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Abstract: Future data-intensive intelligent applications are required to traverse across the cloud-
to-edge-to-IoT continuum, where cloud and edge resources elegantly coordinate, alongside sensor
networks and data. However, current technical solutions can only partially handle the data outburst
associated with the IoT proliferation experienced in recent years, mainly due to their hierarchical
architectures. In this context, this paper presents a reference architecture of a meta-operating system
(RAMOS), targeted to enable a dynamic, distributed and trusted continuum which will be capable of
facilitating the next-generation smart applications at the edge. RAMOS is domain-agnostic, capable
of supporting heterogeneous devices in various network environments. Furthermore, the proposed
architecture possesses the ability to place the data at the origin in a secure and trusted manner.
Based on a layered structure, the building blocks of RAMOS are thoroughly described, and the
interconnection and coordination between them is fully presented. Furthermore, illustration of
how the proposed reference architecture and its characteristics could fit in potential key industrial
and societal applications, which in the future will require more power at the edge, is provided in
five practical scenarios, focusing on the distributed intelligence and privacy preservation principles
promoted by RAMOS, as well as the concept of environmental footprint minimization. Finally, the
business potential of an open edge ecosystem and the societal impacts of climate net neutrality are
also illustrated.

Keywords: edge computing; reference architecture; meta-operating system; decentralized intelligence;
IoT–edge–cloud continuum; federated learning; swarm learning

1. Introduction

Over the last years, the expeditious spread of Internet of Things (IoT) technology has
opened numerous opportunities to develop intelligent and big data applications, fueled
by recent technological advances in the fields of machine learning (ML) [1] and cloud
computing [2–4]. These data-intensive applications are required to operate across the cloud-
to-edge continuum, where cloud, edge, core network, radio-access network, sensors and
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data itself coexist and collaborate [5–7]. While today numerous proprietary and open source
technical tools support IoT-to-edge-to-cloud scenarios as a single commodity, solutions
that are able to truly bring computation and intelligence closer to the edge nodes, where
the data are generated, are still facing several technical, societal and business barriers [8].
The main complication regarding this transition is that current solutions solely focus on
the hierarchical orchestration of resources, services and data, necessitating data migration
from IoT-to-edge-to-cloud, and vice versa [9–12]. This hierarchical architectural model
inevitably results in predefined topologies that exhibit several limitations (see Section 2),
thus becoming the main blocking point in implementing the next generation of edge
intelligence applications. Critically, to support volatile applications across the IoT–edge–
cloud continuum that also enable cognitive decisions in heterogeneous environments, it
is required that the computational resources of all parts of the continuum can be rapidly
reconfigured in a dynamic manner, while at the same time preserving their operational
performance.

Meta-operating systems (meta-OSs) are not a novel concept. In principle, a meta-OS is
built on top of a typical operating system, providing basic OS functionalities (hardware
abstraction, low-level device control, etc.), allowing the communication between different
nodes and managing the resources across multiple computers [13]. Recently, sectors
such as robotics have shown a proliferation of such a meta-OS approach, with the robot
operating system (ROS-2) being one of the most popular [14,15]. In addition, meta-OSs
developed in various domains enable different levels of coordination among heterogeneous
agents/devices [13,16]. Notably, the multi-agent collaboration enables swarm intelligence,
which refers to the capacity of the swarm (or multiple agents) to complete complex tasks
that are not achievable by single entities, without relying on the existence of a central
“brain” [17,18]. In this context, a meta-OS can support distributed applications across the
IoT–edge–cloud continuum, enabling decentralized, federated and/or swarm intelligence
at the far-edge.

Notwithstanding the foregoing, the practical establishment of the meta-OS comes with
some key challenges. Firstly, it is estimated that by 2023, more than 30 billion devices will
have been connected to the Internet [19]. These devices are built upon a wide diversity of
hardware platforms, operating systems and communication protocols, posing an extreme
complexity in integrating their computational resources within the IoT–edge–cloud contin-
uum. While current architectural solutions support integration of CPU-based devices, they
lack unified abstraction schemes for the micro-controller unit (MCU) devices. In addition,
a meta-OS must support scalability and resilience of orchestration in the computing con-
tinuum [20]. Once the resources from the CPU and MCU-based devices become available,
orchestration mechanisms must be applied. Current orchestration schemes become cumber-
some and error-prone, and thus they will not be able to function in dynamic, highly volatile,
heterogeneous and hyper-distributed environments foreseen in the future edge intelligence
applications. Hence, the realization of novel schemes for decentralized peer-to-peer coordi-
nation is also required [21,22]. Furthermore, the hierarchical architectural framework has a
significant impact on the data offloading mechanism and the related network parameters.
Within the period 2016–2021, there have been 850 ZB of data generated by mobile users
and IoT devices [19]. In the existing IoT–edge–cloud schemes, where data is transferred
across the hierarchical continuum, the network cannot scale with the same speed of data
growth, primarily attributed to the required overhead that is needed for transferring the
data from the IoT to cloud layer (i.e., vertical communication). This has a direct impact
on latency and throughput, which, in turn, hinders the performance of real-time applica-
tions. Additionally, in the current hierarchical schemes, data is required to travel across
multiple public and private cloud infrastructures, often disrespecting privacy preservation
and increasing the cybersecurity attack surface [23–25]. Finally, the rapid proliferation of
cloud–edge applications also involves the uncontrollable inflation of the associated carbon
footprint [26,27]. Current data distribution from edge to cloud significantly impacts the ICT
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carbon footprint, whereas future meta-OSs need to move towards greener and sustainable
solutions, boosting the concept of climate net neutrality.

In this work, we propose a reference implementation of a meta-OS, targeting the
transformation of the current vertically-siloed cloud–edge–IoT architectures into a dynamic,
distributed and trusted continuum, capable of facilitating next-generation applications. This
reference architecture of a meta-operating system (RAMOS) can span across heterogeneous
devices and capacities to fulfil the requirements of the next-generation applications in
such a way that data volume, variety, interoperability, and velocity are handled efficiently
and securely. This architectural transformation inherently implies the shift of the ML
approaches adopted in the computing continuum from central learning to distributed
learning, enabling decentralized intelligence at the far edge. To this end, the peer-to-peer
architecture supported by RAMOS intrinsically points towards federated learning (FL)
and swarm learning (SL) where data and ML models remain at the edge rather than being
centralized. Following the technological trends for automation and network intelligence,
RAMOS can also support ML operations via a dedicated layer [28–30].

The rest of the paper is organized as follows: Section 2 illustrates the motivation behind
the present work and the requirements of the meta-OS, while the overall contribution at the
architectural, data management and decentralized intelligence levels is outlined in Section 3.
More detailed description of the proposed meta-OS reference architecture is fully provided
in Section 4, whereas potential adoption of RAMOS-based schemes is demonstrated in
Section 5, considering five real-world scenarios. Finally, Section 6 presents the potential
business and societal impacts due to the adoption of RAMOS, while Section 7 concludes
the paper.

2. Motivation and Meta-OS Requirements

The motivation of this work originates from the need to describe the specifications of a
meta-OS architecture which can enable the integration of novel ML-driven applications and
services [31,32]. The following list summarizes the requirements for a reference meta-OS
architecture that will enable a dynamic, distributed and trusted IoT–edge–cloud continuum
and describes why current solutions are not adequate to conform to these challenges:

• Provide an effective management of a wide diversity of hardware platforms, operating systems
and communication protocols. While in the core cloud the variety of hardware, operating
systems and communication protocols is today largely tackled and abstracted by
solutions such as Kubernetes [33], the variety in the computing continuum ranges from
hardware platforms based on ARM processor architectures to 8-bit microcontrollers,
supporting different communication protocols (such as LORA, WIFI, BLE, etc.), and
being built on top of different operating systems (Android, iOS, ROS, RIOT, Yocto,
Zephyr, etc.) [34]. Evidently, this heterogeneity in both hardware and operating
software cannot be managed using conventional architectures. To support the seamless
management of such a diversity of devices, a unifying abstraction approach is required
to both manage and monitor such resources, as well as to deploy services “as functions”
on top of them. The required architectural transformation should build on best
innovations offered by cloud-native solutions and making them edge-native.

• Support the scalability and resilience of orchestration in the computing continuum. Current
state-of-the-art (SOTA) solutions to IoT–edge–cloud orchestration of resources and
services are cloud-centric and leverage predefined resource providers [34,35]. This
has a significant impact on (i) scalability: the latency of orchestration directly increases
with the number of devices to be managed and their (network) distance from the or-
chestrator, and the infrastructure can scale only within a predefined pool of resources;
(ii) resilience: partial availability of the connectivity may affect the ability of the orches-
trator to recover and ensure the end-to-end functionality of the cloud–edge service,
and when the predefined pool of resources cannot cope with system load or failures,
no alternative is available. In this context, current hierarchical approaches partially
mitigate this issue. To tackle this problem effectively, novel solutions are needed to
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either move the gravity of decision at the edge or at least empower the edge to take part
of the decisions and/or predictions, thus decentralizing the systems orchestration and
enabling peer-to-peer coordination, including the dynamic discovery and inclusion of
new resource providers.

• Minimize the offloading of current vertically-siloed architectures and its impact on the network.
The enormous number of devices joining the continuum irrevocably implies that vast
amounts of data are generated at the edge, increasing the challenges on the data pro-
cessing layer and creating bottlenecks, especially in the execution of heavy ML-based
tasks. Vertical offloading patterns, commonly used in cloud–edge and centralized
learning approaches, heavily rely on low network latency and considerable band-
width capacity [36,37]. This unfavorable dependency can be addressed by adopting a
peer-to-peer offloading strategy instead of a hierarchical architecture. However, while
on the one side, such peer-to-peer offloading and moving computation at the edge
may reduce the usage of the network to transport data, on the other, it requires that
services and applications are the ones that move towards the data. To this end, such
challenges require putting data at the center of orchestration (introducing the concept
of data-gravity), where data remain at the edge, a fact that leads to reduced network
usage and associated ML models footprint.

• Increase security and privacy-awareness of ML distributed applications. While data increas-
ingly play a central role in the development of innovative connected apps and services,
concerns of end-users and organizations with respect to data sharing, data ownership
and privacy preservation, slow down the take-up of ML methods and limit the access
to data economy to a remarkable set of global players [38–40]. In a distributed system,
ensuring data ownership and privacy preservation becomes even more complex. To
increase the trust toward data sharing and to support the growth of ML approaches,
solutions that increase data owners’ control and ensure privacy preservation in the com-
puting continuum are required. In contrast to server-centric existing solutions for
data sharing, privacy-preserving verifiable data sharing systems that are based on
blockchain can be adopted for the peer-to-peer RAMOS architecture [41,42], while also
conforming to the decentralized nature of the IoT–edge–cloud continuum.

• Measure and reduce carbon footprint of cloud–edge applications. While clear mechanisms
and standards have been developed to measure and handle the energy efficiency of
the data centers and their carbon footprint, SOTA methods are far from achieving
that in the computing continuum [26,27,43]. Although energy consumption is easy
to measure in an owned datacenter, cloud providers do not grant access to such
information and, consequently, knowing or simply estimating the network related
consumption from cloud-to-edge is even more challenging. Without measurements
or models to estimate them, taking decisions aimed at reducing the carbon footprint
of cloud–edge applications is infeasible. In this context, techniques, policies and
standard APIs to make available energy-related information are a key requirement to
enable appropriate energy optimization of ML applications in the computing continuum.
Furthermore, additional techniques to enhance the energy-efficiency of the individual
devices and resources in the IoT–edge–cloud continuum shall be adopted, focusing
on various stages of the data transfer and processing chain. For instance, local data
pre-processing before offloading to an edge server can significantly reduce the energy
associated with the data transmission at the cost of lower result accuracy [44], different
data communication methods can be utilized by the devices depending on the data
transmission queue, estimated network conditions and the device moving speed [45],
and finally, merging of several keep-alive connections into one can be realized to
considerably reduce the energy consumption [46].

3. Proposed Reference Meta-OS Architecture and Functionalities

To tackle the aforementioned challenges and requirements, the presented meta-OS
reference architecture shall enable the creation of a peer-to-peer continuum for IoT appli-
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cations, spanning heterogeneous software and hardware architectures and fostering the
realization of a decentralized intelligence. This transformational shift will further allow
migration from the current 80–20% data balance between cloud and edge to a 20–80% bal-
ance [47–49]. This rebalance will disrupt the current business models around data sharing
by returning control to data producers, while, at the same time, providing new means to
control and reduce the carbon footprint of IT services.

To enable the shift from the hierarchical continuum to peer-to-peer continuum and
from static to dynamic management of infrastructures, the coordination across cloud nodes
is essential. In the proposed meta-OS architecture, the coordination of different nodes:

• Enables the exchange of information about available resources
• Allocates resources in a dynamic and optimized manner
• Utilizes resources to deliver services and applications.

The coordination, and hence the links to enable the creation of decentralized applica-
tions, occurs dynamically, taking into account available resources (i.e., in terms of capacity
and reachability, in case of intermittent connectivity). A node, in this sense, can span from
a cloud computing cluster (such as a Kubernetes cluster) to an embedded device (such
as a robot in a factory). Of course, given this definition, not all nodes can offer the same
capacities (Figure 1): the smallest ones (named RAMOS “Atoms”) are very simple and
provide only a subset of the meta-OS services, requiring coordination and support by more
capable nodes (RAMOS “Molecules”, consisting of several “Atoms”).
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Figure 1. Constellation of RAMOS nodes towards a peer-to-peer continuum.

In RAMOS architecture, a resource can also be quite heterogeneous: it could be a
service, a data set, a hardware capacity or a sensor. Figure 2 shows the high level meta-OS
architecture: (i) resources of each node (blue) are abstracted and advertised via a peer-
to-peer protocol thanks to the node abstraction layer (deep purple—the meta-OS kernel
space, managing meta-processes); (ii) the coordination layer (light purple—the meta-OS
libraries) provides basic functionalities to enact cloud–edge processes; (iii) the application
layer (orange—the meta-OS user space) hosts user services and applications that leverage
functionalities exposed by the coordination layer.



Sensors 2022, 22, 9003 6 of 20

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

OS architecture: (i) resources of each node (blue) are abstracted and advertised via a peer-
to-peer protocol thanks to the node abstraction layer (deep purple—the meta-OS kernel 
space, managing meta-processes); (ii) the coordination layer (light purple—the meta-OS 
libraries) provides basic functionalities to enact cloud–edge processes; (iii) the application 
layer (orange—the meta-OS user space) hosts user services and applications that leverage 
functionalities exposed by the coordination layer. 

As aforementioned, the proposed RAMOS architecture includes two types of nodes: 
Atoms and Molecules that coordinate one or several Atoms, as shown in Figure 2. The re-
sources offered by Atoms or Molecules can be categorized and abstracted, taking into ac-
count aspects such as type (computation, storage, energy, data, etc.), capacity (available 
storage, bandwidth, processing) and location. In this context, the computational resources 
are abstracted in the RAMOS architecture to embrace their heterogeneity, thus promoting 
a unifying approach to IoT–edge–cloud resource management, where Atoms mainly rep-
resent the embedded devices that can run functions and Molecules represent servers and 
clouds that coordinate Atoms, offering services in the IoT–edge–cloud continuum. While 
Atoms and Molecules share a wide range of functionalities, their implementations take 
into account their different capabilities, characteristics and roles in digitalizing physical 
systems. 

 
Figure 2. High-level meta-operating system architecture. 

The overall RAMOS architecture, depicted in Figure 3, follows the fundamental prin-
ciples of microservices architectures and pushes the concept even further by targeting na-
noservices, the simplest form of functions defined in the meta-OS cloud–edge ecosystem 
executed at the level of Atoms. The separate components of RAMOS architecture are fully 
described in the following subsections. 

 

Figure 2. High-level meta-operating system architecture.

As aforementioned, the proposed RAMOS architecture includes two types of nodes:
Atoms and Molecules that coordinate one or several Atoms, as shown in Figure 2. The
resources offered by Atoms or Molecules can be categorized and abstracted, taking into
account aspects such as type (computation, storage, energy, data, etc.), capacity (available
storage, bandwidth, processing) and location. In this context, the computational resources
are abstracted in the RAMOS architecture to embrace their heterogeneity, thus promoting
a unifying approach to IoT–edge–cloud resource management, where Atoms mainly rep-
resent the embedded devices that can run functions and Molecules represent servers and
clouds that coordinate Atoms, offering services in the IoT–edge–cloud continuum. While
Atoms and Molecules share a wide range of functionalities, their implementations take
into account their different capabilities, characteristics and roles in digitalizing physical
systems.

The overall RAMOS architecture, depicted in Figure 3, follows the fundamental
principles of microservices architectures and pushes the concept even further by targeting
nanoservices, the simplest form of functions defined in the meta-OS cloud–edge ecosystem
executed at the level of Atoms. The separate components of RAMOS architecture are fully
described in the following subsections.
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3.1. Trusted Communication and Collaboration

The core element enabling the creation of a dynamic resources ecosystem spanning
across different nodes, is ensured by a decentralized and trust-enabling Message Broker.
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The broker enables the dynamic establishment of decentralized topologies, thus avoiding
single points of failure, while in parallel supporting fault tolerance and high availability,
coupled with a reliable message delivery mechanism. Beyond that, the broker is enabling
the trustworthiness among nodes; only trusted nodes will be able to take part in the
topology. Furthermore, the broker not only allows the communication between the nodes
(Atoms or Molecules), between services in the coordination layer, and between services
within user applications, but, most importantly, enables the communication between
resources exposed by nodes and the coordination layer. Finally, the broker supports
both message-based and event-based paradigms, thus enabling time-triggered and event-
triggered IoT applications.

3.2. Node and Resource Abstraction through Agents

In order to manage heterogeneous nodes (e.g., Kubernetes clusters, embedded devices),
an abstraction layer is a key element. In our envisioned architecture, this abstraction layer
is provided by the RAMOS Agents. The agents expose resources (computing, storage,
network and energy capacities, services, data sources, and sensors), and advertise them in
the Resource Catalogue, thus enabling their discovery. The catalogue will allow resources
to advertise their presence in a seamless and timely manner, copying with heterogeneity,
mobility, volatility, and intermittent connectivity characteristics of the edge nodes, while
the Scheduler allows resources to be allocated and released from a task as needed. The
Monitor service exposes the status of resources and running tasks, along with their energy
expenditure, and thus enables swarm intelligence; nearby nodes (even without a request to
execute a task) can detect that another node is unavailable or stopped executing a critical
task, and hence take over this task execution. Leveraging the functionality of the previously
described components, the Service Mesh controller enables dynamic and secure data services
chaining, based on simple or more sophisticated mesh algorithms. The dynamic chaining
will be supported by means of abstract endpoints, and the service mesh controller, as
a sort of clever DNS, converts abstract endpoints into actual endpoints using different
information, such as latency and availability. Regarding data service-security, the mesh
controller can support self-aware data security by attaching access policies to data and
enforcing such policies along the service functions chain. Finally, Security agents may
identify and mitigate attacks without sending data to the cloud. The cybersecurity agents
can be installed in the far edge and will function separately, consuming only the necessary
computing power to handle security incidents and ensuring strong protection against
malicious incidents.

3.3. Resource Coordination

This layer is responsible for discovering the resources needed to comply with a given
task (Resource Manager). Once the resources are discovered, they are categorized and clus-
tered, a fact that facilitates their optimal use by the service coordinator. The Resource
Manager can also be available in Atoms, as the smallest intelligent functionality part of
the RAMOS architecture, in order to enable swarm intelligence, based on the ability of
self-assigning pending tasks. The Service Coordinator uses artificial intelligence (AI) to define
the best strategy to coordinate the instantiation of services: spanning from a loosely cou-
pled coordination where Atoms self-allocate service instantiation, to a strong coordination
(i.e., orchestration) where Atoms are assigned service instantiation. The Service Coordi-
nator computes and enacts the strategies by: (i) forecasting the resources needed to run a
microservice (in terms of sizing, data, location, ownership, context, etc.); (ii) advertising
requests for a given set of resources and the need for executing a microservice/task lever-
aging them; (iii) assigning different microservices/tasks to nodes (while self-assignment of
local and external requests is provided by the resource manager). Finally, the SLA Manager
combines different measurements (such as latency, energy footprint, and throughput), that
define the end-to-end performance of an application, to provide a global understanding of
the application behavior in the continuum, and trigger the needed recommendations or
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adaptations to comply with developers defined KPIs. The SLA Manager will prioritize a
data-centric approach, thus monitoring not only services, but also data, hence contributing
to trigger horizontal and vertical offloading.

3.4. Data Orchestration

To promote the shift from service-gravity to data-gravity, applications need to move
from service-centric orchestration to data-centric orchestration. This layer provides a set of
functionalities to enable data-centric orchestration: a Serverless Engine, aimed at deploying
data-centric functions, will support advanced NFRs, such as locality, predictability, state-
fullness and improved composability of functions into pipelines/workflows by referring
to the abstract endpoints as managed by the service mesh controller. These properties are
crucial for both developing policy-based pipelines in mixed cloud environments, such as
fog/edge, hybrid and multi-cloud, as well as making serverless functions more suitable
for efficient serving and training of ML models for pipelines. The Serverless Engine, with
reduced capacities, will be also available for Atoms, thus homogenizing the functional
programming of edge devices and the serverless computing in the cloud. Moreover, a Cata-
logue of data-centric functions will include functions to import, query and sanitize data from
heterogeneous data sources, supporting the self-annotation of meta-data (e.g., type, owner-
ship, permissions and privacy constraints), and the self-advertisement of data sources in the
resource catalogue, while also being compliant with standardized approaches (e.g., Gaia-X
ecosystem which is a federated and secure data infrastructure, whereby data is shared
and made available in a trustworthy environment) from the data space ecosystem. Finally,
the Data Pipeline Manager enables the design of data pipelines by chaining data functions
over data sources and by instantiating them via the serverless engine framework (when
required, also microservices/functions already deployed and exposed as resources will be
chainable). This will allow developers to define intents over functions and pipelines so that
the underlying meta-OS functionalities will thrive to satisfy them, as well as to deploy ML
models in the edge-continuum, and to support already running models by exposing an
API that will allow services to modify parameters of the pipeline and the configuration of
the functions.

3.5. Machine Learning Operations

This layer aims to offer a set of services to support continuous operation of ML
algorithms and models across RAMOS Molecules and Atoms required to truly enable
decentralized intelligence at the edge. The ML Operation Manager includes a set of tools to
manage the training models and to define logics for continuous optimization and adaptation
of models across the continuum. In particular, this service will leverage a framework of
algorithms to be designed for FL and SL concepts. Due to the specific requirements of edge
computing decentralization and local privacy protection, it is required that ML methods
are not only distributed across the different RAMOS nodes, but also adapted to the specific
characteristics of each node. Therefore, the Decentralized Algorithms repository can integrate
existing up-to-date approaches of distributed learning. As the training will be carried out
on local devices, no private data will leave any of these devices. Only information which
is sufficiently aggregated, noisy or appropriately encrypted will be exchanged. Clearly,
in order to pursue service minification, a key pillar is to reduce the size of models. For
this purpose, a framework of Machine Learning Optimization Functions is provided in this
layer. For instance, an ML model compression function can provide coding mechanisms,
where ML models, model updates and other exchanged information, all of which requiring
a huge amount of space in uncompressed form, will be reduced to a fraction of their
original size [50]. Other optimization functions that can, in principle be included involve
the hyperparameter attunement for the fine-tuning of the learning parameters during the
training phase of ML algorithms, and an over-the-air computation (AirComp) method for
efficient spectrum utilization and reduction of the energy associated with data transmission
from IoT devices [51]. In addition, specialized methods, e.g., structured pruning, can be
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also be incorporated for federated use case scenarios [52]. Finally, a Model Serving service
will publish models and version them for an application, either globally (Molecules) or
locally where a specific model is computed (Atoms).

4. Contributions of RAMOS Architecture

As aforementioned, the presented reference architecture of a meta-OS pursues a
number of paradigm shifts aiming at enabling decentralized intelligent applications that
will permeate the Internet in the future:

Firstly, at the architectural level, the RAMOS moves beyond SOTA in the following
directions: (i) discard the vertical (hierarchical) offloading where the model and data are
coupled as a single entity and must be migrated to a computationally higher node. This
horizontally-oriented architectural change aims to deliver a more fine-grained offloading
logic, allowing each node or service to offload a portion of its computational burden, thus
reducing the overall data transfer; (ii) support the computing continuum carbon-aware
scheduling in the cloud-native ecosystem; (iii) address the shortcomings of current solutions
on the discovery of fog/edge devices and the integration of the resources of MCU devices
providing a standards-compliant solution that supports location- and context-awareness;
(iv) tackle the fallbacks of current SLA (service-level agreement) tools, by implementing
an automatic, CNCF-driven (cloud native computing foundation) SLA management; (iv)
provide a cybersecurity framework based on the principles of decentralized intelligence to
harden intelligent applications [53].

Secondly, at the data management level, the proposed architecture: (i) promotes data
sharing in a privacy-preserving manner by addressing the problem of statistical hetero-
geneity and non-iid (independent and identically distributed) inherent in datasets used for
federated applications, offering a device-independent API; (ii) enables self-aware data secu-
rity by attaching access policy to data and extending web access control specification; (iii)
fosters open source serverless platforms to support non-functional requirements (NFRs),
such as predictability, stateful computation and composability; (iv) boosts the serverless
concept as a way to abstract functionalities deployed over MCUs on open-source serverless
platform.

Finally, at the decentralized intelligence level, the meta-OS reference framework manages
to: (i) support existing SOTA techniques in deep neural network (DNN) compression,
reduction and optimization methods, while minimally affecting the performance of the
models [54,55]; (ii) promote novel over-the-air transmission techniques for FL and transfer
learning to effectively reduce the communication and energy expenditure [56–59]; (iii)
incorporate open source MLOps toolchains to address current lacking areas in supporting
the decentralized intelligence concept, such as in the model development, deployment and
operations domain.

5. Potential Applications in Diverse Domains

A meta-OS platform based on the proposed RAMOS architecture can be used in
different domains, particularly in those demanding data-intensive edge intelligence and
the deployment of distributed applications across multiple organizations and geographies.
These domains may cover various perspectives of modern life, including green driving,
port logistics and transportation, smart living, carbon-neutral manufacturing and use
of renewable energy sources (conceptualized in Figure 4), to name a few. Applications
discussed in the above domains require dynamic orchestration, communication and data
exchange patterns, characteristics that are provisioned in the RAMOS architecture. Next,
we introduce some potential applicability scenarios, describing the current practices and
then highlighting the potential benefits to be achieved by leveraging the RAMOS solution.

To concretely describe how AI/ML applications can be supported within RAMOS
architecture, five realistic use case scenarios are outlined. The training of an AI/ML opti-
mization model is the process of properly adjusting the model weights so as to ensure
minimization of an error/loss function. During this process, the training data could be



Sensors 2022, 22, 9003 10 of 20

gathered either in a centralized or an edge location. Inference of an AI/ML model refers to
the usage of the model for making predictions or providing alarms, without modifying
its parameters/weights. Regarding the AI/ML-related blocks of RAMOS, the general
training and inference concept proposed for all the presented scenarios is in line with the
following pattern: each Atom/device (i.e., the OBU hardware in car, the energy meter
in the house, etc.) runs a trained (regression/classification) model that has been initially
trained with either local data or data exchanged across Atoms in a peer-to-peer fashion. If
needed, the Atoms exchange model parameters (instead of raw data that would jeopardize
security and privacy) with Molecules, so that a more accurate model can be trained. This
new model is then fed back to the Atoms for a more optimized inference.
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5.1. Green Driving for Reduced Fuel Comsumption and Decreased Vehicle Emissions

The automotive industry is leading the global activities towards setting the bases for
the future autonomous vehicle. The ultimate goal is to create smart and interactive cars
that will continuously learn from different situations happening on the road and provide
vehicle-to-everything (V2X) services, including the optimization of driving patterns of
citizens. In the current setting, cars are equipped with an on-board unit (OBU) connected
to the on-board diagnostics (OBD) system, which is an automotive embedded system
that gathers data [60,61]. This data, along with notifications for anomaly occurrences (for
instance, ice in the street, accident, break down, etc.), can be sent and received by vehicles,
pedestrians and infrastructure (e.g., traffic lights).

Currently, most of the vehicles collect information, such as the instant consumption of
gas/petrol, and they provide recommendations to drivers to reduce energy consumption,
in the form of messages on screen or, in a few cases, hydraulic pressure on the gas pedal.
However, these recommendations are based on suboptimal decisions, as they solely rely
on a static and predefined model installed on the vehicle that is based on static rules,
taking into consideration data only from a single vehicle [62,63]. Even in the case of V2X
communication, where vehicles exchange information for the purpose of early warning
signals (e.g., accident in front), data processing takes place in the cloud (the so-called
multi-access edge computing or MEC), increasing latency far beyond those limits that may
drive an undesired risk of late critical reactions.

By leveraging the proposed RAMOS platform, the following paradigm shifts emerge:
(i) the model of each individual vehicle will be derived using ML-based approaches,
enabling the continuous and dynamic model update once new data arrive, in contrast to
static rule-based models that are currently used; (ii) the OBU devices will be able to create
ad-hoc cloud networks (e.g., in traffic lights or on the move) and share data and models in
a secure manner, following the peer-to-peer continuum concept, contradicting the current
scheme where any type of exchange between vehicles is performed through MEC; (iii)
under the orchestration capabilities of the OBUs (acting as Atoms) and the nearby base
station (acting as a Molecule), the resources of the vehicles can be shared and dynamically
allocated for ML training or inference purposes, as opposed to the current hierarchical
continuum scheme that lacks coordination of dynamic resources, as depicted in Figure 5;
(iv) under the concept of decentralized intelligence, each individual ML model will be based
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on the collective knowledge of multiple cars and driver attitudes, making it more accurate
and providing it with better generalization capabilities; (v) the ML training convergence
time is reduced due to sharing pre-trained models among vehicles, as well as due to the
ability of sharing computational resources among Atoms belonging to the same ad-hoc
cloud network. By adopting the aforementioned technological paradigm shifts, valuable
recommendations regarding proactive warnings in the case of car accidents as well as
optimal speed and acceleration/deceleration of the vehicle may be offered to the drivers
via text or voice messages. In this context, each car’s OBU will have its individual ML
model that has been trained with the vehicle’s own collected data. Since the performance
of each model depends on the amount of available data (cars that have travelled numerous
km are expected to have better trained models), two or more vehicles will be able to ad-hoc
exchange their model parameters to increase the accuracy of their predictions, or even
share resources for computationally intensive training tasks (for instance when cars are
immobilized due to traffic conditions).
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5.2. Smart Living for Migration to Preferable Energy Consumption Behaviour and Predictive
Maintenance of Electrical Equipment

Electric meters are installed by utility companies at households to survey the usage
of electric power in residential settings, while also providing citizens access to their daily
energy consumption and other limited information, making them aware of their charges
and habits. However, a more fine-grained consumption profile can be created based on
a novel technology that is under research during the last few years, called non-intrusive
load monitoring (NILM) [64–66]. NILM can provide information on energy consumption
per appliance type, such as electric lamps, washing machines or television, based on time
variations of voltage, current, power factor and other variables collected at a sub-minute
rate. Such a consumption profile would be much more useful, both to utility companies to
accurately predict future energy demands and enable green energy sources, but also for
consumers interested in changing habits and reducing their energy footprint.

However, the current approach faces the following drawbacks: First, the data extracted
by the NILM is processed in the cloud and is mostly beneficial for the utility companies
(e.g., for the purpose of accurate energy demand prediction). Second, recommendations
towards the consumers or even direct corrective actions (e.g., actuator that is instructed to
turn off the lights) rely solely on the individual datasets of each consumer, restricting further
knowledge and thus decision optimality. Third, there are strong concerns for privacy, and,
in general, on the data governance model that is applied to the consumers’ data (collected
from the smart meters installed today).
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By adopting the RAMOS architectural framework, as highlighted in Figure 6, the
following advancements can be reached: (i) enhancement of the computational capacity
on the NILM device (far edge) in order to minimize data traffic and data processing
at cloud, overcoming current centralized data processing schemes; (ii) exploitation of
novel privacy-preserving algorithms by sharing only parameters of the trained distributed
models, contrary to sharing sensitive consumer data with external entities in a hierarchical
manner; (iii) application of SL training algorithms at the edge (NILM devices/Atoms)
that will improve the accuracy of the ML models, since the training process can be based
on enhanced datasets in contrast to home-based training approaches of today. These
advancements will enable the identification of energy consumption patterns for each
specific home, allowing an accurate behavioral pattern analysis. In this way, consumers
can be supported to change consumption behavior, since personalized recommendations
are provided based on the actual consumption patterns and the exchange of ML trained
models. Additionally, these shifts may create added value in the form of low-cost predictive
maintenance of malfunctioning equipment (e.g., increased consumption of a device during a
period of time might reveal a device malfunction). Therefore, a local ML model integrated in
the NILM device that has been trained utilizing the collective energy consumption datasets
of several households (i.e., models generated from houses in the same geographic area or
even from houses with similar energy consumption profiles) can provide suggestions to
improve the users’ behavioral energy habits (e.g., stop regulating the heating/cooling of
the room temperature) or warnings in the case that an appliance is deviating from its usual
performance (e.g., electrical leakage).
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5.3. Just-in-Time Arrival for Vessel Traffic Management and Port Logistics

Although maritime transport and ports logistics play a key role in trading, these
activities significantly contribute to the greenhouse gas (GHG) emissions [67]. The ports, as
intermodal hubs, play a pivotal role in the transportation chain, as facilitators of the flow of
people and cargo, but also as concentration points of emissions. Currently, the majority of
port services are delivered ad-hoc as requested by each vessel and based on availability
of resources, without any consideration on optimization of berth and crane allocation, or
transportation equipment usage to/from the storage area [68].

The shortcomings of the current solutions include: (i) port services (availability of
dock, availability of crane, berth, etc.) are provided in a more or less uncoordinated manner,
resulting in extended delays on port service provisioning, leading to inefficient freight
and passenger flows; (ii) estimated time of arrival of the vessels is partially taken into
consideration on port planning, thus introducing extended time that vessels are waiting
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outside the port, resulting in increased fuel consumption and GHG emissions; (iii) data
regarding vessel operational parameters (speed, power, fuel consumption, etc.) that are
locally collected, are only used for monitoring purposes and neither for optimizing the time
of arrival of the ship to the port, nor for optimization of its route with respect to energy
savings.

The meta-OS platform based on the proposed RAMOS architecture can lead to the
following evolutions: (i) the port informs each vessel for the optimally scheduled time of
arrival based on port service availability, thus minimizing the vessel idle time outside the
port, contradicting current practices; (ii) based on the port schedule, the vessel uses its
individual computational resources (Atom) to train an ML model based on the operational
parameters and combined with environmental ones (wind speed, direction, waves, etc.) to
optimize its voyage planning (routing, vessel speed) to the port, respecting energy efficiency
aspects in contrast to using data only for monitoring purposes, as illustrated in Figure 7;
(iii) the information gathered at the management platform of the port (RAMOS Molecule)
will be continuously enriched with data regarding the accurate and efficient delivery of
port services to the vessels, creating a labeled dataset that can be exploited for further
training of the port ML algorithm for optimized port service scheduling. In this framework,
a distributed ML model can be integrated in the hardware of each vessel (continuously
trained with its individual operational data) and can provide recommendations for the
optimized ship’s speed and route planning, taking into account the time of arrival (as
scheduled by the port based on the availability of its services) and the environmental
weather conditions. Moreover, a centralized ML algorithm deployed in the port (Figure 7),
will indicate the optimized scheduling for just-in-time arrival provision of port services.
The platform solutions will provide a means of increasing port efficiency and port call
optimization which significantly contributes to reduced GHG emissions as a result of the
ship’s speed to arrive just in time. This also reduces anchorage time and congestion in the
port area, supports better orchestration of berth, crane and storage allocation and enables
efficient freight and passenger flows.
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5.4. Energy Reduction towards Carbon-Neutral Manufacturing Processes

Energy consumption reduction at the regional level is the main priority in the man-
ufacturing domain [69,70]. Manufacturing companies have already deployed zero net
emission programs to respond to climate change challenges [71]. In this context, companies
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with factories in different regions use energy management software mainly to track and
monitor each factory consumption and to take decisions on potential improvement at local
level.

In the current situation, each factory energy manager uses the monitoring system to
only improve the local state, based on their own datasets, thus increasing the time of the
training process and diminishing the accuracy of the non-ML-based model. Furthermore,
the datasets are usually in a non-standardized format even among the various processes
of the same factory, resulting in time-consuming data analysis. Finally, data coming from
different factories are centrally gathered for cross-elaboration, but this process requires ad-
ditional data normalization and standardization procedures to enable best cross fertilization
practices among the factories.

Leveraging a meta-OS platform in accordance with RAMOS principles, the following
advancements in the manufacturing sector unfold: (i) at a local level, ML algorithms can
be trained targeting energy consumption reduction, based on factory-specific available
datasets, supporting the decision making process in terms of resource and process opti-
mization, as well as cost reduction initiatives, as opposed to the rule-based, static models
that are currently used (Figure 8); (ii) supporting heterogeneity of devices, as well as stan-
dardized approaches on data format and modeling, the meta-OS can considerably reduce
the time required for data pre-processing in comparison to extended time-consuming and
error-prone data analysis performed nowadays; (iii) early adoption of already trained ML
models by a newly established factory site is enabled, based on model sharing techniques
(e.g., an already trained model can effectively minimize the time needed for training a new
model based on local data of the newly established factory). By adopting the proposed
platform and technological solutions, the impact on business involves the reduction of
consumed energy related to the overall production. Towards this direction, the energy
reduction-targeted ML model of each factory will be continuously trained, not only by
utilizing its own dataset from the production line, but also by using cooperative intelligence
that is shared among the factory sites with reduced communication overhead. In addition,
datasets that are generated by heterogeneous devices will be homogenized and effortlessly
employed for training or post-processing purposes.
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5.5. Smart Charging Stations for Electric Vehicles

The majority of distribution system operators (DSOs) implement an electric vehicle
(EV) charging system, where renewable energy sources (RES) are integrated with conven-
tional grid power sources [72], as depicted in Figure 9. The EV chargers work as load to
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the electric system (depicted in red), while vehicle-to-grid (V2G) bi-directional chargers
can work both as load and source of stored energy to the system (depicted in green). The
RES energy is directly injected into the grid and the EV chargers start working as soon as
they have an EV connected. Nowadays, EV charging premises use a simple management
solution: if there is an EV connected, the system charges the car; if not, the EV charger is in
a standby mode [73].
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The current implementation of an EV charging ecosystem includes the following
drawbacks: (i) the data collected from EV charging are mainly used for monitoring purposes
and not for optimization, neither with respect to the charging hour nor considering the
increased use of green energy coming from RES; (ii) the management of such a system is
centralized in nature and disregards substantial functionalities or algorithms concerning
resource optimization; (iii) the existing system does not support mechanisms for fault
tolerance and, thus, it is prone to failure if an EV charger node stops sending data.

The RAMOS architecture can be adopted by the EV charging scenario, bringing the
following benefits: (i) provision of ML-assisted decisions to optimize the energy transfer
function (generation/storage/load) and the charging hour, so that the cheapest energy
schedule or the hours with the maximum RES generation are exploited, in contrast to
current solutions that lack any optimization process; (ii) orchestration of the computational
resources at the charging station (Molecule running local ML on the edge) to acquire data
from loads, storage and RES, while at the same time balancing with the energy coming
from the grid; (iii) adoption of edge data management to reduce data communication
overhead between EV chargers and the EV charging grid central management solution;
(iv) implementation of federated/swarm intelligence techniques among the edge nodes,
bringing a fine-tuned and customized charging experience at a local level and rewarding
the users for letting the chargers decide when to proceed with charging in a predefined time
frame. Moreover, secondary charging equipment can store the monitoring data (energy
supplied, time of charging, battery levels, end-user id, green energy sources). Therefore,
the ML model that will be integrated in the hardware of an EV charger will provide
suggestions on the charging procedure of each user, based on both his/her charging profile,
the traffic distribution of the users requesting charging services and the availability of
green renewable energy. The training of each ML model will consider the collaborative
knowledge extracted by all EV chargers through model sharing, minimizing at the same
time the amount of data transferred via the network.
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6. Business and Societal Impacts

The implementation of the proposed meta-OS reference architecture, that notably
advances current cloud–edge–IoT architectures, essentially supports the development of
decentralized intelligent applications, while at the same time reducing the complexity
of managing distributed architectures and the associated operational cost of cloud–edge
architectures. Moreover, RAMOS promotes an open source-based digital infrastructure to
create data spaces following a peer-to-peer and trust-centric approach that transforms the
existing balance between cloud and edge workload by enabling data processing in smart
connected objects at the edge and leads to enhanced energy efficiency. The above points
are further discussed in the following subsections.

6.1. Towards Data Sharing Principles and an Open Edge Ecosystem

Data nowadays play a central role in the development of innovative connected services
and products. Contrary to the case of core clouds, however, there is not yet much investment
on public edge infrastructure, thus limiting the available offer and imposing a CAPEX
model, not ideal, especially for small and medium-sized enterprises (SMEs). SMEs can
presently only benefit from their own limited datasets to develop innovative products
and ML algorithms, which may not apply to other markets and paradigms. Furthermore,
the rules for personal and industrial data exchange and processing are becoming stricter,
and privacy preservation has become a central activity for enabling the implementation of
any data-driven services [74]. In such a context, GDPR compliance and full transparency
toward citizens/data subjects become additional requirements, which developers need to
address from privacy by design to informational self-determination. RAMOS intrinsically
targets at increased data sharing as a consequence of technologies that put data owner at
the center, promoting trust over data control, and creating wealth and adding value to
new innovative connected services and products, enabling an open ecosystem for ad-hoc
dynamic IoT infrastructures. Furthermore, the proposed architectural framework supports
the dynamic federation of edge resources, enabling the creation of an ecosystem of edge
resource providers and nurturing novel business models and technical approaches to create
innovative cloud–edge solutions, extending the involvement of SMEs in the data markets
for sharing industrial data.

6.2. Towards Digital Transition for Clean Energy and Climate Net Neutrality

As highlighted in the present work, the proposed architecture fundamentally enables
energy-aware multi-dimensional computational offloading, inherently contributing to
climate neutrality (e.g., CO2 footprint minimization and increased use of renewable energy
sources). To this end, energy-aware data infrastructures will avoid the explosion of ICT
footprint and provide deeper understanding of decentralized intelligence to support green
digital solutions as described in the potential application scenarios: (i) exploiting ML
capabilities to process data from smart connected objects and decide the corrective actions
in the energy grid sector, thus enabling efficient energy management in smart cities; (ii)
focusing on the green driving principles by optimizing the speed/acceleration of vehicles in
order to minimize the environmental footprint, identifying driving patterns and optimizing
drivers’ behavior that will eventually lead to a reduction in car pollutant gases and fuel
saving; (iii) promoting advancements in the IoT technologies of the manufacturing domain
in the framework of Industry 4.0 by providing AI-assisted distributed solutions in predictive
maintenance and quality management, as well as boosting productivity, improving safety
and reducing the environmental footprint of the manufacturing sector; (iv) providing
a unified port-related management system for key logistics operations such as traffic
management, allocated port resources and waste monitoring, targeting to reduce the energy
consumption and GHG emissions associated with the maritime transportation sector; (v)
employing distributed intelligence principles to effectively use smart EV charging from
renewable sources at the edge.
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Towards this direction, companies and public organizations that are active in domains
requiring real-time decision-making can adopt the proposed architecture for reduction of
their energy footprint. In this way, RAMOS has an indirect impact on the quality of life
of citizens, since it results in energy consumption reduction associated with their homes,
minimization of car pollutant gases’ emission, fuel saving and, finally, more efficient
passenger flow in transportation.

7. Conclusions

In the present work, we propose a reference architecture of a meta-OS (RAMOS) that
aims to transform current vertically-siloed cloud–edge-IoT architectures in a dynamic,
distributed and trusted continuum. The presented architecture advances current technical
solutions by transposing: (i) from a hierarchical continuum to a peer-to-peer continuum;
(ii) from the orchestration of static resources to the coordination of dynamic resources;
(iii) from service-gravity to data-gravity; (iv) from central learning to swarm learning
methods; (v) from data-aware to context-aware machine learning operations (MLOps).
This novel architectural approach will be capable of hosting next-generation ML-based
and data-intensive applications at the edge, taking into account their diverse requirements.
The specific layered architectural components of the RAMOS agents (Atoms, mainly for
embedded devices and Molecules for servers and clouds) and their functionalities are fully
described, along with their interconnection and coordination principles in a secure and
trusted manner.

The potential implementation of the proposed architectural framework is then high-
lighted in industrial and business sectors that require real-time decisions based on huge
amounts of received information and data. In these scenarios, we demonstrate RAMOS
distributed intelligence and privacy preservation principles used for data sharing purposes
in use cases that do not follow the same communication and orchestration patterns. In ad-
dition, we cover issues related to the reduction of the energy consumption in domains with
diverse characteristics, ranging from the green driving with ultra-low latency requirements
to the smart living, aiming at household-level energy efficient enhancement. Furthermore,
the direct and wider impacts emanating from the adoption of the proposed architectural
approach are presented.

Finally, our future work includes the implementation and validation of the domain-
agnostic characteristics of the proposed meta-OS architecture in the described business
sectors and illustrate how RAMOS can affect real-time decision making in sensitive do-
mains, also quantifying the efficiency of the current architectural scheme. Moreover, our
future research directions involve the investigation of ML techniques that can truly enable
distributed learning at the (far) edge by become context-aware, rather than just being data-
aware, i.e., by dynamically adapting the ML lifecycle to the context (i.e., data localization,
energy).
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