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ABSTRACT 
 

 

 

Network traffic exhibits a high level of variability over short periods of time. This variability 

impacts negatively on the performance (accuracy) of anomaly-based network Intrusion 

Detection Systems (IDS) that are built using predictive models in a batch-learning setup. This 

thesis investigates how adapting the discriminating threshold of model predictions, specifically 

to the evaluated traffic, improves the detection rates of these Intrusion Detection models. 

Specifically, this thesis studied the adaptability features of three well known Machine 

Learning algorithms: C5.0, Random Forest, and Support Vector Machine. The ability of these 

algorithms to adapt their prediction thresholds was assessed and analysed under different 

scenarios that simulated real world settings using the prospective sampling approach. A new 

dataset (STA2018) was generated for this thesis and used for the analysis. 

 

This thesis has demonstrated empirically the importance of threshold adaptation in improving 

the accuracy of detection models when training and evaluation (test) traffic have different 

statistical properties. Further investigation was undertaken to analyse the effects of feature 

selection and data balancing processes on a model’s accuracy when evaluation traffic with 

different significant features were used. The effects of threshold adaptation on reducing the 

accuracy degradation of these models was statistically analysed. The results showed that, of the 

three compared algorithms, Random Forest was the most adaptable and had the highest 

detection rates.  

 

This thesis then extended the analysis to apply threshold adaptation on sampled traffic subsets, 

by using different sample sizes, sampling strategies and label error rates. This investigation 

showed the robustness of the Random Forest algorithm in identifying the best threshold. The 

Random Forest algorithm only needed a sample that was 0.05% of the original evaluation traffic 

to identify a discriminating threshold with an overall accuracy rate of nearly 90% of the optimal 

threshold.   
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Chapter 1: Introduction 

 

Chapter One 

Introduction 
 

 

 

Computer security, now called cyber security, has been a focus of research since the beginning 

of the digital computer age. Numerous research papers and applications have been written and 

developed proposing solutions to combat threats and to protect information systems. With the 

introduction of the Internet, more services have been provided remotely, which has led to 

increased dependence of users, business and governments on third party services. This 

dependence has promoted new and more sophisticated types of attacks, making the task of 

protecting and securing systems more challenging. As a consequence, the Internet has become 

a digital war zone for politicians and governments, as well as business competitors. Persistent 

digital warfare and/or information gathering imposes a greater risk than ever on systems and 

services, including individuals’ private information.    

Many authors including Cherdantseva and Hilton [2] have identified a set of key goals for 

cybersecurity that should be met by all systems: confidentiality, integrity, availability, 

accountability, non-repudiation, auditability, authenticity & trustworthiness, privacy and 

correctness [3-7]. However, every day these stated security goals are flagrantly violated by 

breaches and security incidents which raises questions about the capability of existing security 

systems.  
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Intrusion Detection Systems (IDS) are one of the many tools used in the cyber security field. 

Their main purpose, as an essential line of defence, is to detect security attacks targeting the 

critical networks, systems or data that they monitor. They aim to detect and report any violation 

by an external intruder or system insider, of the security goals highlighted above.  

1.1 Problem Statement 

Everyday advancements in technology, such as mobile devices, cloud computing and the 

Internet of Things (IoT), bring with them novel challenges and threats. As the majority of these 

technologies provide their services over communication networks, new challenges have 

emerged. For example, very large amounts of data are generated and exchanged across these 

networks that require faster processing. In addition, with various kinds of services sharing the 

same communication media, traffic diversity has become another challenge for detecting and 

profiling threats. Traffic encryption has added yet another layer of sophistication to any analysis 

task. Such challenges, and many more, have posed an immense burden on security analysts in 

analysing traffic and identifying threats in order to develop the right counter measures. As a 

result, researchers have aimed at exploring new tools, techniques and strategies to address such 

limitations.  

Artificial Intelligence (AI), Machine Learning (ML) and Data Mining (DM) methods are some 

of the key research topics currently being explored to address some of the many cyber security 

requirements, particularly in the area of anomaly-based Intrusion Detection (ID). These 

methods became more pervasive than before in real world applications due to the advancement 

in technology, and are now being used in many different domains such as autonomous vehicles, 

directing advertising, healthcare, product recommendations, stock markets and speech or face 

recognition. The use of these methods aims to address the many limitations in human 

capabilities and conventional technologies in handling the massive amounts and existing 

diversity of digital data.   
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One of the most pressing challenges in this domain is the traffic evolution over time and the 

capability of these methods to adapt to such changes. This is because network traffic is not 

stable through time, due to changes in services, where new services are introduced and old ones 

are removed, as well as changes to users and their behaviours. Although many recent studies 

and solutions have been conducted and proposed, that have made remarkable progress in 

addressing these concerns, plenty of work and opportunities still remain.  

Ever evolving traffic makes the process of building ID models a particularly challenging task 

as learning all possible variations of traffic patterns for all different kinds of traffic and users is 

an impossible quest. Therefore, there is a pressing need to make intelligent detection methods 

adaptable to traffic variability.  

In a typical (batch-based) scenario, a network-based anomaly ID model would be built to 

protect specific environment from attackers. The model building phase would require some 

training data that were previously captured from old traffic to generate the ID model, which 

would be tuned and set to detect anomalous behaviours. However, as such a model is used to 

analyse a new real traffic it will suffer from high false alarms and low detection accuracy. These 

phenomena are usually caused by the changes in network patterns, which would lead to an early 

phasing out of such a model and a triggering of model regeneration or updating phase. This 

could be linked to the inefficiency of using a fixed discriminating threshold for such ID models. 

For example, a network under high volume attacks, such as Denial of Service (DoS) or scan 

attacks, would have different class (normal to attack) distributions than when it is under low 

volume but stealthy attacks such as SQL injection and Command-and-Control (C&C).  

Therefore, this thesis is intended to address this problem by investigating the effect of adapting 

the discriminating threshold (specifically to the evaluated network traffic) on the accuracy (i.e. 

the Geometric Mean of Accuracy) of such models and compare the results with the use of a 

fixed threshold. This investigation will be done by comparing such effects on traffic collected 
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at different times with existing variability. Further, the ability of different types of ML 

algorithms to adapt to traffic changes will be analysed. 

1.2 Motivation  

The key impact of ever evolving LAN network traffic is linked to the difficulty of building ID 

models that can address all possible variations in traffic patterns. This in turn is linked partially 

to the challenge imposed in collecting training data for every imaginable scenario. 

Traditionally, the model development process would use a training data to build a detection 

model which can then be used to predict future data. However, as traffic evolves over time, the 

learned model would usually experience a large decline in detection rate. As a result, new data 

would be needed to train another model. 

As will be illustrated in more detail in the coming chapters; most of the learning and 

classification methods are based on a number of key assumptions [8, 9], such as: (i) the equal 

representation of classes, (ii) the equal representation of sub-concepts for a specific class, (iii) 

the similar class-conditional distributions of all classes, and (iv) the pre-defining and knowledge 

of all the values of the attributes for all records in the dataset. With traffic evolution the reality 

is that most, if not all, of these assumptions are violated in real environments, as new traffic 

will start to exhibit different statistical properties to those of the training data.  

Traffic evolution can introduce unpredictable differences between the training data and the 

testing data. These differences can take various forms; for example, class distributions might 

differ in the new data than those used to build the ID model, and even new classes might emerge 

over time. In addition, class balance (also known as data balance) can play an important role on 

the accuracy of constructed models, which could be affected as a result of pattern changes. 

Traffic variability may also bring about differences in feature importance. These effects 

(collectively or individually) might render the learnt model outdated sooner than anticipated. 
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However, the current methods to deal with these effects (in a batch-based setup) will attempt to 

generate a new model, which may consume additional resources in collecting and labelling new 

data to be used to learn that new model.    

Many studies have attempted to address some of these issues in real-time setups by tuning the 

detection parameters of the ID models, while others have introduced ensemble methods for data 

stream setups. However, there is insufficient empirical work to analyse the threshold adaptation 

of model predictions in binary batch-learning (offline learning) setups, which refers to the 

process of building an ID model using the entire training data (full-batch learning); or when the 

model is updated or rebuilt after certain update criterion is met (mini-batch learning), such as 

the lapse of a specific time period or after a number of training instances have been 

collected [10].  

The low detection accuracy of such score-based anomaly ID models, in batch-learning setup, 

could be linked to the use of a fixed discriminating threshold, which in turn could result in an 

inaccurate reading of the accuracy that is far lower than their actual optimal accuracy. This 

might explain the early termination of such ID models. As a result, adapting the discriminating 

threshold to the predictions of the evaluated network traffic would provide an accurate reading 

of the actual accuracy of the ID model. Understanding this may lead to an improvement in 

detection accuracy and hence an extension in the lifespan of the ID models.    

1.3 Scope of the Research 

The main objective of this thesis is to improve the accuracy (i.e. the Geometric Mean of 

Accuracy) of a score-based anomaly Intrusion Detection (ID) model. To this end, the key 

approach undertaken by this research to fulfil this objective is by tuning the discriminating 

threshold specifically to the predictions of the network traffic evaluated by such a model.   
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In other words, it is intended to evaluate the potential of prediction threshold adaptation to 

improve the accuracy (i.e. the Geometric Mean of Accuracy) of binary anomaly ID models 

developed using various ML algorithms for batch-based tasks. This study focuses on detecting 

anomalies (intrusions) in Local Area Network (LAN) traffic, where the payload (content) of 

such traffic is out of the scope of this thesis. The traffic of such networks are assumed to be 

fully captured with no (or negligible) packet loss, at a strategic location with full visibility of 

exchanged communications of the monitored (protected) information systems.  

In this thesis no IDS evaluation measures other than the accuracy of the system is addressed. 

To explain further, as this thesis is focussed on batch-based ID models, the timeliness measure, 

which measures the total delay between the start time of the attack and the response time of the 

system [11], is out of the scope. Similarly, as binary ID models form the core subject of this 

study, there will be no focus on the completeness measure, which evaluates the coverage of the 

intrusion space, that is to assess if an IDS (detection model) can detect all or most of the 

attacks [11]. Moreover, as this thesis aimed to examine each detection model independently it 

does not address the interoperability measure, which assesses the capability of an IDS to 

correlate information from multiple sources [12] or to interoperate with other IDS in a 

multi-IDS environment [13].  

System scalability and resources utilisation (CPU and memory) are also out of the interest of 

this thesis. These issues are considered as engineering problems that can be the focus of future 

studies. 

The following list provides an explanation or description of some of the key terms used 

throughout this thesis:  

• A training dataset is the data used to learn or build a ID model. 
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• An evaluation or test dataset refers to the data that are assessed by the detection 

(classification) models or used to evaluate these models. 

• The validation data describes the data used to set or fine tune the parameters of the ID 

models. 

This work assumes existing variability between the network traffic used as the training data and 

the test data, where no specific time interval has been defined for such variability to occur. 

However, measuring the degree of variability (drift) is out of the scope of this study. Moreover, 

this research assumes that the labels of the validation data will be available whenever they are 

needed, and that the source of these labels is not pre-specified. Hence, these labels can come 

from another IDS or security analyst.  

1.4 Research Hypothesis and Questions 

The following core research hypothesis has been evaluated and tested in this thesis: 

 “In a binary batch-learning setup, prediction accuracy of a score-

based anomaly intrusion detection model can be improved by 

adapting the discriminating threshold specifically for the predictions 

of the evaluated network traffic.” 

 

Examining this hypothesis requires the investigation process to address various levels of 

statistical differences between the training data and the test data, in order to consider diverse 

model development scenarios that echo real world practices, and to analyse the feasibility of 

the threshold adaptability approach based on a small sampled subset of the overall data. To 

investigate the hypothesis above, the following questions have been addressed: 
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Q1. How will the detection accuracy of an adaptive discriminating threshold of the 

predictions of a batch binary-based anomaly ID model compare to the accuracy of 

a fixed threshold?  

Conventional methods will set a prediction threshold for a detection model only once 

where this threshold will be used to classify future data regardless of any new patterns 

(drifts). This question is investigated empirically (in Chapter 4) by comparing model 

detection accuracies using fixed and adaptive thresholds. These models are trained and 

evaluated with datasets, which have controlled degrees of similarities and differences 

between their statistical properties (concept drifts).  

Q2. Can the adaptation of the discriminating threshold improve the accuracy of a 

binary-based anomaly ID model when evaluated network traffic has different salient 

features than those used to build the predictive model?  

Currently, model development might be performed after some analysis tasks, such as 

feature selection or data balancing. The aim of these tasks is to improve model detection, 

however, most of these tasks have to be performed on the training data available at the 

time. When such models are then used to evaluate new data, their prediction performance 

(accuracy) may diminish as a result of statistical differences of such data, which could 

have different sets of important features to those used to build the model. Chapter 6 

introduces an empirical study to address this question and investigates the effect of 

threshold adaptation in such scenarios, when a newly generated dataset has been used (as 

outlined in Chapter 5) for these analyses.  

Q3. Can the optimal discriminating threshold be identified using a labelled small sample 

of the evaluated network traffic under the batch-learning setup?  
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Threshold adaptation requires knowledge of the true labels of the evaluated dataset to 

optimise for some performance measure (i.e. Geometric Mean of Accuracy). However, 

labelling all of the evaluation data (network traffic) in a domain like network security 

would be a nearly impossible task. Chapter 7 outlines an experiment undertaken to study 

threshold adaptation using a small subset that is sampled from the dataset being evaluated. 

To answer this question, the effects of different sample sizes and sampling strategies on 

the adaptation process were analysed, in addition to exploring which of the ML 

algorithm’s models were more suitable for the adaptation process. It also investigated the 

effect of different error rates (of the sample’s true labels) on the threshold tuning process.  

1.5 Research Approach 

The discussion in this thesis describes an empirical study undertaken to address the research 

hypothesis set out above and its related research questions. It provides evidence on the 

usefulness of the proposed approach on various datasets (synthetic and domain specific) using 

different ML algorithms (C5.0, Random Forest and Support Vector Machine). A factorial 

research design was employed to meet the aim of this study. Further details of the decisions 

made during this research are provided in Chapter 3. 

1.6 Contributions 

The following list highlights the key novel contributions of this thesis to the current state of 

knowledge in this field:   

• Scientific contributions: 

C1. A new evaluation method was employed to assess the performance of models, by 

performing prospective sampling (as discussed in Chapter 2 and, applied in 

Chapter 4 and Chapter 6) instead of the conventional K-folds Cross-Validation 

method. This new evaluation technique mimics real world setups.   
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C2. A proof of concept analysis was conducted using different ML algorithms (C5.0, 

Random Forest and Support Vector Machine) with synthetic datasets to compare the 

capability of models to predict test data that had different statistical properties to the 

training data. The analysis revealed that the Random Forest (RF) algorithm was the 

most accurate and the most adaptable of the three algorithms (Chapter 4).   

C3. A thorough analysis of the performance (detection accuracy) of the three ML 

algorithms was conducted, and the Random Forest (RF) algorithm was the best at 

classifying new traffic in the STA2018 dataset (Chapter 6). This analysis included 

the evaluation of different models (with different sets of features and data balances) 

for every ML algorithm.   

C4. An analysis of the performance of the different ML algorithms on different network 

traffic (with changing behaviour) revealed that the performance of these ID models 

did not reach their optimal capacity if their predictions were not adapted for the newly 

evaluated traffic (Chapter 6).   

C5. An investigation was conducted to analyse adapting the discriminating threshold of 

model predictions using a (small) random sample of the evaluation traffic 

(Chapter 7). This investigation revealed that this approach was able to correctly 

adapting a model’s predictions with more than 95% of their optimal accuracy when 

the true labels of only 10% of the original data were used for this correction 

(threshold tuning) task. Different sample sizes were tested and the predictions of the 

Random Forest (RF) models were able to use a sample as small as 0.05%, of the 

evaluated dataset, to compute an adaptive threshold with up to 90% of the overall 

accuracy of the optimal threshold.   
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C6. A deeper analysis was conducted to investigate the performance (detection accuracy) 

differences between various ML algorithms in order to investigate the causes of 

differences in their model detection capabilities (Chapter 7). Most existing studies 

compare the performance of different ML algorithms but they do not extend their 

analysis to the level of prediction results retuned by these models. This study 

extended its analysis to investigate why such differences could occur, and as a result, 

revealed a possible relationship between the number of unique prediction scores and 

their ranges (returned by ID models) in the overall performance of these model.   

• Practical contribution: 

C7. An evaluation of the generation process of the KDD 1999 dataset, which revealed 

the faulty nature of this dataset. In addition, the evaluation demonstrated a novel way 

of linking connections from KDD 1999 to their originals in the DARPA 1998 dataset 

(Paper is accepted for publication [1]).  

C8. A new dataset was generated (STA2018) by transforming the network traces of the 

UNB ISCX Intrusion Detection Evaluation DataSet 2012 [14] into a suitable format 

for ML and DM tasks (Chapter 5). The generation process used traffic trace files to 

extract 193 basic features, which were then expanded to 550 features by employing 

Onut’s feature classification schema [15]. Every record in the resultant dataset 

profiled an independent connection, making it suitable for ML algorithms. This 

dataset will be publicly available.  

C9. A number of faults in the labelled flow files of the UNB ISCX Intrusion Detection 

Evaluation DataSet 2012 were identified and outlined, and these faults have been 

communicated to the authors of this dataset (Chapter 5).  
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C10. Basic feature extraction was scripted using Bro [16] software (Chapter 5). In 

addition, related parts in Onut’s feature classification schema [15] were implemented 

from scratch using Java. The full source code will be publicly available for 

researchers.   

C11. An extension was made to the visual illustration of the Critical Difference Plots, first 

proposed by Demšar [17] (Chapter 7). The extended version (Multi-CD) combines 

multiple Critical Difference Plots into a single figure, so that any changes in the 

ranking of various factors under different effects are more pronounced.   

1.7 Research Output  

Al Tobi, Amjad, and Duncan, Ishbel. KDD 1999 Generation Faults: A Review and Analysis. 

Journal of Cyber Security Technology, 2018. [1]. 

1.8 Thesis Structure  

The remainder of this thesis is structured as follows: 

Chapter 2: presents the background to this field of research and introduces related topics 

discussed within the thesis. It also highlights the key problems and solutions in this 

area and the latest work related to these issues.   

Chapter 3: provides an overview of every experiment conducted in the thesis, and an 

introductory background of every ML algorithm used in the experimental evidence. 

It also discusses the analysis methods, the adopted research design and the chosen 

statistical tests that are used in all experiments of this thesis.   

Chapter 4: establishes a Proof of Concept (PoC) for the core focus of this thesis. It details the 

experiments conducted to address the first research question, which investigated the 

feasibility of threshold adaptation for model predictions of evaluation datasets with 
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various degrees of statistical similarities to the training data used to learn the ID 

model.   

Chapter 5: provides a detailed discussion on the generation of the STA2018 dataset. It 

describes the preparation of the data and the process of transforming raw network 

traffic from the UNB ISCX 2012 [14] dataset into a suitable format for ML 

algorithms. The resultant dataset (STA2018) contains labelled records for seven 

days of simulation traffic, where each connection (session) is profiled using 550 

features. The STA2018 dataset was subsequently used in later experiments.   

Chapter 6: presents the experiments undertaken to investigate the second research question. 

They aimed to examine the effect of threshold adaptation (tuning), specifically to 

the evaluated data, on the overall performance of the models and compare the 

performance to the use of a fixed threshold. This analysis included various model 

development setups that aimed to emulate real-life practices.    

Chapter 7: addresses the third research question by exploring the potential of selecting the 

optimal threshold for the whole evaluation data by using a randomly sampled 

subset. The true labels of the small subset were used to set the prediction threshold 

for the entire test data. This chapter also analyses and compares the effect of various 

factors, such as sample size, sampling strategies and labelling error rates, on the 

optimal threshold selection for each of the analysed ML algorithms under different 

model setups.   

Chapter 8: concludes with a summary of the main results and findings from this research, and 

suggests some potential areas for future studies.   
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Computer security was raised as a concern nearly fifty years ago by James P. Anderson in 

1972 [18, 19]. Anderson stressed the urgent need for research and development in this field to 

ensure secure information systems. In 1980, early research led to the introduction of the concept 

of ‘Intrusion Detection’ (ID) [20]. The term intrusion is used to describe any illegal endeavour 

to gain access to, or to manipulate, information, or any attempt to sabotage a system by making 

it inaccessible, unusable or unreliable.  

In a landmark piece of work to automate the detection process, Denning [11] proposed the first 

ID model which formed the basis for all subsequent advancements in the field. This chapter 

introduces ID and discusses the present state of affairs in this area of research. 

2.1 Intrusion Detection (ID) 

Intrusion Detection Systems (IDS) are important in the security paradigm of any information 

system to protect systems from internal and external threats [21]. Their aim is to distinguish 

between legitimate and anomalous actions [22, 23]. As a result, many different types of IDS 

exist, including commercial and open source systems. IDS can be classified either by their 

physical positioning or by their detection methods, both of which are explored in more detail 

in the following discussion.   
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2.1.1 Types of Intrusion Detection 

The physical positioning of different IDS defines their role in the overall security structure of 

an organisation. There are two main categories of IDS based on their position: host-based and 

network-based IDS.  

2.1.1.1 Host-based IDS (HIDS) 

Host-based IDS (HIDS) are used to monitor activities at the host level [22, 24, 25]. In such 

systems, all the network traffic, resource utilisation and audit trails of a specific device are 

monitored to detect any suspicious activities or attack attempts [26]. Such systems monitor the 

internal activities of a system (CPU, RAM, processes, files, etc.) [27]. However, they could 

induce an overhead on the performance of the monitored host due to their consumption of 

resources [21]. In addition, they require extra resourcing and effort to be deployed on every 

host [21]. For instance, in a Cloud environment, this deployment could extend to include every 

Virtual Machine (VM) running in every hypervisor [28]. 

2.1.1.2 Network-based IDS (NIDS) 

With the increased use of network services, different types of intrusions and attacks have started 

to emerge, resulting in a growing need for Network-based IDS (NIDS). These systems are 

usually deployed in a strategic position [21] where they can monitor and analyse the traffic 

exchanged to protect multiple systems. NIDS are faced with a high volume and a wide diversity 

of traffic. This could impose greater complexity in detecting intrusions as trade-off to their ease 

of implementation and deployment [26, 29]. Encrypted traffic adds another layer of complexity 

to these systems as in many such cases the traffic needs to be decrypted before being 

analysed [28]. Furthermore, in a Cloud environment, the NIDS could experience serious 

limitations when the virtual network inside a hypervisor comes under attack, i.e. if the NIDS 

has no visibility over that virtual network [28], as a result of its deployment outside the 

hypervisor. Nikolai and Wang [30] have proposed a Hypervisor-based Cloud IDS to address 

such limitations.  
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Every advance in technology, such as Clouds and the Internet-of-Things (IoT), adds more 

challenges to the list of problems that need to be addressed. The recent growing interest in 

detecting attacks on wireless networks is driven by their widespread deployment as well as their 

vulnerability to attacks compared to wired networks [25].  

2.1.2 Methods of Intrusion Detection 

The detection mechanism which defines the core functionality of IDS can be categorised into 

two primary methods: misuse-based and anomaly-based.   

2.1.2.1 Misuse-based Detection 

Misuse-based IDS (such as Signature-based or Knowledge-based IDS) match known dubious 

patterns, which are termed as definition of attacks [25, 31], with actual observed activities, such 

as recorded behaviours in audit trails or network traffic. This matching process is usually 

accomplished by translating known system vulnerabilities [23] and intrusive patterns into some 

form of signatures. Although, this approach is effective in detecting known attacks, it fails to 

detect new (zero-day) intrusions [27] or even variants of known attacks [23, 31-34], such as 

polymorphic worms [26, 35]. Many researchers have proposed solutions in attempts to address 

this issue, such as alert verification [36, 37], proactive approach [38] and ensemble of multiple 

classifiers [39].  

Another challenge facing this approach is signature definition as it is difficult to define 

signatures that cover every system vulnerability [23] and all variations of a possible attack [32, 

33]. These systems consume time in maintaining the knowledge base due to the required effort 

in keeping patterns or signatures up to date [25]. Despite the many limitations of these types of 

IDS, most of the existing solutions (both commercial and open source) such as Snort1 and 

Suricata2 fall into this category. Various techniques are used in misuse detection methods, such 

                                                 
1 https://www.snort.org/ 
2 https://suricata-ids.org/ 
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as pattern recognition, rule-based expert system, Data Mining, etc [31]. The use of DM 

techniques can be controversial as many researchers apply them in a misuse context, while 

others use them for anomaly detection.   

Many of the misuse methods, such as pattern matching for signature-based IDS, require high 

computational resources where their utilization to process the vast amounts of network traffic 

forms a bottleneck. Therefore, techniques such as those proposed by Bellekens et al. [40] which 

use the General Purpose Graphics Processing Unit (GPGPU), could provide a promising 

solution to address this problem for this kind of IDS due to the efficient computational 

processing abilities of the GPGPU.  

2.1.2.2 Anomaly Detection 

The core functionality of anomaly-based (or behaviour-based) IDS is based on building a 

profile of the normal activities for the system [25, 28, 31]. The main problem with this approach 

is the concept of ‘normality’ which could provide an appropriate solution if it can be defined 

accurately. This approach assumes that all intrusive (anomalous) activities must deviate from a 

normal pattern [21, 23, 28, 32, 33, 41]. It also assumes that anomalous activities are rare in 

comparison to normal ones. As a result, many researchers have attempted to solve this problem 

by introducing formal models that express the relationships between the core parameters 

involved in the system dynamics [12] to build a formal model of normality. Every activity 

evaluated with such a model is then classified as an anomaly if it deviates from the normal 

pattern [21, 31].  

However, anomaly-based techniques suffer from a large number of false alarms [23] because 

of their inability to adapt to constantly changing events [25]. Also, due to the underlying 

assumption of the rarity of the anomalous activities, many of these techniques become 

erroneous (high false alarm rates) when anomalies hit the system in large quantities [12]. This 

weakness calls into question and challenges the applicability of these techniques in a production 
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setting and could explain the dominance of signature-based IDS in such environments. Also, as 

Modi et al. [28] have pointed out, many of these techniques would require a longer time to 

identify intrusive activities. As such, Buczak and Guven [27] consider misuse-based detection 

methods to be ‘proactive’ due to their continuous checking of activity signatures against known 

attack patterns, while anomaly-based techniques are considered ‘reactive’.   

There has been a growing interest in anomaly-based techniques due to advancements in this 

field, the continuous enhancement of physical resources, and the ability of these methods to 

detect novel (zero-day) intrusions [21, 23, 25, 31]. Any novel attacks that are detected can be 

used to develop signatures for the misuse-based IDS [27], if required. Some of the main 

techniques used in anomaly-based methods are discussed in more detail below.  

Various approaches have been studied and investigated to address anomaly-based detection. In 

this area, the most commonly used techniques are statistical, cluster-based and 

classification-based methods [31]. Many of the anomaly-based methods are applied to different 

placement types, such as host-based or network-based types, but their aim is to detect any 

deviation from the norm. Various ML and DM techniques are used for these tasks. Although, 

many of these ML and DM techniques are used in both misuse and anomaly detection methods, 

the usage method defines their context. In misuse-based detection, ML and DM techniques are 

used to generate signatures and patterns of attacks that can be used later to detect these attacks, 

whereas anomaly-based detection uses these techniques to build models to define the normal 

behaviour. These models are then used to detect any activities that deviate from the norm and 

flag them as anomalies. Some of the key methods used in these techniques are outlined in more 

detail below. 

Many of statistical methods used to analyse traffic are based on the theory of abrupt 

changes [12]. These methods basically work by measuring the means and standard deviations 

of certain variables to flag anomalous behaviours when they exceed predefined thresholds or 
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probabilities [25]. They monitor activities and profile them statistically based on measuring 

specific variables for an extended period of time [31]. After that, any sudden or unexpected 

events, which cause significant deviation, are reported [42]. Such models are more useful to 

detect threats of high volume, i.e. DoS and probing attacks, where more stealthy attacks will 

have a high probability to evade their net. As a result, Staniford et al. [43] proposed the Stealthy 

Port scan and Intrusion Correlation Engine (SPICE) which uses statistical techniques to detect 

stealthy port scans by applying a frequency-based mechanism that assigns higher anomaly 

scores to those packets that are observed less frequently. Many other methods are discussed in 

the literature such as Hierarchical Intrusion Detection (HIDE) [44]; Packet Header Anomaly 

Detection (PHAD) [45]; PAYL [46]; LERAD [47]; and Flow-based Statistical Aggregation 

Scheme (FSAS) [48]. One of the main drawbacks of these methods is that they can also be 

trained by an adversary. 

Clustering-based methods aim to group instances (network connections or activities) into 

collections called clusters [12]. These methods are based on the assumption that similar 

instances should be close to each other and apart otherwise [27]. With these methods, no prior 

knowledge is required of the labels or classes (unsupervised) [24], and normal instances are 

assumed to be the larger cluster [23]. Bhuyan et al. [12] suggest that these techniques are best 

performed at the exploration stage of the DM process. Many clustering methods are discussed 

in the context of IDS, such as hierarchical clustering [49] k-means [50], Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) [51], Simple Logfile Clustering Tool 

(SLCT) [52] and many more. Clustering methods do not require training which saves effort for 

a system administrator in collecting and labelling data [27]. However, data dimensionality may 

impose serious limitations on these techniques at high dimensions, because most of them are 

based on using distances between data points as an evaluation measure, a measure which loses 

accuracy as the number of dimensions increases [31]. Furthermore, at higher dimensions, many 
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features will not be meaningful for certain clusters which means cluster-based techniques suffer 

from the local feature relevance problem. This means that global feature filtering or selection 

will not be satisfactory as different clusters could form in different subspaces [53].   

Classification-based techniques are used to assign instances into one of a number of 

predefined categories (or classes) [23, 26]. These techniques can perform binary (normal or 

attack) or multi-class classification [31]. Many of these techniques have been explored in 

detecting anomalous network traffic using K-Nearest Neighbour (KNN) [54], Decision Trees 

(DT) [55], Support Vector Machine (SVM) [56], Neural Network (NN) [57] and Bayes 

Classifier [58] amongst other techniques. Classification methods tend not to suffer at higher 

dimensions as their outcomes show more stable results than cluster-based techniques. However, 

unlike cluster-based methods, they require labelled training data to build their prediction models 

[12]. In addition, class distribution (balance) in training data could impose a challenge on the 

learning capabilities of these techniques [12], an issue which is discussed further in 

Section 2.2.3.2. Moreover, they tend to mainly suffer from their high consumption of 

resources [12]. A number of studies have proposed various solutions to address this problem, 

such as selecting the best subset of salient features (see Section 2.2.3.1) which would result in 

a large improvement in resource utilization [29]. Bhuyan et al. [12] have argued that 

classification-based techniques cannot predict novel attacks until retraining with the new 

attacks has been performed. This assumption is based on granular level classification, where 

every type of anomaly is categorised into one class. More holistic forms of classification, such 

as binary classification, could be able to predict new types of attacks under a more general 

attack class. Some of the well-known systems that employ classification principles include 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [59], Automated Data 

Analysis and Mining (ADAM) [60] and Dynamically Growing Self-Organizing Tree 

(DGSOT) [61].    
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According to Bhuyan et al. [12], the research community are more focused on and most 

interested in classification-based techniques. Their popularity stems from their flexibility in 

training and testing process, as well as their high detection rates for known attacks conditioned 

on the appropriate setting of their prediction threshold. Although this fact, i.e. appropriate 

threshold setting, is known in the field, to the best of the obtained knowledge, no research has 

been conducted to analyse this in greater depth and to study the effect of threshold adaptation 

under different parameters.  

2.1.3 Hybrid and specialised approaches 

A number of hybrid systems have been proposed to address the limitations of each ID type or 

method individually by combining multiple techniques [31] in order to achieve more extensive 

and more accurate detection [25], and to detect the known and unknown threats [12]. As a result, 

many systems have tried to exploit the advantages and strengths of various methods by: 

combining misuse and anomaly detection [62-68]; combining multiple anomaly-based 

detectors [69-71]; or even combining all approaches together (misuse, anomaly, host-based and 

network-based) [72]. Although these hybrid approaches help in building better IDS, 

unfortunately they tend to suffer from a high computational cost [28]. However, with advances 

in technology, they are starting to dominate the research field [27]. 

The new technological advancements, such as Big Data and the Internet of Things (IoT), have 

brought new challenges with them due to the explosion of information. Many proposals have 

been put forward to address the security concerns surrounding these problems, such as 

Collaborative Intrusion Detection Systems (CIDS) {centralized [73-76], hierarchical [44, 77-

79], distributed [80-87]}, [21], Wireless-based IDS (WIDS) [25] and Cloud-based IDS 

{Hypervisor-based IDS} [88], etc. 
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Due to the diversity of network traffic as a result of so many services, more specialised IDS 

have started to emerge, such as application-based IDS (i.e. email, FTP, HTTP) [89, 90], 

protocol-based IDS (i.e. TCP) [91, 92], and content or payload-based IDS [93, 94]. 

As technology advances, more sophisticated IDS are being proposed which combine 

approaches from multiple domains to address specific technological limitations. Such 

sophisticated approaches could cause difficulties in classifying solutions into a specific class or 

category. Therefore, other approaches and techniques are discussed in the literature on how to 

address the ID problem. They include, but are not limited to, Ensemble-based [95, 96], Fusion-

based [97], Big Data [98], Genetic Algorithms (GA) [99-104], Self-Organizing Map 

(SOM) [105-107], Artificial Neural Networks (ANN) [108-112], Artificial Immune Systems 

(AIS) [113-116], Fuzzy sets [117-124], Rough sets [125-129], Ant Colony [130-132], and 

ontology and logic-based [133, 134] approaches. 

2.1.4 Batch versus Ensemble Intrusion Detection 

All of the approaches and methods discussed above were initially proposed to produce pattern 

signatures or prediction models in a batch-learning setting, where a finite dataset was used in 

the learning task [135]. However, with the explosion of data, more challenges have emerged 

that have in turn introduced new fields and trends in handling Big Data, which are known as 

ensemble or data stream methods. Traditional (batch-learning) methods of using learning 

algorithms to develop predictive models has been one of the areas affected due to their inability 

to handle many challenges. Although data stream is not the focus of this thesis, it has been 

introduced here to illustrate the new trends in the area and to introduce some of the key terms 

in the field, given that some of these terms also affect conventional (batch-learning) methods 

of developing prediction model. 

In their seminal review, Gomes et al. [135] listed a number of the challenges faced by the 

conventional (batch-learning) ML and DM techniques. Amongst many of these challenges, 
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which data stream methods aim to resolve, are the enormous volumes of data that need to be 

processed, limited time and memory resources, the emergence of new classes over time, and 

temporal dependencies [136]. However, the most significant problems which have a direct 

effect on predictive models are concept drift and feature drift.   

Concept drift [137] is a term used to describe the situation in which data distribution varies 

over time [138]. It has been categorised by Aggarwal [139] into four groups: abrupt, 

incremental, gradual, or recurring. Concept drift describes the nature or phenomena of network 

traffic and is often neglected in studies which investigate anomaly-based network IDS in a 

conventional (batch-learning) setup.  

The term Feature drift refers to the relevance of features over time [140, 141] as changes in 

data patterns will incur varying levels of relevance of features. In other words, when a group of 

features becomes irrelevant (or relevant) to the learning process at a certain point, then feature 

drift has occurred [142].   

A lot of research has emerged to look at ensemble learning for data streams to address these 

issues, in addition to the proposal of many methods, techniques and frameworks, such as, 

Massive Online Analysis (MOA)3 [143]. Such lines of research are based on the assumption 

that building a strong prediction model is a challenging task and, therefore, developing multiple 

weak models is feasible in order to boost the models by strategically training and uniting them 

to create a strong model [144-147]. In these ensemble or data stream techniques when a concept 

or feature drift is detected, new models are built and the least performing models will be 

discarded.   

                                                 
3 https://moa.cms.waikato.ac.nz/   
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2.2 Datasets 

Datasets provide important means to conduct empirical evaluations and to undertake 

comparative analyses of various methods and techniques. However, the network security 

domain, especially the network ID field, lacks good quality datasets to analyse and test new 

techniques and algorithms. Many factors contributing to this, including the fast evolution of 

this field [31]. The highly evolving and changing nature of network traffic and the vast amount 

of different attack types introduced on a daily basis, have made any attempt to keep producing 

up to date, good quality data a daunting task. As a result, many recent studies use datasets that 

are outdated and as old as KDD 1999. Another factor is related to privacy concerns; while many 

real and up to date datasets have been used in various studies they have not been made publicly 

available because of such concerns. Furthermore, to the best of the author’s knowledge, there 

are no datasets that simulate intrusions with new technologies such as a cloud environment or 

the IoT. Therefore, finding a recent study similar to the one undertaken by Deng et al. [148] 

(who discussed security issues and ID within IoT applications by conducting analyses based on 

the KDD 1999 dataset), would raise concerns about its findings.   

While there are many publicly available datasets, most of them are over a decade old although 

they are still being used in the most recent studies. In general, in addition to the lack of datasets 

in the ID domain, the existing datasets have many limitations, such as lack of wide range and 

up-to-date attacks. The sections below list the most widely known datasets and benchmarks.  

2.2.1 Raw datasets 

Many of the widely known datasets used in network ID studies contain raw data. These data 

usually consist of pure network traffic and traces between hosts and services. Some of them 

contain the host’s audit files which are also in a raw format. The ML and DM techniques require 

this data to be pre-processed in order to extract the required features and attributes before they 

can be used to produce predictive models.  
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DARPA datasets4 were the first of their kind to be publicly available for researchers. They 

were generated as part of an evaluation task of various Intrusion Detection Systems. They were 

a result of a joint project between the Air Force Research Laboratory (AFRL/SNHS), Defence 

Advanced Research Projects Agency (DARPA ITO) and the MIT Lincoln Laboratory. This 

project generated three sets of data: DARPA 1998, DARPA 1999 and DARPA 2000. However, 

the most widely used dataset in the literature is DARPA 1998. These datasets include raw data 

from host audits and network traffic traces.  

The UNIBS-2009 dataset5 consists of three days of network traces from twenty workstations. 

These traces were collected on the edge router of the campus network at the University of 

Brescia in Italy. This traffic contains multiple services and protocols, such as Web, Mail, Skype, 

Peer-to-Peer applications (BitTorrent and Edonkey) and many other protocols. For this dataset, 

all payloads were stripped off and all of the addresses were anonymised.  

UNB datasets6 were generated by a leading team in this field. There are multiple datasets 

available at the time of writing this thesis, such as ISCX IDS 2012, CIC IDS 2017, ISCX VPN-

nonVPN traffic and the ISCX Botnet datasets. Both the ISCX IDS 2012 and the CIC IDS 2017 

datasets consist of seven days of network traffic captures, where the traces contain full captures 

and payloads, and are not anonymised. They contain a variety of traffic using up-to-date 

services with recent types of attack scenarios.  

Other datasets can be found from various sources such as DEFCON7 [149], CAIDA8 [150] and 

LBNL9 [151]. However, these datasets have a number of limitations in comparison to the ones 

discussed above. For example, the captures of DEFCON and CAIDA are very small and consist 

                                                 
4 https://www.ll.mit.edu/ideval/data/index.html  
5 http://netweb.ing.unibs.it/~ntw/tools/traces/  
6 http://www.unb.ca/cic/datasets/index.html  
7 https://www.defcon.org/  
8 http://www.caida.org/  
9 https://www.icir.org/enterprise-tracing/Overview.html  
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of traffic for short periods. They are targeted on a specific scenario and contain particular 

attacks [12]. The LBNL dataset is limited only to header traces and all packets are anonymised, 

which could result in a distortion of the topological structure of the network. TUIDS10 is another 

dataset [152-154] that is discussed in a few publications by its authors.     

2.2.2 Processed (pre-formatted) datasets 

As most of the ML and DM algorithms and techniques cannot handle raw data, it is necessary 

to convert them into a suitable format. Some of the datasets outlined in the literature are used 

for that purpose and many of them are much used in several studies. 

The KDD Cup 199911 [155, 156] is the most famous and most commonly used dataset in the 

domain of network ID. This dataset is a transformation of network traces from the 

DARPA 1998 dataset. The transformation aimed to process the raw data into a format suitable 

for ML and DM tasks so that every connection in the network traces was profiled with 41 

features. The transformed dataset consists of multiple attack types that are categorised into four 

classes: probing; DoS; remote to local (R2L); and user to root (U2R). All the records in this 

dataset have no host addresses and their chronological order is distorted as their start times were 

stripped off. Regardless of these limitations and the many criticisms discussed in various 

studies, this dataset has been used in recent studies, up to and including 2018. However, 

Tavallaee et al. [157] have analysed this dataset and investigated its poor performance, and they 

proposed some fixes by removing redundant records, resulting in a variant called NSL-KDD. 

A thorough analysis and investigation of the KDD Cup 1999 dataset can be found in Al Tobi 

and Duncan [1], where far more serious limitations, other than redundant records, have been 

identified.  

                                                 
10 TUIDS is not accessible as the authors do not respond to access requests and all links, provided in their 

publications to the dataset, are broken. 
11 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html  
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In 2006, the Kyoto datasets12 were generated by extracting 24 statistical features from the raw 

traffic of a honeypot system deployed at Kyoto University in Japan [158]. Extracted features 

include non-anonymised host addresses. However, as this dataset only contains traffic that was 

directed to the honeypots, this restricts the view of that network’s traffic [159]. All of its normal 

traffic was simulated by generating DNS and mail traffic, which does not make it a realistic 

representation of real world traffic.  

The GureKddcup13 [160-162] dataset was put forward in 2008 by Perona et al. [161]. It is a 

retransformation of the DARPA 1998 dataset and is similar to the KDD Cup 1999 dataset. 

However, this transformation is much cleaner as it avoided many of the limitations of the KDD 

Cup 1999 dataset (such as redundant records, the availability of host addresses and connection 

timestamps). Although this dataset has existed for a long time, it is not as widely used in studies 

as the KDD Cup 1999.  

The Sperotto’s (Twente) dataset was generated in 2009 by Sperotto et al. [163] by capturing 

traffic through a honeypot deployed in the network of the University of Twente. The honeypot 

provided three services (OpenSSH, Apache web server and Proftp) and was directly connected 

to the internet. Although 98% of its flows are labelled, it contains limited attacks compared to 

other available datasets.   

The UNSW-NB15 dataset14 was created by Moustafa and Slay [164, 165] using the IXIA 

PerfectStorm tool to generate a mixture (benign and anomalous) of modern network traffic. 

This dataset contains nine different attack types: Fuzzers; Analysis; Backdoors; DoS; Exploits; 

Generic; Reconnaissance; Shellcode; and Worms. It contains a total of 31 hours of simulation 

                                                 
12 http://www.takakura.com/Kyoto_data/  
13 http://www.sc.ehu.es/acwaldap/gureKddcup/  
14 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/  
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time (16 hours in the first day and 15 hours in the second day) with a total of 1,140,044 

connection records, with each record profiled using 49 features.   

While there are many other datasets, KDD Cup 1999 and NSL-KDD are the most commonly 

used in the literature. However, as pointed out by Catania and Garino [31], many studies have 

used their own datasets which have not subsequently been made publicly available. This was 

confirmed by Abt and Baier [166] who showed in their study that only 10% of the papers they 

surveyed had released their datasets. Moreover, in many cases, no detailed information had 

been provided on the process of generating these datasets, which undermines a key principle of 

scientific research, the replicability of experiments [31]. Despite this, many frameworks for 

proper and replicable dataset generation have been proposed [14, 166-168].    

2.2.3 Common issues and pre-processing tasks 

Prior to any training phase, datasets could undergo some pre-processing phases to address issues 

related to the data itself or the model generation stage. Such pre-processing includes data 

cleaning which involves dealing with missing, noisy and incomplete values. It might also 

include data transformation, such as normalisation and standardisation. The main pre-

processing tasks which have a direct influence on model performance are feature selection and 

data (class) balancing. Each of these issues is reviewed next.  

2.2.3.1 Feature selection 

Feature selection is one of the most important tasks in the data analytics process. It aims to 

reduce model complexity and generation time by selecting salient features that best capture 

patterns within the data. It also removes redundant and irrelevant features that could reduce the 

generalisation capability of a model and thus avoid the problem of overfitting [169, 170]. 

Avoiding the curse of dimensionality [171] (where the number of features are greater than the 

number of instances in the dataset) is another important reason for performing a feature 
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selection process as some algorithms are particularly susceptible to this problem, causing the 

learned model to overfit [171].  

It is worth noting that feature selection is different from dimension reduction. In feature 

selection the best subset of features is selected, while dimension reduction creates a new 

combination of features by projecting the original feature space into a new low dimensional 

feature space. Principal Component Analysis (PCA) and Singular Value Decomposition 

(SVD) [172-174] are the most common dimension reduction techniques. However, dimension 

reduction methods are out of scope of this thesis due to their limitations. For example, these 

methods make it difficult to determine the level of influence of any individual feature. These 

methods also require the data to be pre-processed (i.e. normalised) as unpredictable issues might 

arise when data with different scales is used. 

Feature selection algorithms generally fall into one of three categories: wrapper, filter, or 

embedded methods [172]. Wrapper methods [173-176] evaluate a subset (group) of features 

using a predictive model, which is assessed using hold-out (discussed in Section 2.3.1) data 

that were not used in the training phase of the model. Based on the error rates of these models, 

the feature subsets (groups) are assigned a score. As the wrapper method is considered a search 

problem, different search methods are applied throughout the selection process, such as, best-

first [177, 178], random hill-climbing [177, 179], and forward and backward passes [180-182]. 

These methods suffer from intensive computations as a result of fitting models for every 

evaluated subset of features. 

Filter methods [173, 174, 183, 184] use statistical measures, known to be fast to compute, as 

their evaluation criteria rather than the model’s performance i.e. accuracy. These measures 

usually attempt to assess how useful a feature might be. However, as this assessment is not 

linked to the model’s performance, the selection process is not usually adjusted for a specific 

type of model. This method can lead to the selection of more general features which, in turn, 
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can result in the generation of models with lower powers of prediction. There are many 

measures used in this group such as Relief-based Algorithms [185-187], Mutual 

Information [188, 189], minimum-Redundancy-Maximum-Relevance (mRMR) [190], Chi 

squared test [191-193], Information Gain, Correlation Coefficient scores and many others. 

Following the use of these methods, scores are assigned to every feature. The selection or 

elimination of features using this method is based on the ranking of their scores.   

Embedded methods [173, 174, 194, 195] aim to address the limitations of wrapper and filter 

methods by generating models while simultaneously selecting the features that will best 

contribute to their performance. The most common of these approaches are regularisation 

methods such as, Least Absolute Shrinkage and Selection Operator (LASSO) [196], Ridge 

Regression [197] and Elastic net regularization (which combines the first two) [198] along with 

many more. The computational complexity of the embedded method tends to fall between the 

wrapper approaches and the filter approaches.  

Lashkari et al. [199] applied two feature selection techniques in their study. They used the 

WEKA15 DM software to select the key features from 23 time-based features to predict the 

service type of Tor traffic. The first technique (CfsSubsetEval+BestFirst) used the BestFirst 

search algorithm to select the best subset of features based on their evaluation criterion which 

employed the Correlation-based Feature Subset Selection (CfsSubsetEval)16 [200]. In the 

second technique (Infogain+Ranker), features were evaluated using the information gain before 

being ranked by their weights. The point at which the largest weight decrease occurred between 

two consecutive features was used as the cutoff point to select features with higher weights. 

This study showed that reduced feature sets were as able to build models with predictive power 

                                                 
15 https://www.cs.waikato.ac.nz/~ml/weka/   
16 http://weka.sourceforge.net/doc.dev/   
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as full feature sets. However, in this study, feature selection did not take account of traffic 

variability as the data were divided randomly into training (80%) and evaluation (20%) sets.   

In another study, Aljawarneh et al. [201] proposed a hybrid model composed of multiple base 

learners, where a vote algorithm with Information Gain was used to combine the probability 

distribution in order to select the salient features that increased the accuracy of the model as a 

whole. The selected features were then used to build multiple classifiers, where the best 

classifier (based, on its performance on the validation data) was selected. However, careful 

analysis of their work has revealed that a fixed threshold was used to select features with a 

weight higher than 0.4, which raises doubts over this approach under variable traffic patterns.   

Ambusaidi et al. [202] proposed an algorithm to analytically select optimal features based on 

mutual information. The proposed algorithm has the capability to handle features with linear 

and nonlinear dependencies. Features selected by this algorithm have been tested on a Least 

Square Support Vector Machine based IDS (LSSVM-IDS) using different datasets (KDD Cup 

99, NSL-KDD and Kyoto 2006+ datasets). The resulting feature subsets led to an increase in 

accuracy and a reduction in computational cost. However, the comparisons they made with 

other approaches was limited to the results and figures that had already been published of the 

compared state-of-the-art models and methods. Also, there was no statistical comparison to 

determine the significance of any differences.   

In contrast to the studies which discuss the importance of feature reduction, and based on the 

observation of the high detection rates of the Maximum Entropy [203] and PHAD [45] detectors 

of portscan attacks, Ashfaq et al. [204] suggested using a high dimensional feature space to 

improve detection. They argued that limiting detectors to specific features could reduce their 

accuracy as a result of changing traffic patterns. However, this suggestion is limited to a specific 

family of attacks and generalising it requires careful testing, as extending the feature space 

could slow the detectors.  
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Ambroise and McLachlan [205] have pointed out the importance of undertaking the feature 

selection stage during the training phase when the Cross-Validation technique (discussed in 

Section 2.3.1) is applied. This is to avoid any bias in the selected features which would be 

mirrored in the accuracy of the predictions.  

2.2.3.2 Data (class) balancing 

The class imbalance problem corresponds to the phenomenon whereby classes in a training 

dataset are not equally represented [8, 206, 207]. This phenomenon is common in the domain 

of network ID, where normal traffic forms the larger majority class. Veeramachaneni et al. [98] 

estimated in an enterprise setup, which was based on the characteristics of the data ingested by 

their proposed platform, that attack cases form less than 0.1%. This irregularity can affect the 

learning capability of many ML and DM algorithms, resulting in predictive models that favour 

the majority class.    

A number of solutions are proposed in the literature to address this issue, however, the most 

common ones are: 

• Data sampling methods   

o Under-sampling techniques reduce the number of samples in the majority class 

until they match the size of the other class(es) [206]. The most common under-

sampling techniques are the Random Under-Sampling (RUS) [206] and Tomek 

Links (TL) [208]. However, many alternative under-sampling methods exist 

which employ various techniques, such as Clustering-Based [209, 210], 

Evolutionary Algorithms (EAs) [211] and Genetic Algorithm (GA) [212]. 

However, the under-sampling approach can lead to information loss, as part of 

the dataset will be wasted and not used. 
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o Over-sampling techniques work the opposite way; they increase the number of 

underrepresented (minority) class(es) to match the size of the majority 

class [206]. Randomly resampling minority instances and the Synthetic 

Minority Over-sampling Technique (SMOTE) [207] are the most common of 

these techniques. Since the introduction of the SMOTE algorithm, multiple 

variations of it have been proposed, such as Borderline-SMOTE [213] and safe-

level SMOTE [214]. Other techniques use different procedures in their over-

sampling methods, such as Mahalanobis distance-based [215] and density-based 

clusters (DBSCAN) [216]. He et al. [217] proposed an adaptive variation of 

SMOTE known as ADASYN, which generates more synthetic samples of 

minority instances which are more difficult to learn than the easier ones. 

However, over-sampling could slow the model learning task as the number of 

samples increase. Also, the SMOTE technique and its derivations could 

introduce noise into the data by generating non-representative samples, which 

may not contribute to the learning task.   

• Learning parameter control methods 

o Cost function based approaches are used to assign a larger cost (weight) to 

misclassified minority instances than those of the majority class. However, these 

methods have some limitations in addressing the imbalance problem in multi-

class cases, due to the exponential growth of the parameter tuning space which 

increases with the number of classes [8]. Also the selection of the right cost value 

is subject to an iterative process and in many cases requires subjective decisions 

from domain experts.   

o One-class anomaly learning methods are used to build a prediction model 

using one of the classes in the training phase [218-220]. These models will flag 
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any deviation from the learned class as an anomaly. Das et al. [8] highlighted 

the suitability of these methods for domains with very high imbalance ratios. 

However, as pointed out by Yu [221], to learn an accurate boundary for the 

required concept (class), these methods require a greater number of that 

concept’s samples [222]. Also, the adaptability of these methods to changes in 

data over time requires further investigation.   

Many other techniques were listed in the seminal review by Das et al. [8], such as Boundary 

Shifting methods, Active Learning and Kernel Perturbation techniques. The review also listed 

some hybrid approaches that combine different techniques, such as data sampling methods and 

controlling the parameters of the learning algorithms. Furthermore, the over-sampling and 

under-sampling techniques listed above, along with many others, can be found in various 

known software, such as a python package17 provided by Lemaître et al. [223] that encompasses 

all of these techniques. 

An excellent systematic study was conducted by Japkowicz and Stephen [224] to compare 

different methods used to address class imbalance (over-sampling, under-sampling and 

cost-modifying) on different ML algorithms (C5.0, Neural Networks and Support Vector 

Machines). They concluded that there are four main factors that affect class imbalance: the 

degree of class imbalance; the complexity of the concept represented by the data; the overall 

size of the training set; and the classifier involved. In the study of Japkowicz and Stephen noted 

that, sensitive classifiers showed an inverse relationship between the size of the training set and 

the level of class imbalance, whereas the degree of class imbalance behaved positively relative 

to the complexity of the concept. The study showed that of the three algorithms, the C5.0 

algorithm was the most sensitive to class imbalance, while SVM was the least sensitive. Finally, 

                                                 
17 https://github.com/scikit-learn-contrib/imbalanced-learn  
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they showed that over-sampling, which was more useful than under-sampling, improved 

sensitive classifiers, whereas it had the opposite effect on insensitive classifiers.   

2.3 Evaluation of Intrusion Detection Systems 

Various evaluation methods and measures have been proposed and used to assess the 

performance of prediction models. The following subsections present the main methods and 

measures that are commonly used to evaluate different IDS. 

2.3.1 Evaluation methods 

Evaluation methods describe the approaches used to carry out model learning and the testing 

tasks used to assess the performances of these models. Most of these approaches are related to 

the method used to split the data when such evaluations are undertaken.  

Fielding and Bell [225] discussed the different data partitioning strategies used in experiments 

and evaluations. These strategies are: 

• The Resubstitution method which uses the same dataset for both training and testing 

phases. According to the literature available, this method is not used (and should be 

prohibited) in many fields, such as Computer Science, because of its tendency to overfit and 

to report overly optimistic results. 

• The Prospective sampling method is used by obtaining a new sample data after the model 

generation phase is over. This method is not a commonly used evaluation practice in 

anomaly-based detection.  

• The Bootstrapping method is used to sample instances with replacement to create bootstrap 

samples. Each one of these samples is then used to build a predictive model, which will be 

tested on the remaining instances that were not selected. As recommended by Verbyla and 

Litvaitis [226], this process should be repeated many times, i.e. 200 or 1000 times, and the 

mean of all performances should be reported. Although this technique is a built-in function 
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of some algorithms, such as Random Forest and C5.0, it is not a very common method of 

assessing the performance of ML and DM models and techniques. This could be attributed 

to the large data sizes used in the ID domain, where model development and assessment 

incurs high computational costs. 

• The Randomization method is used to sample instances without replacement to obtain 

random samples, so that the evaluation process and subsequent reporting follows the same 

approach as the bootstrapping method. Similar to bootstrapping, this method is not 

commonly used, as a variation of it is performed by undertaking multiple runs of the k-folds 

method, as discussed next. 

• The K-fold partitioning method is the most common evaluation exercise in the IDS 

domain. It is performed by partitioning the data into K (usually K>2) splits, so that K-1 sets 

can be used to build a prediction model and only one part is used to test the model [227]. 

This process is repeated for every partition in what is known as the K-folds Cross-Validation 

process so that the mean of all the K performances is reported. This method has two special 

cases:  

o The Leave-One-Out (L-O-O) method (also known as jackknife sampling) sets K to 

the number of samples (N). In this method, a model is trained on N-1 samples and 

tested on only one instance. It is common in this method to repeat the model 

generation and testing N times, which makes the process very slow when the number 

of samples is very large. As a result this method is not commonly used in 

anomaly-based IDS research. 

o The Hold-out (external) method sets K=2 so that the dataset will be split into two 

parts, with one part used for training and the other for testing. However, this 

partitioning does not have to be a fifty-fifty split as various strategies can be applied. 
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As the K-folds Cross-Validation process is commonly used to split data into K partitions at 

random, this process could result in partitions that are statistically similar to each other. Hence, 

possible variability in the patterns of network traffic over time will become distorted. This could 

explain the high performance of the different learning algorithms discussed in the literature. 

Further investigation into the effects of this method on concept drift is required and a 

comparison to other sampling methods, such as Prospective Sampling [225, 228], is needed.   

In general, evaluating the effectiveness of an IDS depends on the availability of information 

about new or known intrusions. The difficulty in this is that it relies on human expertise to 

assess any potential security vulnerability and to provide the best response to such intrusions. 

As Corona et al. [26] highlighted, there are no standard methods to govern these types of 

evaluations.  

Furthermore, these techniques are usually applied in a batch learning process, as real time IDS 

handle data as they flow. 

2.3.2 Evaluation measures 

This section provides an overview of the main evaluation measures and metrics widely used to 

assess classification models and algorithms.  

2.3.2.1 Confusion matrix 

Many performance assessments of classification models in a supervised learning task are 

computed using basic counts of a table known as a confusion (error) matrix [229]. Without 

restriction to the order, the columns in this matrix contain the number of instances of every 

actual class (label) in the classified data, while the rows contain the number of instances of 

every class as predicted by the model. Table 2.1 (a) and (b) show the structures of these 

matrices for binary and multi classification problems respectively, where the binary matrix is a 

special case of the multi-class table. Table 2.1-(a) presents four basic measures for binary 

classification: 
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• True Positive (TP): represents the number of positive (class 1) instances that were correctly 

predicted by the model to be positive (class 1). 

• True Negative (TN): represents the number of negative (class 0) instances that were 

correctly predicted by the model to be negative (class 0). 

• False Positive (FP): represents the number of negative (class 0) instances that were 

misclassified by the model to be positive (class 1). 

• False Negative (FN): represents the number of positive (class 1) instances that were 

misclassified by the model to be negative (class 0). 

Actual 

Prediction 
+ve -ve 

+ve TP FP 

-ve FN TN 
 

Actual 

Prediction 
c1 c2 ⋯ cn 

c1 c1,1 c1,2 ⋯ c1,n 

c2 c2,1 c2,2 ⋯ c2,n 

⋮ ⋮ ⋮ ⋱ ⋮ 

cn cn,1 cn,2 ⋯ cn,n 
 

(a) (b) 
Table 2.1: Confusion Matrices. (a) Confusion matrix for binary classification which is a special case of multiple classes. (b) Confusion matrix 

for multiple classes. 

These measures are then used to compute many other complex measures, which can provide a 

better assessment of the performances of the prediction models, such as, Accuracy, Geometric 

Mean of Accuracy, F1 score (known as the Harmonic mean of Precision and Sensitivity) and 

Matthews Correlation Coefficient (MCC), etc [229].  

To illustrate this concept, the following example (Table 2.2) presents three confusion matrices 

for dummy data that contain 100 instances, ten of which are negative (class 0) with the 

remaining 90 being positive (class 1). The term cutoff is explained later in Section 2.3.3. 

Actual 

Prediction 
+ve -ve 

+ve 90 10 

-ve 0 0 
 

Actual 

Prediction 
+ve -ve 

+ve 47 6 

-ve 43 4 
 

Actual 

Prediction 
+ve -ve 

+ve 0 0 

-ve 90 10 
 

(a) (b) (c) 
Table 2.2: Confusion matrices of dummy data with 100 instances (negative = 10 instances and positive = 90 instances) at different cutoff 

(threshold) values. (a) Cutoff (threshold) is 0. (b) Cutoff (threshold) is 0.5. (c) Cutoff (threshold) is 1. 



Chapter 2: Literature Review and State of the Art 

 

40 

 

The following subsection presents some of the measures that can be derived from these 

confusion matrices. 

2.3.2.2 Accuracy 

In the literature, Accuracy is the most popular measure to assess model performance and to 

compare different models [229]. It basically measures the proportion of instances that are 

correctly classified (TP and TN) to the total number of instances in the dataset. Eq.(2.1) is used 

to compute accuracy for binary models and Eq.(2.2) is the general formula for a multiclass 

model. The accuracies of the example data presented in Table 2.2 of every matrix (a, b and c) 

are 90%, 51% and 10% respectively. This measure forms a very poor measurement when an 

imbalanced dataset is evaluated, as illustrated in the above example. Although the first table 

has an accuracy rate of 90% it failed to detect any of the negative cases as all instances were 

predicted to be positive. This example illustrates the limitation of this measure in assessing 

model performance if the data used are highly skewed. More appropriate measures are available 

and are discussed next. 

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 Eq.(2.1) 

 

𝑎𝑐𝑐 =
∑ 𝑐𝑖,𝑖

𝑛
𝑖=1

∑ ∑ 𝑐𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 Eq.(2.2) 

2.3.2.3 Other common measures 

The following evaluation measures are some of the most commonly used to assess the 

performance of binary classification results. Unlike the accuracy measure, these measures 

cannot be extended to multi-class problems. They are derived from the values in the binary 

confusion matrix, as in Table 2.1-(a). 
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Sensitivity represents the proportion of positive (class 1) instances that are correctly 

classified [229]. This measure is also known as the True Positive Rate (TPR), the detection 

rate or recall (Eq.(2.3)).   

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Eq.(2.3) 

Specificity represents the proportion of negative (class 0) instances that are correctly 

classified [229]. It is also called the True Negative Rate (TNR) (Eq.(2.4)). 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Eq.(2.4) 

Precision is a common measure in information retrieval and in the document classification 

domain. It represents the proportion of instances predicted as positive (class 1) that are actually 

positive [229]. This measure is also known as the Positive Predictive Value (PPV) (Eq.(2.5)).   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq.(2.5) 

The F-measure is another common measure and is calculated based on the combination of 

precision and recall measures [229]. However, Hand and Christen [230] recently revealed a 

major conceptual weakness in this measure and urged researchers to find an alternative. This 

measure is also known as the F1 score or the Harmonic mean of Precision and Sensitivity 

(Eq.(2.6)).   

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 Eq.(2.6) 

2.3.2.4 Geometric Mean of Accuracy 

The Geometric Mean (G-Mean) of Accuracy [231] metric aims to address the limitations of 

the normal accuracy measure when dealing with imbalanced datasets. It measures the geometric 
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mean of the accuracy of each class. This measure computes the classification accuracies of 

every class separately and then computes their geometric mean. For binary classification, 

Eq.(2.7) is used to calculate the G-Mean accuracy. Eq.(2.8) shows the general formula used to 

compute this measure for multi-class problems, where ca,b is the number of class b instances 

that were predicted as a and n is the total number of classes. Calculating the G-Mean Accuracy 

of the examples in Table 2.2 (a, b and c) produces the following results: 0%, 46% and 0% 

respectively. Both tables (a) and (c) that were classifying all instances into one class have 

attained a 0% G-Mean Accuracy as one of the other classes had zero accuracy. It is also worth 

noting that even table (b) scored less than the accuracy measure. If a model predicts all classes 

perfectly, then the G-Mean of Accuracy will be one.   

𝑔𝐴𝑐𝑐 = √𝐴+𝑣𝑒 × 𝐴−𝑣𝑒 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Eq.(2.7) 

 

𝑔𝐴𝑐𝑐 = √∏
𝑐𝑖,𝑖

∑ 𝑐𝑗,𝑖
𝑛
𝑗=1

𝑛

𝑖=1

𝑛

 Eq.(2.8) 

Although this measure was first proposed by Kubat and Matwin [231] few studies have used it 

to assess and compare the performance of different models. However, a number of recent 

studies in network ID domain have started to use it [232-234].  

2.3.3 Threshold related measures  

Almost all ML algorithms used for classification problems can return predictions in two forms; 

by predicated class (label) or by probability (score). When instructed to return the class label, 

the label of the class with the higher probability will be returned. Whereas if the class 

probability is returned, the user can vary the discriminating cutoff (threshold) at which class 
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labels are assigned. For example, in a binary classification problem {attack, normal} a model 

might return a probabilities vector for a tested instance as (attack:0.35, normal:0.65). If the 

cutoff value is set to default i.e attack ≥ 0.5, then this instance will be classified as normal. 

However if this threshold is set lower, such as attack ≥ 0.32, then it will be labelled as an attack. 

The cutoff (threshold) value is usually varied to maximise some measurement such as the 

prediction accuracy, or to minimise another, such as false rates. Varying the cutoff (threshold) 

value will generate different values in the confusion matrix as instances change classes 

accordingly, and the measurement result can be calculated at every cutoff point. This varying 

process is usually undertaken at the training phase to set models parameters, i.e. the cutoff 

(threshold) value, and to assess and compare model performances using different evaluation 

measures, such as the Receiver Operating Characteristic (ROC) and the Area Under the ROC 

Curve (AUC). Beguería [235] suggested the use of these two measures to address the dramatic 

effect of the class imbalance problem on many common validation statistics such as the 

confusion matrix and accuracy. 

This is illustrated by the example presented in Table 2.2 which shows the classification results 

of a dummy model with different cutoff (threshold) values: 0, 0.5 and 1. Figure 2.1 presents 

these tables as graphs so that the prediction (on the y-axis) is the probability that an instance is 

positive (class 1), while the actual (on the x-axis) is the true label of that instance. Cutoff 

(threshold) values zero and one are the extreme cases at which instances will be classified into 

one class or the other.   
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(a) (b) (c) 

Figure 2.1: Plot of the confusion matrices for dummy data with 100 instances (negative (class 0) = 10 instances and positive (class 1) = 90 

instances) at different cutoff (threshold) values. (a) Cutoff (threshold) is 0. (b) Cutoff (threshold) is 0.5. (c) Cutoff (threshold) is 1. 

 

2.3.3.1 Receiver Operating Characteristic (ROC) Curve 

The Receiver Operating Characteristic (ROC) Curve [236] is a graphical representation of 

a model’s performance at different cutoffs (thresholds). It plots the False Positive Rate (FPR) 

(x-axis) against the True Positive Rate (TPR) (y-axis) for every discriminating cutoff 

(threshold) value used to assign instances to their class (see Figure 2.2). A model with good 

prediction ability will have a ROC curve that goes towards the upper left-hand corner, so that 

the closer this curve gets to the top left-hand corner, i.e point (0.0, 1.0), the better its 

performance [237]. The closer the curve is to the diagonal dotted line, i.e line (x=y), the worse 

the model will be, as it will be no better than a random guess. 

Figure 2.2 provides an example of two different ROC curves for two different models. The 

ROC curve of a dataset with 100 instances (D100) shows a very weak model as that curve is very 

close to the dotted line. These data points are the same as those presented in Table 2.2 and 

Figure 2.1. The ROC curve for the data with 1,000 instance (D1000) shows a much stronger 

performance as this curve is further from the dotted line. 
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Figure 2.2: ROC curves for two dummy datasets with a different number of instances; D100 has 100 instances while D1000 has 1000 instances. 

For each dataset 10% of its instances are negative (class 0) while the remaining 90% are positive (class 1). 

 

2.3.3.2 Area Under the Curve (AUC) 

The Area Under the Curve (AUC) is used to measure a binary model’s performance based on 

calculating the area under the ROC curve [229]. It provides a summary of the ROC curve and 

measures how well a model can distinguish between two groups [(positive, negative) or (attack, 

normal)] [238, 239]. However, this summary can lead to a loss of information about the trade-

off between the True Positive Rate (TPR) and the False Positive Rate (FPR). In a perfect 

classification the AUC will reach one, whereas a poor classifier will have an AUC value of 

around 0.5, as the TPR increases linearly with the FPR [240]. Another key feature of this 

measure is its independence of the proportion of classes in the data, which makes it immune to 

the imbalanced data problem [240]. Therefore, AUC is commonly used to compare the 

performance of multiple models, as it can assess the discriminative power of each prediction 

model [241]. However, many researchers have criticised its use for model comparison as it is 

noisy when used as a classification measure [242-244]. Instead, they suggest interpreting AUC 

as a way to assess the probability that a model will rank a randomly chosen positive instance 

higher than a negative one. As illustrated by Figure 2.2, the dummy model developed using 
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dataset D100 has an AUC of 0.411, which is very close to 0.5, while the one trained on data D1000 

attained an AUC of 0.85. 

2.4 Related Work and Research Gaps 

At an early stage, researchers realised that the performance of IDS were tightly related to the 

behavioural patterns of users as well as the characteristics of various underlying services and 

protocols. Therefore, anomaly-based methods were introduced to address possible deviations 

from normal behaviours in order to flag intrusions. In addition, many researchers understood 

that for various reasons these anomaly-based methods suffered from high false alarms. The key 

reason for this was their inability to adapt themselves to changes in data patterns over time. As 

a result, many proposals have been put forward to address this issue, including methods that 

adapt to such changes. Hence, many studies have suggested various approaches, such as model 

updating and rule tuning techniques. Many others have looked into the benefits of using 

adaptive or tuneable thresholds for the IDS measures to flag anomalies rather than relying on 

fixed thresholds. The following subsection presents the key work in this area. 

2.4.1 Threshold adaptation 

Lucchetti [245] stressed the importance of the continual tuning of system rules in the context 

of market practices, in order to be able to identify potential new risks. This scenario shares an 

important feature with network traffic, in that patterns are continually changing over time, 

which requires models to be adaptable [31]. Hence, Chen et al. [246] suggested undertaking 

threshold tuning for the predictions of classification methods that generate a quantitative output 

(score), so that the threshold can be set at different values to assign class labels. As a result, 

Catania and Garino [31] suggested performing tuning on statistical-based models whenever a 

change in network traffic patterns is detected by making adjustments to the normal model.  

In an attempt to understand the importance of the right threshold selection on the performance 

of prediction models, Freeman and Moisen [247] investigated 11 optimisation criteria on 
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threshold selection by assessing the prevalence and kappa18 for the data of 13 tree species. They 

concluded that the species that were the most sensitive to threshold selection either have a low 

prevalence or a poor model quality. These findings can be projected onto the situation in 

network traffic, where, usually, anomalous traffic forms a minority compared to normal traffic 

and many anomaly detection methods have been developed based on this core assumption. 

Furthermore, due to the evolving nature of traffic, the quality of detection models tends to 

deteriorate over time. Therefore, threshold adaptation could help to improve the quality of these 

models before they get phased out.   

To address model tuning, the conventional (batch-learning) modelling process usually has two 

main phases, training and testing. At the modelling stage, training (learning) data are used to 

build a prediction model, which is then used to predict the test (evaluation) data. However, 

Buczak and Guven [27] stressed the importance of having three phases, and introduced an 

intermediate (validation) stage. In this three phase setup, Buczak and Guven [27] suggested that 

the training data are used to build multiple models using different ML/DM algorithms with 

different parameters. The validation data could then be used to select the best model(s) and to 

estimate their errors before they are used to predict or classify the testing data. Buczak and 

Guven [27] recommended that the selected model should not be fine-tuned (model parameter 

tuning) based on how it performed on the test data, to avoid reporting overly optimistic results 

i.e. reporting accuracy rates that might not be true for another test dataset. Although the 

recommendation not to modify model parameters based on the test data is a reasonable design 

practice, many of the recommended adaptive real-time systems (see Section 2.4.1.2) perform 

tuning on detection rules. Therefore, threshold tuning based on the prediction scores of a model 

could provide a tool to tune the system over time. However, the single fine-tuning 

recommendation may not be appropriate as it appears to be based on the assumption that test 

                                                 
18 The Kappa measure is used to assess the inter-rater reliability (agreement) between two raters (classifiers) [386]. 
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datasets, including future unseen data, have similar statistical properties; which is not a valid 

assumption given the variable nature of network traffic.   

Similarly, in an attempt to find the right discriminating threshold for the detection model, 

Beguería [235] suggested the use of validation data. The selected threshold is then used to 

classify the records in the evaluation/test data based on their scores returned by the prediction 

model. However, this suggestion does not appear to take into account the variability of 

behaviour in input (traffic) data over time, much like the single fine-tuning recommendation by 

Buczak and Guven [27].  

Most of the model tuning and adaptability to pattern changes in network traffic in the field of 

ID can be categorised into three main themes which are outlined below. 

2.4.1.1 Batch learning 

Yang [248] proposed score-based local optimisation (SCut) as a strategy to select a threshold 

based on optimising a performance measure, such as accuracy. In other words, SCut is the 

threshold at which a performance measure would be maximised or minimised. To the best of 

the obtained knowledge, no studies have explored model adaptation for changes in network 

traffic by tuning the threshold of the predictions of a model within a batch-learning setup.   

Lakhina et al. [249] used the Principal Component Analysis to separate a high-dimensional 

space of network traffic measurements into disjoint subspaces. Each subspace corresponded to 

normal or anomalous network settings. They used a fixed threshold (3σ deviation from the 

mean) to separate the principal axes into normal and anomalous sets and found that the first 

four principal components represented the normal subspace for the cases they analysed. This 

study did not address the variability of traffic over time, and so requires further analysis of the 

performance when traffic conditions vary.    
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In an attempt to investigate the effect of threshold tuning on multi-class predictions, Fan and 

Lin [250] concluded the effectiveness of tuning approaches on the performance of classification 

techniques. They used the 5-folds Cross-Validation technique to evaluate these effects, despite 

the fact that, as discussed earlier, the Cross-Validation technique may not maintain any 

statistical differences between the training and the testing data (Section 2.3.1), leading to overly 

optimistic results. They analysed the effect of different optimisation metrics (macro-average 

F-measure, micro-average F-measure and exact match ratio) on the overall performance of the 

selected threshold. They then investigated this tuning approach using validation data without 

considering whether such tuning was required for every independent evaluation process or 

whether the selected threshold could be used for future evaluations performed by the prediction 

model. Similarly, Pillai et al. [251] investigated the issue of threshold selection for multi-label 

classification problems by optimising the F-measure and Precision-Recall curve. They used 

5-folds Cross-Validation on five datasets to validate their results. They compared the results 

obtained on the evaluation/testing data by using the optimal threshold that had been selected on 

the basis of the validation data. However, they did not extend their analysis to compare their 

results with those where the threshold had been tuned for the testing data. They concluded that 

selecting an optimal threshold based on maximising the micro-F measure can lead to overfitting.  

Koyejo et al. [252] investigated the optimisation of a binary classifier using different metrics 

where they proposed an approach to identify the optimal threshold based on the conditional 

probability of the positive class. However, in this approach the search for the optimal threshold 

was performed using training and validation data. Yan et al. [253] pointed out that this search 

requires prior knowledge of the optimal classifier, which is usually unknown in reality. As a 

result, Yan et al. [253] identified two key properties (Karmic property and the 

Threshold-Quasi-Concavity property), for which they have shown, theoretically, that the Bayes 

optimal classifier is a threshold function of the conditional probability of a positive class. On 
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this basis, they proposed a novel threshold estimator. As with previous approaches, these works 

do not seem to assume a change in data over time (concept drift), as the threshold is only set 

once using the validation set. In general, nearly all approaches in the batch-learning methods, 

adopt the recommendations of using a single validation dataset to select the right threshold as 

suggested by Beguería [235] and, Buczak and Guven [27], where this adaptation is only applied 

once. 

2.4.1.2 Real-time learning 

In an early study, Eskin et al. [254] proposed an adaptive Host-based ID model generation. 

Their framework, which is similar to that of Honig et al. [255], recommends the aggregation of 

all data, such as system calls collected by sensors from every monitored host, into a single data 

warehouse. This data can then be used to train detection models, which can in turn be distributed 

to hosts to detect intrusions. The adaptability of this framework is in the deployment of models 

on the hosts. However, this framework uses a fixed threshold to flag anomalies without 

addressing the variability between the hosts. Also it shows a scalability limitation, as with the 

amounts of data generated by the monitored hosts, storing such data will become a serious issue 

over time.   

Hossain and Bridges [256] proposed a framework for adaptive IDS using fuzzy Data Mining. 

This framework aims to minimise the human intervention in the adjustments of the profiles 

used to describe normal traffic by the IDS. The tuning process is designed to operate on a real-

time IDS. Hossain et al. [257] evaluated this framework by using a sliding window to update 

the profile, so that the updating process used the data that fell within that time window. Some 

heuristics were used to decide when the updating process should be triggered. For their analysis 

they used a 10 week capture of real network traffic from the Computer Science Department at 

Mississippi State University. Within this period some simulated portscan attacks were 

performed. There are no details in the study about the nature of the collected traffic. Also, it 
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seems that they considered all traffic, other than those postscans, as benign. These experiments 

were designed to detect known attacks, however the system produced results that the authors 

could not explain, which could be attributed to the lack of controls over the traffic that was 

analysed.  

Jung et al. [258] developed a Threshold Random Walk (TRW) algorithm to detect random 

portscan attacks in a real-time setup, based on the observations of the state (successful or 

unsuccessful) of connection attempts from a remote host to newly-visited local addresses. They 

modelled accesses to the monitored systems using a random walk on one of two possible sets 

of probabilities, which were specific to their detection principle. Each of these two probabilities 

was used for one of the boundary thresholds (i.e. the lower and upper thresholds). However, 

this model assumed that all distinct connection attempts had the same likelihood of success, 

while no correlation between these attempts was assumed. Further, as Ali et al. [259] pointed 

out, threshold adaptation was only performed on the upper boundary of the likelihood ratio 

which was based on previously observed instances, while the lower boundary was fixed.  

Idé and Kashima [260] investigated the development of an IDS to detect anomalies in multi-

tier systems, such as web-based systems. They modelled the system using a weighted graph, so 

that the service activities were subsequently used to extract a feature vector, which was 

computed using the principal eigenvector of the eigenclusters of the graph. They defined an 

anomaly measure by using a derived probability distribution i.e. an approximation of the von 

Mises-Fisher distribution, where at a critical probability boundary the threshold value was 

adaptively updated. As this IDS models service activities in the system, where the directions of 

these activities are assumed to be stable, services which are rarely used may not benefit from 

its detection capabilities. As a result, services run by careful adversaries, such as 

Command-and-Control (C&C) might not be flagged up.   
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Yu et al. [261] proposed an automatically tuning IDS (ATIDS) system, which used feedback 

from the security officer about encountered false predictions to automatically tune the threshold 

of the rule-sets of their rule-based prediction model in real-time. This system is dependent on 

the human resource available, which might impose a challenge when security officers are 

overwhelmed by alarms. Therefore, Yu et al. [262] proposed an extension that adjusts the 

number of alarms flagged to security operators based on their abilities. Although this extension 

minimised the burden on security officers, the overall performance of the system was limited 

by the time it took to provide feedback. That is, delayed feedbacks could hamper the 

performance due to the delayed adaptation. This system also failed to cope with drastic changes 

in system behaviour, as the tuning process is performed on the rules level of the detection 

model, where these rules set might not be representative of the new behaviour due to concept 

or feature drift (see Section 2.1.4).  

An outstanding study by Ali et al. [259] proposed a generic threshold tuning algorithm so that 

the detection threshold of any score-based Anomaly Detection Systems (ADS) could be 

adapted. In their approach, statistical and information theoretic analyses were undertaken on 

the anomaly scores produced by multiple network-based ADSs (PHAD [45], Maximum-

Entropy [203], Sequential Hypothesis Testing and PAYL [46]) and host-based ADSs 

(Anomalous Sequence Detector [263], a Machine Learning based Detector [264] and Sequence 

Alignment based Detectors [265, 266]). These analyses aimed at revealing consistent structures 

of time correlation during periods of normal activities. They used Markov chains to model the 

observed time correlation structure, and these Markov chains used a stochastic monitoring 

framework to tune thresholds for the detection of the ADS as per the real-time measurements. 

In an attempt to protect the system from sporadic changes and evasion attacks, and to enhance 

its resilience, some statistical techniques were used. However, this approach targeted anomalies 

that cause a detectable variability in traffic patterns due to their high volume, such as 
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UDPFlood, TCP SYN Flood and TCP SYN portscans attacks. This approach is designed for 

score-based real-time detectors (not batch) as they quantify the anomaly score based on a 

comparison between the learned profile and the run-time profile.  

In an attempt to keep up to date with the latest technological advancements, Chou and 

Wang [267] proposed an adaptive network IDS for Cloud environments. They claimed that 

their system had the capability to perform automatic labelling of raw network traffic (normal 

and anomalous). This claim was based on the fact that they had used a spectral clustering 

algorithm (unsupervised learning) to cluster the unlabelled network traffic so that the clusters 

could later be used as labels to construct a decision tree-based detection model. As the spectral 

algorithm clustered the incoming traffic, these clusters (labelled data) were used to improve the 

original detector and to adapt it to the network environment by building a new detector. 

Although the authors claimed that this system was developed for Cloud environments, they 

used DARPA 2000 and KDD 1999 datasets in their experiments, without any justification as to 

why such data had been selected for this scenario. They also proposed an unsound experimental 

design which overlooked any DDoS attacks in DARPA 2000, claiming that this type of attack 

would generate lots of connections, fearing that it could defy the core assumption of the rarity 

of attacks. This decision calls into question how their system would perform in a real life setup 

as such assumptions are not guaranteed in production environments. It also appears that they 

based their study on the assumption that the patterns of the attack traffic were different and as 

such, could be separated out from those of normal flows, as the decision tree model was 

developed on the clusters formed by the spectral clustering algorithm.    

Agosta et al. [268] introduced a distributed Anomaly Detection System (ADS) to detect worm 

threats. This system employed a threshold adaptation technique, to compare it with the 

performance of a fixed threshold. This study concluded that the adaptive threshold technique 
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was far superior. However, these techniques were specifically designed for this type of attack 

and the ability to generalise these results to other class of threats is debatable.   

Gu et al. [269] devised a framework to measure the effectiveness of IDS quantitatively. This 

method is based on quantifying the feature representation capability, classification information 

loss and overall Intrusion Detection capability of an IDS using a set of information-theoretic 

metrics. These metrics perform fine-grained evaluations of IDS and offer an assessment tool to 

compare multiple IDS to their specific components, not just based on their overall 

performances. Gu et al. discuss the importance of dynamic fine-tuning over static fine-tuning 

to address the issue of traffic variability over time. Thus, their framework introduced dynamic 

fine-tuning by dividing the time series into a number of intervals so that the tuning process is 

performed based on maximising the ID capability for each interval. However, Strasburg et al. 

[270] have raised concerns about the practical effectiveness of such a model in IDS 

development.  

Jyothsna and Rama Prasad [271] studied a meta-heuristic assessment model, which aimed to 

set a threshold for random normal behaviour in real-time, by estimating the degree of intrusion 

scope threshold from a given network transaction. At the same time the model aimed to identify 

any new intrusions in the network. Feature selection based on feature correlation methods were 

performed to reduce processing and time costs. However, this approach did not cater for the 

effect of concept drift on the selected features over time, and hence, on a model’s performance.  

2.4.1.3 Data stream learning 

In the counterpart techniques (data stream) to batch modelling methods, concept drift is a core 

feature that is considered in the modelling process. Therefore, in their seminal work 

Bifet et al. [272] proposed a new data stream framework which aimed to address concept drift 

by employing ensemble methods using various Bagging techniques. They later developed this 

framework into an open source software known as Massive Online Analysis (MOA) [143].   
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Masud et al. [273] proposed a classification method to address concept drift in data classes, that 

is, the emergence of unseen classes (labels). This is because, usually, new class labels require 

a longer time to be provided with new training data to rebuild the base detection models. 

Therefore, Masud et al. applied some clustering concepts to measure the distance between 

known classes and new data instances so that this technique could flag up these new instances 

as anomalies. However, Farid et al. [274] stated that such models would need to gather a large 

number of test instances to determine their similarities and differences in order to identify any 

novel classes.  

In an earlier study in the same line of research, Masud et al. [275] proposed another detection 

approach for novel classes that used an adaptive threshold and the Gini Coefficient for outlier 

detection. For every classification model, the adaptive threshold technique defined a slack space 

outside its decision margin. Hence test instances that lay beyond that slack space were 

considered outliers, otherwise they are considered of the same class. These outliers were further 

tested using the discrete Gini Coefficient to determine whether they were noise or a novel class. 

However, the proposed approach is unable to distinguish between the novel classes if multiple 

new classes have emerged, as well as it does not cater for other types of evolution, such as 

feature drift [276].    

In order to automatically determine the optimal parameters of an anomaly detector (AD) Cretu-

Ciocarlie et al. [277] enhanced the training phase by introducing a self-calibration stage. Their 

method consisted of applying ensemble methods to unsupervised learning techniques to build 

micro-models. A weighted voting scheme on labels returned by these micro-models was used 

to compute a final class decision. In this method, automatic adaptation of the voting threshold 

is performed, where this threshold measures the degree of strictness or relaxation of the system 

by defining the minimum number of votes needed to accept the packet being tested. However, 

this approach could result into an Anomaly Detector (AD) that might be subject to attack as an 
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adversary could train it. This approach seems to fail to differentiate between a real change in 

traffic patterns and an ongoing crafted attack aimed at skewing the majority votes of the micro-

models. 

Chen et al. [278] suggested the offline mining of an old data stream to build high-quality models 

for every recurrent concept. When concept drift is later detected in a data stream, it could then 

be evaluated to identify the type of concept so that the traffic could be passed to the most 

suitable pre-built model to classify the traffic in that stream. This technique claims to achieve 

high rates of accuracy because of the high-order models. However, it assumes that there is a 

finite number of concepts to be modelled. This assumption is challenged by the high volume 

and diversity of network traffic. In addition, as the number of concepts grow over time this 

could form a bottleneck to the scalability of the system.    

In a more recent work, Gomes et al. [279] proposed an Adaptive Random Forest (ARF) 

algorithm that was suitable for evolving data streams. This algorithm has the potential to 

address concept drift by adapting itself to any changes. The adaptation is performed by 

replacing any outdated trees in the forest with new trees that have been grown (trained) in the 

background.  

2.4.2 Research gaps 

As presented, the importance of adaptation to pattern variability has mainly been addressed in 

the context of real-time and data stream problems. Most of the adaptation and tuning approaches 

for real-time based systems target certain classes of attack which are formed of abrupt patterns, 

such as DoS attacks. As these attacks introduce high variability into traffic patterns, much 

research has attempted to detect them and fine tune the system accordingly. In most cases, these 

tuning approaches would aim for adapting the IDS detection parameters to increase or decrease 

thresholds of these parameters. However, Catania and Garino [31] pointed out that most of the 

adaptation approaches are aware of the high network variability and the proposed methods 
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provide the required adaptability features to adjust for the targeted anomalies. Similarly, in the 

data stream field, most of the proposed approaches suggest building new detection models to 

adapt to such changes [259].  

As for the batch-learning tasks, in an ideally designed experiment, adaptation is undertaken 

only once for the prediction model using validation data [27, 280]. Validation data is used to 

estimate class distributions in order to calculate the optimal threshold for the prediction model. 

However, in a real life setup these distributions are not fixed, which renders such approaches 

ineffective. Furthermore, using a fixed threshold for predictive models could result in an 

inaccurate reading of the model’s performance which could in turn lead to the selection of 

weaker models or an early phasing out of good models. However, no study exists to investigate 

continuous adaptation for every evaluation/test data based on the ground truth of a 

representative sampled subset to be used as a validation data to set the threshold accordingly. 

Therefore, further investigation is needed to study such an approach and to examine the effect 

of the size of sampled validation data on the overall performance of such an adaptation. 

Moreover, in batch-learning approaches, there is a reliance on the K-folds Cross-Validation 

technique to evaluate models and when attempting to address the pattern change problem, 

validation data is the alternative suggested approach. Such an approach is used to select the best 

threshold based on the optimisation of some measure, such as the accuracy, for the prediction 

model. However, no study has investigated how a fixed threshold will behave under different 

setups. Also, as model development is based on various decisions taken in relation to the 

training data (such as feature selection and data balancing), it is important to analyse how such 

decisions might affect the model performance when traffic changes over time and causes 

concept or feature drift. It is also important to address whether the threshold (tuning) adaptation 

of model predictions have any effect on eliminating or mitigating such limitations.    
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This chapter also listed commonly used datasets to evaluate various IDS; most of the recent 

studies still rely on the KDD cup 1999 and NSL-KDD datasets, due to the lack of suitable 

alternatives. Although, more up to date datasets are available, most of them are in a raw format 

making them unsuitable for ML and DM learning tasks. As such, there is a need to transform 

an up to date dataset following a clearly defined, validated and reproducible transformation 

process.  

2.5 Summary 

This chapter has presented an overview of the different types of ID and the different methods 

used in the ID domain. It has also listed the datasets most widely used to evaluate ID as well as 

the various evaluation methods and the most commonly used measures. This chapter has 

highlighted the importance of model adaptation/tuning to address the evolving nature of 

network traffic in order to maintain acceptable levels of detection performances. It has also shed 

light on the latest developments in this area of research and identified a number of gaps that 

need to be addressed and investigated further. 

The aim of this thesis is to investigate the effect of discriminating threshold adaptation on the 

accuracy (i.e. the Geometric Mean of Accuracy) of score-based anomaly ID models in batch-

learning setups. This adaptation will be analysed and evaluated under different scenarios using 

three different types of ML algorithms. As this threshold adaptation is expected to improve the 

accuracy of the ID models, it should provide an accurate reading of the optimal accuracy of the 

detections of these models. This will result in maintaining the ID models for a longer time as 

they will be phased out less frequently, and hence save valuable resources.   
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After previously discussing the current field of network ID and exploring the main problems in 

this area around open research, some of the key research gaps are now addressed in this thesis. 

This chapter introduces the research strategy and the empirical techniques employed in the 

experiments conducted to address some gaps.  

The hypothesis underlying this research is, “in a binary batch-learning setup, prediction 

accuracy of a score-based anomaly intrusion detection model can be improved by adapting 

the discriminating threshold specifically for the predictions of the evaluated network traffic.”. 

In order to address this hypothesis, three main experiments were conducted. Each experiment 

aimed to provide a deeper insight into the research problem by providing an empirical analysis 

for one aspect of the main research question. Three different ML algorithms (C5.0, Random 

Forest and Support Vector Machine) were evaluated and analysed using various datasets and 

model development setups. 

Although each relevant chapter provides a detailed description of the data and methods used in 

the experiments, this chapter provides an overview of those methods in addition to discussing 

some of the experiments’ common features.  
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The chapter is divided into four main sections: an overview of every experiment; an overview 

of each of the ML algorithms used in the experiments; a brief description of the experimental 

methods and analyses used; and finally, an outline of the main limitations, alongside a summary 

of the chapter. 

3.1 Overview of Experiments 

As discussed in Chapter 2, there are various ways to adapt prediction models to variability in 

network traffic, such as in real-time and data stream methods. However, batch-learning setups 

are the least researched in that domain, although they are important to detect novel attacks that 

cannot usually be detected by other methods. Some kinds of attacks are better detected in a 

batch mode to increase the detection rate rather than attempt faster detection in real-time with 

a higher failure rate. With this approach, there is no need to change or tune any of a model’s 

parameters as long as its predictions are in the form of a probability score. In this sense, 

threshold adaptation does not require any modification to the anomaly detection model. The 

detection model is thus treated as a black-box, as the adaptation is performed to its predictions 

and not to its detection parameters.  

This section provides an overview of each of the main experiments which are outlined in more 

detail in the coming chapters. Figure 3.1 illustrates the sequence, and the relationship, between 

the various chapters that detail the experiments. 

3.1.1 Experiment 1 

The first experiment examined the effect of threshold adaptation on the overall performance of 

a detection model. It set out to provide a Proof of Concept (PoC) by comparing three 

well-known ML algorithms to determine which was the most adaptable, that is tuneable. This 

experiment used the same datasets and the same ML algorithms in two different kinds of setup, 

each of which reported different results.  
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Figure 3.1: Schematic overview of the experiments undertaken 

 

The first setup employed a 10-folds Cross-Validation to train and test the prediction models. 

The second setup used a prospective sampling approach to build models by using a 10-folds 

Cross-Validation on a subset of the data so that the models generated could be used to evaluate 

data with similar and, separately, differing statistical properties (concepts). The performances 

of the models in the second setup were compared before and after adapting the discriminating 

threshold for the evaluation data.   

3.1.2 Experiment 2 

The usual model development could be governed by some decisions made to improve some 

performance measures, i.e. speed or detection rate. Such decisions, which might involve 

executing a feature selection and/or a data balancing stage, are usually based on the analysis 

that will be conducted on the training data. As such, when new evaluation data are used the 

performance of the models may not be satisfactory, leading to a phasing out of those models 
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and the generation of new ones. However, such models may still be able to maintain high 

performances if they are adapted to the new concept that is introduced in the new data.  

The discussion of this thesis considers threshold adaptation and investigated which of the three 

ML algorithms was the most adaptable to changes in the network patterns given that pre-

decisions (feature selection and data balance) are taken based on the training data. Those 

decisions provide different setups for the new data rather than those used to build the model.    

3.1.3 Experiment 3 

The aim of this experiment, in this thesis, is to demonstrate the importance of adapting the 

prediction threshold for every individual evaluation dataset to maximise a model’s 

performance. It investigates whether such threshold adaptation can be performed based on 

validation data that is sampled from the original population of the evaluation data. This third 

experiment therefore investigated the effect of the size of the data sample and the sampling 

technique in determining the optimal threshold for the evaluation (test) data. As such, the 

validation data will require the knowledge of the true labels of its samples; this experiment 

therefore investigated the effect of introducing different error levels into the true labels to assess 

the effectiveness of threshold tuning under such conditions.  

3.2 Overview of Classification/Machine Learning algorithms  

For all of the experiments conducted in this thesis, three common classification algorithms that 

are widely used for batch-learning were analysed, evaluated and compared, to address the 

anomaly network detection. These algorithms were C5.0, Random Forest and Support Vector 

Machine (SVM); this section provides an overview of each of these algorithms.  

3.2.1 Decision Trees (C5.0) 

C5.0 is a classification algorithm [281] based on decision trees. It is an improved version of the 

well-known C4.5 algorithm and addresses many of the latter’s limitations. In comparison to its 
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predecessor, the C5.0 algorithm has a lower error rate due to its use of ‘boosting’, a technique 

to aggregate the results of multiple weak models (trees) to form a strong one [282]. Also, as 

C5.0 generates smaller trees, it consumes less resources, such as memory, and performs faster 

execution. Unlike C4.5, the C5.0 algorithm also avoids overfitting noisy data [283]. 

Decision trees are used in classification problems to build a deterministic data structure that is 

formed of decision rules for a particular domain [284]. Such trees are composed of nodes and 

leaves. At the node level, a decision is made to split the data into two subsets based on a single 

feature (different splitting criteria are discussed next). Each subset is then used to build a 

subtree. In contrast, at the leaf level, the final classification decision is based on the path 

traversed from root to leaf; these decisions can be either, a ‘class’ (label), or ‘probabilities’ 

(score) of classes as illustrated in Figure 3.2.  

  

  
(a) (b) 

Figure 3.2: Example of a decision tree of dummy network traffic data with two classes {attack and normal}. (a) Returns the class label. (b) 

Returns the probability of classes. 

 

3.2.1.1 Tree splitting criteria 

The performance of different decision trees is tightly related to the splitting criteria used in 

building these trees. The main aim of these splitting processes is to maximise the purity of the 

classes in the subsets. In other words, purity measures how well the classes have been separated 

after the splitting rule has been applied. Many different metrics are used to measure purity, such 
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as the Gini impurity [285, 286] or information gain [287] for classification problems, and mean 

square error [285] or variance reduction [288] for continuous variables, etc. 

Gini impurity measures the probability of misclassifying a randomly selected instance from a 

dataset if the distribution of labels (in the subset) has been used to randomly classify this 

instance [285]. This measure reaches zero when all instances within a subset are of the same 

class (pure). It is computed using Eq.(3.1). 

𝐼𝐺(𝑝) = 1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

 
Eq.(3.1) 

where, 𝑝𝑖 is the proportion of instances labelled as class i, and J is the total number of classes.  

Information gain is used to select (recursively at each sub-tree) the best feature at which to 

apply splitting; the best feature being the one that provides the highest information gain [285]. 

This will ensure that relevant features are evaluated near the root of the tree (the top). This 

measure uses an entropy concept to compute purity, which is referred to as information. 

Entropy computes the degree of randomness of classes, or, in other words, it measures 

impurity, which is computed with Eq.(3.2).  

𝐻(𝑇) = 𝐼𝐸(𝑝1, 𝑝2, ⋯ , 𝑝𝐽) = − ∑ 𝑝𝑖 log2 𝑝𝑖 

𝐽

𝑖=1

 
Eq.(3.2) 

where, 𝐻(𝑇) is the entropy of a tree T, IE is the expected information constant, 𝑝𝑖 is the 

proportion of instances labelled as class i, and J is the total number of classes.  

Information gain computes the difference between the information of the dataset (at each node) 

before and after splitting a specific feature. In other words, it measures the level of expected 

reduction in uncertainty (impurity or entropy) in the prediction of the sub-tree if the splitting is 

performed on a given feature [287, 289]. Eq.(3.3) is used to compute this measure.  

𝐼𝐺(𝑇, 𝑥) = 𝐻(𝑇) − 𝐻(𝑇|𝑥) Eq.(3.3) 
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where 𝑇 is the tree, 𝑥 is the feature being evaluated, 𝐼𝐺(𝑇, 𝑥) is the information gain, 𝐻(𝑇) is 

the entropy of the parent tree and 𝐻(𝑇|𝑥) is the weighted sum of the entropy of the sub-trees.  

One of the main drawbacks of the purity measure is that it could result in building decision trees 

that over-fit the dataset as a result of selecting features with a large number of distinct values 

which have high mutual information. Such features could be the connection number that 

uniquely identifies connections in the dataset. This criterion is used in the ID3 algorithm [290], 

which is one of the predecessors of the C5.0. 

The Information gain ratio aims to address the limitations of the information gain metric. It 

reduces the bias towards features with a large number of distinct values by penalising the 

selection of a feature based on the number and size of its branches. However, this criterion 

might result in favouring features with very low information values [291]. This is the criterion 

used in both the C4.5 algorithm and its improved version, the C5.0 algorithm. 

3.2.1.2 Tree pruning 

As building decision trees usually over-fits the training data, tree pruning is performed. In 

C5.0, tree pruning is performed by removing parts of the tree that are predicted to have a high 

error rate [292]. In this pruning process every subtree is evaluated to determine whether it will 

be replaced with a leaf or a node. There are many factors that influence the pruning process 

which in turn affect the overall performance of the produced model (tree). Therefore, setting 

the values of these parameters should be undertaken with care at the tuning phase.  

3.2.2 Random Forest (RF) 

Random Forest (RF) is basically formed of multiple decision trees that are grown using a 

combination of ‘Bagging’ and the random selection of features (subspace). Bagging (Bootstrap 

aggregating) is a technique that aims to improve the performance (accuracy and stability) of 

ML algorithms and to reduce variances and the chances of overfitting [293, 294]. The basic 

principle behind this technique is to build multiple prediction models and use their aggregated 
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predictions to produce a final prediction. It works by applying uniform random sampling with 

a replacement (known as a ‘bootstrap’) from the training dataset to produce a new dataset, 

which will be used to build a prediction model. The default settings of RF produce a new dataset 

with the same number of instances as the original training dataset. This sampling is repeated 

nTree times producing as many bootstrap samples. Each of these bootstraps will then be used 

to build a prediction model, resulting in a total of nTree models (decision trees).  

After a bootstrap sample is produced, a decision tree is generated. In RF, only a random 

selection of features (subspace), with no replacement, are evaluated at every node to decide the 

best split, rather than using the full features set as in the C5.0 algorithm. Usually the number of 

these random features, mtry, is far less than the original number of features. 

Out-Of-Bag (OOB) data are the data instances left after a bootstrap sample has been generated. 

These OOB data are usually used in the internals of RF to estimate and monitor the errors of 

the decision tree and its strength, as well as the correlation between different trees. Feature 

importance is also measured using these internal estimates. Listing 3.1 shows a pseudocode of 

the Random Forest algorithm [295].  

Algorithm: Random Forest (RF) 
Input: X = {(𝑥1, 𝑦1), ⋯ , (𝑥𝑁 , 𝑦𝑁)},    nTree = 500,    𝑚𝑡𝑟𝑦 = ⌊√𝑝⌋   

Result: RF model  
  
1 for (1 ≤ 𝑖 ≤ nTree) do 
2    �́�𝑖       = Bootstrap sample from 𝑋 (Sample N random instances with replacement) 
3    �́�𝑖

𝑂𝑂𝐵 = 𝑋 − �́�𝑖 (Out-Of-Bag samples – instances not in the bootstrap sample) 
4    Build tree 𝑇𝑖 { 
5       - Use �́�𝑖 as training data to build the tree, 
6       - At every node use randomly selected (with no replacement) 𝒎𝒕𝒓𝒚 features  
7           to determine best splits, 
8    } 
9    Use �́�𝑖

𝑂𝑂𝐵 samples to compute internal estimates of tree 𝑇𝑖 (errors, strength,  
10       correlation, features importance) 
11 done 
  

Listing 3.1: Pseudocode of main stages of Random Forest algorithm 

 

The final prediction of the forest is performed by running each instance down all decision trees 

in the forest. The results of all these trees are then aggregated to form the final decision. For 
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numerical predictions, the average or the weighted average of the results of all trees is returned, 

whereas, for classification problems, the majority vote or the probability of the classes is 

returned. There are many different existing methods in computing these probabilities, such as 

the proportion of classes returned by the trees or the average of their probability estimates [296]. 

The latter is the method implemented in the “Ranger” package used in all experiments in this 

thesis [297].  

Acording to Witten et al. [298], as cited by Resende and Drummond [299], the RF algorithm 

has a low training time complexity and fast prediction time. It also has the capability to handle 

missing data efficiently which means it does not require the data to be pre-processed 

beforehand, nor does it require the data to be scaled or normalised. Also, due to the 

bootstrapping feature, the algorithm can handle imbalanced data and rare cases (because of 

resampling) quite efficiently [300]. It also provides two measures that rate the importance of 

every feature: the Mean Decrease of Accuracy (MDA); and the Mean Decrease Gini 

(MDG) [284].  

As RF can run more slowly as the number of trees increase, a careful tuning of its main 

parameters is needed to maintain the required performance. One of the main drawbacks of this 

algorithm is that its results are difficult to interpret as its model complexities are high. This is 

due to the number of trees and the randomisation in the sampling of training instances and 

features [301]. The key stages of the Random Forest algorithm are illustrated in Figure 3.3. 

3.2.3 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) [302] is one of the most popular classification algorithms 

used for supervised learning tasks in ML. Its development is based on the structural risk 

minimisation principle [301]. An excellent description of this algorithm can be found in 

Vapnik’s book [303]. In SVM, each data instance is represented geometrically as a vector (ℛp)  
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in p-dimensional space - 𝑥 = (x1, ⋯ , xp) ∈ 𝑋 ⊂ ℛ𝑝. SVM attempts to find a linear surface 

(hyperplane) - or a line in 2D space - that separates the instances into two classes y ∈ {-1, 1}, 

where this separating hyperplane has the largest distance between the edge points of each class. 

These edge points define the border lines for each class as per the following Eq.(3.4):   

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (−) 𝑙𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, | 𝑤. 𝑥 + 𝑏 = −1

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒   (+) 𝑙𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, | 𝑤. 𝑥 + 𝑏 = +1
 

Eq.(3.4) 

 

where, 𝑥 is an edge point in the training data that lies on the border line of a class, and 𝑏 is 

(offset) the distance from the origin to the decision boundary (𝑤. 𝑥 + 𝑏 = 0) [302]. The edge 

points also define the width of the margin between those border lines. 

These points (vectors) are used to define and outline (support) the separating hyperplane and 

are called the support vectors. The minimum required number of these points is (p+1). For 

example, in a two-dimensional space, at least 3 data points (vectors) will be the closer to this 

line and at an equal distance from it, i.e. points 𝑎1, 𝑎2 and 𝑎3 in Figure 3.4 (a). If any, or all, 

of these points (support vectors) are removed from the dataset, the separating hyperplane will 

take a different shape.  

  
(a) (b) 

Figure 3.4: Example of SVM on two dimensional dummy data, where a1, a2, a3: input data points (vectors), w: normal vector to the hyperplane 

(weight vector) and b: bias. (a) Perfectly separable dataset. (b) Dataset separation with soft margin. 
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As there could be many separating hyperplanes that might separate positive cases from negative 

cases, the SVM algorithm searches for a decision boundary with the maximum margin. The 

width of this margin is the sum of the distances from that decision boundary to the parallel 

hyperplanes that contain the closest positive and negative training points (support 

vectors) [304]. 

The SVM classifier depends on computing w, which is a normal vector perpendicular to the 

separating hyperplane (decision boundary). This normal vector, precomputed as Eq.(3.5) 

presents: 

𝑤 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

 
Eq.(3.5) 

 

where, 𝜆𝑖 are Lagrange multipliers produced at the training phase using data with N training 

samples. The normal vector is also known as the weights vector [305] which can loosely be 

thought of as similar to the 𝛽 coefficients in any regression problems that contain the 

standardised estimates of variances of dependent and independent variables. Omitting the 

complex details of calculation and formulas derivation, SVM classification is performed by 

evaluating which side of the hyperplane a test instance (vector) will fall into, as Eq.(3.6) shows:   

𝑆𝑉𝑀(�̂�) = {
−1, 𝑤. �̂� + 𝑏 < 0
+1, 𝑤. �̂� + 𝑏 ≥ 0

 
Eq.(3.6) 

 

where, �̂� is a test instance, and 𝑏 is (offset) the distance from the origin to the decision boundary 

(𝑤. 𝑥 + 𝑏 = 0) [302] that is precomputed at the training phase. 

The classification is usually carried out by checking the sign of the results returned by the above 

formula for every instance in the testing data. Where the result is greater than 0 (a positive sign) 

it will be classified as class 1, but where it is less than 0 (a negative sign) it will be classified as 

class -1.  
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To address complex datasets where a perfect separating hyperplane does not exist, soft margins 

are used - see Figure 3.4 (b). For a soft margin, some cost value (C) is passed to the SVM 

function to allow some violation of the boundary by permitting some levels of mixing between 

classes. Having a large cost value (C) will increase the margin size which will in turn increase 

the mixing zone. In this case, the support vectors will not be the ones that are nearest the 

separating hyperplane, rather they will be on the margin or on the wrong side of the boundary. 

The tuning parameter (C) has an effect on the variance; small cost values with high variances 

tend to lead to overfitting, whereas large cost values will reduce variance but show a tendency 

towards underfitting [306].  

One of the main advantages of SVM is that it does not suffer from the “Curse of 

Dimensionality” as many other ML algorithms do. The “Curse of Dimensionality” refers to the 

case where the number of observations are far less than the number of features in the dataset. 

Many ML algorithms tend to suffer from overfitting in this case, which can usually be resolved 

by a feature reduction process. The ability of SVM to avoid overfitting is linked to its ability to 

select the right regularisation parameter (or cost value (C)), and the right kernel, due to its 

carefully tuned parameters for non-linear problems [307]. Also, as SVM errors depend on 

adjusting the margin which separates the data points in the fitted model rather than the number 

of features, feature reduction is not required to avoid overfitting as it is in many other ML 

algorithms.   

Some problems will not be linearly separable where SVM cannot produce a good model for 

such data. These data will therefore require some transformation from input (data) space into 

higher dimensional (feature) space. The data can be made linearly separable using what is 

known as kernel methods or functions which can perform such a transformation (Figure 3.5).  

The resultant separating hyperplane can be expressed using the inner products of the 

vectors [308]. Some known kernels, like polynomial [309] and Radial Basis Function 
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(RBF) [310] kernels, are used for such a transformation. Using kernels will incur optimisation 

costs. In the linear version of SVM, the optimisation process is focused on the tuning parameter 

(C), but when a kernel is used, all its tuning parameters need to be taken into account [310].  

 
Figure 3.5: Data transformation from 2D in input space to 3D in the feature space using a kernel function. The figure was reproduced with 

some modification from Statnikov et. al [305]  

 

Some SVM implementations can return the probability of the class. Different implementations 

will use different techniques to compute such probabilities. For example, Platt [311] proposed 

a mapping technique to convert the SVM classification into probabilities by using logistic 

regression. However, this technique has been criticised for not being a true probability and 

Gaussian processes have been suggested as an alternative [312]. The Platt approach was 

adopted, with some improvements in the SVM library [313] used for the experiments in this 

thesis.  

SVM processing speed is affected by the kernel used, as some kernels will perform more 

operations in the transformation phase, which will slow the SVM’s speed. For example, the use 

of a Radial Basis Function (RBF) kernel in a classification problem will run very slowly, as this 

kernel calculates the distances to all support vectors rather than using a hyperplane 

equation [314]. 
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SVM’s biggest limitation, as noted by Burges [315], is selecting the right kernel. He also points 

to the size and speed limitations of both training and testing phases. However, a considerable 

advancement in this area has been achieved as many researchers, such as Lin [316], have 

developed a number of fast SVM implementations to address this issue. Unlike Random Forest, 

SVM requires the pre-processing of data to handle cases, such as missing data, and the 

transformation of categorical data into a suitable numerical format (as SVM only handles 

numerical data). Transforming (standardizing, normalizing or scaling) the data will have an 

effect on the results of SVM, and therefore data transformation before training and testing is 

always recommended.  

3.3 Methods Used for Analysis 

This section presents the core experimental design employed in all of the experiments 

undertaken in this thesis. It also sets out the decisions relating to data selection, the preparation 

requirements, and the parameter settings of the ML algorithms. 

3.3.1 Research design 

The study performed in this thesis employed a factorial research design and experimental 

evaluation to assess the performance (i.e. the Geometric Mean of Accuracy) of the models of 

the three ML algorithms under various setups. The choice of design was driven by the desire to 

investigate every possible combination, at every level, of all of the factors, on the overall 

performance of the developed models. In addition, the design was chosen so as to study the 

relationship between various factors to identify which ML algorithm was the most adaptable to 

a change in pattern (concept) in the network traffic over time. Table 3.1 shows the different 

factors and their levels for every experiment undertaken in this thesis.  

3.3.2 Selection of datasets 

A number of datasets were used over the course of this research, including synthetic data and 

simulated domain specific (network flow) data.  
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Experiments Factors Levels 

Exp.1 ML Algorithm 3 [C5.0, RF, SVM] 

Thresholds 2 [fixed, adaptive] 

Exp.2 ML Algorithm 3 [C5.0, RF, SVM] 

Data Balance 2 [balanced, imbalanced] 

Feature sets 5 [Full, MDA, MDG, MDABal., MDGBal.] 

Thresholds 2 [fixed, adaptive] 

Exp.3 ML Algorithm 3 [C5.0, RF, SVM] 

Data Balance 2 [balanced, imbalanced] 

Feature sets 5 [Full, MDA, MDG, MDABal., MDGBal.] 

Sample size 
11 

[10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 

0.005%, 0.001%, 0.0005%, 0.0001%] 

Bins (sampling strategy) 5 [B1, B10, B20, B50, B100] 

Errors 4 [0%, 1%, 5%, 10%,] 
Table 3.1: Factors and levels of every experiment. 

 

3.3.2.1 Existing Datasets 

As the first experiment aimed to investigate the potential of prediction threshold adaptation in 

addressing the issue of concept drift between training and evaluation datasets, synthetic and 

domain specific (network flow) datasets were used. The synthetic datasets, SEA [317] and 

AGR [318], were chosen as they provided the control required over concept drift (between data 

files) to analyse the effect of threshold adaptation on model predictions when the evaluation 

data were either of the same or of a different concept to the training data used to build the 

prediction model. This analysis was extended to the domain specific dataset (gureKDD [160-

162]) to investigate the effectiveness of the adaptation approach in a near to real life scenario. 

The gureKDD was selected over the KDD Cup 1999 and NSL-KDD datasets for two main 

reasons: firstly, the gureKDD dataset maintains the chronological order of every connection, 

which makes it possible to split connections based on their time; secondly, the KDD Cup 1999 

dataset has a large number of limitations (listed in Al Tobi and Duncan [1]) including 

miscalculated values, which raised doubts over its suitability.  

As the decision to use these synthetic datasets was based on the need to generate different levels 

of concept differences, the data files generated from each of these datasets had different 

combinations of similar and differing concepts. Similarly, gureKDD was divided into multiple 
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files using a time window of one week which resulted in different network patterns (concepts) 

in the traffic for each week. A detailed discussion on data generation, preparation and 

descriptions is provided in Chapter 4. 

3.3.2.2 Newly Generated Dataset 

As set out in Chapter 2, there are many limitations in the publicly available datasets. In 

addition, as the aim in this thesis is to extend the analysis to data that were more up to date and 

more representative of real network traffic, a new dataset was generated by transforming the 

flows of the ISCX2012 dataset [14] into a suitable format for ML algorithms.  

The resultant dataset, called STA2018, profiled every connection using 550 features and can be 

used as balanced or imbalanced (original) data. The decision to transform the ISCX2012 dataset 

was governed by its availability at the time. It was also the best option out of all of the available 

datasets. For instance, the ISCX2012 dataset contains modern traffic with full captures. In 

addition, unlike many other datasets, it provided a reasonable number of simulation days 

(seven). Although the DARPA datasets have more simulation days than ISCX2012, the traffic 

included in those datasets is very old, does not represent real network traffic and is very limited. 

For example, one day of the ISCX2012 captures equals the whole of DARPA in size.  

Data records from the resultant dataset (STA2018) were grouped by day so that every data file 

aggregated all of the connections within that simulation day. Overall, the transformation process 

had five main stages: basic-features extraction; validation and labelling; extending the 

basic-features; balancing; and cleaning-up. Full details of the transformation are discussed in 

Chapter 5. 

The large number of features space combined with having a balanced version of the data made 

it possible to analyse the effect of various decisions such as feature selection and data balancing, 

which are usually taken at the model development stage. Many of these decisions were based 

on the overall performance of the prediction models that were developed and tested using the 
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available training data. This was especially the case when new data with a different concept 

(and hence, with different important features) were evaluated with the models generated. 

Therefore, using this dataset made the analysis of the effect of predictions threshold adaptation 

on these models more systematic. 

3.3.3 Parameter setting for the ML algorithms 

As stated by Bhuyan et al. [12], classification-based methods usually produce better results than 

unsupervised learning, such as clustering methods, due to the use of data labels at the training 

stage. However, as shown by Laskov et al. [319], the accuracy of the supervised learning 

algorithms could deteriorate when their models are faced with novel attacks. Therefore, three 

well-known classification algorithms in the domain of ID were investigated, namely C5.0, 

Random Forest (RF) and Support Vector Machine (SVM) [see Section 3.1]. These algorithms 

were used to process the training data in order to learn a classification (prediction) model, which 

was then tested on the evaluation (test) data with different statistical properties (concept). The 

performance of these models were analysed before and after threshold adaptation to examine 

their ability to adapt to changing traffic patterns and to detect novel attacks. The following 

subsections provide further details about the packages used and the parameter settings for each 

of the algorithms used. 

3.3.3.1 C5.0 algorithm 

The “c50” package {version 0.1.0-24} [320] in the R environment [321] was used in this thesis. 

All experiments used the default settings of this algorithm, with the 10-trials option 

(trials = 10) set to return the results of the classification as a probability score 

(type = "prob") when the model was used to predict the evaluation (test) data.  

3.3.3.2 Random Forest 

The “ranger” package {version 0.8.0} [297, 322] in the R environment [321] was used over the 

course of this research. This package was selected because of its fast implementation of RF in 
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C++. All experiments used the default settings of 500 trees (nTree) to grow, and with the 

number of features to evaluate at every node being the square root of the total number of features 

in the dataset (mtry = ⌊√𝑝⌋), where p is the number of features. The algorithm was instructed 

to return results in the form of classification probabilities (probability = TRUE).  

3.3.3.3 Support Vector Machine (SVM) 

The open source SVM package (LiblineaR) {version 2.10-8} [323, 324] in the R software [321] 

was used in these experiments. This package executes an optimized linear version of SVM. All 

experiments used the default settings of L2-regularized logistic regression linear model type 

(type = 0) with the cost set to one (cost = 1).  

The choice to use the linear version of SVM was driven by the very large differences in the 

runtime of experiments between its linear and nonlinear kernel versions. Some preliminary 

experimentations have been conducted to compare the two versions. Table 3.2 presents the 

runtimes (in seconds) of the kernel SVM (with type = 2 [radial basis function], cost = 2 and 

gama = 2) and the linear SVM (with cost = 2). These experiments were performed on 10% 

subsets of Day 2 (12/Jun) and Day 3 (13/Jun) of the STA2018 dataset. This table shows the 

large difference between the two versions where the linear version of SVM is much faster. It 

also shows that the runtime of the kernel SVM grows exponentially as the number of instances 

increase, especially when the data is balanced.  

As SVM can only handle numerical data, it was necessary to pre-process the data before the 

training or testing phase took place. Therefore, all categorical (nominal) features were 

converted into dummy attributes, so that every value for each of the levels of these categorical 

features was converted into an independent feature that contained a ‘zero’ or a ‘one’ [325].   

Another pre-processing stage, as recommended by the SVM library package [323, 326], was to 

standardise the data. Therefore, every feature in the training data was standardised (as per  
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 Day 2 (12/Jun) 

10% 

Day 3 (13/Jun) 

10% 

 Kernel 

Cost=2 , Gama=2 

Linear 

Cost=2 

Kernel 

Cost=2 , Gama=2 

Linear 

Cost=2 

 Time 

Sec. 
(imbalanced) 

Time 

Sec. 
(balanced) 

Time 

Sec. 
(imbalanced) 

Time 

Sec. 
(balanced) 

Time 

Sec. 
(imbalanced) 

Time 

Sec. 
(balanced) 

Time 

Sec. 
(imbalanced) 

Time 

Sec. 
(balanced) 

Fold 1 3,330 16,602 4 4 4,186 23,693 4 6 

Fold 2 3,505 12,101 2 4 3,463 21,595 4 4 

Fold 3 3,385 12,309 2 6 4,054 20,559 2 6 

Total 
(seconds) 

10,220 41,012 8 14 11,703 65,847 10 16 

Table 3.2: Runtime in seconds between kernel and linear SVM setups on a 10% subset of Day 2 (12/Jun) and Day 3 (13/Jun) of the STA2018 

dataset 

Eq.(3.7)). The standardisation parameters (the mean and standard deviation) of the training 

data, which is utilized to build the classification model, were used to standardise the features of 

the test data before being classified by the model:  

�̇� =
𝑥 − 𝜇

𝜎
 

Eq.(3.7) 

where, �̇� is the new standardised value, x is the actual value to be standardised, 𝜇 is the mean 

and 𝜎 is the standard deviation of a feature column.  

In addition, all class labels were mapped for every dataset as shown in Table 3.3. 

Dataset Class label SVM label 

SEA and AGR groupA -1 

 groupB +1 

gureKDD and STA2018 Attack -1 

 Normal +1 
Table 3.3: Class labels mapping for SVM algorithm. 

 

3.3.4 Evaluation measures 

As discussed in Chapter 2, many of the common evaluation measures suffer in model 

performance assessment when imbalanced data are used. It has also been shown that network 

traffic exhibits an imbalance of traffic classes i.e. more normal traffic exists than anomalous 

traffic [98]. In an attempt to avoid this problem, the Geometric Mean (G-Mean) of Accuracy 

[231] metric (see Section 2.3.2.4) was adopted throughout this thesis. This measure was used 
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as the main measure to evaluate the performance of all of the models developed in all 

experiments in this thesis.  

3.3.5 Performance assessment techniques  

Cross-Validation is a technique used to estimate a model’s performance and to assess how its 

results could be generalised for unseen datasets [327-329]. This technique addresses the issue 

of data shortage when the holdout technique (for training and testing sets) loses important 

modelling or testing capability [330]. It can also be used to assess the expected performance of 

a prediction model in a real environment. In addition, it is a very useful technique to avoid 

overfitting problems, the situation that arises when the model perfectly predicts the data used 

to generate the classification model, but fails to generalise to new data. It is also a useful 

technique to identify and fine tune the main parameters of the model [331]. As discussed in 

Section 2.3.1, there are many types of Cross-Validation techniques, ranging from 

‘leave-one-out’ to ‘holdout’ methods, but the most popular one is the K-folds Cross-Validation. 

In K-folds Cross-Validation (Figure 3.6), the dataset is randomly divided into K parts. A model 

is then trained using K-1 parts and tested on the remaining part. This process is repeated K 

times, so that each one of the K parts is only used once as test data. The model’s overall 

performance is estimated by aggregating the performance of the K models (through averaging 

or a majority vote). Although this evaluation method is frequently cited in the literature, it 

requires a long time to process as larger values of K are used. Also, as discussed in Chapter 2, 

it could provide overly optimistic results due to the random division of datasets.  

Despite these drawbacks, the K-folds Cross-Validation technique was used in all experiments 

at every model building (training) stage to estimate the prediction thresholds for every 

developed model as per the recommendation of Ambroise and McLachlan [205].  
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Figure 3.6: K-folds Cross-Validation process. 

 

Prospective sampling [225], as discussed in Section 2.3.1, is a technique underused in batch-

learning tasks in the domain of network ID. However, this was the sampling approach used in 

this thesis to evaluate the performance of the generated models, by assessing them using 

evaluation (test) data collected at a different time from the training data. This evaluation method 

aimed to mirror real life, given that models are usually trained on data that have been collected 

in the past to predict future data. 

3.3.6 Statistical evaluation  

Normality tests were used to assess whether or not the data was following a normal distribution. 

Such tests are useful in selecting the right statistical analysis tests, such as parametric or 

non-parametric tests. As a result, in order to assess the normality of the results prior to analysis, 

the Shapiro-Wilk normality test [332] was used. However, this test is limited in its ability to 

handle more than 5,000 records. Therefore, in such cases (as in Experiment 3 and discussed in 

Chapter 7) the Anderson-Darling normality test [333, 334] was used instead. 
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Friedman’s test [335, 336] is a non-parametric test used to assess the difference between 

treatments or effects during multiple test trials, without assuming a specific distribution in the 

data. This test involves ranking the observations in each row, then computing the mean of the 

ranked observations across treatments/effects (for each column).  

Parametric tests, such as ANOVA, require asserting some assumptions before they can be 

applied. One of these assumptions is that the data should be normally distributed. As this core 

assumption could not be made for these experiments, a non-parametric approach was applied 

to analyse the results. Using an example, the following figure (Figure 3.7) illustrates how the 

Friedman test works. 

 
Figure 3.7: Friedman’s Test computation and interpretation 

 

If the Friedman test indicates that there is a significant difference between treatments/effects, 

post-hoc tests [337] can then determine which of these treatments/effects are significantly 

different by comparing the differences between their mean ranks. In these experiments, the 

Nemenyi post-hoc test [338] was used to calculate pairwise comparisons for different 
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treatments and to determine which pairs’ differences were statistically significant. To visualise 

these differences Demšar [17] proposed the Critical Difference Plot; in this plot, any two effects 

joined by a line indicates that they are not statistically different (see Figure 3.7). 

3.4 Limitations 

There are a number of unavoidable limitations introduced in this thesis related to many factors, 

such as the data selection and the adopted research design. Firstly, the experiments only focus 

on synthetic data and simulated network traffic. No real network traffic was used. This is 

because high variability exists in real traffic and the true state of the traffic would be unknown 

which would render the analysis unreliable due to the lack of control required over various 

variables and parameters.   

Secondly, the analyses only measured a model’s performance by evaluating its accuracy i.e. the 

Geometric Mean of Accuracy, so no speed or resource utilisations were considered. This was 

due to the fact that the core aim of the thesis was to investigate the effect of threshold adaptation 

on model performance i.e. accuracy. Other efficiency factors were considered engineering 

issues and out of scope. 

Thirdly, the choice of the factorial research design limited the number of ML algorithms that 

could be compared. As the factorial design could have resulted in an exponential growth in the 

number of performed experiments and analyses required, it was decided to limit the number of 

ML algorithms to the three most widely known ones.  

Finally, although the main drawback of the factorial experiment design was the large number 

of treatment-level combinations which would then require a similar number of experimental 

units (records), this drawback did not affect the experiments conducted as all combinations 

were represented. However, with such a high number of factor level combinations, analysis 

became difficult and necessitated a complicated interpretation of the results. In addition, more 
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time was needed than anticipated to undertake the experiments to address all of the 

combinations.  

3.5 Summary  

As noted above, the aim of this thesis is to create a better understanding of the interplay between 

discriminative threshold adaption of model predictions and the overall performance of a model 

(its Geometric Mean of Accuracy) to predict anomalies in local network traffic with different 

levels of concept or feature drifts. A further aim was to demonstrate that threshold adaptation 

for evaluation/test data can be achieved through optimising a performance measure based on 

validation data that is randomly sampled from and representative of the whole population 

(evaluation/test data). An empirical approach was therefore used to investigate the use of fixed 

threshold for model predictions and assess whether they undermine the real prediction power 

of a detection model. This investigation studied the effect of threshold tuning on prediction 

models developed with different ML algorithms and various setup scenarios. As such, three 

main questions formed the basis of the research: 

• How will the detection accuracy of an adaptive discriminating threshold of the 

predictions of a batch binary-based anomaly ID model compare to the accuracy of a 

fixed threshold?  

• Can the adaptation of the discriminating threshold improve the accuracy of a binary-

based anomaly ID model when evaluated network traffic has different salient features 

than those used to build the predictive model?  

• Can the optimal discriminating threshold be identified using a labelled small sample of 

the evaluated network traffic under the batch-learning setup? 

The remainder of this thesis addresses these questions. The study consists of an incremental 

empirical investigation, where the findings of one question are used as an input to the next.   
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Chapter 4: Adaptive Cutoff (Threshold) for 

Prediction Models  

 

Chapter Four 

Adaptive Cutoff (Threshold) for 

Prediction Models 
 

This chapter provides an analysis of binary (attack or normal) batch-based classification 

problems using a prospective sampling approach. In this approach, each experimental dataset 

is divided into subsets (batches) whereby each one is used to generate a binary prediction model 

to be tested on other subsets. This experiment aims to investigate the extent to which a detection 

model can be utilised to classify previously unseen data using only small parts of the data to 

build the learning model. It also aims to shed light on a serious limitation in assessing model 

prediction performance i.e. that a model’s performance is highly related to the evaluation data 

used to assess the model and should not be generalised as a single measure for the model. Also, 

model performance on evaluation data should be analysed separately and not on a pre-set 

threshold which was determined using some validation dataset or some form of 

Cross-Validation technique. 

4.1 Problem Statement 

A model generation process usually requires as many examples as possible to produce accurate 

models. For a model to perform well, training and evaluation datasets should exhibit similar 

statistical properties. As statistical similarity changes over time (known as concept drift [138, 

140, 141, 339, 340]), the predictive power of these models should become less accurate. 

Therefore, the common practice in batch predictive analytics requires the use of large datasets 
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in model generation. Such practice aims for a dataset that would manifest as many statistical 

properties of future unseen data as possible. In practice, this requirement is difficult to satisfy, 

especially in dynamic environments, such as inter alia network traffic, the stock market, 

self-driving vehicles or spam filters.    

Many solutions have attempted to address this issue by devising tools and techniques to learn 

from an evolving data stream [135, 279, 341]. Although this area of research is starting to 

produce potential solutions, it is beyond the scope of this thesis which is focused on binary 

batch learning.  

All proposed methods using predictive analytics and ML for (batch or stream) classification 

problems use the same basic principle in tackling the problem by using a vector of variables 

𝒙 = (𝐱𝟏, ⋯ , 𝐱𝒑) of an unlabelled record to assign it to one of the predetermined classes 𝒚 ∈

{𝒄𝟏, ⋯ , 𝒄𝒏} [341].  

This chapter evaluates the extent to which a detection model that was trained on a small subset 

can predict larger subsets of the same domain/problem, for example, in network domains where 

a model is developed using one day/week for network traffic to predict future days/weeks. The 

evaluation in this chapter compares the G-Mean Accuracy and the Area Under the ROC 

Curve (AUC) of these models due to their insensitivity to data imbalance.  

4.2 Proposed Solution 

This chapter investigates an approach that attempts to address a real life setup, where the 

training data (known as labelled data) are much smaller than the evaluation data (unlabelled 

data). It analyses the effect of this approach by adapting the classification results of a binary 

predictive model on evaluation data in order to maximise its performance on real data as well 

as to achieve a more accurate and reliable reading of that model’s performance. This will give 

the model producers (system analysts) the ability to accurately determine when a prediction 



  4.2 Proposed Solution 

 

87 
 

model is no longer valid and when model updating is required. This approach uses the 

prospective sampling technique to evaluate models [225] (see Section 2.3.1), where a 

predictive model is evaluated using data collected at a different time to that of the training data, 

such as a day/week. 

The experiments to test the potential of this approach, outlined in this chapter, had two stages. 

In the first stage, the well-known 10-folds Cross-Validation technique was performed on 

aggregated parts of every dataset’s files using different classification algorithms. This stage 

aimed to identify the algorithms’ optimal performance on different datasets when training and 

testing data exhibit the same statistical properties as data that are randomly sampled from the 

same (aggregated) population. Such models should be expected to achieve the highest 

performance measures. This stage aims at evaluating the following hypothesis: “there is no 

statistically significant difference in model performances (G-Mean accuracies) between the 

different algorithms”.  

In the second stage, each subset of a dataset was used to generate a prediction model (using the 

same classification algorithms). The 10-folds Cross-Validation technique was used at the model 

generation to compute the optimal discriminating threshold for the overall predictive model. 

Every generated model was tested on the remaining subsets separately within the dataset. Two 

performance readings of every model were recorded at this stage using the same measure 

(G-Mean Accuracy); one was based on the original model’s threshold computed at the 

generation phase, and the second, on its performance after threshold adaptation on the 

evaluation (test) subset. This stage aimed to depict real life situations where training and testing 

datasets have different statistical properties. As a result the following hypothesis is to be tested: 

“there is no statistically significant difference in model performances (G-Mean accuracies) 

before and after cutoff (threshold) adaptation between the different algorithms”.   
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The threshold adaptation is performed to find the cutoff point at which the G-Mean Accuracy 

is the maximum. Listing 4.1 presents the computation process used in finding the adapted 

threshold for every evaluated dataset based on the prediction scores returned by the prediction 

models and its known labels.  

Algorithm: Threshold Adaptation  
Input: preds=Model predictions of the data  ,  labels=data labels    
Result: thradpt.=The adapted threshold  
  
1 preds  <- sort(preds)   // sort the predictions list of the data in an ascending order 
2 labels <- sort(labels)  // sort the labels list of the data as their predictions' order 
3  
4 thradpt.    <- 0 
5 gAcc.best <- 0 
6  
7 for prd in preds do 
8    fp <- getFP(preds, labels, prd)     // get the FALSE POSITIVE at threshold prd 
9    tp <- getTP(preds, labels, prd)     // get the TRUE  POSITIVE at threshold prd 
10    fn <- getFN(preds, labels, prd)     // get the FALSE NEGATIVE at threshold prd 
11    tn <- getTN(preds, labels, prd)     // get the TRUE  NEGATIVE at threshold prd 
12     
13    tpr <- ( tp / (tp+fn) ) 
14    tnr <- ( tn / (tn+fp) ) 
15     
16    gAcc <- sqrt( tpr * tnr ) 
17     
18    if(gAcc > gAcc.best){ 
19       thradpt.    <- prd     // set the adapted threshold at the point gAcc is maximum 
20       gAcc.best <- gAcc 
21    } 
22     
23 done 
24  
25 return( thradpt. ),     // Return the adapted threshold 
  

Listing 4.1: Pseudocode of threshold adaptation process and the selections of the optimal threshold for the evaluated data  

 

Further details about the experiments’ setups and configurations are presented in Section 4.4. 

Every generated model was trained for binary classification and configured to return the 

probability of the class rather than the class label. An advantage of using class probability was 

the flexibility it offered in computing a model’s performance at different prediction thresholds 

and in determining the point of maximum performance. 

4.3 Datasets 

This section provides an overview of the datasets used in the experiments outlined in this 

chapter. Two synthetic datasets (SEA and AGR) [317, 318] were generated randomly, 



  4.3 Datasets 

 

89 
 

alongside one domain specific dataset (gureKDD) [160-162]. The latter is a transformation of 

the network traffic of the DARPA 1998 dataset which is similar to KDD 1999 but much cleaner.   

4.3.1 gureKDDcup 

gureKddcup [160-162] (referred throughout this chapter as gureKDD) is a transformation of 

the raw network traffic of the DARPA 1998 dataset [342] into a suitable format for ML tasks, 

where every connection is described using a set of features. This transformation is similar to 

the KDD 1999 dataset [156] but much richer. All connections in this dataset can be linked back 

to their origin in DARPA traces and every connection has a unique ID that helps identify the 

chronological order of all connections. Traffic payloads are available in separate files labelled 

by connection ID. Therefore, all connections in this dataset are chronologically separable and 

can be divided by day, week, etc.  

For these experiments, all traffic (over a seven week period) was segregated into a time window 

of a week, which resulted in seven files. Every file contained the network traffic of that week 

(Monday-Friday). Every connection in these files was profiled using 41 features; 3 of which 

were nominal (protocol_type, service and flag), 6 were binary features, 15 were continuous 

(real) features, and 17 were integer features. These features were divided into four main groups: 

intrinsic (basic) features [1-9]; content-based features [10-22]; time-based features [23-31]; and 

connection-based features [32-41].   

Each connection was labelled as either normal or as one of the 35 different attacks. These 

attacks were grouped into four main classes: DOS, Probing, Remote-to-Local or 

User-to-Root. In these experiments, the data were pre-processed so all different attack types 

were grouped and labelled as ‘attack’ to produce binary classes. Table 4.1 presents a statistical 

summary of the connection class types for each of the seven weeks. 
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 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Total 

Normal 177,889 186,706 72,676 98,627 128,516 247,699 217,743 1,129,856 

Attack 21 2,084 215,693 15,319 475,787 703,662 217,072 1,629,638 

DOS 16 1,002 207,896 1,171 465,825 684,741 207,035 1,567,686 

PROBE 0 1,027 7,757 12,366 9,941 18,017 10,031 59,139 

R2L 1 55 39 1,752 0 881 2 2,730 

U2R 4 0 1 30 21 14 4 74 

Anomaly 0 0 0 0 0 9 0 9 

Total 177,910 188,790 288,369 113,946 604,303 951,361 434,815 2,759,494 

Table 4.1: Number of connection classes in every file in the gureKDD dataset 

 

Table 4.1 shows the number of normal and attack connections for each week or file and also 

presents the breakdown of attack by class for each data file. It clearly shows a different class 

balance in each week, For example, Week 1 (file 1) was the worst as it contains only 21 

(0.0118%) attacks. 

4.3.2 SEA 

A Streaming Ensemble Algorithm (SEA) generator [317] in the MOA framework [143] was 

used to generate a data stream with three continuous features (X1, X2, X3). Each feature had a 

range between 0 and 10, although only features, X1 and X2, influence the class value. Instances 

were produced by randomly generating points (X1, X2) in a two dimensional space. Instances 

were labelled as groupA, if X1+X2 > θ, and as groupB, if X1+X2 ≤ θ, where X1 and X2 were the 

first two features and θ was a threshold. There were four functions which would label the 

instances differently based on their threshold values between the two classes (function 1 sets 

θ=8, function 2 uses θ=9, function 3 sets θ=7, and function 4 sets θ=9.5) [343]. The SEA 

generator’s default setting was used to add 10% noise classes. Six different data streams (files) 

were produced: function 1 was used to generate two streams (file 1 and file 2); function 2 was 

used to generate two other streams (file 3 and file 4); and a combination of function 1 and 

function 2 was used to generate two streams (file 5 and file 6). For every file, calls to these 

functions used different seed values to set the seed of the random generator function to generate 



  4.3 Datasets 

 

91 
 

new random instances. Figure 4.1 presents an example of the command line call to generate 

File 1 with the SEA stream generator. 

java -cp moa.jar -javaagent:sizeofag-1.0.0.jar moa.DoTask  
    "WriteStreamToARFFFile -m 200000 -f f1.arff  -s (generators.SEAGenerator -f 1 -i 1)" 
 
 
WriteStreamToARFFFile Parameters: 
   -m : "Maximum number of instances to write to file." 
   -f : "Destination ARFF file name." 
   -s : "Stream to write." 

 
generators.SEAGenerator Parameters: 
   -f : "Classification function used to assign instances with class labels." 
   -i : "Seed for random generation of instances." 
 

Figure 4.1: Command used to generate File 1 of SEA dataset. 

 

Each stream consisted of 200,000 instances. This dataset was used to analyse the effect of 

different statistical properties (concept drift) between training and testing data on the model’s 

performance. Table 4.2 lists the number of instances of each class in every file in this dataset. 

 File 1 File 2 File 3 File 4 File 5 File 6 Total 

groupA 71,609 71,298 85,190 84,965 78,295 77,913 469,270 

groupB 128,391 128,702 114,810 115,035 121,705 122,087 730,730 
Table 4.2: Number of instances’ classes in every file in the SEA dataset 

 

4.3.3 AGR 

The AGRAWAL generator [318] in the MOA framework [143] was used to generate a data 

stream with nine features (X1, …, X9), six of which were nominal (factor) and three of which 

were continuous. This generator had ten different functions to assign the produced instances to 

one of two different classes, based on the values of their different features. The following 

examples illustrate the labelling rules of the two functions that were used in generating this 

dataset: 

Function 1: - if (age < 40 OR age ≥ 60) then groupA else groupB ,  

 

Function 2: - if (age < 40){        if (50K ≤ salary ≤ 100K) then groupA else groupB }, 

- else if (age < 60){ if (75K ≤ salary ≤ 125K) then groupA else groupB }, 

- else{                      if (25K ≤ salary ≤ 75K)   then groupA else groupB } , 
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Each function increases the level of complexity as it uses additional features and complex rules 

to label the instances [344]. The generator’s default setting was used to add 10% noise classes 

by introducing a disturbance factor that added a deviation value (following uniform random 

distribution) to the original feature’s values. Six data streams were produced: Function 1 was 

used to generate two streams (File 1 and File 2); Function 2 was used to generate two other 

streams (File 3 and File 4); and a combination of function 1 and function 2 was used to generate 

two more streams (File 5 and File 6). All function calls used different seeds to randomly 

generate different instances for each file. Each stream consisted of 200,000 instances. 

Figure 4.2 provides an example of the command line used to generate the data of File 1 in this 

dataset.  

java -cp moa.jar -javaagent:sizeofag-1.0.0.jar moa.DoTask  
    "WriteStreamToARFFFile -m 200000 -f f1.arff  -s (generators.AgrawalGenerator -f 1 -i 1)" 
 
 
WriteStreamToARFFFile Parameters: 
   -m : "Maximum number of instances to write to file." 
   -f : "Destination ARFF file name." 
   -s : "Stream to write." 

 
generators.AgrawalGenerator Parameters: 
   -f : "Classification function used to assign instances with class labels." 
   -i : "Seed for random generation of instances." 
 

Figure 4.2: Command used to generate File 1 of AGR dataset. 

 

Table 4.3 presents a summary of the labels frequency in every file for this dataset. 

 File 1 File 2 File 3 File 4 File 5 File 6 Total 

groupA 134,572 134,457 76,577 76,947 105,301 105,785 633,639 

groupB 65,428 65,543 123,423 123,053 94,699 94,215 566,361 
Table 4.3: Number of instances’ classes in every file in the AGR dataset 

 

4.4 Experimental Setting 

The experiments discussed in this chapter have been evaluated, in terms of classification 

performance, using G-mean Accuracy and AUC. These experiments were executed in two 

different phases as explained below and illustrated in Figure 4.3. 
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Figure 4.3: The experiments’ phases diagram. 

 

In the first phase, all the files in each dataset (gureKDD, SEA and AGR) were merged to form 

the total population of the dataset. The merged dataset was then used to produce binary 

classification (prediction) models using three different algorithms (C5.0, Random Forest and 

SVM). Models were assessed using 10-folds Cross-Validation. This stage looked at the 

conventional method of model development, where training and testing data display the same 

statistical properties as they are randomly sampled from the same population. The model’s final 

prediction threshold (optimal cutoff) was computed by aggregating all the fold’s predictions 

and finding the point at which maximum G-mean Accuracy was reached. An experiment for 

every combination of dataset and algorithm was repeated ten times.  

In the second stage, every file (subset) in the dataset problem was used to generate a single 

model, and this model was tested on the remaining files (subsets) within the dataset. The aim 

of this strategy was to address the classification performance of the generated models where 

training and testing data had different statistical properties. 
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To identify any statistically significant differences between the models at each phase, the 

Friedman test was used with significance level α=0.05, to assess the null hypothesis, “there 

were no statistical differences between models”. 

Experiments were performed on a “Dell C5220 PowerEdge Rack Servers” cluster, which had 

12 micro servers. Each micro server has dual quad-core Intel Xeon 3.4GHz CPUs, 16GB RAM, 

two 500GB SATA disks, and two Gigabit Ethernet interfaces. 

4.5 Results and Discussion 

These experiments started out by comparing the detection performances of three different, 

well-known algorithms in ML (C5.0, Random Forest and SVM) on three different datasets 

(gureKDDcup, SEA and AGR). In this set of experiments the conventional method of 10-folds 

Cross-Validation technique was applied to the merged files of each dataset, where the maximum 

G-mean Accuracies of these models and the best cutoff values had been reported. Each 

experiment was repeated ten times. As the results showed only a minimal variability (see 

Table 4.4) there was no need to do more repetitions. 

In the second set of experiments, the same datasets and algorithms were used to generate 

detection models but in scenarios that were similar to natural settings (prospective sampling 

technique). In these experiments, models were generated on a subset of the dataset using the 

10-folds Cross-Validation technique to set these models’ parameters i.e. the cutoff. These 

models were then used to evaluate the remaining files in the dataset. Two G-mean accuracy 

values were computed for every combination of prediction model and evaluation data. The first 

G-mean accuracy was obtained when the model’s pre-set cutoff value, which was calculated 

using the 10-folds Cross-Validation, was used to predict the data file. The second G-mean 

accuracy value was calculated based on the maximum accuracy reached when the prediction 

cutoff value was adapted to the evaluated data file.   
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4.5.1 10-folds Cross-validation on Full Data 

This section presents the results from using the full data for each dataset (gureKDD, SEA and 

AGR) in model generation using 10-folds Cross-Validation on the three algorithms (C5.0, 

Random Forest and SVM).  

Table 4.4 presents the mean performances of the ten trials of the 10-folds Cross-Validation in 

terms of the G-Mean Accuracy and the Area Under the ROC Curve (AUC) of the three 

algorithms (C5.0, Random Forest and SVM). It also shows the mean of the optimal cutoff 

values of the ten runs at which maximum G-Mean Accuracies were reached.    

In general, all algorithms should reach similar accuracies for their respective datasets. However, 

in the artificial dataset AGR, SVM failed to perform anywhere close to C5.0 or Random Forest 

(showing a difference of almost 15% - see Table 4.4). This could have been down to the nature 

of the dataset, which could be non-linearly separable as a linear version of SVM was used in 

this analysis. Further investigation would have been needed to analyse the effect of data 

transformation using some kernel functions on non-linear versions of the SVM implementation. 

However, that would have been beyond the scope of this experiment. In general, Random Forest 

is capable of improving detection performance on all datasets.   

Generally, the performance of all algorithms on gureKDD was the highest, followed by those 

on the SEA dataset. The AGR dataset was the worst in reaching high detection accuracy. This 

fact is clearly illustrated by the plots in Figure 4.4 which show the G-Mean Accuracy curve 

against the cutoff values for all datasets. These plots show the ten runs in a lighter colour and 

the mean of these runs in solid colour. They also show the optimal cutoff values for each dataset 

under the tested algorithm.   
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The performance of every run of the 10-folds Cross-Validation on the full datasets was 

rearranged into a matrix and analysed using the Friedman test to evaluate any 

significantdifferences between the algorithms used. The non-shaded part of Table 4.5 sets out 

the model performances of every run as a matrix. 

Dataset Run C5.0 SVM RF 

gureKDD 

1 

⋮ 
10 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

SEA 

1 

⋮ 
10 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

AGR 

1 

⋮ 
10 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

Table 4.5: Model G-Mean accuracies arrangements of the 10-folds Cross-Validation on the full dataset for Friedman’s test. 

 

Friedman’s test was used to analyse whether the difference between these algorithms was 

significant. The tested hypothesis was, “there is no statistically significant difference in model 

performances (G-Mean accuracies) between the different algorithms”. This test revealed that 

there was a significant difference between the different algorithms applied to these datasets 

under the 10-folds Cross-Validation approaches, χ2(2) = 26.7, p = 0.000 < 0.05. The follow up 

Nemenyi post-hoc test revealed that the algorithms were all different from each other, as 

illustrated in Table 4.6, which shows that the p-values of all pairwise comparisons, were less 

than 0.05.   

 C5.0 SVM 

SVM 0.027 - 

RF 0.027 0.000 
Table 4.6: Results of the pairwise Nemenyi comparison test for the full datasets 10-folds Cross-Validation experiment. 

 

Figure 4.5 presents these results in a graph, shows that no two algorithms were joined by a line, 

which indicates that the differences between the algorithms were statistically significant. 
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Figure 4.5: Critical differences plot of the pairwise Nemenyi comparison test for the full datasets 10-folds Cross-Validation experiment. 

 

Table 4.7 presents the medians of each algorithm’s performance (G-Mean Accuracy) as well 

as their mean ranks. Figure 4.5 shows that Random Forest is highly ranked, whereas SVM 

scored the lowest. 

 C5.0 RF SVM 

Median 0.857 0.895 0.862 

1st Quantile 0.716 0.658 0.563 

3rd Quantile 1.000 1.000 0.995 

Mean Rank 2.000 1.333 2.667 

Table 4.7: Algorithms’ medians and mean ranks for the full datasets 10-folds Cross-Validation experiment. 

 

4.5.2 Subset-to-Subset (File-to-File) 

This experiment aimed to evaluate the capabilities of different algorithms (C5.0, Random 

Forest, SVM) in classifying instances with different statistical properties to those used in 

producing the models. This evaluation was conducted by measuring each model’s performance 

in terms of G-Mean Accuracy. 

This section shows the results of using a subset of data from each dataset (gureKDD, SEA, and 

AGR) in model generation using the three algorithms, where each generated model was used 

to evaluate the remaining parts of the dataset. For each subset, a model was generated, and the 

optimal cutoff and G-Mean accuracy were reported using 10-folds Cross-Validation. Also, the 

predicted G-Mean accuracy of each remaining subset was reported where the models’ optimal 
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cutoff was used and compared with the G-Mean accuracy of the adapted cutoff for that subset. 

This experiment aimed to analyse the effect of cutoff adaptation on the evaluated data and to 

assess how such adaptations would compare with the use of the optimal cutoff on model 

performance.  

Plots of the G-Mean accuracy present the performance of the prediction model (MDLk), that 

was trained using Filek, on the files in the dataset (Filei≠k) that were not used in producing that 

model. In Figure 4.6, Figure 4.7 and Figure 4.8 each model’s performance, based on the 

Cross-Validation technique, is illustrated with a solid line; other individual performance 

evaluations are depicted with dotted lines.   

4.5.2.1 C5.0: 

Algorithm C5.0 has the worst performance on the first file in the gureKDD dataset even at 

Cross-Validation evaluation during the model generation stage (Figure 4.6). This is due to the 

fact that this file has the least number of attacks and is the most imbalanced of the files. It 

consists of only 21 attacks which formed 0.0118% of the total traffic in that file. Therefore, the 

generated model using this file was not able to predict any instances in other files. Where the 

number of attacks in other files increased with a proportionate balance, the model performances 

improved under this algorithm.  

As the SEA and AGR datasets are composed of only six files each, there is no illustration of 

model 7 for these datasets in the plot. Generally, applying this approach followed the same 

pattern as the first experiment (10-folds Cross-Validation), where performance on gureKDD   
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resulted in the highest accuracy followed by the SEA dataset; the worst performing dataset was 

the AGR. 

Also in both datasets (SEA and AGR), models performed best when files exhibited the same 

statistical properties, denoted in these experiments by the same generating functions. For 

example, where MDL1 used File 1 as training data it predicted instances in File 2 with a high 

performance and vice versa (as both files were generated using the same function). This is also 

applicable for Files 3 and 4 in predicting each other. Where files contain mixed behaviours, the 

prediction performance dropped sharply.   

Section A.1 in Appendix (A) presents the results of each model on every file generated by each 

of the different algorithms. These tables show that the performance of all of these models 

improved when the cutoff (threshold) was adapted for the evaluation dataset, rather than using 

a pre-calculated one.  

4.5.2.2 Random Forest (RF) 

It was expected that Random Forest (RF) would perform well on the first file of the gureKDD 

dataset despite its low number of attack connections. Unlike C5.0, the performance of RF in 

modelling this file was linked to the bootstrap stage, where instances were sampled from the 

population with replacement. This means that duplicates of the 21 attack connections were 

sampled many times which increased the predictability of the built trees (Figure 4.7).  

After careful examination of the results, as presented in Appendix (A) (see Section A.2), one 

can see, especially in the synthetic data (SEA and AGR), that when a testing file has similar 

statistical properties to the model, its performance will not increase much even after cutoff 

adaptation. However, when it has different statistical properties, the adaptation process boosts 

the prediction leading to an accurate evaluation of a model’s performance.   
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Furthermore, the effect of the adaptation process was more tangible in gureKDD than in the 

synthetic data, as this dataset exhibited both different patterns and varying statistical properties 

between files. For example, Table A.4 in Appendix (A) shows that MDL1, which was trained 

on File 1, reached a G-Mean accuracy of 67.33% on File 5 when the original cutoff (threshold) 

of the model was used, but applying the adaptation process to this threshold increased its 

performance to 99.37%.  

4.5.2.3 SVM 

SVM performed the worst on the AGR dataset in comparison to the other algorithms 

(Figure 4.8). This could have been the result of the non-linear nature of this dataset as discussed 

previously. The non-linearity was not picked up by the SVM linear implementation used in 

these experiments. In general, the cutoff (threshold) adaptation showed a similar effect in 

improving the models’ performances compared to using the model’s optimal threshold.  

The findings of the experiments in this section illustrate the importance of the adapted cutoff 

value to the data-model pairs in achieving an accurate reading of each model’s performance. 

To assess the significance of any differences between the models before and after the adaptation 

of the threshold, the Friedman test was performed.  

In order to use the Friedman test, the G-Mean accuracy values were formatted into a matrix as 

Table 4.8 shows the arrangement. The unshaded part of Table 4.8 was submitted to the 

Friedman test function. Every row in this matrix contains the G-Mean accuracies after testing 

MDLi on Filej≠i, where two values for every algorithm were recorded before (original) and after 

(adaptive) the threshold adaptation. All the values in this matrix are presented in the tables of 

in Appendix (A); each model’s performance before the cutoff adaptation is denoted by Model 

Threshold G-Mean Accuracy (MA), and after adaptation as File Threshold G-Mean Accuracy  
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(FA). For every algorithm there was a total of 102 different measures for each treatment (before 

and after threshold adaptation). The statistical data were composed of 42 measures (7 models × 

6 evaluations) for gureKDD, and 30 measures (6 models × 5 evaluations) for each of the SEA 

and AGR datasets. Hence, the resulting matrix is 102 × 6. 

   C5.0 SVM RF 

Dataset Model Test file 
Original 

Threshold 

Adaptive 

Threshold 

Original 

Threshold 

Adaptive 

Threshold 

Original 

Threshold 

Adaptive 

Threshold 

gureKDD 

⋮ 

MDLi 

⋮ 

⋮ 

Filej≠i 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

SEA 

⋮ 

MDLi 

⋮ 

⋮ 

Filej≠i 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

AGR 

⋮ 

MDLi 

⋮ 

⋮ 

Filej≠i 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

Table 4.8: Models G-Mean accuracies arrangements for Friedman’s test for phase two of the experiments. 

 

Friedman’s test was used to assess whether the difference between the different algorithms was 

significant before and after threshold adaptation. The tested hypothesis was, “there is no 

statistically significant difference in model performances (G-Mean accuracies) before and 

after cutoff (threshold) adaptation between the different algorithms”. This test revealed that 

there was a significant difference between the different algorithms before and after threshold 

adaptation, χ2(5) = 217.7, p = 0.000 < 0.05.   

To identify which algorithms were different, a Nemenyi post-hoc test was carried out to 

calculate the pairwise comparisons. Table 4.9 shows the results of this test. 

  C5.0 SVM RF 

  
Original 

Threshold 

Adaptive 

Threshold 

Original 

Threshold 

Adaptive 

Threshold 

Original 

Threshold 

C5.0 Adaptive 

Threshold 
0.000 - - - - 

SVM 

Original 

Threshold 
0.642 0.000 - - - 

Adaptive 

Threshold 
0.000 0.999 0.000 - - 

RF 

Original 

Threshold 
0.029 0.023 0.000 0.011 - 

Adaptive 

Threshold 
0.000 0.000 0.000 0.000 0.000 

Table 4.9: Results of the pairwise Nemenyi comparison test for the cutoff (threshold) adaptation experiment. 
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Figure 4.9 presents the critical differences between the different algorithms before and after 

cutoff adaptation as a plot. The plot shows that when the cutoff was adapted for the evaluated 

dataset, the SVM and C5.0 algorithms were no different to each other. They showed the same 

behaviour even when cutoff adaptation was not performed, but the cutoff adaptation increased 

their performances (G-Mean Accuracy). In general, all algorithms were ranked higher when 

cutoff adaptation was performed, with the Random Forest algorithm always outperforming the 

other two.  

 
Figure 4.9: Critical differences plot of the pairwise Nemenyi comparison test for the cutoff (threshold) adaptation experiment. 

 

Table 4.10 presents the median of every algorithm’s performance (G-Mean Accuracy) based 

on the threshold adaptation effect. Figure 4.9 illustrates the mean ranks presented in Table 4.10 

as a plot.  

 No Threshold Adaptation Adaptive Threshold 

 C50 RF SVM C50 RF SVM 

Median 0.832 0.849 0.821 0.861 0.884 0.862 

1st Quantile 0.689 0.721 0.515 0.746 0.787 0.566 

3rd Quantile 0.877 0.939 0.888 0.949 0.991 0.903 

Mean Rank 4.598 3.804 5.000 2.990 1.676 2.931 

Table 4.10: Algorithms’ medians and mean ranks based on threshold adaptation effect. 
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4.6 Limitations 

Although the experiments in this chapter have shown the advantages of adapting the cutoff 

(threshold) for the evaluated data, there are a number of noticeable limitations. The analysis 

focuses on binary classification problems with no attempt made to extend the findings to multi 

classification problem, i.e. type of attacks (DOS, Port Scan, SQL injection, etc.). The analysis 

concentrated on the batch-based classification problem because this is the focus of this thesis.   

Other limitations are related to the number of the algorithms that were evaluated and the choices 

made with respect to the implementation of some of these algorithms. For example, the SVM 

linear implementation was used in these experiments, which could explain the poor 

performance of this algorithm on some datasets, such as AGR. This work could have been 

extended to use some kernels to transform the dataset into higher dimensions to improve SVM’s 

performance. However, due to time limitations, it is planned that this task will be undertaken 

sometime in the future. 

The algorithms were run using their default settings, with no tuning of their parameters, to 

improve the models’ performance. For example, algorithm C5.0 was run with 10-trials only 

although an increased number of trials could have resulted in an improved performance. While 

parameter settings could be regarded as an engineering issue, future studies could be conducted 

to analyse the effect of different settings on the cutoff (threshold) adaptation task.  

Another serious limitation of these experiments was the number of datasets used; only three 

datasets were used in this analysis including a very old dataset i.e. gureKDD. This limitation is 

addressed in the next chapter where a newer and more recent dataset is generated and tested. 

Despite the state and number of datasets used, an extended analysis was undertaken as a result 

of the multiple model evaluations performed by dataset partitioning.  
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4.7 Summary 

This chapter has presented an analysis of the adaptive cutoff (threshold) approach, which 

provides an accurate reading of the performance of models generated on a training data and 

those used to evaluate data with different statistical properties (concept drift). The results from 

this analysis demonstrated the following: 

• An adaptive cutoff (threshold) approach results in better classification performance than a 

fixed threshold. 

• Using a single cutoff (threshold) will lead to misleading results, which could result in a 

decision to terminate a good prediction model which only required some tuning.  

• This approach may not improve a model’s performance when the testing data exhibits the 

same statistical properties as the training data. 

In Chapter 6 a more in-depth analysis is undertaken to assess the applicability of this approach 

to a more domain specific problem (network ID), that is, where a more recent and much more 

realistic dataset has been generated. In that chapter, a thorough analysis is outlined of the effect 

of different feature set sizes and the data balance on the proposed approach.   
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Chapter 5: UNB ISCX 2012 Dataset Transformation 

 

Chapter Five 

UNB ISCX 2012 Dataset 

Transformation 
 

After identifying problems with the KDD 1999 dataset - as outlined in Al Tobi and Duncan [1] 

- it was necessary to find an alternative dataset. With no satisfactory dataset available, it was 

decided to generate a new one. This chapter sets out how a new dataset was generated by 

transforming the UNB ISCX 2012 Intrusion Detection Evaluation Data Set [14], which will 

be referred to throughout the thesis as ISCX2012. The result of this transformation was a 

structured dataset (named STA2018) in which every record described each connection 

(between two hosts) using 550 features [549 independent variables plus one dependent (class) 

variable]. 

The main reasons to generate this dataset are to have as clean and as validated a dataset as 

possible. The resultant dataset (STA2018) captured every ICMP, TCP and UDP packet in the 

ISCX2012 dataset. It also maintained the chronological order of every connection which will 

help future studies as the ordered data can capture different traffic behaviour and network 

patterns. It also provided balanced labelled connections by generating synthetic samples, which 

were also identifiable. In addition, each record in the resultant dataset can easily be linked back 

to the original ISCX2012 dataset, as the timestamp and host addresses were maintained. 
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5.1 ISCX2012 Dataset Description 

The generation of the ISCX2012 dataset followed a systematic approach, in which datasets are 

created using profiles of real networks, as proposed by Shiravi et al. [14]. These profiles are 

composed of general representations of network behaviours. For instance, the profile of a host 

will consist of the distribution of exchanged packets, connection durations, etc. Such profiles 

are used by agents that are programmed to generate traffic, which will simulate the traffic of a 

real network. These profiles can be shared without privacy concerns so other researchers can 

then generate new traffic based on these profiles.  

Two main profiles were generated to produce the network traffic, alpha-profile and beta-

profile. Alpha-profiles were used to describe attack scenarios, whereas beta-profile were used 

to profile network events and behaviours (hosts and services). 

After profiles for known applications such as, HTTP, FTP, SMTP/IMAP and SSH, had been 

generated, they were executed by agents within an infrastructure to generate the ISCX2012 

dataset. The network used to generate the traffic was formed of six main LANs. Four different 

LANs accommodated 21 workstations (using different versions of Windows) which formed the 

interconnected network. The fifth LAN was dedicated to the servers to provide four important 

services: web; email; DNS and Network Address Translation (NAT) services. The sixth LAN 

was used for administration purposes such as, monitoring and controlling the network setup. 

To eliminate noise, all of the traffic in the sixth LAN was not captured. All of the transmitted 

traffic was mirrored to three devices that provided redundant capturing (e.g. tcpdump); 

Intrusion Detection Systems (IDS) (e.g. Snort); IDS management systems (e.g. QRadar, 

OSSIM); and visualization systems (e.g. ntop). 

The traffic capturing process lasted seven days, from Friday (11/June/2010) to Thursday 

(17/June/2010). This simulation created seven PCAP files with labelled flow (XML) files (see 

Table 5.1). Every XML file contained the label of each connection in the corresponding PCAP 
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file. This simulation consisted of four main attack scenarios: inside network infiltration; HTTP 

Denial of Service (DoS) using the Slowloris tool; a Distributed Denial of Service (DDoS) 

attack using an IRC Botnet; and brute force SSH. 

Date PCAP files 
Labelled flow 

(XML) files 
Description19 

Size 

(GB) 
Fri 11/Jun/2010 testbed-11jun.pcap  Normal Activity. No malicious activity 16.1 

Sat 12/Jun/2010 testbed-12jun.pcap TestbedSatJun12Flows.xml Normal Activity. No malicious activity 4.22 

Sun 13/Jun/2010 testbed-13jun.pcap TestbedSunJun13Flows.xml Infiltrating the network from inside + 

Normal Activity 
3.95 

Mon 14/Jun/2010 testbed-14jun.pcap TestbedMonJun14Flows.xml HTTP Denial of Service + Normal Activity 6.85 

Tue 15/Jun/2010 testbed-15jun.pcap TestbedTueJun15-1Flows.xml 

TestbedTueJun15-2Flows.xml 

TestbedTueJun15-3Flows.xml 

Distributed Denial of Service using an IRC 
Botnet 

23.4 

Wed 16/Jun/2010 testbed-16jun.pcap TestbedWedJun16-1Flows.xml 
TestbedWedJun16-2Flows.xml 

TestbedWedJun16-3Flows.xml 

Normal Activity. No malicious activity 17.6 

Thu 17/Jun/2010 testbed-17jun.pcap TestbedThuJun17-1Flows.xml 
TestbedThuJun17-2Flows.xml 

TestbedThuJun17-3Flows.xml 

Brute Force SSH + Normal Activity 12.3 

Table 5.1: UNB ISCX 2012 dataset files. 

 

Unfortunately, the ISCX2012 dataset had a limited number of attack types as it only contained 

these four named scenarios. Also, the traffic labels did not provide any information about the 

attack type as it used binary labelling {Normal and Attack} and made no further distinctions. It 

also offered a limited number of services in comparison to DARPA 1998. However, the 

ISCX2012 contained traffic that was more plausible for a modern network. This was especially 

the case in relation to traffic load and exchanged content as it used a realistic network set-up, 

and its traffic was generated using profiles from real networks as discussed earlier. Its traffic 

included a complete capture of all payloads as well as all of the interactions within and between 

LANs [14]. 

The ISCX2012 dataset has been made publicly available by its authors and a copy was obtained 

and used for the transformation outlined in this chapter. Table 5.1 lists the files that were 

provided within the ISCX2012 dataset. For every traffic trace (PCAP) file there was one or 

more labelled flow (XML) files, apart from the Friday file (11/Jun/2010) as it consisted of 

                                                 
19 http://www.unb.ca/cic/datasets/ids.html  
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normal traffic only. Each XML file described every connection in the PCAP file using 19 

features, where the label (Normal or Attack) was provided by the <Tag> element.  

5.2 Transformation Process  

There were five phases to the transformation of the ISCX2012: 

1. Basic-features extraction: every PCAP file was processed using Bro software [16] to 

extract 193 features for every ICMP, TCP and UDP connection. These features 

consisted of information that can be extracted from frame and packet headers such as 

the source and destination IP addresses and ports, connection duration, transport 

protocol etc. 

2. Validation and connection labelling: the accurate capture of every (ICMP, TCP, UDP) 

packet in every PCAP file was validated, then every processed connection (in the PCAP 

files) was matched to its corresponding flow in the XML file using the label provided 

{Attack, Normal}. 

3. Extend the basic-features: every connection was processed to derive two sets of 

features (time-based and connection-based). Deriving these features depended on the 

chronological order of the original connections. Onut’s feature classification 

schema [15] was used in this phase. 

4. Balance: synthetic records (connections) were generated to balance the number of 

Normal and Attack connections in the dataset. This balancing phase used the SMOTE 

algorithm [207] (see Section 5.2.4). 

5. Clean up: any useless features were removed, before source and destination zone 

features were added, to reduce the large address space. 
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The resultant dataset (STA2018) can be used as a balanced version or can be focused on the 

original version of the data, as every connection is uniquely distinguishable and all of the 

synthetic connections are identifiable. 

Each one of the phases outlined above is described and discussed in more detail below. 

Figure 5.1 illustrates the flow of this process, where the numbers in the output result of every 

phase represent the number of features in the processed resultant data. 

 
Figure 5.1: Dataset preparation phases 
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5.2.1 Basic features extraction 

As shown in Figure 5.1, during the first phase every PCAP file in the ISCX2012 dataset [14] 

was processed in order to extract all the connection basic features for the ICMP, TCP and UDP 

traffic. A Bro [16] script was implemented for this process. The extraction of these features was 

limited to header parameters (within a connection) and did not go into payload level for several 

reasons, including encrypted traffic issues and privacy concerns.  

At this stage, a total of 193 features were extracted [Features {1-2, 4-5, 7-12, 15-144} in 

Appendix (D)]. These features ranged from the addresses and ports numbers of the hosts 

involved in the connection set-up, to connection duration and the number of exchanged packets 

and byte sizes. Some of these features extracted the same information from different levels of 

the Bro IDS [16]. For example, connection duration, {duration and bro_duration}, and the 

number of packets and byte features were extracted using the packet and connection event 

handlers in Bro. As Bro uses different engines to process this information at different levels, it 

was necessary to include both views in the features set.  

These extracted basic features were divided into the following main groups:  

• IP protocol type: 

o IPv4 connections’ related features (32 features, three of which were deleted – 

see Section 5.2.5);  

o IPv6 related features (34 features, 27 of which were deleted – see Section 5.2.5).  

• Transport protocol type: 

o ICMP related features (2 features, one of which was deleted – see Section 5.2.5);  

o TCP related features (62 features, 21 of which were deleted – see Section 5.2.5); 

o UDP related features (8 features).  
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Where a connection was an IPv4 type, then all IPv6 related features were set to zero and vice 

versa. This same process was applied to the transport protocol type features. For example, 

where a connection was a TCP type, then all ICMP and UDP features were set to zero. 

In this phase, Bro’s default setting for a TCP connection’s start time had been overridden to use 

the timestamp of the first SYN packet. Bro’s default settings use the last SYN packet in the 

hand-shake phase to mark the start time of connections. All other settings were set to the default, 

including any TCP connection timing out after being idle for more than 5 minutes. 

In the design of the Bro script, TCP connections are treated as statefull connections with the 

Bro’s default engine settings deciding which sequence of packets are grouped as a single 

connection. Although UDP is not a session-based protocol, Basu et al. (2001) [345] suggested 

the construction of a session view for such traffic, as it would be useful to detect low-profile 

probes and novel DoS attacks. Therefore, the Bro UDP connection event handler was used 

which bundles together a sequence of exchanged UDP packets between two hosts into one 

connection, based on some heuristic and service profiles. All ICMP traffic was treated as 

stateless connections and every packet was treated as a single connection. Although Bro is able 

to aggregate a sequence of exchanged ICMP packets into a single connection if they meet 

certain criteria, it was decided to use the stateless nature of the traffic in the generated dataset. 

This process is similar to the KDD 1999 design in profiling the DARPA 1998 network traffic. 

5.2.2 Validation and labelling 

This stage aimed to validate the information extracted by Bro scripts. As such, a Perl script was 

implemented to count all existing packets and their types in the PCAP files and to compare 

these totals with what had been processed by Bro (see columns Bro and PCAP in Table 5.2). 

This comparison showed that the transformed data captured every ICMP, TCP and UDP packet 

correctly, as the totals matched. 
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Table 5.2: Packet counts comparison for all Bro, PCAP and XML files 

 

BRO PCAP XML

ARP - 14501 -

ICMP 4,316 4,316 icmp_ip

IGMP - 14 igmp

TCP 21,361,138 21,361,138 tcp_ip

UDP 306,793 306,833 udp_ip

(40 Frag.)

HOPOPT 12 ip

ICMPv6 12 0 ipv6icmp

UDP 1,459 1,459 0.0.0.0

ARP - 13,088 - -

ICMP 343 343 343 icmp_ip

IGMP - 60 60 igmp

TCP 5,816,735 5,816,735 5,796,554 tcp_ip

UDP 142,158 142,230 143,105 udp_ip

(72 Frag.)

HOPOPT 58 58 ip

ICMPv6 60 2 2 ipv6icmp

UDP 1,464 1,464 1,457 0.0.0.0

ARP - 14,771 - -

ICMP 2,299 2,299 4,598 icmp_ip

IGMP - 43 86 igmp

TCP 5,613,966 5,613,966 11,169,824 tcp_ip

UDP 130,818 130,822 263,702 udp_ip

(4 Frag.)

HOPOPT 39 78 ip

ICMPv6 39 0 0 ipv6icmp

UDP 1,209 1,209 2,412 0.0.0.0

ARP - 14,339 - -

ICMP 2,130 2,130 2,126 icmp_ip

IGMP - 14 14 igmp

TCP 8,924,769 8,924,769 8,922,334 tcp_ip

UDP 705,942 705,965 698,797 udp_ip

(23 Frag.)

HOPOPT 10 10 ip

ICMPv6 10 0 0 ipv6icmp

UDP 1,426 1,426 1,429 0.0.0.0

ARP - 14,502 - -

ICMP 14,031 14,031 14,035 icmp_ip

IGMP - 79 79 igmp

TCP 33,734,618 33,734,618 33,758,426 tcp_ip

UDP 1,218,233 1,218,287 1,228,442 udp_ip

(54 Frag.)

HOPOPT 78 78 ip

ICMPv6 78 0 0 ipv6icmp

UDP 1,447 1,447 1,447 0.0.0.0

ARP - 14,785 - -

ICMP 1,379 1,379 1,379 icmp_ip

IGMP - 14 14 igmp

TCP 24,230,487 24,230,487 24,192,695 tcp_ip

UDP 345,959 345,961 347,344 udp_ip

(2 Frag.)

HOPOPT 10 10 ip

ICMPv6 10 0 0 ipv6icmp

UDP 1,428 1,428 1,428 0.0.0.0

ARP - 16,422 - -

ICMP 2,080 2,080 2,080 icmp_ip

IGMP - 24 24 igmp

TCP 17,029,774 17,029,774 17,066,126 tcp_ip

UDP 260,896 260,935 262,237 udp_ip

(39 Frag.)

HOPOPT 24 24 ip

ICMPv6 24 0 0 ipv6icmp

UDP 1,425 1,425 1,418 0.0.0.0
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This stage also aimed to match every processed connection with its original label from the XML 

files of the ISCX2012 dataset. This was not a straight forward task as a number of problems 

were identified with the XML files during the validation stage. These challenges were addressed 

on a case by case basis. Following this stage, there were 193 features and one label (class) 

feature. A detailed list of the validation steps and each of the problems that arose is presented 

in Section 5.3, which also discusses how these problems were addressed.  

5.2.3 Extending the features space 

During this phase, a feature engineering technique was applied, to derive new features, based 

on the extracted basic features of various types of connections within a network. These newly 

derived features aimed to find similarities between different connections. Therefore, this phase 

has used Onut’s feature classification schema [15], which provides large amounts of 

information by deriving features, ranging from packet-level to connection-level views of 

network traffic. The part of this schema related to derived connection-level features (the shaded 

parts in Figure 5.2) was adopted in this work in order to extend the basic features by deriving 

Time-based and Connection-based features. 

 
Figure 5.2: Onut’s Feature Classification Schema [15]  
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Time-based features aimed to detect bursty attacks and used a sliding window of 5 seconds to 

compute these derived features (220 features). Connection-based features targeted stealthy 

attacks and used a sliding window of 100 connections to derive the same features (220 features). 

This classification schema was implemented in Java as the original implementation could not 

be obtained from the author. This implementation used the basic features listed in Table 5.3 to 

derive all 440 features. Details of every feature can be found in the feature descriptions table in 

Appendix (D). It is worth noting that the basic features, tcp_src_flags_URG_flags and 

tcp_dst_flags_URG_flags, were deleted at the cleaning phase, after the extending phase, after 

being identified as useless. 

No. Feature name  No. Feature name 

1 start_time  99d tcp_src_flags_URG_flags 

2 src_ip  100 tcp_src_flags_ACK_flags 

4 src_prt  101 tcp_src_flags_PSH_flags 

5 dst_ip  102 tcp_src_flags_RST_flags 

7 dst_prt  103 tcp_src_flags_SYN_flags 

10 protocol  104 tcp_src_flags_FIN_flags 

17 src_bytes  120b tcp_dst_flags_URG_flags 

18 dst_bytes  121 tcp_dst_flags_ACK_flags 

19 src_pkts  122 tcp_dst_flags_PSH_flags 

20 dst_pkts  123 tcp_dst_flags_RST_flags 

24 bro_service  124 tcp_dst_flags_SYN_flags 

   125 tcp_dst_flags_FIN_flags 

Table 5.3: Basic features used in Onut’s schema to extend the features set 

 

5.2.4 Balancing the dataset 

As the developers of ISCX2012 attempted to produce a dataset that resembled reality, the 

dataset following this transformation was highly imbalanced, with far fewer attack connections 

than normal ones, as illustrated in Figure 5.3. The ratio of Normal to Attack cases had an 

imbalance as high as (54,547:1) on Day 6 (16/Jun/2010). 
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Figure 5.3: ISCX2012 number of class connections for each simulation day 

 

Using such a dataset with this kind of imbalance could result in biased models. There are many 

techniques to address this issue as discussed in Chapter 2, including: using evaluation measures 

other than accuracy (such as, balanced-accuracy or G-Mean Accuracy); over or under sampling 

techniques; different cost (penalising) approaches; and/or the generation of new synthetic 

samples.  

This work adopted the approach of generating synthetic samples, as it provided the flexibility 

for researchers to include or omit the generated samples in future studies.  

Synthetic samples were generated using the DMwR package [346, 347], which includes the 

Synthetic Minority Over-sampling Technique (SMOTE) algorithm [207], in R software [321]. 

The SMOTE algorithm works, as Chawla et al. [207] detailed, by randomly sampling a new 
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instance from the line segments that connects one of the minority (Attack) observations to any 

or all of its K minority nearest neighbours. To generate a new synthetic instance, as Eq.(5.1) 

shows, the algorithm calculates the difference between the minority sample and its nearest 

neighbour using their feature vectors. A random number (between 0 and 1) is multiplied by that 

difference, and the total is added to the feature vector of the minority observation under 

consideration.  

𝑥𝑠 = 𝑟(𝑥 − 𝑥𝑘𝑖
) + 𝑥 

Eq.(5.1) 

 

where 𝑥𝑠 is a new synthetic instance, 𝑥 is the actual minority sample, 𝑥𝑘𝑖
 is one of the K minority 

nearest neighbours of 𝑥 and 𝑟 is a random number between zero and one. This process is 

repeated until the targeted number of synthetic samples are generated. Figure 5.4 illustrates an 

example of the SMOTE algorithm in a two-dimensional space, with the blue points representing 

the synthetic samples that were generated at random from the line connecting two minority (+) 

instances. This algorithm was executed with its default parameters, with K=5 nearest 

neighbours used to generate the new samples. 

 
Figure 5.4: Generation of synthetic instances using the SMOTE algorithm 
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In this phase, the SMOTE algorithm was used to generate synthetic samples of Attack 

connections only. The number of these samples was the difference between the number of 

Normal instances and the number of Attack instances (Nnormal - Nattack) in every simulation day 

except the first day (which only contained normal traffic). Any synthetic instances that 

duplicated an original instance were removed.  

During this phase, two extra features (“synthetic” and “origOrder”) were added to the new 

dataset. The “synthetic” feature was used to identify every synthetic connection by setting its 

value to one (yes) or zero (no) otherwise. The “origOrder” feature contained the order number 

of every actual record (connection) as it appeared in the original data file and zero for every 

synthetic sample. These features were added to help researchers identify any synthetic instances 

but need to be removed when any learning or prediction processes are taking place. 

5.2.5 Cleaning the dataset 

The main objective of this phase was to reduce the feature space by eliminating any useless 

features. A quick analysis was conducted of every feature in the dataset to identify any non-

changing (single value) features. During this analysis the number of unique values for every 

feature in each simulation file was counted. If a feature was found to contain the same value in 

all of the data files, or to be useful in only one data file, it was eliminated. This analysis revealed 

that there were 88 useless features, all of which were removed from the final dataset resulting 

in a total of 548 features (547 features + 1 class). Table 5.4 lists these eliminated features and 

their index numbers [which also appear in the feature description tables in Appendix (D)]. 

During the last stage of this phase two more features were generated (src_zone and dst_zone), 

which are source and destination topological zones {“GLOBAL”, “MULTICAST”, “UNICAST”, 

“UNKNOWN”, “LOCAL”, “LAN1”, “LAN2”, “LAN3”, “LAN4”, “LAN5”, “LAN6”}. These two features 

reduced the address space of the source and destination columns, and guarded against the 
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 Total feature Feature’s indexes 

Basic features 53 20a, 50a, 53a, 64a, 79a, 79b, 79c, 79d, 79e, 

79f, 79g, 79h, 79i, 82a, 86a, 86b, 86c, 86d, 

86e, 86f, 86g, 86h, 86i, 86j, 86k, 86l, 86m, 

86n, 86o, 86p, 86q, 87a, 99a, 99b, 99c, 99d, 

104a, 107a, 107b, 107c, 107d, 107e, 107f, 

119a, 120a, 120b, 125a, 128a, 128b, 128c, 

128d, 128e, 128f 

Connection based features 19 372a, 375a, 376a, 395a, 400a, 405a, 405b, 

405c, 405d, 450a, 450b, 455a, 505a, 505b, 

510a, 533a, 539a, 539b, 539c 

Time based features 16 194a, 199a, 204a, 204b, 204c, 204d, 249a, 

249b, 254a, 304a, 304b, 309a, 332a, 338a, 

338b, 338c 
Table 5.4: Indexes of eliminated features 

 

profiling of network traffic being too specific (biased) in relation to certain connections. The 

end result of this phase was a feature set of 550 features (549 features + 1 class). A complete 

list of the extracted and derived features, along with their descriptions, is provided in 

Appendix (D); the deleted features have been distinguished by concatenating a sequence of 

alphabetic characters by their order number as well as being marked in red and italicized. (The 

deleted features were kept in the list of features for reference purposes.) 

5.3 Details of Validation and Labelling Phase 

This section details the validation and labelling phase. As the processing steps for validation 

and labelling were very similar, they were undertaken in one phase.  

This phase validated the results from Bro to ensure every connection in the PCAP files had 

been extracted correctly. Every connection was labelled with the correct tag provided by the 

flow description files (XML).  

The steps, findings, and resolutions of the validation stage are discussed next. The labelling 

process was conducted by mapping the connections from Bro with their matches in the XML 

files. This mapping exercise faced a number of difficulties that were identified during 

validation. 
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Before any validation process could take place, all of the PCAP files were pre-processed and 

some basic information was formatted into a tabular form. This pre-processing generated a text 

file with all packet directions and their counts for every PCAP file. These text files were used 

in the later stages to conduct the analyses discussed below. Table 5.5 provides an example of 

such a text file. 

       
ip_version protocol source_ip source_port destination_ip destination_port packets_count 
4 tcp 12.180.55.140 80 192.168.2.106 2460 169 
4 tcp 192.168.2.106 2460 12.180.55.140 80 109 
4 tcp 12.180.55.140 80 192.168.2.106 2461 111 
4 tcp 192.168.2.106 2461 12.180.55.140 80 70 
4 udp 116.197.169.12 53 192.168.5.122 19195 1 
4 udp 192.168.5.122 19195 116.197.169.12 53 1 
4 udp 116.197.169.12 53 192.168.5.122 4807 1 
4 udp 192.168.5.122 4807 116.197.169.12 53 1 
4 igmp 192.168.4.120  224.0.0.22  2 
4 igmp 192.168.4.121  224.0.0.22  12 
4 icmp 192.168.5.122  98.124.196.1  3 
4 icmp 209.210.145.86  192.168.5.122  1 
       

Table 5.5: Example of total packets in every communication direction 

 

It is worth noting that this example lists the packet directions not the connections between hosts. 

For example, in Table 5.5, the packet directions and counts of the first record between host 

(12.180.55.140:80) and (192.168.2.106:2460) could form one or multiple connections. It states 

that a total of 169 packets were transmitted from 12.180.55.140:80 to 192.168.2.106:2460. This 

formatting is useful to determine, later in the validation stage, which direction or connection 

group has inconsistent counts. 

All XML files were then converted into a tabular format and saved in text files. This step 

reduced the size of files and eliminated any unwanted information ahead of the analysis. Each 

XML flow record was represented by the 14 features listed in Figure 5.5. The “duration” 

feature (stopDateTime - startDateTime) was computed using the converting script as it was not 

present in the XML files. 

All references to the PCAP and XML files in the discussion below refer to these files. 
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startDateTime : Connection start time 
stopDateTime : Connection finish time 
Duration : Connection duration in seconds (computed by the script) 
protocolName : Protocol name used by this connection {igmp, ip, udp_ip, icmp_ip, tcp_ip, ipv6icmp} 
src_ip : IP address of the machine that started this connection (source) 
src_port : Source port number 
dst_ip : IP address of the destination machine 
dst_port : Destination port number 
appName : Application name used to establish this connection 
src_pckts : Number of packets sent by the source machine 
src_bytes : Total bytes sent by the source machine 
dst_pckts : Number of packets sent by the destination machine 
dst_bytes : Total bytes sent by the destination machine 
conn_tag : Connection status {Normal, Attack} 
   

Figure 5.5: Features in the flow files (XML) in all analyses. 

 

5.3.1 Validation 

In order to validate the results obtained from Bro, a two phased validation was undertaken. In 

the first phase, a general packet count was made of every IP protocol {IPv4, IPv6} versus 

every transport protocol {ICMP, TCP, etc.} for each PCAP file. A Perl script was implemented 

and executed to parse the PCAP files; self validation was undertaken by counting the size of 

every frame processed and comparing the total size of all frames with the total size of the PCAP 

file in order to check that every packet had been successfully processed. The results from this 

analysis were compared with the results from Bro (src_packets and dst_packets features) to 

ensure every targeted packet had been correctly captured and processed. Table 5.2 sets out the 

number of packets for Bro and PCAP. It shows that Bro successfully detected all targeted 

packets. Minor differences, especially in the UDP connections, were the result of fragmented 

packets, which Bro usually reassembled before passing them on to the event handler.  

Another difference arose in the ICMP traffic within the IPv6 connections. A careful analysis 

revealed that all of the HOPOPT packets (IPv6 packet with hop-by-hop option is being set) in 

the IPv6 traffic were basically ICMP packets, which should have been handled by each of the 

hosts receiving these HOPOPT packets. Bro’s parser was therefore able to extract these 
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ICMPv6 packets, a fact which can be confirmed by comparing the number of packets in both 

protocols in Table 5.2. 

The second phase aimed to provide further validation of the results obtained by Bro. In this 

phase, the number of packets in every direction was computed. A Perl script was implemented 

and executed to construct a list of all the communication directions and the number of packets 

transmitted in each direction using the results from Bro. They were then compared with the 

communication directions of the PCAP files that had been pre-processed, as the example shown 

in Table 5.5. This analysis revealed that Bro failed to determine the right direction of some 

UDP packets for only two of the UDP connections. A manual analysis of this issue revealed a 

bug in Bro’s UDP analyser which did not handle certain UDP connections in the correct way. 

5.3.2 Labelling 

After validating the results from Bro, the same validation process was undertaken on the 

labelled flow (XML) files within the ISCX2012 dataset. This validation process revealed a 

number of problems with these files which are listed in Section 5.3.3.  

These problems made the labelling process more challenging, as linking connections between 

PCAP and XML was not straightforward. For example, it was not possible to use time as part 

of the mapping keys as the XML files had used a human readable time format; this format did 

not extend timestamp precision - after conversion - as the ones in the PCAP files. Also the time 

difference between converted times and the PCAP’s timestamps were inconsistent between one 

connection and another. Therefore, matching keys, such as the 

key (start_time,src_ip:port,dst_ip:port) was not helpful. 

For these reasons and the problems discussed in Section 5.3.3, the strategy outlined below was 

developed to enable the correct mapping of connections, and hence, an accurate labelling 

process. This strategy assumed that every connection in the dataset (PCAP) was normal except 
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for those which were labelled as attacks in the XML files. The mapping process therefore 

focused on matching connections between PCAP and XML by their chronological order.  

In this mapping process, all connections between two hosts were aggregated by a single key. 

The best matching key for this process was a combination of transport protocol {ICMP, TCP, 

UDP} and the sorted hosts’ addresses and ports. As a result, every key was of the form 

KEY(protocol, IP1:PORT1, IP2:PORT2). For ICMP traffic, only transport protocol and IP 

addresses were used to form the key (KEY(protocol, IP1, IP2)).  

Listing 5.1 illustrates the labelling process for PCAP connections. Every connection in the 

PCAP was added to one of the connection sets mapped by one key, as presented by lines 1-10. 

The same mapping process was applied to all connections in the XML file (lines 12-22) to 

produce a key-connections map for the XML connections. Finally, as shown in lines 24-29, 

key-connections maps for all PCAP and XML connections were compared, and every 

connection with the key keyi in PCAP was mapped to its chronologically matched connection 

with the matching key keyj in XML. This mapping process is further illustrated in Figure 5.6. 

5.3.3 Problems with labelled flow (XML) files 

This section sets out the main problems that were identified with the ISCX2012 dataset. It is 

worth noting that all these issues were communicated to the authors, but no response was 

received from them. All of the problems listed below were found in the labelled flow (XML) 

files, which had been used to label connections in the PCAP files. Due to the diverse range of 

issues, most had to be addressed individually. 

Problem 1: Wrong total byte value 

It is not clear how the authors of the dataset calculated the “src_bytes” and “dst_bytes” 

(<totalSourceBytes> and <totalDestinationBytes>) for each connection in the XML files. It  
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Algorithm: Label PCAP connections 
Input: 

Result: 

 

pcap.connections,    xml.connections  

labelled PCAP connections 

 
1 pcap.keyMaps <- {} 
2 for (conn in pcap.connections) do 
3   key <- [connproto, sort(connsrc_IP, conndst_ip)] 
4   if(connproto == "tcp"  ||  connproto == "udp") 
5      key <- [connproto, sort(connsrc_IP:connsrc_port, conndst_IP:conndst_port)] 
6  
7   id    <- connid 
8  
9   pcap.keyMaps[key] <- pcap.keyMaps[key] ∪ {id} 
10 done 
11  
12 xml.keyMaps <- {} 
13 for (conn in xml.connections) do 
14   key <- [connproto, sort(connsrc_IP, conndst_ip)] 
15   if(connproto == "tcp"  ||  connproto == "udp") 
16      key <- [connproto, sort(connsrc_IP:connsrc_port, conndst_IP:conndst_port)] 
17  
18   id    <- connid 
19   label <- connlabel 
20  
21   xml.keyMaps[key] <- xml.keyMaps[key] ∪ {id,label} 
22 done 
23  
24 for (keyi  in  pcap.keyMaps) do 
25   if(keyi exists in xml.keyMaps   &&   labels in xml.keyMaps[keyi] has Attack) 
26      label chronologically matched connections between xml.keyMaps[keyi] and pcap.keyMaps[keyi] 
27   else 
28      label connections in pcap.keyMaps[keyi] as Normal 
29 done 
  

Listing 5.1: Pseudo code of connection labelling through mapping connections between PCAP and XML 

 

pcap.keyMaps  
     :       : 
     ├── keyi 
     │       ├── conni,1 
     │       ├── conni,2 
     │       ├── : 
     │       └── conni,n 
     :         

xml.keyMaps  
     :       : 
     ├── keyj 
     │       ├── connj,1,Normal 
     │       ├── connj,2,Attack 
     │       ├── : 
     │       └── connj,n,Attack 
     :         

Figure 5.6: Connection matching by mapping keys 

 

was not possible to match the values of those features for every connection with any number of 

bytes in the PCAP files on any level (frame bytes, IP bytes, or payload bytes). As it was not 

possible to use these two features in the process that matched the PCAP connections and the 

XML flows, they were discarded and removed from any further analysis or matching process. 
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Problem 2: Wrong IPv6 addresses (0.0.0.0) 

During the transformation process, it was possible to identify connections with an invalid source 

and destination IP address as their addresses were “0.0.0.0”. For example, filtering all 

connections in the XML files, where the protocol name was either “ip” or “ipv6icmp” resulted 

in the following source and destination IP addresses: 

• <destination>0.0.0.0</destination>   

• <source>0.0.0.0</source>   

Based on this finding, which was supported by the ICMPv6 connections in the 

TestbedSatJun12Flows.xml, it was assumed that every connection with an “0.0.0.0” IP 

address was an IPv6 connection. Using this assumption, matching the number of packets 

between PCAP and XML files became much more consistent, especially for UDP connections. 

This analysis, as set out in Table 5.2 (see columns PCAP and XML), revealed that all flows in 

XML with the protocol name “ip” were IPv6 flows where the packet protocol number was set 

to zero (HOPOPT). It also revealed that none of the IPv6 addresses (i.e. those that were present 

in the PCAP files) had ever appeared in any of the labelled flow files. Table 5.6 lists all of the 

unique IPv6 addresses as detected in the PCAP files. 

Simulation day IPv6 Addresses set 

12/Jun/2010 fe80:0:0:0:5c29:ff4:d3e7:b80d 
ff02:0:0:0:0:0:0:16 
ff02:0:0:0:0:0:0:2 
ff02:0:0:0:0:0:1:2 
ff02:0:0:0:0:0:1:3 

13/Jun/2010 - 17/Jun/2010 fe80:0:0:0:5c29:ff4:d3e7:b80d 
ff02:0:0:0:0:0:0:16 
ff02:0:0:0:0:0:1:2 
ff02:0:0:0:0:0:1:3 

Table 5.6: IPv6 address as in PCAP files 

 

Based on these findings all flows with the protocol name “ip” were treated as IPv6 in the 

matching process. It was fortunate there were not any attack connections within this group of 

traffic, as it would have been impossible to label them. 
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Problem 3: Duplicate connections in labelled flow (XML) files 

Table 5.2 (see columns PCAP and XML) compares the total number of packets in each XML 

file with the number in each PCAP file for each day. The table highlights where there were 

more packets in the XML files than actually existed (italic, underlined and in red). Further 

investigations were then undertaken to identify any duplicate connections in those labelled 

flows (XML) files. 

Table 5.7 shows the number of connections and any copies (duplicates) in those XML files. 

For example, for the TestbedMonJun14Flows.xml file (14/Jun/2010), the information in the 

table can be interpreted as follows: 

• 171,322 unique connections, 

• There were 26 different connections with 2 copies (instances) each, 

• There were 2 other connections with 3 copies (instances) each, 

In this analysis, a full connection record -with all its fields’ values as in these XML files- was 

used to match other records. If two connection records differed by a single character or digit, 

they were not matched. As Table 5.7 shows, all of the labelled flow (XML) files contained 

duplicate records, apart from the TestbedThuJun17-*.xml file (17/Jun/2010), while the 

TestbedSunJun13Flows.xml file (13/Jun/2010) was the worst file in terms of duplication, as 

it had no unique record. All duplicates were removed before the matching process took place. 

Problem 4: Mismatched connection label counts between paper[14] and XML files 

In an attempt to validate the total number of labels, a comparison was made between the number 

of classes (i.e. the number of connections that had been classified as Normal as opposed to 

Attack) for every simulation day in the labelled flow (XML) files, and those presented in the 
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Simulation day 
Number of 

connections 

Number 

of copies 

12/Jun/2010 133,191 1 

1 2 

13/Jun/2010 136,584 2 

550 4 

24 6 

2 8 

14/Jun/2010 171,322 1 

26 2 

2 3 

15/Jun/2010 570,744 1 

474 2 

2 3 

16/Jun/2010 522,241 1 

8 2 

2 3 

17/Jun/2010 397,595 1 
Table 5.7: Number of duplicate connections 

 

authors’ paper [14]. Table 5.8 (see columns Paper and XML) shows the number of mismatched 

counts (in red italic), although the total number of connections (Normal+Attack) adds up. 

Table 5.8 also presents the number of labels in the transformed dataset (Bro columns), based 

on the transformation view of connections. It shows that the number of attack connections in 

the Saturday and Monday traffic files were greater than those in the authored paper and XML. 

An investigation into this issue revealed that this was due to the fact that the XML files had 

bundled more packets into connections than they were supposed to. These packets should have 

been split into more connections as they were not complete connections. However, it seems that 

whatever tool the authors of the ISCX2012 dataset used did not follow network standards and 

that has produced the opposite effect to the split connections problem as discussed below under 

Problem 5. For example, a comparison of the attack connections in Monday’s (14/Jun/2010) 

traffic between Bro and XML, and the number of packets involved in these connections, 

revealed that Bro identified fewer packets than the XML file. In Bro’s results, out of 6,422 

attack connections there were a total of 141,926 TCP packets, while in the XML file there were 
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165,755 packets in 3,721 TCP attack connections. Another reason for this phenomenon is the 

fact that some of the ICMP connections in the XML files aggregated exchanged sequences of 

ICMP packets between two hosts, whereas the Bro script used to process the PCAP files treated 

every ICMP packet as a single connection.  

  Tag Count 

  Paper [14]  XML Bro 

  Normal Attack Normal Attack Normal Attack 

Fri 11 JUN 378,667 0     

Sat 12 JUN 131,111 2,082 131,107 2,086 164,545 2,123 

Sun 13 JUN 255,170 20,358 255,170 20,358 168,947 10,037 

Mon 14 JUN 167,609 3,771 167,604 3,776 213,798 6,422 

Tue 15 JUN 534,320 37,378 534,238 37,460 633,388 35,260 

Wed 16 JUN 522,263 0 522,252 11 600,017 11 

Thu 17 JUN 392,392 5,203 392,376 5,219 409,090 4,959 
Table 5.8: Comparison of number of labels between authored paper, XML files, and PCAP files 

 

Extending this analysis to the description provided on the dataset’s website [348], the 

description was found to be misleading. Table 5.1 summarises this description, which reported 

the traffic of days, Sat (12/Jun/2010) and Wed (16/Jun/2010), as “Normal Activity. No malicious 

activity”. However, the published paper and the XML files showed contradictory figures. 

With all these discrepancies it was apparent that the labelled flows (XML) reflected the ground 

truth of the traffic and the labels provided were used to tag the transformed dataset. 

Problem 5: Split connections 

Even after removing duplicate connections from the XML files, the process of matching PCAP 

and XML connections was not consistent. A further analysis revealed that there were multiple 

connections in the XML files that should have been grouped as a single connection. For 

example, in TestbedTueJun15-*.xml (15/Jun/2010) the 28 connections set out in Table 5.9 

initially formed only one connection. This was confirmed by testing the PCAP file for the 

simulation day on BRO [16], TSHARK [349] and TCPTRACE [350] tools, where all of these 
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had treated the packets exchanged between those hosts with those port numbers 

(192.168.2.110:3311 and 192.168.2.112:6667) as a single connection. 

             
2010-06-15T15:53:17 2010-06-15T15:54:52 tcp_ip 192.168.2.110 3311 192.168.2.112 6667 IRC 9 726 10 2186 Attack 
2010-06-15T15:56:30 2010-06-15T15:56:31 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T15:58:07 2010-06-15T15:59:44 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 5 397 3 222 Attack 
2010-06-15T16:01:19 2010-06-15T16:01:55 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 10 1096 8 549 Attack 
2010-06-15T16:03:21 2010-06-15T16:04:47 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 9 1070 8 558 Attack 
2010-06-15T16:06:18 2010-06-15T16:07:56 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:09:32 2010-06-15T16:09:32 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:11:10 2010-06-15T16:12:47 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:14:24 2010-06-15T16:14:24 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:16:01 2010-06-15T16:17:38 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:19:15 2010-06-15T16:20:51 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:22:27 2010-06-15T16:22:27 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:24:03 2010-06-15T16:25:39 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:27:16 2010-06-15T16:28:53 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:30:30 2010-06-15T16:30:30 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:32:06 2010-06-15T16:33:43 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:35:19 2010-06-15T16:36:56 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:38:31 2010-06-15T16:38:32 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:40:08 2010-06-15T16:41:43 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:43:21 2010-06-15T16:44:57 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:46:34 2010-06-15T16:46:34 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:48:10 2010-06-15T16:49:46 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:51:22 2010-06-15T16:53:00 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:54:35 2010-06-15T16:54:35 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T16:56:11 2010-06-15T16:57:48 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T16:59:24 2010-06-15T17:01:00 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 4 288 2 158 Attack 
2010-06-15T17:02:37 2010-06-15T17:02:37 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 2 144 1 79 Attack 
2010-06-15T17:04:13 2010-06-15T17:06:45 tcp_ip 192.168.2.112 6667 192.168.2.110 3311 IRC 9 1260 7 495 Attack 
             

Table 5.9: Example of a split connection 

 

As can be seen from Table 5.9, the gap between every two connections is around 90 seconds. 

It seems that whatever tool the authors used to analyse these PCAP files timed out any TCP 

connection after 90 seconds or so, which is an unreasonable timeout period for a TCP 

connection. Therefore, in order to address this problem, the number of connections for every 

two hosts in the XML files was compared with their respective PCAP files. Any difference in 

the number of connections triggered the aggregation process, which grouped these XML split 

connections into a single connection. 

Problem 6: Connection with non-existing IP addresses 

While it was acceptable to find a connection in a PCAP file but not in an XML file, finding a 

connection in an XML file but not in a PCAP file raised concerns about the reliability of the 

XML files. Therefore, during the validation stage of the transformation process, the packet 

directions and their counts were reconstructed using the relevant fields from the labelled flow 

(XML) files. The packet directions were then compared with those in the PCAP files (which 

had been pre-processed earlier and are shown in Table 5.5) to identify all of the connections 

with non-existing IP addresses, as illustrated by Listing 5.2.  
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Algorithm: Packets counts of PCAP and XML connections 
Input: 

Result: 

 

pcap.packets,    xml.connections  

Packet counts comparison between PCAP and XML 

 
1 pcktCounts <- {} 
2 for (pckt in pcap.packets) do 
3     key <- [pcktproto, pcktsrc_IP, pcktdst_ip] 
5     if(pcktproto == "tcp"  ||  pcktproto == "udp") 
5        key <- [pcktproto, pcktsrc_IP:pcktsrc_port, pcktdst_IP:pcktdst_port] 
6  
7     pcap.pcktCounts[key] <- pcap.pcktCounts[key] + 1  
8 done 
9  
10 xml.pcktCounts <- {} 
11 for (conn in xml.connections) do 
12     key1 <- {connproto, connsrc_IP, conndst_ip} 
13     key2 <- {connproto, conndst_ip, connsrc_IP} 
14     if(connproto == "tcp"  ||  connproto == "udp") do 
15        key1 <- {connproto, connsrc_IP:connsrc_port, conndst_ip:conndst_port} 
16        key2 <- {connproto, conndst_ip:conndst_port, connsrc_IP:connsrc_port} 
17     done 
18  
19     xml.pcktCounts[key1] <- xml.pcktCounts[key1] + connsrc_packets 
20     xml.pcktCounts[key2] <- xml.pcktCounts[key2] + conndst_packets 
21 done 
22  
23 Compare packets counts between pcap.packets and xml.pcktCounts  
  

Listing 5.2: Pseudo code of comparing number of packets between PCAP and XML connections 

 

This analysis filtered out many connections, including all IPv6 flows. For example, Table 5.10 

presents part of two records as they appeared in the labelled flow (XML) files. 

           
... protocolName src_ip src_port dst_ip dst_port ... src_pckts ... dst_pckts ... 
... tcp_ip 192.168.1.104 22441 216.246.64.49 80 ... 17 ... 11 ... 
... tcp_ip 192.168.1.104 22445 216.246.64.66 80 ... 108 ... 99 ... 
           

Table 5.10: Example of XML connections 

 

These two connections were translated into the following format as set out in Table 5.11 so 

they could be matched with PCAP records for that simulation day. This was done in order to 

determine whether a similar packet direction existed in the PCAP files, and if it did, to check 

whether the number of packets matched. 

       
ip_version protocol source_ip source_port destination_ip destination_port packet_count 
4 tcp 192.168.1.104 22441 216.246.64.49 80 17 
4 tcp 216.246.64.49 80 192.168.1.104 22441 11 
4 tcp 192.168.1.104 22445 216.246.64.66 80 108 
4 tcp 216.246.64.66 80 192.168.1.104 22445 99 
       

Table 5.11: Example of number of XML packet for each communication direction 
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Table 5.12 presents the total number of connections for the labelled flow (XML) files for every 

simulation day in which at least one of its addresses or ports did not match any of those in the 

PCAP file. These totals also include all IPv6 connections. 

Simulation day 
Number of 

connections 

12/Jun/2010 654 

13/Jun/2010 564 

14/Jun/2010 475 

15/Jun/2010 360 

16/Jun/2010 442 

17/Jun/2010 1,897 
Table 5.12: Number of non-matched flows in the XML Files 

 

A further analysis was performed to identify the number of matching and missing IP:PORT 

combinations between the PCAP and XML files. Table 5.13 presents the results of this analysis. 

The PCAP/XML cells show the number of unique IP:PORT combination that were present in 

both files. The PCAP/-XML cells show the number of unique IP:PORTs that did not exist in 

the XML files but were present in the PCAP files and vice versa for the -PCAP/XML cells. 

   XML -XML 

Sat 12 Jun 
PCAP 96,572 10,557 

-PCAP 324 - 

Sun 13 Jun 
PCAP 83,955 17,767 

-PCAP 52 - 

Mon 14 Jun 
PCAP 118,637 12,659 

-PCAP 556 - 

Tue 15 Jun 
PCAP 181,373 10,847 

-PCAP 2,035 - 

Wed 16 Jun 
PCAP 170,840 7,578 

-PCAP 170 - 

Thu 17 Jun 
PCAP 139,160 6,201 

-PCAP 311 - 
Table 5.13: Number of unique IP:PORTs in the PCAP and XML files 

 

Some attack connections fell into this latter category which made labelling these connections 

difficult. To address this problem, a partial matching strategy was used. This strategy tested all 

non-matched XML connections with all non-matched PCAP connections. If any two 
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connections partially matched then they were flagged as a possible match for manual checking. 

A few cases were mapped manually as only attack connections were used for the matching 

process and most of their keys either mapped fully or not at all. 

Problem 7: Connections with wrong directions 

Further analysis revealed that some connections in the XML files had the wrong direction. For 

example, in the labelled flows TestbedSunJun13Flows.xml file (13/Jun/2010), the duplicate 

connections set out in Table 5.14 were manually investigated. 

startDateTime stopDateTime duration 
protoco
lName src_ip 

src_ 
port dst_ip 

dst_ 
port appName 

src_ 
pckt
s 

src_ 
byte
s 

dst_ 
pckt
s 

dst_ 
byte
s 

2010-06-13T16:37:36 2010-06-13T16:38:39 63 udp_ip 0.0.0.0 546 0.0.0.0 547 Unknown_UDP 0 0 7 1085 
2010-06-13T16:37:36 2010-06-13T16:38:39 63 udp_ip 0.0.0.0 546 0.0.0.0 547 Unknown_UDP 0 0 7 1085 
             

Table 5.14: Example of connections with the wrong direction 

 

By treating these two flows as duplicates and as IPv6 connections, the communication direction 

can be represented as follows: 

• 0.0.0.0,546 → 0.0.0.0,547, 0 packets  

• 0.0.0.0,547 → 0.0.0.0,546, 7 packets  

Searching for such patterns in the packet directions of the PCAP files yielded the following 

results: 

• Pattern “udp,.*,547,.*,546”: returned no results, even though the flow record showed 

there were 7 packets sent in this direction, 

• Pattern “udp,.*,546,.*,547”: returned the record shown in Table 5.15, 

       
ip_version protocol source_ip source_port destination_ip destination_port packets_count 
6 udp fe80:0:0:0:5c29:ff4:d3e7:b80d 546 ff02:0:0:0:0:0:1:2 547 1183 
       

Table 5.15: Example of a UDP Connection’s wrong direction 
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These results showed a mismatch between the total number of packets exchanged. They also 

raised concerns about setting the source port for the flow as 546 and the destination port as 547, 

when all traffic direction for this flow should have been the other way around. 

The main problem in such cases was the extra complication involved in the validation. These 

problems might have raised lots of inconsistencies, even if the traffic did not affect the actual 

labelling process, as they did not exist in the attack connections. 

Problem 8: Connection with source packets ZERO 

The example discussed under Problem 7 led to further analysis to identify all the flows with 

zero source packet counts. Table 5.16 presents the total number of such connections for each 

simulation day. This issue was another reason that packet counts were not used at the labelling 

stage to match the connections between the PCAP and the XML flows. 

Simulation day 
Number of connections with 

ZERO source packets 

12/Jun/2010 377 

13/Jun/2010 706 

14/Jun/2010 438 

15/Jun/2010 874 

16/Jun/2010 1,063 

17/Jun/2010 1,481 
Table 5.16: Number of connections with zero source packets 

 

Problem 9: Connection with wrong source or destination packet 

Further analysis was undertaken to identify any connections where the total number of packets 

exchanged did not match those in the PCAP files (Table 5.17). During this analysis the packet 

directions were reconstructed from the labelled flow (XML) files and compared with the PCAP 

files (see Listing 5.2). All flows used to reconstruct those packet directions that did not match 

the number of packets in the PCAP files were flagged up. 
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Simulation day 

Number of connections with 

the wrong number of 

packets  

12/Jun/2010 21,428 

13/Jun/2010 272,014 

14/Jun/2010 22,813 

15/Jun/2010 67,439 

16/Jun/2010 93,297 

17/Jun/2010 45,629 
Table 5.17: Number of connections with the wrong number of packets 

 

This mismatch in the number of packets made the process of mapping connections between 

PCAP and XML files difficult and would have raised doubts about the validity of the resultant 

dataset if it was not explained here. 

5.4 Server Specifications 

This experiment was run using a server with 2U Supermicro chassis; 8x host-swap 2.5" 

SAS/SATA disk bays; Supermicro X8DTU-LN4F+ motherboard; Dual Intel Xeon E5620 

(quad core) ; 24GB RAM (6 x 4GB DDR3 ECC RDIMM) ; 4x 1TB SATA (RAID10) and 4x 

1Gb Ethernet. It used a Windows Server 2012 R2 Datacentre (64-bit) Operating System [351]. 

A virtual machine (VM) was created on Hyper-V with 4 Virtual Processors and 4 GB RAM. 

This VM was used to host the SecurityOnion (12.04.5.1-20150205) operating system [352], 

which had Bro (2.4), Perl (5.18.2) [353], TCPTRACE (6.6.7) [350] and TShark (1.6.7) [349] 

installed to run these experiments. Bro was chosen to process the PCAP files because of its 

high-speed, extensibility and ability to extract features at multiple levels (frame header, IP 

header and transport headers) at the same time. It also had the capabilities to extract the content 

of unencrypted traffic if needed. TShark and TCPTRACE were used to validate the results of 

Bro’s TCP connections, which provided confirmation that the numbers in the generated dataset 

added up for all the targeted traffic. Perl was used to map the processed connections to their 

correct labels in the traffic flow provided by the ISCX2012 dataset. “DMwR” package 
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(0.4.1) [346] in R software [321] was used to run the SMOTE algorithm [207] to generate the 

synthetic attack traffic. 

5.5 Limitations 

The transformation process discussed above produced a large dataset in the network security 

domain that addressed many of the limitations of other known datasets in the field. However, 

there were still a number of limitations to the process that was used. 

Firstly, even though the ISCX2012 dataset contained all of the exchanged payload unencrypted, 

this transformation did not generate any content based features that were similar to those in 

KDD [155], NSL-KDD [157] or gureKDD [160-162]. The decision to make the generation 

process generic was taken to avoid any complications in a real life environment, such as 

encryption and privacy concerns as explained in Section 5.2.1. In addition, another reason was 

the fact that the payload of every service required a different set of features specific to that 

service, so producing a general set of features to profile the content of all the different services 

would have been challenging. Moreover, this kind of profiling could be addressed through 

another line of research, where service specific IDS could be investigated. 

Secondly, this transformation adopted the settings suggested by Lee et al. [354-356], 

Stolfo et al. [155] and Perona et al. [162] in using a window of 100 connections to derive the 

connection-based features and followed the documentation of Onut et al. [15] in using a 

window of 5 seconds for the time-based features. It is not clear if these sizes are for all network 

traffic and targeted profiling, or whether they should be adapted to set the right window size 

for specific traffic. Further investigation is required to analyse the effect of different 

connections and different time window sizes on different traffic patterns and attack types. 

Thirdly, the SMOTE algorithm was used to generate synthetic traffic and balance the dataset. 

However, it is not clear if the SMOTE algorithm was the best choice for a such domain, i.e. 
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network security, as the values of a connection feature are not actually random because of the 

standards governed by networking protocols. Any instances generated by the SMOTE 

algorithm which introduced randomness could cast doubt on the validity of those samples. 

Therefore, as this issue might have affected the quality of the dataset, the generation process 

ensured that every connection was identifiable. Researchers can omit these synthetic instances, 

or even use the original connections in the dataset, to come up with their own balanced version 

using whatever technique best fits their research aim.  

Fourthly, the labelling of this dataset used the tags provided within the XML files which only 

provide binary options (Normal or Attack). Although, different attack scenarios were 

performed in the ISCX2012, further investigation would have been required to distinguish 

them. Due to time limitations, the binary labels provided by the flow (XML) files were used. 

Finally, this transformation process assumed that all connections in the dataset were normal 

except for those labelled otherwise in the XML files. This decision was dictated by the issues 

already discussed in relation to the ISCX2012 dataset which effected the mapping and labelling 

process. For example, a processed connection (from the transformation process) could have 

been mapped to a number of split connections from the XML files (as discussed in Problem 5 

in Section 5.3.3), where the split connections had mixed labels. In such cases Attack was used 

to label these connections in the resultant dataset. 

5.6 Summary 

This chapter has outlined the transformation process of the UNB ISCX 2012 dataset into a 

KDD-like format. This transformation took into account many of the lessons learned during the 

analysis of the KDD 1999 dataset [1] and the investigation of the flow files in the ISCX2012 

dataset. These lessons could be summarised as guidelines for dataset generators and authors 

who require a comparable transformation as follows: 
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1. Capture every targeted packet. This requirement ensures that no packet is dropped or 

neglected without valid reason. In any transformation, the total number of packets in the 

original (raw) dataset should match the resultant (transformed) dataset.  

2. All values (the number of packets, bytes sizes, durations, timestamps, etc.) should be 

computed correctly. This is to address the limitation of using nonstandard tools to 

perform packet processing. For this reason, this experiment used well-known software 

(Bro) for flow processing. Another possible obstacle is the misconfiguration by the tool 

used, which could overlook some traffic which would in turn result in a loss of 

information. Also the total number of packets in the PCAP files must be equal to the 

sum of packets for all profiled connections. With this overview any mismatches can 

then be investigated. 

3. Correctly extract every IP address. This is similar to all IPv6 addresses in labelled 

flow (XML) files in the ISCX2012 dataset not being processed correctly, resulting in 

useless data. 

4. Use timestamps rather than the human readable date/time format, (or use both). This is 

because the human readable date/time format will not translate accurately or with the 

precision of the original timestamp when converted back to match connections. 

5. Use multiple standard tools or libraries to ensure the same view of connections and to 

provide guidance when any differences arise (TCPTRACE, vs tShark, vs BRO, etc.) 

between tools. Differences usually arise when a tool is configured in such a way that it 

is not readily accepted in production environments; this could be picked up when 

different views of the same traffic are produced by multiple standard tools. 

6. Ensure that every flow direction is correctly represented. This is to avoid any 

problems due to a code error or a tool bug that might mix up flow processing, and 
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aggregate packets in the wrong direction which would affect the quality of the 

transformed data.  

7. Transformation should be based on a clear definition of connections. Ensure that 

every connection is clearly defined for every targeted protocol, so that the start and end 

criteria of such connections are clearly defined. For example, some tools will define a 

TCP connection from the first SYN packet to the last FIN packet, while others might 

define the start of a connection as being from the successful completion of the 

handshake phase to the last FIN packet or a certain idle period. Consistent definitions 

will ensure the transformation process is reproducible by other researchers. 

As a result of following these guidelines, it is believed that the resultant dataset (STA2018) of 

this study provided the most accurate profile for every connection in the UNB ISCX 2012 

dataset. The STA2018 will be used for the experiments of the following chapters. 
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Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection  

 

Chapter Six 

Effect of Feature Selection and Data 

Balance on Adaptive Cutoff for Network 

Intrusion Detection 
 

This chapter extends the analysis outlined in Chapter 4 to a domain specific problem, namely, 

Network Intrusion Detection. It looks at the effect of data balance and feature selection on 

the performance of detection models before and after the adaptive cutoff (threshold) has been 

applied to the dataset being evaluated. It also considers the use of different salient features in 

combination with data balancing of the training data in developing prediction models using 

different ML algorithms (C5.0, Random Forest and SVM). The effects of various combinations 

of these parameters on the performance of these models (G-Mean Accuracy) in predicting 

traffic with previously unseen attacks, different statistical properties, and different feature sets 

are analysed. This analysis is based on a new dataset (STA2018) that was generated specifically 

for this analysis and the generation process was outlined in Chapter 5. 

6.1 Introduction 

As discussed earlier, in Chapter 2, feature selection plays an important role in the model 

generation process. However, the features selected for the model generation phase will not 

necessarily reflect the same important features of the evaluated data if they introduce different 

statistical properties. This phenomenon is widely recognised in highly dynamic environments, 

such as network traffic, where traffic on one day is likely to have different important features 

to traffic on other days due to changes in traffic patterns. This effect is not usually captured in 
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the conventional k-folds Cross-Validation technique when applied to the (dataset) traffic of all 

days collectively. That is because the data in such an approach are partitioned using random 

sampling, and the models are generated from a larger proportion of the full dataset, where the 

feature selection process has been dictated by the overall properties of the full data. In a dynamic 

environment, data will evolve through time, producing shifts in feature importance resulting in 

different feature sets to those used to train the model. In the data stream domain (which is out 

of scope for this project), changes in feature importance is considered an important indication 

of concept drift [135, 138, 140, 141, 279, 339, 340], which trigger a model updating/training 

phase. This chapter therefore analyses the applicability of the threshold adaptation approach in 

reducing, or eliminating, the effects of differences between traffic patterns (concept drift) on 

the performances (accuracy) of different prediction models. These models were generated with 

different feature sets (which were selected based on the training data alone), and different data 

balances. Their performance was then assessed against the traffic from other days, which would 

have new patterns with novel attacks and different feature sets. 

In the experiments discussed in this chapter, the Random Forest (RF) algorithm, first proposed 

by Breiman [171, 357-360], was used for the feature selection task. It is one of the most 

important and widely used algorithms in the ML domain, as it can perform many tasks, 

including classification and regression. One of the RF’s strongest properties is its ability to rank 

features by their importance. RF supports wrapper methods (see Section 2.2.3.1) and can 

compute feature importance by two approaches: Mean Decrease of Accuracy (MDA) and 

Mean Decrease in Gini (MDG). 

6.1.1 Feature importance measures 

The Mean Decrease of Accuracy (MDA) [297, 360] is computed by measuring the Out-Of-

Bag (OOB) error for every data record in the training data. The OOB error is the average 

classification error for every observation, ni, by trees that did not use this observation (ni) in 
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their training process [169]. To compute the MDA of features, every feature, Fi, in the training 

dataset is shuffled and the OOB error is recalculated. The average error of difference, which is 

normalised by these differences’ standard deviation between pre and post shuffling, is used as 

an importance score, whereby the higher the error, the higher the importance [297, 360]. In 

other words, this measure represents the number, or the proportion, of instances that have been 

misclassified as a result of removing feature Fi from the model. This process can take a long 

time to execute, depending on the amount of data, the number of features, and the number of 

trees in the forest. 

The Mean Decrease in Gini (MDG) [297, 360] impurity is another metric used by RF to rank 

features; it basically measures the probability of misclassifying (mislabelling) a randomly 

selected instance from a set where the set’s label distribution has been used to classify that 

instance. Classification trees usually use this metric (Gini impurity) to decide which feature 

should be used to perform the split in the fitted tree. In other words, for every feature, Fi, the 

Gini impurity (gain of purity) measure is computed, and the feature with the best (or highest) 

measure is used to split the tree. Simply put, the usefulness of feature, Fi, is evaluated based on 

its ability to split mixed (impure) nodes into single label (pure) nodes. Therefore, the decrease 

in node impurity (or increase in purity) for every feature, Fi, that is used in performing tree 

splits is averaged out over all the trees in the forest. Finally, features were ranked using this 

measure, so that those with a higher decrease in node impurity are regarded as having higher 

importance.  

Computation using MDG was much faster compared to using the MDA. However, the 

computation of feature importance using the MDG method is fast and it presents the average of 

purity gain at local splits. As a result, this measure (MDG) may not be good at selecting features 

which are able to generalise to different test and evaluation data, as they are more inconsistent 

and biased. Also, unlike MDA, it is not linked to the model’s performance. Despite these issues, 
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MDA and MDG were used as the core evaluation methods in the feature selection task in this 

study.  

As with many other feature selection methods, the RF ranks the returned features by their 

importance measure, where some selection criteria is performed to set the cut-off point in these 

rankings to select the features subset. Deciding where to set this cut-off or how many variables 

to use - for the final model generation - needs to be subjected to iterative testing to evaluate 

different models with different selected feature sets. As this task would have consumed precious 

time, an alternative method was applied. 

6.1.2 Feature selection using fake features 

Bi et al. [361] have attempted feature selection through introducing a probe to the data by 

adding three randomly generated variables (fake features/columns) to the dataset. These fake 

features are randomly drawn from a Gaussian distribution [188]. They use a linear SVM to 

model the subsets at every iteration of a K-folds Cross-Validation, where variables with nonzero 

weights are selected. Any variable (feature) with an average weight below that of the fake 

variables is then rejected. This approach does not address weight variability as it only compares 

averages.  

Similarly, Kursa et al. [362, 363] have proposed a similar approach in which the information 

system (training data) is doubled, so that every feature has a shadow feature that is basically a 

shuffled version of the original one. Feature importance evaluation is then performed on the 

extended system using the RF algorithm. A K-folds Cross-Validation - of at least 10-folds - is 

performed at every iteration so that every feature is compared to its shadow using statistical 

tests to evaluate the highest performing features. The main drawbacks of this approach are 

scalability and speed. Therefore, in this chapter a new approach has been proposed and executed 

which combines the core ideas of the two approaches above.  
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In this approach, as illustrated in Figure 6.1, the information system (training data) is extended 

by adding three randomly generated variables (fake features/columns) to the dataset, where 

these fake variables are drawn randomly from a Gaussian distribution. A feature importance 

evaluation - using the RF algorithm - was performed on the newly extended system and the 

importance measures of these random variables were then used as a threshold to reject any 

features with a lower importance value than those of the fake variables. In other words, any 

feature that performed worse than a random guess was rejected. This comparison was 

performed using statistical measures. 
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Figure 6.1: Illustration of the information system extension with fake features/variable. 

 

As equal variance between compared groups (feature versus fake variables) is not guaranteed, 

and due to the unbalanced design (number of compared importance measures) of these 

comparisons, which would have small sample sizes, Welch’s two sample t-test [364, 365] was 

used. Comparisons were performed to evaluate the statistical significance of the mean 

difference between every feature and the fake variables. The aim of this approach was to speed 

up the feature selection stage and to make it independent of human evaluation or fixed 

thresholds so that it would be more adaptive to the true nature of the dataset. This study adapts 

the approach of Bi et al. [361] to address the limitation of the Kursa et al. [362] method. 

Every fake feature was formed of N random values drawn from a Gaussian distribution with a 

mean of zero and a standard deviation of one, where N was the number of records in the training 

data. These random features were combined with the original dataset and were processed by 

the RF algorithm to compute its features importance, using a 3-folds Cross-Validation 

technique. A Welch’s t-test statistic comparison was then performed to evaluate whether the 
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mean of the importance measures of every feature, Fi, - from the three folds - was statistically 

significantly greater than the mean importance of the fake features (with a significance level of 

α = 0.05). All features with a mean importance statistically significantly greater than that of the 

fake features were selected. The steps of the feature selection stage are illustrated in Listing 6.1. 

The Ranger package [297], which is a fast RF implementation in C++, in the R software [321] 

was used for these experiments.   

In the feature importance evaluation, 15 categorical (factor) features were eliminated, as they 

had been added to all the experiments’ model building designs and evaluation process by 

default. These features are listed in Table 6.1. 

No. Feature  No. Feature 

2 src_ip  24 bro_service 

3 src_zone  31 conn_start 

5 dst_ip  32 conn_partial_start 

6 dst_zone  33 conn_close 

9 ipVersion  34 conn_partial_close 

10 Protocol  43 conn_stats_orig_endian_type 

11 conn_state  50 conn_stats_resp_endian_type 

23 bro_conn_state    
Table 6.1: Categorical (factor) features eliminated from the feature importance evaluation phase. 

 

6.1.3 Data balance 

Data imbalance is another important issue that affects ML and data analytic tasks. This issue 

appears when the data used have more samples of one class than another (binary classification) 

- known as majority and minority classes - or non-equal proportions of classes in a multi-

classification problem. This is a well-known issue in domains such as network ID, where 

normal connections are far greater than anomalous traffic [366]. This problem affects some 

classification methods which perform poorly on minority classes, due to the inability of these 

algorithms to detect the distribution of the relative class [367]. A number of methods have been 

proposed to address this issue, such as undersampling and oversampling [223, 368, 369] (see 

Section 2.2.3.2).  
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Algorithm: Feature Selection with Fake Features 
Input: dataFile,   ftrType     
Result: Selected Important Features  
  
1 dataFile <- filename,                     // Name of the data file to be processed 
2 ftrType  <- ftrMsr,                       // Features importance measure {MDA or MDG} 
3  
4 ftrImprtance <- {},                       // Initialize list to contain the computed  
5                                           // importance value of every feature 
6 ftrSelected  <- {},                       // Initialize list to contain the selected features 
7  
8 DS     <- load file (fileName),           // Load the content of the data file 
9 ftrSet <- getDataFeatures(DS),            // Get the list of features in the data file 
10 N      <- num_rows(DS),                   // Get number of records in the training data 
11  
12 𝐹𝐾1 <- rand(sample=N, mean=0, sd=1),     // Generate 3 lists of random variables where 
13 𝐹𝐾2 <- rand(sample=N, mean=0, sd=1),     // each list contains N random numbers with  
14 𝐹𝐾3 <- rand(sample=N, mean=0, sd=1),     // mean=0 and standard deviation=1 
15  
16  
17 newDS <- [ 𝐷𝑆(𝑁×𝑝)  𝐹𝐾(𝑁×1)

1   𝐹𝐾(𝑁×1)
2   𝐹𝐾(𝑁×1)

3  ],   // Append the fake features to the original data 

18 partsDS <- create K partitions of newDS,  // Create K partitions to calculate features  
19                                           // importance measures using K-folds Cross-Validation 
20  
21 // Compute the importance of every feature using K-folds 
22 // Cross-Validation and save them in ftrImprtance 
23 For fold  in  K-folds, do  
24    trainRcrds <- partsDS[-c(fold)] 
25    ftrImprtance[fold, ] <- featre_importance(data=newDS[trainRcrds, ], measure=ftrMsr) 
26 done 
27  
28 // Evaluate every feature in the data file by comparing its performance 
29 // to the performances of the 3 fake features. If the mean importance of 
30 // that feature is statistically higher than the mean importance of the 
31 // fake features, then add that feature to the selection set.  
32 For Fi in ftrSet, do  
33    if( ftrImprtance[,Fi] > ftrImprtance[,c(𝐹𝐾1, 𝐹𝐾2, 𝐹𝐾3)] with t.test probability > 0.05 ){ 
34       ftrSelected <- ftrSelected ∪ {Fi}, 
35    } 
36  
37 done 
38  
39 return( ftrSelected ),            // Return the list of selected features 
  

Listing 6.1: Pseudo code of the feature selection function. 

 

The experiments outlined in this chapter employed an oversampling technique and adopted the 

SMOTE technique - as discussed in Chapter 5 - to balance the datasets. 

6.2 Proposed Solution 

This chapter investigates the potential of the adaptive cutoff (threshold) approach in a setup 

similar to a real life scenario. In this setup, different binary predictive models were created 

using a subset (one day’s traffic) of the dataset with different feature sets (Full, MDA, MDG, 

MDABalance and MDGBalance) and different data balances (Original and Balanced). Each of these 

models were then used to predict traffic on the other days. These experiments aimed to analyse 
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the extent to which the cutoff adaptation technique improved the performance of different 

predictive models.  

These models were generated using features that differed from those of the evaluated data. The 

following is an overview of the main set of features that were selected for each day of traffic 

using the STA2018 dataset (see Listing 6.1):  

• Full features: this set of features, which had a total of 544 features, contained all the 

features of the original transformed dataset (after eliminating five features as detailed in 

Section 6.3). 

• MDA features: are the set of features selected using the feature importance measure -

Mean Decrease of Accuracy (MDA) - returned by the Random Forest algorithm. The 

original (imbalanced) data were used in the evaluation and selection of these features. 

• MDG features: are the set of features selected using the feature importance measure - 

Mean Decrease Gini (MDG) - returned by the Random Forest algorithm. The original 

(imbalanced) data were used in the evaluation and selection of these features. 

• MDABalance features: are the set of features selected using the feature importance 

measure - Mean Decrease of Accuracy (MDA) - returned by the Random Forest 

algorithm. The balanced data were used in the evaluation and selection of these 

features.  

• MDGBalance features: are the set of features selected using the feature importance 

measure - Mean Decrease Gini (MDG) - returned by the Random Forest algorithm. The 

balanced data were used in the evaluation and selection of these features. 

The number of selected features in each set of features (MDA, MDG, MDABalance and 

MDGBalance) was bound to differ from one subset (day file) to another, as feature importance 

varied due to the differences in traffic patterns and statistical properties. Note that the size of 
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the Full features set was the same across all days. A full list of the selected features for each 

day is presented in Appendix (B).   

In these experiments three algorithms (C5.0, RF and SVM) were used to build ten binary 

predictive models each for every data file (subset) in the STA2018 dataset. Five of these models 

were generated using the original (imbalanced) data file for the day with five different sets of 

features [Full, MDA, MDG, MDABalance and MDGBalance]. The same set of features were then 

used to generate another five models using the balanced version of the data. All ten models 

were used to evaluate the remaining original (imbalanced) data files, and their performance was 

reported in terms of G-Mean Accuracy.  

Rodríguez et al. [370] recommend the use of K > 2, in the K-folds Cross-Validation (CV) 

technique, for less biased estimations. However, given the large size of the datasets under 

consideration, larger values of K (i.e. K=5 or K=10) would have resulted into higher 

computational costs for every experimental run. As a result, the 3-folds CV technique was used 

to build and set the prediction optimal (CV) threshold for each model. At the evaluation stage, 

two readings of the same measure (G-Mean Accuracy) were recorded for the performance of 

every model; one was based on the model’s optimal (CV) prediction threshold and the second 

on its performance after threshold (cutoff) adaptation of the evaluation (test) data. As noted 

earlier, these experiments aimed to mimic real life situations where training and testing datasets 

have different statistical properties. Further details about the setup and configuration of the 

experiments are presented in Section 6.4.  

Every generated model was trained for binary classification and configured to return the 

probability for the class rather than for the class label. An advantage of using class probability 

is the flexibility that it offers in computing a model’s performance at different prediction 

thresholds and thus determine the peak point. 
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These experiments aim to test the following key hypotheses to evaluate the effect of various 

variables: 

 Threshold-H0: “there are no statistically significant differences in model performance 

(G-Mean accuracies) before and after cutoff (threshold) adaptation has been applied.” 

 

 ML-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different ML algorithms (C5.0, RF and SVM) before and after 

cutoff (threshold) adaptation has been applied.” 

 

 Features-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) 

before and after cutoff (threshold) adaptation has been applied.” 

 

 Balance-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different data balances (Original and Balanced data) before and 

after cutoff (threshold) adaptation has been applied.” 
 

The effect of threshold adaptation on the overall accuracy of the predictions of various models 

developed using different feature sets and data balances are further analysed by testing the 

following hypothesis for every ML algorithm: “there are no statistically significant differences 

in the performance (G-Mean accuracies) of models built with different feature sets and 

different data balances after a cutoff (threshold) adaptation has been applied.”    

6.3 Datasets 

All of the experiments outlined in this chapter used the STA2018 dataset which full details of 

its generation are provided in Chapter 5. For the analyses set out below, two variations of the 

STA2018 dataset were used. The first was the original data extracted from the original 

ISCX2012 dataset, as shown in Table 6.2 which sets out the number of connections for each 

class for each day. The second version was a balanced version of the STA2018 dataset. For this 

dataset, the SMOTE algorithm was used to generate synthetic instances of the attack 

connections (minority class) to balance the dataset. (Full details of this process are given in 

Chapter 5).  
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In the experiments outlined below, only days two to seven were used, as the first day was attack 

free. 

 Day 1 
11/Jun 

Day 2 
12/Jun 

Day 3 
13/Jun 

Day 4 
14/Jun 

Day 5 
15/Jun 

Day 6 
16/Jun 

Day 7 
17/Jun 

Total 

Normal 442,705 164,545 168,947 213,798 633,388 600,017 409,090 2,632,490 

Attack 0 2,123 10,037 6,422 35,260 11 4,959 58,812 

Total (Original) 442,705 166,668 178,984 220,220 668,648 600,028 414,049 2,691,302 

Synthetic 0 162,422 158,910 207,376 598,128 600,006 404,131 2,130,973 

Total (Balanced) 442,705 329,090 337,894 427,596 1,266,776 1,200,034 818,180 4,822,275 

Table 6.2: Number of classes of instances for each day’s file of the STA2018 dataset. 

 

Originally, the file for each day consisted of 550 features (549 features + 1 class). The added 

features of synthetic and origOrder were omitted from the analysis as their only purpose was 

to distinguish the original data from the balanced (synthetic) data and to identify the connection 

order. Three further features were removed from the analysis (start_time, src_ip and dst_ip), 

both to avoid any possibility of overfitting and because of the large number of levels. Removing 

these five features resulted in a total of 545 features (544 features +1 class). Any reference to 

the Full set of features, thus refers to these 545 features.   

The number of features selected for each day is presented in the shaded cells of Table 6.3. The 

cells below the diagonal separator set out the total number of shared features for each pair of 

days that were selected by using the MDA feature importance measure on the original data. 

Whereas, the upper part of the table presents the total number of shared features using the same 

measure on the balanced data. For example, using the MDA measure to compute feature 

importance for the original data for Day 2 resulted in the selection of 130 features, whereas 

using the MDA measure on the balanced version of the same data resulted in the selection of 

166 features.  
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  Day 2 Day 3 Day 4 Day 5 Day 6 Day 7   
M

D
A

 

Day 2 
166 

130 

164 150 154 106 105 
Day 2 

M
D

A
B

a
la

n
ce

d
 

Day 3 
126 

507 

518 

369 369 169 310 
Day 3 

Day 4 
124 352 

378 

364 

335 158 206 
Day 4 

Day 5 
125 356 327 

388 

368 

164 208 
Day 5 

Day 6 
42 59 59 58 

170 

60 

108 
Day 6 

Day 7 
91 345 224 215 41 

322 

355 
Day 7 

Table 6.3: Number of shared selected features for each two day pair after using the Mean Decrease of Accuracy (MDA) importance measure 

on the original and balanced versions of the data. 

 

The total number of shared features for Day 2 and Day 3 when the original data were used was 

126, whereas 164 features were selected when the balanced data were used.  

Table 6.4 presents the same comparisons but for the MDG measure. It is worth noting that the 

start_time feature was selected for most days by all measures but due to experimental design 

decisions this feature was subsequently removed from all model fitting and evaluations to avoid 

overfitting problems. 

  Day 2 Day 3 Day 4 Day 5 Day 6 Day 7   

M
D

G
 

Day 2 
119 

124 

41 37 63 46 61 
Day 2 

M
D

G
B

a
la

n
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Day 3 
2 

137 

27 

60 60 36 49 
Day 3 

Day 4 
1 0 

117 

11 

60 27 41 
Day 4 

Day 5 
49 1 6 

168 

113 

58 81 
Day 5 

Day 6 
61 1 1 34 

84 

70 

44 
Day 6 

Day 7 
65 12 7 43 38 

134 

137 
Day 7 

Table 6.4: Number of shared selected features for each two day pair using the Mean Decrease Gini (MDG) importance measure on the original 

and balanced versions of the data. 

 



  6.3 Datasets 

 

155 
 

Table 6.3 and Table 6.4 only present the total number of common features for each two day 

pair. An UpSet technique is used to show the detailed intersections between different days of 

every set of features. This technique was used instead of a Venn diagram, as the latter fails to 

visualise clearly the intersections of a large number of sets.  

UpSet [371, 372] is an open-source visualisation technique used to perform quantitative 

analyses of sets. It can present set intersections as well as aggregates of intersections. In an 

UpSet plot, the total number of a set’s members - the selected features for each day - is presented 

in the lower left-hand corner, while the main plot illustrates the aggregation of intersections in 

one of three ways: by degree; by pairwise overlap; or by sets. The difference between the three 

is illustrated in Figure 6.2-(a).  

In this chapter, the aggregation of intersections are illustrated by ‘degree’ i.e. they present the 

number of elements in every non-empty slice of the intersection between all sets in increasing 

order of degree. For example, in a dataset with k sets, there will be 2k possible 

intersections [371, 372]. Each one of those intersections corresponds to an atomic area (slice) 

of the Venn diagram. Every exclusive intersection area (slice) is denoted by filled dark circles 

connected by a line that indicates which sets are contributing to the formation of this slice. 

Figure 6.2-(b) provides an example of all the possible ways to represent the intersections of a 

three set relationship.  

By comparing the total number of common features (intersections) amongst days using the 

same measure, as presented in Table 6.3 and Table 6.4, it can clearly be seen that there are 

more common features for different days using the MDA measure than using the MDG 

measure. The UpSet plots outlined in Figure 6.3 and Figure 6.4 reveal the same observation. 
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(a) (b) 

Figure 6.2: Figures adapted from Lex et al. [372]. (a) Examples of slicing and aggregation, including aggregation ‘by degree’ which is used 
in this chapter. (b) Example of a set relationship encoded by columns from the matrix, where the sets that contribute to every exclusive 

intersection are represented by filled dark circles connected by a line. 

 

Figure 6.3-(a), which presents the MDA feature sets, shows that there was only one unique 

feature in Day 7 that did not exist in all the other groups, whereas Day 3 had 15 unique features. 

The figure also shows that there were a total of 30 features common between all days. The 

MDABal. feature set, illustrated in Figure 6.3-(b), shows that balancing the data increased the 

number of common features for all days to 69. Figure 6.4 (a) and (b), which presents the MDG 

and MDGBal. features sets respectively, shows that the MDG measure resulted in more unique 

features for specific days than the MDA measure. In general, the MDA measure resulted in the 

selection of more shared features for different days than the MDG measure. Furthermore, 

balancing the data increased the number of selected features for each day, resulting in larger 

intersections. This can be clearly seen from the number of features in intersections of the same 

degree presented in Table 6.5, which summarises the plots in Figure 6.3 and Figure 6.4. As 

can be seen from this table, the MDG and MDGBal. feature sets have a higher proportion of 

features in intersections of degree 1, which are unique to individual days. This confirms the 

behaviour expected of the MDG measure in evaluating features locally as discussed in 

Section 6.1. 
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(a) 

 

 
(a) 

 
Figure 6.3: Plots of feature sets’ intersections using the MDA measure (a) Day Features’ intersections using the MDA measure on the original 

(imbalanced) data. (b) Day Features’ intersections using the MDABalance measure on the balanced data.  
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Figure 6.4: Plots of feature sets’ intersections using the MDG measure (a) Day Features’ intersections using the MDG measure on the original 

(imbalanced) data. (b) Day Features’ intersections using the MDGBalance measure on the balanced data.  
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  Features Sets 

  MDA MDG MDABal. MDGBal. 

N
u

m
b

er
 o

f 

fe
a
tu

re
s 

Deg. 1 16 111 19 95 

Deg. 2 135 83 110 97 

Deg. 3 143 48 128 70 

Deg. 4 135 14 121 1 

Deg. 5 72 1 82 0 

Deg. 6 30 0 69 0 

Total 
(Proportion of Full 544 features) 

531 
(97.61%) 

257 
(47.24%) 

529 
(97.24%) 

263 
(48.35%) 

P
ro

p
o
rt

io
n

 o
f 

fe
a
tu

re
s 

Deg. 1 3.01% 43.19% 3.59% 36.12% 

Deg. 2 25.42% 32.30% 20.79% 36.88% 

Deg. 3 26.93% 18.68% 24.20% 26.62% 

Deg. 4 25.42% 5.45% 22.87% 0.38% 

Deg. 5 13.56% 0.39% 15.50% 0.00% 

Deg. 6 5.65% 0.00% 13.04% 0.00% 
Table 6.5: Number of features in all intersection areas (slices) of an aggregation degree for every feature set and their proportions in relation 

to the total number of unique features within each feature set. 

 

6.4 Experimental Setting 

The experiments discussed in this chapter were evaluated, in terms of classification 

performance, using the G-Mean Accuracy measure. The experiments were executed in three 

different phases as explained below and illustrated in Figure 6.5. (For greater clarification, 

Listing 6.2 presents a pseudo code for these phases.) 

Before performing any of the phases, a day’s traffic file (subset) was pre-processed in order to 

balance the number of class instances in each file (line 6 in Listing 6.2). As explained earlier, 

the SMOTE algorithm was used to generate synthetic instances of the minority class until the 

number of instances in both classes were equal to each other.  

In the first phase (lines 10-14 in Listing 6.2), every file in the STA2018 dataset (which was 

used to generate the models) was evaluated to select two subsets of features using the Mean 

Decrease of Accuracy and the Mean Decrease Gini, resulting in the formation of the MDA and 
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Figure 6.5: Experimental phases diagram. 

 

MDG sets respectively. The same feature selection criteria were used on the balanced data file 

to generate another two sets of features, referred to in this thesis as MDABalanced and 

MDGBalanced. By the end of this phase there were four feature sets along with the Full features 

set for each training day.  

In the second phase (lines 16-25 in Listing 6.2), each day’s traffic used each of the five feature 

sets (including the Full features set) to generate a binary classification (prediction) model which 

resulted in five different models. The same process was repeated using the balanced data. Each 

model generation step used the 3-folds Cross-Validation technique to establish the model’s 

optimal (CV) prediction threshold. The final prediction threshold was computed by aggregating 

all the fold’s predictions for each model to find the point (threshold) of the maximum G-Mean 
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Accuracy. By the end of this phase there were ten different binary prediction models for each 

day’s traffic.   

In the final phase (lines 27-38 in Listing 6.2), every generated model was evaluated against 

each day’s traffic from the dataset that had not been used in any of the feature selection or in 

the model generation processes. In this phase, to test the data file for each evaluation, the 

G-Mean Accuracy was computed using the model’s optimal (CV) threshold and the adapted 

cutoff.  

Algorithm: Experiment Phases 
Input: Dataset     
Result: Performance results  
  
1 For Fi in Dataset, do             // Process every file Fi in the STA2018 dataset 
2    Ftrs.Set[Full] <- {Full.Ftrs}  // 544 features 
3    Mdls.Set <- {} 
4    Rslt.Set <- {} 
5  
6    Fi.bal <- Balance(Fi)    // Generate/get a balanced version of data file Fi with balanced 
7                            // instances’ classes by generating synthetic instances of 
8                            // minority class using SMOTE algorithm. 
9  
10  // Phase 1: features selection... 
11    Ftrs.Set[MDA]    <-   getImportantFtrs(data=Fi,     ftrType=MDA) , 
12    Ftrs.Set[MDG]    <-   getImportantFtrs(data=Fi,     ftrType=MDG) , 
13    Ftrs.Set[MDABal.]  <-   getImportantFtrs(data=Fi.bal, ftrType=MDA) , 
14    Ftrs.Set[MDGBal.]  <-   getImportantFtrs(data=Fi.bal, ftrType=MDG) , 
15  
16  // Phase 2: models generation... 
17    // Generate five predictive models using original data with five different sets of features. 
18    For ftrsa in Ftrs.Set, do 
19       Mdls.Set[Fi, ftrsa] <- generate.Model(data=Fi, features= ftrsa) 
20    done 
21  
22    // Generate five predictive models using balanced data with five different sets of features. 
23    For ftrsa in Ftrs.Set, do 
24       Mdls.Set[Fi.bal, ftrsa] <- generate.Model(data=Fi.bal, features= ftrsa) 
25    done 
26  
27  // Phase 3: models evaluation... 
28    // Perform total of 50 evaluations (5 testing files X 10 predictive models) 
29    For Fj≠Fi in Dataset, do 
30       // Test every file other than Fi on every one of the 10 prediction models  
31       // trained on Fi or Fi.bal  
32       For Mdlb in Mdls.Set, do 
33          // Get the following results: 
34          //    1) G-Mean Accuracy using model’s cutoff (threshold) value, 
35          //    2) G-Mean Accuracy using adapted cutoff (threshold) value, 
36          Rslt.Set[Fj, Mdlb] <- evaluate(data=Fj, model=Mdlb) 
37       done 
38    done 
39  
40 done 
  

Listing 6.2: Pseudo code of the experimental phases. 
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The whole process was repeated for each of the algorithms being evaluated: C5.0, Random 

Forest and SVM. 

Experiments were performed on a “Dell C5220 PowerEdge Rack Servers” cluster, which had 

12 micro servers. Each micro server ran Scientific Linux 7 on dual quad-core Intel Xeon 

3.4GHz CPUs, 16GB RAM, two 500GB SATA disks, and two Gigabit Ethernet interfaces. For 

the large data files [Day 5 (15/Jun) and Day 6 (16/Jun)] experiments were run on a Hyper-V 

virtual machine with 8 Virtual Processors, 20 GB RAM and 32 GB Swap space. This VM was 

used to host the Ubuntu 16.04 (64-bit) Operating System. It was hosted on a server with the 

following hardware specifications: 2U Supermicro chassis; 8x host-swap 2.5" SAS/SATA disk 

bays; Supermicro X8DTU-LN4F+ motherboard; Dual Intel Xeon E5620 (quad core); 24GB 

RAM (6 x 4GB DDR3 ECC RDIMM); 4x 1TB SATA (RAID10); and 4x 1Gb Ethernet. This 

machine uses a Windows Server 2012 R2 Datacentre (64-bit) Operating System. 

6.5 Results and Discussion 

The experiments outlined in this chapter started by comparing the detection performance of 

three well known algorithms in ML (C5.0, Random Forest and SVM) on the STA2018 dataset 

with different feature sets and different data balances. Every generated model was evaluated 

using all of the files (subsets) in the dataset except the one that had been used to generate that 

model. Two G-mean accuracy (gAcc) values were computed for every combination of 

prediction model and evaluation data. The first G-mean accuracy (𝐠𝐀𝐜𝐜𝑻𝒉𝒓𝑪𝑽
) was the one 

obtained after the model’s optimal (CV) cutoff value had been calculated using 3-folds Cross-

Validation to predict the data file. The other G-mean accuracy value (𝐠𝐀𝐜𝐜𝑻𝒉𝒓𝑶𝒑𝒕
) was 

calculated based on the maximum accuracy achieved after the prediction cutoff value had been 

specifically adapted for the evaluated data file. 
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This section starts by looking at the effect of the cutoff adaptation by determining the statistical 

significance in the performance (G-Mean accuracy) of the models through comparing their 

optimal threshold with the adaptive cutoff. The analysis compared the difference between the 

two approaches by conducting four Friedman’s tests (with a significance level of α = 0.05): the 

first compared the overall difference between the two approaches; the second compared the 

difference between the two approaches using different algorithms; the third compared the 

difference between the two approaches using different feature sets; and the fourth compared the 

difference between the two approaches using different data balances.  

The following list shows the hypotheses that were tested and the results returned by the 

Friedman tests. [The decision to use the non-parametric Friedman’s test was based on the fact 

that the data did not follow a normal distribution, as confirmed by the normality test (Shapiro–

Wilk test) [332] W = 0.7, p-value = 0.000.] 

 Threshold-H0: “there are no statistically significant differences in model performance 

(G-Mean accuracies) before and after cutoff (threshold) adaptation has been applied.” 

χ2(1) = 873.0, p = 0.000 < 0.05 (differences are statistically significant) 

 

 ML-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different ML algorithms (C5.0, RF and SVM) before and after 

cutoff (threshold) adaptation has been applied.” 

χ2(5) = 747.5, p = 0.000 < 0.05 (differences are statistically significant) 

 

 Features-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) 

before and after cutoff (threshold) adaptation has been applied.” 

χ2(9) = 742.8, p = 0.000 < 0.05 (differences are statistically significant) 

 

 Balance-H0: “there are no statistically significant differences in model performance (G-Mean 

accuracies) between the different data balances (Original and Balanced data) before and 

after cutoff (threshold) adaptation has been applied.” 

χ2(3) = 761.3, p = 0.000 < 0.05 (differences are statistically significant) 
 

As all of these tests showed significant differences, a Nemenyi post-hoc test [373-375] was 

conducted to perform pairwise comparisons on the different effects of each test to distinguish 

which differences were statistically significant. The results of these pairwise comparisons are 

illustrated in Figure 6.6 through critical difference plots.  
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All of the plots in Figure 6.6 show that the cutoff adaptation effect was significantly different 

from the model’s optimal (CV) threshold. They also show that different treatments (ML 

algorithm, feature sets and/or data balance) with the adaptive cutoff always ranked higher. Any 

insignificant differences fall within the same effect (cutoff adaptation or model’s optimal 

threshold). For example, Figure 6.6-(b) shows that there were insignificant differences between 

SVM and C5.0 when the cutoff adaptation was applied as well as between RF and SVM when 

the model’s optimal threshold was used. Overall, no two treatments of different groups (optimal 

or adaptive cutoff) showed any insignificant differences. 

Having shown that the models’ performance was ranked significantly higher when the adaptive 

cutoff approach was used rather than the optimal (CV) threshold [See Table B.1, Table B.2, 

Table B.3, Figure B.1, Figure B.2 and Figure B.3 in Appendix (B)], all subsequent analyses 

focus on the results obtained from using the adaptive cutoff. 

Each plot in Figure B.1, Figure B.2 and Figure B.3 [presented in Appendix (B)] shows the 

performance (G-Mean Accuracy) for each model for each training day for the C5.0, RF and 

SVM algorithms respectively. These plots show each model’s performance under different 

feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances (Original and 

Balanced). Each plot is composed of 10 sub-plots (one for each model) and illustrates the 

G-Mean Accuracy for each model after being evaluated using all the other days’ files. For each 

evaluation there are two G-Mean Accuracy readings; one is based on the model’s optimal 

threshold while the other uses the adapted threshold on the test data. They are represented by 

‘CV Cutoff’ and ‘Adp. Cutoff’ curves respectively. In these sub-plots, the first day (along the 

x-axis) matches the training day of the main plot and corresponds to the CV results of that 

model. In general, all these plots show very clearly that the cutoff adaptation process improved 

the performance of the models, while the model’s optimal threshold led to low levels of 

accuracy compared to the capabilities of the true model.   
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6.5.1 C5.0 Algorithm 

The plots in Figure B.1 [see Appendix (B)] for the C5.0 models show different patterns and 

behaviours from one training day to another. For example, models trained on Day 2 (12/Jun) 

failed to perform well on Day 5 (15/Jun), whereas Day 5 models predicted Day 2 traffic with a 

high degree of accuracy. They also showed inconsistent behaviour towards different feature 

sets across the days. For example, Day 2 models performed best when the Full feature set was 

used. But this pattern was not consistent across all days. This can clearly be seen on the plot of 

Day 5 when MDG features were used, and the plot of Day 7 (17/Jun) when MDA or MDABal. 

feature sets were used with the balanced training data. One important observation to make is 

the poor performance of Day 6 (16/Jun) models when the original training data were used. 

These models showed the worst performance due to the low number of attacks in this data file. 

When a balanced version of the Day 6 data file was used to build the prediction models, 

performances improved. This supports the finding discussed in Chapter 4 about the behaviour 

of C5.0 algorithm with imbalanced data. It can also be clearly observed from these plots that 

data balancing had a minor effect in improving the performance of models developed using the 

C5.0 algorithm, which was further investigated using statistical analysis.  

The adapted threshold provided a more accurate reading of a model’s true performance. 

Table 6.6 summarises the performance of all the models [which are set out in full in Table B.1 

in Appendix (B)]. It presents the average performance for each model on the evaluation data 

using the adapted (cutoff) threshold. In the table each row related to the C5.0 algorithm shows 

the average performance for every model presented in Table B.1 using the adapted cutoff on 

the evaluation data, omitting any performance obtained at the CV stage. The values in bold are 

the maximum value for each group of the training data (original or balanced) while the value 

that is underlined is the maximum value for that day. For example, the average of the G-Mean  
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  Original Data Balanced Data 

  Full MDA MDG MDABal. MDGBal. Full MDA MDG MDABal. MDGBal. 
C

5
.0

 
Day 2 0.6202 0.2159 0.2159 0.2159 0.2159 0.7091 0.2159 0.2159 0.2159 0.2159 

Day 3 0.6904 0.7464 0.7428 0.8693 0.5681 0.7351 0.8660 0.8190 0.7587 0.8124 

Day 4 0.5941 0.5837 0.9750 0.7104 0.8424 0.7854 0.7401 0.7311 0.7434 0.7703 

Day 5 0.7359 0.6089 0.7994 0.7582 0.5901 0.7494 0.7666 0.9378 0.7623 0.7153 

Day 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.4442 0.7932 0.6600 0.7925 0.6600 

Day 7 0.7423 0.8719 0.8698 0.8707 0.8762 0.7227 0.9444 0.9092 0.9444 0.8856 

R
F

 

Day 2 0.9566 0.9606 0.9404 0.9698 0.9618 0.9590 0.9353 0.9632 0.9665 0.9372 

Day 3 0.9819 0.9786 0.8616 0.9815 0.9241 0.9747 0.9755 0.8065 0.9711 0.9436 

Day 4 0.9880 0.9875 0.9014 0.9872 0.9693 0.9831 0.9844 0.8908 0.9828 0.9716 

Day 5 0.9715 0.9700 0.9524 0.9709 0.9537 0.9671 0.9708 0.9348 0.9674 0.9658 

Day 6 0.8905 0.7305 0.7874 0.8491 0.8540 0.7313 0.7201 0.7385 0.7372 0.7066 

Day 7 0.9716 0.9723 0.9719 0.9720 0.9728 0.9691 0.9666 0.9690 0.9675 0.9729 

S
V

M
 

Day 2 0.5441 0.7716 0.7712 0.8036 0.8820 0.8747 0.8653 0.7275 0.8375 0.8596 

Day 3 0.8149 0.5564 0.4976 0.5615 0.8143 0.7624 0.9035 0.5528 0.9032 0.6618 

Day 4 0.7971 0.8472 0.9500 0.8294 0.8703 0.8927 0.8981 0.9654 0.8902 0.8508 

Day 5 0.7292 0.6807 0.6436 0.6666 0.6841 0.6516 0.6264 0.5246 0.6699 0.5846 

Day 6 0.8069 0.9558 0.8595 0.8062 0.8049 0.6390 0.8646 0.8588 0.8614 0.8688 

Day 7 0.7097 0.7284 0.8540 0.6720 0.8548 0.7363 0.7638 0.9032 0.7640 0.7847 

Table 6.6: Model’s average performance for different ML algorithms, feature sets and data balances. 

 

Accuracy values for the Day 2 model, using the Full features set, trained on the original data 

is 0.6202 (which is the maximum value for all of the models within the original data group for 

that day). Applying the same process to the balanced data group revealed that, for that group, 

the Full features set had a maximum average of 0.709. As this value is the maximum for all 

models for that day it has been underlined as well.    

Friedman’s test was used to assess whether the performance of the C5.0 algorithm’s models 

using these features sets with different data balances would be significant after a threshold 

adaptation with a significance level of α=0.05 was applied. The tested hypothesis was, “there 

are no statistically significant differences in the performance (G-Mean accuracies) of models 

built using the C5.0 algorithm with different feature sets and different data balances after a 

cutoff (threshold) adaptation has been applied.” This test revealed that there was not enough 

evidence to support this hypothesis, χ2(9) = 16.0, p = 0.067 ≮ 0.05.   



Chapter 6: Effect of Feature Selection and Data Balance on Adaptive Cutoff for Network Intrusion Detection 

 

168 

 

 
Figure 6.7: Nemenyi test (95% confidence level) on the C5.0 algorithm models using different feature sets and different data balances after 

applying the adaptive cutoff approach. 

These tests show that there was no significant effect of one feature set over another when the 

C5.0 algorithm was used. In addition, data balancing did not lead to a significant improvement 

in a model’s performance. Figure 6.7 shows that the performance of models built using the 

balanced training data ranked higher than those generated using the original data. However, 

these differences were not statistically significant at the 95% confidence level, as all of the 

effects are joined by a line. Figure B.1 in Appendix (B) shows that different behaviours were 

exhibited on different days. Models trained on some days performed well when the data was 

balanced, whereas other days showed no sign of improvement. Some days appeared to have 

been affected by one features set, while other days behaved the same for all feature sets.  

Many factors could be behind the volatile behaviour of the C5.0 algorithm. For example, 

selected feature sets might not be the best sets for this algorithm; as such, further investigation 

into different feature selection techniques is required. Also, this algorithm was executed within 

its default parameters, particularly number of trials, which was set at ten. Further tuning of the 

number of trials would also benefit from further analysis. In addition, C5.0 algorithms carry out 

random sampling by following the boosting technique (which randomly samples weighted 
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instances). This might have caused C5.0 to overfit the training data which could be one of the 

reasons for its overall poor performance in predicting new traffic. Overall, based on the 

statistical results returned using Friedman’s test, the C5.0 models ranked low, as illustrated by 

Figure 6.6-(b).   

6.5.2 RF Algorithm 

Another Friedman test was performed to assess the RF algorithm’s models. This test aimed to 

determine how these models performed when using different feature sets with different data 

balances, and whether the difference in performance was significant after applying the threshold 

adaptation with a significance level of α=0.05. The tested hypothesis was, “there are no 

statistically significant differences in the performance (G-Mean accuracies) of models built 

using the RF algorithm with different features sets and different data balances after the 

cutoff (threshold) adaptation has been applied.”  

This test revealed that for the RF algorithm there were significant differences between these 

features after applying the cutoff (threshold) adaptation, χ2(9) = 38.0, p = 0.000 < 0.05. To 

distinguish which of these effects were statistically significant a Nemenyi post-hoc test was 

conducted to perform a pairwise comparison as illustrated in Figure 6.8. 

Overall, there were no significant differences in the RF’s performance when Full, MDA and 

MDABal. feature sets were used. However, the Full features set showed a significant difference 

over the MDG and MDGBal. feature sets, which ranked lowest among the feature sets. This 

could be due to the nature of the Mean Decrease Gini in selecting local features which have 

low generalisation power as discussed earlier. However, even with these low performances, RF 

had the highest overall performance. As Figure 6.8 shows the data balance had no significant 

effect on the performance of RF. On the contrary, it sometimes negatively affected the 

performance of models using the Full feature set with balanced data as their difference to the  
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Figure 6.8: Nemenyi test (95% confidence level) on the RF algorithm models using different feature sets and different data balances after 

applying the adaptive cutoff approach. 

 

MDG and MDGBal. feature sets became insignificant. This is also evident in the plot for Day 6 

in Figure B.2 [set out in Appendix (B)] which showed a lower performance for all models for 

that day as the balanced version of data was used. Although that day only had 11 attacks, RF 

was able to build good predictive models with good evaluation performance except for Day 4’s 

traffic. The ability of RF to learn from Day 6 traffic was linked to its bagging technique, which 

randomly samples instances that are used to build its trees. In contrast to C5.0, this sampling 

technique prevented RF from overfitting, which in turn produced models with good 

generalisation capabilities. This gave RF more chance of detecting novel attacks as 

demonstrated in these experiments.  

The Random Forest (RF) algorithm showed the best results of the evaluated ML algorithms. As 

illustrated in the plots in Figure B.2 [in Appendix (B)], RF’s performance would not have been 

better than that of the other algorithms, if the optimal (CV) threshold of its models had been 

used to assess their performance. However, with the cutoff adaptation approach, RF’s 

performance improved significantly as Table B.2 [in Appendix (B)] shows.  
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The RF algorithm can take longer to train depending on the complexity of the training data. 

However, once the model is built, its evaluation of a new instance is reasonably fast.  

As expected, it consumed a lot of resource (memory) at the model building phase and this 

consumption increased with the size of the training data. This was a result of the number of 

bootstrap samples it generated, which were used to build trees in parallel threads. The resulting 

models were quite large compared to the SVM and C5.0 models, and their sizes increased as 

the complexity of the training data increased.   

Although Table 6.6 shows the highest performance of the RF models was attained when the 

Full features set was used, the difference in the average performance of its models was very 

small, unlike the performance of the C5.0 and SVM models, which showed higher variations 

in performance. Therefore, RF models could be generated using a reduced feature set without 

any significant decrease in their average performance (accuracy) but with a significant gain in 

speed. Table 6.6 also shows that there was only a high variation in the performance of models 

for Day 6; however, given that this day was problematic, with its skewed balance, this level of 

performance is more than acceptable. Moreover, in a real life scenario it would not be sensible 

to build a model using such data, hence this example is an extreme case, which is presented 

here merely to demonstrate that the RF algorithm performed reasonably well.  

6.5.3 SVM Algorithm 

To assess the difference in the performance of the SVM model using the different feature sets 

with different data balances after applying the threshold adaptation, the Friedman test was used 

with a significance level of α=0.05. The tested hypothesis was, “there are no statistically 

significant differences in the performance (G-Mean accuracies) of models built using the 

SVM algorithm with different feature sets and different data balances after the cutoff 

(threshold) adaptation has been applied.” This test revealed that there was not enough 

evidence to support this hypothesis, χ2(9) = 13.1, p = 0.158 ≮ 0.05.   
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Figure 6.9: Nemenyi test (95% confidence level) on SVM algorithm models using different feature sets and different data balances after 

applying the adaptive cutoff approach. 

The SVM algorithm exhibited similar behaviour to the C5.0 algorithm. All of its statistical tests 

revealed insignificant effects between one feature set and another and there was no sign that the 

improved performance of its models was influenced by any of the data balancing effects. 

Although Figure 6.9 shows that the reduced feature sets ranked higher for this algorithm than 

for the Full features set, these differences were statistically insignificant. As with the C5.0 

algorithm, different behaviours were exhibited on different days, as illustrated in Figure B.3 

[in Appendix (B)], so no consistent pattern could be deduced.  

Although the SVM algorithm showed some overall improvement on days when the reduced 

feature sets were used instead of the Full features set, this behaviour was not consistent. As a 

linear version of SVM was used, this effect could have been caused by the non-linear nature of 

the data on those days where SVM failed to perform well. Further investigation would be 

required to analyse different kernel transformations of the data to determine the best tuning 

parameters or implementation for this algorithm which would fit this domain. Such an 

investigation did not take place as part of this study because of the limitations of SVM for non-

linear problems. As kernel functions were used, SVM would take longer to build its prediction 
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models and longer to predict new instances. This problem might be an obstacle to introducing 

SVM into a dynamic and high volume environment, such as network analysis and ID. 

In general, although a linear SVM implementation was used in these experiments, it showed 

some good results. For example, on average, the performance of models trained on the original 

and balanced version of Day 4’s traffic, using MDG features, was above 90%. These results are 

presented in Table 6.6 which sets out the average performance of the SVM models. Also the 

performance of models trained using the MDA features on the original version of Day 6 traffic 

(which only had 11 attacks), was above 89%. With such results, more analysis would be 

required to identify the right combination of fast kernel function and parameter tuning to 

improve the overall SVM results. This would make it an attractive solution for IDS problems.  

Figure 6.10 summarises all of the figures in Appendix (B) (Figure B.1, Figure B.2 and 

Figure B.3) and all of the accuracy readings in the tables (Table B.1, Table B.2 and Table B.3) 

after the threshold adaptation process was applied. It compares the average performance of all 

the C5.0, RF and SVM models. This plot shows the average performance for each day’s model 

for all of the tested ML algorithms. The standard error of the average performance for each 

model is illustrated by vertical bars. For each algorithm, the mean performance of all models 

across all days for every combination of feature sets and data balance type is represented by a 

horizontal dashed line. As this plot shows, RF was always the highest performing of the ML 

algorithms evaluated. Unlike C5.0 and SVM, RF showed the most stable results with the least 

variability. A similar conclusion was reached by Japkowicz and Stephen [221] regarding the 

sensitivity of the C5.0 algorithm (see Section 2.2.3.2).   
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6.6 Limitations 

Although the findings of these experiments support the findings discussed in Chapter 4, i.e. 

that applying a cutoff adaptation to the evaluation (testing) data is important for achieving an 

accurate reading of the true performance of a prediction model, there were a number of 

unavoidable limitations to these experiments.  

Firstly, some limitations are similar to those discussed in Chapter 4, such as the sole focus on 

binary classification problems. Also, the best setup for the parameters of different ML 

algorithms requires further analysis, such as the optimal number of trials for the C5.0 algorithm 

and the use of other non-linear implementations of SVM. These tuning requirements could be 

considered engineering issues which require further research in their own right.  

Secondly, time constraints played an important role in the decisions taken in relation to the 

experimental settings. For example, a decision was taken to use 3-folds Cross-Validation 

instead of 10-folds Cross-Validation because of the gain in execution time. Further 

investigation into the optimal number of folds could be conducted in a separate study to 

determine the best balance between time and accuracy for production environment.   

Thirdly, only two feature importance measures were used in the feature selection stage: the 

Mean Decrease of Accuracy and the Mean Decrease Gini. Both of these measures were 

computed using the RF algorithm, which could have made the selected features ideal for this 

algorithm but not for the others. As the results show, with these measures the RF algorithm’s 

performance was nearly the same across all selected features. Although this could be regarded 

as a limitation, it could equally be argued that each day file had different important features and 

despite these differences, RF was able to generalise even when the evaluation data had different 

important features. Further investigation is required into what other feature selection techniques 

could be used, especially on algorithms other than those evaluated in this study. There are many 
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techniques that could be explored, such as correlation-based feature subset selection20 [200], 

the use of information gain as an evaluation criterion for the features’ importance21 and the 

minimum-redundancy-maximum-relevance (mRMR) feature selection [190, 376, 377].  

In addition, there was no analysis of the relationship between the selected features and the 

performance of their models. For example, an analysis of the effect of features common to 

different days could have identified which features were tightly linked to the performance of 

different models. This line of research was not followed as it would have required an analysis 

of the full dataset, and the main aim of this study was to mimic real life scenarios where future 

traffic is unknown and decisions need to be made on the (training) data available. 

Fourthly, only one balancing technique was adopted for these experiments. An evaluation of 

different data balancing techniques could determine which technique would best fit the network 

ID domain. Using the SMOTE algorithm to generate synthetic connections might not be an 

ideal solution for this domain as the connections generated might not represent a valid real 

connection. Further analysis is required to determine whether there is any relation between the 

balancing technique chosen and the performance of the ML algorithm.    

Fifth, the analysis outlined in this chapter was limited because of the structure of the UNB 

ISCX2012 dataset. A day was used as the window size to split the traffic into subsets for training 

and evaluation purposes. To allow a deeper analysis of the effect of the time window size (i.e. 

to extend the time window to weeks or months) on the performance of this approach, a larger 

dataset would be needed. Although reducing the time window to hours would have been a valid 

option, this approach was not taken because the formation of pure traffic within small window 

sizes would have shifted the focus to another domain of research, such as data stream 

classification. Also, as this analysis was limited to one dataset due to time constraints, further 

                                                 
20 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CfsSubsetEval.html  
21 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html  
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investigation would be required to analyse the effectiveness of this approach on datasets with 

diverse traffic. The decision to use this dataset was based on the limited number of existing 

transformed datasets, given that the transformation and labelling of a new reliable dataset is a 

time consuming task.  

Finally, the feature selection process used a statistical comparison to compare the mean 

importance of every evaluated feature with the mean performance of the fake variables. This 

evaluation assumed that the importance measures would follow a normal distribution which led 

to the use of Welch’s two sample t-test. Further analysis is required to evaluate a dynamic 

approach of applying the appropriate test (parametric or non-parametric) based on a data 

normality check. 

6.7 Summary 

This chapter has presented a set of experiments undertaken to analyse the effect of applying 

cutoff adaptation to evaluation data on the performance of three main ML algorithms: C5.0, RF 

and SVM. The analysis investigated the effect of feature selection and data balancing on the 

overall performance of models developed using these algorithms before and after cutoff 

adaptation. These experiments aimed to simulate real-life setups in terms of how they conducted 

their model building and evaluation.  

This analysis built models on subsets (traffic for one day) of the data to predict the remaining 

parts (traffic for other days). The results of these analyses showed that RF outperformed the 

other algorithms in its ability to predict new traffic and the detection of novel anomalies. It also 

showed that before cutoff adaptation, all of the ML algorithms performed as poorly as each 

other, but that the adaptive cutoff approach increased their overall performance, with RF 

performing best. Moreover, RF suffered no significant loss in performance when the reduced 

feature sets were used and its predictions did not improve when the data was balanced. This 
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gives RF the advantage of being able to build models using original data with a reduced feature 

set, which will save a considerable amount of time in training and testing, which makes this 

algorithm more attractive for such problems. 

In these analyses, G-Mean accuracy measures were used as the model assessment criteria to 

avoid issues with imbalanced data. The performance of all models was assessed using the non-

parametric Friedman test to identify any significant differences. Cutoff adaptation and the 

algorithm used were the most important effects that contributed to any significant difference in 

a model’s performance.  

Having established the importance of cutoff adaption in determining the performance of a 

prediction model, the next chapter will look at a technique to determine the appropriate cutoff 

for any dataset being evaluated based on a small randomly selected subset. This subset will then 

be labelled and used to set the right adapted cutoff for the whole dataset, even when, as in a real 

life problem, all its true labels are not known. 
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Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data 

 

Chapter Seven 

Cutoff Selection Based on Evaluating a 

Subset of the Test Data 
 

This chapter investigates the selection of an adaptive cutoff (threshold) for evaluation (test) 

data, based on the true labels of a random subset, i.e. validation data. It also includes an analysis 

of the effect of different sampling sizes in determining the right threshold (cutoff) for the 

predictions of different ML models. The analysis also evaluated different sampling 

approaches to assess their ability to identify the correct threshold (cutoff) for the whole dataset.  

This analysis was conducted using the results of the experiments that were outlined in the 

previous chapter (Chapter 6). The G-Mean Accuracy Ratio, which measures the ratio of the 

performance (G-Mean Accuracy) of the sample cutoff relative to that of the optimal cutoff of 

the full test data, was used as the metric to compare the different effects. Further investigations 

were carried out to determine how different error rates (introduced to the labels of the random 

small subsets) might affect the identification of the correct discriminating threshold (cutoff). 

7.1 Introduction 

Previous chapters have demonstrated the importance of the threshold (cutoff) adaptation to 

achieve an accurate reading of a model’s performance and to improve predictions in real 

environments. As the example illustrated in Figure 7.1 shows, the disadvantage of using a fixed 

threshold, such as Thr0.5, is that it undermines the capacity of some good prediction models 

which could result in the selection of weaker models. Figure 7.1 presents an example of the 
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performance (measured by G-Mean Accuracy) of three dummy predictions (Pred1, Pred2 and 

Pred3). It shows that Pred1 delivers higher levels of prediction accuracy at low threshold values, 

but that using a fixed threshold, i.e. Thr0.5, subverts its true capacity. Pred2 performs the least 

well out of all of the predictions, however, that fixed threshold gives a false reading of its true 

performance and shows a marked difference in its levels of accuracy compared to Pred1. 

Independently adapting the discriminating threshold for every prediction result leads to more 

accurate readings of a model’s true potential (performance). Some predictions such as Pred3 do 

not show any significant difference between a fixed and an adapted threshold, however, the 

adapted threshold usually offers a higher degree of accuracy. This is not just the case for fixed 

thresholds such as Thr0.5, as other fixed thresholds behave the same way. As has been shown in 

Chapter 6, threshold adaptation improved the overall performance of all of the prediction 

models and showed their true potential. 

 
Figure 7.1: Example comparing fixed threshold (solid black vertical line - Thr0.5) with adapted prediction thresholds (maroon, blue and 

orange vertical lines). 
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The threshold (cutoff) adaptation process outlined above is based on the ground truth (true 

labels) of the evaluation data. Unfortunately, this requirement is not available in real life 

situations. Therefore, this chapter investigates the potential of determining the best prediction 

threshold (cutoff) for an evaluation data using the true labels of a small random sample only.   

In the ID domain, the labelling of the small subset can be viewed as an evaluation of a sample 

of connections to determine their true states (labels) using the assessment of a security specialist 

or the classification of a signature based IDS. This subset will be used to set the correct 

threshold (cutoff) for all the traffic, which will then be used to flag anomalies. Hence, these 

anomalies can be investigated and analysed to identify novel and unknown attacks, which could 

be used to update the signature-based IDS. 

Random sampling from the population does not ensure that the sampled data covers the full 

range of the prediction probabilities in the population; this is especially the case when a model 

produces predictions with low probabilities for unseen data and when the threshold needs to be 

adapted for such new test data. Therefore, various sampling strategies, using a binning 

technique, were used for the experiments outlined in this chapter. To address the original 

probability distribution of the predictions range of a model on the test data, the range was 

divided into ‘bins’. Random sampling from every bin thus ensured that the prediction 

probability distribution for each sample was close to the probability distribution of the whole 

test data. The experiments outlined below compare the performance of different bin sizes to a 

normal random sampling approach from the whole population.  

These experiments aimed to simulate a real life situation where the labelling of subset samples 

would be undertaken by external sources, such as a security expert or a signature-based IDS. 

These labels were then used to assess the best cutoff for the whole of the test data. This labelling 

process is prone to errors due to a number of external factors, such as human error or false 

alarms by the IDS. As a result, these experiments attempted to analyse the effect of different 
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error levels on the process of identifying the best threshold (cutoff). This chapter also looks at 

the effect of different sample sizes in identifying the best cutoff, of the entire test data, based 

on the sampled subset. One of the aims of the experiments was to show the trade-off between 

sample size and the correct setting of the cutoff value. This is because the traffic load in a real 

life network is enormous, so finding the best cutoff, based on the smallest sample size, would 

save a great deal of effort and resource. 

7.2 Proposed Solution 

This chapter looks at the selection of an adaptive cutoff (threshold) for evaluation data where 

the true label is only known for a small, random sample. It provides an analysis of the effect of 

different sample sizes (10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%, 0.0005% 

and 0.0001%) on the selection of the right threshold (cutoff). It is worth pointing out that the 

percentage values should be controlled to draw enough samples that would be sufficiently 

representative of the original data (order of magnitude). As the analysed datasets in this study 

are large, the use of these small percentages was sufficient. However, for smaller datasets, larger 

percentages might be needed. 

It is important to note that these experiments stress the importance of performing the sampling 

of instances based on the predictions of models rather than the sampling from the original 

connections population. This sampling approach is required to capture the distribution of the 

predictions which would not have been fully captured when sampling is performed randomly 

from the population. In other words, random sampling, from the entire test data, could miss the 

small number of anomalous cases as it does not take the full range of the model’s predictions 

into account. As a result, a binning sampling strategy is applied and compared with the normal 

random sampling approach. In the binning approach, the range of a model’s predictions is 

divided into B bins (1, 10, 20, 50 and 100). Samples were then randomly selected from each 
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bin to ensure good coverage of rare cases. The one-bin (B1) type is the random sampling from 

the whole population. 

To address the possibility of errors in labelling and in determining the state of sampled 

connections (due to human errors or the inability of signature-based IDS to detect novel attacks) 

different error rates (0%, 1%, 5% and 10%) were introduced to the true labels of the random 

samples. This aimed to identify the effect of such errors -in sample labels- in determining the 

best prediction threshold (cutoff) and what is expected on the overall performance of the 

adaptive cutoff approach. 

These experiments were evaluated using a G-Mean Accuracy Ratio (GAR), which assesses the 

quality of the sample cutoff (ThrSmpl) by measuring its closeness to the optimal threshold 

(ThrOpt). The GAR measure computes the ratio of the classification performance (G-Mean 

Accuracy) of the data, using the sample cutoff (ThrSmpl), to that of the optimal cutoff (ThrOpt), 

as presented in Eq.(7.1). 

G-Mean Accuracy Ratio (GAR)  =  
g. accuracy(Data | ThrSmpl)

g. accuracy(Data | ThrOpt)
 

Eq.(7.1) 

 

The GAR measure ranges between zero and one; the closer the sample cutoff (ThrSmpl) to the 

optimal threshold (ThrOpt), the closer the GAR will be to one. As ThrSmpl shifts away from ThrOpt 

the GAR will be closer to zero. Figure 7.2 illustrates this with an example of the G-Mean 

Accuracy Ratios (GAR) of two dummy predictions. This example shows that the GAR for Pred2 

(0.94) is higher than it is for Pred1 (0.90), even though the optimal performance of Pred1 is 

higher than that of Pred2. This is because this measure assesses how good the selected cutoff is 

in relation to the optimal cutoff for a prediction result, not for the overall prediction 

performance.   

The effect of different sampling strategy under every tested error rates on selecting the ‘close 

to optimal’ threshold has been analysed. This is done by evaluating the following hypothesis 
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on the predictions of ID models for every ML algorithm: “there are no statistically significant 

differences in the G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the {C5.0, RF, 

SVM} model predictions between the different sampling strategies –number of bins- (B1, B10, 

B20, B50 and B100) when the sample labels have an {0%, 1%, 5%, 10%} error rate”. 

Similar analysis is performed to evaluate the effect of different sample sizes, by testing the 

following hypothesis on the predictions of ID models for every ML algorithm: “there are no 

statistically significant differences in the G-Mean Accuracy Ratios (GAR) of the sample 

cutoffs of {C5.0, RF, SVM} model predictions between the different sample sizes (10% to 

0.0001%) when the sample labels have an {0%, 1%, 5%, 10%} error rate”.    

Finally, the effects of different error rates on the selection of the ‘close to optimal’ threshold on 

the predictions of the ID models of every ML algorithms is analysed by testing the following 

hypothesis, “there are no statistically significant differences in the G-Mean Accuracy Ratios 

(GAR) of the sample cutoffs of the different ML (C5.0, RF and SVM) model predictions at 

different error rates (0%, 1%, 5% and 10%) in the sample labels”.    

7.3 Experimental Setting 

The experiments presented in this chapter used the prediction results of the models developed 

in Chapter 6 on the STA2018 dataset. As noted earlier, the main aim of these experiments was 

to evaluate the effectiveness of the threshold (cutoff) setting using a randomly selected subset 

of the test data. The true label of this subset was then used to compute the best cutoff value 

(Thrsmpl) at which the maximum G-Mean Accuracy could be achieved on this sample. The 

Thrsmpl was used to classify the original test data and to compute its classification performance. 

The ratio of the classification performance (G-Mean Accuracy) of the Thrsmpl to the optimal 

adaptive threshold (Thropt) for the whole of the test data was then computed. This ratio (GAR) 

was used to measure how close the subset’s cutoff (Thrsmpl) was to the optimal one.     
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Figure 7.2: Example comparing two predictions (maroon and blue). Vertical solid lines represent the optimal threshold of these predictions 

and the vertical dotted lines represent the sample cutoffs. 

 

Listing 7.1 presents the pseudo code for the experiments run in these assessments. For every 

model and evaluation data combination, different samples of various sizes were randomly 

selected. These samples were drawn using binning techniques and by randomly introducing 

different error rates to their true labels. Each sample was used to set the prediction threshold 

(Thrsmpl), and the quality of this threshold was assessed using the GAR metric. Every sampling 

process was repeated 100 times and the mean of all of the ratios (GAR) of the 100 repetitions 

was recorded and used in the later analysis.  
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Algorithm: Threshold Tuning Experiments 
Input: MDL=Model predictions  ,  testData=The test data the model predicted   
Result: GAR values of sample thresholds (cutoffs)  
  
1 Bin.Set         <- {1, 10, 20, 50, 100} 
2 Error.Set       <- {0%, 1%, 5%, 10%} 
3 SampleSize.Set  <- {10%, 5%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005%, 0.001%, 0.0005%, 0.0001%} 
4 Results.Set     <- {} 
5  
6 For (MDL,testData) results, do                      // Process every ML (C5.0, RF, SVM) models’ 
7                                                     // results of the 300 evaluations on  
8                                                     // the STA2018 dataset  
9                                                     // (6 Days × 10 Models × 5 test data). 
10  
11    data.labels <- get.labels(testData)              // Get the true labels of the test data. 
12    data.prdcts <- get.predictions(MDL,testData)     // Get model predictions of the test data. 
13    adpt.cutoff <- get.bestCutoff(data.prdcts, data.labels) // Get the predictions adapted  
14                                                            // optimal threshold (ThrOpt) 
15    opt.gAcc   <- get.gAcc(data.prdcts, data.labels, adpt.cutoff) // Get the G-Mean Accuracy at 
16                                                                  // optimal threshold (ThrOpt) 
17  
18    For bin in Bin.Set, do                           // Loop 5 times  {1 ... 100}. 
19       For err in Errors.Set, do                     // Loop 4 times  {0% ... 10%}. 
20          For smplSize in SampleSize.Set, do         // Loop 11 times {10% ... 0.0001%}. 
21             For repeat in (1..100), do              // repeat every sampling 100 times.  
22                // Select random samples and get their labels and predictions  
23                i <- select smplSize instances from every bin of the data.prdcts randomly 
24                smpl.labels <- data.labels[i]  
25                smpl.prdcts <- data.prdcts[i]  
26  
27                // Introduce some errors in samples labels randomly  
28                if (err > 0)  
29                   smpl.labels <- swap labels of err instances of smpl.labels randomly 
30  
31                // Compute best sample cutoff (ThrSmpl) based on sample labels and predictions 
32                if (smpl.labels is pure   OR   cannot find cutoff)  
33                   smpl.cutoff <- 0.5 
34                else  
35                   smpl.cutoff <- get.bestCutoff(smpl.prdcts, smpl.labels) 
36  
37                // Compute the G-Mean Accuracy of full data at sample cutoff (ThrSmpl)  
38                gAcc        <- get.gAcc(data.prdcts, data.labels, smpl.cutoff) 
39  
40                // Compute G-Mean Accuracy Ratio (GAR) of the test data predictions between 
41                // sample cutoff and optimal adapted cutoff.  
42                gAcc.ratio  <- gAcc ÷ opt.gAcc 
43  
44                // Add results to file for further analysis.   
45                Results.Set <- Results.Set   ∪   {MDL, testData, bin, err, smplSize, gAcc.ratio} 
46  
47             done 
48          done 
49       done 
50    done 
51  
52 done 
  

Listing 7.1: Pseudo code of the experiments run for the results of each ML algorithm. 

 

The results from the experiments are illustrated in Appendix (C) (Figure C.19, Figure C.20 

and Figure C.21). Each figure shows the results for the three ML algorithms using different 

error rates (0%, 1%, 5% and 10%); each subplot shows the median of the GAR values for all 

of the models with the same feature set and data balance group for that algorithm. The curves 
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in each subplot for every group illustrate the medians of the different sampling strategies (B1, 

B10, B20, B50 and B100) for every sample size (10% to 0.0001%). 

Table 7.1 presents the number of sampled instances for every simulation day for every sample 

size from the transformed STA2018 dataset. 

 
Table 7.1: Number of sampled instances for each sample size used in these experiments. 

 

7.4 Results and Discussion 

These experiments compared the effect of different parameters, i.e. sample size, number of bins 

and error rates, in determining the optimal threshold (cutoff) for the predictions of the three 

tested ML algorithms (C5.0, RF and SVM) using the evaluation data. Non-parametric 

Friedman’s tests (with a significance level of α = 0.05) were used for these comparisons and 

the G-Mean Accuracy Ratio (GAR) of the sample cutoffs was used as the evaluation metric. 

The decision to use non-parametric tests was driven by the non-normal nature of the result GAR 

values used in these evaluations. The Shapiro-Wilk normality test [332] could not have been 

used in these experiments due to the size of the experiment results (which exceeded the limit of 

5,000 records). Therefore, the Anderson-Darling normality test [333, 334] was used, and 

confirmed that the results were not normal; A = 14862.0, p = 0.000.  

12-Jun 13-Jun 14-Jun 15-Jun 16-Jun 17-Jun

Normal 164,545 168,947 213,798 633,388 600,017 409,090

Attack 2,123 10,037 6,422 35,260 11 4,959

Total 166,668 178,984 220,220 668,648 600,028 414,049

10% 16,667 17,899 22,022 66,865 60,003 41,405

5% 8,334 8,950 11,011 33,433 30,002 20,703

1% 1,667 1,790 2,203 6,687 6,001 4,141

0.5% 834 895 1,102 3,344 3,001 2,071

0.1% 167 179 221 669 601 415

0.05% 84 90 111 335 301 208

0.01% 17 18 23 67 61 42

0.005% 9 9 12 34 31 21

0.001% 2 2 3 7 7 5

0.0005% 1 1 2 4 4 3

0.0001% 1 1 1 1 1 1
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Due to the number of statistical tests conducted in these analyses, where all of them have shown 

significant results, only the key hypotheses are explored in the following discussion. The results 

of their Nemenyi post-hoc tests [373-375] (which were used to perform the pairwise 

comparisons between different effects to differentiate them) are illustrated with Critical 

Difference (CD) plots.  

Multi-Critical Difference (M-CD) plots are novel illustration that were developed for the 

comparative analysis in this research and have been used in this chapter. These plots are an 

aggregation of the multiple CD plots that were used to compare different effects under various 

conditions. 

7.4.1 C5.0 Algorithm 

The plots in Figure 7.3 relate to the C5.0 models. They show the median and interquartile 

ranges (first and third quartile) of the GAR values for the sample thresholds under different 

parameters (sample size and number of bins). Every subplot shows the results under different 

error rates (0%, 1%, 5% and 10%).  

As expected, Figure 7.3 clearly shows that the bigger the sample the better the GAR i.e. that 

the sample cutoff was the closest to the optimal threshold. However, two unpredicted patterns 

emerged. Firstly, higher error rates in the sample labels resulted in a better selection of the 

cutoff for C5.0 predictions. As error rates increased, the GAR values for the larger samples 

jumped to more than 0.97, while for samples as small as 0.1%, values crossed the 0.9 GAR 

point at the 10% error rate. Secondly, the B1 sampling strategy was superior to other sampling 

approaches, especially for sample sizes of less than 5%. This advantage was maintained across 

increased error rates with a widening gap between B1 and the multi-bin sampling strategies at 

lower sampling rates.     
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Figure 7.3: Median of G-Mean Accuracy Ratios (GAR) of the C5.0 models predictions under different sampling strategies (number of bins), 

sample sizes and error rates. 

 

The cause of such unexpected behaviours is linked to the nature of C5.0 models, which 

produced low numbers of unique probabilities (thresholds) for their predictions. Figure 7.4 

shows the averages of the number of unique probability values (thresholds) returned by every 

C5.0 models (generated in Chapter 6) as predictions of the tested data. The blue and red lines 

respectively represent the minimum and maximum probabilities (thresholds) within the range 

of these predictions. This figure shows that the predictions of the C5.0 models suffered from 

having low numbers of unique cutoffs and short ranges. In general, C5.0 models produced far 

fewer thresholds than RF and SVM. This caused a shift from one cutoff value to another -in 

C5.0 predictions- leading to a step jump which caused many samples to change state in a single 

step.  

In the RF and SVM predictions these transitions were much smoother due to the high number 

of prediction probabilities (thresholds). 
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Figure 7.4: Average number of unique thresholds for the predictions of C5.0 models, and their ranges. 

 

As a result of the low number of unique thresholds produced by the C5.0 models, the random 

samples tended to include all of the cutoff values returned by these models. Therefore, the 

mixed cases (of normal and attack instances) tended to skew the selected cutoff (ThrSmpl) away 

from the optimal threshold (ThrOpt) and towards those rarer minority classes (attack) to 

maximise the performance measure (G-Mean Accuracy). However, as the error rates increased, 

the likelihood of changing the labels of majority instances (normal) will be higher, causing the 

sample cutoff (ThrSmpl) to shift towards the optimal threshold (ThrOpt). This resulted in a big 

improvement in their GAR values due to the effect of those step jumps. This effect is discussed 

in more detail in Section 7.4.4 and illustrated in Figure 7.15-(a) (see Page 205). 

Although the GAR curves in Figure 7.3 suggest the B1 sampling strategy was superior to the 

multi-bin strategies, statistical analysis was conducted to test the significance of this 

observation. 

To statistically analyse the differences between various sampling strategies (number of bins) 

for the identification of close to optimal threshold, four Friedman’s tests were performed with 
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a significance level of α=0.05. Each test was performed under a different error rate to test the 

hypothesis, “there are no statistically significant differences in the G-Mean Accuracy Ratios 

(GAR) of the sample cutoffs of the C5.0 model predictions between the different sampling 

strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample labels have an X% 

error rate”. These are the results for each test: 

• 0% Error : χ2(4) = 411.3, p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(4) = 304.5, p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(4) = 295.0, p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(4) = 247.0, p = 0.000 < 0.05 (differences are statistically significant) 
 

Every one of these tests showed significant differences between the sampling strategies where 

a Nemenyi post-hoc test had been conducted to perform a pairwise comparison as illustrated in 

the M-CD plots in Figure 7.5. 

This plot (Figure 7.5) shows that B1 has no significant differences to both B50 and B100 when 

the error rate was between 0% and 5%. However, once the error rate reached 10%, the 

differences between most sampling strategies became statistically significant, except for B50 

and B100, where B1 remained the best.  

Further investigation into the possible cause of this unpredictable result i.e. the superiority of 

the B1 sampling strategy, revealed that the models’ predictions for Day 2 (12/Jun) and Day 6 

(16/Jun) were the most problematic as a result of them having a very small number of unique 

thresholds (see Figure 7.4). This led to a large skewness of ThrSmpl when the multi-bins 

strategies are applied due to the presence of many extreme thresholds that were missed by the 

B1 approach. The predictions for these two days skewed the overall results. However, the 

Friedman test was able to detect the insignificance of this effect, to some extent. The results for 

these two days are set out in Figure C.1 and Figure C.5 in Appendix (C) [the reader is referred 

to Figure B.1 for further details about the performance plots for C5.0 models for Day 2 and 

Day 6 in Appendix (B)].   
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Figure 7.5: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the C5.0 

predictions under different error rates (0%, 1%, 5% and 10%). 

 

To analyse the effect of different sample sizes on the accuracy of sample cutoffs under various 

error rates, four Friedman tests were performed with a significance level of α=0.05. Each tested 

the following hypothesis, “there are no statistically significant differences in the G-Mean 

Accuracy Ratios (GAR) of the sample cutoffs of C5.0 model predictions between the different 

sample sizes (10% to 0.0001%) when the sample labels have an X% error rate”. The results 

from these tests are as follow: 

• 0% Error : χ2(10) = 4983.6, p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(10) = 7470.6, p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(10) = 7162.4, p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(10) = 6729.7, p = 0.000 < 0.05 (differences are statistically significant) 
 

All of these tests showed significant differences. Figure 7.6 illustrates the M-CD plots of the 

pairwise comparisons subsequently conducted using the Nemenyi post-hoc test for every error 

rate. 
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Figure 7.6: Results of multiple Nemenyi tests (95% confidence level) of different sampling size (10% to 0.0001%) using the C5.0 predictions 

under different error rates (0%, 1%, 5% and 10%). 

 

These tests showed significant differences between the sample sizes; the bigger the sample, the 

higher the ranking it achieved, confirming the observations set out in Figure 7.3. For the smaller 

samples (less than 0.05%), the differences were insignificant. Moreover, as the error rate in 

sample labels reached 5%, the difference between the sample sizes of 10%, 5%, 1% and 0.5% 

became insignificant, including the sample size of 0.1% at an error rate of 10%. The smaller 

the sample size, the less representative they were of the original population (test data); this 

caused the cutoff ThrSmpl to be selected, which is far from the optimal ThrOpt. The effect of 

increasing the error rates for the larger samples is discussed in more detail in Section 7.4.4.    

7.4.2 RF Algorithm 

Figure 7.7 presents the medians and interquartile ranges for the GAR values of the samples’ 

cutoffs for the RF predictions. The subplots show the results of different sample sizes and the 

number of bins at every error rate (0%, 1%, 5% and 10%). 



Chapter 7: Cutoff Selection Based on Evaluating a Subset of the Test Data 

 

194 

 

 
Figure 7.7: Median of G-Mean Accuracy Ratios (GAR) of the RF models predictions under different sampling strategies (number of bins), 

sample sizes and error rates. 

 

As with the C5.0 predictions, the cutoffs for the larger samples were much better, as they had 

higher GAR values - as can be seen in Figure 7.7. However, unlike C5.0, the GAR of the RF 

samples dropped as the error rate increased, especially amongst the larger samples (10% to 

0.5%). In general, sample sizes below 0.05%, lost their accuracy in selecting close to optimal 

cutoffs with their GAR starting to rapidly fall below 0.9. The key difference between the 

behaviour of C5.0 and RF is linked to the large number of unique thresholds produced by the 

RF models, which are illustrated in Figure 7.8. For this reason, a larger sample size will have 

better representation of the original data and will manifest a wider and finer prediction range 

with a proportionate number of class labels close to the real data. This led to the selection of 

better cutoffs that were close to the optimal threshold. (Further explanations to explore the 

effect of the errors are discussed in Section 7.4.4.)  
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Figure 7.8: Average number of unique thresholds for the predictions of the RF models, and their ranges. 

 

Moreover, as initially anticipated, the B1 sampling strategy exhibited a lower GAR than the 

multi-bin sampling approach and these differences were much more obvious amongst the 

smaller samples. It was also noticeable that the gap between the B1 and the multi-bin sampling 

strategies narrowed as the error rate increased. These findings were further analysed to 

determine their significance.      

Different sampling strategies (number of bins) were analysed to determine if they have any 

differences in finding the best threshold based on their sample cutoffs. Four Friedman tests 

were executed with a significance level of α=0.05. Tests were performed for each error rate to 

test the following hypothesis, “there are no statistically significant differences in the G-Mean 

Accuracy Ratios (GAR) of the sample cutoffs for the RF model predictions between the 

different sampling strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample 

labels have an X% error rate”. The results from the tests are as follows: 
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• 0% Error : χ2(4) = 1499.0,    p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(4) = 1181.9,    p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(4) =   900.4,    p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(4) =   703.9,    p = 0.000 < 0.05 (differences are statistically significant) 
 

Figure 7.9 shows the M-CD plots of the Nemenyi post-hoc test, which was subsequently 

conducted to identify any differences between the sampling strategies by performing pairwise 

comparisons. These plots show that the larger the number of bins, the better the sample cutoff. 

The differences between all of the sampling strategies were significant with the larger bins 

ranked higher than the smaller ones.  

 
Figure 7.9: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the RF 

predictions under different error rates (0%, 1%, 5% and 10%). 

 

This confirms the observations set out in Figure 7.7 which showed that the curve of the B1 

strategy was lower than that of the other sampling strategies. As error rates reached 5% and 

above, the difference between B1 and B10 became insignificant. This was due to the increase in 

the GAR values of the B1 samples, which reduced the gap (between the B1 and B10 lines), as 

illustrated in Figure 7.7.  
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This result is in line with what was expected as a wider prediction range should increase the 

level of accuracy of identifying the right discriminating threshold. The key difference between 

the C5.0 predictions and those of RF and SVM was the number of unique thresholds produced, 

as discussed earlier. As the number of unique cutoffs decreased in the C5.0 predictions, finding 

the optimal threshold using a larger number of bins, became less efficient.   

Four Friedman tests were performed (with a significance level of α=0.05) to analyse the effect 

of different sample sizes on the selected sample cutoffs under various error levels. Each test 

assessed the following hypothesis, “there are no statistically significant differences in the 

G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the RF model predictions between 

the different sample sizes (10% to 0.0001%) when the sample labels have an X% error rate”. 

The results from these tests are as follow: 

• 0% Error : χ2(10) = 12052.0,  p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(10) = 11024.0,  p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(10) =   8799.4,  p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(10) =   8472.3,  p = 0.000 < 0.05 (differences are statistically significant) 
 

All of these tests showed significant statistical differences. Figure 7.10 illustrates the M-CD 

plots of the pairwise comparisons that were subsequently conducted using the Nemenyi post-

hoc test. 

Like the C5.0 algorithm plots, these plots (Figure 7.10) show significant differences between 

different sample sizes. At error rates of 0% and 1%, the larger the sample size, the higher the 

ranking. As the error rate reached 5%, some of the small samples (0.5%, 0.1% and 0.05%) 

started to become indistinguishable from the larger samples, but once the error rate reached 

10%, these small samples became highly ranked and their difference to the larger sample sizes 

become significant. However, the smaller samples (less than 0.05%) were always ranked low. 
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Figure 7.10: Results of multiple Nemenyi tests (95% confidence level) on different sampling sizes (10% to 0.0001%) using RF predictions 

under different error rates (0%, 1%, 5% and 10%). 

 

For these small samples (0.5%, 0.1% and 0.05%) the number of unique thresholds were small, 

resulting in step jump effects similar to the C5.0 predictions discussed in Section 7.4.4. This 

led to the selection of ThrSmpl that is furthest from ThrOpt. As a result, high error rates caused 

many of the majority (normal) instances to change their state, which in turn caused the sample 

cutoffs (ThrSmpl) to shift towards the optimal threshold. This can be seen from the increase in 

their GAR and their statistical rankings as illustrated in Figure 7.15-(a). However, as the larger 

samples had already selected an accurate ThrSmpl (which is the closest to the ThrOpt), higher 

error rates resulted in a skewness of this ThrSmpl towards these erroneous cases away from the 

optimal threshold, which in turn resulted in a fall in their GAR values. This made any 

differences in these samples indistinguishable from those of the small samples [see 

Figure 7.15-(a)].  

7.4.3 SVM Algorithm 

As for the SVM predictions, Figure 7.11 illustrates the medians for the sample GAR results 

and their interquartile ranges (first and third quartile). These subplots show the result of 
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different parameters (sample size and the number of bins) for every error rate (0%, 1%, 5% and 

10%). 

 
Figure 7.11: Median of G-Mean Accuracy Ratios (GAR) of the predictions of the SVM models under different sampling strategies (number of 

bins), sample sizes and error rates. 

 

Like the C5.0 and RF predictions, the SVM predictions were better at estimating the optimal 

threshold when larger sample sizes were used, as illustrated in Figure 7.11. The GAR of the 

SVM samples showed a similar trend to the RF samples in terms of error rates. However, the 

SVM samples showed a higher sensitivity to errors as their GAR values declined more sharply 

when error rates increased. By the time the error rates reached 5% and 10% the GAR fell below 

0.9 for the larger sample sizes (10% to 0.5%). This was caused by the large number of unique 

probabilities (thresholds) produced by the SVM models, which were much larger than those 

produced by the C5.0 and RF models, as can be seen in Figure 7.12. There were nearly as many 

of these thresholds as there were instances (connections) in the evaluation data. In other words, 

nearly every predicted instance had its own unique probability. Furthermore, these predictions 

covered the full range between zero and one with very few fluctuations, unlike the C5.0 and RF 
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predictions. The effect of errors on the samples’ cutoff selection is discussed in more detail in 

Section 7.4.4.   

 
Figure 7.12: Average number of unique thresholds for the predictions of the SVM models and their ranges. 

 

In a pattern similar to the RF predictions, the GAR values for the SVM samples using a multi-

bin sampling strategy, tended to be higher than the B1 sampling as can be seen in Figure 7.11. 

However, initially an unexpected pattern emerged - the SVM samples showed a higher GAR 

value for small sample sizes (0.05% to 0.0001%) compared to those for C5.0 and RF. Also, for 

the smaller samples (≤ 0.005%), the B1 sampling strategy had higher and more stable GAR 

values. This was down to the fact that for these smaller samples, the chances of a pure sample 

(single label) being selected was very high. As a result, ThrSmpl could not be identified which 

led to the sample being assigned the default cutoff value of 0.5 (Thr0.5) as shown in Listing 7.1 

(lines 32-35). 

In the multi-bin sampling strategies, the width of the prediction range was taken into 

consideration, which resulted in cases being sampled from every interval, which in turn led to 

more mixed samples. This resulted in the selection of a cutoff that was far from the optimal 
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one. To determine the significance of these effects and to explore their contributing factors, 

further statistical analysis was undertaken. 

The reason for the high GAR values for the smaller SVM samples (0.05% to 0.0001%) 

compared to those of the C5.0 and RF samples is related to the nature of the G-Accuracy curve 

for the SVM predictions. Most of the SVM prediction ranges were wide (0-1) and the curvature 

of their G-Accuracy curves is much flatter in the middle. Setting the sample cutoff (threshold) 

for a small sample size to a default of 0.5 (Thr0.5) did not result in a greater decrease in the GAR 

rate. This is because a threshold of 0.5 is within the range of most SVM predictions. This is not 

the case for most of the C5.0 and RF predictions, where a threshold of 0.5 (Thr0.5) lies at the 

edge or outside the range of their predictions as they form shorter intervals. These issues 

resulted in very low GAR values that can reach zero in some cases at the default threshold of 

0.5 (Thr0.5).  

These cases are illustrated in Figure 7.1, where the G-Accuracy curve of the SVM predictions 

are similar to the Pred3 curve while the G-Accuracy curves of the C5.0 and RF predictions 

would take the shape of Pred1 or Pred2.  

An analysis of the different sampling strategies (the number of bins) was conducted to establish 

whether there was any difference between the strategies in estimating the best threshold. A 

Friedman test was performed (with a significance level of α=0.05) for each error rate, to test 

the hypothesis, “there are no statistically significant differences in the G-Mean Accuracy 

Ratios (GAR) of the sample cutoffs of the SVM model predictions between the different 

sampling strategies –number of bins- (B1, B10, B20, B50 and B100) when the sample labels have 

an X% error rate”. The results of the tests are as follows: 

• 0% Error : χ2(4) =   29.6,   p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(4) = 308.3,   p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(4) = 666.6,   p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(4) = 764.9,   p = 0.000 < 0.05 (differences are statistically significant) 
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The M-CD plots in Figure 7.13 illustrate the results from the pairwise comparisons 

subsequently generated by a Nemenyi post-hoc test, which was used to identify the differences 

between the various sampling strategies.  

 
Figure 7.13: Results of multiple Nemenyi tests (95% confidence level) on different sampling strategies (B1, B10, B20, B50 and B100) using the 

SVM predictions under different error rates (0%, 1%, 5% and 10%). 

 

Figure 7.13 shows that for the SVM models (unlike the C5.0 and RF models) there were 

insignificant differences between the different sampling strategies when the sample labels were 

accurate (0% error), except in the case of the B10 sampling approach which was ranked the 

lowest. As the error rate increased, the differences between the sampling strategies became 

more significant with the multi-bin sampling methods starting to become highly ranked. When 

the error rate reached 10%, B1 was ranked the lowest, while the higher the number of bins, the 

better the ranking. 

There were two main reasons for this. The first was an increase in the GAR values for B1. Very 

small sample sizes caused an increase in the ranking by the statistical test. The second reason 

was the large number of unique thresholds in the SVM predictions. Unlike C5.0 and RF, when 

the B1 strategy was applied to the SVM predictions, sample instances did not concentrate at 
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particular thresholds. As a result, the samples produced had a wider coverage of the prediction 

range, which in turn led to a better selection of the sample threshold ThrSmpl (which is very close 

to ThrOpt). However, the middle sized samples (1%-0.005%) produced a similar effect to the 

C5.0 and RF samples in that the selected samples would have a small number of thresholds. 

This was due to the low number of instances sampled, resulting in a step (jump) transition effect 

between the thresholds. As the error rate for these samples increased, the GAR for the selected 

sample threshold (ThrSmpl) increased and different sampling strategies started to differentiate 

from each other. The statistical test took these effects into account and gave a higher ranking to 

the multi-bin strategies. In these cases, the larger multi-bins had better GAR values as they 

offered better coverage of the prediction range. 

The analysis was extended to examine the impact of sample size on the selected sample cutoffs 

under various error levels, using the Friedman test (with a significance level α=0.05). Four tests 

were undertaken to test the following hypothesis, “there are no statistically significant 

differences in the G-Mean Accuracy Ratios (GAR) of the samples’ cutoffs of the SVM model 

predictions between the different sample sizes (10% to 0.0001%) when the sample labels have 

an X% error rate”. The results of these tests were as follows: 

• 0% Error : χ2(10) = 7221.3, p = 0.000 < 0.05 (differences are statistically significant) 

• 1% Error : χ2(10) = 6226.3, p = 0.000 < 0.05 (differences are statistically significant) 

• 5% Error : χ2(10) = 3515.0, p = 0.000 < 0.05 (differences are statistically significant) 

• 10% Error : χ2(10) = 2800.3, p = 0.000 < 0.05 (differences are statistically significant) 
 

All of these tests showed significant differences. Figure 7.14 illustrates the M-CD plots of the 

pairwise comparisons subsequently generated using the Nemenyi post-hoc test. 

For SVM, Figure 7.14 shows that the differences between the different sample sizes were 

statistically significant. As with RF, at low error rates (0% and 1%), the larger the sample size, 

the higher the ranking. However, the small sample sizes (0.5%, 0.1% and 0.05%) started to 
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show superiority over larger samples (10%, 5% and 1%), with significant differences as the 

error rates increased to 5% and beyond.  

 
Figure 7.14: Results of multiple Nemenyi tests (95% confidence level) on different sampling sizes (10% to 0.0001%) using the SVM predictions 

under different error rates (0%, 1%, 5% and 10%). 

 

As with the RF predictions, two significant but opposite effects began to happen at the same 

time: while there was a reduction in the GAR values of the larger samples, the GAR values of 

the small samples (0.5%, 0.1% and 0.05%) increased. These small samples had a few number 

of unique thresholds, resulting in the step jump effect discussed earlier. 

7.4.4 Closing remarks  

Figure 7.15 illustrates the effect of error rates (in the sample labels) on the selection of sample 

thresholds for the different ML models. 

The experiments outlined in Chapter 6 were configured to return the probability of an instance 

(connection) being an attack. Therefore, the lower the probability (of an attack) the higher the 

chance that the evaluated connection was normal. As a result, a higher density of normal class 

connections were present at the lower end of the prediction scale. Moreover, introducing errors 
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(a) (b) 

Figure 7.15: Illustrative plots of the effect of erroneous sample labels on threshold shift (a) C5.0 predictions (b) RF and SVM predictions. 

 

randomly into these sample labels changed the labels of many of these normal instances into an 

attack, resulting in a shift of the threshold towards erroneous cases to maximize the performance 

measure (G-Mean Accuracy) as explained earlier. Figure 7.15 illustrates the changes in the 

threshold under different scenarios. Figure 7.15-(a) shows the cases behaved in a similar way 

to the C5.0 predictions, where the sample cutoff (ThrSmpl) would usually be far from the optimal 

threshold (ThrOpt), and errors in the sample labels resulted in a shift of the cutoff towards ThrOpt.  

In the RF and SVM predictions, the opposite effect happened [see Figure 7.15-(b)] as the 

sample cutoff (ThrSmpl) would originally be the closest to the optimal threshold (ThrOpt) due to 

the sample’s good representation of the original data. In such cases, increasing the error rate 

introduced a shift that is similar to the previous case, though this shift pushed the sample cutoff 

(ThrSmpl) away from the optimal threshold (ThrOpt) which resulted in a fall in the GAR. 

There are two key factors that affected the main behaviour of these algorithms’ predictions in 

identifying the right threshold, based on the labels of small samples: the number of unique 

predictions (probabilities) generated by the models; and the predictions range.  
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Overall, in relation to sample size all of the algorithms behaved similarly in determining the 

‘close to optimal’ threshold i.e. the larger the sample, the better the estimation. Almost all of 

these ML algorithms also displayed the same behaviour in relation to those smaller samples 

(i.e. smaller than 0.01%) that were ranked the lowest (as illustrated in Figure 7.6, Figure 7.10 

and Figure 7.14). Therefore, the following discussion and analyses will focus on sample sizes 

greater than 0.005% (i.e. 10%, 5%, 1%, 0.5%, 0.1% 0.05% and 0.01%). 

A final comparison looked at the algorithms’ predictions under different error levels to 

determine the best cutoff based on a small subset. For this, a Friedman test was performed (with 

a significance level of α=0.05) to test the following hypothesis, “there are no statistically 

significant differences in the G-Mean Accuracy Ratios (GAR) of the sample cutoffs of the 

different ML (C5.0, RF and SVM) model predictions at different error rates (0%, 1%, 5% 

and 10%) in the sample labels”.  

As the results showed significant differences - χ2(11) = 18417.0, p = 0.000 < 0.05 - pairwise 

comparisons were performed using the Nemenyi post-hoc test. The results of the test are 

illustrated in Figure 7.16. 

The results show that at an error rate of 1%, RF had the highest ranking while at 0%, RF and 

SVM showed insignificant differences. However, as the error rate increased, all of the algorithm 

prediction rankings got lower. The C5.0 model predictions showed the worst performance 

overall. 

In general, as discussed in Chapter 6, the RF models displayed the highest levels of prediction 

accuracy rates among the ML algorithms studied. These experiments also showed that sampled 

instances are appropriate to estimate the best adaptive prediction threshold. These subsets were 

as small as 0.05% of the original evaluation dataset with a GAR close to 0.9, which is a very 
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Figure 7.16: Critical Difference plots for the different ML algorithm samples under different error rates. 

 

good ratio compared to the other algorithms. Knowing that RF predictions had the highest G-

Mean Accuracy rate means the estimated sample cutoff (ThrSmpl) is able to estimate up to 90% 

of the full model’s predictive capacity if its threshold is set to ThrOpt. Also, RF showed the least 

sensitivity to error rates in comparison to the two other algorithms. All of these findings make 

this algorithm the best of the three for modelling network traffic for ID tasks. 

7.5 Limitations 

Although the experiments outlined in this chapter investigated the practicality of selecting a 

‘close to optimal’ adaptive threshold for evaluation (test) data based on the true label of a small 

subset, there were a number of limitations to them.  

Firstly, the analysis used a random sampling approach to draw samples from the population 

being studied (the evaluation data). Other approaches could have been explored to determine 

the best approach for this domain such as: systematic sampling [378]; probability-proportional-

to-size sampling [379, 380]; stratified sampling [288, 381, 382]; or cluster sampling [383, 384]. 
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Secondly, only a stratified sampling method, based on a prediction range using a fixed number 

of bins, was investigated. Further analysis would be required to investigate other approaches 

which might have better techniques. For example, using some density based functions to 

perform a much smoother sampling would have resulted in a more representative subset of the 

data based on the models’ predictions.  

Thirdly, sampling without replacements was used. Further investigation is required to assess 

how sampling performs when it is applied with replacement, i.e. so that the same instances 

could be sampled multiple times. Such a method could be applied to the sampled subset to have 

better cutoff estimation within a certain confidence interval.  

Fourthly, only specific percentages were analysed to examine the effect of the sample size on 

the identification of the ‘close to optimal’ adaptive threshold. These percentage values were 

sufficient for this study as the datasets used in these analyses were large. However, as the size 

of the evaluated data gets smaller larger percentages might be needed to extract representative 

samples. Therefore, further investigation is needed in the future to determine the appropriate 

sample size given the actual data under consideration. 

Finally, a thorough analysis is needed to explore the relationship between the number of unique 

cutoffs and the shifts in the threshold as a result of errors. The analysis outlined in this chapter 

showed a possible relationship between the two, but a more in-depth analysis of the causes is 

required. Such an analysis might result in the development of a model that could determine the 

correct number of cases and the best sampling strategy to apply, based on the probabilities 

(thresholds) returned by the prediction models. Such a model might ensure better and more 

representative samples based on a number of factors including, the range of the predictions, the 

number of unique thresholds, density distributions, model parameters and the ML algorithm. 
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7.6 Summary 

This chapter outlines a set of empirical analyses which investigated how to determine the best 

optimal adaptive threshold for evaluation data. The predictions of various models, developed 

using different ML algorithms (C5.0. RF and SVM) with different features sets (Full, MDA, 

MDG, MDABal and MDGBal) and different data balances (balanced and non-balanced), were 

analysed. The aim of this chapter was to identify the optimal adaptive threshold using the true 

label of small subsets so that such an approach could be applied to a real life setup. 

The experiments outlined in this chapter analysed how the ‘close to optimal’ thresholds were 

identified, based on sampled subsets with different effects: sample size, sampling strategy and 

error rates. Sample thresholds were evaluated on their proximity to the optimal threshold. From 

these experiments it can be concluded that the larger the sample the better the threshold selected. 

Furthermore, it can also be concluded that as the number of bins used to sample instances from 

the prediction range increases, the more representative the samples will be, and hence the closer 

the cutoff will be to the optimal threshold.    

The analysis in this chapter used the G-Mean Accuracy Ratio (GAR) to assess the quality of 

the selected cutoffs. The results from these experiments were assessed on this measure using 

the non-parametric Friedman’s test to determine whether there were any significant differences 

between the effects analysed.  

The selected cutoffs of the samples of the RF and SVM predictions were the closest to the 

optimal adaptive threshold. The RF samples showed GAR values that were close to 0.9 for 

samples as small as 0.05%. Therefore, as the RF models have a very high G-Mean Accuracy, 

they will make much more accurate predictions after threshold adaptation than the use of a fixed 

threshold when assessing a model’s performance. These results make RF the best out of the 

three compared algorithms to model network traffic and detect novel intrusions. 
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Chapter 8: Conclusion 

 

Chapter Eight 

Conclusion 
 

 

From the earliest research on Intrusion Detection in 1972, researchers have employed various 

methods and techniques to devise systems to detect novel and unknown attacks. Various 

methods, such as Machine Learning (ML) and Data Mining (DM), have been used to serve this 

quest. However, researchers recognise the limitations of such approaches in addressing the 

variability in traffic patterns over time. This has led to further research in this area and a number 

of solutions have been proposed to address such limitations. For example, some methods have 

been proposed and developed to detect variability and hence adjust the parameters of the 

detection model in a real-time setup. Others have proposed ensemble methods to create strong 

ID models by aggregating and unifying multiple weak models, which can be replaced when any 

change in pattern is detected in a data stream domain.  

However, adaptation in batch-learning methods is the area of focus for this thesis as it remains 

under-researched. The aim of this thesis is to demonstrate the importance of threshold 

tuning/adaptation of the model predictions based on the dataset being evaluated. This is due to 

the fact that data evolves over time, especially in dynamic environments, like network traffic, 

where changes occur very quickly, which renders ID models redundant faster than they would 

be with a fixed threshold. 
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To this end, in this thesis the following hypothesis has been investigated, as stated in Chapter 1 

and Chapter 3: 

 “In a binary batch-learning setup, prediction accuracy of a score-

based anomaly intrusion detection model can be improved by 

adapting the discriminating threshold specifically for the predictions 

of the evaluated network traffic.” 

 

During this research, multiple questions were addressed to piece together a holistic view of the 

problem. The study started by investigating the effect of adapting a discriminating threshold for 

every evaluation data and comparing the performance (detection accuracy) of models with a 

fixed threshold. The potential of threshold adaptation for a domain specific dataset (STA2018), 

which was specifically generated for this thesis, was then investigated under various scenarios 

that mimicked real life setups. Finally, this study examined the potential of threshold adaptation 

based on sampled validation data, where multiple variables had been used to control the 

sampling of the data and their effects have been assessed.  

8.1 Main Findings 

This section provides a summary of the main results of the experiments and analyses conducted 

in this thesis.  

8.1.1 Importance of threshold adaptation 

In a conventional binary batch-learning process, the discriminating threshold of an ID model is 

usually set just once using various techniques, such as a K-folds Cross-Validation or an 

independent validation (hold-out) data. Once that threshold has been set, it is then be used for 

all subsequent predictions undertaken by that model [27]. This study has highlighted both the 

shortcoming of such approaches and pointed out the potential of existing problems in estimating 
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a model’s actual performance. That is because the statistical properties of the training data are 

likely to differ from those of both the validation data and the subsequent evaluation (test) data.  

As a result, in this thesis it has been suggested that threshold selection should not be based on 

the detection model alone, where the same threshold being used for all subsequent evaluations 

and be expected to provide the optimal model predictions. Instead, a discriminating threshold 

should be set, based on a combination of the ID model and the evaluated (test) data. 

Furthermore, the best threshold should be independently selected for each evaluated dataset, 

especially where the threshold selection is based on an optimisation of some performance 

criterion. As a result, this study has shown significant statistical differences in model 

performance (prediction accuracy) depending on whether a fixed or an adaptive threshold is 

used, with a tuned threshold improving model performance. 

Three ML algorithms (C5.0, Random Forest and SVM) were compared and showed similar 

behaviour in relation to threshold tuning which resulted in significant improvements in the 

predictions of their models. However, Random Forest was the best performing algorithm with 

the highest detection rates and the least variability after threshold tuning.  

In this research it has been concluded that the use of a fixed threshold for model predictions 

undermines the actual model performance. Therefore, it is recommended that the discriminating 

threshold should be adapted based on a representative sample of the evaluation data. However, 

in domains where the statistical differences (or concept drift), between the training data used to 

build the ID model and the evaluation (test) data is not high, threshold adaptation will incur an 

extra overhead, when a fixed threshold would have sufficed. Therefore, a good measure of 

concept drift is required, along with further investigation and research to evaluate what 

measures can best detect such drifts and hence help the security analysts understand when to 

perform threshold selection.  
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8.1.2 Threshold adaptation to address feature drift 

The model development stage could be performed after some pre-processing phases, such as 

feature selection or data balancing, based on the analysis of the available data in order to 

improve the efficiency of the models generated. When data with different statistical properties 

are used, the results of such processing may not be similar. This is a common scenario in real 

life setups where the best features of the training data may not be the same as those of any 

future, unseen data. This study therefore investigated such scenarios, and evaluated multiple 

models under different setups.  

This research concluded that for all of the ML algorithms that were compared under various 

model development scenarios, such as feature sets and data balancing, an adaptive threshold 

outperforms a fixed threshold. Essentially, threshold tuning based on the evaluated (test) data 

can reduce the adverse effects of such pre-processing phases (feature selection and/or data 

balancing) in dynamic environments.  

In this thesis it has been shown that all of the ML algorithms analysed perform poorly prior to 

tuning. However, threshold adaptation increased the accuracy of model performance for all of 

the ML algorithms, with the RF algorithm being the most adaptable and showing the best 

overall performance. It has also been shown that data balancing does not produce significant 

improvements in model performance, except in the case of the C5.0 algorithm in those very 

limited instances where training data are highly skewed or imbalanced and have very few 

instances or records of the minority class. Similarly, different feature sets did not make a 

significant difference to the performance of the ML models, which encouraged the use of small 

feature sets without serious degradation in model performance (accuracy). However, with the 

RF algorithm, the performance of models that used feature sets selected on the basis of the 

Mean Decrease of Gini [for both balanced (MDGBal.) and imbalanced (MDG)] was statistically 
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lower than that of models that used other feature groups; this was due to the tendency of the 

Mean Decrease of Gini measure to select local features (specific to the training data). 

8.1.3 Optimal threshold selection 

This study has highlighted the importance of adapting the discriminating threshold for every 

evaluation (test) data predictions based on a representative sample of that data. In this thesis 

therefore it has been investigated the possibility of identifying the optimal adaptive threshold 

for the entire evaluation (test) data using the true labels of a sampled small subset (validation 

data). This investigation examined the effect of three key variables - sample size, sampling 

strategy and label error rates - on the threshold selected for the sampled validation data. The 

quality of the threshold selected was assessed by measuring the ratio of its performance 

(accuracy as measured by the Geometric Mean of Accuracy) on the entire evaluation (test) data 

relative to that of the optimal threshold (cutoff). 

Threshold selection for the predictions of the RF and SVM algorithms, using sampled validation 

data, performed the best. For the RF predictions, a sample as small as 0.05% of the original 

evaluation (test) data was sufficient to identify a threshold with an accuracy rate of over 90% 

of the overall accuracy of the optimal threshold.  

All of the algorithms that were compared showed similar results in terms of sample size; the 

bigger the sample size, the better the estimated threshold i.e. the nearer it was to the optimal 

threshold.  

As expected, increased error rates in the sampled validation data resulted in threshold 

estimations that furthest from the optimal threshold. The sampled data of SVM predictions 

showed greater sensitivity to errors than that of RF predictions. However, the C5.0 predictions 

exhibited the opposite effect; as error rates increased the estimated threshold of their sampled 

data increased in quality, which is attributed to the inferiority of C5.0 predictions. In general, 

the loss of quality due to increased error rates in relation to the threshold selected, was more 
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evident in larger samples. However, as sample size decreased, the influence of error rates also 

decreased. 

Stratified sampling strategies, where the prediction range is divided into multiple bins (B10, B20, 

B50 and B100) to draw random samples, showed a more positive effect on the quality of the 

threshold selected than random sampling (B1). Moreover, the larger the number of bins, the 

better the threshold selected. This is due to the better coverage of their prediction ranges, which 

results in a more representative validation sample. However, the binning effect became much 

more evident as samples got smaller.  With sample sizes larger than 1% of the original 

population (data), the effect of a multi-bin sampling strategy became indistinguishable. 

The relationship between error rates and the number of bins differed from one algorithm to 

another. The RF predictions showed a stable pattern with the larger the number of bins the 

closer the estimate came to the optimal threshold across all of the error rates tested. The SVM 

predictions showed significant differences between sampling strategies as the error rate 

increased. However, the C5.0 predictions were surprising; random sampling showed similar 

results to a large number of sampling bins, and, as error rates increased, the random sampling 

became significantly better at estimating the optimal threshold.  

8.2 Future Work 

Although the discussion of this thesis has shown the importance of threshold tuning/adaptation 

on the predictions of models based on the dataset under evaluation, it has also highlighted some 

of the limitations of this approach. Moreover, it is worth noting that, over the course of this 

research, more questions have been raised than initially proposed. This section therefore lists 

some possible directions for future studies. 
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8.2.1 Systematic comparison of different evaluation techniques 

As outlined in the literature, K-folds Cross-Validation and hold-out are the most widely used 

techniques to assess the model performance of various systems and algorithms. However, the 

prospective technique, which generates a setup that better mimics real-life, is the most 

underutilised evaluation approach. Therefore, a systematic analysis is required to compare all 

of these techniques, to understand their true capability to assess models and to identify the best 

approach for setting a standard for all analyses in the IDS domain. 

8.2.2 Threshold adaptation for multi-class models and other ML 

This study has analysed and investigated the effect of prediction threshold tuning in binary 

classification setups, an approach which has been shown to significantly improved model 

performance. However, no analysis was conducted on multi-class problems. Therefore, one 

potential avenue for further investigation is extending the threshold adaptation technique to 

multi-class predictions.  

This study also analysed three ML algorithms using their default settings. Future studies could 

extend this analysis to a more diverse range of ML algorithms and include other performance 

criteria, such as speed and resource consumption, to identify the best algorithm(s) for the 

network ID domain and the most adaptable to traffic variability. 

8.2.3 Threshold adaptation against attack 

This study did not consider the security of the IDS that implemented the tuning approach. 

Therefore, a further study is needed to analyse the resilience of this approach to attacks that 

target IDS, such as sporadic changes and evasion attacks. 

8.2.4 Data stream domains 

Another possible research avenue is applying the threshold tuning approach to data stream 

domains in order to reduce the model generation process as well as to compare its overall 

performance and resource utilisation with the state-of-the-art solutions in that domain. It is 
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expected that in such studies, the ID models will last longer as they will be phased out less 

frequently. This is because the ID models will maintain their high performance for longer so 

the updating process will not be triggered as often. However, this might require evaluating the 

instances in that domain in mini batches to adapt the threshold for each batch, which could slow 

the system response.   

8.2.5 Data pre-processing 

Once this study recognised the effect of traffic variability over time on feature importance 

(which can vary between training and evaluation data), it used two measures to assess feature 

importance and hence select the salient ones. In this thesis it has been shown that threshold 

tuning helped to mitigate or reduce the effect of feature drift. Therefore, further studies could 

analyse various feature selection and dimension reduction strategies to evaluate the best 

approach for the network ID domain. These studies could also thoroughly investigate which 

factors in threshold adaptation could mitigate the effect of feature drift on feature selection or 

dimension reduction methods.   

Similarly, only one method, SMOTE, was used to address the imbalance effect of the training 

dataset on model performance. Therefore, future studies could extend the analysis to investigate 

how different approaches could identify the best performing technique with the least time 

complexity, as time is a precious requirement for network based IDS. 

8.2.6 Validation data sampling 

This study has clearly shown the advantage of threshold adaptation in improving model 

performance and has investigated an approach to identify the optimal adaptive threshold based 

on representative validation data sampled from the entire test data. The true labels of the 

sampled data were used to optimise the performance criteria for the selected threshold. Different 

sample sizes, strategies and error rates were also investigated to identify the optimal threshold.  
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A future study could use different sampling techniques to identify the ‘close to optimal’ 

threshold. It could also investigate the use of multiple thresholds based on different traffic types, 

given that model predictions for ICMP traffic differ from those of TCP, and the patterns of 

HTTP traffic differ from those of FTP or SMTP. Using a single threshold to classify diverse 

traffic patterns might therefore hinder the overall detection performance. As a result, a multiple 

thresholds setup is a line of research worth investigating further.  

As this study used sampled validation data to identify a close to optimal threshold, it depended 

on the quality of the instances sampled. Therefore, a future study could identify the near to 

optimal threshold by performing iterative sampling - with replacement - using the sampled 

validation data. The average threshold from multiple iterations could then be assessed 

statistically to determine its quality.  

8.2.7 Drifts measurements 

The threshold adaptation process is not required when training and test datasets exhibit the same 

statistical properties. More studies are therefore needed to quantify the drift or difference 

between datasets by conducting some analysis such as Kullback–Leibler divergence test, so that 

such a measure can be used to assess the threshold shift for the test data. Such an approach 

could eliminate the need to access the true labels of the validation data, which can be a costly 

process. 

8.2.8 Further comparisons 

As the presented experiments showed that Random Forest algorithm performance was the 

highest between compared algorithms and the most adaptive algorithm. Also, knowing that this 

algorithm is a type of ensemble algorithms. Future studies could compare different ensemble 

type algorithms within the ID domain using the threshold adaptation approach. Further 

comparisons could be conducted to compare this approach with some of the state-of-the-art 

methods such as data stream methods and semi-supervised techniques (i.e. active learning).  
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8.3 Reflective/Closing Remarks 

A novel approach to evaluating detection models in the network ID field has been outlined in 

this thesis, where the use of prospective sampling ensured a close resemblance to real-life 

setups. This study also illustrated the gap that exists between the actual performance of ID 

models and what is usually believed about their performance when fixed thresholds are used.  

The Random Forest (RF) algorithm performed the best in detecting novel attacks and exhibited 

the best adaptability traits to changes in network traffic. The SVM algorithm performed second 

best in all the analyses conducted. Knowing that a linear version of SVM with its default setting 

was used throughout this thesis, a future investigation could explore the potential of this 

algorithm to fit the requirements of this domain. Although many studies have shown that C5.0 

is comparable to algorithms such as RF and SVM, it scored the worst of all the algorithms, 

especially in its ability to adapt to changes in traffic.  

As previous studies on IDS have adopted the conventional K-folds Cross-Validation or hold-out 

validation techniques in their assessment, their conclusions should be revisited as per the 

findings and recommendations of this thesis. 

This study has provided several topical and novel contributions to IDS research as outlined in 

Chapter 1. The work has demonstrated the value of threshold adaptation in improving the 

prediction efficiency (accuracy) of a binary ID model in network anomaly detection. Such 

threshold tuning is performed using a representative small sample of the evaluated traffic.  
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Appendix (A) Results of Chapter 4 (First) 

Experiment  

 

Appendix (A) 

Results of Chapter 4 (First) Experiment 
 

 

 

This appendix presents the results of the second phase experiments (conducted in Chapter 4) 

for every algorithm (C5.0, Random Forest and SVM) with different datasets (gureKDD, SEA 

and AGR). In these tables, each row corresponds to the model and every column represents the 

file that was used either in building the model or to test the model. The shaded cells present the 

results from where a file was used to build a prediction model using the 10-folds Cross-

Validation. Each one of these cells presents two measure: the Model’s optimal Threshold (MT); 

and the best G-Mean Accuracy reached, denoted by (CA). Every other (unshaded) cell presents 

three different values: the G-Mean accuracy of the model when the pre-computed cutoff 

(threshold) was used (MT) before adaptation; the new optimal threshold when it was adapted 

specifically to the test data file (FT); and the G-Mean accuracy after adaptation (FA).  
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A.1. C5.0 

This section presents the performance results of C5.0 algorithm on the three different datasets 

(gureKDD, SEA and AGR).  

 

 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

Model 1 
MT: 

CA: 

0.0001 

0.3904 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

MA: 

FT: 

FA: 

0.0000 

0.0000 

0.0000 

Model 2 
MA: 

FT: 

FA: 

0.2181 

0.0659 

0.8125 

MT: 

CA: 

0.3530 

0.9981 

MA: 

FT: 

FA: 

0.2108 

0.2140 

0.9740 

MA: 

FT: 

FA: 

0.7154 

0.2070 

0.9248 

MA: 

FT: 

FA: 

0.2162 

0.2140 

0.9715 

MA: 

FT: 

FA: 

0.5786 

0.2140 

0.9646 

MA: 

FT: 

FA: 

0.1850 

0.2140 

0.9805 

Model 3 
MA: 

FT: 

FA: 

0.0000 

0.2007 

0.8884 

MA: 

FT: 

FA: 

0.7127 

0.1474 

0.9150 

MT: 

CA: 

0.5863 

0.9995 

MA: 

FT: 

FA: 

0.8198 

0.3735 

0.8997 

MA: 

FT: 

FA: 

0.9874 

0.6506 

0.9956 

MA: 

FT: 

FA: 

0.9849 

0.6460 

0.9928 

MA: 

FT: 

FA: 

0.9981 

0.3926 

0.9994 

Model 4 
MA: 

FT: 

FA: 

0.8727 

0.0847 

0.9770 

MA: 

FT: 

FA: 

0.4109 

0.0856 

0.8656 

MA: 

FT: 

FA: 

0.9948 

0.3384 

0.9949 

MT: 

CA: 

0.3037 

0.9981 

MA: 

FT: 

FA: 

0.9862 

0.5781 

0.9965 

MA: 

FT: 

FA: 

0.9740 

0.6865 

0.9944 

MA: 

FT: 

FA: 

0.9988 

0.5321 

0.9995 

Model 5 
MA: 

FT: 

FA: 

0.8448 

0.2506 

0.9740 

MA: 

FT: 

FA: 

0.3315 

0.0952 

0.7145 

MA: 

FT: 

FA: 

0.9963 

0.6314 

0.9965 

MA: 

FT: 

FA: 

0.9107 

0.0839 

0.9453 

MT: 

CA: 

0.5854 

0.9998 

MA: 

FT: 

FA: 

0.8525 

0.4144 

0.9977 

MA: 

FT: 

FA: 

0.9995 

0.6126 

0.9995 

Model 6 
MA: 

FT: 

FA: 

0.8451 

0.3233 

0.9997 

MA: 

FT: 

FA: 

0.9610 

0.3154 

0.9948 

MA: 

FT: 

FA: 

0.9986 

0.6095 

0.9989 

MA: 

FT: 

FA: 

0.9093 

0.2791 

0.9128 

MA: 

FT: 

FA: 

0.9996 

0.5838 

0.9997 

MT: 

CA: 

0.5382 

0.9998 

MA: 

FT: 

FA: 

0.9994 

0.5608 

0.9994 

Model 7 
MA: 

FT: 

FA: 

0.8161 

0.2371 

0.9504 

MA: 

FT: 

FA: 

0.9894 

0.4086 

0.9903 

MA: 

FT: 

FA: 

0.8435 

0.7801 

0.9908 

MA: 

FT: 

FA: 

0.8454 

0.6245 

0.9308 

MA: 

FT: 

FA: 

0.9321 

0.7427 

0.9959 

MA: 

FT: 

FA: 

0.9802 

0.7330 

0.9939 

MT: 

CA: 

0.4664 

0.9998 

Table A.1: C5.0 model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 

 

 

 

 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.4424 

0.8731 

MA: 

FT: 

FA: 

0.8740 

0.4584 

0.8744 

MA: 

FT: 

FA: 

0.8046 

0.1404 

0.8517 

MA: 

FT: 

FA: 

0.8052 

0.1404 

0.8522 

MA: 

FT: 

FA: 

0.8361 

0.1430 

0.8502 

MA: 

FT: 

FA: 

0.8362 

0.1404 

0.8503 

Model 2 
MA: 

FT: 

FA: 

0.8726 

0.4338 

0.8736 

MT: 

CA: 

0.3845 

0.8731 

MA: 

FT: 

FA: 

0.8086 

0.0733 

0.8486 

MA: 

FT: 

FA: 

0.8074 

0.0736 

0.8493 

MA: 

FT: 

FA: 

0.8373 

0.1561 

0.8471 

MA: 

FT: 

FA: 

0.8372 

0.1561 

0.8468 

Model 3 
MA: 

FT: 

FA: 

0.8320 

0.8520 

0.8574 

MA: 

FT: 

FA: 

0.8319 

0.8520 

0.8586 

MT: 

CA: 

0.4882 

0.8898 

MA: 

FT: 

FA: 

0.8896 

0.4691 

0.8901 

MA: 

FT: 

FA: 

0.8592 

0.5192 

0.8599 

MA: 

FT: 

FA: 

0.8593 

0.5181 

0.8600 

Model 4 
MA: 

FT: 

FA: 

0.8317 

0.9259 

0.8612 

MA: 

FT: 

FA: 

0.8319 

0.9259 

0.8617 

MA: 

FT: 

FA: 

0.8906 

0.4832 

0.8906 

MT: 

CA: 

0.4827 

0.8902 

MA: 

FT: 

FA: 

0.8599 

0.5177 

0.8603 

MA: 

FT: 

FA: 

0.8599 

0.5155 

0.8603 

Model 5 
MA: 

FT: 

FA: 

0.8387 

0.7024 

0.8700 

MA: 

FT: 

FA: 

0.8394 

0.7030 

0.8704 

MA: 

FT: 

FA: 

0.8781 

0.2805 

0.8821 

MA: 

FT: 

FA: 

0.8775 

0.2805 

0.8821 

MT: 

CA: 

0.2959 

0.8567 

MA: 

FT: 

FA: 

0.8568 

0.2948 

0.8569 

Model 6 
MA: 

FT: 

FA: 

0.8391 

0.6915 

0.8686 

MA: 

FT: 

FA: 

0.8395 

0.6873 

0.8691 

MA: 

FT: 

FA: 

0.8762 

0.2457 

0.8819 

MA: 

FT: 

FA: 

0.8759 

0.2457 

0.8821 

MA: 

FT: 

FA: 

0.8563 

0.2773 

0.8570 

MT: 

CA: 

0.3049 

0.8559 

Table A.2: C5.0 model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 
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 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.7225 

0.9449 

MA: 

FT: 

FA: 

0.9443 

0.7171 

0.9445 

MA: 

FT: 

FA: 

0.4844 

0.9374 

0.4932 

MA: 

FT: 

FA: 

0.4850 

0.9383 

0.4930 

MA: 

FT: 

FA: 

0.6873 

0.8237 

0.6888 

MA: 

FT: 

FA: 

0.6873 

0.8212 

0.6885 

Model 2 
MA: 

FT: 

FA: 

0.9447 

0.7078 

0.9448 

MT: 

CA: 

0.7207 

0.9448 

MA: 

FT: 

FA: 

0.4835 

0.9425 

0.4938 

MA: 

FT: 

FA: 

0.4829 

0.9426 

0.4934 

MA: 

FT: 

FA: 

0.6871 

0.8293 

0.6882 

MA: 

FT: 

FA: 

0.6867 

0.8141 

0.6882 

Model 3 
MA: 

FT: 

FA: 

0.4925 

0.2948 

0.4932 

MA: 

FT: 

FA: 

0.4925 

0.2880 

0.4929 

MT: 

CA: 

0.3838 

0.9341 

MA: 

FT: 

FA: 

0.9341 

0.3843 

0.9341 

MA: 

FT: 

FA: 

0.6968 

0.2862 

0.6984 

MA: 

FT: 

FA: 

0.6976 

0.2850 

0.6990 

Model 4 
MA: 

FT: 

FA: 

0.4907 

0.3032 

0.4916 

MA: 

FT: 

FA: 

0.4900 

0.2537 

0.4911 

MA: 

FT: 

FA: 

0.9328 

0.3757 

0.9334 

MT: 

CA: 

0.3917 

0.9339 

MA: 

FT: 

FA: 

0.6956 

0.2813 

0.6977 

MA: 

FT: 

FA: 

0.6964 

0.2628 

0.6985 

Model 5 
MA: 

FT: 

FA: 

0.7114 

0.3538 

0.7492 

MA: 

FT: 

FA: 

0.7114 

0.3588 

0.7484 

MA: 

FT: 

FA: 

0.7382 

0.6698 

0.7623 

MA: 

FT: 

FA: 

0.7386 

0.6669 

0.7624 

MT: 

CA: 

0.5418 

0.7059 

MA: 

FT: 

FA: 

0.7079 

0.5505 

0.7081 

Model 6 
MA: 

FT: 

FA: 

0.7147 

0.3788 

0.7463 

MA: 

FT: 

FA: 

0.7140 

0.3790 

0.7459 

MA: 

FT: 

FA: 

0.7360 

0.6740 

0.7626 

MA: 

FT: 

FA: 

0.7376 

0.6807 

0.7628 

MA: 

FT: 

FA: 

0.7082 

0.5236 

0.7085 

MT: 

CA: 

0.5259 

0.7101 

Table A.3: C5.0 model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 

 

 

A.2. Random Forest 

This section presents the performance results of the Random Forest (RF) algorithm on the three 

different datasets (gureKDD, SEA and AGR).  

 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

Model 1 
MT: 

CA: 

0.0004 

0.9987 

MA: 

FT: 

FA: 

0.9752 

0.0020 

0.9777 

MA: 

FT: 

FA: 

0.8538 

0.0247 

0.9914 

MA: 

FT: 

FA: 

0.7948 

0.0197 

0.9423 

MA: 

FT: 

FA: 

0.6733 

0.0790 

0.9937 

MA: 

FT: 

FA: 

0.7410 

0.0765 

0.9929 

MA: 

FT: 

FA: 

0.9673 

0.0219 

0.9952 

Model 2 
MA: 

FT: 

FA: 

0.3085 

0.0021 

0.9930 

MT: 

CA: 

0.0682 

0.9984 

MA: 

FT: 

FA: 

0.9807 

0.0620 

0.9851 

MA: 

FT: 

FA: 

0.9103 

0.0259 

0.9359 

MA: 

FT: 

FA: 

0.9657 

0.0634 

0.9699 

MA: 

FT: 

FA: 

0.9531 

0.0651 

0.9563 

MA: 

FT: 

FA: 

0.9859 

0.0491 

0.9963 

Model 3 
MA: 

FT: 

FA: 

0.2182 

0.0702 

0.9205 

MA: 

FT: 

FA: 

0.6430 

0.0728 

0.9902 

MT: 

CA: 

0.7623 

0.9996 

MA: 

FT: 

FA: 

0.5304 

0.2848 

0.9324 

MA: 

FT: 

FA: 

0.9898 

0.5749 

0.9951 

MA: 

FT: 

FA: 

0.8262 

0.4472 

0.9930 

MA: 

FT: 

FA: 

0.9815 

0.3997 

0.9994 

Model 4 
MA: 

FT: 

FA: 

0.8448 

0.0671 

0.9970 

MA: 

FT: 

FA: 

0.7060 

0.0479 

0.9894 

MA: 

FT: 

FA: 

0.9953 

0.4800 

0.9966 

MT: 

CA: 

0.2299 

0.9983 

MA: 

FT: 

FA: 

0.9862 

0.4524 

0.9990 

MA: 

FT: 

FA: 

0.9747 

0.6083 

0.9947 

MA: 

FT: 

FA: 

0.9987 

0.4758 

0.9995 

Model 5 
MA: 

FT: 

FA: 

0.8165 

0.1205 

0.9736 

MA: 

FT: 

FA: 

0.6326 

0.0100 

0.8836 

MA: 

FT: 

FA: 

0.9968 

0.5226 

0.9969 

MA: 

FT: 

FA: 

0.9311 

0.0468 

0.9418 

MT: 

CA: 

0.6004 

0.9999 

MA: 

FT: 

FA: 

0.9980 

0.4297 

0.9981 

MA: 

FT: 

FA: 

0.9996 

0.5539 

0.9996 

Model 6 
MA: 

FT: 

FA: 

0.8863 

0.2246 

0.9981 

MA: 

FT: 

FA: 

0.9542 

0.1032 

0.9965 

MA: 

FT: 

FA: 

0.9989 

0.4994 

0.9991 

MA: 

FT: 

FA: 

0.9082 

0.0270 

0.9486 

MA: 

FT: 

FA: 

0.9998 

0.5236 

0.9998 

MT: 

CA: 

0.6015 

0.9999 

MA: 

FT: 

FA: 

0.9994 

0.3762 

0.9996 

Model 7 
MA: 

FT: 

FA: 

0.8448 

0.0667 

0.9754 

MA: 

FT: 

FA: 

0.9841 

0.1118 

0.9908 

MA: 

FT: 

FA: 

0.9884 

0.4181 

0.9986 

MA: 

FT: 

FA: 

0.9300 

0.3612 

0.9352 

MA: 

FT: 

FA: 

0.9914 

0.4174 

0.9970 

MA: 

FT: 

FA: 

0.9961 

0.3643 

0.9974 

MT: 

CA: 

0.3046 

0.9999 

Table A.4: Random Forest (RF) model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT 

(Model optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal 

Threshold); FA (File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 
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 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.4249 

0.8750 

MA: 

FT: 

FA: 

0.8758 

0.4352 

0.8758 

MA: 

FT: 

FA: 

0.8696 

0.1905 

0.8764 

MA: 

FT: 

FA: 

0.8027 

0.2857 

0.8053 

MA: 

FT: 

FA: 

0.8358 

0.3469 

0.8364 

MA: 

FT: 

FA: 

0.8358 

0.3492 

0.8364 

Model 2 
MA: 

FT: 

FA: 

0.8752 

0.4455 

0.8752 

MT: 

CA: 

0.4286 

0.8757 

MA: 

FT: 

FA: 

0.8026 

0.2770 

0.8053 

MA: 

FT: 

FA: 

0.8680 

0.1931 

0.8759 

MA: 

FT: 

FA: 

0.8357 

0.3565 

0.8363 

MA: 

FT: 

FA: 

0.8357 

0.3501 

0.8363 

Model 3 
MA: 

FT: 

FA: 

0.8536 

0.3614 

0.9113 

MA: 

FT: 

FA: 

0.8323 

0.6493 

0.8338 

MT: 

CA: 

0.4942 

0.8920 

MA: 

FT: 

FA: 

0.8924 

0.4518 

0.8926 

MA: 

FT: 

FA: 

0.8609 

0.5025 

0.8610 

MA: 

FT: 

FA: 

0.8604 

0.5672 

0.8607 

Model 4 
MA: 

FT: 

FA: 

0.8319 

0.6519 

0.8333 

MA: 

FT: 

FA: 

0.8636 

0.3710 

0.9113 

MA: 

FT: 

FA: 

0.8921 

0.5081 

0.8921 

MT: 

CA: 

0.4795 

0.8925 

MA: 

FT: 

FA: 

0.8609 

0.5323 

0.8612 

MA: 

FT: 

FA: 

0.8606 

0.5489 

0.8609 

Model 5 
MA: 

FT: 

FA: 

0.8389 

0.6723 

0.8685 

MA: 

FT: 

FA: 

0.8393 

0.6730 

0.8695 

MA: 

FT: 

FA: 

0.8782 

0.2943 

0.8832 

MA: 

FT: 

FA: 

0.8786 

0.2998 

0.8839 

MT: 

CA: 

0.3635 

0.8576 

MA: 

FT: 

FA: 

0.8572 

0.3373 

0.8576 

Model 6 
MA: 

FT: 

FA: 

0.8369 

0.6597 

0.8691 

MA: 

FT: 

FA: 

0.8368 

0.6596 

0.8695 

MA: 

FT: 

FA: 

0.8806 

0.3000 

0.8829 

MA: 

FT: 

FA: 

0.8815 

0.3111 

0.8835 

MA: 

FT: 

FA: 

0.8579 

0.3383 

0.8579 

MT: 

CA: 

0.3391 

0.8574 

Table A.5: Random Forest (RF) model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model 

optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA 

(File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 

 

 

 

 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.6669 

0.9483 

MA: 

FT: 

FA: 

0.9482 

0.6423 

0.9484 

MA: 

FT: 

FA: 

0.4774 

0.9975 

0.5042 

MA: 

FT: 

FA: 

0.4812 

0.9954 

0.5040 

MA: 

FT: 

FA: 

0.6869 

0.8261 

0.6895 

MA: 

FT: 

FA: 

0.6871 

0.8361 

0.6893 

Model 2 
MA: 

FT: 

FA: 

0.9488 

0.6482 

0.9490 

MT: 

CA: 

0.6291 

0.9486 

MA: 

FT: 

FA: 

0.4788 

0.9951 

0.5059 

MA: 

FT: 

FA: 

0.4762 

0.9972 

0.5054 

MA: 

FT: 

FA: 

0.6858 

0.8200 

0.6894 

MA: 

FT: 

FA: 

0.6856 

0.8227 

0.6895 

Model 3 
MA: 

FT: 

FA: 

0.4900 

0.2258 

0.4939 

MA: 

FT: 

FA: 

0.4933 

0.3376 

0.4940 

MT: 

CA: 

0.4067 

0.9387 

MA: 

FT: 

FA: 

0.9387 

0.3566 

0.9395 

MA: 

FT: 

FA: 

0.6989 

0.3066 

0.7007 

MA: 

FT: 

FA: 

0.6995 

0.3278 

0.7019 

Model 4 
MA: 

FT: 

FA: 

0.4928 

0.2955 

0.4939 

MA: 

FT: 

FA: 

0.4902 

0.2093 

0.4942 

MA: 

FT: 

FA: 

0.9390 

0.3897 

0.9391 

MT: 

CA: 

0.4040 

0.9398 

MA: 

FT: 

FA: 

0.6995 

0.3192 

0.7011 

MA: 

FT: 

FA: 

0.6997 

0.3007 

0.7016 

Model 5 
MA: 

FT: 

FA: 

0.7208 

0.4309 

0.7620 

MA: 

FT: 

FA: 

0.7212 

0.4309 

0.7620 

MA: 

FT: 

FA: 

0.7401 

0.6208 

0.7785 

MA: 

FT: 

FA: 

0.7402 

0.6201 

0.7779 

MT: 

CA: 

0.5182 

0.7127 

MA: 

FT: 

FA: 

0.7144 

0.5122 

0.7149 

Model 6 
MA: 

FT: 

FA: 

0.7248 

0.4229 

0.7607 

MA: 

FT: 

FA: 

0.7243 

0.4310 

0.7608 

MA: 

FT: 

FA: 

0.7351 

0.6186 

0.7788 

MA: 

FT: 

FA: 

0.7367 

0.6119 

0.7805 

MA: 

FT: 

FA: 

0.7139 

0.5125 

0.7140 

MT: 

CA: 

0.5133 

0.7129 

Table A.6: Random Forest (RF) model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model 
optimal Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA 

(File threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 
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A.3. Support Vector Machine (SVM) 

This section presents the performance results of the SVM algorithm on the three different 

datasets (gureKDD, SEA and AGR).  

 File 1 File 2 File 3 File 4 File 5 File 6 File 7 

Model 1 
MT: 

CA: 

0.9495 

0.9250 

MA: 

FT: 

FA: 

0.6471 

0.5556 

0.6545 

MA: 

FT: 

FA: 

0.8171 

0.9969 

0.9727 

MA: 

FT: 

FA: 

0.2401 

0.7165 

0.3504 

MA: 

FT: 

FA: 

0.8974 

0.9968 

0.9695 

MA: 

FT: 

FA: 

0.8250 

0.8581 

0.9123 

MA: 

FT: 

FA: 

0.9665 

0.9968 

0.9715 

Model 2 
MA: 

FT: 

FA: 

0.0000 

0.9999 

0.8253 

MT: 

CA: 

1.0000 

0.9869 

MA: 

FT: 

FA: 

0.1701 

0.9520 

0.5024 

MA: 

FT: 

FA: 

0.3076 

0.9414 

0.4525 

MA: 

FT: 

FA: 

0.1176 

0.9219 

0.5163 

MA: 

FT: 

FA: 

0.3457 

0.9339 

0.5285 

MA: 

FT: 

FA: 

0.1116 

0.9425 

0.6131 

Model 3 
MA: 

FT: 

FA: 

0.8092 

0.0070 

0.8303 

MA: 

FT: 

FA: 

0.7206 

0.0009 

0.9022 

MT: 

CA: 

0.0134 

0.9977 

MA: 

FT: 

FA: 

0.7544 

0.0004 

0.9028 

MA: 

FT: 

FA: 

0.9699 

0.0647 

0.9793 

MA: 

FT: 

FA: 

0.9583 

0.0272 

0.9636 

MA: 

FT: 

FA: 

0.9791 

0.0571 

0.9878 

Model 4 
MA: 

FT: 

FA: 

0.9195 

0.9454 

0.9196 

MA: 

FT: 

FA: 

0.2794 

0.2162 

0.6683 

MA: 

FT: 

FA: 

0.9678 

0.9997 

0.9941 

MT: 

CA: 

0.9392 

0.9591 

MA: 

FT: 

FA: 

0.9766 

0.9990 

0.9958 

MA: 

FT: 

FA: 

0.9783 

0.9703 

0.9840 

MA: 

FT: 

FA: 

0.9867 

0.9989 

0.9986 

Model 5 
MA: 

FT: 

FA: 

0.8724 

0.0000 

0.9757 

MA: 

FT: 

FA: 

0.2233 

0.0000 

0.6778 

MA: 

FT: 

FA: 

0.9865 

0.0065 

0.9922 

MA: 

FT: 

FA: 

0.9172 

0.0023 

0.9339 

MT: 

CA: 

0.0296 

0.9992 

MA: 

FT: 

FA: 

0.8503 

0.0068 

0.8507 

MA: 

FT: 

FA: 

0.9983 

0.0956 

0.9985 

Model 6 
MA: 

FT: 

FA: 

0.8443 

0.0065 

0.9531 

MA: 

FT: 

FA: 

0.2804 

0.0077 

0.6929 

MA: 

FT: 

FA: 

0.9894 

0.8938 

0.9907 

MA: 

FT: 

FA: 

0.9145 

0.2803 

0.9270 

MA: 

FT: 

FA: 

0.9976 

0.7580 

0.9979 

MT: 

CA: 

0.7049 

0.9970 

MA: 

FT: 

FA: 

0.9986 

0.7158 

0.9986 

Model 7 
MA: 

FT: 

FA: 

0.8165 

0.0025 

0.8518 

MA: 

FT: 

FA: 

0.3163 

0.0028 

0.8853 

MA: 

FT: 

FA: 

0.9944 

0.6753 

0.9944 

MA: 

FT: 

FA: 

0.9107 

0.0898 

0.9366 

MA: 

FT: 

FA: 

0.9960 

0.8415 

0.9962 

MA: 

FT: 

FA: 

0.8476 

0.0317 

0.9434 

MT: 

CA: 

0.7043 

0.9994 

Table A.7: SVM model’s performance on gureKDD dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 

 

 

 

 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.4995 

0.8763 

MA: 

FT: 

FA: 

0.8771 

0.4999 

0.8771 

MA: 

FT: 

FA: 

0.8018 

0.3778 

0.8936 

MA: 

FT: 

FA: 

0.8016 

0.3773 

0.8941 

MA: 

FT: 

FA: 

0.8358 

0.3778 

0.8617 

MA: 

FT: 

FA: 

0.8360 

0.3785 

0.8615 

Model 2 
MA: 

FT: 

FA: 

0.8759 

0.4949 

0.8760 

MT: 

CA: 

0.4951 

0.8765 

MA: 

FT: 

FA: 

0.8021 

0.3734 

0.8928 

MA: 

FT: 

FA: 

0.8018 

0.3731 

0.8933 

MA: 

FT: 

FA: 

0.8356 

0.3766 

0.8613 

MA: 

FT: 

FA: 

0.8359 

0.3764 

0.8610 

Model 3 
MA: 

FT: 

FA: 

0.8319 

0.6300 

0.8763 

MA: 

FT: 

FA: 

0.8320 

0.6304 

0.8770 

MT: 

CA: 

0.4994 

0.8933 

MA: 

FT: 

FA: 

0.8939 

0.4997 

0.8940 

MA: 

FT: 

FA: 

0.8615 

0.5010 

0.8617 

MA: 

FT: 

FA: 

0.8613 

0.5005 

0.8615 

Model 4 
MA: 

FT: 

FA: 

0.8319 

0.6263 

0.8763 

MA: 

FT: 

FA: 

0.8321 

0.6264 

0.8769 

MA: 

FT: 

FA: 

0.8933 

0.4964 

0.8933 

MT: 

CA: 

0.4964 

0.8938 

MA: 

FT: 

FA: 

0.8615 

0.4977 

0.8616 

MA: 

FT: 

FA: 

0.8612 

0.4972 

0.8613 

Model 5 
MA: 

FT: 

FA: 

0.8325 

0.5602 

0.8759 

MA: 

FT: 

FA: 

0.8326 

0.5598 

0.8765 

MA: 

FT: 

FA: 

0.8924 

0.4337 

0.8928 

MA: 

FT: 

FA: 

0.8929 

0.4342 

0.8932 

MT: 

CA: 

0.4358 

0.8614 

MA: 

FT: 

FA: 

0.8610 

0.4361 

0.8611 

Model 6 
MA: 

FT: 

FA: 

0.8331 

0.5572 

0.8756 

MA: 

FT: 

FA: 

0.8332 

0.5565 

0.8760 

MA: 

FT: 

FA: 

0.8914 

0.4311 

0.8923 

MA: 

FT: 

FA: 

0.8918 

0.4311 

0.8927 

MA: 

FT: 

FA: 

0.8612 

0.4346 

0.8612 

MT: 

CA: 

0.4351 

0.8609 

Table A.8: SVM model’s performance on SEA dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 
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 File 1 File 2 File 3 File 4 File 5 File 6 

Model 1 
MT: 

CA: 

0.6778 

0.5529 

MA: 

FT: 

FA: 

0.5614 

0.6778 

0.5615 

MA: 

FT: 

FA: 

0.4695 

0.6720 

0.5106 

MA: 

FT: 

FA: 

0.4676 

0.6721 

0.5079 

MA: 

FT: 

FA: 

0.5148 

0.6759 

0.5211 

MA: 

FT: 

FA: 

0.5112 

0.6753 

0.5178 

Model 2 
MA: 

FT: 

FA: 

0.5494 

0.6769 

0.5498 

MT: 

CA: 

0.6767 

0.5479 

MA: 

FT: 

FA: 

0.4829 

0.6723 

0.5045 

MA: 

FT: 

FA: 

0.4813 

0.6720 

0.5032 

MA: 

FT: 

FA: 

0.5148 

0.6750 

0.5174 

MA: 

FT: 

FA: 

0.5125 

0.6749 

0.5161 

Model 3 
MA: 

FT: 

FA: 

0.4879 

0.3848 

0.4995 

MA: 

FT: 

FA: 

0.4877 

0.3871 

0.5004 

MT: 

CA: 

0.3492 

0.6440 

MA: 

FT: 

FA: 

0.6460 

0.3463 

0.6462 

MA: 

FT: 

FA: 

0.5656 

0.3510 

0.5659 

MA: 

FT: 

FA: 

0.5676 

0.3553 

0.5685 

Model 4 
MA: 

FT: 

FA: 

0.4862 

0.3895 

0.4991 

MA: 

FT: 

FA: 

0.4861 

0.3939 

0.5005 

MA: 

FT: 

FA: 

0.6450 

0.3487 

0.6453 

MT: 

CA: 

0.3476 

0.6467 

MA: 

FT: 

FA: 

0.5652 

0.3541 

0.5664 

MA: 

FT: 

FA: 

0.5673 

0.3553 

0.5688 

Model 5 
MA: 

FT: 

FA: 

0.4867 

0.5308 

0.4990 

MA: 

FT: 

FA: 

0.4862 

0.5302 

0.5003 

MA: 

FT: 

FA: 

0.6338 

0.5078 

0.6348 

MA: 

FT: 

FA: 

0.6352 

0.5065 

0.6365 

MT: 

CA: 

0.5114 

0.5598 

MA: 

FT: 

FA: 

0.5620 

0.5122 

0.5623 

Model 6 
MA: 

FT: 

FA: 

0.4892 

0.5345 

0.4996 

MA: 

FT: 

FA: 

0.4889 

0.5345 

0.5006 

MA: 

FT: 

FA: 

0.6357 

0.5118 

0.6374 

MA: 

FT: 

FA: 

0.6362 

0.5104 

0.6384 

MA: 

FT: 

FA: 

0.5615 

0.5140 

0.5617 

MT: 

CA: 

0.5159 

0.5632 

Table A.9: SVM model’s performance on AGR dataset with various effects (before and after threshold adaptation). MT (Model optimal 

Threshold); CA (Cross-validation G-Mean Accuracy); MA (Model threshold G-Mean Accuracy); FT (File optimal Threshold); FA (File 

threshold G-Mean Accuracy). Shaded cells are the 10-folds Cross-Validation results from the model generation phase. 
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Results of Chapter 6 (Second) 

Experiment 
 

 

This appendix lists the results of the second set of experiments performed on the STA2018 

dataset and discussed in Chapter 6.  

 

B.1. Selected Features 

 

This section lists the results of the feature selection stage discussed in Section 6.2 (see 

Chapter 6). The following tables show the selected features for every simulation day in the 

STA2018 dataset for every feature importance measure. 
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B.1.1. Day 2 (12/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 131 1, 4, 7, 12, 15, 16, 17, 20, 25, 26, 27, 28, 29, 30, 36, 49, 58, 59, 60, 62, 63, 64, 72, 73, 74, 75, 76, 77, 79, 

89, 90, 91, 92, 94, 96, 98, 99, 100, 101, 105, 106, 107, 109, 110, 111, 112, 114, 116, 117, 118, 121, 122, 

125, 126, 127, 134, 137, 138, 141, 142, 144, 149, 150, 151, 154, 155, 158, 168, 177, 178, 179, 180, 182, 

196, 199, 201, 209, 214, 220, 222, 226, 232, 233, 235, 237, 239, 241, 264, 265, 268, 269, 273, 275, 277, 

279, 281, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 300, 304, 306, 309, 312, 321, 324, 329, 

340, 345, 348, 350, 367, 372, 381, 383, 401, 437, 442, 465, 476, 478, 482, 490 

MDG 124 4, 7, 12, 15, 16, 17, 18, 19, 22, 25, 26, 27, 30, 35, 36, 37, 38, 40, 44, 45, 49, 57, 58, 59, 60, 62, 63, 64, 

72, 73, 74, 75, 76, 77, 79, 88, 89, 90, 91, 92, 94, 97, 98, 99, 100, 101, 105, 106, 109, 110, 111, 112, 114, 

116, 117, 118, 121, 122, 125, 126, 127, 134, 137, 138, 139, 141, 142, 143, 147, 151, 153, 156, 158, 162, 

177, 178, 179, 180, 181, 182, 196, 198, 199, 203, 204, 209, 222, 226, 231, 233, 237, 239, 241, 251, 261, 

263, 264, 268, 269, 273, 275, 277, 286, 287, 288, 289, 290, 292, 293, 294, 295, 300, 306, 329, 340, 345, 

350, 380, 381, 383, 476, 478, 506, 530 

MDABal. 166 4, 7, 8, 12, 17, 18, 20, 22, 26, 27, 30, 35, 36, 37, 42, 44, 45, 47, 49, 51, 52, 53, 59, 60, 61, 62, 63, 64, 73, 

74, 75, 76, 77, 78, 79, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 106, 108, 109, 110, 111, 112, 114, 

116, 117, 118, 119, 121, 122, 124, 127, 136, 137, 139, 141, 143, 144, 150, 151, 154, 155, 156, 157, 158, 

162, 163, 166, 168, 176, 182, 187, 196, 199, 200, 205, 209, 212, 214, 216, 220, 222, 226, 231, 232, 233, 

234, 237, 238, 239, 240, 241, 247, 254, 263, 264, 265, 268, 269, 272, 273, 275, 277, 279, 281, 283, 286, 

287, 288, 289, 290, 292, 293, 294, 295, 297, 298, 300, 302, 304, 306, 312, 316, 318, 319, 321, 322, 324, 

327, 329, 333, 340, 341, 345, 351, 360, 382, 383, 399, 400, 417, 437, 462, 469, 476, 478, 482, 490, 491, 

493, 519, 521, 530, 531, 538, 542, 546 

MDGBal. 119 4, 7, 8, 12, 29, 35, 36, 37, 42, 45, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 64, 70, 72, 76, 77, 78, 79, 88, 89, 

90, 91, 92, 94, 96, 99, 101, 102, 104, 106, 108, 109, 110, 111, 112, 116, 122, 124, 135, 140, 148, 151, 

152, 155, 157, 168, 198, 199, 200, 204, 209, 212, 214, 226, 227, 232, 234, 235, 236, 237, 239, 241, 250, 

255, 263, 269, 272, 273, 275, 277, 279, 281, 283, 286, 288, 289, 290, 292, 293, 294, 295, 296, 297, 310, 

311, 319, 327, 329, 341, 345, 347, 349, 351, 379, 382, 432, 462, 470, 476, 478, 480, 487, 491, 492, 507, 

519, 523, 524, 534, 538 
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B.1.2. Day 3 (13/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 519 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 

46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 

76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 

124, 125, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 

146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 

167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 

188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 

209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 

230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 

251, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 

274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 

295, 296, 297, 298, 299, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 

318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 

339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 

360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 

381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 

402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 

423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 

446, 447, 448, 449, 450, 451, 453, 454, 455, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 

471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 

492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 

513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 533, 534, 

535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549 

MDG 27 7, 202, 230, 284, 312, 327, 335, 340, 344, 348, 390, 403, 406, 408, 413, 431, 445, 447, 453, 459, 485, 

513, 516, 518, 528, 545, 549 

MDABal. 508 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 

46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 

75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 

123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 

145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 

166, 167, 168, 169, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 188, 189, 

190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 

211, 212, 213, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 

233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 

254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 

275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 

296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 

317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 

338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 

359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 374, 375, 376, 378, 379, 382, 383, 

385, 386, 387, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 

408, 410, 411, 412, 413, 414, 416, 417, 418, 421, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 

436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 457, 

458, 459, 460, 461, 462, 463, 464, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 

480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 498, 500, 501, 502, 503, 

504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 

525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 

546, 547, 548, 549 

MDGBal. 138 1, 4, 7, 8, 12, 15, 16, 17, 22, 26, 27, 59, 62, 63, 64, 65, 66, 67, 73, 74, 75, 77, 78, 79, 89, 91, 94, 97, 98, 

99, 112, 127, 137, 138, 146, 147, 152, 153, 154, 155, 158, 164, 166, 168, 178, 180, 182, 198, 200, 202, 

205, 209, 210, 212, 216, 230, 231, 232, 233, 234, 235, 236, 239, 240, 241, 243, 245, 247, 249, 250, 251, 

252, 258, 260, 263, 264, 267, 269, 271, 277, 281, 282, 284, 296, 312, 316, 321, 322, 323, 324, 327, 333, 

334, 335, 337, 340, 344, 347, 348, 349, 350, 353, 355, 356, 368, 372, 383, 403, 406, 408, 413, 417, 428, 

431, 440, 441, 443, 447, 453, 459, 470, 485, 487, 488, 489, 491, 511, 513, 516, 518, 520, 528, 536, 537, 

541, 545, 548, 549 
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B.1.3. Day 4 (14/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 365 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 38, 40, 44, 45, 46, 47, 48, 49, 57, 

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 97, 98, 99, 

100, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 

127, 131, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 

157, 158, 162, 163, 164, 166, 168, 172, 176, 177, 178, 180, 182, 184, 185, 195, 196, 197, 198, 199, 200, 

201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 218, 220, 222, 224, 226, 227, 

228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 

250, 251, 252, 253, 254, 257, 258, 259, 260, 262, 263, 264, 265, 267, 268, 269, 271, 273, 275, 276, 277, 

279, 281, 282, 283, 284, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 

304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 

327, 329, 333, 334, 335, 336, 337, 340, 341, 344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 

357, 358, 359, 360, 361, 362, 366, 367, 368, 370, 372, 378, 379, 380, 381, 382, 383, 384, 386, 388, 396, 

398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 412, 413, 417, 421, 425, 428, 431, 432, 433, 434, 

435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 447, 449, 451, 452, 453, 454, 455, 456, 457, 458, 

459, 460, 462, 464, 465, 469, 470, 474, 476, 478, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493, 

494, 496, 497, 498, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 524, 

525, 528, 530, 534, 535, 536, 537, 538, 541, 542, 545, 546, 548, 549 

MDG 11 163, 277, 352, 362, 366, 367, 370, 372, 464, 469, 474 

MDABal. 379 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 35, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 51, 57, 

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 78, 79, 87, 89, 90, 91, 92, 93, 94, 95, 96, 

97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 119, 121, 122, 

123, 124, 126, 127, 128, 130, 131, 132, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 

151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 166, 168, 170, 171, 174, 176, 178, 179, 

180, 181, 182, 184, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 

212, 214, 216, 218, 220, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 

241, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 

264, 265, 267, 268, 269, 271, 273, 274, 275, 276, 277, 279, 281, 282, 283, 284, 286, 287, 288, 289, 290, 

291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 

314, 315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329, 332, 333, 334, 335, 336, 337, 338, 340, 341, 

344, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 366, 367, 

368, 370, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 383, 386, 387, 396, 397, 398, 399, 400, 401, 

402, 403, 404, 405, 406, 407, 408, 412, 413, 417, 421, 423, 425, 428, 431, 432, 433, 434, 435, 436, 437, 

439, 440, 441, 442, 443, 444, 445, 446, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 464, 466, 

469, 474, 476, 477, 478, 480, 484, 485, 487, 489, 490, 491, 492, 493, 495, 497, 503, 506, 507, 508, 509, 

510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 524, 525, 528, 530, 534, 535, 536, 537, 538, 

539, 541, 542, 545, 546, 548, 549 

MDGBal. 118 1, 4, 7, 8, 12, 15, 16, 17, 18, 22, 25, 26, 27, 28, 37, 47, 58, 59, 60, 65, 66, 67, 72, 73, 74, 75, 89, 90, 91, 

97, 98, 99, 103, 104, 105, 106, 112, 114, 137, 140, 146, 147, 149, 150, 152, 153, 154, 155, 157, 158, 

162, 163, 164, 166, 168, 178, 179, 198, 205, 216, 227, 235, 242, 251, 256, 259, 264, 268, 269, 273, 277, 

283, 286, 287, 288, 289, 291, 294, 297, 298, 300, 308, 316, 319, 322, 323, 324, 327, 334, 337, 340, 350, 

352, 356, 357, 362, 366, 370, 372, 379, 397, 398, 406, 412, 417, 435, 436, 437, 452, 457, 460, 464, 469, 

474, 487, 528, 541, 549 
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B.1.4. Day 5 (15/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 369 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 

49, 57, 58, 59, 60, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 89, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 

103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 

127, 131, 132, 135, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 

155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 170, 172, 174, 176, 177, 178, 179, 180, 181, 182, 183, 

185, 186, 187, 188, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 210, 211, 212, 214, 216, 

218, 220, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 

247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 267, 268, 269, 271, 

273, 275, 277, 279, 281, 282, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 300, 

302, 304, 305, 306, 308, 309, 310, 311, 313, 314, 315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329, 

333, 334, 335, 336, 337, 338, 340, 341, 345, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 

359, 360, 361, 362, 363, 366, 367, 368, 370, 372, 373, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 

386, 388, 389, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 410, 412, 413, 415, 417, 419, 421, 

423, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 451, 452, 453, 

454, 455, 456, 457, 458, 459, 460, 461, 462, 464, 465, 468, 469, 470, 472, 474, 476, 480, 482, 484, 486, 

487, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 506, 507, 509, 510, 511, 512, 514, 515, 516, 517, 

518, 519, 520, 522, 523, 524, 525, 528, 530, 534, 535, 537, 538, 539, 541, 542, 546, 548, 549 

MDG 114 1, 4, 8, 12, 15, 17, 19, 20, 22, 25, 26, 27, 29, 30, 37, 38, 44, 47, 49, 57, 59, 72, 76, 92, 94, 96, 97, 98, 99, 

100, 101, 106, 117, 118, 126, 127, 137, 139, 142, 144, 149, 177, 179, 180, 181, 182, 196, 200, 201, 208, 

210, 211, 214, 218, 227, 232, 234, 235, 236, 243, 245, 247, 249, 250, 253, 263, 268, 269, 273, 277, 283, 

287, 305, 306, 310, 311, 313, 314, 352, 367, 378, 379, 380, 381, 382, 397, 401, 402, 432, 433, 434, 435, 

436, 437, 451, 454, 456, 459, 464, 469, 474, 484, 487, 488, 489, 490, 491, 506, 507, 510, 511, 512, 514, 

515 

MDABal. 389 1, 4, 7, 8, 12, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 

49, 57, 58, 59, 60, 62, 65, 66, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 

99, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 

124, 125, 126, 127, 128, 135, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 

153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 170, 172, 174, 176, 177, 178, 179, 180, 181, 

182, 184, 186, 187, 188, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211, 

212, 214, 216, 218, 219, 220, 221, 222, 224, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 

239, 240, 241, 242, 243, 245, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 

264, 265, 267, 268, 269, 271, 273, 275, 276, 277, 279, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 

291, 292, 293, 294, 295, 296, 297, 298, 300, 301, 302, 303, 304, 305, 306, 308, 310, 311, 312, 313, 314, 

315, 316, 317, 318, 319, 321, 322, 323, 324, 327, 329, 330, 333, 334, 335, 336, 337, 338, 340, 341, 345, 

347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 366, 367, 368, 370, 

372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 387, 389, 396, 397, 399, 400, 401, 

402, 403, 404, 405, 406, 407, 409, 412, 413, 415, 417, 419, 420, 421, 422, 425, 427, 428, 429, 431, 432, 

433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 451, 452, 453, 454, 455, 456, 457, 459, 460, 461, 

462, 464, 465, 469, 470, 472, 474, 475, 476, 478, 480, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 

492, 493, 494, 495, 496, 497, 498, 504, 506, 507, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 

521, 522, 523, 524, 525, 528, 530, 534, 535, 536, 537, 538, 539, 542, 546, 548, 549 

MDGBal. 169 1, 4, 12, 16, 17, 19, 20, 22, 26, 30, 44, 48, 49, 58, 59, 73, 74, 75, 76, 78, 79, 89, 91, 92, 94, 96, 97, 98, 

99, 101, 105, 106, 110, 112, 114, 116, 117, 118, 119, 121, 122, 124, 125, 126, 137, 139, 140, 141, 142, 

144, 150, 151, 152, 153, 156, 157, 163, 177, 179, 181, 182, 195, 196, 201, 203, 205, 208, 209, 210, 214, 

216, 218, 226, 227, 231, 233, 234, 235, 236, 237, 239, 243, 245, 247, 249, 253, 254, 258, 261, 263, 268, 

269, 273, 275, 277, 279, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 300, 304, 305, 306, 

310, 311, 315, 316, 318, 321, 322, 323, 324, 329, 334, 336, 337, 341, 345, 347, 348, 354, 356, 357, 360, 

361, 367, 380, 381, 382, 383, 397, 401, 402, 412, 428, 433, 436, 437, 451, 455, 457, 459, 469, 476, 478, 

487, 488, 489, 490, 491, 492, 493, 494, 506, 507, 511, 512, 519, 520, 530 

 

B.1.5. Day 6 (16/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 60 7, 12, 15, 19, 26, 27, 28, 29, 30, 36, 38, 40, 47, 59, 62, 63, 64, 67, 73, 75, 77, 79, 89, 90, 91, 96, 97, 100, 

105, 109, 110, 111, 116, 119, 126, 127, 142, 150, 152, 153, 156, 157, 226, 241, 269, 273, 275, 281, 287, 

288, 290, 329, 345, 352, 360, 361, 520, 530, 535, 548 

MDG 70 4, 7, 12, 15, 16, 17, 18, 20, 22, 25, 26, 28, 29, 36, 37, 40, 44, 45, 47, 57, 59, 62, 63, 64, 67, 72, 74, 75, 

79, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 105, 106, 109, 110, 111, 114, 117, 118, 119, 121, 126, 127, 

137, 140, 142, 143, 157, 264, 268, 269, 273, 275, 277, 286, 287, 292, 293, 294, 300, 329, 530 

MDABal. 171 1, 4, 7, 8, 15, 16, 19, 22, 25, 29, 30, 35, 36, 37, 38, 40, 44, 45, 47, 48, 49, 55, 57, 59, 62, 63, 64, 72, 73, 

75, 76, 77, 79, 88, 89, 90, 91, 92, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110, 111, 112, 114, 

116, 117, 118, 119, 121, 122, 124, 126, 127, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 

150, 151, 152, 153, 154, 155, 156, 157, 205, 209, 210, 216, 222, 226, 227, 231, 232, 233, 234, 235, 236, 

237, 239, 241, 243, 245, 247, 249, 251, 253, 256, 258, 259, 261, 263, 264, 265, 268, 269, 273, 275, 277, 

279, 281, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 302, 303, 304, 305, 306, 

308, 310, 311, 312, 314, 318, 319, 321, 329, 338, 341, 345, 350, 354, 355, 357, 359, 360, 361, 465, 469, 

480, 487, 488, 489, 498, 507, 519, 520, 523, 530, 535, 542, 546 

MDGBal. 84 4, 7, 12, 30, 36, 45, 62, 63, 64, 76, 77, 88, 89, 90, 91, 96, 97, 99, 104, 109, 110, 111, 114, 126, 127, 137, 

138, 141, 143, 144, 147, 150, 151, 152, 153, 157, 209, 226, 231, 232, 233, 234, 235, 241, 247, 249, 253, 

258, 261, 263, 265, 269, 275, 277, 279, 284, 286, 287, 288, 290, 291, 292, 293, 295, 297, 298, 310, 312, 

313, 315, 321, 324, 341, 345, 349, 354, 360, 361, 469, 480, 506, 520, 542, 546 
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B.1.6. Day 7 (17/Jun) 

Features 

Set 

Number of 

Features 
Features Indexes 

MDA 355 4, 7, 12, 17, 20, 21, 25, 27, 29, 30, 35, 36, 38, 41, 42, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 59, 61, 62, 

63, 64, 65, 66, 72, 73, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 

105, 107, 110, 115, 116, 119, 120, 121, 123, 129, 130, 132, 133, 134, 138, 139, 141, 143, 144, 145, 146, 

147, 148, 149, 153, 154, 156, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 171, 173, 175, 177, 178, 

180, 181, 182, 185, 186, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 

207, 209, 210, 211, 212, 213, 215, 217, 218, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 236, 

237, 241, 244, 246, 248, 252, 253, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 

270, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 

294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 311, 312, 317, 318, 319, 320, 

322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 

351, 352, 355, 358, 360, 362, 363, 364, 365, 366, 367, 369, 370, 371, 374, 377, 379, 380, 381, 382, 383, 

384, 390, 391, 392, 393, 394, 395, 397, 399, 400, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 414, 

416, 417, 418, 419, 421, 422, 423, 424, 426, 427, 429, 430, 431, 433, 434, 436, 437, 440, 442, 444, 445, 

446, 447, 448, 449, 450, 452, 453, 456, 457, 462, 463, 464, 466, 467, 469, 471, 472, 473, 474, 475, 477, 

478, 479, 481, 484, 485, 486, 489, 490, 491, 492, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 

509, 511, 513, 515, 517, 518, 521, 526, 527, 528, 529, 530, 531, 532, 533, 536, 537, 538, 539, 540, 541, 

542, 543, 544, 545, 547, 549 

MDG 138 1, 4, 7, 12, 20, 36, 44, 45, 59, 62, 63, 64, 75, 77, 78, 79, 89, 90, 94, 97, 98, 101, 105, 106, 109, 110, 111, 

122, 123, 140, 141, 144, 148, 152, 158, 162, 163, 166, 168, 178, 179, 180, 181, 182, 195, 196, 198, 199, 

200, 201, 202, 203, 204, 212, 218, 222, 230, 231, 232, 233, 237, 245, 251, 252, 254, 255, 256, 259, 263, 

264, 268, 269, 273, 275, 277, 281, 283, 284, 286, 287, 288, 289, 292, 293, 294, 295, 297, 298, 300, 302, 

304, 306, 308, 309, 311, 312, 313, 314, 323, 329, 335, 336, 345, 348, 355, 362, 366, 367, 370, 379, 381, 

382, 383, 397, 399, 400, 402, 403, 404, 417, 431, 437, 453, 469, 476, 485, 489, 491, 493, 496, 497, 507, 

509, 513, 536, 538, 546, 548 

MDABal. 323 1, 4, 7, 12, 16, 20, 21, 26, 28, 29, 30, 35, 36, 37, 41, 42, 44, 47, 49, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63, 

64, 66, 70, 72, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 94, 95, 97, 98, 99, 105, 107, 110, 112, 

113, 114, 115, 116, 117, 119, 120, 121, 129, 131, 132, 133, 142, 143, 144, 145, 149, 150, 151, 152, 153, 

154, 155, 157, 158, 160, 161, 163, 165, 167, 169, 171, 173, 175, 177, 178, 179, 180, 181, 182, 188, 190, 

191, 193, 194, 195, 196, 197, 198, 200, 202, 203, 206, 208, 209, 210, 211, 213, 214, 215, 217, 218, 219, 

221, 222, 223, 224, 225, 226, 229, 230, 231, 232, 233, 234, 235, 236, 237, 239, 241, 243, 244, 245, 246, 

247, 248, 249, 251, 260, 261, 263, 264, 265, 266, 268, 269, 270, 273, 275, 277, 278, 279, 280, 281, 282, 

283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 300, 302, 303, 304, 305, 306, 311, 

312, 313, 314, 316, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 331, 332, 336, 338, 339, 340, 342, 

343, 344, 346, 355, 356, 357, 361, 363, 364, 365, 367, 368, 369, 371, 373, 374, 377, 378, 379, 380, 381, 

382, 383, 385, 390, 391, 392, 393, 394, 395, 396, 401, 402, 403, 404, 408, 410, 411, 412, 414, 416, 418, 

420, 422, 423, 424, 425, 426, 429, 430, 431, 435, 436, 437, 438, 444, 445, 446, 447, 448, 449, 450, 451, 

453, 461, 462, 463, 464, 466, 467, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 

488, 489, 491, 495, 497, 498, 501, 502, 503, 504, 505, 506, 507, 509, 511, 513, 514, 516, 518, 522, 525, 

526, 527, 528, 529, 530, 531, 532, 533, 537, 540, 541, 542, 543, 544, 545, 547 

MDGBal. 135 1, 4, 7, 15, 20, 26, 35, 48, 49, 57, 59, 61, 62, 63, 64, 69, 70, 71, 74, 76, 77, 79, 90, 91, 99, 109, 110, 111, 

113, 114, 116, 119, 121, 128, 137, 140, 142, 146, 151, 152, 158, 178, 180, 181, 182, 196, 201, 204, 205, 

209, 210, 222, 226, 235, 237, 238, 241, 242, 250, 255, 261, 263, 264, 265, 269, 275, 277, 279, 281, 286, 

287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 300, 302, 304, 305, 306, 310, 311, 312, 315, 316, 321, 

323, 329, 336, 337, 341, 347, 350, 356, 357, 361, 367, 370, 379, 380, 381, 383, 402, 403, 404, 428, 431, 

432, 434, 437, 462, 464, 474, 476, 480, 488, 489, 490, 491, 495, 497, 507, 512, 513, 514, 515, 519, 523, 

537, 548 
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B.2. Models Results 

 

This section lists the results of the model evaluations of the experiments discussed in 

Section 6.5 (see Chapter 6).  

 

B.2.1. C5.0 (Decision Trees) Results 

 

Table B.1 presents the results of the experiments using the C5.0 algorithm. Each shaded cell 

of Table B.1 contains the maximum G-Mean Accuracy achieved at the CV stage, where the 

model’s threshold was set. Every other cell contains two performance measures. The top 

measure is the model’s performance on the test subset (the day file) when its optimal (CV) 

cutoff was used and the second measure is the model’s performance when the cutoff was 

adapted for the test data. The measure in bold is the greater of the two measures. 

 

Figure B.1 shows the performance (G-Mean Accuracy) for each model for each training day 

for the C5.0 algorithm. Each plot shows models performances (in every sub-plot) under 

different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances (Original 

and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that day’s model after being 

evaluated using all the other days’ files (along the x-axis). For each evaluation there are two 

G-Mean Accuracy readings; one is based on the model’s optimal threshold (‘CV Cutoff’ in red 

colour) while the other uses the adapted threshold (‘Adp. Cutoff’ in blue colour) on the test 

data. The first day (along the x-axis) matches the training day of the main plot and corresponds 

to the CV results of that model.   
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Table B.1: The performance of models (G-Mean Accuracy) for the original and adapted cutoff (threshold) for the C5.0 algorithm. 

 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.0099 0.0176 0.0053 0.8062 0.0568 0.0100 0.0241 0.0053 0.8995 0.0562

0.5882 0.5045 0.0148 0.9999 0.9934 0.9044 0.6387 0.0144 1.0000 0.9879

0.5967 0.8106 0.0105 0.0000 0.9477 0.9014 0.8661 0.0130 0.6304 0.7753

0.9745 0.9137 0.0211 0.5650 0.9776 0.9487 0.9043 0.0134 0.9652 0.8440

0.0375 0.9373 0.0000 0.0000 0.0316 0.9916 0.9249 0.0129 0.9985 0.7109

0.9937 0.9507 0.0130 0.9514 0.0616 0.9931 0.9271 0.0176 0.9989 0.9900

0.9982 0.0000 0.0216 0.9045 0.0875 0.8820 0.0100 0.3610 0.8523 0.7759

0.9993 0.1950 0.4956 0.9999 0.9895 0.9934 0.1419 0.6242 0.9966 0.9907

0.0000 0.0000 0.0000 0.0000 0.0000 0.9910 0.0200 0.0250 0.0479 0.7458

0.0000 0.0000 0.0000 0.0000 0.0000 0.9988 0.1485 0.0278 0.0480 0.9980

0.9901 0.9151 0.4357 0.0043 0.9998 0.9956 0.3826 0.3916 0.0092 0.9999

0.9945 0.9413 0.7629 0.0132 0.9998 0.9962 0.9210 0.6703 0.0258 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.9814 0.5062 0.2146 0.7327 0.1403 0.5278 0.8504 0.8807 0.8344 0.8673

0.9845 0.5720 0.7332 0.9890 0.4531 0.7520 0.8558 0.9420 0.8395 0.9405

0.1127 0.8999 0.0402 0.3013 0.0283 0.7905 0.9193 0.0790 0.9985 0.0647

0.6653 0.9476 0.3447 0.8502 0.1108 0.9882 0.9299 0.3659 0.9992 0.4175

0.9902 0.0100 0.0983 0.8528 0.0550 0.9087 0.0100 0.6697 0.9478 0.8538

0.9990 0.4568 0.4944 0.9504 0.1438 0.9857 0.0378 0.8277 0.9896 0.9923

0.0000 0.0000 0.0000 0.0000 0.0000 0.9808 0.0141 0.0128 0.0473 0.0532

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.8035 0.4143 0.7486 0.9999

0.9923 0.8980 0.4348 0.0485 0.9998 0.9469 0.1264 0.0249 0.7837 1.0000

0.9976 0.9286 0.4498 0.9837 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.1309 0.8138 0.5949 0.0000 0.6922 0.4031 0.8976 0.5522 0.5120 0.7539

0.8279 0.8979 0.7917 0.4171 0.7796 0.8978 0.9092 0.6895 0.7127 0.8859

0.6496 0.9160 0.9906 0.0000 0.9976 0.5688 0.8835 0.9049 0.0000 0.9666

0.9799 0.9246 0.9912 0.9815 0.9977 0.8639 0.9026 0.9100 0.0000 0.9792

0.9208 0.0200 0.0176 0.0000 0.9611 0.9927 0.0141 0.3249 0.8519 0.9978

0.9896 0.2523 0.8186 0.9529 0.9836 0.9961 0.8160 0.8821 0.9965 0.9982

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0000 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993

0.9943 0.8910 0.4342 0.0485 0.9999 0.9867 0.9068 0.4390 0.5440 0.9525

0.9976 0.9253 0.4423 0.9837 1.0000 0.9944 0.9142 0.6559 0.9853 0.9962

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.9849 0.5069 0.8782 0.5156 0.4736 0.7077 0.6074 0.5015 0.7124 0.0816

0.9876 0.5967 0.9296 0.9843 0.8484 0.8853 0.8378 0.8607 0.7731 0.4364

0.1337 0.9435 0.0580 0.3013 0.0245 0.9852 0.6290 0.0627 0.9958 0.4256

0.6646 0.9492 0.9824 0.8496 0.1062 0.9906 0.9232 0.1455 0.9971 0.6606

0.9984 0.1142 0.0993 0.7977 0.0568 0.8156 0.0100 0.0278 0.7368 0.3558

0.9995 0.4586 0.7236 0.9367 0.6729 0.9888 0.1569 0.6789 0.9954 0.9915

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0125 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9985 0.8062 0.4115 0.7465 0.9996

0.9923 0.8952 0.4348 0.0485 0.9998 0.9873 0.1978 0.0892 0.7895 0.9999

0.9976 0.9285 0.4445 0.9829 1.0000 0.9940 0.9236 0.8137 0.9907 1.0000

0.0000 0.0279 0.0479 0.8528 0.0568 0.0000 0.0279 0.0479 0.8528 0.0568

0.0940 0.0279 0.0479 0.8528 0.0568 0.0940 0.0279 0.0479 0.8528 0.0568

0.2910 0.6145 0.1415 0.0000 0.4229 0.8819 0.8189 0.9222 0.5312 0.6688

0.4477 0.8308 0.7589 0.0000 0.8031 0.8896 0.8388 0.9300 0.5783 0.8254

0.6499 0.9485 0.9764 0.3011 0.0567 0.9824 0.9265 0.7625 0.8510 0.0615

0.9342 0.9497 0.9799 0.9918 0.3565 0.9826 0.9265 0.9326 0.9341 0.0756

0.9673 0.0158 0.1048 0.7977 0.0531 0.8201 0.0000 0.0736 0.8510 0.4139

0.9985 0.4339 0.4977 0.9522 0.0680 0.9485 0.1562 0.7646 0.9005 0.8068

0.0000 0.0000 0.0000 0.0000 0.0000 0.0614 0.0100 0.0000 0.0092 0.0142

0.0000 0.0000 0.0000 0.0000 0.0000 0.9935 0.8094 0.4154 0.0822 0.9993

0.9929 0.1801 0.0729 0.7814 0.9997 0.9883 0.0064 0.0139 0.0533 0.9998

0.9954 0.9267 0.4813 0.9778 1.0000 0.9900 0.9054 0.5412 0.9913 1.0000

1.0000
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Figure B.1: Comparison plot of the performance of C5.0 models (G-Mean Accuracy) for every training day in the STA2018 dataset between 

the optimal (CV) and adaptive cutoffs. 
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B.2.2. Random Forest (RF) Results 

 

Table B.2 presents the results of the experiments using the Random Forest (RF) algorithm. 

Each shaded cell of Table B.2 contains the maximum G-Mean Accuracy achieved at the CV 

stage when the model’s threshold was set. Every other cell contains two performance measures. 

The top measure is the model’s performance on the test subset (the day file) when its optimal 

(CV) cutoff was used and the second one is the performance when the cutoff was adapted to 

the test data. The measure in bold is the greater of the two measures. 

 

Figure B.2 shows the performance (G-Mean Accuracy) for each model for each training day 

for the Random Forest (RF) algorithm. Each plot shows models performances (in every sub-

plot) under different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and data balances 

(Original and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that day’s model 

after being evaluated using all the other days’ files (along the x-axis). For each evaluation there 

are two G-Mean Accuracy readings; one is based on the model’s optimal threshold (‘CV Cutoff’ 

in red colour) while the other uses the adapted threshold (‘Adp. Cutoff’ in blue colour) on the 

test data. The first day (along the x-axis) matches the training day of the main plot and 

corresponds to the CV results of that model.   
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Table B.2: Performance of the models (G-Mean Accuracy) for the original and adapted cutoffs (threshold) for the Random Forest (RF) 

algorithm. 

 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.0042 0.0279 0.0482 1.0000 0.0602 0.0100 0.0216 0.0476 0.9535 0.0559

0.9272 0.9478 0.9094 1.0000 0.9987 0.9293 0.9413 0.9257 1.0000 0.9987

0.9521 0.9213 0.6884 0.8560 0.9411 0.9663 0.9191 0.7498 0.9530 0.9758

0.9932 0.9739 0.9577 0.9870 0.9976 0.9925 0.9688 0.9340 0.9793 0.9987

0.9428 0.9301 0.8425 0.8832 0.9404 0.9762 0.9237 0.8991 0.9268 0.9688

0.9945 0.9560 0.9920 0.9998 0.9978 0.9948 0.9471 0.9858 0.9997 0.9882

0.9997 0.0133 0.0648 0.9535 0.0585 0.9888 0.2259 0.6808 0.9934 0.9925

0.9999 0.9205 0.9395 1.0000 0.9976 0.9971 0.9156 0.9302 0.9998 0.9926

0.9912 0.0000 0.0250 0.0479 0.0568 0.0217 0.0100 0.0125 0.0053 0.0142

1.0000 0.9120 0.5737 0.9671 0.9998 0.9999 0.8685 0.6837 0.1048 0.9998

0.9964 0.9140 0.4314 0.7864 1.0000 0.0217 0.0100 0.0125 0.0341 0.5279

0.9979 0.9351 0.9340 0.9911 1.0000 0.9998 0.9381 0.9319 0.9755 1.0000

0.0463 0.0279 0.0482 1.0000 0.0585 0.0100 0.0216 0.0476 0.8528 0.0564

0.9308 0.9417 0.9322 1.0000 0.9983 0.9281 0.9504 0.7999 1.0000 0.9984

0.9790 0.9636 0.9089 0.9570 0.9890 0.9683 0.9197 0.8158 0.8781 0.9282
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Figure B.2: Comparison plot of the performance of RF models (G-Mean Accuracy) for every training day in the STA2018 dataset between the 

optimal (CV) and adaptive cutoffs. 
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B.2.3. Support Vector Machine (SVM) Results 

 

Table B.3 presents the results of the experiments using the Support Vector Machine (SVM) 

algorithm. Each shaded cell of Table B.3 contains the maximum G-Mean Accuracy reached 

at the CV stage at which the model’s threshold was set. Every other cell contains two 

performance measures. The top measure is the model’s performance on the test subset (day file) 

when its optimal (CV) cutoff was used and the second one is the performance when the cutoff 

was adapted to the test data. The measure in bold is the greater of the two measures. 

 

Figure B.3 shows the performance (G-Mean Accuracy) for each model for each training day 

for the Support Vector Machine (SVM) algorithm. Each plot shows models performances 

(in every sub-plot) under different feature sets (Full, MDA, MDG, MDABal. and MDGBal.) and 

data balances (Original and Balanced). Every sub-plot illustrates the G-Mean Accuracy for that 

day’s model after being evaluated using all the other days’ files (along the x-axis). For each 

evaluation there are two G-Mean Accuracy readings; one is based on the model’s optimal 

threshold (‘CV Cutoff’ in red colour) while the other uses the adapted threshold (‘Adp. Cutoff’ 

in blue colour) on the test data. The first day (along the x-axis) matches the training day of the 

main plot and corresponds to the CV results of that model.   
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Table B.3: The performance of models (G-Mean Accuracy) for the original and adapted cutoffs (thresholds) for SVM algorithm. 

 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0.1630 0.3695 0.0573 0.9857 0.9681 0.9076 0.5294 0.6040 0.9997 0.8786

0.1756 0.3977 0.1891 0.9875 0.9703 0.9137 0.5622 0.9011 0.9999 0.9966

0.5133 0.5184 0.3624 0.7800 0.8279 0.4939 0.4641 0.4042 0.4023 0.4473

0.9312 0.5200 0.8053 0.9517 0.8661 0.8235 0.6112 0.7456 0.8289 0.8026

0.3545 0.9161 0.0538 0.9182 0.4942 0.1242 0.7312 0.0160 0.0000 0.0200

0.9397 0.9457 0.3852 0.9589 0.7560 0.9154 0.9405 0.7563 0.9677 0.8836

0.0000 0.1026 0.7030 0.0000 0.7385 0.0000 0.1387 0.5176 0.4249 0.7042

0.8674 0.1761 0.8065 0.9531 0.8429 0.9490 0.1474 0.5208 0.9242 0.7166

0.9806 0.8750 0.6296 0.0575 0.9985 0.3346 0.0282 0.0216 0.1027 0.5148

0.9913 0.8931 0.6411 0.5101 0.9990 0.9978 0.1468 0.2367 0.9575 0.8563

0.9820 0.1070 0.4882 0.0599 0.9532 0.9860 0.0489 0.1797 0.9667 0.9995

0.9906 0.2143 0.6021 0.7417 0.9997 0.9931 0.1611 0.5437 0.9843 0.9995

0.9206 0.4812 0.0542 0.9534 0.0585 0.6143 0.4374 0.2112 0.9534 0.0568

0.9224 0.7470 0.1977 0.9999 0.9911 0.6945 0.7889 0.8507 1.0000 0.9921

0.0000 0.8553 0.0237 0.8381 0.1051 0.9330 0.8737 0.4306 0.7185 0.8755

0.2443 0.8658 0.0382 0.9337 0.6997 0.9621 0.8743 0.8487 0.9143 0.9184

0.6177 0.9447 0.4665 0.9038 0.0722 0.1466 0.9397 0.9226 0.0000 0.0317

0.9725 0.9454 0.5871 0.9978 0.7330 0.8707 0.9413 0.9360 0.9749 0.7675

0.0000 0.0307 0.5224 0.0000 0.0000 0.9178 0.1268 0.5203 0.0000 0.0000

0.9743 0.1444 0.6106 0.9529 0.7213 0.9865 0.1812 0.5285 0.9433 0.4924

0.9953 0.8535 0.7474 0.9685 0.0568 0.9992 0.8966 0.3735 0.9686 0.0568

0.9993 0.9134 0.8951 0.9806 0.9908 0.9992 0.9242 0.4774 0.9821 0.9402

0.2622 0.0691 0.5673 0.8781 0.9515 0.9795 0.1287 0.2820 0.9669 0.9526

0.9931 0.1308 0.6090 0.9117 0.9971 0.9922 0.1891 0.6485 0.9902 0.9989

0.7706 0.6099 0.0429 0.9998 0.0602 0.6713 0.4638 0.0480 0.9534 0.0568

0.7912 0.8736 0.1953 0.9999 0.9962 0.7400 0.4888 0.4182 1.0000 0.9905

0.0000 0.6141 0.0000 0.0000 0.0000 0.0000 0.6555 0.0000 0.0000 0.0000

0.5136 0.6847 0.5639 0.3726 0.3531 0.5481 0.6685 0.5900 0.3930 0.5643

0.8259 0.7480 0.9870 0.9831 0.9910 0.9773 0.8656 0.9834 0.9888 0.9888

0.9675 0.8062 0.9879 0.9927 0.9956 0.9833 0.8665 0.9884 0.9928 0.9958

0.0000 0.0331 0.7649 0.9528 0.0000 0.0803 0.0695 0.4730 0.9479 0.0647

0.9378 0.1450 0.7727 0.9967 0.3657 0.7791 0.1176 0.4839 0.9935 0.2488

0.9994 0.0895 0.0250 0.8181 0.0585 0.9916 0.0000 0.0210 0.7853 0.0550

0.9996 0.8718 0.5703 0.9710 0.8849 0.9992 0.8828 0.4595 0.9673 0.9852

0.0000 0.9120 0.4510 0.6801 0.9519 0.8579 0.9096 0.5099 0.9655 0.9517

0.9742 0.9201 0.6205 0.7580 0.9974 0.9903 0.9100 0.6328 0.9849 0.9982

0.8373 0.6823 0.0727 0.9999 0.0585 0.9202 0.4744 0.0480 0.9999 0.0778

0.8590 0.8670 0.2976 0.9999 0.9943 0.9307 0.5384 0.7213 1.0000 0.9972

0.0000 0.7562 0.0237 0.8247 0.2069 0.9366 0.8781 0.4806 0.7460 0.8900

0.3185 0.7765 0.0382 0.9415 0.7326 0.9593 0.8804 0.8301 0.9235 0.9226

0.8749 0.9298 0.4613 0.9512 0.0837 0.1365 0.9384 0.9123 0.0000 0.0245

0.9727 0.9416 0.5578 0.9957 0.6791 0.8578 0.9399 0.9160 0.9818 0.7552

0.0000 0.0223 0.4724 0.0000 0.0000 0.9151 0.1754 0.5767 0.0000 0.0000

0.9745 0.1443 0.5477 0.9531 0.7137 0.9868 0.2139 0.6023 0.9410 0.6056

0.9789 0.0479 0.5601 0.9336 0.1291 0.5956 0.7399 0.2373 0.1566 0.0492

0.9940 0.3377 0.7603 0.9640 0.9749 0.9984 0.9135 0.4465 0.9562 0.9925

0.0795 0.0582 0.6014 0.3942 0.9982 0.6721 0.1356 0.4007 0.9694 0.9529

0.9902 0.1513 0.6418 0.5782 0.9986 0.9925 0.2104 0.6328 0.9849 0.9992

0.9263 0.7197 0.0474 0.9534 0.0585 0.8279 0.4580 0.0484 0.9998 0.0776

0.9311 0.9164 0.5652 0.9999 0.9974 0.9140 0.5588 0.8278 0.9999 0.9976

0.8727 0.6410 0.3583 0.7586 0.8608 0.5333 0.4830 0.4616 0.6226 0.7089

0.9800 0.7587 0.5333 0.9002 0.8995 0.8954 0.4834 0.4654 0.6894 0.7755

0.1225 0.9035 0.7684 0.0000 0.0316 0.1238 0.9446 0.8969 0.0000 0.0245

0.9823 0.9435 0.9535 0.9851 0.4872 0.8983 0.9449 0.8983 0.8981 0.6145

0.0307 0.0141 0.6289 0.7384 0.0000 0.8877 0.0518 0.0889 0.0000 0.0000

0.9694 0.1687 0.6689 0.9521 0.6616 0.9827 0.1426 0.3074 0.9714 0.5188

0.9978 0.0100 0.7001 0.5854 0.1670 0.7335 0.8746 0.3746 0.9650 0.0531

0.9996 0.2816 0.7927 0.9595 0.9908 0.9961 0.9199 0.4683 0.9665 0.9930

0.0000 0.6830 0.8442 0.5596 0.9527 0.8509 0.1288 0.2795 0.9692 0.9990

0.9320 0.7189 0.8991 0.7260 0.9978 0.9921 0.2576 0.6870 0.9873 0.9994
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Figure B.3: Comparison plot of the performance of SVM models (G-Mean Accuracy) for every training day in the STA2018 dataset between 

the optimal (CV) and adaptive cutoffs. 
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Appendix (C) 

Results of Chapter 7 (Third) 

Experiment 
 

 

This appendix documents the outcomes of the third set of experiments presented in Chapter 7, 

which discussed the identification of the optimal threshold for an evaluation data using a small 

subset as a validation dataset. 

 

C.1. Results of Every Day 

This section lists the result G-Mean Accuracy Ratio (GAR) plots of every simulation day for 

every ML algorithm. The following Table C.1 maps the figures to their related ML algorithm 

and simulation day.  

Simulation Day 
ML Algorithm 

C5.0 RF SVM 
Day 2 - Sat 12 Jun Figure C.1 Figure C.7 Figure C.13 

Day 3 - Sun 13 Jun Figure C.2 Figure C.8 Figure C.14 

Day 4 - Mon 14 Jun Figure C.3 Figure C.9 Figure C.15 

Day 5 - Tue 15 Jun Figure C.4 Figure C.10 Figure C.16 

Day 6 - Wed 16 Jun Figure C.5 Figure C.11 Figure C.17 

Day 7 - Thu 17 Jun Figure C.6 Figure C.12 Figure C.18 
Table C.1: Figures map of the results of the third experiment. 
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C.2. Models GAR Plots 

 

The results of the experiments discussed in Chapter 7 are illustrated in this section as G-Mean 

Accuracy Ratio (GAR) plots for every ML algorithm. Each one of the figures (Figure C.19, 

Figure C.20 and Figure C.21) shows the results for one of the three ML algorithms (C5.0, RF 

and SVM) respectively. Each one of the plots (a, b, c and d) in every figure shows the results 

using different error rates (0%, 1%, 5% and 10%). Where each subplot shows the median of the 

GAR values for all of the models with the same feature set and data balance group for that 

algorithm. The curves in each subplot for every group illustrate the medians of the different 

sampling strategies (B1, B10, B20, B50 and B100) for every sample size (10% to 0.0001%). 
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C.2.1. C5.0 (Decision Trees) Results 
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C.2.2. Random Forest (RF) Results 
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C.2.3. Support Vector Machine (SVM) Results 
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Appendix (D) 

Feature Descriptions of STA2018 

Dataset 
 

 

This appendix lists the 638 features that were extracted from the UNB ISCX 2012 dataset and 

derived using Onut’s schema [15]. A description is provided for each of the features. All 

features deleted at the clean-up phase are marked (in red italics) and their sequence number has 

been concatenated with a sequence of letters.  

The following is a summary of the features generated and/or deleted at every transformation 

stage (they have been placed in order of number of the resultant dataset, i.e. STA2018.): 

• Basic-features extraction: a total of 193 features were extracted at this phase. These 

features had the sequences {1-2, 4-5, 7-12, 15-144}.  

• Validation and connection labelling: this phase added one more variable which was 

the class feature and included the label {Normal or Attack} for every connection. 

• Extend: this phase extended the feature space by deriving the following features groups 

(all of the descriptions of these extended features are taken from Onut’s PhD 

thesis [385]): 

o Connection-based features: a total of 220 features were derived and start with 

“DFMC_*” (this code represented the path of the tree presented in Figure 5.2 as 

coded by Onut [15, 385]). These features had the sequence {145-348}  
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o Time-based features: a total of 220 features were derived and start with “DFMT_*” 

(this code represents the path of the tree presented in Figure 5.2 as coded by 

Onut [15, 385]). These features had the sequence {349-549}  

• Balance: a total of two features (synthetic and origOrder) were added at this stage to 

distinguish the original connections from the synthetic connections. The sequences of 

these features are {13-14} and they were added to the basic features. 

• Clean up: two features were added at this stage: src_zone and dst_zone. Their 

sequences are {3 and 6} and they were added to the basic features group. Also, a total 

of 88 useless features were removed at this stage: 53 from basic-features; 19 from the 

connection-based features group; and 16 from the time-based group. 

 

D.1. Basic Features 

 

No. Feature Description 
1 start_time Timestamp of connection start time. 

2 src_ip Source IP address of a connection. 

3 src_zone The topological zone of the source host {GLOBAL, MULTICAST, 

UNICAST, UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5, LAN6} 

4 src_prt Source port number of a connection. 

5 dst_ip Destination IP address of a connection. 

6 dst_zone The topological zone of the destination host {GLOBAL, 

MULTICAST, UNICAST, UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5, 

LAN6} 

7 dst_prt Destination port number of a connection. 

8 duration Duration in seconds of a connection. This is the time difference 

between timestamps of the first and last packet of a connection. 

9 ipVersion IP version (IPv4 or IPv6) of a connection. 

10 protocol Transport protocol used for a connection (ICMP, TCP, UDP, 

etc) 

11 conn_state Bro label of connection state (13 different states in total). This 

will be the last known state of a connection 22.  

12 service The application protocol of a connection as detected by Bro. 

13 synthetic One (1) if synthetic connection and zero (0) otherwise. 

                                                 
22 https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info  
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No. Feature Description 
14 origOrder The original sequence number of connections and 0 for all 

synthetic connections 

15 src_ip_bytes Total IP bytes sent by source host. 

16 dst_ip_bytes Total IP bytes sent by destination host. 

17 src_bytes Total payload bytes sent by source host. 

18 dst_bytes Total payload bytes sent by destination host. 

19 src_pkts Total packets sent by source host. 

20 dst_pkts Total packets sent by destination host. 

20a wrong_fragment Number of wrong fragment packets as defined by Bro. There 

are 8 fragment related cases as identified by Bro internal 

implementation (excessively_large_fragment, excessively_small_fragment, 

fragment_inconsistency, fragment_overlap, fragment_size_inconsistency, 

fragment_protocol_inconsistency, incompletely_captured_fragment and 

fragment_with_DF) 23  

21 urg Number of total urgent TCP packets within a connection. 

22 bro_duration Duration in seconds of a connection as returned by Bro. 

23 bro_conn_state Bro label of connection state (13 different states in total). This 

will be the last known state of a connection. 24  

24 bro_service The application protocol of a connection as detected by Bro’s 

internal engine. 

25 bro_src_ip_bytes Total IP bytes sent by source host as detected by Bro’s internal 

engine. 

26 bro_dst_ip_bytes Total IP bytes sent by destination host as detected by Bro’s 

internal engine. 

27 bro_src_bytes Total payload bytes sent by source host as detected by Bro’s 

internal engine. 

28 bro_dst_bytes Total payload bytes sent by destination host as detected by 

Bro’s internal engine. 

29 bro_src_pkts Total packets sent by source host as detected by Bro’s internal 

engine. 

30 bro_dst_pkts Total packets sent by destination host as detected by Bro’s 

internal engine. 

31 conn_start Connection NORMAL start {0, 1} 

32 conn_partial_start Connection PARTIAL start {0, 1}. This is usually raised by 

Bro when it detects the start of a new active TCP connection 

without seeing the initial handshake 25. 

33 conn_close Connection NORMAL close {0, 1} 

34 conn_partial_close Connection PARTIAL close {0, 1}. This is usually raised by 

Bro when one of the communicating hosts attempt to close an 

inactive TCP connection with a FIN handshake or an RST 

packets 25. 

35 conn_weird Number of WEIRD events raised by a connection. This event 

is raised by Bro when an abnormal activity is detected within a 

certain connection 26. 

36 conn_content_weird Number of WEIRD events raised by the content of a 

connection. 

37 conn_stats_orig_num_pkts Total packets sent by source host as computed by Bro’s 

statistics event 27. 

                                                 
23 https://github.com/bro/bro/blob/master/src/Frag.cc  
24 https://www.bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info  
25 https://www.bro.org/sphinx/scripts/base/bif/plugins/Bro_TCP.events.bif.bro.html  
26 https://www.bro.org/sphinx/scripts/base/bif/event.bif.bro.html  
27 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-endpoint_stats  
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No. Feature Description 
38 conn_stats_orig_num_rxmit Total retransmitted packets sent by source host as computed by 

Bro’s statistics event. 

39 conn_stats_orig_num_rxmit_bytes Total retransmitted bytes sent by source host as computed by 

Bro’s statistics event. 

40 conn_stats_orig_num_in_order Total in-order packets sent by source host as computed by 

Bro’s statistics event. 

41 conn_stats_orig_num_out_order Total out-of-order packets sent by source host as computed by 

Bro’s statistics event. 

42 conn_stats_orig_num_repl Total replicated packets (last packet was sent again) sent by 

source host as computed by Bro’s statistics event. 

43 conn_stats_orig_endian_type Endian type used by the source host. {ENDIAN_UNKNOWN, ENDIAN_BIG, 

ENDIAN_LITTLE, ENDIAN_CONFUSED} 

44 conn_stats_resp_num_pkts Total packets sent by destination host as computed by Bro’s 

statistics event 28. 

45 conn_stats_resp_num_rxmit Total retransmitted packets sent by destination host as 

computed by Bro’s statistics event. 

46 conn_stats_resp_num_rxmit_bytes Total retransmitted bytes sent by destination host as computed 

by Bro’s statistics event. 

47 conn_stats_resp_num_in_order Total in-order packets sent by destination host as computed by 

Bro’s statistics event. 

48 conn_stats_resp_num_out_order Total out-of-order packets sent by destination host as computed 

by Bro’s statistics event. 

49 conn_stats_resp_num_repl Total replicated packets (last packet was sent again) sent by 

destination host as computed by Bro’s statistics event. 

50 conn_stats_resp_endian_type Endian type used by the destination host. {ENDIAN_UNKNOWN, 

ENDIAN_BIG, ENDIAN_LITTLE, ENDIAN_CONFUSED} 

50a ip4_src_hl_change Number of changes in Header Length field in source IPv4 

packets within a connection 29.  

51 ip4_src_hl_current Last seen value of Header Length field in source IPv4 packet 

of a connection. 

52 ip4_src_hl_max Maximum value detected of Header Length field in source 

IPv4 packet of a connection. 

53 ip4_src_hl_min Minimum value detected of Header Length field in source IPv4 

packet of a connection. 

53a ip4_src_tos_change Number of changes in Type of service field in source IPv4 

packets within a connection. 

54 ip4_src_tos_current Last seen value of Type of service field in source IPv4 packet 

of a connection. 

55 ip4_src_tos_max Maximum value detected of Type of service field in source 

IPv4 packet of a connection. 

56 ip4_src_tos_min Minimum value detected of Type of service field in source 

IPv4 packet of a connection. 

57 ip4_src_len_change Number of changes in packet Length field in source IPv4 

packets within a connection. 

58 ip4_src_len_current Last seen value in packet Length field in source IPv4 packet of 

a connection. 

59 ip4_src_len_max Maximum value detected in packet Length field in source IPv4 

packet of a connection. 

60 ip4_src_len_min Minimum value detected in packet Length field in source IPv4 

packet of a connection. 

61 ip4_src_ttl_change Number of changes in Time To Live field in source IPv4 

packets within a connection. 

62 ip4_src_ttl_current Last seen value in Time To Live field in source IPv4 packet of 

a connection. 

                                                 
28 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-endpoint_stats  
29 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip4_hdr  
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No. Feature Description 
63 ip4_src_ttl_max Maximum value detected in Time To Live field in source IPv4 

packet of a connection. 

64 ip4_src_ttl_min Minimum value detected in Time To Live field in source IPv4 

packet of a connection. 

64a ip4_dst_hl_change Number of changes in Header Length field in destination IPv4 

packets within a connection. 

65 ip4_dst_hl_current Last seen value in Header Length field in destination IPv4 

packet of a connection. 

66 ip4_dst_hl_max Maximum value detected in Header Length field in destination 

IPv4 packet of a connection. 

67 ip4_dst_hl_min Minimum value detected in Header Length field in destination 

IPv4 packet of a connection. 

68 ip4_dst_tos_change Number of changes in Type of service field in destination IPv4 

packets within a connection. 

69 ip4_dst_tos_current Last seen value in Type of service field in destination IPv4 

packet of a connection. 

70 ip4_dst_tos_max Maximum value detected in Type of service field in destination 

IPv4 packet of a connection. 

71 ip4_dst_tos_min Minimum value detected in Type of service field in destination 

IPv4 packet of a connection. 

72 ip4_dst_len_change Number of changes in packet Length field in destination IPv4 

packets within a connection. 

73 ip4_dst_len_current Last seen value in packet Length field in destination IPv4 

packet of a connection. 

74 ip4_dst_len_max Maximum value detected in packet Length field in destination 

IPv4 packet of a connection. 

75 ip4_dst_len_min Minimum value detected in packet Length field in destination 

IPv4 packet of a connection. 

76 ip4_dst_ttl_change Number of changes in Time To Live field in destination IPv4 

packets within a connection. 

77 ip4_dst_ttl_current Last seen value in Time To Live field in destination IPv4 

packet of a connection. 

78 ip4_dst_ttl_max Maximum value detected in Time To Live field in destination 

IPv4 packet of a connection. 

79 ip4_dst_ttl_min Minimum value detected in Time To Live field in destination 

IPv4 packet of a connection. 

79a ip6_src_class_change Number of changes in Traffic class field in source IPv6 packets 

within a connection 30.   

79b ip6_src_class_current Last seen value of Traffic class field in source IPv6 packet of a 

connection. 

79c ip6_src_class_max Maximum value detected of Traffic class field in source IPv6 

packet of a connection. 

79d ip6_src_class_min Minimum value detected of Traffic class field in source IPv6 

packet of a connection. 

79e ip6_src_flow_change Number of changes in Flow label field in source IPv6 packets 

within a connection. 

79f ip6_src_flow_current Last seen value of Flow label field in source IPv6 packet of a 

connection. 

79g ip6_src_flow_max Maximum value detected of Flow label field in source IPv6 

packet of a connection. 

79h ip6_src_flow_min Minimum value detected of Flow label field in source IPv6 

packet of a connection. 

79i ip6_src_len_change Number of changes in Payload length field in source IPv6 

packets within a connection. 

                                                 
30 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip6_hdr  
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No. Feature Description 
80 ip6_src_len_current Last seen value of Payload length field in source IPv6 packet 

of a connection. 

81 ip6_src_len_max Maximum value detected of Payload length field in source 

IPv6 packet of a connection. 

82 ip6_src_len_min Minimum value detected of Payload length field in source IPv6 

packet of a connection. 

82a ip6_src_hlim_change Number of changes in Hop limit field in source IPv6 packets 

within a connection. 

83 ip6_src_hlim_current Last seen value of Hop limit field in source IPv6 packet of a 

connection. 

84 ip6_src_hlim_max Maximum value detected of Hop limit field in source IPv6 

packet of a connection. 

85 ip6_src_hlim_min Minimum value detected of Hop limit field in source IPv6 

packet of a connection. 

86 ip6_src_exts Boolean value to identify if any of source IPv6 packet of a 

connection is an Extension header chain. 

86a ip6_dst_class_change Number of changes in Traffic class field in destination IPv6 

packets within a connection 31.   

86b ip6_dst_class_current Last seen value of Traffic class field in destination IPv6 packet 

of a connection. 

86c ip6_dst_class_max Maximum value detected of Traffic class field in destination 

IPv6 packet of a connection. 

86d ip6_dst_class_min Minimum value detected of Traffic class field in destination 

IPv6 packet of a connection. 

86e ip6_dst_flow_change Number of changes in Flow label field in destination IPv6 

packets within a connection. 

86f ip6_dst_flow_current Last seen value of Flow label field in destination IPv6 packet 

of a connection. 

86g ip6_dst_flow_max Maximum value detected in Flow label field in destination 

IPv6 packet of a connection. 

86h ip6_dst_flow_min Minimum value detected in Flow label field in destination IPv6 

packet of a connection. 

86i ip6_dst_len_change Number of changes in Payload length field in destination IPv6 

packets within a connection. 

86j ip6_dst_len_current Last seen value of Payload length field in destination IPv6 

packet of a connection. 

86k ip6_dst_len_max Maximum value detected in Payload length field in destination 

IPv6 packet of a connection. 

86l ip6_dst_len_min Minimum value detected in Payload length field in destination 

IPv6 packet of a connection. 

86m ip6_dst_hlim_change Number of changes in Hop limit field in destination IPv6 

packets within a connection. 

86n ip6_dst_hlim_current Last seen value of Hop limit field in destination IPv6 packet of 

a connection. 

86o ip6_dst_hlim_max Maximum value detected in Hop limit field in destination IPv6 

packet of a connection. 

86p ip6_dst_hlim_min Minimum value detected in Hop limit field in destination IPv6 

packet of a connection. 

86q ip6_dst_exts Boolean value to identify if any of destination IPv6 packet of a 

connection is an Extension header chain. 

87 icmp_src_icmp_type Type of source ICMP packet. 

87a icmp_dst_icmp_type Type of destination ICMP packet. 

88 tcp_src_hl_change Number of changes in header length field in source TCP 

packets within a connection. 

                                                 
31 https://www.bro.org/sphinx/scripts/base/init-bare.bro.html#type-ip6_hdr  
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No. Feature Description 
89 tcp_src_hl_current Last seen value in header length field in source TCP packet of 

a connection. 

90 tcp_src_hl_max Maximum value detected in header length field in source TCP 

packet of a connection. 

91 tcp_src_hl_min Minimum value detected in header length field in source TCP 

packet of a connection. 

92 tcp_src_dl_change Number of changes in data length field in source TCP packets 

within a connection. 

93 tcp_src_dl_current Last seen value in data length field in source TCP packet of a 

connection. 

94 tcp_src_dl_max Maximum value detected in data length field in source TCP 

packet of a connection. 

95 tcp_src_dl_min Minimum value detected in data length field in source TCP 

packet of a connection. 

96 tcp_src_win_change Number of changes in window field in source TCP packets 

within a connection. 

97 tcp_src_win_current Last seen value of window field in source TCP packet of a 

connection. 

98 tcp_src_win_max Maximum value detected in window field in source TCP 

packet of a connection. 

99 tcp_src_win_min Minimum value detected in window field in source TCP packet 

of a connection. 

99a tcp_src_flags_NS_flags Total number of source TCP packets in a connection with NS 

flag. 

99b tcp_src_flags_CWR_flags Total number of source TCP packets in a connection with 

Congestion Window Reduced (CWR) flag. 

99c tcp_src_flags_ECE_flags Total number of source TCP packets in a connection with ECE 

flag. 

99d tcp_src_flags_URG_flags Total number of source TCP packets in a connection with 

Urgent (URG) flag. 

100 tcp_src_flags_ACK_flags Total number of source TCP packets in a connection with 

Acknowledgment (ACK) flag. 

101 tcp_src_flags_PSH_flags Total number of source TCP packets in a connection with Push 

(PSH) flag. 

102 tcp_src_flags_RST_flags Total number of source TCP packets in a connection with 

Reset (RST) flag. 

103 tcp_src_flags_SYN_flags Total number of source TCP packets in a connection with 

Synchronize (SYN) flag. 

104 tcp_src_flags_FIN_flags Total number of source TCP packets in a connection with FIN 

flag. 

104a tcp_src_0_flags Total number of source TCP packets in a connection with no 

flag is set. 

105 tcp_src_1_flags Total number of source TCP packets in a connection with 1 

flag set. 

106 tcp_src_2_flags Total number of source TCP packets in a connection with 2 

flags set. 

107 tcp_src_3_flags Total number of source TCP packets in a connection with 3 

flags set. 

107a tcp_src_4_flags Total number of source TCP packets in a connection with 4 

flags set. 

107b tcp_src_5_flags Total number of source TCP packets in a connection with 5 

flags set. 

107c tcp_src_6_flags Total number of source TCP packets in a connection with 6 

flags set. 

107d tcp_src_7_flags Total number of source TCP packets in a connection with 7 

flags set. 

107e tcp_src_8_flags Total number of source TCP packets in a connection with 8 

flags set. 
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No. Feature Description 
107f tcp_src_9_flags Total number of source TCP packets in a connection with 9 

(ALL) flags set. 

108 tcp_dst_hl_change Number of changes in header length field in destination TCP 

packets within a connection. 

109 tcp_dst_hl_current Last seen value in header length field in destination TCP 

packet of a connection. 

110 tcp_dst_hl_max Maximum value detected in header length field in destination 

TCP packet of a connection. 

111 tcp_dst_hl_min Minimum value detected in header length field in destination 

TCP packet of a connection. 

112 tcp_dst_dl_change Number of changes in data length field in destination TCP 

packets within a connection. 

113 tcp_dst_dl_current Last seen value in data length field in destination TCP packet 

of a connection. 

114 tcp_dst_dl_max Maximum value detected in data length field in destination 

TCP packet of a connection. 

115 tcp_dst_dl_min Minimum value detected in data length field in destination 

TCP packet of a connection. 

116 tcp_dst_win_change Number of changes in window field in destination TCP packets 

within a connection. 

117 tcp_dst_win_current Last seen value in window field in destination TCP packet of a 

connection. 

118 tcp_dst_win_max Maximum value detected in window field in destination TCP 

packet of a connection. 

119 tcp_dst_win_min Minimum value detected in window field in destination TCP 

packet of a connection. 

119a tcp_dst_flags_NS_flags Total number of destination TCP packets in a connection with 

NS flag. 

120 tcp_dst_flags_CWR_flags Total number of destination TCP packets in a connection with 

Congestion Window Reduced (CWR) flag. 

120a tcp_dst_flags_ECE_flags Total number of destination TCP packets in a connection with 

ECE flag. 

120b tcp_dst_flags_URG_flags Total number of destination TCP packets in a connection with 

Urgent (URG) flag. 

121 tcp_dst_flags_ACK_flags Total number of destination TCP packets in a connection with 

Acknowledgment (ACK) flag. 

122 tcp_dst_flags_PSH_flags Total number of destination TCP packets in a connection with 

Push (PSH) flag. 

123 tcp_dst_flags_RST_flags Total number of destination TCP packets in a connection with 

Reset (RST) flag. 

124 tcp_dst_flags_SYN_flags Total number of destination TCP packets in a connection with 

Synchronize (SYN) flag. 

125 tcp_dst_flags_FIN_flags Total number of destination TCP packets in a connection with 

FIN flag. 

125a tcp_dst_0_flags Total number of destination TCP packets in a connection with 

no flag is set. 

126 tcp_dst_1_flags Total number of destination TCP packets in a connection with 

1 flag set. 

127 tcp_dst_2_flags Total number of destination TCP packets in a connection with 

2 flags set. 

128 tcp_dst_3_flags Total number of destination TCP packets in a connection with 

3 flags set. 

128a tcp_dst_4_flags Total number of destination TCP packets in a connection with 

4 flags set. 

128b tcp_dst_5_flags Total number of destination TCP packets in a connection with 

5 flags set. 

128c tcp_dst_6_flags Total number of destination TCP packets in a connection with 

6 flags set. 
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128d tcp_dst_7_flags Total number of destination TCP packets in a connection with 

7 flags set. 

128e tcp_dst_8_flags Total number of destination TCP packets in a connection with 

8 flags set. 

128f tcp_dst_9_flags Total number of destination TCP packets in a connection with 

9 (ALL) flags set. 

129 udp_src_ulen_change Number of changes in length field in source UDP packets 

within a connection. 

130 udp_src_ulen_current Last seen value in length field in source UDP packet of a 

connection. 

131 udp_src_ulen_max Maximum value detected in length field in source UDP packet 

of a connection. 

132 udp_src_ulen_min Minimum value detected in length field in source UDP packet 

of a connection. 

133 udp_dst_ulen_change Number of changes in length field in destination UDP packets 

within a connection. 

134 udp_dst_ulen_current Last seen value in length field in destination UDP packet of a 

connection. 

135 udp_dst_ulen_max Maximum value detected in length field in destination UDP 

packet of a connection. 

136 udp_dst_ulen_min Minimum value detected in length field in destination UDP 

packet of a connection. 

137 conn_max_pkts_gap_time Maximum time gap between exchanged packets within a 

connection. 

138 conn_min_pkts_gap_time Minimum time gap between exchanged packets within a 

connection. 

139 src_max_pkts_gap_time Maximum time gap between source packets within a 

connection. 

140 src_min_pkts_gap_time Minimum time gap between source packets within a 

connection. 

141 src_total_pkts_gap_time Total time gap between source packets within a connection. 

142 dst_max_pkts_gap_time Maximum time gap between destination packets within a 

connection. 

143 dst_min_pkts_gap_time Minimum time gap between destination packets within a 

connection. 

144 dst_total_pkts_gap_time Total time gap between destination packets within a 

connection. 

 

D.2. Connection-Based Features 

 

No. Feature Description 

145 DFMC_totalConnections Total number of connections in a 100 connection window. 

146 DFMC_same_src_hosts_count Number of connections with the same source host as a current 

connection in a 100 connection window. 

147 DFMC_diff_src_hosts_count Number of connections with a different source host to the 

current connection in a 100 connection window. 

148 DFMC_same_dst_hosts_count Number of connections with the same destination host as a 

current connection in a 100 connection window. 

149 DFMC_diff_dst_hosts_count Number of connections with a different destination host to the 

current connection in a 100 connection window. 
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No. Feature Description 

150 DFMC_same_srv_count Number of connections with the same service as a current 

connection in a 100 connection window. 

151 DFMC_diff_srv_count Number of connections with a different service to the current 

connection in a 100 connection window. 

152 DFMC_same_src_hosts_PCT Percentage of connections with the same source host as the 

current connection in a 100 connection window. 

153 DFMC_diff_src_hosts_PCT Percentage of connections with a different source host to the 

current connection in a 100 connection window. 

154 DFMC_same_dst_hosts_PCT Percentage of connections with the same destination host as a 

current connection in a 100 connection window. 

155 DFMC_diff_dst_hosts_PCT Percentage of connections with a different destination host to 

the current connection in a 100 connection window. 

156 DFMC_same_srv_PCT Percentage of connections with the same service as a current 

connection in a 100 connection window. 

157 DFMC_diff_srv_PCT Percentage of connections with a different service to the 

current connection in a 100 connection window. 

158 DFMCB_1 Number of TCP connections between the same hosts as a 

current connection in a 100 connection window. 

159 DFMCB_2 Number of UDP connections between the same hosts as a 

current connection in a 100 connection window. 

160 DFMCB_3 Number of ICMP connections between the same hosts as a 

current connection in a 100 connection window. 

161 DFMCB_4 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

source port as the current connection in a 100 connection 

window. 

162 DFMCB_5 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

source port as the current connection in a 100 connection 

window. 

163 DFMCB_6 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

destination port as the current connection in a 100 connection 

window. 

164 DFMCB_7 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

destination port as the current connection in a 100 connection 

window. 

165 DFMCB_8 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current source port as the current connection in a 100 

connection window. 

166 DFMCB_9 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current source port as the current connection in a 100 

connection window. 

167 DFMCB_10 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current destination port as the current connection in a 100 

connection window. 

168 DFMCB_11 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current destination port as the current connection in a 

100 connection window. 

169 DFMCB_12 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

source port as the current connection in a 100 connection 

window. 
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170 DFMCB_13 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

source port as the current connection in a 100 connection 

window. 

171 DFMCB_14 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

destination port as the current connection in a 100 connection 

window. 

172 DFMCB_15 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

destination port as the current connection in a 100 connection 

window. 

173 DFMCB_16 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current source port as the current connection in a 100 

connection window. 

174 DFMCB_17 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current source port as the current connection in a 100 

connection window. 

175 DFMCB_18 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current destination port as the current connection in a 100 

connection window. 

176 DFMCB_19 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current destination port as the current connection in a 

100 connection window. 

177 DFMCB_20 Number of TCP packets with source IP=current destination IP 

and destination IP=current source IP as the current connection 

in a 100 connection window. 

178 DFMCB_21 Number of TCP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 100 connection window. 

179 DFMCB_22 Total TCP bytes of packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 100 connection window. 

180 DFMCB_23 Total TCP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 100 connection window. 

181 DFMCB_23a Average (DFMCB_22/DFMCB_20) TCP bytes of packets with 

source IP=current destination IP and destination IP=current 

source IP as the current connection in a 100 connection 

window. 

182 DFMCB_23b Average (DFMCB_23/DFMCB_21) TCP bytes of packets with 

source IP=current source IP and destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

183 DFMCB_24 Number of UDP packets with source IP=current destination IP 

and destination IP=current source IP as the current connection 

in a 100 connection window. 

184 DFMCB_25 Number of UDP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 100 connection window. 

185 DFMCB_26 Total UDP bytes of packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 100 connection window. 
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186 DFMCB_27 Total UDP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 100 connection window. 

187 DFMCB_27a Average (DFMCB_26/DFMCB_24) UDP bytes of packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 100 

connection window. 

188 DFMCB_27b Average (DFMCB_27/DFMCB_25) UDP bytes of packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

189 DFMCB_28 Number of ICMP packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 100 connection window. 

190 DFMCB_29 Number of ICMP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 100 connection window. 

191 DFMCB_30 Total ICMP bytes of packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

192 DFMCB_31 Total ICMP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 100 connection window. 

193 DFMCB_31a Average (DFMCB_30/DFMCB_28) ICMP bytes of packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 100 

connection window. 

194 DFMCB_31b Average (DFMCB_31/DFMCB_29) ICMP bytes of packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

194a DFMCB_32 Number of TCP (URG) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

195 DFMCB_33 Number of TCP (ACK) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

196 DFMCB_34 Number of TCP (PSH) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

197 DFMCB_35 Number of TCP (RST) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

198 DFMCB_36 Number of TCP (SYN) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

199 DFMCB_37 Number of TCP (FIN) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 100 connection window. 

199a DFMCB_38 Number of TCP (URG) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

200 DFMCB_39 Number of TCP (ACK) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

201 DFMCB_40 Number of TCP (PSH) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 
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202 DFMCB_41 Number of TCP (RST) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

203 DFMCB_42 Number of TCP (SYN) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

204 DFMCB_43 Number of TCP (FIN) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 100 connection window. 

204a DFMCB_44 Number of Echo (type 8) ICMP packets with source 

IP=current source IP and destination IP=current destination 

IP as the current connection in a 100 connection window. 

204b DFMCB_45 Number of Echo (type 8) ICMP packets with source 

IP=current destination IP and destination IP=current source 

IP as the current connection in a 100 connection window. 

204c DFMCB_46 Number of Destination Unreachable (type 3) ICMP packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

204d DFMCB_47 Number of Destination Unreachable (type 3) ICMP packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 100 

connection window. 

205 DFMCOS_1 Number of TCP connections with source IP=current source IP 

in a 100 connection window. 

206 DFMCOS_2 Number of UDP connections with source IP=current source IP 

in a 100 connection window. 

207 DFMCOS_3 Number of ICMP connections with source IP=current source 

IP in a 100 connection window. 

208 DFMCOS_4 Number of TCP connections with destination IP=current 

source IP in a 100 connection window. 

209 DFMCOS_5 Number of UDP connections with destination IP=current 

source IP in a 100 connection window. 

210 DFMCOS_6 Number of ICMP connections with destination IP=current 

source IP in a 100 connection window. 

211 DFMCOS_7 Number of TCP connections with source IP=current source IP 

and destination port=current destination port in a 100 

connection window. 

212 DFMCOS_8 Number of TCP connections with source IP=current source IP 

and destination port!=current destination port in a 100 

connection window. 

213 DFMCOS_9 Number of TCP connections with destination IP=current 

source IP and destination port=current destination port in a 100 

connection window. 

214 DFMCOS_10 Number of TCP connections with destination IP=current 

source IP and destination port!=current destination port in a 

100 connection window. 

215 DFMCOS_11 Number of TCP connections with source IP=current source IP 

and destination port=current source port in a 100 connection 

window. 

216 DFMCOS_12 Number of TCP connections with source IP=current source IP 

and destination port!=current source port in a 100 connection 

window. 

217 DFMCOS_13 Number of TCP connections with destination IP=current 

source IP and destination port=current source port in a 100 

connection window. 
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218 DFMCOS_14 Number of TCP connections with destination IP=current 

source IP and destination port!=current source port in a 100 

connection window. 

219 DFMCOS_15 Number of UDP connections with source IP=current source IP 

and destination port=current destination port in a 100 

connection window. 

220 DFMCOS_16 Number of UDP connections with source IP=current source IP 

and destination port!=current destination port in a 100 

connection window. 

221 DFMCOS_17 Number of UDP connections with destination IP=current 

source IP and destination port=current destination port in a 100 

connection window. 

222 DFMCOS_18 Number of UDP connections with destination IP=current 

source IP and destination port!=current destination port in a 

100 connection window. 

223 DFMCOS_19 Number of UDP connections with source IP=current source IP 

and destination port=current source port in a 100 connection 

window. 

224 DFMCOS_20 Number of UDP connections with source IP=current source IP 

and destination port!=current source port in a 100 connection 

window. 

225 DFMCOS_21 Number of UDP connections with destination IP=current 

source IP and destination port=current source port in a 100 

connection window. 

226 DFMCOS_22 Number of UDP connections with destination IP=current 

source IP and destination port!=current source port in a 100 

connection window. 

227 DFMCOS_23 Number of TCP connections with SYN packets where source 

IP=current source IP in a 100 connection window. 

228 DFMCOS_24 Number of TCP connections with SYN packets where 

destination IP=current source IP in a 100 connection window. 

229 DFMCOS_25 Number of TCP connections with RST packets where source 

IP=current source IP in a 100 connection window. 

230 DFMCOS_26 Number of TCP connections with RST packets where 

destination IP=current source IP in a 100 connection window. 

231 DFMCOS_27 Number of TCP packets with destination IP=current source IP 

in a 100 connection window. 

232 DFMCOS_28 Number of TCP packets with source IP=current source IP in a 

100 connection window. 

233 DFMCOS_29 Total bytes of TCP packets with destination IP=current source 

IP in a 100 connection window. 

234 DFMCOS_30 Total bytes of TCP packets with source IP=current source IP in 

a 100 connection window. 

235 DFMCOS_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets 

with destination IP=current source IP as the current connection 

in a 100 connection window. 

236 DFMCOS_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets 

with source IP=current source IP as the current connection in a 

100 connection window. 

237 DFMCOS_31 Number of UDP packets with destination IP=current source IP 

in a 100 connection window. 

238 DFMCOS_32 Number of UDP packets with source IP=current source IP in a 

100 connection window. 

239 DFMCOS_33 Total bytes of UDP packets with destination IP=current source 

IP in a 100 connection window. 

240 DFMCOS_34 Total bytes of UDP packets with source IP=current source IP 

in a 100 connection window. 
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241 DFMCOS_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets 

with destination IP=current source IP as the current connection 

in a 100 connection window. 

242 DFMCOS_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets 

with source IP=current source IP as the current connection in a 

100 connection window. 

243 DFMCOS_35 Number of ICMP packets with destination IP=current source 

IP in a 100 connection window. 

244 DFMCOS_36 Number of ICMP packets with source IP=current source IP in a 

100 connection window. 

245 DFMCOS_37 Total bytes of ICMP packets with destination IP=current 

source IP in a 100 connection window. 

246 DFMCOS_38 Total bytes of ICMP packets with source IP=current source IP 

in a 100 connection window. 

247 DFMCOS_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets 

with destination IP=current source IP as the current connection 

in a 100 connection window. 

248 DFMCOS_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets 

with source IP=current source IP as the current connection in a 

100 connection window. 

249 DFMCOS_39 Number of Destination Unreachable (Type 3) ICMP packets 

with destination IP=current source IP in a 100 connection 

window. 

249a DFMCOS_40 Number of Echo Reply (Type 0) ICMP packets with source 

IP=current source IP in a 100 connection window. 

249b DFMCOS_41 Number of TCP (URG) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

250 DFMCOS_42 Number of TCP (ACK) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

251 DFMCOS_43 Number of TCP (PSH) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

252 DFMCOS_44 Number of TCP (RST) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

253 DFMCOS_45 Number of TCP (SYN) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

254 DFMCOS_46 Number of TCP (FIN) packets with destination IP=current 

source IP as the current connection in a 100 connection 

window. 

254a DFMCOS_47 Number of TCP (URG) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

255 DFMCOS_48 Number of TCP (ACK) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

256 DFMCOS_49 Number of TCP (PSH) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

257 DFMCOS_50 Number of TCP (RST) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

258 DFMCOS_51 Number of TCP (SYN) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

259 DFMCOS_52 Number of TCP (FIN) packets with source IP=current source 

IP as the current connection in a 100 connection window. 

260 DFMCOD_1 Number of TCP connections with source IP=current 

destination IP in a 100 connection window. 
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261 DFMCOD_2 Number of UDP connections with source IP=current 

destination IP in a 100 connection window. 

262 DFMCOD_3 Number of ICMP connections with source IP=current 

destination IP in a 100 connection window. 

263 DFMCOD_4 Number of TCP connections with destination IP=current 

destination IP in a 100 connection window. 

264 DFMCOD_5 Number of UDP connections with destination IP=current 

destination IP in a 100 connection window. 

265 DFMCOD_6 Number of ICMP connections with destination IP=current 

destination IP in a 100 connection window. 

266 DFMCOD_7 Number of TCP connections with source IP=current 

destination IP and destination port=current destination port in a 

100 connection window. 

267 DFMCOD_8 Number of TCP connections with source IP=current 

destination IP and destination port!=current destination port in 

a 100 connection window. 

268 DFMCOD_9 Number of TCP connections with destination IP=current 

destination IP and destination port=current destination port in a 

100 connection window. 

269 DFMCOD_10 Number of TCP connections with destination IP=current 

destination IP and destination port!=current destination port in 

a 100 connection window. 

270 DFMCOD_11 Number of TCP connections with source IP=current 

destination IP and destination port=current source port in a 100 

connection window. 

271 DFMCOD_12 Number of TCP connections with source IP=current 

destination IP and destination port!=current source port in a 

100 connection window. 

272 DFMCOD_13 Number of TCP connections with destination IP=current 

destination IP and destination port=current source port in a 100 

connection window. 

273 DFMCOD_14 Number of TCP connections with destination IP=current 

destination IP and destination port!=current source port in a 

100 connection window. 

274 DFMCOD_15 Number of UDP connections with source IP=current 

destination IP and destination port=current destination port in a 

100 connection window. 

275 DFMCOD_16 Number of UDP connections with source IP=current 

destination IP and destination port!=current destination port in 

a 100 connection window. 

276 DFMCOD_17 Number of UDP connections with destination IP=current 

destination IP and destination port=current destination port in a 

100 connection window. 

277 DFMCOD_18 Number of UDP connections with destination IP=current 

destination IP and destination port!=current destination port in 

a 100 connection window. 

278 DFMCOD_19 Number of UDP connections with source IP=current 

destination IP and destination port=current source port in a 100 

connection window. 

279 DFMCOD_20 Number of UDP connections with source IP=current 

destination IP and destination port!=current source port in a 

100 connection window. 

280 DFMCOD_21 Number of UDP connections with destination IP=current 

destination IP and destination port=current source port in a 100 

connection window. 

281 DFMCOD_22 Number of UDP connections with destination IP=current 

destination IP and destination port!=current source port in a 

100 connection window. 
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282 DFMCOD_23 Number of TCP connections with SYN packets where source 

IP=current destination IP in a 100 connection window. 

283 DFMCOD_24 Number of TCP connections with SYN packets where 

destination IP=current destination IP in a 100 connection 

window. 

284 DFMCOD_25 Number of TCP connections with RST packets where source 

IP=current destination IP in a 100 connection window. 

285 DFMCOD_26 Number of TCP connections with RST packets where 

destination IP=current destination IP in a 100 connection 

window. 

286 DFMCOD_27 Number of TCP packets with destination IP=current 

destination IP in a 100 connection window. 

287 DFMCOD_28 Number of TCP packets with source IP=current destination IP 

in a 100 connection window. 

288 DFMCOD_29 Total bytes of TCP packets with destination IP=current 

destination IP in a 100 connection window. 

289 DFMCOD_30 Total bytes of TCP packets with source IP=current destination 

IP in a 100 connection window. 

290 DFMCOD_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 100 connection window. 

291 DFMCOD_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets 

with source IP=current destination IP as the current connection 

in a 100 connection window. 

292 DFMCOD_31 Number of UDP packets with destination IP=current 

destination IP in a 100 connection window. 

293 DFMCOD_32 Number of UDP packets with source IP=current destination IP 

in a 100 connection window. 

294 DFMCOD_33 Total bytes of UDP packets with destination IP=current 

destination IP in a 100 connection window. 

295 DFMCOD_34 Total bytes of UDP packets with source IP=current destination 

IP in a 100 connection window. 

296 DFMCOD_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 100 connection window. 

297 DFMCOD_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets 

with source IP=current destination IP as the current connection 

in a 100 connection window. 

298 DFMCOD_35 Number of ICMP packets with destination IP=current 

destination IP in a 100 connection window. 

299 DFMCOD_36 Number of ICMP packets with source IP=current destination 

IP in a 100 connection window. 

300 DFMCOD_37 Total bytes of ICMP packets with destination IP=current 

destination IP in a 100 connection window. 

301 DFMCOD_38 Total bytes of ICMP packets with source IP=current 

destination IP in a 100 connection window. 

302 DFMCOD_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 100 connection window. 

303 DFMCOD_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets 

with source IP=current destination IP as the current connection 

in a 100 connection window. 

304 DFMCOD_39 Number of Destination Unreachable (Type 3) ICMP packets 

with destination IP=current destination IP in a 100 connection 

window. 

304a DFMCOD_40 Number of Echo Reply (Type 0) ICMP packets with source 

IP=current destination IP in a 100 connection window. 
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304b DFMCOD_41 Number of TCP (URG) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

305 DFMCOD_42 Number of TCP (ACK) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

306 DFMCOD_43 Number of TCP (PSH) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

307 DFMCOD_44 Number of TCP (RST) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

308 DFMCOD_45 Number of TCP (SYN) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

309 DFMCOD_46 Number of TCP (FIN) packets with destination IP=current 

destination IP as the current connection in a 100 connection 

window. 

309a DFMCOD_47 Number of TCP (URG) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

310 DFMCOD_48 Number of TCP (ACK) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

311 DFMCOD_49 Number of TCP (PSH) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

312 DFMCOD_50 Number of TCP (RST) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

313 DFMCOD_51 Number of TCP (SYN) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

314 DFMCOD_52 Number of TCP (FIN) packets with source IP=current 

destination IP as the current connection in a 100 connection 

window. 

315 DFMCG_1 Total number of TCP connections in a 100 connection window. 

316 DFMCG_2 Total number of UDP connections in a 100 connection 

window. 

317 DFMCG_3 Total number of ICMP connections in a 100 connection 

window. 

318 DFMCG_4 Number of TCP connections with source or destination 

port=current destination port in a 100 connection window. 

319 DFMCG_5 Number of TCP connections with source or destination 

port!=current destination port in a 100 connection window. 

320 DFMCG_6 Number of UDP connections with source or destination 

port=current destination port in a 100 connection window. 

321 DFMCG_7 Number of UDP connections with source or destination 

port!=current destination port in a 100 connection window. 

322 DFMCG_8 Total number of exchanged TCP packets in a 100 connection 

window. 

323 DFMCG_9 Total number of exchanged UDP packets in a 100 connection 

window. 

324 DFMCG_10 Total number of exchanged ICMP packets in a 100 connection 

window. 

325 DFMCG_11 Number of TCP connections with destination port=current 

source port in a 100 connection window. 
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326 DFMCG_12 Number of UDP connections with destination port=current 

source port in a 100 connection window. 

327 DFMCG_13 Number of TCP connections with source port=current source 

port in a 100 connection window. 

328 DFMCG_14 Number of UDP connections with source port=current source 

port in a 100 connection window. 

329 DFMCG_15 Number of TCP connections with destination port=current 

destination port in a 100 connection window. 

330 DFMCG_16 Number of UDP connections with destination port=current 

destination port in a 100 connection window. 

331 DFMCG_17 Number of TCP connections with source port=current 

destination port in a 100 connection window. 

332 DFMCG_18 Number of UDP connections with source port=current 

destination port in a 100 connection window. 

332a DFMCG_19 Number of TCP (URG) packets in a 100 connection window. 

333 DFMCG_20 Number of TCP (ACK) packets in a 100 connection window. 

334 DFMCG_21 Number of TCP (PSH) packets in a 100 connection window. 

335 DFMCG_22 Number of TCP (RST) packets in a 100 connection window. 

336 DFMCG_23 Number of TCP (SYN) packets in a 100 connection window. 

337 DFMCG_24 Number of TCP (FIN) packets in a 100 connection window. 

338 DFMCG_25 Number of Destination Unreachable (Type 3) ICMP packets in 

a 100 connection window. 

338a DFMCG_26 Number of Echo Reply (Type 0) ICMP packets in a 100 

connection window. 

338b DFMCG_27 Number of Destination Unreachable (Type 3) ICMP 

connections in a 100 connection window. 

338c DFMCG_28 Number of Echo Reply (Type 0) ICMP connections in a 100 

connection window. 

339 DFMCG_29 Number of TCP connection with SYN packets and destination 

port=current source port in a 100 connection window. 

340 DFMCG_30 Number of TCP connection with SYN packets and source 

port=current source port in a 100 connection window. 

341 DFMCG_31 Number of TCP connection with SYN packets and destination 

port=current destination port in a 100 connection window. 

342 DFMCG_32 Number of TCP connection with SYN packets and source 

port=current destination port in a 100 connection window. 

343 DFMCG_33 Number of TCP connection with RST packets and destination 

port=current source port in a 100 connection window. 

344 DFMCG_34 Number of TCP connection with RST packets and source 

port=current source port in a 100 connection window. 

345 DFMCG_35 Number of TCP connection with RST packets and destination 

port=current destination port in a 100 connection window. 

346 DFMCG_36 Number of TCP connection with RST packets and source 

port=current destination port in a 100 connection window. 

347 DFMCG_37 Total number of TCP connections with SYN packets in a 100 

connection window. 

348 DFMCG_38 Total number of TCP connections with RST packets in a 100 

connection window. 
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No. Feature Description 
349 DFMT_totalConnections Total number of connections in a 5 second window. 

350 DFMT_same_src_hosts_count Number of connections with the same source host as a current 

connection in a 5 second window. 

351 DFMT_diff_src_hosts_count Number of connections with a different source host to the 

current connection in a 5 second window. 

352 DFMT_same_dst_hosts_count Number of connections with the same destination host as a 

current connection in a 5 second window. 

353 DFMT_diff_dst_hosts_count Number of connections with a different destination host to the 

current connection in a 5 second window. 

354 DFMT_same_srv_count Number of connections with the same service as a current 

connection in a 5 second window. 

355 DFMT_diff_srv_count Number of connections with a different service to the current 

connection in a 5 second window. 

356 DFMT_same_src_hosts_PCT Percentage of connections with the same source host as a 

current connection in a 5 second window. 

357 DFMT_diff_src_hosts_PCT Percentage of connections with a different source host to the 

current connection in a 5 second window. 

358 DFMT_same_dst_hosts_PCT Percentage of connections with the same destination host as a 

current connection in a 5 second window. 

359 DFMT_diff_dst_hosts_PCT Percentage of connections with a different destination host to 

the current connection in a 5 second window. 

360 DFMT_same_srv_PCT Percentage of connections with the same service as a current 

connection in a 5 second window. 

361 DFMT_diff_srv_PCT Percentage of connections with a different service to the 

current connection in a 5 second window. 

362 DFMTB_1 Number of TCP connections between the same hosts as a 

current connection in a 5 second window. 

363 DFMTB_2 Number of UDP connections between the same hosts as a 

current connection in a 5 second window. 

364 DFMTB_3 Number of ICMP connections between the same hosts as a 

current connection in a 5 second window. 

365 DFMTB_4 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

source port as the current connection in a 5 second window. 

366 DFMTB_5 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

source port as the current connection in a 5 second window. 

367 DFMTB_6 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

destination port as the current connection in a 5 second 

window. 

368 DFMTB_7 Number of TCP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

destination port as the current connection in a 5 second 

window. 

369 DFMTB_8 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current source port as the current connection in a 5 

second window. 

370 DFMTB_9 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 
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port!=current source port as the current connection in a 5 

second window. 

371 DFMTB_10 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current destination port as the current connection in a 5 

second window. 

372 DFMTB_11 Number of TCP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current destination port as the current connection in a 5 

second window. 

372a DFMTB_12 Number of UDP connections with source IP=current source 

IP, destination IP=current destination IP and source 

port=current source port as the current connection in a 5 

second window. 

373 DFMTB_13 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

source port as the current connection in a 5 second window. 

374 DFMTB_14 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port=current 

destination port as the current connection in a 5 second 

window. 

375 DFMTB_15 Number of UDP connections with source IP=current source IP, 

destination IP=current destination IP and source port!=current 

destination port as the current connection in a 5 second 

window. 

375a DFMTB_16 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current source port as the current connection in a 5 

second window. 

376 DFMTB_17 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current source port as the current connection in a 5 

second window. 

376a DFMTB_18 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port=current destination port as the current connection in a 5 

second window. 

377 DFMTB_19 Number of UDP connections with source IP=current 

destination IP, destination IP=current source IP and source 

port!=current destination port as the current connection in a 5 

second window. 

378 DFMTB_20 Number of TCP packets with source IP=current destination IP 

and destination IP=current source IP as the current connection 

in a 5 second window. 

379 DFMTB_21 Number of TCP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 5 second window. 

380 DFMTB_22 Total TCP bytes of packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 5 second window. 

381 DFMTB_23 Total TCP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 5 second window. 

382 DFMTB_23a Average (DFMCB_22/DFMCB_20) TCP bytes of packets with 

source IP=current destination IP and destination IP=current 

source IP as the current connection in a 5 second window. 
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383 DFMTB_23b Average (DFMCB_23/DFMCB_21) TCP bytes of packets with 

source IP=current source IP and destination IP=current 

destination IP as the current connection in a 5 second window. 

384 DFMTB_24 Number of UDP packets with source IP=current destination IP 

and destination IP=current source IP as the current connection 

in a 5 second window. 

385 DFMTB_25 Number of UDP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 5 second window. 

386 DFMTB_26 Total UDP bytes of packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 5 second window. 

387 DFMTB_27 Total UDP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 5 second window. 

388 DFMTB_27a Average (DFMCB_26/DFMCB_24) UDP bytes of packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 5 second 

window. 

389 DFMTB_27b Average (DFMCB_27/DFMCB_25) UDP bytes of packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 5 second window. 

390 DFMTB_28 Number of ICMP packets with source IP=current destination 

IP and destination IP=current source IP as the current 

connection in a 5 second window. 

391 DFMTB_29 Number of ICMP packets with source IP=current source IP and 

destination IP=current destination IP as the current connection 

in a 5 second window. 

392 DFMTB_30 Total ICMP bytes of packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

393 DFMTB_31 Total ICMP bytes of packets with source IP=current source IP 

and destination IP=current destination IP as the current 

connection in a 5 second window. 

394 DFMTB_31a Average (DFMCB_30/DFMCB_28) ICMP bytes of packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 5 second 

window. 

395 DFMTB_31b Average (DFMCB_31/DFMCB_29) ICMP bytes of packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 5 second window. 

395a DFMTB_32 Number of TCP (URG) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 

396 DFMTB_33 Number of TCP (ACK) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 

397 DFMTB_34 Number of TCP (PSH) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 

398 DFMTB_35 Number of TCP (RST) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 

399 DFMTB_36 Number of TCP (SYN) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 
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400 DFMTB_37 Number of TCP (FIN) packets with source IP=current source 

IP and destination IP=current destination IP as the current 

connection in a 5 second window. 

400a DFMTB_38 Number of TCP (URG) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

401 DFMTB_39 Number of TCP (ACK) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

402 DFMTB_40 Number of TCP (PSH) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

403 DFMTB_41 Number of TCP (RST) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

404 DFMTB_42 Number of TCP (SYN) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

405 DFMTB_43 Number of TCP (FIN) packets with source IP=current 

destination IP and destination IP=current source IP as the 

current connection in a 5 second window. 

405a DFMTB_44 Number of Echo (type 8) ICMP packets with source 

IP=current source IP and destination IP=current destination 

IP as the current connection in a 5 second window. 

405b DFMTB_45 Number of Echo (type 8) ICMP packets with source 

IP=current destination IP and destination IP=current source 

IP as the current connection in a 5 second window. 

405c DFMTB_46 Number of Destination Unreachable (type 3) ICMP packets 

with source IP=current source IP and destination IP=current 

destination IP as the current connection in a 5 second window. 

405d DFMTB_47 Number of Destination Unreachable (type 3) ICMP packets 

with source IP=current destination IP and destination 

IP=current source IP as the current connection in a 5 second 

window. 

406 DFMTOS_1 Number of TCP connections with source IP=current source IP 

in a 5 second window. 

407 DFMTOS_2 Number of UDP connections with source IP=current source IP 

in a 5 second window. 

408 DFMTOS_3 Number of ICMP connections with source IP=current source 

IP in a 5 second window. 

409 DFMTOS_4 Number of TCP connections with destination IP=current 

source IP in a 5 second window. 

410 DFMTOS_5 Number of UDP connections with destination IP=current 

source IP in a 5 second window. 

411 DFMTOS_6 Number of ICMP connections with destination IP=current 

source IP in a 5 second window. 

412 DFMTOS_7 Number of TCP connections with source IP=current source IP 

and destination port=current destination port in a 5 second 

window. 

413 DFMTOS_8 Number of TCP connections with source IP=current source IP 

and destination port!=current destination port in a 5 second 

window. 

414 DFMTOS_9 Number of TCP connections with destination IP=current 

source IP and destination port=current destination port in a 5 

second window. 

415 DFMTOS_10 Number of TCP connections with destination IP=current 

source IP and destination port!=current destination port in a 5 

second window. 
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416 DFMTOS_11 Number of TCP connections with source IP=current source IP 

and destination port=current source port in a 5 second window. 

417 DFMTOS_12 Number of TCP connections with source IP=current source IP 

and destination port!=current source port in a 5 second 

window. 

418 DFMTOS_13 Number of TCP connections with destination IP=current 

source IP and destination port=current source port in a 5 

second window. 

419 DFMTOS_14 Number of TCP connections with destination IP=current 

source IP and destination port!=current source port in a 5 

second window. 

420 DFMTOS_15 Number of UDP connections with source IP=current source IP 

and destination port=current destination port in a 5 second 

window. 

421 DFMTOS_16 Number of UDP connections with source IP=current source IP 

and destination port!=current destination port in a 5 second 

window. 

422 DFMTOS_17 Number of UDP connections with destination IP=current 

source IP and destination port=current destination port in a 5 

second window. 

423 DFMTOS_18 Number of UDP connections with destination IP=current 

source IP and destination port!=current destination port in a 5 

second window. 

424 DFMTOS_19 Number of UDP connections with source IP=current source IP 

and destination port=current source port in a 5 second window. 

425 DFMTOS_20 Number of UDP connections with source IP=current source IP 

and destination port!=current source port in a 5 second 

window. 

426 DFMTOS_21 Number of UDP connections with destination IP=current 

source IP and destination port=current source port in a 5 

second window. 

427 DFMTOS_22 Number of UDP connections with destination IP=current 

source IP and destination port!=current source port in a 5 

second window. 

428 DFMTOS_23 Number of TCP connections with SYN packets where source 

IP=current source IP in a 5 second window. 

429 DFMTOS_24 Number of TCP connections with SYN packets where 

destination IP=current source IP in a 5 second window. 

430 DFMTOS_25 Number of TCP connections with RST packets where source 

IP=current source IP in a 5 second window. 

431 DFMTOS_26 Number of TCP connections with RST packets where 

destination IP=current source IP in a 5 second window. 

432 DFMTOS_27 Number of TCP packets with destination IP=current source IP 

in a 5 second window. 

433 DFMTOS_28 Number of TCP packets with source IP=current source IP in a 

5 second window. 

434 DFMTOS_29 Total bytes of TCP packets with destination IP=current source 

IP in a 5 second window. 

435 DFMTOS_30 Total bytes of TCP packets with source IP=current source IP in 

a 5 second window. 

436 DFMTOS_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets 

with destination IP=current source IP as the current connection 

in a 5 second window. 

437 DFMTOS_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets 

with source IP=current source IP as the current connection in a 

5 second window. 

438 DFMTOS_31 Number of UDP packets with destination IP=current source IP 

in a 5 second window. 
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439 DFMTOS_32 Number of UDP packets with source IP=current source IP in a 

5 second window. 

440 DFMTOS_33 Total bytes of UDP packets with destination IP=current source 

IP in a 5 second window. 

441 DFMTOS_34 Total bytes of UDP packets with source IP=current source IP 

in a 5 second window. 

442 DFMTOS_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets 

with destination IP=current source IP as the current connection 

in a 5 second window. 

443 DFMTOS_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets 

with source IP=current source IP as the current connection in a 

5 second window. 

444 DFMTOS_35 Number of ICMP packets with destination IP=current source 

IP in a 5 second window. 

445 DFMTOS_36 Number of ICMP packets with source IP=current source IP in a 

5 second window. 

446 DFMTOS_37 Total bytes of ICMP packets with destination IP=current 

source IP in a 5 second window. 

447 DFMTOS_38 Total bytes of ICMP packets with source IP=current source IP 

in a 5 second window. 

448 DFMTOS_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets 

with destination IP=current source IP as the current connection 

in a 5 second window. 

449 DFMTOS_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets 

with source IP=current source IP as the current connection in a 

5 second window. 

450 DFMTOS_39 Number of Destination Unreachable (Type 3) ICMP packets 

with destination IP=current source IP in a 5 second window. 

450a DFMTOS_40 Number of Echo Reply (Type 0) ICMP packets with source 

IP=current source IP in a 5 second window. 

450b DFMTOS_41 Number of TCP (URG) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

451 DFMTOS_42 Number of TCP (ACK) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

452 DFMTOS_43 Number of TCP (PSH) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

453 DFMTOS_44 Number of TCP (RST) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

454 DFMTOS_45 Number of TCP (SYN) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

455 DFMTOS_46 Number of TCP (FIN) packets with destination IP=current 

source IP as the current connection in a 5 second window. 

455a DFMTOS_47 Number of TCP (URG) packets with source IP=current source 

IP as the current connection in a 5 second window. 

456 DFMTOS_48 Number of TCP (ACK) packets with source IP=current source 

IP as the current connection in a 5 second window. 

457 DFMTOS_49 Number of TCP (PSH) packets with source IP=current source 

IP as the current connection in a 5 second window. 

458 DFMTOS_50 Number of TCP (RST) packets with source IP=current source 

IP as the current connection in a 5 second window. 

459 DFMTOS_51 Number of TCP (SYN) packets with source IP=current source 

IP as the current connection in a 5 second window. 

460 DFMTOS_52 Number of TCP (FIN) packets with source IP=current source 

IP as the current connection in a 5 second window. 

461 DFMTOD_1 Number of TCP connections with source IP=current 

destination IP in a 5 second window. 

462 DFMTOD_2 Number of UDP connections with source IP=current 

destination IP in a 5 second window. 
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463 DFMTOD_3 Number of ICMP connections with source IP=current 

destination IP in a 5 second window. 

464 DFMTOD_4 Number of TCP connections with destination IP=current 

destination IP in a 5 second window. 

465 DFMTOD_5 Number of UDP connections with destination IP=current 

destination IP in a 5 second window. 

466 DFMTOD_6 Number of ICMP connections with destination IP=current 

destination IP in a 5 second window. 

467 DFMTOD_7 Number of TCP connections with source IP=current 

destination IP and destination port=current destination port in a 

5 second window. 

468 DFMTOD_8 Number of TCP connections with source IP=current 

destination IP and destination port!=current destination port in 

a 5 second window. 

469 DFMTOD_9 Number of TCP connections with destination IP=current 

destination IP and destination port=current destination port in a 

5 second window. 

470 DFMTOD_10 Number of TCP connections with destination IP=current 

destination IP and destination port!=current destination port in 

a 5 second window. 

471 DFMTOD_11 Number of TCP connections with source IP=current 

destination IP and destination port=current source port in a 5 

second window. 

472 DFMTOD_12 Number of TCP connections with source IP=current 

destination IP and destination port!=current source port in a 5 

second window. 

473 DFMTOD_13 Number of TCP connections with destination IP=current 

destination IP and destination port=current source port in a 5 

second window. 

474 DFMTOD_14 Number of TCP connections with destination IP=current 

destination IP and destination port!=current source port in a 5 

second window. 

475 DFMTOD_15 Number of UDP connections with source IP=current 

destination IP and destination port=current destination port in a 

5 second window. 

476 DFMTOD_16 Number of UDP connections with source IP=current 

destination IP and destination port!=current destination port in 

a 5 second window. 

477 DFMTOD_17 Number of UDP connections with destination IP=current 

destination IP and destination port=current destination port in a 

5 second window. 

478 DFMTOD_18 Number of UDP connections with destination IP=current 

destination IP and destination port!=current destination port in 

a 5 second window. 

479 DFMTOD_19 Number of UDP connections with source IP=current 

destination IP and destination port=current source port in a 5 

second window. 

480 DFMTOD_20 Number of UDP connections with source IP=current 

destination IP and destination port!=current source port in a 5 

second window. 

481 DFMTOD_21 Number of UDP connections with destination IP=current 

destination IP and destination port=current source port in a 5 

second window. 

482 DFMTOD_22 Number of UDP connections with destination IP=current 

destination IP and destination port!=current source port in a 5 

second window. 

483 DFMTOD_23 Number of TCP connections with SYN packets where source 

IP=current destination IP in a 5 second window. 
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484 DFMTOD_24 Number of TCP connections with SYN packets where 

destination IP=current destination IP in a 5 second window. 

485 DFMTOD_25 Number of TCP connections with RST packets where source 

IP=current destination IP in a 5 second window. 

486 DFMTOD_26 Number of TCP connections with RST packets where 

destination IP=current destination IP in a 5 second window. 

487 DFMTOD_27 Number of TCP packets with destination IP=current 

destination IP in a 5 second window. 

488 DFMTOD_28 Number of TCP packets with source IP=current destination IP 

in a 5 second window. 

489 DFMTOD_29 Total bytes of TCP packets with destination IP=current 

destination IP in a 5 second window. 

490 DFMTOD_30 Total bytes of TCP packets with source IP=current destination 

IP in a 5 second window. 

491 DFMTOD_30a Average (DFMCOS_29/DFMCOS_27) TCP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 5 second window. 

492 DFMTOD_30b Average (DFMCOS_30/DFMCOS_28) TCP bytes of packets 

with source IP=current destination IP as the current connection 

in a 5 second window. 

493 DFMTOD_31 Number of UDP packets with destination IP=current 

destination IP in a 5 second window. 

494 DFMTOD_32 Number of UDP packets with source IP=current destination IP 

in a 5 second window. 

495 DFMTOD_33 Total bytes of UDP packets with destination IP=current 

destination IP in a 5 second window. 

496 DFMTOD_34 Total bytes of UDP packets with source IP=current destination 

IP in a 5 second window. 

497 DFMTOD_34a Average (DFMCOS_33/DFMCOS_31) UDP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 5 second window. 

498 DFMTOD_34b Average (DFMCOS_34/DFMCOS_32) UDP bytes of packets 

with source IP=current destination IP as the current connection 

in a 5 second window. 

499 DFMTOD_35 Number of ICMP packets with destination IP=current 

destination IP in a 5 second window. 

500 DFMTOD_36 Number of ICMP packets with source IP=current destination 

IP in a 5 second window. 

501 DFMTOD_37 Total bytes of ICMP packets with destination IP=current 

destination IP in a 5 second window. 

502 DFMTOD_38 Total bytes of ICMP packets with source IP=current 

destination IP in a 5 second window. 

503 DFMTOD_38a Average (DFMCOS_37/DFMCOS_35) ICMP bytes of packets 

with destination IP=current destination IP as the current 

connection in a 5 second window. 

504 DFMTOD_38b Average (DFMCOS_38/DFMCOS_36) ICMP bytes of packets 

with source IP=current destination IP as the current connection 

in a 5 second window. 

505 DFMTOD_39 Number of Destination Unreachable (Type 3) ICMP packets 

with destination IP=current destination IP in a 5 second 

window. 

505a DFMTOD_40 Number of Echo Reply (Type 0) ICMP packets with source 

IP=current destination IP in a 5 second window. 

505b DFMTOD_41 Number of TCP (URG) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 

506 DFMTOD_42 Number of TCP (ACK) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 
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507 DFMTOD_43 Number of TCP (PSH) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 

508 DFMTOD_44 Number of TCP (RST) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 

509 DFMTOD_45 Number of TCP (SYN) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 

510 DFMTOD_46 Number of TCP (FIN) packets with destination IP=current 

destination IP as the current connection in a 5 second window. 

510a DFMTOD_47 Number of TCP (URG) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

511 DFMTOD_48 Number of TCP (ACK) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

512 DFMTOD_49 Number of TCP (PSH) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

513 DFMTOD_50 Number of TCP (RST) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

514 DFMTOD_51 Number of TCP (SYN) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

515 DFMTOD_52 Number of TCP (FIN) packets with source IP=current 

destination IP as the current connection in a 5 second window. 

516 DFMTG_1 Total number of TCP connections in a 5 second window. 

517 DFMTG_2 Total number of UDP connections in a 5 second window. 

518 DFMTG_3 Total number of ICMP connections in a 5 second window. 

519 DFMTG_4 Number of TCP connections with source or destination 

port=current destination port in a 5 second window. 

520 DFMTG_5 Number of TCP connections with source or destination 

port!=current destination port in a 5 second window. 

521 DFMTG_6 Number of UDP connections with source or destination 

port=current destination port in a 5 second window. 

522 DFMTG_7 Number of UDP connections with source or destination 

port!=current destination port in a 5 second window. 

523 DFMTG_8 Total number of exchanged TCP packets in a 5 second 

window. 

524 DFMTG_9 Total number of exchanged UDP packets in a 5 second 

window. 

525 DFMTG_10 Total number of exchanged ICMP packets in a 5 second 

window. 

526 DFMTG_11 Number of TCP connections with destination port=current 

source port in a 5 second window. 

527 DFMTG_12 Number of UDP connections with destination port=current 

source port in a 5 second window. 

528 DFMTG_13 Number of TCP connections with source port=current source 

port in a 5 second window. 

529 DFMTG_14 Number of UDP connections with source port=current source 

port in a 5 second window. 

530 DFMTG_15 Number of TCP connections with destination port=current 

destination port in a 5 second window. 

531 DFMTG_16 Number of UDP connections with destination port=current 

destination port in a 5 second window. 

532 DFMTG_17 Number of TCP connections with source port=current 

destination port in a 5 second window. 

533 DFMTG_18 Number of UDP connections with source port=current 

destination port in a 5 second window. 

533a DFMTG_19 Number of TCP (URG) packets in a 5 second window. 

534 DFMTG_20 Number of TCP (ACK) packets in a 5 second window. 

535 DFMTG_21 Number of TCP (PSH) packets in a 5 second window. 
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536 DFMTG_22 Number of TCP (RST) packets in a 5 second window. 

537 DFMTG_23 Number of TCP (SYN) packets in a 5 second window. 

538 DFMTG_24 Number of TCP (FIN) packets in a 5 second window. 

539 DFMTG_25 Number of Destination Unreachable (Type 3) ICMP packets in 

a 5 second window. 

539a DFMTG_26 Number of Echo Reply (Type 0) ICMP packets in a 5 second 

window. 

539b DFMTG_27 Number of Destination Unreachable (Type 3) ICMP 

connections in a 5 second window. 

539c DFMTG_28 Number of Echo Reply (Type 0) ICMP connections in a 5 

second window. 

540 DFMTG_29 Number of TCP connection with SYN packets and destination 

port=current source port in a 5 second window. 

541 DFMTG_30 Number of TCP connection with SYN packets and source 

port=current source port in a 5 second window. 

542 DFMTG_31 Number of TCP connection with SYN packets and destination 

port=current destination port in a 5 second window. 

543 DFMTG_32 Number of TCP connection with SYN packets and source 

port=current destination port in a 5 second window. 

544 DFMTG_33 Number of TCP connection with RST packets and destination 

port=current source port in a 5 second window. 

545 DFMTG_34 Number of TCP connection with RST packets and source 

port=current source port in a 5 second window. 

546 DFMTG_35 Number of TCP connection with RST packets and destination 

port=current destination port in a 5 second window. 

547 DFMTG_36 Number of TCP connection with RST packets and source 

port=current destination port in a 5 second window. 

548 DFMTG_37 Total number of TCP connections with SYN packets in a 5 

second window. 

549 DFMTG_38 Total number of TCP connections with RST packets in a 5 

second window. 

 

 

D.4. Class Feature 

 

No. Feature Description 
550 class Connection label {Normal, Attack} 
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