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Abstract—Generally, smart devices, such as smartphones,
smartwatches, or fitness trackers, communicate with each other
indirectly, via cloud data centers. Sharing sensor data with a
cloud data center as intermediary invokes transmission methods
with high battery costs, such as 4G LTE or WiFi. By sharing
sensor information locally and without intermediaries, we can
use other transmission methods with low energy cost, such as
Bluetooth or BLE.

In this paper, we introduce Sense Low Energy (SenseLE),
a decentralized sensing framework which exploits the spatial
locality of nearby sensors to save energy in Internet-of-Things
(IoT) environments. We demonstrate the usability of SenseLE by
building a real-life application for estimating waiting times at
queues. Furthermore, we evaluate the performance and resource
utilization of our SenseLE Android implementation for differ-
ent sensing scenarios. Our empirical evaluation shows that by
exploiting spatial locality, SenseLE is able to reduce application
response times (latency) by up to 74% and energy consumption
by up to 56%.

I. INTRODUCTION

Distributed sensing and monitoring are rapidly evolving, as
both the underlying technology and the number of connected
devices are growing at a fast pace. Current state-of-the-art
solutions [1], [2] for performing distributed sensing are cen-
tered around cloud computing. Such approaches offer efficient
methods of analyzing and storing sensor-generated data. The
most widely deployed sensing infrastructures perform traffic
monitoring, air-quality measurements, disaster management
etc.

We identify two types of distributed sensing applications:
off-line data analysis (e.g., road quality monitoring), and real-
time data analysis (e.g., traffic monitoring, athletes coaching,
disaster management). While the cloud-centric approach is
highly advantageous for off-line data analysis, it is less suitable
for applications that require real-time decision making. For
such applications, a decentralized architecture would signifi-
cantly improve response times by performing direct, device-
to-device communication. To achieve this, smartphones are
equipped with significant numbers of sensor and networking
technologies, such as WiFi, Bluetooth and NFC, and make
ideal hubs for other IoT devices. Currently, many IoT archi-
tectures use the smartphone as a gateway for sending sensor
data to be processed in the cloud [3], [4]. Modern smartphones
have multi-core CPUs and large storage space, enabling them
to perform significant amounts of local computation on sensor

data. Such computing and storage capabilities have not yet
been harnessed for distributed sensing.

By combining highly versatile communication technologies,
and increasing compute and storage capacities, smartphones
are becoming a highly promising computing platform. By
means of decentralization and collaboration, smartphone-
based IoT sensing platforms can improve upon the cloud-
centric model, by analyzing data close to its source, and dis-
seminating information through low-energy channels to nearby
devices. In this way, spatial locality can be harnessed, leading
to a highly decentralized and efficient architecture in which
smartphones can collaboratively sense and share information
without a cloud infrastructure that relays messages.

In this paper we investigate how smartphones can be
used effectively and efficiently to locally perform sensor data
processing and sharing, as opposed to the traditional cloud-
centric approach. Instead of sending all the collected data to
a cloud, in our vision, smartphones act as a middleware that
collects data in ad-hoc fashion from smart devices, and then
processes it locally, according to the needs of the applications.
This approach is beneficial for real-time applications that
communicate with sensing devices over short ranges (less than
100 m). Such applications operate optimally if the density of
nearby sensing devices is high and the bandwidth requirements
are low, which is the case in sensor applications like crowd
analysis [5], indoor applications for smart offices [6], or sports
monitoring [7]. By using only local information, such applica-
tions can achieve better response-times than their cloud-centric
counterparts. For example, a context-aware application can
determine waiting times at queues by checking how long the
phones of the nearby people have been staying around. We
implement this application and discuss it later in the paper.
Another example is a navigation application for groups of
tourists that, instead of using the onboard GPS sensor, obtains
the GPS coordinates from another device in the group. This
approach could greatly reduce the energy used by the group
of phones, as shown later in the paper.

In this work, we improve upon the results of our earlier
SWAN-Lake system [8] by reducing the response times and
power consumption, which are both requirements of IoT. We
achieve this through a complete system re-design, resulting in
a new framework for opportunistic acquisition and processing
of sensor data, called SenseLE (Sense Low Energy).



A key challenge in designing SenseLE is to enable real-
time sensor data collection and processing with minimal
energy overhead. To achieve this, we use Bluetooth Low
Energy (BLE) as underlying technology for sharing sensor
data between mobile devices. With low energy consumption,
low latency and similar range as standard Bluetooth, BLE
is the best candidate for our scenario. The main drawback
of BLE is its small bandwidth, but most sensors produce
only numeric data that can be transferred over low bandwidth
connections. However, BLE was created mostly for connecting
to peripherals, such as fitness trackers or beacons, which have
a fixed and relatively small number of sensors. To adapt it for
sharing multi-sensor data between devices, we had to create a
mechanism that dynamically chooses which sensors to share
based on the context. This mechanism automatically detects
what sensors are needed by close-by devices and makes these
sensors remotely accessible over BLE. To our knowledge, this
is the first attempt to use BLE for sharing sensor data between
mobile devices.

In summary, our contributions are as follows:

• We develop SenseLE as a solution for decentralized
sensing in mobile environments. SenseLE employs mech-
anisms for detecting nearby devices and accessing their
sensors remotely over BLE.

• We implement SenseLE as library for Android and eval-
uate it under multiple sensing scenarios involving small
groups of smartphones. Our evaluation shows that our
framework achieves good performance with low energy
footprint.

• We prove the usability of SenseLE by building a simple
application for estimating waiting times at queues.

The remainder of the paper is structured as follows: in
Section II we discuss previous work that we base upon, Sec-
tion III describes the architectural elements of our framework,
the results of our evaluations are presented in Section IV,
Section V discusses related work, and Section VI concludes
the paper.

II. BACKGROUND

Previously, we studied the feasibility of using standard
Bluetooth for opportunistic distributed sensing [8]. In this
paper we build upon that previous work and implement a
much more efficient mechanism for sharing sensor data based
on Bluetooth Low Energy (BLE). Despite sharing the name
“Bluetooth”, the two communication technologies differ in
many respects, from the way connections are managed to the
API exposed to the applications. Therefore, in SenseLE we
had to take a completely new approach in order to match the
functionality offered by BLE to the requirements of distributed
sensing. We have also tested WiFi Direct [9] as a solution for
remote sensing, but were hindered by the fact that it requires
manual pairing between devices, which makes it unusable in
opportunistic sensing scenarios. Moreover, it was previously
shown that WiFi Direct consumes significantly more energy
than Bluetooth [10].

SenseLE uses the SWAN library [11] for accessing the
sensors of the mobile device (Fig. 1). SWAN was designed
to support easy programming of context-aware applications
for Android. To this end, it provides a high-level domain
specific language that makes it easy to fetch and combine data
coming from various sensors. SWAN has built-in support for
most of the sensors present in modern smartphones. External
sensors, like heart rate monitors or wearables can be integrated
via plug-ins. In addition to the ease of use, SWAN provides
centralized access to sensors, thus eliminating the redundancy
caused by multiple sensing applications running in parallel.

Applications can access the SWAN framework by using the
SWAN-Song language [12]. With SWAN-Song it is possible
to access various sensors in a uniform manner, without having
to know their particular APIs. As an example, the following
expression gets the current light intensity:

self@light:lux{MAX,1000ms}

In this expression, self is the location identifier of the
sensing device, light is the sensor identifier, lux is the
sensor attribute that has to be read, MAX represents the history
reduction mode and 1000ms represents the history window.
The expression computes the maximum among the values
generated by the light sensor in the last 1000 milliseconds.

While SWAN has support for distributed sensing, this
support is rather limited. Access to remote devices is done
in SWAN via cloud messaging, which has high latency and
high energy consumption. We notice that in the case of
collaborating sensing devices that are in close proximity to
each other, these issues can be overcome by using device-
to-device communication protocols, like Bluetooth or BLE,
which have low latency and reduced energy consumption. We
show that by leveraging these techniques, we greatly reduce
the energy footprint and improve the response times.

III. SENSELE FRAMEWORK

The main motivation behind SenseLE is to create an easy to
use and energy efficient tool for developing distributed mobile
sensing applications for smartphones. To achieve this goal, our
framework employs the following key features:

• Discoverability. SenseLE provides a simple mechanism
for discovering neighboring devices, which is based on
the BLE discovery service from Android.

• Usability. SenseLE seamlessly handles communication
errors, churn and other issues that might result from
the mobility of the collocated sensing devices. This is
achieved by using a modular architecture in which the
failure of one component does not affect the others. In
case of such an event, the specific component is recovered
with minimal overhead.

• Efficiency. As shown by our evaluations, SenseLE has
good response times and minimal energy consumption
under stress conditions.

• Portability. SenseLE exposes a simple API for accessing
remote sensors on Android smartphones. The API is
based on the SWAN-Song language [12], that provides
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uniform access to sensors and facilitates the creation of
context expressions. The API can be easily extended to
other devices that run Android, like tablets or smart-
watches.

In the following sections we describe the architecture
of SenseLE, along with the design and implementation chal-
lenges that we encountered.

A. Architecture

The SenseLE architecture is shown in Fig. 1. As can be seen,
SenseLE acts as a transport layer between the SWAN sensing
library and other devices. The main function of SenseLE is to
enable sharing of sensor data between collocated smartphones
over device-to-device (D2D) connections. In particular, we
use Bluetooth Low Energy for connecting devices due to its
energy efficiency and low latency properties. In the past we
studied the feasibility of using standard Bluetooth for the
same purpose [8]. We show that the two protocols, despite
being related, require different approaches in practice. We also
show that Bluetooth Low Energy represents a better choice for
distributed sensing both functionally and performance-wise.

An important reason for choosing BLE as communication
protocol in SenseLE is the way information is structured

within BLE, which is similar to the way we structure infor-
mation in SenseLE. In SenseLE, each sensor is assigned an
identifier, called sensor entity and one or more value paths.
The value paths correspond to the different types of informa-
tion produced by a sensor. For example, the GPS sensor has
latitude and longitude as value paths. Similarly, BLE devices
use Generic Attribute (GATT) profiles that structure data in
Services and Characteristics [13]. Therefore, we can match
each sensor entity in SenseLE with a BLE service and each
value path with a characteristic.

Applications interact with SenseLE indirectly, through the
SWAN library API, which has two methods.

registerExpression(id, body, callback);

unRegisterExpression(id);

The first method is used to register a context expression written
in the SWAN-Song language. The first two parameters denote
the expression ID and the expression body, while the last
one is a callback that is invoked whenever new sensed data
is available. SWAN-Song expressions can be of two types:
local and remote. A local expression is prefixed with the self
keyword and indicates that the sensed data comes from a local
sensor. A remote expression is prefixed either with a Bluetooth
ID or the NEARBY keyword, like below:

bluetooth_ID@light:lux{MAX,1000ms}

NEARBY@light:lux{MAX,1000ms}

If a Bluetooth ID is used, then SenseLE connects to the device
having that ID (if the device is in proximity) and fetches sensor
data from it. Otherwise, if NEARBY is used, then sensor
data is continuously polled from all nearby devices having
the requested sensor. In the next paragraphs we focus only on
the remote expressions, as they are handled by SenseLE.

Upon receiving a remote context expression, SenseLE in-
vokes the Proximity Manager, which first saves the expression
in a local database (Remote Expressions) and then starts
advertising the expression to other devices in proximity, so
the latter can prepare for sending back sensor data. If one
or more devices that have the requested sensor are found by
the Discovery module, SenseLE connects to them and fetches
the sensor data, which is sent back to the caller application.
SenseLE supports pull and push techniques for getting remote
sensor data. When the caller application no longer requires
remote sensor data, it calls unRegisterExpression, so
the connection with the remote device is closed and the
expression is removed from the Remote Expressions database.

Advertising and Discovery. SenseLE uses the standard ad-
vertising and discovery mechanisms provided by the Android
API for BLE devices. A BLE-enabled Android device can
advertise a number of BLE services. Each of these services
has several attributes, called characteristics. In SenseLE we
assign a service to each sensor entity and a characteristic to
each value path. Given that SenseLE currently supports more
than 25 sensors and each sensor has on average 4 value paths,
the total number of characteristics that have to be advertised
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goes above 100. After conducting several tests, we noticed that
advertising this amount of characteristics results in discovery
times longer than 30 seconds, which is unacceptable in the
context of real-time sensing. To overcome this, we take an
alternative approach by assigning BLE services to sensors on
demand, based on the sensors requested by other devices. To
realize this, each SenseLE device includes in the advertisement
packets the IDs of the sensors that it is interested in. Whenever
SenseLE detects a nearby device that is looking for a certain
sensor, it creates a BLE service for that sensor, such that
the other device will be able to discover and connect to that
service. When a sensor is no longer needed by nearby devices,
the BLE service for that sensor is disabled.

Remote Sensing. Fig. 2 shows the steps for connecting
two devices in SenseLE in order to share sensor data. For
brevity, in this example data from only one sensor is shared.
However, SenseLE supports multi-sensor sharing, as shown by
our experiments. Initially, a context expression requesting data
remotely from sensor X is registered in SenseLE on device
A (1). Then, device A starts advertising its presence (2). It
includes in the advertising packets the ID of sensor X, so
that other devices can prepare to share data from sensor X
with device A. At the same time device B starts advertising
its presence (3). When device B discovers device A, it notices
that device A is looking for sensor X, so it starts a BLE service
for serving data from sensor X (4). When device A discovers
device B, it initiates a connection (5). Upon successfully
connecting with device B, device A invokes a BLE service
discovery on device B (7). After learning that device B has
a service for sensor X (8), device A connects to the service
and starts fetching data (9, 10, 11, 12). When data from the
remote sensor is no longer needed, the sensor is unregistered
(13).

Privacy. SenseLE employs a basic mechanism that lets
the user decide which sensors are shareable and which are
not. These preferences are stored internally in the Sharing
Preferences key-value store (Fig. 1).

Checkoutstart_proximity_timer()

get_max_wait_time()

Fig. 3. SmartWait app

Incentivizing the user to share sensor data is a key aspect
related to privacy. Since SenseLE is used by other applications
merely as a tool for accessing remote sensor data, the proper
functioning of these applications is conditioned by the user’s
consent to share sensor data required by the applications.
For example, the SmartWait app (see section III-B) functions
properly only if the user agrees to share information about her
presence at a queue with other app users.

With privacy being outside the scope of this paper, we
provide this mechanism merely as a mean for the end user to
limit the sensor data that is shared with others, similar to the
Android permissions required by applications. For more ad-
vanced privacy control, our framework can be further enhanced
by applying the techniques described in our previous work
[14], which use homomorphic encryption for anonymizing IoT
data.

B. Use Case - The SmartWait app

As use case for SenseLE, we prototype a simple applica-
tion for estimating waiting times at queues. Our application,
called SmartWait, relies on the simple principle that a rough
estimation of the waiting time at a queue can be obtained by
computing the maximum waiting time among the other per-
sons that are waiting. With SenseLE, computing this maximum
can be done easily by remotely detecting the waiting times of
others (Fig. 3).

The application works as follows: when the user arrives at
the queue, her SmartWait app detects the queue by connecting
to a beacon that advertises the presence of that queue, then
starts a timer. After that, the SmartWait app uses SenseLE to
gather the waiting times of the other people at the queue and
computes the maximum among them in real-time. At the same
time, SenseLE disseminates in the background the waiting
time of the user to the people who arrived later.

Programming this application without the help of
SenseLE would normally take much time, as it requires knowl-
edge of the APIs for accessing beacons and smartphones over
D2D links, as well as synchronizing simultaneous connections
to other devices. With SenseLE, it only takes two context
expressions to achieve the same functionality:

self@beacon_sensor:discovery

MAX(NEARBY@beacon_sensor:time_in_range)

The first expression is to get a notification when the beacon
assigned to the queue is in range, while the second detects the
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Fig. 6. Power usage for different communication
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waiting times of the other people waiting and computes the
maximum among them.

We note that the SmartWait app provides only a rough
approximation of the waiting time at a queue, its accuracy
being highly dependent on the dynamics of the queue. Still,
it proves the ease of building distributed sensing applications
with SenseLE, without the need of a cloud infrastructure.

IV. EVALUATION

We implemented SenseLE as a library for Android. We
tested our implementation on a small group of smartphones,
consisting of 2 Nexus 6P phones running Android 7, 3 Nexus
5X phones running Android 7 and one Nexus 5 phone running
Android 6 (Fig. 7). We chose this combination of devices as
they all have support for Bluetooth Low Energy and they all
run unmodified versions of Android.

We benchmarked SenseLE against our own implementation
of the SWAN-Lake framework, which we previously devel-
oped as a solution for opportunistic distributed sensing [8]
(see Section II). We made this choice as we were interested
to analyze the effectiveness of the power usage improvements
employed by SenseLE compared to our previous work. There-
fore, we focus our comparisons on energy efficiency.

In order to test how SenseLE performs compared to a
cloud-centric solution, we also implemented a variation of
SenseLE that is using the cloud as a proxy for sharing sensor
data between phones (Fig. 4). For the cloud implementation we
used an instance of Cowbird [15] installed on our university’s
cloud infrastructure.

Our experiments consist of small groups of phones (2-6)
sharing sensor data with each other. The following sensors
were used in our tests: light, accelerometer, gyroscope, mag-
netometer, battery, proximity, pressure, microphone and GPS.
We made this selection as all of these sensors are commonly
found in modern smartphones. In all experiments the phones
exchange sensor data continuously for a duration of 5 minutes,
using a sample interval of one second between sensor readings.
All the results shown represent averages obtained from at
least 5 sample runs. For measuring the power consumption
of the phones we used the Trepn profiler [16]. All power
measurements are relative to a baseline of 254 mW, which
was measured with the phone being in idle state. For all

Fig. 7. Experimental setup

experiments we kept the phone screen on and disabled all
running applications.

Device-to-device (D2D) sensing vs. cloud-centric sensing.
We first show that D2D sensing performs better than cloud-
centric sensing for low-bandwidth applications like sensing
in terms of power consumption and latency. To this end, we
connect two phones either directly (over Bluetooth/BLE) or
via a cloud infrastructure (over WiFi/4G) and have one of
the phones sharing sensor data with the other over 5 minutes.
We used the setup shown in Fig. 4 to test the two scenarios.
When analyzing the round-trip time (Fig. 5), we can see that
sensing is almost 4 times faster when using BLE, compared
to the 4G case, 3 times faster compared to the WiFi case
and considerably better compared to standard Bluetooth. We
note that all time values presented here include the time
taken by SenseLE to process the sensor data internally, which
is 60 ms on average. Also, the cloud has only the role of
a router, therefore the overhead of processing the data in
the cloud is negligible. The long round-trip times for WiFi
and 4G can be explained by the communication overhead of
routing all data through the cloud, which involves at least two
wireless links. A similar situation is revealed if we compare
the power consumption of D2D sensing with cloud-centric
sensing (Fig. 6). We can see here that remote sensing over BLE
consumes two times less power compared to the cloud-centric
approach. Also, sensing over BLE is more energy efficient than
sensing over standard Bluetooth. The results above lead us to
the conclusion that it is preferable to perform remote sensing
over D2D links whenever the amount of shared data is small.
In cases where large streams of data have to be transferred,
like video or sound streams, then a cloud-centric solution is
desirable as it has larger bandwidth.
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Multi-device sensor sharing. It is interesting to see how
SenseLE performs in settings where sensor data comes from
multiple devices simultaneously. For example, the SmartWait
app (see section III-B) connects to multiple close-by users to
learn their waiting times. Therefore, in the next test we look at
the power consumed by SenseLE when a phone fetches sensor
data from 1-5 devices (Fig. 8). Here, we can observe that the
overhead of having more than one connected device is minimal
in SenseLE. However, we notice a considerable growth in
the power consumption of SWAN-Lake. This is expected,
as SWAN-Lake uses Bluetooth as underlying communication
protocol, which has higher energy consumption than BLE.
Still, the results show that SenseLE not only has better
energy management, but also scales better when the number
of concurrent connections increases.

Multi-sensor sharing. In the next experiment we study
SenseLE’s efficiency when data from multiple sensors is
shared between two phones. In this experiment, one phone
continuously polls data from up to 5 sensors of another phone
(Fig. 9). Here, we can see that SenseLE scales much better
in terms of power consumption with the number of shared
sensors compared to SWAN-Lake. For 5 sensors, the power
consumed by SenseLE is more than 2 times lower compared to
SWAN-Lake. This can be attributed to the adaptive approach
we implemented in SenseLE for assigning BLE services to
requested sensors (see Section III-A). This is not possible in
SWAN-Lake, as Bluetooth, which is the underlying commu-
nication protocol, does not support the notion of a service.

Local sensing vs. remote sensing. In Fig. 10 we compare
the power consumed by getting data from the onboard sensors
with the power consumed by transferring data from the same
sensors on a remote device. For this experiment we used
4 sensors that detect changes of the environment that are
common to a group of close-by smartphones: light, sound
(microphone), pressure and GPS location. Here, the results are
more balanced. We observe that reading the GPS and sound
sensors remotely uses significantly less energy, while using the
pressure and light sensors locally is more efficient. However,
we do not see many potential useful applications that require
users to share data from their light and pressure sensors. On the
contrary, sharing of GPS and sound sensors can prove useful

in many situations. For example a group of runners can use
location data from only one of their phones in order to save
energy, or a crowdsensing application for monitoring noise
levels in a city can intelligently pick data from one device in
each group of collocated users.

Group sensor sharing. To have a better understanding of
the impact of sensor sharing (over BLE) on battery usage,
we analyze next the battery consumption of a group of 3
smartphones that share data from one GPS sensor (Fig. 11).
We choose to analyze the GPS sensor, as it is common for
groups of people that perform activities together (like sport
or travel) to use applications that require user’s location. In
this experiment, one phone collects data from the onboard
GPS sensor and shares this data with the other 2 phones
in the group. We let the experiment run for 3.5 hours and
measure the average battery consumption of the group. The
GPS readings were performed at the default rate, which is
around one reading per second. We compare the case where
the phones share data from one GPS sensor against the case
where each of the phones uses its local GPS. The results show
that sharing sensor data reduces the average battery usage of
the group by 13%. We notice that having one phone sharing
its sensor data within the group over extended periods of time
can lead to a more rapid drain of its battery compared to the
others. To achieve better load balancing, the role of sensor
data provider can be assigned over time to different phones in
the group in a round-robin fashion.

Discovery. Finally, we analyze the overhead of nearby de-
vice discovery in SenseLE. Fig. 12 contrasts the power usage
of BLE discovery (used by SenseLE) with that of standard
Bluetooth (used by SWAN-Lake). We tested two discovery
modes: ON, where we keep discovery enabled for the whole
duration of the experiment, and Intermittent, where we switch
discovery between on and off. For the Intermittent case we use
a duty cycle of 50%, as previous research [17] indicates that
this value gives optimal energy consumption, and a period1

duration of 20 seconds. We chose this value based on the
fact that in standard Bluetooth a discovery cycle lasts around
10 seconds. Therefore, by choosing a discovery period of 20
seconds, we have discovery cycles of 10 seconds followed by

1a period is the time interval between two discovery cycles
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idle intervals of 10 seconds, thus preserving the 50% duty
cycle. As expected, BLE is slightly more energy efficient than
standard Bluetooth. Interestingly, BLE performs slightly better
when discovery is left turned on for the whole duration of the
experiment. Moreover, we found that having discovery turned
on in SenseLE does not affect the performance of transferring
sensor data in parallel. This is a major improvement over using
standard Bluetooth for communication, as standard Bluetooth
does not allow open connections while discovery is enabled.

We also analyze the time it takes for SenseLE to discover
the sensors available on a nearby phone (Fig. 13). In this test
up to 8 sensors are advertised by the remote device. We notice
here a linear growth of the discovery time with the number
of advertised sensors (the sensors are advertised as BLE
services). Also, the discovery time is rather high, varying from
2127 ms to 5050 ms. We address this limitation in SenseLE by
enabling and disabling BLE services according to the remote
sensors demanded by nearby devices (see Section III-A).

V. RELATED WORK

In this section we discuss several categories of work related
to SenseLE. We begin by discussing systems that employ col-
laborative and distributed sensing. Then, we analyze systems
that use BLE communication protocols to optimize communi-
cation between mobile devices. Finally, we discuss IoT designs
and models related to our sensing framework.

A. Collaborative and Distributed Sensing

MOSDEN [18] is a mobile framework that exploits the
opportunistic collocation of mobile devices to perform col-
laborative sensing. MOSDEN distinguishes itself from other
solutions by having a modular and extensible architecture that
makes it easy to develop collaborative sensing applications
for Android. Unlike SenseLE, MOSDEN uses only WiFi for
communication and it does not support sharing of sensor data
with anonymous devices.

Another body of related work includes solutions for col-
laborative context monitoring. CoMon [19] is a platform for
cooperative context monitoring between collocated devices
that uses a benefit-aware negotiation mechanism in order to
improve the outcome of the cooperation in terms of energy
usage. A similar approach is taken by Panorama [20]. In
addition to collocated devices, Panorama also involves clouds

and cloudlets in the cooperation process in order to increase
the performance of continuous context monitoring. While
CoMon and Panorama focus on high-level models for collab-
oration between devices, in SenseLE we focus on the practical
challenges that arise when connecting groups of devices in a
peer-to-peer fashion.

B. BLE Communication Protocols

In [17], Radhakrishnan et al., provide a first empirical evalu-
ation of the BLE communication protocol for smartphones. In
this study, the authors show that, depending on usage patterns,
BLE is only marginally consuming less power than Bluetooth.
For a lower power consumption, the authors recommend a
low duty cycle (i.e., the fraction of time the device is actively
scanning). In SenseLE, we also implement this optimization.

In [21], Levy et al. introduce Beetle, a new operating system
service that mediates the communication between applications
and BLE-enabled devices. Beetle provides a separation be-
tween applications and the sensors they are entitled to access.
Furthermore, Beetle offers application developers the ability
to share sensors between multiple applications, fine-grained
access control, and efficient many-to-many communication
through BLE. Such research is orthogonal to SenseLE, as
it offers another layer of abstraction on top of raw BLE
communication capabilities.

A project with some similarities is CoTrust [22], a de-
centralized middleware for establishing trusted connections
between co-located mobile devices. CoTrust employs a model
that enables trusted collaborations between mobile devices
based on the social network interactions of their users. While
CoTrust focuses on trust mechanisms for device collaboration
(i.e., offloading computation, sensing, chat, and file transfer),
the main focus of SenseLE is the efficient sharing of sensor
data between devices.

C. IoT Designs and Models

Initially, IoT solutions were designed in cloud-centric fash-
ion [3], where all data generated by IoT devices are stored
and analyzed in clouds. However, this scenario is not suitable
for applications where response times are critical, as the
latency to access clouds is generally large. To improve on
the cloud centric system, fog or edge computing has been
proposed [23], [24], [25]. Such techniques focus on optimizing



latencies by placing computation at the ”network edge”, or in
the ”fog”, i.e., closer to the data sources. Our approach takes
such optimizations even further: we exploit spatial locality
of mobile devices by performing direct, device-to-device low
energy sharing of data.

VI. CONCLUSIONS

Distributed sensing and monitoring are becoming increas-
ingly important as they are able to improve and optimize
several aspects of modern life. From traffic monitoring and
routing, to disaster management and real-time athlete coach-
ing, all such applications can highly benefit from efficient data
dissemination frameworks. However, such applications are less
suitable for the traditional cloud-centric model, where data are
sent and processed in clouds, as such solutions incur large
latency penalties, limiting real-time responsiveness.

This paper discusses the design and implementation of
SenseLE, a framework for opportunistic acquisition and pro-
cessing of sensor data from nearby devices. SenseLE is able
to exploit spatial locality in order to improve response times
and minimize power consumption.

Our evaluation shows that SenseLE is able to reduce com-
munication latencies by up to 3X compared to the cloud-
centric model. Instead of querying clouds or reading energy-
hungry local sensors (e.g., GPS), SenseLE performs remote
low-energy sensing, resulting in power consumption reduced
by up to 56%. Furthermore, we learned that BLE is much
better suited than standard Bluetooth for low-volume sensor
communication. However, the communication software needs
to be redesigned to exploit the advantages of BLE. This is
illustrated by the fact that SenseLE is a complete redesign of
our earlier SWAN-Lake system.

As future work, we plan to improve the privacy mechanisms
of SenseLE and to investigate the scalability of our framework
by conducting a large scale study involving many sensing
devices with high mobility.
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