93 research outputs found

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

    Get PDF
    Modern image and video compression standards employ computationally intensive algorithms that provide advanced features to the coding system. Current standards often need to be implemented in hardware or using expensive solutions to meet the real-time requirements of some environments. Contrarily to this trend, this paper proposes an end-to-end codec architecture running on inexpensive Graphics Processing Units (GPUs) that is based on, though not compatible with, the JPEG2000 international standard for image and video compression. When executed in a commodity Nvidia GPU, it achieves real time processing of 12K video. The proposed S/W architecture utilizes four CUDA kernels that minimize memory transfers, use registers instead of shared memory, and employ a double-buffer strategy to optimize the streaming of data. The analysis of throughput indicates that the proposed codec yields results at least 10× superior on average to those achieved with JPEG2000 implementations devised for CPUs, and approximately 4× superior to those achieved with hardwired solutions of the HEVC/H.265 video compression standard

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Hyperspectral IASI L1C data compression

    Get PDF
    The Infrared Atmospheric Sounding Interferometer (IASI), implemented on the MetOp satellite series, represents a significant step forward in atmospheric forecast and weather understanding. The instrument provides infrared soundings of unprecedented accuracy and spectral resolution to derive humidity and atmospheric temperature profiles, as well as some of the chemical components playing a key role in climate monitoring. IASI collects rich spectral information, which results in large amounts of data (about 16 Gigabytes per day). Efficient compression techniques are requested for both transmission and storage of such huge data. This study reviews the performance of several state of the art coding standards and techniques for IASI L1C data compression. Discussion embraces lossless, near-lossless and lossy compression. Several spectral transforms, essential to achieve improved coding performance due to the high spectral redundancy inherent to IASI products, are also discussed. Illustrative results are reported for a set of 96 IASI L1C orbits acquired over a full year (4 orbits per month for each IASI-A and IASI-B from July 2013 to June 2014) . Further, this survey provides organized data and facts to assist future research and the atmospheric scientific community

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Significant medical image compression techniques: a review

    Get PDF
    Telemedicine applications allow the patient and doctor to communicate with each other through network services. Several medical image compression techniques have been suggested by researchers in the past years. This review paper offers a comparison of the algorithms and the performance by analysing three factors that influence the choice of compression algorithm, which are image quality, compression ratio, and compression speed. The results of previous research have shown that there is a need for effective algorithms for medical imaging without data loss, which is why the lossless compression process is used to compress medical records. Lossless compression, however, has minimal compression ratio efficiency. The way to get the optimum compression ratio is by segmentation of the image into region of interest (ROI) and non-ROI zones, where the power and time needed can be minimised due to the smaller scale. Recently, several researchers have been attempting to create hybrid compression algorithms by integrating different compression techniques to increase the efficiency of compression algorithms

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Compresión Digital en Imágenes Médicas

    Get PDF
    Imaging technology has long played a principal role in the medical domain, and as such, its use is widespread in the diagnosis and treatment of numerous health conditions. Concurrently, new developments in imaging techniques and sensor technology make possible the acquisition of increasingly detailed images of several organs of the human body. This improvement is indeed advantageous for medical practitioners. However, it comes to a cost in the form of storage and telecommunication infrastructures needed to handle high-resolution images reliably. Ordinarily, digital compression is a mainstay in the efficient management of digital media, including still images and video. From a technical point of view, medical imaging could take full advantage of digital compression technology. However, nuances unique to medical data impose constraints to the application of digital compression in medical images. This paper presents an overview of digital compression in the context of still medical images, along with a brief discussion on related regulatory and legal implications.La Imagenología desempeña un papel protagónico en el campo médico, siendo su uso ampliamente generalizado en el diagnóstico y tratamiento de numerosos trastornos de la salud.Nuevos desarrollos en la adquisición de imágenes y en la tecnología de sensores hacen posible obtener imágenes más detalladas de varios órganos del cuerpo humano. Tal mejora es ciertamente ventajosa para la práctica médica, pero supone un encarecimiento de los recursos tecnológicos necesarios para manejar imágenes de alta resolución de manera confiable. Comúnmente, el manejo eficiente de medios digitales se apoya principalmente en la compresión digital. Desde un punto de vista técnico, las imágenes médicas podrían aprovechar las ventajas de la compresión digital. Sin embargo, peculiaridades de los datos médicos imponen restricciones a su uso. Este artículo presenta un vistazo a la compresión digital en el contexto de las imágenes médicas, y una breve discusión de los aspectos regulatorios y legales asociados a su uso
    corecore