2,863 research outputs found

    SenseLE:Exploiting spatial locality in decentralized sensing environments

    Get PDF
    Generally, smart devices, such as smartphones, smartwatches, or fitness trackers, communicate with each other indirectly, via cloud data centers. Sharing sensor data with a cloud data center as intermediary invokes transmission methods with high battery costs, such as 4G LTE or WiFi. By sharing sensor information locally and without intermediaries, we can use other transmission methods with low energy cost, such as Bluetooth or BLE. In this paper, we introduce Sense Low Energy (SenseLE), a decentralized sensing framework which exploits the spatial locality of nearby sensors to save energy in Internet-of-Things (IoT) environments. We demonstrate the usability of SenseLE by building a real-life application for estimating waiting times at queues. Furthermore, we evaluate the performance and resource utilization of our SenseLE Android implementation for different sensing scenarios. Our empirical evaluation shows that by exploiting spatial locality, SenseLE is able to reduce application response times (latency) by up to 74% and energy consumption by up to 56%

    Lamred : location-aware and privacy preserving multi-layer resource discovery for IoT

    Get PDF
    The resources in the Internet of Things (IoT) network are distributed among different parts of the network. Considering huge number of IoT resources, the task of discovering them is challenging. While registering them in a centralized server such as a cloud data center is one possible solution, but due to billions of IoT resources and their limited computation power, the centralized approach leads to some efficiency and security issues. In this paper we proposed a location aware and decentralized multi layer model of resource discovery (LaMRD) in IoT. It allows a resource to be registered publicly or privately, and to be discovered in a decentralized scheme in the IoT network. LaMRD is based on structured peer-to-peer (p2p) scheme and follows the general system trend of fog computing. Our proposed model utilizes Distributed Hash Table (DHT) technology to create a p2p scheme of communication among fog nodes. The resources are registered in LaMRD based on their locations which results in a low added overhead in the registration and discovery processes. LaMRD generates a single overlay and it can be generated without specific organizing entity or location based devices. LaMRD guarantees some important security properties and it showed a lower latency comparing to the cloud based and decentralized resource discovery

    A self-integration testbed for decentralized socio-technical systems

    Get PDF
    The Internet of Things (IoT) comes along with new challenges for experimenting, testing, and operating decentralized socio-technical systems at large-scale. In such systems, autonomous agents interact locally with their users, and remotely with other agents to make intelligent collective choices. Via these interactions they self-regulate the consumption and production of distributed (common) resources, e.g., self-management of traffic flows and power demand in Smart Cities. While such complex systems are often deployed and operated using centralized computing infrastructures, the socio-technical nature of these decentralized systems requires new value-sensitive design paradigms; empowering trust, transparency, and alignment with citizens’ social values, such as privacy preservation, autonomy, and fairness among citizens’ choices. Currently, instruments and tools to study such systems and guide the prototyping process from simulation, to live deployment, and ultimately to a robust operation of a high Technology Readiness Level (TRL) are missing, or not practical in this distributed socio-technical context. This paper bridges this gap by introducing a novel testbed architecture for decentralized socio-technical systems running on IoT. This new architecture is designed for a seamless reusability of (i) application-independent decentralized services by an IoT application, and (ii) different IoT applications by the same decentralized service. This dual self-integration promises IoT applications that are simpler to prototype, and can interoperate with decentralized services during runtime to self-integrate more complex functionality, e.g., data analytics, distributed artificial intelligence. Additionally, such integration provides stronger validation of IoT applications, and improves resource utilization, as computational resources are shared, thus cutting down deployment and operational costs. Pressure and crash tests during continuous operations of several weeks, with more than 80K network joining and leaving of agents, 2.4M parameter changes, and 100M communicated messages, confirm the robustness and practicality of the testbed architecture. This work promises new pathways for managing the prototyping and deployment complexity of decentralized socio-technical systems running on IoT, whose complexity has so far hindered the adoption of value-sensitive self-management approaches in Smart Cities

    A NOVEL FRAMEWORK FOR SOCIAL INTERNET OF THINGS: LEVERAGING THE FRIENDSHIPS AND THE SERVICES EXCHANGED BETWEEN SMART DEVICES

    Get PDF
    As humans, we tackle many problems in complex societies and manage the complexities of networked social systems. Cognition and sociability are two vital human capabilities that improve social life and complex social interactions. Adding these features to smart devices makes them capable of managing complex and networked Internet of Things (IoT) settings. Cognitive and social devices can improve their relationships and connections with other devices and people to better serve human needs. Nowadays, researchers are investigating two future generations of IoT: social IoT (SIoT) and cognitive IoT (CIoT). This study develops a new framework for IoT, called CSIoT, by using complexity science concepts and by integrating social and cognitive IoT concepts. This framework uses a new mechanism to leverage the friendships between devices to address service management, privacy, and security. The framework addresses network navigability, resilience, and heterogeneity between devices in IoT settings. This study uses a new simulation tool for evaluating the new CSIoT framework and evaluates the privacy-preserving ability of CSIoT using the new simulation tool. To address different CSIoT security and privacy issues, this study also proposes a blockchain-based CSIoT. The evaluation results show that CSIoT can effectively preserve the privacy and the blockchain-based CSIoT performs effectively in addressing different privacy and security issues

    A reference architecture for cloud-edge meta-operating systems enabling cross-domain, data-intensive, ML-assisted applications: architectural overview and key concepts

    Get PDF
    Future data-intensive intelligent applications are required to traverse across the cloudto-edge-to-IoT continuum, where cloud and edge resources elegantly coordinate, alongside sensor networks and data. However, current technical solutions can only partially handle the data outburst associated with the IoT proliferation experienced in recent years, mainly due to their hierarchical architectures. In this context, this paper presents a reference architecture of a meta-operating system (RAMOS), targeted to enable a dynamic, distributed and trusted continuum which will be capable of facilitating the next-generation smart applications at the edge. RAMOS is domain-agnostic, capable of supporting heterogeneous devices in various network environments. Furthermore, the proposed architecture possesses the ability to place the data at the origin in a secure and trusted manner. Based on a layered structure, the building blocks of RAMOS are thoroughly described, and the interconnection and coordination between them is fully presented. Furthermore, illustration of how the proposed reference architecture and its characteristics could fit in potential key industrial and societal applications, which in the future will require more power at the edge, is provided in five practical scenarios, focusing on the distributed intelligence and privacy preservation principles promoted by RAMOS, as well as the concept of environmental footprint minimization. Finally, the business potential of an open edge ecosystem and the societal impacts of climate net neutrality are also illustrated.For UPC authors: this research was funded by the Spanish Ministry of Science, Innovation and Universities and FEDER, grant number PID2021-124463OB-100.Peer ReviewedPostprint (published version

    Towards a Cognitive Compute Continuum: An Architecture for Ad-Hoc Self-Managed Swarms

    Get PDF
    In this paper we introduce our vision of a Cognitive Computing Continuum to address the changing IT service provisioning towards a distributed, opportunistic, self-managed collaboration between heterogeneous devices outside the traditional data center boundaries. The focal point of this continuum are cognitive devices, which have to make decisions autonomously using their on-board computation and storage capacity based on information sensed from their environment. Such devices are moving and cannot rely on fixed infrastructure elements, but instead realise on-the-fly networking and thus frequently join and leave temporal swarms. All this creates novel demands for the underlying architecture and resource management, which must bridge the gap from edge to cloud environments, while keeping the QoS parameters within required boundaries. The paper presents an initial architecture and a resource management framework for the implementation of this type of IT service provisioning.Comment: 8 pages, CCGrid 2021 Cloud2Things Worksho

    THREE TEMPORAL PERSPECTIVES ON DECENTRALIZED LOCATION-AWARE COMPUTING: PAST, PRESENT, FUTURE

    Get PDF
    Durant les quatre derniĂšres dĂ©cennies, la miniaturisation a permis la diffusion Ă  large Ă©chelle des ordinateurs, les rendant omniprĂ©sents. Aujourd’hui, le nombre d’objets connectĂ©s Ă  Internet ne cesse de croitre et cette tendance n’a pas l’air de ralentir. Ces objets, qui peuvent ĂȘtre des tĂ©lĂ©phones mobiles, des vĂ©hicules ou des senseurs, gĂ©nĂšrent de trĂšs grands volumes de donnĂ©es qui sont presque toujours associĂ©s Ă  un contexte spatiotemporel. Le volume de ces donnĂ©es est souvent si grand que leur traitement requiert la crĂ©ation de systĂšme distribuĂ©s qui impliquent la coopĂ©ration de plusieurs ordinateurs. La capacitĂ© de traiter ces donnĂ©es revĂȘt une importance sociĂ©tale. Par exemple: les donnĂ©es collectĂ©es lors de trajets en voiture permettent aujourd’hui d’éviter les em-bouteillages ou de partager son vĂ©hicule. Un autre exemple: dans un avenir proche, les donnĂ©es collectĂ©es Ă  l’aide de gyroscopes capables de dĂ©tecter les trous dans la chaussĂ©e permettront de mieux planifier les interventions de maintenance Ă  effectuer sur le rĂ©seau routier. Les domaines d’applications sont par consĂ©quent nombreux, de mĂȘme que les problĂšmes qui y sont associĂ©s. Les articles qui composent cette thĂšse traitent de systĂšmes qui partagent deux caractĂ©ristiques clĂ©s: un contexte spatiotemporel et une architecture dĂ©centralisĂ©e. De plus, les systĂšmes dĂ©crits dans ces articles s’articulent autours de trois axes temporels: le prĂ©sent, le passĂ©, et le futur. Les systĂšmes axĂ©s sur le prĂ©sent permettent Ă  un trĂšs grand nombre d’objets connectĂ©s de communiquer en fonction d’un contexte spatial avec des temps de rĂ©ponses proche du temps rĂ©el. Nos contributions dans ce domaine permettent Ă  ce type de systĂšme dĂ©centralisĂ© de s’adapter au volume de donnĂ©e Ă  traiter en s’étendant sur du matĂ©riel bon marchĂ©. Les systĂšmes axĂ©s sur le passĂ© ont pour but de faciliter l’accĂšs a de trĂšs grands volumes donnĂ©es spatiotemporelles collectĂ©es par des objets connectĂ©s. En d’autres termes, il s’agit d’indexer des trajectoires et d’exploiter ces indexes. Nos contributions dans ce domaine permettent de traiter des jeux de trajectoires particuliĂšrement denses, ce qui n’avait pas Ă©tĂ© fait auparavant. Enfin, les systĂšmes axĂ©s sur le futur utilisent les trajectoires passĂ©es pour prĂ©dire les trajectoires que des objets connectĂ©s suivront dans l’avenir. Nos contributions permettent de prĂ©dire les trajectoires suivies par des objets connectĂ©s avec une granularitĂ© jusque lĂ  inĂ©galĂ©e. Bien qu’impliquant des domaines diffĂ©rents, ces contributions s’articulent autour de dĂ©nominateurs communs des systĂšmes sous-jacents, ouvrant la possibilitĂ© de pouvoir traiter ces problĂšmes avec plus de gĂ©nĂ©ricitĂ© dans un avenir proche. -- During the past four decades, due to miniaturization computing devices have become ubiquitous and pervasive. Today, the number of objects connected to the Internet is in- creasing at a rapid pace and this trend does not seem to be slowing down. These objects, which can be smartphones, vehicles, or any kind of sensors, generate large amounts of data that are almost always associated with a spatio-temporal context. The amount of this data is often so large that their processing requires the creation of a distributed system, which involves the cooperation of several computers. The ability to process these data is important for society. For example: the data collected during car journeys already makes it possible to avoid traffic jams or to know about the need to organize a carpool. Another example: in the near future, the maintenance interventions to be carried out on the road network will be planned with data collected using gyroscopes that detect potholes. The application domains are therefore numerous, as are the prob- lems associated with them. The articles that make up this thesis deal with systems that share two key characteristics: a spatio-temporal context and a decentralized architec- ture. In addition, the systems described in these articles revolve around three temporal perspectives: the present, the past, and the future. Systems associated with the present perspective enable a very large number of connected objects to communicate in near real-time, according to a spatial context. Our contributions in this area enable this type of decentralized system to be scaled-out on commodity hardware, i.e., to adapt as the volume of data that arrives in the system increases. Systems associated with the past perspective, often referred to as trajectory indexes, are intended for the access to the large volume of spatio-temporal data collected by connected objects. Our contributions in this area makes it possible to handle particularly dense trajectory datasets, a problem that has not been addressed previously. Finally, systems associated with the future per- spective rely on past trajectories to predict the trajectories that the connected objects will follow. Our contributions predict the trajectories followed by connected objects with a previously unmet granularity. Although involving different domains, these con- tributions are structured around the common denominators of the underlying systems, which opens the possibility of being able to deal with these problems more generically in the near future
    • 

    corecore