination port in a 5 second window.

523 DFMTG_8 Total number of exchanged TCP packets in a 5 second

window.

524 DFMTG_9 Total number of exchanged UDP packets in a 5 second

window.

525 DFMTG_10 Total number of exchanged ICMP packets in a 5 second

window.

526 DFMTG_11 Number of TCP connections with destination port=current

source port in a 5 second window.

527 DFMTG_12 Number of UDP connections with destination port=current

source port in a 5 second window.

528 DFMTG_13 Number of TCP connections with source port=current source

port in a 5 second window.

529 DFMTG_14 Number of UDP connections with source port=current source

port in a 5 second window.

530 DFMTG_15 Number of TCP connections with destination port=current

destination port in a 5 second window.

531 DFMTG_16 Number of UDP connections with destination port=current

destination port in a 5 second window.

532 DFMTG_17 Number of TCP connections with source port=current

destination port in a 5 second window.

533 DFMTG_18 Number of UDP connections with source port=current

destination port in a 5 second window.

533a DFMTG_19 Number of TCP (URG) packets in a 5 second window.

534 DFMTG_20 Number of TCP (ACK) packets in a 5 second window.

535 DFMTG_21 Number of TCP (PSH) packets in a 5 second window.

 Appendix (D) Feature Descriptions of STA2018 Dataset

295

No. Feature Description
536 DFMTG_22 Number of TCP (RST) packets in a 5 second window.

537 DFMTG_23 Number of TCP (SYN) packets in a 5 second window.

538 DFMTG_24 Number of TCP (FIN) packets in a 5 second window.

539 DFMTG_25 Number of Destination Unreachable (Type 3) ICMP packets in

a 5 second window.

539a DFMTG_26 Number of Echo Reply (Type 0) ICMP packets in a 5 second

window.

539b DFMTG_27 Number of Destination Unreachable (Type 3) ICMP

connections in a 5 second window.

539c DFMTG_28 Number of Echo Reply (Type 0) ICMP connections in a 5

second window.

540 DFMTG_29 Number of TCP connection with SYN packets and destination

port=current source port in a 5 second window.

541 DFMTG_30 Number of TCP connection with SYN packets and source

port=current source port in a 5 second window.

542 DFMTG_31 Number of TCP connection with SYN packets and destination

port=current destination port in a 5 second window.

543 DFMTG_32 Number of TCP connection with SYN packets and source

port=current destination port in a 5 second window.

544 DFMTG_33 Number of TCP connection with RST packets and destination

port=current source port in a 5 second window.

545 DFMTG_34 Number of TCP connection with RST packets and source

port=current source port in a 5 second window.

546 DFMTG_35 Number of TCP connection with RST packets and destination

port=current destination port in a 5 second window.

547 DFMTG_36 Number of TCP connection with RST packets and source

port=current destination port in a 5 second window.

548 DFMTG_37 Total number of TCP connections with SYN packets in a 5

second window.

549 DFMTG_38 Total number of TCP connections with RST packets in a 5

second window.

D.4. Class Feature

No. Feature Description
550 class Connection label {Normal, Attack}

297

REFERENCES

[1] Amjad Al Tobi and Ishbel Duncan. KDD 1999 Generation Faults: A Review and

Analysis. Journal of Cyber Security Technology, 2018. URL

https://doi.org/10.1080/23742917.2018.1518061.

[2] Yulia Cherdantseva and Jeremy Hilton. A Reference Model of Information Assurance

& Security. In 2013 International Conference on Availability, Reliability and Security,

pages 546–555. IEEE, 2013.

[3] Dave Gordon. Managing Auditability (and Other Non-Functional, Non-Technical

Requirements), 2014. URL

http://searchsecurity.techtarget.com/definition/nonrepudiation, Accessed 16 Jul 2018.

[4] Chad Perrin. The CIA Triad, 2008. URL https://www.techrepublic.com/blog/it-

security/the-cia-triad/, Accessed 16 Jul 2018.

[5] Margaret Rouse. Nonrepudiation, 2008. URL

http://searchsecurity.techtarget.com/definition/nonrepudiation, Accessed 16 Jul 2018.

[6] Hossein Bidgoli. Handbook of Information Security, Information Warfare, Social,

Legal, and International Issues and Security Foundations, volume 2. John Wiley &

Sons, 2006.

[7] Steven Andrew Hofmeyr. An Immunological Model of Distributed Detection and Its

Application to Computer Security. PhD thesis, University of New Mexico, Department

of Computer Science, 1999.

[8] Swagatam Das, Shounak Datta, and Bidyut B Chaudhuri. Handling Data Irregularities

in Classification: Foundations, Trends, and Future Challenges. Pattern Recognition,

pages 674–693, 2018.

[9] Sotiris B Kotsiantis. Supervised Machine Learning: A Review of Classification

Techniques. Informatica (Ljubljana), 31 (3): 249–268, 2007.

[10] Nikolay Burlutskiy, Miltos Petridis, Andrew Fish, Alexey Chernov, and Nour Ali. An

Investigation on Online Versus Batch Learning in Predicting User Behaviour. In

Research and Development in Intelligent Systems XXXIII, pages 135–149. Springer

International Publishing, 2016.

[11] Dorothy E Denning. An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, SE-13 (2): 222–232, 1987.

[12] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Network

Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys &

Tutorials, 16 (1): 303–336, 2014.

[13] Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of Intrusion Detection.

ACM Transactions on Information and System Security (TISSEC), 3 (3): 186–205,

2000.

References

298

[14] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward developing

a systematic approach to generate benchmark datasets for intrusion detection.

Computers & Security, 31 (3): 357–374, 2012.

[15] Iosif-Viorel Onut and Ali A Ghorbani. A Feature Classification Scheme for Network

Intrusion Detection. IJ Network Security, 5 (1): 1–15, 2007.

[16] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks, 31 (23-24): 2435–2463, 1999.

[17] Janez Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal

of Machine learning research, 7 (Jan): 1–30, 2006.

[18] James P Anderson. Computer Security Technology Planning Study (Vol. I). Technical

report, Anderson (James P) and Co Fort Washington PA, 1972.

[19] James P Anderson. Computer Security Technology Planning Study (Vol. II).

Technical report, Anderson (James P) and Co Fort Washington PA, 1972.

[20] James P Anderson. Computer Security Threat Monitoring and Surveillance. Technical

report, Anderson (James P) and Co Fort Washington PA, 1980.

[21] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias

Fischer. Taxonomy and Survey of Collaborative Intrusion Detection. ACM Computing

Surveys (CSUR), 47 (4): 55:1–55:33, 2015.

[22] Tarfa Hamed, Jason B Ernst, and Stefan C Kremer. A Survey and Taxonomy on Data

and Pre-processing Techniques of Intrusion Detection Systems. In Computer and

Network Security Essentials, pages 113–134. Springer, 2018.

[23] Reema Patel, Amit Thakkar, and Amit Ganatra. A Survey and Comparative Analysis

of Data Mining Techniques for Network Intrusion Detection Systems. International

Journal of Soft Computing and Engineering (IJSCE) ISSN, pages 2231–2307, 2012.

[24] Robert Mitchell and Ing-Ray Chen. A Survey of Intrusion Detection Techniques for

Cyber-Physical Systems. ACM Computing Surveys (CSUR), 46 (4): 55:1–55:29, 2014.

[25] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.

Intrusion Detection System: A Comprehensive Review. Journal of Network and

Computer Applications, 36 (1): 16–24, 2013.

[26] Igino Corona, Giorgio Giacinto, and Fabio Roli. Adversarial Attacks Against Intrusion

Detection Systems: Taxonomy, Solutions and Open Issues. Information Sciences, 239:

201–225, 2013.

[27] Anna L Buczak and Erhan Guven. A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &

Tutorials, 18 (2): 1153–1176, 2016.

[28] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and

Muttukrishnan Rajarajan. A Survey of Intrusion Detection Techniques in Cloud.

Journal of Network and Computer Applications, 36 (1): 42–57, 2013.

[29] Richard Zuech, Taghi M Khoshgoftaar, and Randall Wald. Intrusion Detection and

Big Heterogeneous Data: A Survey. Journal of Big Data, 2 (1): 1–14, 2015.

[30] Jason Nikolai and Yong Wang. Hypervisor-Based Cloud Intrusion Detection System.

In proceedings of the International Conference on Computing, Networking and

Communications (ICNC), pages 989–993. IEEE, 2014.

 References

299

[31] Carlos A Catania and Carlos García Garino. Automatic Network Intrusion Detection:

Current Techniques and Open Issues. Computers & Electrical Engineering, 38 (5):

1062–1072, 2012.

[32] Ali A Ghorbani, Wei Lu, and Mahbod Tavallaee. Network Intrusion Detection and

Prevention: Concepts and Techniques, volume 47. Springer Science & Business

Media, 2010.

[33] Aurobindo Sundaram. An Introduction to Intrusion Detection. Crossroads, 2 (4): 3–7,

1996.

[34] Byung-Chul Park, Young J Won, Myung-Sup Kim, and James W Hong. Towards

Automated Application Signature Generation for Traffic Identification. In

Proceedings of the Network Operations and Management Symposium (NOMS), pages

160–167. IEEE, 2008.

[35] Matthew Van Gundy, Davide Balzarotti, and Giovanni Vigna. Catch Me, If You Can:

Evading Network Signatures with Web-based Polymorphic Worms. In proceedings of

the first USENIX Workshop on Offensive Technologies (WOOT), pages 7:1–7:9, 2007.

[36] Christopher Kruegel, William Robertson, and Giovanni Vigna. Using Alert

Verification to Identify Successful Intrusion Attempts. Praxis der

Informationsverarbeitung und Kommunikation, 27 (4): 219–227, 2004.

[37] Damiano Bolzoni, Bruno Crispo, and Sandro Etalle. ATLANTIDES: An Architecture

for Alert Verification in Network Intrusion Detection Systems. In proceedings of the

21st Conference on Large Installation System Administration Conference (LISA),

volume 7, pages 1–12, 2007.

[38] Kevin Borders, Xin Zhao, and Atul Prakash. Siren: Catching Evasive Malware. In

proceedings of the IEEE Symposium on Security and Privacy, pages 1–6. IEEE, 2006.

[39] Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an Ensemble of One-Class SVM

Classifiers to Harden Payload-based Anomaly Detection Systems. In proceedings of

the 6th International Conference on Data Mining (ICDM), pages 488–498. IEEE,

2006.

[40] Xavier JA Bellekens, Christos Tachtatzis, Robert C Atkinson, Craig Renfrew, and

Tony Kirkham. A Highly-Efficient Memory-Compression Scheme for GPU-

Accelerated Intrusion Detection Systems. In proceedings of the 7th International

Conference on Security of Information and Networks, pages 302–309. ACM, 2014.

[41] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detection: A

Survey. ACM Computing Surveys (CSUR), 41 (3): 5, 2009.

[42] Wei Lu and Ali A Ghorbani. Network Anomaly Detection Based on Wavelet

Analysis. EURASIP Journal on Advances in Signal Processing, 2009: 4:1–4:16, 2009.

[43] Stuart Staniford, James A Hoagland, and Joseph M McAlerney. Practical Automated

Detection of Stealthy Portscans. Journal of Computer Security, 10 (1-2): 105–136,

2002.

[44] Zheng Zhang, Jun Li, CN Manikopoulos, Jay Jorgenson, and Jose Ucles. HIDE: A

Hierarchical Network Intrusion Detection System Using Statistical Preprocessing and

Neural Network Classification. In proceedings of the IEEE Workshop on Information

Assurance and Security, pages 85–90, 2001.

References

300

[45] Matthew V Mahoney and Philip K Chan. PHAD: Packet Header Anomaly Detection

for Identifying Hostile Network Traffic. Technical report, 2001.

[46] Ke Wang and Salvatore J Stolfo. Anomalous Payload-Based Network Intrusion

Detection. In International Workshop on Recent Advances in Intrusion Detection,

volume 3224, pages 203–222. Springer, 2004.

[47] Matthew V Mahoney and Philip K Chan. Learning Rules for Anomaly Detection of

Hostile Network Traffic. In proceedings of the 3rd IEEE International Conference on

Data Mining (ICDM), pages 601–604. IEEE, 2003.

[48] Sui Song, Li Ling, and CN Manikopoulo. Flow-Based Statistical Aggregation

Schemes for Network Anomaly Detection. In proceedings of the 2006 IEEE

International Conference on Networking, Sensing and Control (ICNSC), pages 786–

791. IEEE, 2006.

[49] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian Chen,

Jui-Lin Lai, and Citra Dwi Perkasa. A Novel Intrusion Detection System Based On

Hierarchical Clustering and Support Vector Machines. Expert systems with

Applications, 38 (1): 306–313, 2011.

[50] Zaniah Muda, Warusia Yassin, Md. Nasir Sulaiman, and Nur Izura Udzir. Intrusion

Detection based on K-Means Clustering and Naïve Bayes Classification. In

proceedings of the 7th International Conference on Information Technology in Asia

(CITA), pages 1–6. IEEE, 2011.

[51] Anteneh Girma, Mosses Garuba, and Rajini Goel. Advanced Machine Language

Approach to Detect DDoS Attack Using DBSCAN Clustering Technology with

Entropy. In proceedings of the Information Technology - New Generations. Advances

in Intelligent Systems and Computing, volume 558, pages 125–131. Springer

International Publishing, 2018.

[52] Gilbert R Hendry and Shanchieh J Yang. Intrusion Signature Creation via Clustering

Anomalies. In proceedings of the Data Mining, Intrusion Detection, Information

Assurance, and Data Networks Security, volume 6973, pages 1–12. International

Society for Optics and Photonics, 2008.

[53] Ira Assent. Clustering High Dimensional Data. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 2 (4): 340–350, 2012.

[54] Shweta Malhotra, Vikram Bali, and KK Paliwal. Genetic Programming and K-Nearest

Neighbour Classifier Based Intrusion Detection Model. In proceedings of the 7th

International Conference on Cloud Computing, Data Science & Engineering-

Confluence, pages 42–46. IEEE, 2017.

[55] Imen Boukhris, Zied Elouedi, and Mariem Ajabi. Toward Intrusion Detection Using

Belief Decision Trees for Big Data. Knowledge and Information Systems, 53 (3): 671–

698, 2017.

[56] R Vijayanand, D Devaraj, and B Kannapiran. Intrusion detection system for wireless

mesh network using multiple support vector machine classifiers with genetic-

algorithm-based feature selection. Computers & Security, 77: 304–314, 2018.

[57] Shawq Malik Mehibs and Soukaena Hassan Hashim. Proposed Network Intrusion

Detection System in Cloud Environment Based on Back Propagation Neural Network.

Journal of University of Babylon, 26 (1): 29–40, 2018.

 References

301

[58] Saurabh Mukherjee and Neelam Sharma. Intrusion Detection using Naive Bayes

Classifier with Feature Reduction . Procedia Technology, 4: 119–128, 2012.

[59] William W Cohen. Fast Effective Rule Induction. In proceedings of the 12th

International Conference on Machine Learning, pages 115–123. Morgan Kaufmann,

1995.

[60] Daniel Barbará, Julia Couto, Sushil Jajodia, and Ningning Wu. ADAM: A Testbed for

Exploring the Use of Data Mining in Intrusion Detection. ACM Sigmod Record, 30

(4): 15–24, 2001.

[61] Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A New Intrusion

Detection System Using Support Vector Machines and Hierarchical Clustering. The

International Journal on Very Large Data Bases (VLDB), 16 (4): 507–521, 2007.

[62] Michael E Locasto, Ke Wang, Angelos D Keromytis, and Salvatore J Stolfo. Flips:

Hybrid Adaptive Intrusion Prevention. In International Workshop on Recent Advances

in Intrusion Detection, pages 82–101. Springer, 2005.

[63] Jiong Zhang and Mohammad Zulkernine. A Hybrid Network Intrusion Detection

Technique Using Random Forests. In proceedings of the First International

Conference on Availability, Reliability and Security (ARES), pages 1–8. IEEE, 2006.

[64] Sandhya Peddabachigari, Ajith Abraham, Crina Grosan, and Johnson Thomas.

Modeling intrusion detection system using hybrid intelligent systems. Journal of

Network and Computer Applications, 30 (1): 114–132, 2007.

[65] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. Random-Forests-Based

Network Intrusion Detection Systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 38 (5): 649–659, 2008.

[66] M Ali Aydn, A Halim Zaim, and K Gökhan Ceylan. A Hybrid Intrusion Detection

System Design for Computer Network Security. Computers & Electrical Engineering,

35 (3): 517–526, 2009.

[67] Sahar Selim, Mohamed Hashem, and Taymoor M Nazmy. Hybrid Multi-Level

Intrusion Detection System. International Journal of Computer Science and

Information Security, 9 (5): 23–29, 2011.

[68] Mrutyunjaya Panda, Ajith Abraham, and Manas Ranjan Patra. Hybrid Intelligent

Systems for Detecting Network Intrusions. Security and Communication Networks, 8

(16): 2741–2749, 2012. URL http://dx.doi.org/10.1002/sec.592.

[69] Xiaojun Tong, Zhu Wang, and Haining Yu. A research using hybrid RBF/Elman

neural networks for intrusion detection system secure model. Computer Physics

Communications, 180 (10): 1795–1801, 2009.

[70] Xuedou Yu. A New Model of Intelligent Hybrid Network Intrusion Detection System.

In proceedings of the International Conference on Bioinformatics and Biomedical

Technology (ICBBT), pages 386–389. IEEE, 2010.

[71] Álvaro Herrero, Martí Navarro, Emilio Corchado, and Vicente Julián. RT-

MOVICAB-IDS: Addressing real-time intrusion detection. Future Generation

Computer Systems, 29 (1): 250–261, 2013.

[72] N Subramanian, Pramod S Pawar, Mayank Bhatnagar, Nihar S Khedekar, Srinivas

Guntupalli, N Satyanarayana, VK Vijaykumar, Praveen K Ampatt, Rajiv Ranjan, and

Prasad J Pandit. Development of a Comprehensive Intrusion Detection System -

References

302

Challenges and Approaches. In International Conference on Information Systems

Security, pages 332–335. Springer, 2005.

[73] Steven R Snapp, James Brentano, Gihan V Dias, Terrance L Goan, L Todd Heberlein,

Che-Lin Ho, Karl N Levitt, Biswanath Mukherjee, Stephen E Smaha, Tim Grance,

Daniel M. Teal, and Doug Mansur. DIDS (Distributed Intrusion Detection System)-

Motivation, Architecture, and an Early Prototype. In proceedings of the 14th National

Computer Security Conference, volume 1, pages 167–176. Washington, DC, 1991.

[74] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix

Freiling. The Nepenthes Platform: An Efficient Approach to Collect Malware. In

International Workshop on Recent Advances in Intrusion Detection, pages 165–184.

Springer, 2006.

[75] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: An Emulator for

Fingerprinting Zero-Day Attacks for Advertised Honeypots with Automatic Signature

Generation. In ACM SIGOPS Operating Systems Review, volume 40, pages 15–27.

ACM, 2006.

[76] Herve Debar, David A Curry, and Benjamin S Feinstein. The Intrusion Detection

Message Exchange Format (IDMEF). RFC 4765, RFC Editor, 2007. URL

https://www.rfc-editor.org/info/rfc4765, Accessed 28 Aug 2018.

[77] Stuart Staniford-Chen, Steven Cheung, Richard Crawford, Mark Dilger, Jeremy

Frank, James Hoagland, Karl Levitt, Christopher Wee, Raymond Yip, and Dan Zerkle.

GrIDS -A Graph Based Intrusion Detection System for Large Networks. In

proceedings of the 19th National Information Systems Security Conference, volume 1,

pages 361–370. Baltimore, 1996.

[78] Steven Cheung, Rick Crawford, Mark Dilger, Jeremy Frank, Jim Hoagland, Karl

Levitt, Jeff Rowe, Stuart Staniford-Chen, Raymond Yip, and Dan Zerkle. The Design

of GrIDS: A Graph-Based Intrusion Detection System. In proceedings of the 19th

National Information Systems Security Conference, pages 361–370, 1999.

[79] Phillip A Porras and Peter G Neumann. EMERALD: Event Monitoring Enabling

Response to Anomalous Live Disturbances. In proceedings of the 20th National

Information Systems Security Conference, pages 353–365, 1997.

[80] Chi-Chun Lo, Chun-Chieh Huang, and Joy Ku. A Cooperative Intrusion Detection

System Framework for Cloud Computing Networks. In proceedings of the 39th

International Conference on Parallel Processing Workshops (ICPPW), pages 280–

284. IEEE, 2010.

[81] Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar, and Sayed Gholam Hassan

Tabatabaei. Distributed Intrusion Detection in Clouds Using Mobile Agents. In

proceedings of the 3rd International Conference on Advanced Engineering Computing

and Applications in Sciences, pages 175–180. IEEE, 2009.

[82] M Sanjay Ram. Secure Cloud Computing Based on Mutual Intrusion Detection

System. International Journal of Computer Application, 1 (2): 57–67, 2012.

[83] Chenfeng Vincent Zhou, Shanika Karunasekera, and Christopher Leckie. Evaluation

of a Decentralized Architecture for Large Scale Collaborative Intrusion Detection. In

proceedings of the 10th IFIP/IEEE International Symposium on Integrated Network

Management, pages 80–89. IEEE, 2007.

 References

303

[84] Chenfeng Vincent Zhou, Shanika Karunasekera, and Christopher Leckie. A Peer-to-

Peer Collaborative Intrusion Detection System. In 13th IEEE International

Conference on Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia

International Conference on Communication., volume 1, pages 118–123. IEEE, 2005.

[85] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in

a DHT. In proceedings of the Annual Conference on USENIX Annual Technical

Conference, 2003.

[86] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott

Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A Public DHT Service and Its Uses.

In ACM SIGCOMM Computer Communication Review, volume 35, pages 73–84.

ACM, 2005.

[87] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global Intrusion Detection in the

DOMINO Overlay System. In proceedings of the Network and Distributed Systems

Security Symposium (NDSS), 2004.

[88] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based

Architecture for Intrusion Detection. In proceedings of the Network and Distributed

Systems Security Symposium (NDSS), volume 3, pages 191–206, 2003.

[89] Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning Fingerprints for a

Database Intrusion Detection System. In European Symposium on Research in

Computer Security, pages 264–279. Springer, 2002.

[90] Jong Chun Park and Jedidiah R Crandall. Empirical Study of a National-Scale

Distributed Intrusion Detection System: Backbone-Level Filtering of HTML

Responses in China. In proceedings of the IEEE 30th International Conference on

Distributed Computing Systems (ICDCS), pages 315–326. IEEE, 2010.

[91] R Sekar, Ajay Gupta, James Frullo, Tushar Shanbhag, Abhishek Tiwari, Henglin

Yang, and Sheng Zhou. Specification-Based Anomaly Detection: A New Approach

for Detecting Network Intrusions. In proceedings of the 9th ACM Conference on

Computer and Communications Security, pages 265–274. ACM, 2002.

[92] Taeshik Shon and Jongsub Moon. A Hybrid Machine Learning Approach to Network

Anomaly Detection. Information Sciences, 177 (18): 3799–3821, 2007.

[93] Xiaohui Jin, Baojiang Cui, Dong Li, Zishuai Cheng, and Congxian Yin. An Improved

Payload-Based Anomaly Detector for Web Applications. Journal of Network and

Computer Applications, pages 111–116, 2018.

[94] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee.

McPAD: A multiple classifier system for accurate payload-based anomaly detection.

Computer Networks, 53 (6): 864–881, 2009.

[95] Paulo M Mafra, Vinicius Moll, Joni da Silva Fraga, and Altair Olivo Santin. Octopus-

IIDS: An Anomaly Based Intelligent Intrusion Detection System. In proceedings of

the IEEE symposium on Computers and Communications (ISCC), pages 405–410.

IEEE, 2010.

[96] Srilatha Chebrolu, Ajith Abraham, and Johnson P Thomas. Feature Deduction and

Ensemble Design of Intrusion Detection Systems. Computers & security, 24 (4): 295–

307, 2005.

References

304

[97] Vrushank Shah, Akshai Aggarwal, and Nirbhay Chaubey. Alert Fusion of Intrusion

Detection systems using Fuzzy Dempster shafer Theory. Journal of Engineering

Science and Technology Review, 10 (3): 123–127, 2017.

[98] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,

and Ke Li. AI2: Training a big data machine to defend . In proceedings of the IEEE

2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE

International Conference on High Performance and Smart Computing (HPSC), and

IEEE International Conference on Intelligent Data and Security (IDS), pages 49–54.

IEEE, 2016.

[99] Dimitrios Papamartzivanos, Félix Gómez Mármol, and Georgios Kambourakis.

Dendron: Genetic trees driven rule induction for network intrusion detection systems.

Future Generation Computer Systems, 79: 558–574, 2018.

[100] Biswapriyo Chakrabarty, Omit Chanda, and Md Saiful Islam. Anomaly based

Intrusion Detection System using Genetic Algorithm and K-Centroid Clustering.

International Journal of Computer Applications, 163 (11): 13–17, 2017.

[101] B Balajinath and SV Raghavan. Intrusion detection through learning behavior model.

Computer Communications, 24 (12): 1202–1212, 2001.

[102] M Sadiq Ali Khan. Rule Based Network Intrusion Detection Using Genetic

Algorithm. International Journal of Computer Applications, 18 (8): 26–29, 2011.

[103] Ren Hui Gong, Mohammad Zulkernine, and Purang Abolmaesumi. A Software

Implementation of a Genetic Algorithm Based Approach to Network Intrusion

Detection. In proceedings of the 6th International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

and First ACIS International Workshop on Self-Assembling Wireless Networks, pages

246–253. IEEE, 2005.

[104] Y Dhanalakshmi and I Ramesh Babu. Intrusion Detection Using Data Mining Along

Fuzzy Logic and Genetic Algorithms. International Journal of Computer Science and

Network Security, 8 (2): 27–32, 2008.

[105] Gail A. Carpenter and Stephen Grossberg. Adaptive Resonance Theory. Technical

report, CAS/CNS Technical Reports Series, (008), 2009.

[106] Teuvo Kohonen. The Self-Organizing Map. Proceedings of the IEEE, 78 (9): 1464–

1480, 1990.

[107] Khaled Labib and V Rao Vemuri. NSOM: A Tool to Detect Denial of Service Attacks

Using Self-Organizing Maps. Technical Report, 2002. URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.3631, Accessed 28 Aug

2018.

[108] Tanujit Chakraborty, Swarup Chattopadhyay, and Ashis Kumar Chakraborty. A novel

hybridization of classification trees and artificial neural networks for selection of

students in a business school. Journal of the Operational Research Society of India

(OPSEARCH), 55 (2): 434–446, 2018.

[109] Sanjiban Sekhar Roy, Abhinav Mallik, Rishab Gulati, Mohammad S Obaidat, and

PV Krishna. A Deep Learning Based Artificial Neural Network Approach for

Intrusion Detection. In International Conference on Mathematics and Computing,

pages 44–53. Springer, 2017.

 References

305

[110] Morteza Amini, Rasool Jalili, and Hamid Reza Shahriari. RT-UNNID: A practical

solution to real-time network-based intrusion detection using unsupervised neural

networks. Computers & Security, 25 (6): 459–468, 2006.

[111] Jianjing Sun, Han Yang, Jingwen Tian, and Fan Wu. Intrusion Detection Method

Based on Wavelet Neural Network. In Knowledge Discovery and Data Mining, 2009.

WKDD 2009. Second International Workshop on, pages 851–854. IEEE, 2009.

[112] Laheeb Mohammad Ibrahim. Anomaly Network Intrusion Detection System Based on

Distributed Time-Delay Neural Network (DTDNN). Journal of Engineering Science

and Technology, 5 (4): 457–471, 2010.

[113] Shahram Behzad, Reza Fotohi, Jaber Hosseini Balov, and Mohammad Javad

Rabipour. An Artificial Immune Based Approach for Detection and Isolation

Misbehavior Attacks in Wireless Networks. Journal of Computers, 13 (6): 705–721,

2018.

[114] Andrea Visconti and Hooman Tahayori. Artificial Immune System Based on Interval

Type-2 Fuzzy Set Paradigm. Applied Soft Computing, 11 (6): 4055–4063, 2011.

[115] Yichi Zhang, Lingfeng Wang, Weiqing Sun, Robert C Green, and Mansoor Alam.

Artificial Immune System Based Intrusion Detection in a Distributed Hierarchical

Network Architecture of Smart Grid. In Power and Energy Society General Meeting,

2011 IEEE, pages 1–8. IEEE, 2011.

[116] Yichi Zhang, Lingfeng Wang, Weiqing Sun, Robert C Green II, and Mansoor Alam.

Distributed Intrusion Detection System in A Multi-Layer Network Architecture of

Smart Grids. IEEE Transactions on Smart Grid, 2 (4): 796–808, 2011.

[117] S. Shalini, Nihara A. Shafreen, Priya L. Sathiya, and V. Vetriselvi. Intrusion Detection

System for Software-Defined Networks Using Fuzzy System. In Proceedings of the

International Conference on Computing and Communication Systems, pages 603–620.

Springer, 2018.

[118] Salma Elhag, Alberto Fernández, Abdulrahman Altalhi, Saleh Alshomrani, and

Francisco Herrera. A multi-objective evolutionary fuzzy system to obtain a broad and

accurate set of solutions in intrusion detection systems. Soft Computing, pages 1–16,

2017.

[119] Arman Tajbakhsh, Mohammad Rahmati, and Abdolreza Mirzaei. Intrusion Detection

Using Fuzzy Association Rules. Applied Soft Computing, 9 (2): 462–469, 2009.

[120] Ji-Qing Xian, Feng-Hua Lang, and Xian-Lun Tang. A Novel Intrusion Detection

Method Based on Clonal Selection Clustering Algorithm. In Machine Learning and

Cybernetics, 2005. Proceedings of 2005 International Conference on, volume 6, pages

3905–3910. IEEE, 2005.

[121] Piyakul Tillapart, Thanachai Thumthawatworn, and Pratit Santiprabhob. Fuzzy

Intrusion Detection System. Assumption University Journal of Technology, 6 (2): 109–

114, 2002.

[122] Ming-Yang Su, Gwo-Jong Yu, and Chun-Yuen Lin. A real-time network intrusion

detection system for large-scale attacks based on an incremental mining approach.

Computers & security, 28 (5): 301–309, 2009.

[123] Kleber Vieira, Alexandre Schulter, Carlos Westphall, and Carla Westphall. Intrusion

Detection for Grid and Cloud Computing. IT Professional, 12 (4): 38–43, 2010.

References

306

[124] R Shanmugavadivu and N Nagarajan. Network Intrusion Detection System Using

Fuzzy Logic. Indian Journal of Computer Science and Engineering (IJCSE), 2 (1):

101–111, 2011.

[125] Ru Zhang, Tao Guo, and Jianyi Liu. An IDS Alerts Aggregation Algorithm Based on

Rough Set Theory. In IOP Conference Series: Materials Science and Engineering,

volume 322, pages 1–7. IOP Publishing, 2018.

[126] Rui-Hong Dong, Dong-Fang Wu, and Qiu-Yu Zhang. The Integrated Artificial

Immune Intrusion Detection Model Based on Decision-Theoretic Rough Set. IJ

Network Security, 19 (6): 880–888, 2017.

[127] Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Surat Srinoy, and

Siriporn Chimphlee. Anomaly-Based Intrusion Detection Using Fuzzy Rough

Clustering. In proceedings of the International Conference on Hybrid Information

Technology (ICHIT), volume 1, pages 329–334. IEEE, 2006.

[128] Adebayo O Adetunmbi, Samuel O Falaki, Olumide S Adewale, and Boniface K Alese.

Network Intrusion Detection Based on Rough Set and K-Nearest Neighbour.

International Journal of Computing and ICT Research, 2 (1): 60–66, 2008.

[129] Rung-Ching Chen, Kai-Fan Cheng, Ying-Hao Chen, and Chia-Fen Hsieh. Using

Rough Set and Support Vector Machine for Network Intrusion Detection System. In

proceedings of the First Asian Conference on Intelligent Information and Database

Systems (ACIIDS), pages 465–470. IEEE, 2009.

[130] Frans Hendrik Botes, Louise Leenen, and Retha De La Harpe. Ant Colony Induced

Decision Trees for Intrusion Detection. In ECCWS 2017 16th European Conference

on Cyber Warfare and Security, pages 53–62. Academic Conferences and publishing

limited, 2017.

[131] K Kanaka Vardhini and T Sitamahalakshmi. Enhanced Intrusion Detection System

Using Data Reduction: An Ant Colony Optimization Approach. International Journal

of Applied Engineering Research, 12 (9): 1844–1847, 2017.

[132] Hai-Hua Gao, Hui-Hua Yang, and Xing-Yu Wang. Ant Colony Optimization Based

Network Intrusion Feature Selection and Detection. In proceedings of 2005

International Conference on Machine Learning and Cybernetics, volume 6, pages

3871–3875. IEEE, 2005.

[133] Ozgu Can, Murat Osman Unalir, Emine Sezer, Okan Bursa, and Batuhan Erdogdu. An

Ontology Based Approach for Host Intrusion Detection Systems. In Research

Conference on Metadata and Semantics Research, pages 80–86. Springer, 2017.

[134] Nenekazi Nokuthala Penelope Mkuzangwe and Fulufhelo Vincent Nelwamondo. A

Fuzzy Logic Based Network Intrusion Detection System for Predicting the TCP SYN

Flooding Attack. In Asian conference on intelligent information and database systems,

pages 14–22. Springer, 2017.

[135] Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet. A

Survey on Ensemble Learning for Data Stream Classification. ACM Computing

Surveys (CSUR), 50 (2): 23:1–23:36, 2017.

[136] S Ranjitha Kumari and PK Kumari. Adaptive Anomaly Intrusion Detection System

Using Optimized Hoeffding Tree. ARPN Journal of Engineering and Applied

Sciences, 9: 1903–1910, 2014.

 References

307

[137] Alexey Tsymbal. The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin, 106 (2): 1–7, 2004.

[138] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A Survey on Concept Drift Adaptation. ACM computing surveys (CSUR),

46 (4): 1:1–1:44, 2014.

[139] Charu C Aggarwal. On Change Diagnosis in Evolving Data Streams. IEEE

Transactions on Knowledge and Data Engineering, 17 (5): 587–600, 2005.

[140] Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck. A Survey on

Feature Drift Adaptation. In proceedings of the IEEE 27th International Conference

on Tools with Artificial Intelligence (ICTAI), pages 1053–1060. IEEE, 2015.

[141] Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, and Bernhard

Pfahringer. A survey on feature drift adaptation: Definition, benchmark, challenges

and future directions. Journal of Systems and Software, 127: 278–294, 2017.

[142] Hai-Long Nguyen, Yew-Kwong Woon, Wee-Keong Ng, and Li Wan. Heterogeneous

Ensemble for Feature Drifts in Data Streams. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 1–12. Springer, 2012.

[143] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive

Online Analysis. Journal of Machine Learning Research, 11 (May): 1601–1604, 2010.

[144] Jeremy Z Kolter and Marcus A Maloof. Using Additive Expert Ensembles to Cope

With Concept Drift. In proceedings of the 22nd International Conference on Machine

Learning, pages 449–456. ACM, 2005.

[145] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A Framework for

On-Demand Classification of Evolving Data Streams. IEEE Transactions on

Knowledge and Data Engineering, 18 (5): 577–589, 2006.

[146] Jing Gao, Wei Fan, and Jiawei Han. On Appropriate Assumptions to Mine Data

Streams: Analysis and Practice. In proceedings of the 7th IEEE International

Conference on Data Mining (ICDM), pages 143–152. IEEE, 2007.

[147] Albert Bifet, Gianmarco de Francisci Morales, Jesse Read, Geoff Holmes, and

Bernhard Pfahringer. Efficient Online Evaluation of Big Data Stream Classifiers. In

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 59–68. ACM, 2015.

[148] Lianbing Deng, Daming Li, Xiang Yao, David Cox, and Haoxiang Wang. Mobile

network intrusion detection for IoT system based on transfer learning algorithm.

Cluster Computing, pages 1–16, 2018.

[149] DEFCON dataset. DEF CON Hacking Conference, 2018. URL

https://www.defcon.org/, Accessed 21 May 2018.

[150] CAIDA dataset. Center for Applied Internet Data Analysis (CAIDA), 2018. URL

http://www.caida.org/, Accessed 21 May 2018.

[151] LBNL dataset. LBNL/ICSI Enterprise Tracing Project, 2005. URL

https://www.icir.org/enterprise-tracing/Overview.html, Accessed 21 May 2018.

[152] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. NADO: Network

Anomaly Detection Using Outlier Approach. In Proceedings of the 2011 International

Conference on Communication, Computing & Security, pages 531–536. ACM, 2011.

References

308

[153] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita. AOCD: An

Adaptive Outlier Based Coordinated Scan Detection Approach. International Journal

of Network Security, 14 (6): 339–351, 2012.

[154] Prasanta Gogoi, Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. Packet

and Flow Based Network Intrusion Dataset. In International Conference on

Contemporary Computing, pages 322–334. Springer, 2012.

[155] Salvatore J Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K Chan.

Cost-based Modeling for Fraud and Intrusion Detection: Results from the JAM

Project. In DARPA Information Survivability Conference and Exposition, 2000.

DISCEX’00. Proceedings, volume 2, pages 130–144. IEEE, 2000.

[156] UCI KDD Archive. KDD Cup 1999 Data, 1999. URL

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Accessed 21 May 2018.

[157] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A Detailed

Analysis of the KDD CUP 99 Data Set. In proceedings of the IEEE Symposium on

Computational Intelligence for Security and Defense Applications (CISDA), pages 1–

6. IEEE, 2009.

[158] Jungsuk Song, Hiroki Takakura, and Yasuo Okabe. Description of Kyoto University

Benchmark Data, 2006. URL http://www.takakura.com/Kyoto_data/BenchmarkData-

Description-v5.pdf, Accessed 16 Jul 2018.

[159] Iman Sharafaldin, A Habibi Lashkari, and Ali A Ghorbani. Toward Generating a New

Intrusion Detection Dataset and Intrusion Traffic Characterization. In proceedings of

4th International Conference on Information Systems Security and Privacy (ICISSP),

pages 108–116, 2018.

[160] Iñigo Perona, Ibai Gurrutxaga, Olatz Arbelaitz, José I Martín, Javier Muguerza, and

Jesús Ma Pérez. gureKddcup database, 2008. URL

http://www.sc.ehu.es/acwaldap/gureKddcup/galdetegia_jaso.php, Accessed 17 Jul

2018.

[161] Iñigo Perona, Ibai Gurrutxaga, Olatz Arbelaitz, José I Martín, Javier Muguerza, and

Jesús Ma Pérez. Service-independent payload analysis to improve intrusion detection

in network traffic . In Proceedings of the 7th Australasian Data Mining Conference-

Volume 87, pages 171–178. Australian Computer Society, Inc., 2008.

[162] Iñigo Perona, Olatz Arbelaiz Gallego, Ibai Gurrutxaga, José Ignacio Martín,

Javier Francisco Muguerza Rivero, and Jesús María Pérez. Generation of the database

gurekddcup, 2016. URL http://hdl.handle.net/10810/20608, Accessed 27 Jul 2018.

[163] Anna Sperotto, Ramin Sadre, Frank Van Vliet, and Aiko Pras. A Labeled Data Set for

Flow-Based Intrusion Detection. In International Workshop on IP Operations and

Management, pages 39–50. Springer, 2009.

[164] Nour Moustafa and Jill Slay. UNSW-NB15: A Comprehensive Data Set for Network

Intrusion Detection Systems (UNSW-NB15 Network Data Set). In Military

Communications and Information Systems Conference (MilCIS), 2015, pages 1–6.

IEEE, 2015.

[165] Nour Moustafa and Jill Slay. The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99

data set. Information Security Journal: A Global Perspective, 25 (1-3): 18–31, 2016.

 References

309

[166] Sebastian Abt and Harald Baier. Are We Missing Labels? A Study of the Availability

of Ground-Truth in Network Security Research. In Building Analysis Datasets and

Gathering Experience Returns for Security (BADGERS), 2014 Third International

Workshop on, pages 40–55. IEEE, 2014.

[167] Xinxing Zhang, Hongri Liu, Bailing Wang, Junheng Huang, and Xixian Han.

Generating Realistic Network Traffic and Interactive Application Workloads Using

Container Technology. In Communication Software and Networks (ICCSN), 2017

IEEE 9th International Conference on, pages 1021–1025. IEEE, 2017.

[168] Charles V Wright, Christopher Connelly, Timothy Braje, Jesse C Rabek, Lee M

Rossey, and Robert K Cunningham. Generating Client Workloads and High-Fidelity

Network Traffic for Controllable, Repeatable Experiments in Computer Security. In

International Workshop on Recent Advances in Intrusion Detection, pages 218–237.

Springer, 2010.

[169] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction

to Statistical Learning, volume 112. Springer, 2013.

[170] Mairead L Bermingham, Ricardo Pong-Wong, Athina Spiliopoulou, Caroline

Hayward, Igor Rudan, Harry Campbell, Alan F Wright, James F Wilson, Felix

Agakov, Pau Navarro, and C Haley. Application of high-dimensional feature

selection: evaluation for genomic prediction in man. Scientific Reports, 5: 1–12, 2015.

[171] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (Second Edition), volume 1.

Springer series in statistics New York, 2011.

[172] Jason Brownlee. An Introduction to Feature Selection, 2014. URL

https://machinelearningmastery.com/an-introduction-to-feature-selection/, Accessed

16 Jul 2018.

[173] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature Selection for Classification: A

Review. Data Classification: Algorithms and Applications, pages 1–33, 2014.

[174] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature Selection for Clustering: A

Review. Data Clustering: Algorithms and Applications, 29: 110–121, 2013.

[175] Ron Kohavi and George H John. Wrappers for Feature Subset Selection. Artificial

Intelligence, 97 (1-2): 273–324, 1997.

[176] Volker Roth and Tilman Lange. Feature Selection in Clustering Problems. In

Advances in Neural Information Processing Systems, pages 473–480, 2004.

[177] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd

Edition). Malaysia; Pearson Education Limited,, 2016. ISBN 0136042597.

[178] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1984.

[179] Steven S. Skiena. The Algorithm Design Manual - Second Edition. Springer Science &

Business Media, 2008.

[180] Alejandro Figueroa. Exploring effective features for recognizing the user intent behind

web queries. Computers in Industry, 68: 162–169, 2015.

[181] Alejandro Figueroa and Günter Neumann. Category-Specific Models for Ranking

Effective Paraphrases in Community Question Answering. Expert Systems with

Applications, 41 (10): 4730–4742, 2014.

References

310

[182] Alejandro Figueroa and Günter Neumann. Learning to Rank Effective Paraphrases

from Query Logs for Community Question Answering. In proceedings of the 27th

AAAI Conference on Artificial Intelligence, volume 13, pages 1099–1105, 2013.

[183] Manoranjan Dash and Huan Liu. Feature Selection for Clustering. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 110–121. Springer,

2000.

[184] Huan Liu and Rudy Setiono. A Probabilistic Approach to Feature Selection-A Filter

Solution. In proceedings of the 13th International Conference on International

Conference on Machine Learning, volume 96, pages 319–327. Citeseer, 1996.

[185] Kenji Kira and Larry A Rendell. The Feature Selection Problem: Traditional Methods

and a New Algorithm. In proceedings of the 10th National Conference on Artificial

Intelligence, volume 2, pages 129–134, 1992.

[186] Kenji Kira and Larry A Rendell. A Practical Approach to Feature Selection. In

Machine Learning Proceedings 1992, pages 249–256. Elsevier, 1992.

[187] Ryan J Urbanowicz, Melissa Meeker, William LaCava, Randal S Olson, and Jason H

Moore. Relief-Based Feature Selection: Introduction and Review. Journal of

Biomedical Informatics, pages 1532–0464, 2018.

[188] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature

Selection. Journal of machine learning research, 3 (Mar): 1157–1182, 2003.

[189] Thomas M Cover and Joy A Thomas. Elements of Information Theory (Second

Edition). John Wiley & Sons, Inc., 1991.

[190] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature Selection Based on Mutual

Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy.

IEEE Transactions on pattern analysis and machine intelligence, 27 (8): 1226–1238,

2005.

[191] Karl Pearson. Contributions to the Mathematical Theory of Evolution. In Proceedings

of the Royal Society of London, volume 54, pages 329–333. JSTOR, 1893.

[192] Karl Pearson. Contributions to the Mathematical Theory of Evolution. II. Skew

Variation in Homogeneous Material. Philosophical transactions of the Royal Society

of London, 186 (Part I): 343–424, 1895.

[193] Karl Pearson, Alice Lee, Ernest Warren, Agnes Fry, and Cicely D Fawcett.

Mathematical contributions to the theory of evolution. IX.–On the principle of

homotyposis and its relation to heredity, to the variability of the individual, and to that

of the race. Part I.–homotyposis in the vegetable kingdom. Proceedings of the Royal

Society of London, 68 (442-450): 1–5, 1901.

[194] Sanmay Das. Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection. In

proceedings of the 18th International Conference on Machine Learning, volume 1,

pages 74–81, 2001.

[195] Andrew Y Ng. On Feature Selection: Learning with Exponentially many Irrevelant

Features as Training Examples. PhD thesis, Massachusetts Institute of Technology,

1998.

[196] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

 References

311

[197] Andrew Y Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance.

In Proceedings of the 21st International Conference on Machine Learning, pages 78–

94. ACM, 2004.

[198] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2):

301–320, 2005.

[199] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and

Ali A Ghorbani. Characterization of Tor Traffic using Time based Features. In

proceedings of the 3rd International Conference on Information Systems Security and

Privacy (ICISSP.

[200] M. A. Hall. Correlation-Based Feature Subset Selection for Machine Learning. PhD

thesis, University of Waikato, Hamilton, New Zealand, 1998.

[201] Shadi Aljawarneh, Monther Aldwairi, and Muneer Bani Yassein. Anomaly-based

intrusion detection system through feature selection analysis and building hybrid

efficient model. Journal of Computational Science, pages 152–160, 2017.

[202] Mohammed A Ambusaidi, Xiangjian He, Priyadarsi Nanda, and Zhiyuan Tan.

Building an Intrusion Detection System Using a Filter-Based Feature Selection

Algorithm. IEEE Transactions on Computers, 65 (10): 2986–2998, 2016.

[203] Yu Gu, Andrew McCallum, and Don Towsley. Detecting Anomalies in Network

Traffic Using Maximum Entropy Estimation. In proceedings of the 5th ACM

SIGCOMM Conference on Internet Measurement, pages 32–32. USENIX Association,

2005.

[204] Ayesha Binte Ashfaq, Maria Joseph Robert, Asma Mumtaz, Muhammad Qasim Ali,

Ali Sajjad, and Syed Ali Khayam. A Comparative Evaluation of Anomaly Detectors

under Portscan Attacks. In International Workshop on Recent Advances in Intrusion

Detection, pages 351–371. Springer, 2008.

[205] Christophe Ambroise and Geoffrey J. McLachlan. Selection bias in gene extraction on

the basis of microarray gene-expression data. Proceedings of the National Academy of

Sciences, 99 (10): 6562–6566, 2002. URL http://www.pnas.org/content/99/10/6562.

[206] Nathalie Japkowicz. The Class Imbalance Problem: Significance and Strategies. In

Proceedings of the 2000 International Conference on Artificial Intelligence ICAI,

pages 111–117, 2000.

[207] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

SMOTE: Synthetic Minority Over-sampling Technique. Journal of artificial

intelligence research, 16: 321–357, 2002.

[208] Ivan Tomek. Two Modifications of CNN. IEEE Trans. Systems, Man and Cybernetics,

6: 769–772, 1976.

[209] Show-Jane Yen and Yue-Shi Lee. Cluster-based under-sampling approaches for

imbalanced data distributions. Expert Systems with Applications, 36 (3): 5718–5727,

2009.

[210] Chumphol Bunkhumpornpat and Krung Sinapiromsaran. DBMUTE: density-based

majority under-sampling technique. Knowledge and Information Systems, 50 (3): 827–

850, 2017.

References

312

[211] Salvador García and Francisco Herrera. Evolutionary Undersampling for

Classification with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary

computation, 17 (3): 275–306, 2009.

[212] Jihyun Ha and Jong-Seok Lee. A New Under-Sampling Method Using Genetic

Algorithm for Imbalanced Data Classification. In Proceedings of the 10th

International Conference on Ubiquitous Information Management and

Communication, pages 95:1–95:6. ACM, 2016.

[213] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-SMOTE: A New Over-

Sampling Method in Imbalanced Data Sets Learning. In International Conference on

Intelligent Computing, pages 878–887. Springer, 2005.

[214] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap.

Safe-Level-Smote: Safe-Level-Synthetic Minority Over-Sampling Technique for

Handling the Class Imbalanced Problem. In Pacific-Asia conference on knowledge

discovery and data mining, pages 475–482. Springer, 2009.

[215] Lida Abdi and Sattar Hashemi. To Combat Multi-Class Imbalanced Problems by

Means of Over-Sampling Techniques. IEEE transactions on Knowledge and Data

Engineering, 28 (1): 238–251, 2016.

[216] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap.

DBSMOTE: Density-Based Synthetic Minority Over-Sampling TEchnique. Applied

Intelligence, 36 (3): 664–684, 2012.

[217] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. ADASYN: Adaptive

Synthetic Sampling Approach for Imbalanced Learning. In Neural Networks, 2008.

IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE

International Joint Conference on, pages 1322–1328. IEEE, 2008.

[218] Bartosz Krawczyk and Michał Woźniak. Diversity Measures for One-Class Classifier

Ensembles. Neurocomputing, 126: 36–44, 2014.

[219] Bartosz Krawczyk, Michał Woźniak, and Francisco Herrera. Weighted One-Class

Classification for Different Types of Minority Class Examples in Imbalanced Data. In

Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium on,

pages 337–344. IEEE, 2014.

[220] Bartosz Krawczyk, Łukasz Jeleń, Adam Krzyżak, and Thomas Fevens. One-Class

Classification Decomposition for Imbalanced Classification of Breast Cancer

Malignancy Data. In International Conference on Artificial Intelligence and Soft

Computing, pages 539–550. Springer, 2014.

[221] Hwanjo Yu. Single-Class Classification with Mapping Convergence. Machine

Learning, 61 (1-3): 49–69, 2005.

[222] Shehroz S Khan and Michael G Madden. A Survey of Recent Trends in One Class

Classification. In Irish Conference on Artificial Intelligence and Cognitive Science,

pages 188–197. Springer, 2009.

[223] Guillaume Lemaître, Fernando Nogueira, and Christos K Aridas. Imbalanced-Learn:

A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning.

Journal of Machine Learning Research, 18 (17): 1–5, 2017.

[224] Nathalie Japkowicz and Shaju Stephen. The Class Imbalance Problem: A Systematic

Study. Intelligent data analysis, 6 (5): 429–449, 2002.

 References

313

[225] Alan H Fielding and John F Bell. A Review of Methods for the Assessment of

Prediction Errors in Conservation Presence/Absence Models. Environmental

conservation, 24 (1): 38–49, 1997.

[226] David L Verbyla and John A Litvaitis. Resampling Methods for Evaluating

Classification Accuracy of Wildlife Habitat Models. Environmental Management, 13

(6): 783–787, 1989.

[227] David Stockwell. Machine Learning and the Problem of Prediction and Explanation

in Ecological Modelling. PhD thesis, Ecosystem Dynamics Group, Research School of

Biological Sciences, The Australian National University, 1992.

[228] Stephanie Sundberg. Prospective Study: Definition, Examples, 2018. URL

http://www.statisticshowto.com/prospective-study/, Accessed 16 Jul 2018.

[229] Tom Fawcett. An Introduction to ROC Analysis. Pattern recognition letters, 27 (8):

861–874, 2006.

[230] David Hand and Peter Christen. A Note on Using the F-Measure for Evaluating

Record Linkage Algorithms. Statistics and Computing, pages 1–9, 2017.

[231] Miroslav Kubat and Stan Matwin. Addressing the Curse of Imbalanced Training Sets:

One-Sided Selection. In proceedings of the 14th International Conference on Machine

Learning (ICML97), volume 97, pages 179–186. Nashville, USA, 1997.

[232] Ludmila I. Kuncheva, Álvar Arnaiz-González, José-Francisco Díez-Pastor, and Iain

A. D. Gunn. Instance Selection Improves Geometric Mean Accuracy: A Study on

Imbalanced Data Classification. CoRR, abs/1804.07155: 1–11, 2018. URL

http://arxiv.org/abs/1804.07155, Accessed 16 Jul 2018.

[233] C Madhusudhana Rao and MM Naidu. A Model for Generating Synthetic Network

Flows and Accuracy Index for Evaluation of Anomaly Network Intrusion Detection

Systems. Indian Journal of Science and Technology, 10 (14): 1–16, 2017.

[234] C Madhusudhana Rao and MM Naidu. Acceptance Sampling for Network Intrusion

Detection. Journal of Theoretical & Applied Information Technology, 95 (24): 6707–

6718, 2017.

[235] Santiago Beguería. Validation and Evaluation of Predictive Models in Hazard

Assessment and Risk Management. Natural Hazards, 37 (3): 315–329, Mar 2006.

URL https://doi.org/10.1007/s11069-005-5182-6, Accessed 16 Jul 2018.

[236] Kevin Markham. Simple Guide to Confusion Matrix Terminology, 2014. URL

http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/, Accessed

16 Jul 2018.

[237] Mark H Zweig and Gregory Campbell. Receiver-Operating Characteristic (ROC)

Plots: A Fundamental Evaluation Tool in Clinical Medicine. Clinical chemistry, 39

(4): 561–577, 1993.

[238] Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Comparing the

Areas Under Two or More Correlated Receiver Operating Characteristic Curves: A

Nonparametric Approach. Biometrics, pages 837–845, 1988.

[239] James A Hanley and Barbara J McNeil. The Meaning and Use of the Area under a

Receiver Operating Characteristic (ROC) Curve. Radiology, 143 (1): 29–36, 1982.

References

314

[240] Manish Barnwal. ROC and AUC - the Three Lettered Acronyms, 2016. URL

http://manishbarnwal.com/blog/2016/09/26/three_letter_acronym_roc_and_auc/,

Accessed 16 Jul 2018.

[241] Paolo Verme and Chiara Gigliarano. Optimal targeting under budget constraints in a

humanitarian context. World Development, 2018. URL

https://doi.org/10.1016/j.worlddev.2017.12.012, Accessed 16 Jul 2018.

[242] Blaise Hanczar, Jianping Hua, Chao Sima, John Weinstein, Michael Bittner, and

Edward R Dougherty. Small-Sample Precision of ROC-Related Estimates.

Bioinformatics, 26 (6): 822–830, 2010.

[243] Jorge M Lobo, Alberto Jiménez-Valverde, and Raimundo Real. AUC: a misleading

measure of the performance of predictive distribution models. Global ecology and

Biogeography, 17 (2): 145–151, 2008.

[244] David J Hand. Measuring classifier performance: a coherent alternative to the area

under the ROC curve. Machine learning, 77 (1): 103–123, 2009.

[245] Umberto Lucchetti. AML Rule Tuning: Applying Statistical and Risk-Based Approach

to Achieve Higher Alert Efficiency, 2015. URL http://www.acams.org/wp-

content/uploads/2015/08/AML-Rule-Tuning-Applying-Statistical-Risk-Based-

Approach-to-Achieve-Higher-Alert-Efficiency-U-Luccehtti.pdf, Accessed 21 May

2018.

[246] J. J. Chen, C.-A. Tsai, H. Moon, H. Ahn, J. J. Young, and C.-H. Chen. Decision

Threshold Adjustment in Class Prediction. SAR and QSAR in Environmental

Research, 17 (3): 337–352, 2006. URL https://doi.org/10.1080/10659360600787700.

[247] Elizabeth A Freeman and Gretchen G Moisen. A comparison of the performance of

threshold criteria for binary classification in terms of predicted prevalence and kappa.

Ecological Modelling, 217 (1-2): 48–58, 2008.

[248] Yiming Yang. A Study of Thresholding Strategies for Text Categorization. In

Proceedings of the 24th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 137–145. ACM, 2001. URL

http://doi.acm.org/10.1145/383952.383975.

[249] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing Network-Wide

Traffic Anomalies. In ACM SIGCOMM Computer Communication Review,

volume 34, pages 219–230. ACM, 2004.

[250] Rong-En Fan and Chih-Jen Lin. A Study on Threshold Selection for Multi-Label

Classification. Department of Computer Science, National Taiwan University, pages

1–23, 2007.

[251] Ignazio Pillai, Giorgio Fumera, and Fabio Roli. Threshold Optimisation for Multi-

Label Classifiers. Pattern Recognition, 46 (7): 2055–2065, 2013.

[252] Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S

Dhillon. Consistent Binary Classification with Generalized Performance Metrics. In

Advances in Neural Information Processing Systems, pages 2744–2752, 2014.

[253] Bowei Yan, Oluwasanmi Koyejo, Kai Zhong, and Pradeep Ravikumar. Binary

Classification with Karmic, Threshold-Quasi-Concave Metrics. arXiv preprint

arXiv:1806.00640, 2018.

 References

315

[254] Eleazar Eskin, Matthew Miller, Zhi-Da Zhong, George Yi, Wei-Ang Lee, and

Salvatore Stolfo. Adaptive Model Generation for Intrusion Detection Systems. In

Proceedings of the ACMCCS Workshop on Intrusion Detection and Prevention,

Athens, Greece, pages 1–14, 2000.

[255] Andrew Honig, Andrew Howard, Eleazar Eskin, and Salvatore Stolfo. Adaptive

Model Generation: An Architecture for Deployment of Data Mining-Based Intrusion

Detection Systems. In proceedings of the Applications of Data Mining in Computer

Security, pages 153–194. Kluwer Academic Publishers, 2002.

[256] Mahmood Hossain and Susan M Bridges. A Framework for an Adaptive Intrusion

Detection System with Data Mining. In proceedings of the 13th Annual Canadian

Information Technology Security Symposium, pages 1–8, 2001.

[257] Mahmood Hossain, Susan M Bridges, and Rayford B Vaughn. Adaptive Intrusion

Detection with Data Mining. In Systems, Man and Cybernetics, 2003. IEEE

International Conference on, volume 4, pages 3097–3103. IEEE, 2003.

[258] Jaeyeon Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection

Using Sequential Hypothesis Testing . In IEEE Symposium on Security and Privacy,

2004. Proceedings. 2004, pages 211–225, May 2004. doi:

10.1109/SECPRI.2004.1301325.

[259] Muhammad Qasim Ali, Ehab Al-Shaer, Hassan Khan, and Syed Ali Khayam.

Automated Anomaly Detector Adaptation Using Adaptive Threshold Tuning. ACM

Transactions on Information and System Security (TISSEC), 15 (4): 17, 2013.

[260] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-Based Anomaly Detection in

Computer Systems. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 440–449,

New York, NY, USA, 2004. ACM. ISBN 1-58113-888-1. doi:

10.1145/1014052.1014102. URL http://doi.acm.org/10.1145/1014052.1014102.

[261] Z. Yu, J. J. P. Tsai, and T. Weigert. An Automatically Tuning Intrusion Detection

System . IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

37 (2): 373–384, April 2007. ISSN 1083-4419. doi: 10.1109/TSMCB.2006.885306.

[262] Zhenwei Yu, Jeffrey J. P. Tsai, and Thomas Weigert. An Adaptive Automatically

Tuning Intrusion Detection System. ACM Trans. Auton. Adapt. Syst., 3 (3): 10:1–

10:25, August 2008. ISSN 1556-4665. doi: 10.1145/1380422.1380425. URL

http://doi.acm.org/10.1145/1380422.1380425.

[263] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff. A

Sense of Self for Unix Processes. In Security and Privacy, 1996. Proceedings., 1996

IEEE Symposium on, pages 120–128. IEEE, 1996.

[264] Dae-Ki Kang, Doug Fuller, and Vasant Honavar. Learning Classifiers for Misuse and

Anomaly Detection Using a Bag of System Calls Representation. In Information

Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC,

pages 118–125. IEEE, 2005.

[265] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral Distance for Intrusion

Detection. In International Workshop on Recent Advances in Intrusion Detection,

pages 63–81. Springer, 2005.

References

316

[266] Andrew H Sung, Jianyun Xu, Patrick Chavez, and Srinivas Mukkamala. Static

Analyzer of Vicious Executables (Save). In Computer Security Applications

Conference, 2004. 20th Annual, pages 326–334. IEEE, 2004.

[267] Hui-Hao Chou and Sheng-De Wang. An Adaptive Network Intrusion Detection

Approach for the Cloud Environment. In Security Technology (ICCST), 2015

International Carnahan Conference on, pages 1–6. IEEE, 2015.

[268] John Mark Agosta, Carlos Diuk-Wasser, Jaideep Chandrashekar, and Carl Livadas.

An Adaptive Anomaly Detector for Worm Detection. In Proceedings of the 2Nd

USENIX Workshop on Tackling Computer Systems Problems with Machine Learning

Techniques, SYSML’07, pages 3:1–3:6, Berkeley, CA, USA, 2007. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=1361442.1361445.

[269] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skoric. Towards an

Information-Theoretic Framework for Analyzing Intrusion Detection Systems. In

European Symposium on Research in Computer Security, pages 527–546. Springer,

2006.

[270] Chris Strasburg, Samik Basu, and Johnny S Wong. S-MAIDS: A Semantic Model for

Automated Tuning, Correlation, and Response Selection in Intrusion Detection

Systems. In Computer Software and Applications Conference (COMPSAC), 2013

IEEE 37th Annual, pages 319–328. IEEE, 2013.

[271] V. Jyothsna and V. V. Rama Prasad. Assessing Degree of Intrusion Scope (DIS): A

Statistical Strategy for Anomaly Based Intrusion Detection. CSI Transactions on ICT,

pages 1–29, Mar 2018. doi: 10.1007/s40012-018-0188-x. URL

https://doi.org/10.1007/s40012-018-0188-x.

[272] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard

Gavaldà. New Ensemble Methods for Evolving Data Streams. In Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 139–148. ACM, 2009.

[273] Mohammad Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M

Thuraisingham. Classification and Novel Class Detection in Concept-Drifting Data

Streams under Time Constraints. IEEE Transactions on Knowledge and Data

Engineering, 23 (6): 859–874, 2011.

[274] Dewan Md Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman, Rebecca

Strachan, Graham Sexton, and Keshav Dahal. An Adaptive Ensemble Classifier for

Mining Concept Drifting Data Streams. Expert Systems with Applications, 40 (15):

5895–5906, 2013.

[275] Mohammad M Masud, Qing Chen, Latifur Khan, Charu Aggarwal, Jing Gao, Jiawei

Han, and Bhavani Thuraisingham. Addressing Concept-Evolution in Concept-Drifting

Data Streams. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,

pages 929–934. IEEE, 2010.

[276] Mohammad M Masud, Qing Chen, Latifur Khan, Charu C Aggarwal, Jing Gao, Jiawei

Han, Ashok Srivastava, and Nikunj C Oza. Classification and Adaptive Novel Class

Detection of Feature-Evolving Data Streams. IEEE Transactions on Knowledge and

Data Engineering, 25 (7): 1484–1497, 2013.

[277] Gabriela F Cretu-Ciocarlie, Angelos Stavrou, Michael E Locasto, and Salvatore J

Stolfo. Adaptive Anomaly Detection via Self-Calibration and Dynamic Updating. In

 References

317

International Workshop on Recent Advances in Intrusion Detection, pages 41–60.

Springer, 2009.

[278] Shixi Chen, Haixun Wang, Shuigeng Zhou, and S Yu Philip. Stop Chasing Trends:

Discovering High Order Models in Evolving Data. In Data Engineering, 2008. ICDE

2008. IEEE 24th International Conference on, pages 923–932. IEEE, 2008.

[279] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck,

Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive Random Forests

for Evolving Data Stream Classification. Machine Learning, 106 (9-10): 1469–1495,

2017.

[280] Wojciech Kotłowski and Krzysztof Dembczyński. Surrogate Regret Bounds for

Generalized Classification Performance Metrics. Machine Learning, 106 (4): 549–

572, Apr 2017. ISSN 1573-0565. doi: 10.1007/s10994-016-5591-7. URL

https://doi.org/10.1007/s10994-016-5591-7.

[281] Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen. A method for classification of

network traffic based on C5.0 Machine Learning Algorithm. In Computing,

Networking and Communications (ICNC), 2012 International Conference on, pages

237–241. IEEE, 2012.

[282] aporras. What Is the Difference Between Bagging and Boosting?, 2016. URL

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/,

Accessed 21 May 2018.

[283] Rulequest Research. Is See5/C5.0 Better Than C4.5?, 2017. URL

http://rulequest.com/see5-comparison.html, Accessed 30 Jun 2018.

[284] Raghav Aggiwal. Introduction to Random Forest, Feb 2017. URL

https://dimensionless.in/tag/random-forest/, Accessed 30 Jun 2018.

[285] L Breiman, J Friedman, R Olshen, and C Stone. Classification and Regression Trees.

Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

[286] Saul B Gelfand, CS Ravishankar, and Edward J Delp. An Iterative Growing and

Pruning Algorithm for Classification Tree Design. In IEEE International Conference

Proceedings on Systems, Man and Cybernetics., pages 818–823. IEEE, 1989.

[287] J. Ross Quinlan. Simplifying Decision Trees. International Journal of Man-Machine

Studies, 27 (3): 221–234, 1987. URL https://doi.org/10.1016/S0020-7373(87)80053-6,

Accessed 21 May 2018.

[288] Zdravko Botev and Ad Ridder. Variance Reduction. Wiley StatsRef: Statistics

Reference Online, pages 1–6, 2017.

[289] Tom Mitchell. Machine Learning. The Mc-Graw-Hill Companies, Inc., 1997. URL

https://www.cs.ubbcluj.ro/~gabis/ml/ml-books/McGrawHill%20-

%20Machine%20Learning%20-Tom%20Mitchell.pdf.

[290] J. Ross Quinlan. Induction of Decision Trees. Machine learning, 1 (1): 81–106, 1986.

[291] J Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffmann

Publishers, Inc., 1993.

[292] Rulequest Research. C5.0: An Informal Tutorial, 2017. URL

https://www.rulequest.com/see5-unix.html, Accessed 21 May 2018.

References

318

[293] Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. CRC press,

1994. URL

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.2742&rep=rep1&type=

pdf, Accessed 21 May 2018.

[294] Leo Breiman. Bagging Predictors. Machine learning, 24 (2): 123–140, 1996.

[295] Chunyang Li. Probability Estimation in Random Forests. Master’s thesis, Mathematics

and Statistics, Utah State University, 2013. URL

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1304&context=gradreport

s, Accessed 21 May 2018.

[296] James D Malley, Jochen Kruppa, Abhijit Dasgupta, Karen G Malley, and Andreas

Ziegler. Probability Machines: Consistent Probability Estimation Using

Nonparametric Learning Machines. Methods of Information in Medicine, 51 (1): 74–

81, 2012.

[297] Marvin N. Wright, Stefan Wager, and Philipp Probst. Ranger: A Fast Implementation

of Random Forests, 2017. Version 0.8.0, URL https://CRAN.R-

project.org/package=ranger, Accessed 21 May 2018.

[298] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.

[299] Paulo Angelo Alves Resende and André Costa Drummond. A Survey of Random

Forest Based Methods for Intrusion Detection Systems. ACM Computing Surveys

(CSUR), 51 (3): 48:1–48:36, 2018.

[300] Taghi M Khoshgoftaar, Moiz Golawala, and Jason Van Hulse. An Empirical Study of

Learning from Imbalanced Data Using Random Forest. In Tools with Artificial

Intelligence, 2007. ICTAI 2007. 19th IEEE international conference on, volume 2,

pages 310–317. IEEE, 2007.

[301] Shih-Wei Lin, Kuo-Ching Ying, Chou-Yuan Lee, and Zne-Jung Lee. An intelligent

algorithm with feature selection and decision rules applied to anomaly intrusion

detection . Applied Soft Computing, 12 (10): 3285–3290, 2012.

[302] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine learning,

20 (3): 273–297, 1995.

[303] Vladimir Vapnik. Statistical Learning Theory. John Wiley and Sons, Inc., New York,

1998.

[304] Vahid Golmah. An Efficient Hybrid Intrusion Detection System Based on C5. 0 And

SVM. International Journal of Database Theory and Application, 7 (2): 59–70, 2014.

[305] Alexander Statnikov, Douglas Hardin, Isabelle Guyon, and Constantin F. Aliferis. A

Gentle Introduction to Support Vector Machines in Biomedicine. In AMIA Annual

Symposium Proceedings. American Medical Informatics Association, New York

University - School of Medicin, 2009. URL

https://med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf, Accessed 30 Jun 2018.

[306] Tom Kelsey. Lecture Notes - ID5059: Knowledge Discovery and Data Mining,

Lecture 17 - Support Vector Machines (SVMs), 2017. University of St Andrews.

[307] Dikran Marsupial. SVM, Overfitting, Curse of Dimensionality, Aug 2012. URL

https://stats.stackexchange.com/questions/35276/svm-overfitting-curse-of-

dimensionality, Accessed 30 Jun 2018.

 References

319

[308] Tom Kelsey. Lecture Notes - ID5059: Knowledge Discovery and Data Mining,

Lecture 18 - Support Vector Machines (SVMs) (2), 2017. University of St Andrews.

[309] Yoav Goldberg and Michael Elhadad. splitSVM: Fast, Space-Efficient, non-Heuristic,

Polynomial Kernel Computation for NLP Applications. In Proceedings of the 46th

Annual Meeting of the Association for Computational Linguistics on Human

Language Technologies: Short Papers, pages 237–240. Association for Computational

Linguistics, 2008.

[310] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel Methods in

Computational Biology, Chapter 2: A Primer on Kernel Methods. MIT press, 2004.

[311] John Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to

Regularized Likelihood Methods. Advances in large margin classifiers, 10 (3): 61–74,

1999.

[312] Michael Kemmler. Question - Can We Assign Probability to SVM Results Instead of a

Binary Output?, 2013. URL

https://www.researchgate.net/post/Can_we_assign_probability_to_SVM_results_inste

ad_of_a_binary_output2, Accessed 30 Jun 2018.

[313] Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C Weng. A note on Platt’s probabilistic

outputs for support vector machines. Machine learning, 68 (3): 267–276, 2007.

[314] Grzegorz Gwardys. Why Is Kernelized SVM Much Slower Than Linear SVM?, Nov

2011. URL https://www.quora.com/Why-is-kernelized-SVM-much-slower-than-

linear-SVM, Accessed 30 Jun 2018.

[315] Christopher JC Burges. A Tutorial on Support Vector Machines for Pattern

Recognition. Data mining and knowledge discovery, 2 (2): 121–167, 1998.

[316] Chih-Jen Lin. Chih-Jen Lin’s Home Page. URL https://www.csie.ntu.edu.tw/~cjlin/,

Accessed 26 Feb 2018.

[317] W Nick Street and YongSeog Kim. A Streaming Ensemble Algorithm (SEA) for

Large-Scale Classification. In Proceedings of the 7th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 377–382. ACM, 2001.

[318] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database Mining: A

Performance Perspective. IEEE Transactions on Knowledge and Data Engineering, 5

(6): 914–925, 1993.

[319] Pavel Laskov, Patrick Düssel, Christin Schäfer, and Konrad Rieck. Learning Intrusion

Detection: Supervised or Unsupervised? In Fabio Roli and Sergio Vitulano, editors,

Image Analysis and Processing – ICIAP 2005, pages 50–57, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg.

[320] Max Kuhn, Steve Weston, Nathan Coulter, Mark Culp, and C code for C5.0 by R.

Quinlan. C50: C5.0 Decision Trees and Rule-Based Models, 2015. Version 0.1.0-24,

URL https://CRAN.R-project.org/package=C50, Accessed 21 May 2018.

[321] R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-

900051-07-0, URL http://www.R-project.org, Accessed 21 May 2018.

[322] Marvin N. Wright and Andreas Ziegler. Ranger: A Fast Implementation of Random

Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77

(1): 1–17, 2017. doi: 10.18637/jss.v077.i01.

References

320

[323] Thibault Helleputte, Pierre Gramme, and Jerome Paul. LiblineaR: Linear Predictive

Models Based on the LIBLINEAR C/C++ Library. R package version 2.10-8, pages

1–11, 2017. URL https://CRAN.R-project.org/package=LiblineaR, Accessed 21 May

2018.

[324] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

LIBLINEAR: A Library for Large Linear Classification. Journal of machine learning

research, 9 (Aug): 1871–1874, 2008.

[325] Susan Garavaglia and Asha Sharma. A Smart Guide to Dummy Variables: Four

Applications and a Macro. In proceedings of the Northeast SAS Users Group

Conference, pages 46–55, 1998.

[326] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector

Machines. ACM transactions on intelligent systems and technology (TIST), 2 (3):

27:1–27:27, 2011.

[327] Seymour Geisser. Predictive Inference. New York, NY: Chapman and Hall, 1993.

[328] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[329] Pierre A Devijver and Josef Kittler. Pattern Recognition: A Statistical Approach.

London, GB: Prentice hall, 1982.

[330] Giovanni Seni and John F Elder. Ensemble Methods in Data Mining: Improving

Accuracy Through Combining Predictions. Synthesis Lectures on Data Mining and

Knowledge Discovery, 2 (1): 1–126, 2010.

[331] Prashant Gupta. Cross-Validation in Machine Learning, 2017. URL

https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f,

Accessed 16 Jul 2018.

[332] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality

(complete samples). Biometrika, 52 (3/4): 591–611, 1965.

[333] Theodore W Anderson and Donald A Darling. Asymptotic Theory of Certain

"Goodness of Fit" Criteria Based on Stochastic Processes. The Annals of

Mathematical Statistics, 23 (2): 193–212, 1952.

[334] Theodore W Anderson and Donald A Darling. A Test of Goodness of Fit. Journal of

the American Statistical Association, 49 (268): 765–769, 1954.

[335] Milton Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in

the Analysis of Variance. Journal of the American Statistical Association, 32 (200):

675–701, 1937.

[336] Milton Friedman. A Comparison of Alternative Tests of Significance for the Problem

of m Rankings. The Annals of Mathematical Statistics, 11 (1): 86–92, 1940.

[337] William Jay Conover. Practical Nonparametric Statistics (Third Edition). Wiley New

York, 1999. ISBN 0471160687.

[338] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric Statistical

Methods (Third Edition). John Wiley & Sons, 2013. ISBN 9781118553299. URL

https://www.wiley.com/en-us/Nonparametric+Statistical+Methods%2C+3rd+Edition-

p-9780470387375, Accessed 16 Jul 2018.

 References

321

[339] Ms Snehlata Dongre and Latesh Malik. Algorithm to Handle Concept Drifting in Data

Stream Mining. International Journal of Computer Science and Network (IJCSN), 2

(1): 107–111, 2013.

[340] Ryan Elwell and Robi Polikar. Incremental Learning of Concept Drift in

Nonstationary Environments. IEEE Transactions on Neural Networks, 22 (10): 1517–

1531, 2011.

[341] Charu C Aggarwal. Data Streams: Models and Algorithms, volume 31. Springer

Science & Business Media, 2007.

[342] 1998 Darpa Intrusion Detection Evaluation Data Set, 1998. URL

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-data-

set, Accessed 28 Jul 2018.

[343] Albert Bifet. SEAGenerator.java, 2015. URL

https://github.com/Waikato/moa/blob/master/moa/src/main/java/moa/streams/generato

rs/SEAGenerator.java, Accessed 28 Jul 2018.

[344] Richard Kirkby. AgrawalGenerator.java, 2013. URL

https://github.com/Waikato/moa/blob/master/moa/src/main/java/moa/streams/generato

rs/AgrawalGenerator.java, Accessed 28 Jul 2018.

[345] Raj Basu, Robert K Cunningham, Seth E Webster, and PR Lippmann. Detecting Low-

Profile Probes and Novel Denial-of-Service Attacks. In Proceedings of the 2001 IEEE

Workshop on Information Assurance and Security, United States Military Academy,

pages 5–10, 2001.

[346] Luis Torgo. DMwR: Functions and Data for "Data Mining With R", 2013. Version

0.4.1, URL https://CRAN.R-project.org/package=DMwR, Accessed 21 May 2018.

[347] Luis Torgo. Data Mining With R: Learning With Case Studies. Chapman and

Hall/CRC, 2010.

[348] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Intrusion Detection

Evaluation Dataset (ISCXIDS2012), 2012. URL

http://www.unb.ca/cic/datasets/ids.html, Accessed 27 Jul 2018.

[349] Wireshark. TShark, 1998–2018. Version 1.10.6, URL https://www.wireshark.org/,

Accessed 27 Jul 2018.

[350] Shawn Ostermann. TCPTRACE, 1998–2018. Version 6.6.7, URL

http://www.tcptrace.org/, Accessed 17 Jan 2017.

[351] Microsoft. Windows Server 2012 R2 Datacenter, 2012. URL

https://www.microsoft.com/en-gb/Licensing/product-licensing/windows-server-2012-

r2.aspx, Accessed 17 Jan 2017.

[352] Security Onion Solutions LLC. SecurityOnion, 2009–2017. Version 12.04.5.1-

20150205, URL https://securityonion.net/, Accessed 17 Jan 2017.

[353] Larry Wall. Perl, 1987–2017. Version 5.18.2, URL https://www.perl.org/, Accessed

17 Jan 2017.

[354] Wenke Lee. A Date Mining Framework for Constructing Features and Models for

Intrusion Detection Systems. PhD thesis, Graduate School of Arts and Sciences,

Columbia University, 1999.

References

322

[355] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. Mining in a Data-Flow Environment:

Experience in Network Intrusion Detection. In Proceedings of the 5th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 114–124.

ACM, 1999.

[356] Wenke Lee and Salvatore J Stolfo. A Framework for Constructing Features and

Models for Intrusion Detection Systems. ACM Transactions on Information and

System Security (TiSSEC), 3 (4): 227–261, 2000.

[357] Tin Kam Ho. Random Decision Forests. In proceedings of the 3rd International

Conference on Document Analysis and Recognition, volume 1, pages 278–282. IEEE,

1995.

[358] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests .

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8): 832–844,

1998. doi: 10.1109/34.709601.

[359] Leo Breiman. Random Forests. Machine Learning, 45 (1): 5–32, Oct 2001. URL

https://doi.org/10.1023/A:1010933404324.

[360] Andy Liaw. Randomforest: Breiman and Cutler’s Random Forests for Classification

and Regression, 2018. Version 4.6-14, URL https://CRAN.R-

project.org/package=randomForest, Accessed 21 May 2018.

[361] Jinbo Bi, Kristin Bennett, Mark Embrechts, Curt Breneman, and Minghu Song.

Dimensionality Reduction via Sparse Support Vector Machines. Journal of Machine

Learning Research, 3 (Mar): 1229–1243, 2003.

[362] Miron B Kursa and Witold R Rudnicki. Feature Selection with the Boruta Package. J

Stat Softw, 36 (11): 1–13, 2010.

[363] Witold R Rudnicki, Mariusz Wrzesień, and Wiesław Paja. All Relevant Feature

Selection Methods and Applications. In Feature Selection for Data and Pattern

Recognition, pages 11–28. Springer, 2015.

[364] Bernard L Welch. The Generalization of ‘Student’s’ Problem when Several Different

Population Variances are Involved. Biometrika, 34 (1/2): 28–35, 1947.

[365] Graeme D Ruxton. The unequal variance t-test is an underused alternative to Student’s

t-test and the Mann–Whitney U test. Behavioral Ecology, 17 (4): 688–690, 2006.

[366] Jason Brownlee. Blog Post: 8 Tactics to Combat Imbalanced Classes in Your Machine

Learning Dataset, 2015. URL https://machinelearningmastery.com/tactics-to-combat-

imbalanced-classes-in-your-machine-learning-dataset/, Accessed 16 Jul 2018.

[367] M Mostafizur Rahman and D Davis. Cluster Based Under-Sampling for Unbalanced

Cardiovascular Data. In Proceedings of the World Congress on Engineering,

volume 3, pages 3–5, 2013.

[368] Nitesh V Chawla. Data Mining for Imbalanced Datasets: An Overview. In Data

mining and knowledge discovery handbook, pages 875–886. Springer, 2009.

[369] M Mostafizur Rahman and DN Davis. Addressing the Class Imbalance Problem in

Medical Datasets. International Journal of Machine Learning and Computing, 3 (2):

224–228, 2013.

[370] Juan D Rodríguez, Aritz Pérez, and Jose A Lozano. Sensitivity Analysis of K-Fold

Cross Validation in Prediction Error Estimation. IEEE transactions on pattern

analysis and machine intelligence, 32 (3): 569–575, 2010.

 References

323

[371] Jake R Conway, Alexander Lex, and Nils Gehlenborg. UpSetR: an R package for the

visualization of intersecting sets and their properties. Bioinformatics, 33 (18): 2938–

2940, 2017.

[372] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter

Pfister. UpSet: Visualization of Intersecting Sets. IEEE transactions on visualization

and computer graphics, 20 (12): 1983–1992, 2014.

[373] Peter B. Nemenyi. Distribution-Free Multiple Comparisons. In Biometrics, volume 18,

page 263. International Biometric SOC 1441 I ST, NW, Suite 700, Washington, DC

20005-2210, 1962.

[374] Peter B. Nemenyi. Distribution-Free Multiple Comparisons. PhD thesis, Princeton

University, 1963.

[375] Myles Hollander and Douglas A Wolfe. Nonparametric Statistical Methods - Second

Edition. Wiley-Interscience, 1999.

[376] Chris Ding and Hanchuan Peng. Minimum Redundancy Feature Selection from

Microarray Gene Expression Data. Journal of bioinformatics and computational

biology, 3 (02): 185–205, 2005.

[377] Chris Ding and Hanchuan Peng. Minimum Redundancy Feature Selection from

Microarray Gene Expression Data . In Proceedings of the 2003 IEEE Computational

Systems Bioinformatics Conference (CSB2003), pages 523–528, 2003. doi:

10.1109/CSB.2003.1227396.

[378] Ken Black. Business Statistics for Contemporary Decision Making (Sixth Edition).

John Wiley & Sons, Inc., 2010. ISBN 9780470556672.

[379] Paul J. Lavrakas. Encyclopedia of Survey Research Methods. Sage Publications, Inc.,

2008. ISBN 9781412918084.

[380] Chris J Skinner. Probability Proportional to Size (PPS) Sampling. Wiley StatsRef:

Statistics Reference Online, pages 1–5, 2014.

[381] Department of Statistics Online Programs. Module 6.1: How to Use Stratified

Sampling. In STAT506: Sampling Theory and Methods, 2018. URL

https://newonlinecourses.science.psu.edu/stat506/node/2/, Accessed 30 Jul 2018.

[382] Mohammad Esfahani Shahrokh and Edward R Dougherty. Effect of Separate

Sampling on Classification Accuracy. Bioinformatics, 30 (2): 242–250, 2013.

[383] Sherri L Jackson. Research Methods and Statistics: A Critical Thinking Approach

(Fifth Edition). Cengage Learning, 2015. ISBN 9781305257795.

[384] Research-Methodology. Cluster Sampling, 2018. URL https://research-

methodology.net/sampling-in-primary-data-collection/cluster-sampling/, Accessed 30

Jul 2018.

[385] Iosif-Viorel Onut. A fuzzy feature evaluation framework for network intrusion

detection. PhD thesis, Faculty of Computer Science, University of New Brunswick,

2008.

[386] Stephanie Sundberg. Cohen’s Kappa Statistic, 2017. URL

http://www.statisticshowto.com/cohens-kappa-statistic/, Accessed 16 Jul 2018.

	Abstract
	Declaration
	Permission for Publication
	Underpinning Research Data or Digital Outputs
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Chapter 1: Introduction
	1.1 Problem Statement
	1.2 Motivation
	1.3 Scope of the Research
	1.4 Research Hypothesis and Questions
	1.5 Research Approach
	1.6 Contributions
	1.7 Research Output
	1.8 Thesis Structure

	Chapter 2: Literature Review and State of the Art
	2.1 Intrusion Detection (ID)
	2.1.1 Types of Intrusion Detection
	2.1.1.1 Host-based IDS (HIDS)
	2.1.1.2 Network-based IDS (NIDS)

	2.1.2 Methods of Intrusion Detection
	2.1.2.1 Misuse-based Detection
	2.1.2.2 Anomaly Detection

	2.1.3 Hybrid and specialised approaches
	2.1.4 Batch versus Ensemble Intrusion Detection

	2.2 Datasets
	2.2.1 Raw datasets
	2.2.2 Processed (pre-formatted) datasets
	2.2.3 Common issues and pre-processing tasks
	2.2.3.1 Feature selection
	2.2.3.2 Data (class) balancing

	2.3 Evaluation of Intrusion Detection Systems
	2.3.1 Evaluation methods
	2.3.2 Evaluation measures
	2.3.2.1 Confusion matrix
	2.3.2.2 Accuracy
	2.3.2.3 Other common measures
	2.3.2.4 Geometric Mean of Accuracy

	2.3.3 Threshold related measures
	2.3.3.1 Receiver Operating Characteristic (ROC) Curve
	2.3.3.2 Area Under the Curve (AUC)

	2.4 Related Work and Research Gaps
	2.4.1 Threshold adaptation
	2.4.1.1 Batch learning
	2.4.1.2 Real-time learning
	2.4.1.3 Data stream learning

	2.4.2 Research gaps

	2.5 Summary

	Chapter 3: Experimental Overview
	3.1 Overview of Experiments
	3.1.1 Experiment 1
	3.1.2 Experiment 2
	3.1.3 Experiment 3

	3.2 Overview of Classification/Machine Learning algorithms
	3.2.1 Decision Trees (C5.0)
	3.2.1.1 Tree splitting criteria
	3.2.1.2 Tree pruning

	3.2.2 Random Forest (RF)
	3.2.3 Support Vector Machine (SVM)

	3.3 Methods Used for Analysis
	3.3.1 Research design
	3.3.2 Selection of datasets
	3.3.2.1 Existing Datasets
	3.3.2.2 Newly Generated Dataset

	3.3.3 Parameter setting for the ML algorithms
	3.3.3.1 C5.0 algorithm
	3.3.3.2 Random Forest
	3.3.3.3 Support Vector Machine (SVM)

	3.3.4 Evaluation measures
	3.3.5 Performance assessment techniques
	3.3.6 Statistical evaluation

	3.4 Limitations
	3.5 Summary

	Chapter 4: Adaptive Cutoff (Threshold) for Prediction Models
	4.1 Problem Statement
	4.2 Proposed Solution
	4.3 Datasets
	4.3.1 gureKDDcup
	4.3.2 SEA
	4.3.3 AGR

	4.4 Experimental Setting
	4.5 Results and Discussion
	4.5.1 10-folds Cross-validation on Full Data
	4.5.2 Subset-to-Subset (File-to-File)
	4.5.2.1 C5.0:
	4.5.2.2 Random Forest (RF)
	4.5.2.3 SVM

	4.6 Limitations
	4.7 Summary

	Chapter 5: UNB ISCX 2012 Dataset Transformation
	5.1 ISCX2012 Dataset Description
	5.2 Transformation Process
	5.2.1 Basic features extraction
	5.2.2 Validation and labelling
	5.2.3 Extending the features space
	5.2.4 Balancing the dataset
	5.2.5 Cleaning the dataset

	5.3 Details of Validation and Labelling Phase
	5.3.1 Validation
	5.3.2 Labelling
	5.3.3 Problems with labelled flow (XML) files

	5.4 Server Specifications
	5.5 Limitations
	5.6 Summary

	Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection
	6.1 Introduction
	6.1.1 Feature importance measures
	6.1.2 Feature selection using fake features
	6.1.3 Data balance

	6.2 Proposed Solution
	6.3 Datasets
	6.4 Experimental Setting
	6.5 Results and Discussion
	6.5.1 C5.0 Algorithm
	6.5.2 RF Algorithm
	6.5.3 SVM Algorithm

	6.6 Limitations
	6.7 Summary

	Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data
	7.1 Introduction
	7.2 Proposed Solution
	7.3 Experimental Setting
	7.4 Results and Discussion
	7.4.1 C5.0 Algorithm
	7.4.2 RF Algorithm
	7.4.3 SVM Algorithm
	7.4.4 Closing remarks

	7.5 Limitations
	7.6 Summary

	Chapter 8: Conclusion
	8.1 Main Findings
	8.1.1 Importance of threshold adaptation
	8.1.2 Threshold adaptation to address feature drift
	8.1.3 Optimal threshold selection

	8.2 Future Work
	8.2.1 Systematic comparison of different evaluation techniques
	8.2.2 Threshold adaptation for multi-class models and other ML
	8.2.3 Threshold adaptation against attack
	8.2.4 Data stream domains
	8.2.5 Data pre-processing
	8.2.6 Validation data sampling
	8.2.7 Drifts measurements
	8.2.8 Further comparisons

	8.3 Reflective/Closing Remarks

	Appendix (A) Results of Chapter 4 (First) Experiment
	A.1. C5.0
	A.2. Random Forest
	A.3. Support Vector Machine (SVM)

	Appendix (B) Results of Chapter 6 (Second) Experiment
	B.1. Selected Features
	B.1.1. Day 2 (12/Jun)
	B.1.2. Day 3 (13/Jun)
	B.1.3. Day 4 (14/Jun)
	B.1.4. Day 5 (15/Jun)
	B.1.5. Day 6 (16/Jun)
	B.1.6. Day 7 (17/Jun)

	B.2. Models Results
	B.2.1. C5.0 (Decision Trees) Results
	B.2.2. Random Forest (RF) Results
	B.2.3. Support Vector Machine (SVM) Results

	Appendix (C) Results of Chapter 7 (Third) Experiment
	C.1. Results of Every Day
	C.2. Models GAR Plots
	C.2.1. C5.0 (Decision Trees) Results
	C.2.2. Random Forest (RF) Results
	C.2.3. Support Vector Machine (SVM) Results

	Appendix (D) Feature Descriptions of STA2018 Dataset
	D.1. Basic Features
	D.2. Connection-Based Features
	D.3. Time-Based Features
	D.4. Class Feature

	References

