393,036 research outputs found

    Aplikasi Instrumen Analisis Kebutuhan Berbasis Potensi Masalah Siswa

    Get PDF
    Guidance and counseling as a systematic, objective, logical, and sustainable and programmed effort carried out by counselors or Guidance and Counseling teachers to facilitate the development of students/counselors to achieve independence in their lives, of course, must also utilize this Technology and Information to be more effective and efficient in carrying out therapeutic services (helping relationships). What is unavoidable today is related to advances in technology and information. The purpose of this study is to design a needs analysis instrument application based on the potential problems of students in high school in the city of Banjarmasin. The method used is research and development (R&D) which focuses on designing a needs analysis instrument application based on the potential problems of students in senior high schools in Banjarmasin. The result of this research is that the model developed by the researcher is based on primary and secondary data. The conclusion of this study is that the model that has been developed can be continued to the validation stage of experts and practitioners to obtain its advantages and disadvantages so that it can be followed up to the trial stage and disseminated to users in high school formal education institutions

    A framework for safe composition of heterogeneous SOA services in a pervasive computing environment with resource constraints

    Get PDF
    The Service Oriented Computing (SOC) paradigm, defines services as software artifacts whose implementations are separated from their specifications. Application developers rely on services to simplify the design, reduce the development time and cost. Within the SOC paradigm, different Service Oriented Architectures (SOAs) have been developed. These different SOAs provide platform independence, programming-language independence, defined standards, and network support. Even when different SOAs follow the same SOC principles, in practice it is difficult to compose services from heterogeneous architectures. Automatic the process of composition of services from heterogeneous SOAs is not a trivial task. Current composition tools usually focus on a single SOA, while others do not provide mechanisms for ensuring safety of composite services and their interactions. Given that some services might perform critical operations or manage sensitive data, defining safety for services and checking for compliance is crucial. This work proposes and workflow specification language for composite services that is SOA-independent. It also presents a framework for automatic composition of services of heterogeneous SOAs, supporting web services (WS) and OSGi services as an example. It integrates formal software analysis methods to ensure the safety of composite services and their interactions. Experiments are conducted to study the performance of the composite service generated automatically by the framework with composite services using current composition methods. We use as an example a smart home composite service for the management of medicines, deployed in a regular and in a resource-constrained network environment

    Reasoning and Improving on Software Resilience against Unanticipated Exceptions

    Get PDF
    In software, there are the errors anticipated at specification and design time, those encountered at development and testing time, and those that happen in production mode yet never anticipated. In this paper, we aim at reasoning on the ability of software to correctly handle unanticipated exceptions. We propose an algorithm, called short-circuit testing, which injects exceptions during test suite execution so as to simulate unanticipated errors. This algorithm collects data that is used as input for verifying two formal exception contracts that capture two resilience properties. Our evaluation on 9 test suites, with 78% line coverage in average, analyzes 241 executed catch blocks, shows that 101 of them expose resilience properties and that 84 can be transformed to be more resilient

    Shall the law set them free? The formal and actual independence of regulatory agencies

    Get PDF
    Regulation by independent agencies, rather than ministries, is believed to result in better policy outcomes. Yet this belief requires one to accept a complex causal chain leading from formal independence to actual independence from politics, to policy decisions and, ultimately, to policy outcomes. In this study, we analyze the link between the formal and actual independence of regulatory agencies in Western Europe. New data on the appointment of chief executives of these agencies is used to create a proxy for the actual independence of agencies from politics. The analysis demonstrates that formal independence is an important determinant of actual independence, but the rule of law and the number of veto players matter as well

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201

    Graphical Markov models: overview

    Full text link
    We describe how graphical Markov models started to emerge in the last 40 years, based on three essential concepts that had been developed independently more than a century ago. Sequences of joint or single regressions and their regression graphs are singled out as being best suited for analyzing longitudinal data and for tracing developmental pathways. Interpretations are illustrated using two sets of data and some of the more recent, important results for sequences of regressions are summarized.Comment: 22 pages, 9 figure

    Reasoning about the Reliability of Diverse Two-Channel Systems in which One Channel is "Possibly Perfect"

    Get PDF
    This paper considers the problem of reasoning about the reliability of fault-tolerant systems with two "channels" (i.e., components) of which one, A, supports only a claim of reliability, while the other, B, by virtue of extreme simplicity and extensive analysis, supports a plausible claim of "perfection." We begin with the case where either channel can bring the system to a safe state. We show that, conditional upon knowing pA (the probability that A fails on a randomly selected demand) and pB (the probability that channel B is imperfect), a conservative bound on the probability that the system fails on a randomly selected demand is simply pA.pB. That is, there is conditional independence between the events "A fails" and "B is imperfect." The second step of the reasoning involves epistemic uncertainty about (pA, pB) and we show that under quite plausible assumptions, a conservative bound on system pfd can be constructed from point estimates for just three parameters. We discuss the feasibility of establishing credible estimates for these parameters. We extend our analysis from faults of omission to those of commission, and then combine these to yield an analysis for monitored architectures of a kind proposed for aircraft

    Reasoning About the Reliability of Multi-version, Diverse Real-Time Systems

    Get PDF
    This paper is concerned with the development of reliable real-time systems for use in high integrity applications. It advocates the use of diverse replicated channels, but does not require the dependencies between the channels to be evaluated. Rather it develops and extends the approach of Little wood and Rush by (for general systems) by investigating a two channel system in which one channel, A, is produced to a high level of reliability (i.e. has a very low failure rate), while the other, B, employs various forms of static analysis to sustain an argument that it is perfect (i.e. it will never miss a deadline). The first channel is fully functional, the second contains a more restricted computational model and contains only the critical computations. Potential dependencies between the channels (and their verification) are evaluated in terms of aleatory and epistemic uncertainty. At the aleatory level the events ''A fails" and ''B is imperfect" are independent. Moreover, unlike the general case, independence at the epistemic level is also proposed for common forms of implementation and analysis for real-time systems and their temporal requirements (deadlines). As a result, a systematic approach is advocated that can be applied in a real engineering context to produce highly reliable real-time systems, and to support numerical claims about the level of reliability achieved

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy
    • …
    corecore