4,546 research outputs found

    Advanced interferometric techniques for high resolution bathymetry

    No full text
    International audienceCurrent high-resolution side scan and multibeam sonars produce very large data sets. However, conventional interferometry-based bathymetry algorithms underestimate the potential information of such soundings, generally because they use small baselines to avoid phase ambiguity. Moreover, these algorithms limit the triangulation capabilities of multibeam echosounders to the detection of one sample per beam, i.e., the zero-phase instant. In this paper we argue that the correlation between signals plays a very important role in the exploration of a remotely observed scene. In the case of multibeam sonars, capabilities can be improved by using the interferometric signal as a continuous quantity. This allows consideration of many more useful soundings per beam and enriches understanding of the environment. To this end, continuous interferometry detection is compared here, from a statistical perspective, first with conventional interferometry-based algorithms and then with high-resolution methods, such as the Multiple Signal Classification (MUSIC) algorithm. We demonstrate that a well-designed interferometry algorithm based on a coherence error model and an optimal array configuration permits a reduction in the number of beam formings (and therefore the computational cost) and an improvement in target detection (such as ship mooring cables or masts). A possible interferometry processing algorithm based on the complex correlation between received signals is tested on both sidescan sonars and multibeam echosounders and shows promising results for detection of small in-water targets

    Audio Fingerprinting for Multi-Device Self-Localization

    Get PDF
    This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K007491/1

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter
    • …
    corecore