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ABSTRACT

Advanced Techniques for
High-Throughput Cellular

Communications

Yingming (Allan) Tsai

The next generation wireless communication systems require ubiquitous high-throughput

mobile connectivity under a range of challenging network settings (urban versus ru-

ral, high device density, mobility, etc). To improve the performance of the system,

the physical layer design is of great importance. The previous research on improv-

ing the physical layer properties includes: a) highly directional transmissions that

can enhance the throughput and spatial reuse; b) enhanced MIMO that can elim-

inate contention, enabling linear increase of capacity with number of antennas; c)

mmWave technologies which operate on GHz bandwidth to offer substantially higher

throughput; d) better cooperative spectrum sharing with cognitive radios; e) better

multiple access method which can mitigate multiuser interference and allow more

multi-users.

This dissertation addresses several techniques in the physical layer design of the

next generation wireless communication systems. In chapter two, an orthogonal fre-

quency division with code division multiple access (OFDM-CDMA) systems is pro-

posed and a polyphase code is used to improve multiple access performance and make

the OFDM signal satisfy the peak to average ratio (PAPR) constraint. Chapter three

studies the I/Q imbalance for direct down converter. For wideband transmitter and

receiver that use direct conversion for I/Q sampling, the I/Q imbalance becomes a

critical issue. With higher I/Q imbalance, there will be higher degradation in quadra-



ture amplitude modulation, which degrades the throughput tremendously. Chapter

four investigate a problem of spectrum sharing for cognitive wideband communica-

tion. An energy-efficient sub-Nyquist sampling algorithm is developed for optimal

sampling and spectrum sensing. In chapter five, we study the channel estimation of

millimeter wave full-dimensional MIMO communication. The problem is formulated

as an atomic-norm minimization problem and algorithms are derived for the channel

estimation in different situations.

In this thesis, mathematical optimization is applied as the main approach to

analyze and solve the problems in the physical layer of wireless communication so

that the high-throughput is achieved. The algorithms are derived along with the

theoretical analysis, which are validated with numerical results.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 High Throughput for Wireless Systems

In recent years, the demand of high-speed data service of mobile users increases ex-

ponentially. However, the spectrum for cellular networks is limited, so the licensed

frequency bands become scarce and expensive. In practice, the bands are limited

within spectrum typically from several hundred megahertz (MHz) to few gigahertz

(GHz) [Dahlman et al., 2011]. Hence, advanced technologies and mobile communi-

cation systems have to be developed. The next generation wireless communication

systems investigate to improve the physical layer (PHY) transmission mechanisms to

increase bit rate and reduce interference. These approaches include: new multiple

access scheme, multi-user interference mitigation, enhanced wide-band transceiver,

spectrum sensing with sharing, new high-bandwidth and full-dimensional MIMO tech-

nologies. In this paper, we study the multiple access, enhanced, spectrum sensing,

mmWave full-dimensional MIMO to achieve the high throughput in wireless commu-

nication.

1



CHAPTER 1. INTRODUCTION

1.2 Research Motivation and Objectives

The existing LTE/LTE-A systems can provide a data rate of 100 Mbps in downlink

and 50Mbps in uplink [Thr, 2008], [Dahlman et al., 2011]. However, the modulation

scheme in LTE/LTE-A has high PAPR, which causes signal distortion in communi-

cation. To solve such problem, we propose an OFDM-CDMA system that employs

polyphase codes to support variable spreading factors with constant envelope. In

addition, we propose to use polyphase sequences as an orthogonal multiple access

scheme for improving uplink multiple access scheme.

Another problem for the exiting communication systems is the I-Q channel im-

balance. In the analog domain of a direct down-conversion system, a demodulated

complex signal inherently includes amplitude-phase imbalance between In-phase (I)

and Quadrature-phase (Q) signal paths. This imbalance exists because these signals

are not perfectly matched to each other. The I/Q amplitude and phase imbalance pro-

duces a sideband image that severely degrades the error vector magnitude (EVM) of

the received signal. The higher the IQ imbalanced, the higher the distortion will be in

the QAM constellation. For frequency selective I/Q imbalance, i.e., band-dependent

I/Q imbalance increases the difficulty of I/Q compensation. These facts motivate us

to study frequency selective I/Q imbalance compensation methods.

Radio frequency (RF) spectrum is a valuable but tightly regulated resource due

to its unique and important role in wireless communications. With the growing

of wireless services, the demands for the RF spectrum increases as well, leading to

scarce spectrum resources. Moreover, it has been reported that the localized temporal

and geographic spectrum utilization is extremely low. The current spectrum policy

allocating a fixed-frequency band to individual wireless services, is known to be inef-

ficient. Recently, the Federal Communications Commission (FCC) is developing new

spectrum policies, which allow secondary users to access a licensed band when the

primary user is absent. Many narrowband spectrum sensing algorithms have been

studied in the literature, including matched filtering, energy detection, and cyclo-

2



CHAPTER 1. INTRODUCTION

stationary feature detection [Yucek and Arslan, 2009]. While present narrowband

spectrum sensing algorithms have focused on exploiting spectral opportunities over

narrow frequency range, cognitive radio networks will eventually be required to ex-

ploit spectral opportunities over a wide frequency range from hundreds of megahertz

to several gigahertz for higher throughput. Driven by Shannon’s famous formula

that, under certain conditions, the maximum theoretically achievable bit rate is pro-

portional to the spectral bandwidth. Hence, different from narrowband spectrum

sensing, wideband spectrum sensing aims to find more spectral opportunities over a

wide frequency range and achieve higher opportunistic aggregate throughput in cog-

nitive radio networks. However, conventional wideband spectrum sensing techniques

based on standard analog-to-digital converters (ADCs) could lead to unaffordably

high sampling rate or implementation complexity. Hence, revolutionary wideband

spectrum sensing techniques become increasingly important. In addition, sampling

in wide spectrum is challenging because it consumes more power. In this thesis, we

study the spectrum sensing with sub-Nyquist sampling such that the user terminals

can efficiently sense ultra wideband spectrum and consumes less power.

Although mmWave technology has been known for many decades [Rappaport et

al., 2014], the mmWave systems have mainly been deployed for military applications.

With the development of signal processing, mmWave technology has gained great

interest. We study the mmWave full-dimensional MIMO system. With the support

from large number of antennas, massive MIMO is showing an increasing spectral

efficiency. In 3GPP [Thr, 2008], a full-dimensional MIMO (FD-MIMO) technology

has been introduced for massive MIMO in cellular system. An FD-MIMO system can

also deliver a large improvement to the high-order multi-user MIMO (MU-MIMO)

[Jindal, 2006]. Compared to the existing LTE systems, it improves the capacity by

2-4 times according to the simulation. FD-MIMO is considered as one of the key

5G mmWave MIMO technologies and provides better SNR and system dimension by

making use of active antenna array and three-dimensional channels.

3



CHAPTER 1. INTRODUCTION

This thesis aims to develop new physical layer techniques to achieve high through-

puts in wireless communications. We explore new signal processing techniques in

these systems and channel models. We also provide theoretical results of the suffi-

cient conditions of successful estimation. We also study various methods to improve

the efficiency of the algorithms. The performance of the results are verified by the

numerical results.

1.3 Thesis Contributions

The technical contributions of the thesis are summarized as follows.

1.3.1 Uplink Orthogonal Multiple Access

We propose a OFDM-CDMA system that employs polyphase codes to support vari-

able spreading factors. A systematic approach for constructing the polyphase code

sequences of variable spreading factors is developed. Polyphase codes exhibit bet-

ter auto- and cross-correlation properties than Hadamard codes. When employed in

OFDM-CDMA systems, polyphase codes result in certain structured multiple-access

interference (MAI) caused by multipath. Analytical and numerical results show that

OFDM-CDMA systems employing polyphase codes have better PAPR performance

than those using Hadamard codes. The BER performance of the OFDM-CDMA sys-

tem using polyphase codes is evaluated by numerical results and compared to that of

the OFDM-CDMA system using Hadamard codes with and without clipping.

1.3.2 I/Q Imbalance

Frequency-dependent I/Q imbalance is one of the major impairments in the direct-

conversion receivers (DCR) for high-speed wideband wireless systems. We propose

two new blind methods for compensating frequency-dependent I/Q imbalance. The

first one is a time-domain approach. Specifically we develop a blind identifiability

4



CHAPTER 1. INTRODUCTION

condition based on which a cost function and a gradient descent search algorithm

are proposed for blind I/Q imbalance compensation. The second blind method is a

frequency-domain approach for OFDM systems. Here we provide blind estimators

for the frequency-selective I/Q imbalance parameters, which once obtained, the I/Q

imbalance can then be compensated by a simple single-tap matrix filter inversion. We

provide extensive simulation results to demonstrate the performance of the proposed

algorithms.

1.3.3 Wideband Spectrum Sensing

In this topic, we consider the problem of locating multiple active spectrum subbands

in a wide range of frequency bands. A major challenge associated with such wideband

spectrum sensing is that it is either infeasible or too expensive to perform Nyquist

sampling on the wideband signal. In this chapter, we propose a sensing scheme based

on a sub-Nyquist sampling method called multicoset sampling, which is similar to the

polyphase implementation of the Nyquist sampling, but requires less A/D converters.

In contrast to the traditional sub-Nquist approaches where the wideband signal is

first reconstructed from the sub-Nyquist samples, we develop a method that directly

estimates the power spectrum of the wideband signal of interest using the sub-Nyquist

samples, by exploiting its statistical properties. We also characterize the statistical

distribution of the proposed power spectrum estimator, based on which we obtain a

constant-false-alarm energy detector for the frequency bins. Simulation results are

provided to demonstrate the effectiveness of the proposed multiband spectrum sensing

method based on sub-Nyquist sampling.

5



CHAPTER 1. INTRODUCTION

1.3.4 Millimeter Wave Full-dimensional MIMO Channel Es-

timation

The millimeter-wave (mmWave) full-dimensional (FD) MIMO system employs planar

arrays at both the base station and user equipment and can simultaneously support

both azimuth and elevation beamforming. In this chapter, we propose atomic-norm-

based methods for mmWave FD-MIMO channel estimation under both uniform planar

arrays (UPA) and non-uniform planar arrays (NUPA). Unlike existing algorithms such

as compressive sensing (CS) or subspace methods, the atomic-norm-based algorithms

do not require to discretize the angle spaces of the angle of arrival (AoA) and angle

of departure (AoD) into grids, thus provide much better accuracy in estimation. In

the UPA case, to reduce the computational complexity, the original large-scale 4D

atomic norm minimization problem is approximately reformulated as a semi-definite

program (SDP) containing two decoupled two-level Toeplitz matrices. The SDP is

then solved via the alternating direction method of multipliers (ADMM) where each

iteration involves only closed-form computations. In the NUPA case, the atomic-

norm-based formulation for channel estimation becomes nonconvex and a gradient-

decent-based algorithm is proposed to solve the problem. Simulation results show

that the proposed algorithms achieve better performance than the CS-based and

subspace-based algorithms.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 propose to use polyphase codes for uplink OFDM-CDMA systems to

address the peak-to-average power ratio (PAPR) problem. Analytical and numerical

results show that OFDM-CDMA systems employing the proposed polyphase codes

have remarkably better PAPR performance than that using Hadamard codes. BER

performance of OFDM-CDMA systems employing polyphase codes is close to that of

6



CHAPTER 1. INTRODUCTION

system using Hadamard codes without clipping. The low PAPR property with better

BER performance makes the proposed OFDM-CDMA systems using the polyphase

codes a promising solution to uplink multicarrier and multiple access systems.

Chapter 3 studies the problem of I/Q imbalance. In this chapter, We have pro-

posed two blind approaches to compensate the frequency-dependent I/Q imbalance

for wideband direct-conversion receivers. One is a time-domain method for general

systems and the other is a frequency-domain method that is specifically designed

for OFDM systems. For the time-domain method, a blind identifiability condition is

given based on which a cost function for compensating the I/Q imbalance is proposed;

and a gradient-descent algorithm is derived to obtain the compensating filter. For the

frequency-domain method, we have developed estimators for the frequency-dependent

I/Q imbalance parameters based on the second-order statistics of the received signal;

the compensation filter can then be obtained in closed-form given these estimated

parameters.

Chapter 4 is concerned with the problem of multiband spectrum sensing. We

have proposed a new technique for multiband spectrum sensing using sub-Nyquist

sampling. The basic procedure of the proposed method involves multicoset sampling

of the signal, followed by power spectrum estimation and energy detection on the fre-

quency bins. The only prior knowledge needed is an upper bound on the number of

active subbands in the frequency range of interest. And the proposed multiband sens-

ing algorithm outputs the number of active subbands and the location of each active

subband. The key ingredients of the proposed wideband sensing algorithm, including

a power spectrum estimator based on multicoset sampling, and a constant-false-alarm

frequency-bin energy detector, are developed theoretically; and their effectiveness is

demonstrated by simulations.

Chapter 5 studies the problem of atomic-norm-based channel estimation for mil-

limeter wave full-dimensional MIMO systems. In this chapter, a new approach based

on atomic-norm minimization problem for the channel matrix estimation problem for

7
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mmWae full-dimensional MIMO systems is proposed. The system model includes

a basestation (BS) equipped with a very large number of antennas communicating

simultaneously with a large number of autonomous single-antenna user terminals

(UT)s, over a realistic physical channel with finite scattering model. Based on the

idea that the degrees of freedom of the channel matrix are smaller than its large num-

ber of free parameters, a low-rank matrix approximation based on CS is proposed and

solved via a SDP. Our analysis and experimental results suggest that the proposed

method outperforms the existing ones in terms of estimation error performance with-

out requiring any knowledge about the statistical distribution or physical parameters

of the propagation channel.

8
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Chapter 2

Polyphase Codes for Uplink

OFDM-CDMA Systems

2.1 Introduction

Future wireless communication networks need to provide broadband services such

as wireless Internet access to subscribers. Such broadband services require reliable

and high-rate communications over time- and frequency-dispersive channels with lim-

ited spectrum and intersymbol interference (ISI) caused by multipath fading. The

direct-sequence code-division multiple-access (DS-CDMA) technique is adopted by

the third-generation (3G) wireless communication systems due to its advantages over

conventional time-division multiple-access (TDMA) and frequency-division multiple-

access (FDMA) systems. However, its capacity is limited by multiple-access interfer-

ence (MAI). On the other hand, orthogonal frequency-division multiplexing (OFDM)

is one of the most promising solutions to the next-generation wireless systems. OFDM

has high spectral efficiency and adaptive coding and modulation can be employed

across subcarriers. With cyclic prefix (CP), OFDM offers excellent robustness to

time-dispersion (multipath fading). Implementation is simplified because the base-

band modulator and demodulator involve simply IFFT/FFT. Simple receiver struc-
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ture (since only one tap equalizer is required) is another advantage of OFDM systems.

OFDM has been chosen for European digital audio and video broadcasting, WLAN

standards (802.11), WiMax (802.16), and is being considered for the long term evo-

lution of 3GPP.

Recently, there has been significant interest in combining CDMA and OFDM

[Hara and Prasad, 1997], [Yee et al., 1993], such as MC-CDMA and MC-DS-CDMA.

These systems keep the advantages of both CDMA and OFDM systems. Despite

all the attractive advantages, OFDM and OFDM-CDMA as well as multi-carrier

systems in general have their disadvantages. One major disadvantage of the multi-

carrier system in the uplink is its inherent high peak-to-average power ratio (PAPR).

The PAPR of multi-carrier signals increases as the number of subcarriers increases.

When high PAPR signals are transmitted through the nonlinear power amplifier,

severe signal distortion will occur. Clipping will cause inter-subcarrier modulation,

out-of-band radiation and performance degradation. Therefore, highly linear power

amplifier with power backoff is required for multi-carrier systems. This results in the

low power efficiency and shortened battery life of the mobile device. Techniques for

reducing PAPR in OFDM systems have been studied extensively [Han and Lee, 2005],

[Tarokh and Jafarkhani, 2000], including non-linear block coding, partial transmission

sequences, selective mapping, tone injection, clipping, filtering, etc. The effectiveness

of these methods varies and each has its own inherent trade-off in terms of complexity,

performance and spectral efficiency.

It is desirable to keep the advantages of CDMA and OFDM, and in the meanwhile

to mitigate the PAPR problem. In this paper, we propose to use polyphase codes for

OFDM-CDMA systems to address this issue. Although polyphase codes have been

considered for multi-carrier CDMA (MC-CDMA) systems in a few works , [Popović,

1998],[Tan and Stüber, 2005], none of these works can support variable spreading

factors. Our contribution is that we extend the works in [Popović, 1998],[Tan and

Stüber, 2005] by proposing a method enabling polyphase codes to support variable

10
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spreading factors in OFDM-CDMA systems. A systematic approach for constructing

the polyphase code sequences of variable spreading factors for OFDM-CDMA system

is developed. The resulting polyphase code set can support large number of users

and variable spreading factors just like Hadamard codes, which are usually used in

conventional OFDM-CDMA systems. The resulting polyphase code sequences not

only have better auto- and cross-correlation properties in both time- and frequency-

domains than Hadamard codes, but also have constant envelopes (for medium and

large spreading factors) or low PAPR’s (for small spreading factors) which is preferred

for uplink/reverse link transmission. Another interesting property of the OFDM-

CDMA systems employing the polyphase codes is that the MAI between any two

codes can be avoided if their cyclic shift distance is larger than their maximum mul-

tipath channel delay spread. Performance of the proposed systems is analyzed and

compared with OFDM-CDMA systems using Hadamard codes. Numerical results

show that OFDM-CDMA systems using proposed polyphase codes have better PAPR

performance than those using Hadamard codes. With a receiver of the same complex-

ity, OFDM-CDMA systems using polyphase codes can achieve bit error rate (BER)

performance no worse than those using Hadamard codes without clipping, and better

than those with clipping.

The remainder of the chapter is organized as follows. The system descriptions are

given in Section 2.2. Analyses of the PAPR property and the MAI structure of the

OFDM-CDMA system using polyphase codes are performed in Section 2.2.2. Section

2.4 presents the numerical results for PAPR and uncoded BER performance. Section

2.5 concludes the paper.

11
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2.2 System Descriptions

2.2.1 Polyphase Sequences

Polyphase sequence has been found to have some important properties: such as

periodic orthogonality and the constant amplitude zero auto-correlation (CAZAC)

property [Chu, 1972], [Frank and Zadoff, 1962]. Polyphase sequence has been pro-

posed to be employed as spreading codes with a fixed spreading factor in OFDM-

CDMA systems [Popović, 1998], [Tan and Stüber, 2005]. However, in previous works

polyphase sequence cannot support variable spreading factors in OFDM-CDMA sys-

tems, which made it not suitable for practical systems. To address this issue, we

propose a new scheme to construct variable spreading factors polyphase codes and

replace the Hadamard codes that are usually used in conventional OFDM-CDMA sys-

tems. Suppose that the maximum spreading factor that the polyphase codes support

in the system is N = 2n.

A typical polyphase sequence, Zadof-Chu sequence [Chu, 1972], is used in the

paper. The Zadoff-Chu polyphase sequence with length N , is given by [Chu, 1972]

gN [k] = e−j
πk2

N , k = 0, ..., N − 1. (2.1)

We call the polyphase sequence given in (2.1) as the primitive polyphase sequence. In

order to use polyphase sequence for the purpose of multiple access, more orthogonal

polyphase sequences need to be created. This can be achieved by shifting the primitive

polyphase sequence in phase. The `th phase-shifted version of the generic orthogonal

polyphase sequence, g`N = {g`N [k]; k = 0, ..., N − 1}, is given by

g`N [k] = e−j
πk2

N · e−j
2πk`
N = e−j

π(k2+2k`)
N , ` = 0, ..., N − 1. (2.2)

The polyphase sequence in (2.2) is a special case of generalized chirp like (GCL) se-

quence [Popović, 1992]. When N = 22m, the GCL sequences have minimum alphabet

size of
√
N [Popović, 1994b]. For example, for GCL sequence with length N = 256,

12



CHAPTER 2. POLYPHASE CODES FOR UPLINK OFDM-CDMA SYSTEMS

the alphabet size is 16. That is, phase-shifted GCL sequences with length 256 can

be constructed using 16-PSK symbols. An alternative way is to use Frank sequence

[Frank and Zadoff, 1962], which is a special case of GCL sequence with minimum

alphabet size. In general, using Frank sequence or GCL sequence with minimum

alphabet size results in reduced implementation complexity [Popović, 1994a].

The polyphase sequence has the following properties:

2.2.1.1 Periodic cross-correlation

Consider two phase-shifted polyphase sequences g
`p
N and g

`q
N . Without loss of

generality, we assume that `p > `q. Their periodic cross-correlation function R
g
`p
N ,g

`q
N

[τ ]

(as defined in [Sarate, 1979]) can be expressed as

R
g
`p
N ,g

`q
N

[τ ] =
1

N

N−1∑
k=0

g
`p
N [k](g

`q
N [(τ + k)N ])∗

=
1

N

N−τ−1∑
k=0

g
`p
N [k](g

`q
N [k + τ ])∗ +

1

N

N−1∑
k=N−τ

g
`p
N [k](g

`q
N [k + τ −N ])∗

=
1

N

N−1∑
k=0

e−j
π(k2+2k`p)

N ej
π((k+τ)2+2(k+τ)`q)

N

=
1

N
ej

π(τ2+2τ`q)

N

N−1∑
k=0

ej
2πk(τ+`q−`p)

N = ej
π(τ2+2τ`q)

N δ[τ + `q − `p], (2.3)

where δ[·] is the Kronecker delta function. It is obvious that the absolute value of

periodic cross-correlation in (2.3) equals to 1 only when τ = `p−`q. Hence, the phase-

shifted polyphase sequences g
`p
N and g

`q
N have periodic zero cross-correlation property

within a zone and the length of the zero cross-correlation zone (ZCZ) equals to their

phase shift difference (i.e., ZCZ = `p−`q). This property is called Z-orthogonal prop-

erty. Two sequences g
`p
N and g

`q
N are Z-orthogonal if their cross-correlation satisfies
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the following conditions [H. Torii and Suehiro, 2004], [Welch, 1974]

R
g
`p
N ,g

`q
N

[τ ] =

1, τ = 0, `p = `q

0, 0 ≤ |τ | < ZCZ, `p 6= `q

. (2.4)

It is obvious that the periodic auto-correlation (`p = `q) equals to 1 only when τ = 0.

2.2.1.2 Time reversal property

The time reversal sequence of gN equals to itself, that is

gN [N − k] = e−j
π((N−k)2)

N = e−j
πk2

N ej2πke−jπN = gN [k]. (2.5)

2.2.1.3 Constant envelope property after IDFT

The root cause of the high PAPR problem in OFDM-CDMA systems using Hadamard

codes is that the constant envelope of the Hadamard code is destroyed after IDFT

(or IFFT) operation. Clearly both polyphase sequence gN and its phase-shifted

version g`N have constant envelope (i.e., |gN [k]| = 1 and |g`N [k]| = 1). Moreover,

the IDFT output of these sequences also has constant amplitude property. We let

eN = IDFT{gN}. The DFT of the product of two sequences eN and e∗N equals to

the circular convolution of the frequency domain sequences gN and its frequency re-

versal {(gN [N − k])∗} [Proakis, 1996a]. By (2.5), we have {(gN [N − k])∗} = g∗N .

Therefore, the circular convolution of gN and g∗N equals to the circular (periodic)

auto-correlation. Using (2.3), the DFT of {eN [q]e∗N [q]} can be expressed as

DFT {eN [q]e∗N [q]} =
√
NRgN ,gN

[τ = 0] |`p=`q=
√
Nδ[q], q = 0, . . . , N − 1. (2.6)

Taking IDFT of both sides of (2.6), we have

{eN [q]e∗N [q]} =
1√
N

N−1∑
p=0

(√
Nδ[p]

)
ej

2πqp
N = 1, q = 0, . . . , N − 1. (2.7)
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Therefore, IDFT output of gN has constant amplitude. Since g`N is the phase-shifted

version of gN , IDFT output of g`N has constant amplitude as well. However, for

Hadamard codes their circular convolution in frequency domain does not equal to δ[τ ],

therefore their time-domain signal amplitudes do not have constant envelopes. This

unique and interesting property of polyphase sequences motivates us to investigate

the feasibility of using the polyphase sequence with variable spreading factors in

OFDM-CDMA systems to mitigate the high PAPR problem.

2.2.2 OFDM-CDMA System Using Polyphase Codes

2.2.2.1 Spreading code construction

In this section, we propose an approach to construct polyphase codes with variable

spreading factors which have not been addressed in previous works [Popović, 1998],

[Tan and Stüber, 2005]. Suppose that there are N = 2n subcarriers in the OFDM-

CDMA system. The variable spreading factor polyphase code set with maximum

spreading factor N is built based on the primitive polyphase sequences of the length

N . With a specific spreading factor M = 2m (m ≤ n), each of the Ns = N
M

= 2n−m

data symbols is spread and mapped to M equal spaced subcarriers. The spreading

code used to spread the ith (i ∈ {0, . . . , Ns − 1}) symbol on subcarriers k =

pNs + i, (p = 0, . . . , M − 1) is generated by the polyphase decomposition of the

original sequence g`N with factor Ns. The resulted code sequence, which consists of

M polyphase components of the original sequence g`N , is denoted as c`M,i. Then, the

pth element of the sequence c`M,i is given by

c`M,i[p] = g`N [p ·Ns + i] = e−j
π(i2+2i`)

N e−j
π(Nsp

2+2p(`+i))
M . (2.8)

Note that the term e−j
π(Nsp

2+2p(`+i))
M in (2.8) is not a CAZAC sequence since Ns is

not relatively prime to M . Therefore, c`M,i is not a CAZAC sequence either. In

other words, although the primitive polyphase sequence is Zadoff-Chu sequence, the

spreading sequence derived in (2.8) is not.
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Consider two sequences c
`p
Mp,ip

and c
`q
Mq ,iq

for spreading sequences. For a sequence

c`M,i used as spreading sequence in OFDM-CDMA systems, the subscript i is the

starting index of subcarriers that the sequence is mapped to. Let Np = N
Mp

, and

Nq = N
Mq

stands for number of transmit modulation symbols. That is, sequence c
`p
Mp,ip

is spread to subcarriers pNp+ ip, and sequence c
`q
Mq ,iq

is spread to subcarriers qNq+ iq.

Without loss of generality, we assume that Mp ≥ Mq. Let (·)N denotes the modulo-

by-N operation. If the two sequences are not mapped to overlapping subcarriers (i.e.,

(iq−ip)Np 6= 0), their periodic cross-correlation is always zero since they are orthogonal

in the frequency domain. Therefore, we only examine the periodic cross-correlation

between c
`q
Mq ,iq

and c
`p
Mp,ip

when they are mapped to the same subcarriers. Since the

elements of c
`p
Mp,ip

are mapped to the same subcarriers as c
`q
Mq ,iq

only on subcarriers

iq, Nq + iq, ..., (Mq − 1)Nq + iq. Hence, the periodic cross-correlation of the two

sequences c
`p
Mp,ip

and c
`q
Mq ,iq

becomes equivalent as the periodic cross-correlation of

c
`p
Mq ,iq

and c
`q
Mq ,iq

. That is

R
c
`p
Mp,ip

,c
`q
Mq,iq

[τ ] = R
c
`p
Mq,iq

,c
`q
Mq,iq

[τ ]

=
1

Mq

ej
2πiq(`q−`p)

N

Mq−1∑
k=0

e
−j π(Nqk

2+2k`p)

Mq e
j
π(Nq(k+τ)2+2(k+τ)`q)

Mq

=
1

Mq

ej
2πiq(`q−`p)

N e
j
πNq(τ2+2τ`q)

Mq

Mq−1∑
k=0

e
j

2πk(Nqτ+`q−`p)

Mq

=
1

Mq

ej
2πiq(`q−`p)

N e
j
πNq(τ2+2τ`q)

Mq δ[(Nqτ + `q − `p)Mq ]

=
1

Mq

ej
2πiq(`q−`p)

N e
j
πNq(τ2+2τ`q)

Mq δ[(τ +
(`q − `p)
Nq

)Mq ]. (2.9)

Then, it is obvious that if (`q − `p)/Nq is an integer the zero cross-correlation zone

has the length of |`q − `p| /Nq. On the other hand, if (`q − `p)/Nq is not an integer,

δ[(Nqτ + `q − `p)Mq ] always equals to zero.
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2.2.2.2 OFDM-CDMA system using polyphase codes

Now consider the OFDM-CDMA system using polyphase codes given in (2.9) as

spreading codes. According to (2.8), the pth chip of the ith data symbol dui of user

u with spreading factor M = 2m is transmitted on subcarrier k = pNs + i. The

transmitted signal on subcarrier k, denoted by Xu
i [pNs + i], can be expressed as

Xu
i [pNs + i] = dui c

`u
M,i[p], p = 0, . . . , M − 1. (2.10)

Hence, the vectors Xu
i , i ∈ {0, . . . , Ns − 1}, are interlaced in the frequency domain.

Therefore, the frequency domain transmitted vector is given by Xu =
Ns−1∑
i=0

Xu
i . The

major benefit for equal-space spreading is to ensure the IDFT outputs have either

constant envelope or low PAPR. Equal-space spreading also provides the benefit of

better frequency diversity for transmitted data. The discrete-time transmitted signal,

denoted by xu[q], is given by

xu[q] =
1√
N

N−1∑
k=0

Xu[k]ej
2πqk
N , q = 0, . . . , N − 1. (2.11)

A cyclic prefix (CP) with an appropriate length Lcp is then appended to the OFDM

symbol xu for transmission. Suppose that the sample duration in the OFDM-CDMA

system is Tc. The maximum channel delay length of a user is defined as its maximum

channel delay spread (in time) normalized by the sample duration Tc. Assume that

there are totally U users in the system and the maximum multipath channel length

of user u is Lu. In order to avoid inter-symbol interference (ISI), the CP length

Lcp needs to cover the maximum channel delay spread plus the propagation delay

of an individual user τu. That is τu/Tc + Lu ≤ Lcp + 1, for all u [Verde, 2004].

This requirement is called quasi-synchronization. In practical systems, the timing

advance technique can be used to align uplink timing between users by the amount

of propagation delay. Then, the CP length only needs to cover the maximum channel

delay spread.

During one OFDM symbol duration, the multipath channel impulse response of
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user u is given by hu =
[
hu[0], hu[1], ... , hu[Lu − 1]

]T
. We assume that the

uplink timing of all users is synchronized. At the receiver, after discarding the CP

the received signal is demodulated by an N -point DFT, and the kth subcarrier output

during the one OFDM symbol interval can be expressed as

Y [k] =
U−1∑
u=0

Hu[k]Xu[k] +W [k], k = 0, . . . , N − 1, (2.12)

where Hu[k] = 1√
N

Lu−1∑
q=0

hu[q]e−j
2πkq
N is the channel impulse response of the kth sub-

carrier in frequency domain and W [k] =
N−1∑
q=0

n0[q]e−j
2πkq
N , n0[q] is the complex-valued

and also circularly symmetric Gaussian noise with power spectral density N0

2
. The

system diagram of the OFDM-CDMA system using polyphase codes is shown in Fig.

2.1.
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Figure 2.1: Proposed OFDM-CDMA system diagram.

The spreading (or despreading) of one data symbol by polyphase code with a

spreading factor M requires M complex multiplications while spreading (or despread-

18
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ing) by Hadamard code requires M complex additions (or sign reversions). For one

OFDM symbol where N/M data symbols are transmitted, it takes a total of N (i.e.,

N/M×M) complex multiplications. Hence, the overall complexity of OFDM-CDMA

system using polyphase codes (including DFT operation) equals to N +NlogN com-

plex multiplications. For Hadamard codes, the overall complexity including DFT

operation equals to NlogN complex multiplications and N complex additions. There-

fore, the implementation complexity difference between the two systems is trivial.

2.2.2.3 Z-orthogonal code tree

Since spreading codes used by different users on non-overlapping subcarrier sets are

always orthogonal to each other in the frequency domain, it is only necessary to dis-

cuss code orthogonality between spreading sequences using the same (or overlapping)

subcarrier sets. For example, for the case N=16, spreading sequences c`8,1 and c`4,2

are applied on non-overlapping subcarriers and are therefore orthogonal to each other

in frequency domain. For notational brevity, we omit the index i of c
`p
M,i here.

In conventional spread-spectrum communication systems, orthogonal variable spread-

ing factor (OVSF) codes are arranged in a tree structure based on their orthogonality.

In this paper, we define a Z-orthogonal variable spreading factor (ZO-VSF) code tree

similar to the conventional code tree for Hadamard codes. Each channelization code

in the new ZO-VSF code tree has a unique description of c`M where M is the spread-

ing factor of the code and ` is the code index, 0 ≤ ` ≤ M − 1. Each level M in

the code tree defines channelization codes corresponding to spreading factor M . The

ZO-VSF code tree is constructed based on Z-orthogonality, as given in (2.9), between

polyphase codes and has following properties:

P1 ) The ZO-VSF code tree offers the same code set size as conventional OVSF

Hadamard code tree.

P2 ) Any two polyphase codes c
`p
M and c

`q
M at the Mth level of code tree are Z-

orthogonal.
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P3 ) A polyphase code c`M is Z-orthogonal to all codes at the code tree level 2M

except for its two children codes c`2M and cM+`
2M .

Proof of P3):

Using (2.3), (2.8) and (2.9), the cross-correlation between any two polyphase

spreading sequences c
`p
Mp

and c
`q
Mq

equals to 1
Mq
e
jπNq(τ2+2τ`q)

Mq δ[(Nsτ + `q − `p)M ] with

M = min{Mq,Mp}. When ∆` = kM , we have

R
c
`p
M ,c

`q
M

[0] 6= 0, ∆` = `q − `p = kM. (2.13)

According to the second criterion in (2.4), c
`p
Mp

and c
`q
Mq

are not Z-orthogonal. �

The ZO-VSF code tree of polyphase codes can be built according to (2.9) and

(2.13) as follows. Starting with M = 1, and `p = 0 for a node in the code tree, say

spreading code c
`p
M , obtain its children code as c

`p
2M and c

M+`p
2M . Similarly, the children

codes of c
`p
2M are c

`p
4M and c

2M+`p
4M , and the children codes of c

M+`p
2M are c

M+`p
4M and

c
3M+`p
4M . Repeat these steps until it reaches the maximum spreading factor N .

Consider one example of N=16 (that is, n = 4). The code set of spreading factor

4 (m = 2) are generated from the original polyphase sequences of length 16 using

(2.8). Code sets of spreading factors other than 4 are generated similarly. If code c0
4

is used, then all other codes that are not Z-orthogonal to it, i.e., codes c0
1, c0

2, c0
8, c4

8,

c0
16, c4

16, c8
16, and c12

16 are blocked according to (2.13). In this way, a ZO-VSF code

tree is built as shown in Fig. 2.2.

2.3 Performance Analysis

In this section, we analyze the PAPR and the MAI of the OFDM-CDMA system

using polyphase codes.

2.3.1 PAPR Analysis

PAPR is the metric that describes the degree of the transmitted signal amplitude

fluctuation, and is an important metric in transmitter design. A general definition of
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Figure 2.2: Polyphase sequence code tree for N=16.

discrete-time PAPR is given by

PAPR ≡ max{|xu[q]|2}
E[|xu[q]|2]

. (2.14)

where xu[q] is the transmitted signal given by (2.11). In (2.14), the term of E[|xu[q]|2]

is the average power of an OFDM symbol. When the data symbols Xu[k] in (2.11)

are of unitary power, the OFDM symbols xu[q] are also of unitary power. The term

max{|xu[q]|2} is the largest power of output signals within one OFDM symbol. Note

that a system with constant envelope has max{|xu[q]|2} being unitary power.

The PAPR performance of the OFDM-CDMA system using the proposed orthog-

onal polyphase codes is analyzed next. Assume there are N = 2n subcarriers in

the system and the spreading factor M = 2m is used by a user. Assume M-PSK

modulation is employed. The user can transmit up to Ns = N
M

data symbols during

one OFDM symbol interval. After data spreading and subcarrier mapping given by

(2.10), the chips vector Xu
i is fed into IDFT. Here, Xu

i is defined as the frequency do-

main chips sequence
{
dui c

`
M,i[p]

}
upsampled by factor M and multiplied by a circulant

operator matrix Ci as defined in the Appendix. Recall that the frequency domain
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transmitted vector is given by Xu =
Ns−1∑
i=0

Xu
i . Due to the linearity of IDFT, we have

IDFT{Xu} =
Ns−1∑
i=0

IDFT{Xu
i }. (2.15)

This property provides a different angle for us to investigate the PAPR of the system.

OFDM-CDMA systems using polyphase codes will have different PAPR performance

depending on the used spreading factors. We have the following proposition for PAPR

of OFDM-CDMA systems using polyphase codes. The detailed proof is given in the

Appendix.

Proposition 1: For the medium to high spreading factor case (2m ≥ 2dn/2e), the

OFDM-CDMA system using the proposed polyphase codes has constant envelope (be-

fore pulse shape filtering). In this case, the IDFT output of each data symbol sequence

is still unitary power and does not overlap with other data symbols’ IDFT output. In

this way, the constant power property of output signals after IDFT operation is kept.

For the low spreading factor case (1 < 2m < 2dn/2e), the OFDM-CDMA system us-

ing the proposed polyphase codes has low PAPR. In this case, the theoretical peak of

output signals of IDFT operation is bounded by 10 · log10 2n−2m.

In practical OFDM-CDMA systems, usually small spreading factors will not be

used because they do not provide enough frequency spreading gain [Cai et al., 2004].

Therefore, the spreading factors of polyphase codes will be reasonably large in prac-

tical OFDM-CDMA system. Then, the PAPR of an OFDM-CDMA system using the

polyphase codes will be dramatically lower than that of an OFDM-CDMA system

using Hadamard codes, as illustrated in Section IV by simulation results.

2.3.2 MAI Analysis

In this paper, MAI analysis is performed based on the following assumptions:

A1) The maximum channel delay spread for all users is Lmax and the minimum

spreading factor used in the system is greater than maximum channel delay spread,
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i.e. M > Lmax, to ensure the maximum frequency diversity [Cai et al., 2004].

A2) The uplink timing of all users is synchronized. That is, the CP covers all the

timing difference caused between users caused by channel delay spread and propaga-

tion delay.

A3) There is no phase error generated in the modulation and demodulation processes.

In an OFDM-CDMA system using polyphase codes, users with different spreading

factors experience difference MAI. The user with the smallest spreading factors among

all users suffer from the highest MAI. In this section, the MAI of the user with the

smallest spreading factor will be analyzed and regarded as the performance lower

bound.

We assume that a particular user u has the smallest spreading factor Mu. Then,

user u can transmit up to Nu = N/Mu data symbols per OFDM symbol. For the iuth

data symbol of user u spread on subcarrier k = pNu + iu, the ivth data symbol of

another user v spread on the same subcarrier k = qNv + iv could cause interference.

Therefore, we have pNu + iu = qNv + iv and iv = (iu)Nv . Using (2.8), (2.9) and

A2), the received frequency domain chip signal of user u at the kth subcarrier can be

written as

Y u
iu [k] = Hu[k]duiuc

`u
Mu,iu

[p] + I[k] +W [k], (2.16)

where I[k] =
U∑

v=1, v 6=u
Hv[k]dvivc

`v
Mv ,iv

[q] represents the MAI term on the kth subcarrier.

We assume that perfect channel information of user u is known at the receiver.

After the matched filtering is applied, the MAI term of the iuth data symbol of user

u can be expressed as

MAI =
Mu−1∑
p=0

I[k](Hu[pNu + iu]c
`u
Mu,iu

[p])∗

=
Mu−1∑
p=0

U∑
v=1, v 6=u

Hv[qNv + iv]d
v
ivc

`v
Mv ,iv

[q](Hu[pNu + iu]c
`u
Mu,iu

[p])∗. (2.17)

Similar to the analysis of periodic cross-correlation of two sequences in Section II.B,
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(2.17) can be rewritten as

MAI =
U∑

v=1, v 6=u

Mu−1∑
p=0

Hv[pNu + iu]d
v
ivc

`v
Mu,iu

[p](Hu[pNu + iu]c
`u
Mu,iu

[p])∗

=
U∑

v=1, v 6=u

dvive
j

2πiu(`u−`v)
N

Mu−1∑
p=0

Hv[p ·Nu+iu](H
u[p ·Nu+iu])

∗ej
2πp(`u−`v)

Mu .(2.18)

Denote Φ`u,`v(iu) =
Mu−1∑
p=0

Hv[p·Nu+iu](H
u[p·Nu+iu])

∗ as the channel cross-correlation

term without frequency shift. Then, we need to examine the term Φ`u,`v(iu) in order to

explore the structure of MAI. Note that for any iu 6= 0, Φ`u,`v(iu) is a frequency-shifted

version of Φ`u,`v(0). Then, we study the channel cross-correlation term Φ`u,`v(0) first.

Note that Hu[pNu] is the down-sampled version (with factor Nu) of Hu[k]. After

dropping the constant Nu, H̃
u[p] becomes the down-sampled version of Hu[k]. Then,

we have

H̃u[p] = Hu[pNu] =
1√
N

N−1∑
k=0

hu[k]e−j
2πpNuk

N =
1√
N

N−1∑
k=0

hu[k]e−j
2πpk
Mu . (2.19)

The IDFT of H̃u[p] is given by

h̃u[p] =
1√
Mu

Mu−1∑
q=0

(
1√
N

N−1∑
k=0

hu[k]e−j
2πqk
Mu

)
ej

2pq
Mu =

1√
NMu

N−1∑
k=0

hu[k]
Mu−1∑
q=0

ej
2π(k−p)q
Mu

=
Mu√
NMu

Nu−1∑
q=0

hu[p+ qMu] =
1√
Nu

Nu−1∑
q=0

hu[p+ qMu]. (2.20)

Combining (2.18-2.20) and applying Plancherel theorem [Proakis, 1996a], we have

Φ`u,`v(0) =
Mu−1∑
p=0

Hv[p ·Nu]H
u[p ·Nu]

∗ =
Mu−1∑
p=0

h̃u[p]h̃v[p]∗. (2.21)

Using (2.21) and applying the circular time and frequency shift property, then (2.18)

can be expressed as

MAI =
U∑

v=1, v 6=u

dvive
j 2πiu∆`

N

Mu−1∑
p=0

h̃u[p]h̃v∆`[p]
∗ =

∑
v 6=u

dvive
j 2πiu∆`

N Rh̃uh̃v
((∆`)Mu), (2.22)
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where ∆` = (`u− `v) is the cyclic shift distance between codes used by the two users,

h̃
v

∆` = C∆`h̃
v

is actually h̃
v

being circularly shifted by (∆`)Mu , and Rh̃uh̃v
is the

time-domain channel delay spread circular cross-correlation of h̃
u

and h̃
v
.

Recall that the length of the time-domain channel impulse response of the user u is

Lu. Assume that two users u and v have max{Lu, Lv} ≤ Lmax < M = min{Mu,Mv}.

Then, we have {h̃u[p]} = 0 , for p = Lu, . . . , M − 1. When the cyclic shift distance

between codes used by users u and v satisfies following condition

Lu ≤ (∆`)M ≤M − Lv, (2.23)

there is no MAI between them. This is because user v’s channel impulse response h̃
v

is circularly shifted by (∆`)M and Lv ≤M − (∆`)M , i.e., each element of {h̃v∆`[p]} =

0, p = 0, . . . , Lu−1. Furthermore, each element of {h̃u[p]} = 0, for p = Lu, . . . , M−

1. Therefore, the circular cross-correlation of two users’ channel impulse responses,

i.e.,
M−1∑
p=0

h̃u[p](h̃v∆`[p])
∗, equals to 0 in (2.22). As indicated in (2.23), the minimum

spreading factor M should be no less than Lu + Lv. When Lu = Lv = Lmax, we have

M ≥ 2Lmax (2.24)

Therefore, the minimum ZCZ equals to Lmax.

Suppose that there are U users in the system, the spreading factor of user u is

Mu . For the primitive polyphase sequence with length N , there are N unique cyclic

shifts. Since the minimum ZCZ ≥ Lmax , those cyclic shifts are divided into zones

with length of Lmax. Therefore, the maximum number of ZCZs obtained in this way

is bN/Lmaxc . As the code tree structure indicates, a code with spreading factor

Mu (Mu 6 N) blocks N/Mu codes with the maximum spreading factor N in the

code tree. The N/Mu blocked codes correspond to N/Mu equal-distant (distance is

Mu) cyclic shifts of the primitive polyphase sequence with length N . From the code

assignment perspective, assignment of a code with spreading factor Mu is equivalent

as assignment of N/Mu equal-distant (distance is Mu ) cyclic shifts of the primitive

polyphase sequence of length N .
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The equivalent number of the cyclic shifts used by users in the primitive polyphase

sequence of length N , denoted by Ue , is given by

Ue =
U∑
u=1

N

Mu

(2.25)

If Ue ≤ bN/Lmaxc, proper code assignment can be performed to ensure that there is

no MAI among codes. The codes are assigned in the order of ascending spreading

factor. Subsequent codes are assigned in such a way that their corresponding cyclic

shifts are at least Lmax away from previously assigned cyclic shifts. In this way, there

is no mutual interference between any two users. When the condition Ue ≤ bN/Lmaxc

is not met, there exist at least two users u and v whose cyclic shift difference |`u − `v|

is less than Lmax. Hence, MAI exists among users.

2.4 Simulation results

This section presents simulation results of PAPR and BER performance of OFDM-

CDMA systems using polyphase codes and Hadamard codes respectively. Table 1

summarizes the system parameters used in the simulation.

2.4.1 PAPR Performance

Root raised cosine (RRC) filtering is necessary for reducing out-of-band emissions and

meeting transmission spectrum mask requirement. RRC filtering (with typical roll-off

factor 0.22) will increase PAPR of any system with constant envelope by more than

4 dB. In practical systems, only PAPR results after RRC filtering will be considered.

Therefore, instead of presenting the PAPR results after IDFT, we present the PAPR

results after RRC filtering.

PAPR of OFDM-CDMA systems with 256 subcarriers using orthogonal polyphase

codes is compared to PAPR yielded by Hadamard codes in Fig. 2.3 (a). Two spread-

ing factors 8 and 16 are used for comparison. PAPR of orthogonal polyphase codes
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of spreading factor 16 corresponds to the case of medium to high spreading factor in

Proposition 1, where the OFDM-CDMA system using orthogonal polyphase codes

has constant envelope before RRC filtering. As we can see, the 99.9% percentile

PAPR of OFDM-CDMA system using orthogonal polyphase codes of spreading fac-

tor 16 is about 6.6 dB lower than that of OFDM-CDMA system using Hadamard

codes. PAPR of orthogonal polyphase codes of spreading factor 8 corresponds to

the case of low spreading factor in Proposition 1, where the system has low PAPR

before RRC filtering. As we can see, the PAPR yielded by orthogonal polyphase

codes is about 2.6 dB lower than that yielded by Hadamard codes. Similar trends

are observed for OFDM-CDMA system with higher subcarriers. PAPR performance

of OFDM-CDMA systems with 1024 subcarriers using orthogonal polyphase codes is

compared to that yielded by Hadamard codes in Fig. 2.3 (b). Orthogonal polyphase

codes provided about 8.2 dB and 3.7 dB PAPR improvement at spreading factors 32

and 16, respectively.
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Figure 2.3: PAPR of OFDM-CDMA systems using polyphase codes and Hadamard

codes with (a) SF=8 and 16, N=256 subcarriers (b) SF=16 and 32, N =1024 sub-

carriers.

27



CHAPTER 2. POLYPHASE CODES FOR UPLINK OFDM-CDMA SYSTEMS

2.4.2 Uncoded BER Performance

As forementioned, OFDM-CDMA system using polyphase codes suffers MAI when

cyclic shift difference between codes, ∆`, is smaller than Lmax. Assume that the

channel is linearly time-invariant within one OFDM symbol duration and channel

information is known at the receiver by using training sequence (or pilots). In the

following discussion, it is assumed that each user only uses a single spreading code

for uplink transmission. This is a fair assumption. For uplink transmission, (for

example, in UMTS 3GPP [Thr, 2003]), supporting variable data rate is achieved by

using variable spreading, adaptive modulation and coding instead of multiple codes.

This is because multiple code transmission increase PAPR remarkably. Then, the

terms ”code” and ”user” are exchangeable.

The multiuser detection should be performed based on the minimum spreading

factor M used in the system. Soft outputs for multi-user detector are needed because

partial estimates are employed for the detection of users with spreading factors larger

than M [Boariu and Ziemer, 2001]. Without loss of generality, we assume that user u

has the minimum spreading factor M in the system. Recall that H
(u)
k is the frequency

domain channel response of the kth subcarrier of the uth code and cuk is the kth

element of the uth code. Denote A
(u)
i = [cu0H

u
i , c

u
1H

u
i+Ns−1, . . . , c

u
M−1H

u
MNs+i−1]T , i =

0, . . . , Ns− 1, where A
(u)
i contains the code elements and the corresponding channel

responses. The vector A
(u)
i of each individual code(user) is concatenated to form a

system transmission matrix of the all the codes in the system, which can be expressed

as

Ai =
[

A
(1)
i A

(2)
i · · · A

(u)
i · · · A

(U)
i

]
.

The linear MMSE MUD solution [Verde, 2004], [Verdu, 1998] in frequency domain

can be expressed in matrix form as

Zi = AH
i (AiA

H
i + σ2I)−1. (2.26)

Then, the despread and detected signal vector d̂ = ZiYi, where Yi is the received
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signal in frequency domain, and Zi is the receiver processing matrix in (2.26). The

detected signal vector d̂ contains the data symbols of all the codes in a concatenated

form such that d̂i =
[
d̂

(1)
i d̂

(2)
i · · · d̂

(u)
i · · · d̂

(U)
i

]T
. The d̂

(u)
i is either the de-

tected data of user u if its spreading factor equals to M or the ith estimate of user u

when its spreading factor is greater than M .

Consider typical urban deployment scenario, where the maximum channel delay

spread is 4 µs (corresponds to ∼ 8Tc). First, we compare the uncoded BER per-

formance of the two systems when the system using polyphase codes does not have

MAI. We consider a OFDM-CDMA system using N = 256 subcarriers. According

to (2.24), the minimum spreading factor M equals to 2× 8 = 16. BER performance

when there are 2 codes of spreading factor 32 and 2 codes of spreading factor 64 in a

OFDM-CDMA system using polyphase codes is shown in Fig. 2.4. Codes {c1
32, c17

32}

are assigned for the 2 codes using spreading factor 32, codes {c17
64, c33

64} are assigned

for the 2 codes using spreading factor 64. According to (2.23) and (2.25), there is

no MAI among these 4 codes. As observed in Fig. 2.4, BER performance of the

OFDM-CDMA system using multiple polyphase codes is the same as single code

performance since there is no mutual interference between codes. BER performance

yielded by multiple of Hadamard codes is about 1 − 1.5 dB worse than (at BER of

0.1%) that yielded by single code. That is because of the mutual interference be-

tween the two Hadamard codes. Since there is only two codes interfering each other

in OFDM-CDMA system using Hadamard codes, performance degradation caused

by MAI is not significant. The performance difference between the two systems will

increase as the number of interferers increases in the OFDM-CDMA system using

Hadamard codes.

Then, we compare the uncoded BER performance of the two systems when both

have MAI. We consider OFDM-CDMA systems using polyphase codes and Hadamard

codes with different number of codes (8 and 12) of spreading factor 16, N = 1024

subcarries, as shown in Fig. 2.5. When there are 8 polyphase codes used in the
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Figure 2.4: BER performance of OFDM-CDMA system using polyphase codes and

Hadamard codes with N = 256 subcarriers and SF=32, 64.
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system, {c1
16, c3

16, c5
16, c

7
16, c9

16, c11
16, c13

16, c15
16} are used. When there are 12 polyphase

codes used in the system, {c1
16, c2

16, c3
16, c

4
16, c5

16, c
6
16, c7

16, c
8
16, c9

16,

c11
16, c13

16, c15
16} are used. According to (2.23) and (2.25), there is MAI between any two

polyphase codes. Therefore, this corresponding to the worst case for OFDM-CDMA

system using polyphase codes.

For a transmit signal with high PAPR to be free from distortion, a large back-off

will be used by the power amplifier to provide linear operation. However, large dy-

namics back-off decreases the power efficiency dramatically, which in turns decreases

the battery life. In practical mobile applications, low power efficiency is not tolera-

ble. Therefore, the transmit signal needs to be predistorted (or clipped) to preserve

power efficiency. As the PAPR results in Fig. 2.3 (b) indicates, transmit signal in

the OFDM-CDMA system using Hadamard codes with spreading factor 16 has a

PAPR about 3 dB higher than that using polyphase codes. In order to have the

clipped transmit signal in the OFDM-CDMA system using Hadamard codes to have

the same PAPR as that using polyphase codes, a clipping of 3 dB is applied. For the

OFDM-CDMA system using Hadamard codes, BER performance with and without

clipping is evaluated.

As shown in Fig. 2.5, the OFDM-CDMA system using polyphase codes has very

close (or the same) BER performance with that using Hadamard codes without clip-

ping. As the number of used codes increases, BER performance yielded by both

polyphase codes and Hadamard codes degrades by the same amount. Based on the

numerical results, we conclude that the worst case BER of OFDM-CDMA system us-

ing polyphase code is approximately the same as that of OFDM-CDMA system using

Hadamard codes. However, in practice the OFDM-CDMA system using Hadamard

codes cannot achieve such good performance because transmitted signal has to be

clipped. As shown in Fig. 2.5, BER performance of the OFDM-CDMA system using

Hadamard codes with clipping degrades 2.5 - 3 dB compared to that without clipping

and that using polyphase codes. Therefore, in practice the OFDM-CDMA system us-
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Figure 2.5: BER performance of OFDM-CDMA system using polyphase and

Hadamard codes with SF=16, N =1024 subcarriers (for Hadamard codes with 3

dB clipping and without clipping).

ing polyphase codes has better BER performance than that using Hadamard codes.

2.5 Conclusions

In the chapter we proposed to use polyphase codes for OFDM-CDMA systems to

address the PAPR problem. Another interesting property of the proposed OFDM-

CDMA systems employing the polyphase spreading code is that the MAI between any

two codes can be avoided if their cyclic shift distance to their maximum multipath

delay spread. Analytical and numerical results show that OFDM-CDMA systems
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employing the proposed polyphase codes have remarkably better PAPR performance

than that using Hadamard codes. BER performance of OFDM-CDMA systems em-

ploying polyphase codes is close to that of system using Hadamard codes without

clipping, and better than that with clipping. The low PAPR property with better

BER performance makes the proposed OFDM-CDMA systems using the polyphase

codes a promising solution to uplink multicarrier systems.

Appendix: Proof of Proposition 1

2.5.1 Medium to high spreading factor case: 2dn/2e ≤ 2m ≤ 2n

For notational brevity, we omit the user index u of data symbol dui in the following

analysis. After multiplied by the polyphase code sequence c`M,i, the spread data

sequence of the ith data symbol di after subcarrier mapping can be expressed as

Xi = dic̃
`
M,i, (2.27)

where c̃`M,i is obtained by upsampling c`M,i by a factor of M followed by multi-

plying a circulant operator matrix Ci. IN is a N × N identity matrix and its

columns are denoted as {v1,v2, . . . ,vN}. The circulant operator matrix Ci equals to

{vi,vi+1, . . . ,vN ,v1, . . . ,vi−1}, which is a circulant permutation of columns of IN .

The IDFT operation of Xi can be written as FNXi, where FN is the N×N IDFT

matrix, whose element on the hth row and kth column, FN(h, k), is given by

FN(h, k) =
1√
N
ej2hk

π
N , h, k = 0, ..., N − 1 . (2.28)

Denote xi as the IDFT of Xi. For the convenience of analysis, xi can also be rewritten

as

xi =

[
N−1∑
k=0

F (0, k)Xi(k), . . .,
N−1∑
k=0

F (h, k)Xi(k), . . . ,
N−1∑
k=0

F (N − 1, k)Xi(k)

]T
.

(2.29)
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Suppose that the total number of subcarriers N = 2n, spreading factor M = 2m and

the number of data symbols before spreading Ns = N
M

= 2n−m. For the ith data

symbol, there are data only on the subcarriers Ns · q + i , q = 0, 1, ..., M − 1, i =

0, 1, ..., Ns − 1. In the IDFT operation, data on these subcarriers are multiplied by

elements on the kth column of IDFT matrix FN , where k= Nsq + i. Let us define

xi(h) =
N−1∑
k=0

FN(h, k)Xi(k).

We first analyze the hth row of IDFT output, where h = Nsp + i + s, p =

0, 1, ..., M − 1 , i = 0, 1, ..., Ns − 1, i+ s ∈ {0, . . . , Ns − 1}. Then xi(h) is given

by

xi(h) =
di√
N

N−1∑
k=0

ej2hk
π
N e−j(k

2+2k`) π
N =

di√
N

N−1∑
k=0

ej(2(h−`)k−k2) π
N . (2.30)

Plugging k = Nsq + i, q = 0, 1, ..., M − 1 and h = Nsp+ i+ s into equation (2.30),

we have

xi(h) =
di√
N

M−1∑
q=0

ej(2(h−`)−k)k π
N

=
di√
N

M−1∑
q=0

ej(Ns2p+2i+2s−2`−Nsq−i)(Nsq+i) πN

=
di√
N

M−1∑
q=0

ej(N
2
s (2p−q)q+2Ns(s−`)q+2Ns(p−`)i+i2) πN

=
di√
N
ej(2(p−`)iNs+i2) πN

M−1∑
q=0

ej(2pq−q2)πN
2
s

N ej
2πNs(s−`)q

N

=
di√
N
ej(2(p−`)i N

M
+i2) πN

M−1∑
q=0

ej(2pq−q
2) πN
M2 ej

2π(s−`)q
M

=
di√
N
ej((p−`)i2n−m+1+i2) πN

2m−1∑
q=0

e−j(−2pq+q2) π
22m−n ej

2π(s−`)q
2m . (2.31)

For (s− `)M = 0, the ej
2π(s−`)q

2m = 1. Since 2m/22m−n = 2n−m is an integer and

1√
N

2m−1∑
q=0

e−j(−2pq+q2) π
22m−n = e−j

π
4 ej

p2

22m−n π is a discrete Fourier transform pair [Conolly

and Good, 1977], we have xi(h) = die
j(2(p−`)i2n−m+i2) π

2n ej
p2−22m−n−2

22m−n π. Therefore,
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|xi(h)| has constant unit energy at the hth row, where h = Nsp + i + s, p =

0 . . . ,M − 1, (s− `)M = 0.

For any (s− `)M 6= 0, for the convenience of discussion, we let

γ(q) = e−j(−2pq+q2) πN
M2 ej

2π(s−`)q
M .

We found that γ(q) = −γ(q +M/2) for N ≥ 4. Therefore, we have

M−1∑
q=0

e−j(−2pq+q2) πN
M2 ej

2π(s−`)q
M = 0.

That is, we have xi(h) = 0 for any hth row, where h = Nsp + i + s, (s − `)M 6= 0.

This means that for data symbol di there are non-zero IDFT outputs only at M rows

( h = Nsp+ i+ s , p = 0, 1, ..., M − 1 , i = 0, 1, ..., Ns − 1, (s− `)M = 0 ). In this

way, the IDFT output of each data symbol sequence di still has unit power and does

not overlap with other data symbols’ IDFT output.

2.5.2 Low spreading factor case: 1 < 2m < 2dn/2e

For a data symbol spread over M subcarriers using orthogonal polyphase code, there

are non-zero IDFT outputs only at Ns equal-spaced places. If a user transmits Ns

symbols on all N subcarriers, then each symbol’s output overlaps with other N
M2−1 =

2n−2m−1 symbols’ outputs. The 2n−2m overlapping symbols are equal-spaced as well.

Therefore, each output signal after IDFT operation is the sum of 2n−2m input signals

with constant energy. Therefore, the maximum magnitude of output signal is bounded

by 10 log10 2n−2m. �
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Table 2.1: SIMULATION PARAMETERS

Bandwidth 4.096, 16.384 MHz

FFT size 256, 1024

Subcarrier spacing 16 KHz

OFDM symbol duration 67.38 µs

Useful symbol duration 62.50 µs

Guard period 4.88 µs

Modulation QPSK

Multipath channel model ITU Pedestrian PB3 [Thr, 2003]

Maximum channel delay spread 4 µs

Required BER 10−2, 10−3

Roll off factor of RRC filtering 0.22

Spreading sequence Walsh-Hadamard and Polyphase codes

Length of spreading sequence 16, 32, 64, 128

System load 50% and 75%
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Chapter 3

Blind Frequency-dependent I/Q

Imbalance Compensation for

Direct-conversion Receivers

3.1 Introduction

The evolution of wireless communication systems has been driving the design and

implementation of modern radio transceivers. The next-generation wireless networks

will support high data-rate applications, which require efficient and low-cost wideband

radio design for the terminals. The direct conversion receiver (DCR) has become a

major approach to achieving compact and low cost transceiver design in wideband

radio [Abidi, 1995]. In DCR, the received signal is quadrature down-converted from

RF directly to a baseband signal. One of the problems of DCR, is that downconverter

circuits can easily result in a phase and amplitude imbalance between the in-phase

(I) and quadrature-phase (Q) signals. Furthermore, to reject interference bands in

wideband radio systems, the low-pass filter of I and Q signal branch in DCR require

shaper cut-off frequency (imply higher-order design) Fig. 3.1(a). The low-pass filter

has the non-ideal characteristics introduced during the manufacture. Those non-ideal
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characteristics will cause coefficient discrepancy in transfer function of a filter. Hence,

I/Q imbalance parameters are frequency-dependent and thus further complicate the

problem for DCR in wideband systems. Due to the inevitable mismatch between

the in-phase and quadrature signal paths/components, cross-talk or interference will

occur between the mirror-frequencies upon down conversion to baseband. Thus, the

I/Q imbalance degrades the effective signal-to-interference power ratio and causes

performance degradation. The impact of I/Q imbalance is more severe to systems

employing high-order modulations and high coding rates. Therefore, effective I/Q im-

balance compensation is essential for the design of high data-rate systems employing

DCR.

Some existing I/Q imbalance estimation and compensation methods are based on

making use of training signals, e.g., [Tarighat et al., 2005; Schuchert et al., 2001].

However, the transmission of training signals either costs radio resources or is not

optimal design for I/Q imbalance compensation and thus blind compensation methods

are of great interest. Several blind compensation methods for frequency-dependent

I/Q imbalance have been developed. In particular, in [Anttila et al., 2008], a method

is developed that exploits a second-order statistic characteristic of the signal called the

properness property; and an adaptive compensation based on the least-mean-square

(LMS) algorithm is proposed. However, the convergence of the LMS algorithm is

typically slow and the steady-state performance exhibits a high variance due to the

stochastic nature of the LMS algorithm, which makes it less attractive for high-speed

applications. In [Valkama et al., 2001], a compensation method is proposed based on

the multichannel blind deconvolution (MBD) algorithm [Haykin, 1996]. This scheme

requires the probability density function (pdf) of the transmitted signal to be given.

The methods proposed in this paper, however, do not require to know the pdf of the

transmitted signal, but only assume that the transmitted signal is a proper and white

process, which is a mild condition that is met by practical communication signals.

Here we give a necessary and sufficient condition for perfect frequency-dependent I/Q
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imbalance compensation, and, based on this condition, we propose a time-domain

compensation method.

The OFDM systems are commonly adopted by the next-generation cellular sys-

tems. Most of the existing frequency-dependent I/Q imbalance compensation algo-

rithms for OFDM systems are based on special pilot patterns [Xing et al., 2005;

Narasimhan et al., 2008]. In this paper, we also propose a blind I/Q imbalance com-

pensation method for OFDM systems. The proposed method first estimates the I/Q

imbalance parameters for each subcarrier based on the second-order statistics of the

received signal on that subcarrier, and then applies the compensation filter that are

calculated based on the estimated parameters.

The remainder of the paper is organized as follows. In Section 3.2, the frequency-

dependent I/Q imbalance signal model is described and the compensation problem

is formulated. In Section 3.3, we give a condition for perfect I/Q imbalance com-

pensation and based on which we propose a new blind time-domain I/Q imbalance

compensation method. In Section 3.4, we develop a blind frequency-domain I/Q im-

balance compensation method for OFDM systems. Simulation results are provided

in Section 3.5 and finally Section 3.6 concludes the paper.

3.2 System Descriptions

3.2.1 I/Q Imbalance Signal Model

A typical block diagram of the RF front-end for DCR is given in Fig. 3.1(a) and its

equivalent mathematical model in Fig. 3.1(b). The received RF signal with a central

frequency wc is expressed as

r(t) = 2Re
{
s(t)ejwct

}
= s(t)ejwct + s∗(t)e−jwct, (3.1)
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Figure 3.1: (a) The direct-conversion receiver with I/Q imbalance compensation. (b)

The effective model of a direct-conversion receiver with I/Q imbalance.
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where s(t) = sI(t)+ jsQ(t) is the baseband received signal and ∗ denotes the complex

conjugate. In general we have

s(t) = h(t, τ)⊗ d(t)

where d(t) is the transmitted data signal, h(t, τ) is the time-varying channel response

and⊗ denotes the convolution. The received RF signal r(t) is directly down-converted

by a local oscillator signal uLO(t) with mismatched I and Q branches [Kiss and Pro-

danov, 2004]. Denote γ and φ as the mismatched amplitude and phase, respectively,

then the local oscillator signal uLO(t) of an imbalanced quadrature demodulator is

given by

uLO(t) = cos (wct)− jγ sin (wct+ φ) . (3.2)

The down-converted signal x(t) = xI(t) + jxQ(t) is then expressed as

x(t) = LPF I {r(t) cos (wct)} − jLPFQ {γr(t) sin (wct+ φ)}

= LPF I
{

1

2
[s(t) + s∗(t)] +

1

2

[
s(t)e2jwct + s∗(t)e−2jwct

]}
+

jLPFQ
{
γ

2j

[
s(t)e−jφ−s∗(t)ejφ

]
+
γ

2j

[
s(t)ej(2wct+φ)−s∗(t)e−j(2wct+φ)

]}
,(3.3)

where LPF I and LPFQ denote the low-pass filters for I and Q branches, respec-

tively. The frequency response of LPF I and LPFQ are denoted as GI(f) and GQ(f)

respectively. From (3.3), the frequency-domain I- and Q-branch signals after low-pass

filtering are given respectively as

XI(f) =
1

2
GI(f) [S(f) + S∗(−f)] ,

and XQ(f) =
γ

2j
GQ(f)

[
S(f)e−jφ − S∗(−f)ejφ

]
. (3.4)

Then the received baseband signals X(f) is

X(f) =
GI(f) + γGQ(f)e−jφ

2︸ ︷︷ ︸
G1(f)

S(f) +
GI(f)− γGQ(f)ejφ

2︸ ︷︷ ︸
G2(f)

S∗(−f). (3.5)
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Hence the time-domain down-converted signal is given by

x(t) = g1(t)⊗ s(t) + g2(t)⊗ s∗(t), (3.6)

with g1(t) =
gI(t) + γgQ(t)e−jφ

2
, and g2(t) =

gI(t)− γgQ(t)ejφ

2
. (3.7)

It is seen that the I/Q imbalance causes the received baseband signal s(t) distorted by

its image signal s∗(t). To evaluate the signal distortion caused by the I/Q imbalance,

we define the analog front-end image-reject ratio (IRR) [Kiss and Prodanov, 2004]

measured in decibels (dB) as

IRR(f) = 10 log10

|G1(f)|2

|G2(f)|2
. (3.8)

After sampling x(t) with a sampling interval Ts, the received discrete-time down-

converted baseband signal becomes

x[n] = x(nTs) = g1[n]⊗ s[n] + g2[n]⊗ s∗[n]. (3.9)

3.2.2 Second-order Signal Statistics

The autocorrelation function (ACF) of a discrete-time complex random signal x[n]

is defined as Rx[m] = E {x[n]x∗[n−m]}, where E{·} denotes expectation. Another

second-order statistic, the complementary autocorrelation function (CACF) is defined

as Cx[m] = E {x[n]x[n−m]}. A complex random signal x[n] is proper if its CACF is

equal to zero for all lag m [Neeser and Massey, 1993a], i.e., Cx[m] = 0,∀ m. In this

paper, we assume that the transmitted data signal d[n] is a zero-mean proper white

process, i.e.,

Rd[m] = E {d[n]d∗[n−m]} = σ2
dδ[m], (3.10)

Cd[m] = E {d[n]d[n−m]} = 0, ∀m, (3.11)

where δ[m] is the Dirac delta function. Let s[n] be the received signals after the

time-varying channel, i.e.,

s[n] = h[n, l]⊗ d[l] =
∑
l

h[n, l]d[n− l]. (3.12)
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In this paper, we assume that the time-varying channel h[n, l] is wide-sense stationary

uncorrelated scattering (WSSUS), i.e., its ACF is expressed as [Hoeher, 1992]

E{h[n1, l1]h∗[n2, l2]} = β(l1)J0 (2πfDTs(n1 − n2)) δ[l1 − l2], (3.13)

where β(l1) is a function of l1, fD is the maximum Doppler shift, and J0()̇ is the

zero-order Bessel function of the first kind. We next show that the received signal

s[n] in (3.12) remains white and proper. First, its ACF can be evaluated as

Rs[m] =
∑
l1

∑
l2

E {h(n, l1)h∗(n−m, l2)}E {d[n− l1]d∗[n−m− l2]}

= σ2
d

∑
l

E {h(n,m+ l)h∗(n−m, l)}=σ2
d

∑
l

β(l)J0(2πfDTsm)︸ ︷︷ ︸
σ2
s

δ[m].(3.14)

Moreover, the CACF of s[n] is given by

Cs[m] =
∑
l1

∑
l2

E{h(n, l1)h(n−m, l2)}E{d[n− l1]d[n−m− l2]}︸ ︷︷ ︸
Cd[m+l2−l1]=0

= 0, (3.15)

3.3 Time-domain I/Q Imbalance Compensation

Assume that the filters g1[n] and g2[n] in (3.9) are approximated by FIR filters of

length P and define G[p] =

g1[p] g2[p]

g∗2[p] g∗1[p]

 , p = 0, . . . , P − 1. Denote further x[n] =

[
x[n] x∗[n]

]T
and s[n] =

[
s[n] s∗[n]

]T
. Then (3.9) can be rewritten in the form of the

following conjugate signal model

x[n] =
P−1∑
p=0

G[p]s[n− p]. (3.16)

3.3.1 Identifiability

The objective of the I/Q imbalance compensation is to filter the signal x[n] such that

the output is a scaled and delayed version of s[n] or s∗[n]. Mathematically, the goal
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is to find a separation filter of length L of the following form

W[l] =

w11[l] w12[l]

w∗12[l] w∗11[l]

 , l = 0, 1, . . . , L− 1, (3.17)

such that the filter output y[n] =
[
y[n] y∗[n]

]T
is given by

y[n] =
L−1∑
l=0

W[l]x(n− l) = λPs[n− n0], (3.18)

where P is a permutation matrix, λ is a scaling factor, and n0 is a delay.

We further define the following stacked signal model. Denote

y[n] =
[
yT [n],yT [n− 1], . . . ,yT [n−M + 1]

]T
,

x[n] =
[
xT [n],xT [n− 1], . . . ,xT [n− (M + L) + 1]

]T
,

W =


W[0] W[1] . . . W[L− 1] 0 . . . 0

0 W[0] W[1] . . . W[L− 1] 0
. . .

0 0
. . . . . . . . . . . . . . .

0 0
. . . W[0] W[1] . . . W[L− 1]

 ,

where M ≥ L− 1. Then we have

y[n] = W x[n]. (3.19)

We have the following result on the identifiability for the I/Q imbalance problem.

Proposition 1. We have y[n] = λPs[n− n0] if and only if E
{
y[n]yH [n]

}
= κI, for

some constant κ.

Proof : We first show the necessary condition. Note that

E
{
y[n]y[n]H

}
=


Ry[0] Ry[1] . . . Ry[M − 1]

Ry[−1] Ry[0] . . . Ry[M − 2]
...

...
. . . . . .

Ry[−(M − 1)] Ry[−(M − 2)] . . . Ry[0]

 = κI. (3.20)
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Moreover, since y[n] = [y[n] y∗[n]]T , we have

Ry[m] =

Ry[m] Cy[m]

C∗y [m] R∗y[m]

 .
Then (3.20) implies the following:

Cy[m] , E {y[n]y[n−m]} = 0, ∀m, (3.21)

and Ry[m] , E {y[n]y∗[n−m]} = κδ[m]. (3.22)

We can now proceed to show that if y[n] satisfies (3.21)-(3.22) then y[n] = λPs[n−τ ].

From (3.16) and (3.18), we can write

y[n] = f1[n]⊗ s[n] + f2[n]⊗ s∗[n], (3.23)

where f1[n] and f2[n] are composite filters derived from {W[l]} and {G[l]}. Substi-

tuting (3.23) into (3.21), and by using (3.14)-(3.15), we have

Cy[m] = σ2
s

(
f1[−m]⊗ f2[m] + f1[m]⊗ f2[−m]

)
= σ2

s

(
h[−m] + h[m]

)
= 0, (3.24)

where h[n] , f1[n] ⊗ f2[−n]. Note that (3.24) holds only when h[n] = 0, ∀n or h[n]

is anti-symmetric and thus non-causal. We can exclude the later case for non-casual

filters do not exist in practice. Hence, we can conclude that either f1[n] = 0 or

f2[n] = 0. Let us first assume f2[n] = 0. Then y[n] in (3.23) becomes

y[n] = f1[n]⊗ s[n]. (3.25)

Substituting (3.25) into (3.22), we obtain

Ry[m] = σ2
s (f ∗1 [−m]⊗ f1[m]) = κδ[m]. (3.26)

Now taking the Fourier transform of f ∗1 [−m] ⊗ f1[m] we have ‖F1(ω)‖2 = κ
σ2
s
, which

means f1[n] is an all-pass filter. Since f1[n] is an FIR filter, we must have f1[n] =
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λ1δ[n − n1] for some delay n1 and some scaling λ1. Hence y[n] = λ1s[n − n1] or

equivalently y[n] = λ1 · I · s[n− n1].

Similarly, if f1[n] = 0 then we will have y[n] = λ2s
∗[n − n2] or equivalently

y[n] = λ2 · J · s[n− n2], where J ,

0 1

1 0

 .
Now we proceed to prove the sufficiency. If y[n] = λPs[n − n0], then (3.20)

becomes

E
{
y[n]y[n]H

}
= λ2


PRs[0]P PRs[1]P · · · PRs[M − 1]P

PRs[−1]P PRs[0]P · · · PRs[M − 2]P
...

. . .

PRs[−M + 1]P · · · · · · PRs[0]P

 (3.27)

Since s[n] is white and proper, we have Rs[m] = σ2
sδ[m]I. Therefore, (3.27) is a

diagonal matrix. �

Remark: The output of the blind I/Q imbalance compensation filter is a delayed

and scaled version of s[n] or s∗[n], which can be resolved as follow. For the delay

estimation, many synchronization techniques can be used [Negi and Cioffi, 2002]. The

scale ambiguity can be lumped into the effective channel gain and can be removed by

channel estimation. As for resolving the ambiguity of conjugation, cyclic redundancy

check (CRC) which is common in modern commercial wireless communication systems

can be used.

3.3.2 Blind I/Q Imbalance Compensation Algorithm

In order to obtain the I/Q imbalance compensation filter W[l], based on Proposition

1, we define the following cost function by setting κ = 1

c({W[l]}) ,
∥∥∥Ry − I

∥∥∥2

F
. (3.28)

We can then obtain {W[l]} by minimizing the above cost function, i.e.,

{Wopt[l]} = min
{W[l]}

c({W[l]}). (3.29)
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We will use the gradient descent search method [Haykin, 1996] to solve (3.29). In

what follows we denote the (i, j)-th 2 × 2 submatrix of a matrix A as [A]ij ,a2(i−1)+1,2(j−1)+1 a2(i−1)+1,2(j−1)+2

a2(i−1)+2,2(j−1)+1 a2(i−1)+2,2(j−1)+2

. Using the identity

‖A‖2
F = tr(AAH) =

∑
i

tr([AAH ]ii) =
∑
i

∑
l

tr([A]il[A
H ]li),

(3.28) can be expressed as

c({W[l]}) =

L∑
i=1

L∑
j 6=i

tr
(

[Ry]ij [Ry]Hij

)
+

L∑
i=1

tr

((
[Ry]ii − I

)(
[Ry]ii − I

)H)
, (3.30)

with [Ry]ij =
[
WE

{
xxH

}
WH

]
ij
, (3.31)

and E
{
xxH

}
=


Rx[0] Rx[1] . . . Rx[M+P−1]

Rx[−1] Rx[0] . . . Rx[M+P−2]
...

...
. . .

. . .

Rx[−(M+P − 1)] Rx[−(M+P − 2)] . . . Rx[0]

 . (3.32)

Using (3.31) the term tr
(

[Ry]ij[Ry]Hij

)
in (3.30) is equal to

tr
(

[Ry]ij[Ry]Hij

)
= tr

(
[WRxW

HWRH
x WH ]ij

)
= tr

(
j+L−1∑
k1=j

j+L−1∑
k2=j

i+L−1∑
l1=i

i+L−1∑
l2=i

[W]il1 [Rx]l1k1

[
WH

]
k1j

[W]k2j

[
RH

x

]
l2k2

[
WH

]
il2

)
.(3.33)

Similarly, the term tr

((
[Ry]ii − I

)(
[Ry]ii − I

)H)
in (3.30) is expressed as

tr

((
[Ry]ii − I

)(
[Ry]ii − I

)H)
= tr

(
j+L−1∑
k1=j

j+L−1∑
k2=j

i+L−1∑
l1=i

i+L−1∑
l2=i

[W]il1 [Rx]
l1k1

[
WH

]
k1i

[W]k2i

[
RH

x

]
l2k2

[
WH

]
il2

)

−tr

(
j+L−1∑
k=j

i+L−1∑
l=i

[W]il [Rx]
lk

[
WH

]
ki

)

−tr

(
j+L−1∑
k=j

i+L−1∑
l=i

[W]ki [Rx]
lk

[
WH

]
il

)
+ I. (3.34)
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The following gradient descent iteration can be employed to solve (3.29) [Haykin,

1996; ?],

W[m](k+1) = W[m](k) − µ
(
∂c({W[l]})
∂W∗[m](k)

)
(3.35)

where W[m](k) is the m-th tap matrix of the I/Q imbalance filter at the k-th iteration,

and µ is the learning rate.

From (3.33)-(3.34), it is seen that the cost function (3.30) is composed of terms

in the forms of W[i]AWH [j]W[k]BWH [l] and W[i]AWH [j], where A and B are

2 × 2 submatrices from Rx. For example, when i = 2, j = 2, k1 = k2 = 2, l1 =

l2 = 2, one of the terms in (3.34) is [W]22 [Rx]
22

[
WH

]
22

[W]22

[
RH

x

]
22

[
WH

]
22

=

W[0]Rx[0]WH [1]W[0]RH
x [0]WH [1].

Define δi,m = 1, if i = m and 0 otherwise. Define further a matrix transformation

operator T(B) = T

b11 b12

b21 b22

 ,
b22 b12

b21 b11

. Then the gradient in (3.35) consists

of the following terms (see Appendix A for derivations)

∂

∂W∗[m]
tr
(
W[i]AWH [j]W[k]BWH [l]

)
= δi,mT

(
AWH [j]W[k]BWH [l]

)
+ δj,mW[k]BWH [l]W[i]A

+ δk,mT
(
BWH [l]W[i]AWH [j]

)
+ δl,mW[i]AWH [j]W[k]B, (3.36)

and
∂

∂W∗[m]
tr
(
W[i]AWH [j]

)
= δi,mT

(
AWH [j]

)
+ δj,mW[i]A. (3.37)

Note that the matrices A and B in (3.36)-(3.37) correspond to the autocorrelation

matrix of x[n], i.e., Rx[m] = E{x[n]xH [n − m]}, and they are estimated using the

time-average of the signal samples x[n].
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3.4 I/Q Imbalance Compensation for OFDM Sys-

tems

In this section, we consider blind I/Q imbalance compensation in OFDM systems.

For an OFDM system with N subcarriers, (3.5) becomes

X[k] = G1[k]S[k] +G2[k]S∗[−k], k = −N, . . . , 0 . . . N. (3.38)

In (3.38) S[k] = H[k]D[k] where H[k] and D[k] are the channel frequency response

and the transmitted symbol at the k-th subcarrier, respectively. As before, we as-

sume the channel satisfies the WSSUS property and the data symbols D[k] are zero-

mean and uncorrelated. Then the received signals satisfy E {S[k]S∗[k]} = σ2
s and

E {S[k]S[−k]} = 0. It is seen that the I/Q imbalance causes the signal at k-th

subcarrier corrupted by that at the −k-th subcarrier. Using (3.5), we can write

G1[k] =
GI [k]

2

(
1 +Gd[k]e−jφ

)
, (3.39)

and G2[k] =
GI [k]

2

(
1−Gd[k]ejφ

)
, (3.40)

where Gd[k] , γGQ[k]/GI [k]. Then using (3.38) we have X[k]

X∗[−k]

 =

 1 +Gd[k]e−jφ 1−Gd[k]ejφ

1−G∗d[−k]e−jφ 1 +G∗d[−k]ejφ


︸ ︷︷ ︸

G[k] 1
2
GI [k]H[k]

1
2
G∗I [−k]H∗[−k]

 D[k]

D∗[−k]

 . (3.41)

In (3.41) we have used the factor that since the low pass filter gI [n] has real impulse

response, therefore, GI [k] = G∗I [−k]. It is seen from (3.41) that the common factor

GI [k] in G1[k] and G2[k] can be absorbed into the channel. Hence the effect of the

I/Q imbalance is equivalent to a one-tap (vector) channel model and if an estimate

of the tap matrix G[k] is available, then the I/Q imbalance can be compensated for

by simply inverting G[k].
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In order to estimate G[k] in (3.41), we need to estimate Gd[k] and φ. Writing

Gd[k] in the polar form, i.e., Gd[k] = α[k]ejβ[k], then we have the following estimators

for α[k], β[k], whose derivations are given in Appendix B.

α̂[k] =

√
E
{
|X[k]−X∗[−k]|2

}
E
{
|X [k] +X∗[−k]|2

} , (3.42)

and β̂[k] = arctan

{
−
E
{
|X[k]|2 − |X[−k]|2

}
2Im {E {X[k]X[−k]}}

}
. (3.43)

The phase mismatch φ can be estimated at each subcarrier by

φ̂[k] =
E
{
|X[k]−X∗[−k]|2

}
E
{
|X [k] +X∗[−k]|2

}
Im{Gd[k]}

. (3.44)

The final estimate of φ is then given by the average over all subcarriers, i.e., φ̂ =

1
N

N∑
k=−N

φ̂[k].

In practice, the expectation operator E{·} in (3.42)-(3.44) is replaced by a time-

average operation over OFDM symbols. For example, suppose we collect U OFDM

symbols {X[k, t], k = −N, . . . , N ; t = 1, . . . , U}. Then E{|X[k]|2} ∼= 1
U

U∑
t=1

|X[k, t]|2.

In practice, the frequency-selectivity is not severe. Therefore we assume the second-

order statistics in (3.42)-(3.44) are approximately equal over some consecutive subcar-

riers. Hence we group K subcarriers when computing the average, i.e., E{|X[k0]|2} ∼=
1
KT

k0+K/2−1∑
k=k0−K/2

U∑
t=1

|X[k, t]|2. By such grouping in the frequency domain, we can reduce

the number of OFDM symbols used for averaging and thus reduce the estimation

latency. In this way, we can estimate the parameters {α[k], β[k], k = K, 2K, 3K, . . .}.

Then the parameters corresponding to other subcarriers can be obtained using inter-

polations. In particular, in our implementations, a cubic spline interpolation [Press

et al., 1992] is used to estimate α[k], and a second-order polynomial interpolation is

used to obtain smoother estimates of the phase terms β[k].
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3.5 Simulation Results

In this section we present simulation results to demonstrate the performance of the

proposed time-domain and frequency-domain blind I/Q imbalance compensation al-

gorithms

3.5.1 Simulation Setup

We have simulated an LTE OFDM system [Thr, 2008] with the following system

parameters: N = 1024 subcarriers, guard interval Ncp = 72, subcarrier spacing ∆f =

15kHz, sampling interval Ts = 0.651µs and therefore the OFDM symbol duration

is T = NTs = 0.67ms. The time-varying channel is assumed to be WSSUS and is

modeled as a tapped delay line model with exponential delay power profile [Bello,

1963]. The length of the mobile channel is Lh = 32 and the exponential decay

parameter ψ = 0.1 is defined as the amplitude variance of the last path assuming the

first path has unit variance. The channel is then normalized to have unit power. The

Doppler spectrum is assumed to follow Jake’s model [Jakes, 1974] and a normalized

maximum Doppler shift fDT = 0.22 is used in the simulations. Since our focus is

on the performance of the proposed I/Q imbalance compensation algorithms, the

channel is assumed to be perfectly known.

In the simulation, we consider two different sets of I/Q imbalance parameters.

Each of the imbalance filters gI [n] and gQ[n] is split into two filters (Fig. 3.1 (b)),

one is the desired low pass filters gnom[n] and the others are g
′
I [n] and g

′
Q[n], the

filters that captures the non-ideal characteristics introduced during the manufacture

[Kiss and Prodanov, 2004]. In practice, the non-ideal characteristics is not serve,

therefore, the taps length of g
′
I [n] and g

′
Q[n] is short. Note that since what matters

is the mismatched response gmis[n] = IDFT{ GI(ejw)
GQ(ejw)

} = IDFT{ G
′
I(ejw)

G
′
Q(ejw)

} [Xing et al.,

2005]. Therefore, in the simulation, we only model g
′
I [n] and g

′
Q[n]. In the following,

we omit (
′
) in g

′
I [n] and g

′
Q[n] for simplicity.
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Case 1: The gain mismatch and phase mismatch in (3.2) are γ = 1.03 and φ = 3◦,

respectively; and the I- and Q-branch LPFs are gI(z) = 0.01 + z−1 + 0.01z−2 and

gQ(z) = 0.01 + z−1 + 0.2z−2, respectively [Valkama et al., 2001]. In this case, the

uncompensated IRR(f) = 10 log10
|G1(f)|2

|G2(f)|2 is approximate 20dB (Fig. 3.3 (a)) . Based

on these parameters, the 3-taps convolutive mixture matrices in (3.16) are

G[0] =

 0.0101− 0.0003i −0.0001− 0.0003i

−0.0001 + 0.0003i 0.0101 + 0.0003i

, G[1] =

 1.0143− 0.0270i −0.0143− 0.0270i

−0.0143 + 0.0270i 1.0143− 0.0270i

,

G[2] =

 0.1079− 0.0054i −0.0979− 0.0054i

−0.0979 + 0.0054i 0.1079− 0.0054i

.

Case 2: The gain mismatch and phase mismatch the same as before. But the I- and

Q-branch LPFs are gI(z) = 0.98 + 0.03z−1 and gQ(z) = 1.0 − 0.005z−1, respectively

[Anttila et al., 2007]. The 2-taps convolutive mixture matrices in (3.16) are G[0] = 1.0043− 0.0270i −0.0243− 0.0270i

−0.0243 + 0.0270i 1.0043 + 0.0270i

, G[1] =

0.0124 + 0.0001i 0.0176 + 0.0001i

0.0176− 0.0001i 0.0124− 0.0001i

.

In both cases, the modulation is 64-QAM and the received SNR is 25dB.

3.5.2 Performance of Time-domain Blind Compensation Al-

gorithm

The performance of the proposed time-domain blind I/Q imbalance compensation

algorithm is presented in this subsection for the OFDM system described above.

However, note that this method can be applied to other non-OFDM systems as well.

We set µ = 0.001 in (3.35). For Case 1 the compensation filter length is L = 3 and the

initial values are W[0] =

1 0

0 1

, W[1] =

0 0

0 0

 and W[2] =

0 0

0 0

 . For Case 2 the compensation

filter length is L = 2 and the initial values are W[0] =

1 0

0 1

 and W[1] =

0 0

0 0

 . The

above choices of the initial taps are justified by the fact that the LPFs on the I- and

Q- branches are both close to ideal, i.e, their impulse responses are close to δ(z). In

practice, the gradient descent procedure (3.35) is stopped when the norm of gradient

is below a certain threshold or the number of iterations exceeds a certain value. Here

the threshold is set to be 0.0005 and maximum number of iterations is 3000. In

Fig. 3.2, the norm of the gradient,
∑
m

∥∥∆W[m](k)
∥∥
F

is plotted against the number

of iterations k. It is seen that the proposed time-domain algorithm takes about 1500
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iterations to converge for Case 1 and 1200 iterations for Case 2. This is because

Case 1 has more severe I/Q imbalance. We also compare our proposed time-domain

algorithm with the following adaptive algorithm proposed in [Anttila et al., 2008].
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Figure 3.2: Convergence of the proposed time-domain blind I/Q imbalance compen-

sation method. (a) Case 1. (b) Case 2.

y[n] = x[n] + w̃T
nx∗[n],

wn+1 = wn − λ� y[n]y[n],

w̃n+1 = αw̃n + (1− α)wn+1, (3.45)
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where wn = [w1[n], w2[n], . . . , wL[n]]T denotes the L-tap compensator at time n;

x[n] = [x[n],

x[n−1], . . . , x[n−L+1]]T contains the received signal samples (3.9); y[n] = [y[n], y[n−

1], . . . , y[n−L+1]]T ; λ contains the step-sizes for all taps and � denotes the element-

wise product; α is a smoothing factor. The length of compensated filter L is set to

the same as our proposed method. As in [Anttila et al., 2008], the step-sizes are

set as λ = 10−4[1, 0.5, 0.5]T for Case 1 and λ = 10−4[1, 0.5]T for Case 2; and the

smoothing parameter α = 0.999. Note that our method performs block processing

and the algorithm in [Anttila et al., 2008] is a sequential LMS-type approach. The

algorithm in [Anttila et al., 2008] is based on the second-order statistics obtained

by only using one time sample and the cost function has larger variation. Hence,

it is difficult to decide when to terminate the iteration. Although the optimal step

size and smoothing parameter suggested in [Anttila et al., 2008] are used in the

simulation for performance evaluation, the convergence of the method [Anttila et

al., 2008] is still varying between 100 to 50000 samples. In order to compare, we

used the same number of samples for both methods, i.e., 20000 time-domain samples

(about 20 OFDM symbols) are used for Case 1 and 10000 samples (about 10 OFDM

symbols) for Case 2 for each experiment. Thus the latency of both algorithms are

identical. The reason that Case 1 uses more samples is again due to its more severe

I/Q imbalance. Fig. 3.3(a) and 3.4(a) show the IRR performance defined in (3.8)

for both methods, obtained by averaging individual IRR of 100 experiments. For the

proposed time-domain method, the IRR can be computed as follow. From (3.16) and

(3.18), y[n] = c1[n]⊗s[n]+c2[n]⊗s∗[n] where c1[n] = w11[n]⊗g1[n]+w12[n]⊗g∗2[n] and

c2[n] = w11[n]⊗g2[n]+w12[n]⊗g∗1[n]. Therefore, IRR(f) = 10 log10
|C1(f)|2

|C2(f)|2 where Ci(f)

is the frequency response of ci[n]. Similarly, the IRR of the method in [Anttila et al.,

2008] can be computed as IRR(f) = 10 log10
|Q1(f)|2

|Q2(f)|2 , where q1[n] = g1[n]+g∗2[n]⊗w[n],

and q2[n] = g2[n] + g∗1[n] ⊗ w[n]. It is seen that the IRR is improved by around 20-

25dB by the proposed I/Q imbalance compensation method. Compared with the
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method in [Anttila et al., 2008], our proposed algorithm offers approximately 10dB

gain for Case 1 and a few dB gain for Case 2. Therefore, the proposed time-domain

method is shown to have better and more stable performance at the cost of higher

complexity. The computation complexity in (3.35) requires (2L)7 of 2 × 2 matrix

multiplication and L4 of 2 × 2 matrix addition for each coefficient update, where L

is the compensation filter length. Fig. 3.3(b) and 3.4(b) show the symbol error rate

(SER) performance using 64-QAM modulation for both methods. Again it is seen

that the proposed method can more effectively remove the impairment caused by the

I/Q imbalance.

3.5.3 Performance of Frequency-domain Blind Compensa-

tion Algorithm

We now consider the performance of the frequency-domain blind I/Q imbalance com-

pensation method for OFDM systems developed in Section 3.4. Recall that when

computing the second-order moments that are needed for parameter estimation, we

make use of a group of K consecutive subcarriers and U OFDM symbols. In the

simulations, we fixed the total number samples for average, i.e., KU = 30000. Since

in the frequency-domain approach, each subcarrier has its own one-tap compensation

filter, and there is only one sample at each subcarrier in each OFDM symbol, the

estimation latency is higher compared with the time-domain approach in terms of

number of samples. However, the advantages of the frequency-domain method in-

clude 1) when only certain frequency bands are of interest, we can just compute the

corresponding compensation filters; and 2) the compensation filters are in closed-form

and involve no iterations. Note that K = 1 corresponds to no subcarrier grouping for

which case interpolation is still applied to smooth the estimates. In Fig. 3.5 and 3.6,

we show the SER performance comparisons among different choices of the subcarrier

grouping parameter K. It is seen that for K = 2, 4, 8 the performance is the same.

For K = 16 , a performance loss is seen around SER=10−3. This is because the I/Q
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Figure 3.3: The IRR and SER performance of the proposed time-domain blind I/Q

imbalance compensation method for Case 1. (a) IRR performance. (b) SER perfor-

mance.

56



CHAPTER 3. BLIND FREQUENCY-DEPENDENT I/Q IMBALANCE
COMPENSATION FOR DIRECT-CONVERSION RECEIVERS

−3 −2 −1 0 1 2 3
20

25

30

35

40

45

50

55

Normalized Frequency
(a)

IR
R

 [
d
B

]

Uncompensated

Method in [4]

Proposed method

25 30 35 40 45 50 55
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]
(b)

S
E

R

No I/Q imbalance

Uncompensated

Method in [4]

Proposed method

Figure 3.4: The IRR and SER performance of the proposed time-domain blind I/Q

imbalance compensation method for Case 2. (a) IRR performance. (b) SER perfor-

mance.
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imbalance parameters can no longer be considered constant when the group size K

is too large. Therefore there is a trade-off between the system performance and the

processing latency. For both cases, K = 8 is a good choice for reducing the latency

while still maintaining the good performance.
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Figure 3.5: The SER performance of the proposed frequency-domain blind I/Q im-

balance compensation method for OFDM systems for Case 1.

3.6 Conclusions

We have proposed two blind approaches to compensating the frequency-dependent

I/Q imbalance for wideband direct-conversion receivers. One is a time-domain method

for general systems and the other is a frequency-domain method that is specifically

for OFDM systems. For the time-domain method, a blind identifiability condition is

given based on which a cost function for compensating the I/Q imbalance is proposed;

and a gradient-descent algorithm is derived to obtain the compensating filter. For the

frequency-domain method, we have developed estimators for the frequency-dependent
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Figure 3.6: The SER performance of the proposed frequency-domain blind I/Q im-

balance compensation method for OFDM systems for Case 2.

I/Q imbalance parameters based on the second-order statistics of the received signal;

the compensation filter can then be obtained in closed-form given these estimated

parameters. Simulation results show that the proposed approaches can effectively

mitigate the I/Q imbalance and maintain the high performance of the receiver.

Appendix A: Derivations of (3.36)-(3.37)

The derivatives with respect to w = x + jy and w∗ = x − jy of f(w) are called the

formal partial derivatives of f at w ∈ C [Brandwood, 1983], and they are defined as

∂

∂w
f(w) =

1

2

[ ∂
∂x
f(w)− j ∂

∂y
f(w)

]
,

∂

∂w∗
f(w) =

1

2

[ ∂
∂x
f(w) + j

∂

∂y
f(w)

]
.

Alternatively, when computing ∂
∂w
f(w) and ∂

∂w∗
f(w), w and w∗ can be treated as

independent variables, i.e., ∂w
∂w∗

= ∂w∗

∂w
= 0.

Recall that the filter coefficient matrices are of the form W =

w1 w2

w∗2 w∗1

 . The
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derivative is thus defined as [Højrungnes and Gesbert, 2007; Brandwood, 1983]

∂

∂W∗f(W) =

 ∂f
∂w∗1

∂f
∂w∗2

∂f
∂w2

∂f
∂w1

 .
The terms that are needed in computing the gradients in (3.36)-(3.37) are given as

follows.

∂

∂W∗ tr(WA) =
∂

∂W∗ tr(AW) =
∂

∂W∗ tr

a11 a12

a21 a22

w1 w2

w∗2 w∗1


=

∂(a11w1+a12w∗2+a21w2+a22w∗1)

∂w∗1

∂(a11w1+a12w∗2+a21w2+a22w∗1)

∂w∗2
∂(a11w1+a12w∗2+a21w2+a22w∗1)

∂w2

∂(a11w1+a12w∗2+a21w2+a22w∗1)

∂w1

 =

a22 a12

a21 a11

 , T(A).

∂

∂W∗ tr(AWH) =
∂

∂W∗ tr

a11 a12

a21 a22

w∗1 w∗2

w2 w1


=

∂(a11w∗1+a12w2+a21w∗2+a22w1)

∂w∗1

∂(a11w∗1+a12w2+a21w∗2+a22w1)

∂w∗2
∂(a11w∗1+a12w2+a21w∗2+a22w1)

∂w2

∂(a11w∗1+a12w2+a21w∗2+a22w1)

∂w1

 =

a11 a21

a12 a22

 = A.

Appendix B: Derivations of (3.42)-(3.44)

Note that the LPFs for both I- and Q-branches are real filters. We therefore have

GI(f) = G∗I(−f) , GQ(f) = G∗Q(−f) [Proakis, 1996b] and

G∗d(−f) =
γG∗Q(−f)

G∗I(−f)
= Gd(f). (3.46)

Using (3.5) and (3.46), we have

G1[k] +G∗2[−k] = G∗1[−k] +G2[k] = GI [k],

G1[k]−G∗2[−k] = GI [k]Gd[k]e−jφ,

G2[k]−G∗1[−k] = −GI [k]Gd[k]ejφ. (3.47)
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Then we can write

E
{
|X [k] +X∗[−k]|2

}
= E

{
|(G1[k] +G∗2[−k])S [k] + (G∗1[−k] +G2[k])S∗[−k]|2

}
= E

{
|GI [k](S[k] + S∗[−k] )|2

}
= |GI [k]|2 (E

{
|S[k]|2

}
+ E

{
|S[−k]|2

}
+ E {S[k]S[−k]}+ E {S∗[k]S∗[−k]})

= 2 |GI [k]|2 σ2
s . (3.48)

Similarly we evaluate the following second-order statistics:

E
{
|X [k]−X∗[−k]|2

}
= E

{
|(G1[k]−G∗2[−k])S [k] + (G∗1[−k]−G2[k])S∗[−k]|2

}
= 2 |GI [k]|2 |Gd[k]|2 σ2

s , (3.49)

E
{
|X[k]|2

}
= |G1[k]|2 E

{
|S[k]|2

}
+ |G2[k]|2 E

{
|S[−k]|2

}
+

G1[k]G∗2[k]E {S[k]S[−k]}+G∗1[k]G2[k]E {S∗[k]S∗[−k]}

= (|G1[k]|2 + |G2[k]|2)σ2
s , (3.50)

E
{
|X[−k]|2

}
= |G1[−k]|2 E

{
|S[−k]|2

}
+ |G2[−k]|2 E

{
|S[k]|2

}
+

G1[−k]G∗2[−k]E {S[k]S[−k]}+G∗1[−k]G2[−k]E {S∗[k]S∗[−k]}

= (|G1[−k]|2 + |G2[−k]|2)σ2
s , (3.51)

E
{
|X[k]|2 − |X[−k]|2

}
= E

{
|X[k]|2

}
− E

{
|X[−k]|2

}
=

1

4
|GI [k]|2

(∣∣1+Gd[k]e−jφ
∣∣2−∣∣1+G∗d[k]e−jφ

∣∣2−∣∣1−Gd[k]ejφ
∣∣2+

∣∣1+G∗d[k]ejφ
∣∣2)σ2

s

= 2 |GI [k]|2 Im{Gd[k]} sin(φ). (3.52)
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and

E {X[k]X[−k]} = G1[k]G2[−k]E
{
|S[k]|2

}
+G1[−k]G2[k]E

{
|S[−k]|2

}
+

G1[k]G1[−k]E {S[k]S[−k]}+G2[k]G2[−k]E {S∗[k]S∗[−k]}

= (G1[k]G2[−k] +G1[−k]G2[k])σ2
s

= |GI [k]|2
[

1

2

(
1− |Gd[k]|2

)
− jRe{Gd[k]} sin(φ)

]
σ2
s . (3.53)

Recall that Gd[k] = α[k]ejβ[k]. Using (3.52) and (3.53), the phase estimate of β[k]

is expressed in (3.43). Using (3.48), (3.49), the amplitude estimate α[k] is given by

(3.42). From (3.43), (3.42) and (3.52), we can estimate the mismatch phase φ using

(3.44).
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Chapter 4

Wideband Spectrum Sensing

Based on Sub-Nyquist Sampling

4.1 Introduction

Cognitive radio (CR) is an emerging wireless communication technology that can

make efficient use of the radio spectrum by actively locating white spectral space for

opportunistic data transmission [Haykin, 2005][Mitola and Maguire, 1999]. Spectrum

sensing is a key functionality of cognitive radio, through which the CR searches for

unused spectral bands for transmission opportunities, while not interfering with any

on-going transmissions by other users. Since in a typical cognitive radio scenario, the

CR users have no prior knowledge about the spectrum usage information, sensing a

wide band of spectrum is necessary. A number of spectrum sensing methods exist,

such as energy detection, filterbank spectrum sensing and multi-taper spectrum esti-

mation, etc. [Ariananda et al., 2009]. All these sensing approaches are based on the

Nyquist rate sampling of the signal in the frequency band of interest. In the wideband

regime, a major challenge arises from the stringent requirements by the high sampling

rate on the analog-to-digital (A/D) converters employed in the receiver. A simple ap-

proach is to use a tunable narrowband bandpass filter at the radio-frequency (RF)
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frond-end to sense one narrow frequency band at a time [Sahai and Cabric, 2005].

However, the sequential nature of such a scheme could result in missed opportunities

or causing interferences to existing users, due to the dynamic nature of the spectrum

activities. Alternatively, multiple narrowband bandpass filters [Farhang-Boroujeny,

2008] may be employed, which requires a large number of RF front-end components

and therefore significantly increases the cost. Hence a flexible and fast wideband

spectrum sensing technique that can operate at sub-Nyquist rate is of great interest.

Sub-Nyquist sampling, also known as compressive sampling [Donoho, 2006a],

refers to the techniques of recovering signals from samples obtained using a rate

below the Nyquist rate. One straightforward approach to wideband sensing based on

sub-Nyquist sampling is a two-stage method. That is, we first reconstruct the wide-

band signal using the sub-Nyquist samples and then perform spectrum sensing on

the reconstructed signal. For the signal reconstruction stage, there are methods for

non-blind and blind recovery of multiband signals. The non-blind recovery method

was proposed in [Venkataramani and Bresler, 2000] using the multicoset sub-Nyquist

sampling to perfectly recover multiband signals. However, this method requires the

location of the subbands to be known. (Note that term coset used in [Venkatara-

mani and Bresler, 2000] is equivalent to a complex A/D converter [Arias and et al.,

2006]. Hence in this paper, the terms coset and complex A/D converter are used

interchangeably). Assume that each coset operates at a sampling rate L times lower

than the Nyquist rate. For the non-blind method, if there are M(≤ L) subbands

active, then M cosets are sufficient for signal recovery. On the other hand, the blind

methods proposed in [Mishali and Eldar, 2009] [Feng and Bresler, 2006] can recover

multiband signals without subband information; but at least 2M cosets are needed

to blindly recover M multiband signals, using the techniques of compressing sensing

[Donoho, 2006a]. Other sub-Nyquist sampling techniques include the ones proposed

in [Mishali and Eldar, 2010] [Laska and et al., 2006] that involve analog front-end

processing.
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Note that for spectrum sensing applications, it is not necessary to recover the

multiband signal since the objective is to determine the locations of the active fre-

quency bands. By forgoing the signal recovery stage, it is possible to develop more effi-

cient wideband sensing techniques. In this paper, we propose a single-stage frequency-

domain sensing technique based on the multicoset sub-Nyquist sampling. This method

can blindly detect the locations of the active subbands. The only prior information

required is an upper bound M on the total number of active subbands and the max-

imum bandwidth Wmax of the active subbands. The method is based on directly

estimating the power spectrum of the entire frequency band of interest using the

coset samples and then perform spectrum detection based on the estimated power

spectrum.

There are several works on spectrum estimation with sub-Nyquist sampling. In

[Tian and Giannakis, 2007], it is assumed that each subband has sharp edges and an

edge detection algorithm is used to detect the subbands. In [Pal and Vaidyanathan,

2011], the coprime sampling scheme is employed that involves using two sampling

branches with sampling rates coprime with each other. More closely related works

to this paper are [Lexa et al., 2011], [Ariananda et al., 2011], and [Leus and Ari-

ananda, 2011], where various multi-coset sampling schemes are proposed. In [Leus

and Ariananda, 2011], only half of the equations are utilized and the compression

ratio is inferior to the proposed method in this paper. In [Ariananda et al., 2011] a

time-domain method is used whereas here we propose a frequency-domain method

which can directly estimate the power spectrum after the time-domain samples are

transformed into frequency domain. The method in [Lexa et al., 2011] is a frequency

domain approach and depending on the bandwidth and frequency resolution, the

number of unknowns could be very large, resulting in large number of A/D branches

which makes it difficult to implement in practice due to the fact that multicoset

architecture is sensitive to timing jittering.

For the proposed power spectrum estimation, we also analyze the relationship
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between the number of cosets and the subbands. First, a sufficient condition is

proved for an universal sampling pattern of the multi-coset sampler. Second, the

minimum number of required cosets P is given that satisfies P (P − 1) + 1 ≥ L ≥M ,

where L =
⌈
Wtot

Wmax

⌉
, and Wtot is the total bandwidth. For the sampling pattern

that can achieve the highest possible compression ratio, i.e. L
P

, the problem can

be reformulated as a minimal sparse ruler problem [Ariananda et al., 2011], which

is a combinatorial problem and computationally hard [Leech, 1956]. On the other

hand, note that for the spectrum sensing application, there is a tradeoff between

compression rate and sensing performance. That is, higher compression ratio leads

to worse sensing performance. Hence in practice, the compression ratio should be

kept at a level such that the sensing performance is acceptable. Finally, we note that

the multicoset sub-Nyquist sampling is closely related to the the maximum degree-

of-freedom antenna array design problem [Ma et al., 2009], [Pal and Vaidyanathan,

2010].

The remainder of the paper is organized as follows. In Section 4.2, the multiband

signal model and the spectrum sensing problem are described. In Section 4.3, a

blind power spectrum estimation method based on multicoset sampling is proposed,

and the corresponding digital implementation is discussed. In Section 4, a constant-

false-alarm frequency-bin energy detector based on the estimated power spectrum

is developed. Simulation results are provided in Section 4.5. Finally Section 4.6

concludes the paper.

4.2 Signal Model and Problem Statement

Assume that the wideband spectrum to be monitored in a cognitive radio system is

F = [fmin, fmax]. During the sensing period, there are m active disjoint subband user

signals present in F . The i-th subband signal is given by

si(t) =
∑
n∈Z

di[n]gi (t− nTi) ej2πfit, i = 1, 2, . . . ,m, (4.1)
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where {di[n]} is a sequence of modulation symbols, gi (t) is the pulse-shaping function,

and fi is the carrier frequency of si(t). Each subband signal si(t) is bandlimited to

Bi = [f li f
u
i ), i = 1, 2, . . . ,m with bandwidth Wi = fui −f li and carrier frequency fi =

f li ,+f
u
i

2
. It is assumed that the subband signals s1(t), s2(t), . . . , sm(t) are independent

and zero-mean. The observed signal during the sensing period is given by

x(t) =
m∑
i=1

si(t− τi) + n(t),

where τi is the delay of the i-th subband signal and n(t) is the additive white Gaussian

noise with power spectrum density σ2. Fig. 4.1 (a) illustrates a wideband spectrum

F = [0, fmax] in which there are three (m = 3) active subbands B1, B2 and B3 being

used by the primary or secondary users for data transmission.

Denote Wmax = maxmi=1Wi. The wideband spectrum sensing problem is the fol-

lowing. Given an upper bound M on the total number of active subband signals and

the maximum subband bandwidth Wmax, we need to estimate the actual number m

of the active subbands and their frequency bands B1, B2, . . . , Bm, with m ≤M .

One traditional approach to solve the above wideband spectrum sensing problem

is to first estimate the power spectrum density over F , based on which we then per-

form energy detection to identify the active bands. This kind of spectral estimator

is referred to as periodogram [Urkowitz, 1967]. In practice, periodogram is often

computed by using FFT from a finite Nyquist samples and is formed after taking

the average magnitude squared of the FFT. One of major advantages of classical

periodogram-based spectral estimation methods is that they have lower computa-

tion cost, and, therefore can be efficiently implemented by using FFT. On the other

hand, the frequency resolution (frequency bin) of periodogram could be limited by

finite collected Nyquist samples. For example, if without using any zero-padding, the

maximum frequency resolution is equal to 2π/N for N input Nyquist samples.

Since the location of each active subband is unknown, in general, the Nyquist

sampling with rate 1
T

= fmax − fmin is needed, which might not be feasible by
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Figure 4.1: (a) Multiband signals with different central carrier frequencies. (b) The

vector X(f) is constructed by dividing F into L = 4 (down-sampling factor) intervals.

(c) The folded spectrum Y(f).
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the current A/D conversion technology due to the wideband nature of the signal.

An alternative approach is to evenly divide the spectrum F into L parts, Fi =[
fmin + i

LT
, fmin + i+1

LT

)
, i = 0, . . . , L− 1, and to estimate the power spectrum of each

part. Specifically, we can employ L bandpass filters to partition F into L parts,

followed by L bandpass samplers each with a decimated sampling rate 1
LT

[Vaughan

et al., 1991]. However, such an approach incurs high cost both in terms of hardware

(since L bandpass filters and samplers are needed) and computation (since L power

spectra are computed). In this paper, we consider a sub-Nyquist sampling scheme

called multicoset sampling [Venkataramani and Bresler, 2000] and develop an efficient

power spectrum estimation method based on such sampling scheme.

4.3 Power Spectrum Estimation under Multicoset

Sampling

4.3.1 Multicoset Sampling

The multicoset sampling is based on the multirate signal processing and it employs

parallel cosets (or A/D branches) that uniformly sample the signal at a decimated

rate. In particular, given a decimation factor L, the number of cosets P satisfies

P ≤ L. Each coset corresponds to a polyphase component of the bandlimited signal

x(t). When P = L, all polyphase components of x(t) are included and the multi-

coset sampling becomes equivalent to the polyphase implementation of the Nyquist

sampling. The sampling pattern for the coset branches (or polyphase components)

is described by the set C = {c0, c1, . . . , cP−1} ⊆ {0, 1, . . . , L− 1} which contains P

distinct integers. The i-th coset then takes uniform samples with rate 1
LT

at time

instants (kL+ ci)T , k ∈ Z. The continuous-time sampled signal of the i-th coset

(i-th polyphase component) is given by [Venkataramani and Bresler, 2000],[Mishali
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and Eldar, 2009]

yi (t) = x(t)
∑
m∈Z

δ (t− (mL+ ci)T ) , i = 0, 1, . . . , P − 1, (4.2)

where δ(t) denotes the delta function. Denote the corresponding discrete-time sample

sequence as [Venkataramani and Bresler, 2000]

yi[n] =

 x(nT ), n = mL+ ci,

0, otherwise,
i = 0, 1, . . . , P − 1, (4.3)

where δ[n] is the Kronecker delta function. The Fourier transform of yi(t) can be

written as [Venkataramani and Bresler, 2000]

Yi (f) =

∫ ∞
−∞

yi (t) e
−j2πftdt =

∫ ∞
−∞

∑
m∈Z

x(t)δ (t− (mL+ ci)T ) e−j2πftdt

=
∑
m∈Z

x ((mL+ ci)T ) e−j2πf(mL+ci)T =
∞∑

n=−∞

yi[n] e
−j2πfnT =Yi

(
ej2πfT

)
,(4.4)

where Yi
(
ej2πfT

)
is the discrete-time Fourier transform (DTFT) of yi[n]. On the

other hand, from (4.2), Yi(f) can also be expressed as

Yi (f) = X (f) ∗ 1

LT

∑
`∈Z

δ

(
f +

`

LT

)
e
j2πci`

L

=
1

LT

∑
`∈Z

X

(
f +

`

LT

)
︸ ︷︷ ︸

X`(f)

e
j2πci`

L

=
1

LT

L−1∑
`=0

X`(f)e
j2πci`

L , f ∈
[
0,

1

LT

)
. (4.5)

where ∗ denotes the convolution; and (4.5) follows from the assumption that X(f) = 0

for f /∈ F = [0, fmax]. We can write (4.5) in matrix form as (cf. Appendix in [Mishali

and Eldar, 2009])
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
Y0

(
ej2πfT

)
Y1

(
ej2πfT

)
...

YP−1

(
ej2πfT

)


︸ ︷︷ ︸

Y(ej2πfT )

=
1

LT


e
j2πc10
L e

j2πc11
L

e
j2πc20
L e

j2πc21
L

. . . e
j2πc1(L−1)

L

. . . e
j2πc2(L−1)

L

...
...

e
j2πcP 0

L e
j2πcP 1

L

. . .
...

. . . e
j2πcP (L−1)

L


︸ ︷︷ ︸

A


X0(f)

X1(f)
...

XL−1(f)


︸ ︷︷ ︸

X(f)

, f ∈
[
0,

1

LT

)
.

(4.6)

It is seen from (4.6) that the spectrum band of interest F is evenly divided into L

parts, Fi =
[
i
LT
, i+1
LT

)
, i = 0, 1, . . . , L− 1. Moreover, F1,F2, . . . ,FL are all folded into

F0 to form Y(ej2πfT ). These are illustrated in Fig. 4.1 (b)-(c).

Recall that the observed signal is given by x(t) = s(t) + n(t), where s(t) =∑m
i=1 si(t−τi). The corresponding Fourier transform is given by X(f) = S(f)+N(f),

where S(f) and N(f) denote the Fourier transforms of s(t) and n(t), respectively.

Define Si(f) = S(f + i
LT

), i = 0, 1, . . . , L−1 and S(f) = [S0(f), S1(f), . . . , SL−1(f)]T .

Similarly define Ni(f) and N(f). Then (4.6) can be written as

Y(ej2πfT ) = AX(f) = A[S(f) + N(f)], f ∈
[
0,

1

LT

)
. (4.7)

Proposition 1: If the decimation factor L is chosen such that 1
LT
≥ Wmax, then we

have ‖S(f)‖0 ≤M,∀f ∈
[
0, 1

LT

)
, i.e., the number of nonzero elements in S(f) is less

than or equal to M for all f ∈
[
0, 1

LT

)
.

Proof: Since M is the upper bound on the total number of active subbands in F , if

‖S(f)‖0 > M , then at least two nonzero elements of S(f), say Si(f) = S(f + i
LT

) and

Sj(f) = S(f + j
LT

), i 6= j, belong to a same active subband, say Bl, which implies

that the bandwidth of Bl satisfies Wl ≥ |j−i|
LT
≥ 1

LT
. This contradicts the assumption

that 1
LT
≥ Wmax. �

We next introduce some definitions and properties associated with the multicoset

sampling which are instrumental to the subsequent development.

Definition 1: The Kruskal-rank (K-rank) of a matrix A, denote as KA, is the maxi-

mum number κ such that any κ columns of A are linearly independent [Venkataramani
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and Bresler, 2000]. It is obvious that the rank of a matrix is greater than or equal to

its K-rank.

Definition 2: A sampling pattern C is called (L, P ) universal, if any P columns of

A are linearly independent [Venkataramani and Bresler, 2000]. A sampling pattern

C that yields full K-rank is simply called universal. That is, for a universal sampling

pattern C, the K-rank of the P × L (P < L) matrix A is P .

Property 1: For any given L and P , with P ≤ L, the sampling pattern C =

{0, 1, . . . , P − 1} is universal. This is because the corresponding matrix A is a Van-

dermonde matrix. In fact, any P consecutive numbers in {0, 1, . . . , L − 1} yield a

universal sampling pattern.

In the multicoset sampling scheme discussed above, the sampling pattern C =

{c0, c1, . . . , cP−1} should be universal. The proposed multiband spectrum sensing

method based on multicoset sampling is illustrated in Fig. 4.2.

4.3.2 Power Spectrum Estimation

Define the autocorrelation matrix of Y
(
ej2πfT

)
as

RY

(
ej2πfT

)
, E

{
Y
(
ej2πfT

)
YH

(
ej2πfT

)}
.

Similarly define RX(f), RS(f) and RN(f). Then from (4.7) we have

RY

(
ej2πfT

)
= ARX(f)AH = A [RS(f) + RN(f)] AH . (4.8)

The (i, j)-th element of RX(f) can be expressed as

[RX (f)]i,j = E
{
Xi (f)X∗j (f)

}
= E {(Si(f) +Ni(f)) (Sj(f) +Nj(f))∗}

= E
{
Si(f)S∗j (f)

}
+ E

{
Ni(f)N∗j (f)

}
= E

{
|Si(f)|2

}
δ(i− j) + σ2δ(i− j), (4.9)

where in the last equality the first term follows from Proposition 1; and the second

term follows from the assumption that the noise is stationary and white wherein the
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Figure 4.2: The diagram of the proposed multiband spectrum sensing method based

on multicoset sampling.
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fact that for stationary processes E {N(f)N∗(f − α)} = 0,∀α 6= 0 [Gardner et al.,

2006].

From (4.9) and Proposition 1, it follows that RS (f) is an L× L diagonal matrix

with at most M non-zero elements on the diagonal but RN (f) has L non-zero ele-

ments on the diagonal, therefore, RX (f) has L non-zero elements on the diagonal.

Define the vec(·) operator as vec (A) ,
[
aT1 , a

T
2 , . . . ,

]T
, where aj denotes the j-th

column of matrix A. Using the matrix identity vec (AXB) =
(
BT ⊗A

)
vec (X),

where ⊗ denotes the Kronecker product, we have

rY
(
ej2πfT

)
, vec

(
RY

(
ej2πfT

))
=

[(
AH
)T ⊗A

]
vec (RX (f))

= (A∗ ⊗A) rX(f). (4.10)

Note that from (4.9) the L2 × 1 vector rX(f) is of the form

rX(f) = vec (RX (f)) =
[
rTx0

, rTx1
, . . . , rTxL−1

]T
=

[
P0(f)eT0 , P1(f)eT1 , . . . , PL−1(f)eTl−1

]T
. (4.11)

where Pi(f) , E{|Xi(f)|2} = E{|Si(f)|2} + σ2, and ei is an L × 1 vector with the

i-th element being 1 and zeros elsewhere.

We further define an L × 1 vector rX(f) , [P0(f), P1(f), . . . , PL−1(f)]T , and an

L2×L selection matrix B that has a “1” at the j-th column and the [(j− 1)L+ j]-th

row, j = 1, 2 . . . , L, and zeros elsewhere. Then we can write

rX(f) = BrX(f). (4.12)

Therefore (4.10) can be rewritten as

rY
(
ej2πfT

)
= (A∗ ⊗A) BrX (f) = QrX(f), (4.13)

with Q , (A∗ ⊗A) B, (4.14)

where Q is a P 2 × L matrix. If Q has full column rank, denoting its pseudo inverse

as Q†, then

rX (f) = Q†rY
(
ej2πfT

)
. (4.15)
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Thus, using (4.15), the power spectrum in each partition F0,F1, . . . ,FL−1 correspond-

ing to any folded frequency f ∈
[
0, 1

LT

)
can be computed and therefore the power

spectrum for the entire band F can be obtained. Note that the matrix Q† can be

calculated off-line.

In (4.15), it is assumed that the pseudo-inverse of the Q matrix exists. Therefore,

we need to analyze the Q matrix to see under what condition this assumption is valid.

First, we give a sufficient condition for the P 2×L matrix Q to be of full column rank

L. It turns out that the simplest sampling pattern,i.e. the universal sampling pattern,

can guarantee the full column rank of Q.

Proposition 2: If the P × L matrix A = [a1 a2 · · · aL] in (4.6) is obtained from a

universal sampling pattern C, then the K-rank of matrix Q is L, i.e., KQ = L when

2P − 1 ≥ L.

Proof: Since Q , (A∗ ⊗A) B and B selects the [(j − 1)L + j]-th column from

(A∗ ⊗A), for j = 1, . . . , L, then Q can be written as

Q =
[

a∗1 ⊗ a1 a∗2 ⊗ a2 . . . a∗L ⊗ aL

]
= A∗ �A, (4.16)

where � is the Khatri-Rao product [Sidiropoulos and Liu, 2001]. Lemma 1 (The K-

rank of Khatri-Rao Product) in [Sidiropoulos and Liu, 2001] states that if DIJ×F =

BI×F �CJ×F , then KD ≥ min (KB +KC − 1, F ). Since QP 2×L = A∗P×L�AP×L, we

have

KQ ≥ min (KA∗ +KA − 1, L) . (4.17)

By the definition of universality [cf. Definition 2], we have KA = KA∗ = P . If

KA∗ + KA − 1 = 2P − 1 ≥ L, then from (4.16) and the fact that the number of

columns of Q is L, we can conclude that KQ = L. �

Remark 1: By Propositions 1 and 2, if the number of cosets P and the decimation

factor L are chosen such that 2P − 1 ≥ L ≥M , then it is guaranteed that the power

spectrum vector rX(f) can be computed by (4.15) for f ∈
[
0, 1

LT

)
. This way we can

obtain the power spectrum of the entire band of interest F .
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In addition, the Proposition 2 can be extended to use for the sufficient condition

for the unique recovery condition in compressed sensing when the number of supports

(unknown) in rX(f) is less than P (cf. Lemma 1 in [Pal and Vaidyanathan, 2012]).

In other words, if ‖rX(f)‖0 ≤ P , where ‖x‖0 denotes 0-norm of vector x and since

the K-rank of matrix Q ≥ 2P is satisfied for any universal sampling pattern then

unique recovery of rX(f) is guaranteed.

4.3.3 A Lower Bound on the Number of Cosets

Proposition 2 gives a sufficient condition on P for Q to have full rank, i.e., P ≥ L+1
2
.

Next we give a necessary condition on P , similar to those given in [Lexa et al., 2011;

Ariananda et al., 2011].

Proposition 3: A necessary condition on P such that Q has full column rank is

P (P − 1) + 1 ≥ L.

Proof: From (16), Q is the Khatri-Rao product of A∗ and A and the number of rows

in Q is P 2. From (4.6), the q-th row, 0 ≤ q = µP+ν ≤ P 2−1, where 0 ≤ µ, ν ≤ P−1

of Q can be expressed as
(

1
LT

)2
[
e
−j2π(cµ−cν )0

L , e
−j2π(cµ−cν )1

L , . . . , −j2π(cµ−cν)(L−1)

L

]
, where

cµ, cν ∈ C and C is a sampling pattern set. When µ = ν such that cµ − cν = 0, then

the rows of Q indexed as 0, P + 1, 2P + 2, . . . , P (P − 1) + P − 1 are identical. The

rank of Q is maximized when the remaining P 2 − P rows are linearly independent

and they are independent of this identical row. Therefore, the rank of the Q is upper

bounded by P (P − 1) + 1. �

Remark 2: One can immediately conclude that in order to achieve the smallest value

of P , a sampling pattern set C should be chosen to satisfy P (P − 1) + 1 = L and

the rank of Q has to be equal to L. The condition can be satisfied if the difference

set Dc = {|cµ − cν | : µ, ν ∈ C} equals
{

0, 1, 2, ..., (L−1)
2

}
. In this case, Q will be a

Vandermonde matrix with L distinct rows thus Q will have full rank L. This is

a combinatorial optimization problem known as the minimal sparse ruler which is

computationally hard [Leech, 1956], [Leus and Ariananda, 2011],[Shakeri et al., 2012].
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Therefore, although the universal sampling pattern can only achieve P ∼= L
2
, this

sampling pattern is trivial to obtain with no computation involved and it exists for

every value of L. It will be seen in Section 5 that the spectrum detection performance

degrades as the compression ratio L
P

becomes higher. Hence, in practice, we need to

balance the compression ratio and the detection performance. We next give two

simple structured sampling patterns with compression ratios higher than 2 that do

not require a pattern search.

Proposition 4 : For P branches, the sampling patterns C = {{0, 1, . . . , P−2, 2P−3}+

α} where α ∈ {0, 1, 2, ..., 2(P −1)−1} yield full rank Q matrix for L = 2(2P −3)+1.

Proof: Since Q is a “tall” matrix, we focus on the distinct rows since they determine

the rank of Q. Using the sampling pattern C, there exist L = 2(2P − 3) + 1 distinct

consecutive phase differences cu − cv∈ { 0 ±1 ±2 · · · ±(2P − 3 )}. Consider an

L × L submatix of Q composed of these L distinct consecutive phase differences,

i.e.
[
e−j

2π(cu−cv)0
L e−j

2π(cu−cv)1
L · · · e−j

2π(cu−cv)(L−1)
L

]
and denote this submatrix of

Q as Qv. It then follows that Qv is a Vandermonde matrix. Since these distinct phase

differences are consecutive, using the fact that a Vandermonde matrix with generators

spaced equally on a unit circle has full rank (cf. Theorem 2.2.2 in [Gershman and

Sidiropoulos, 2005]), this proposition is proved. �

The next sampling pattern is inspired by [Pal and Vaidyanathan, 2010], where

a two-level nested array geometry is proposed that leads to a Vandermonde matrix

therefore can also be utilized as a sampling pattern. To be more specific, assuming

P is even, then for L = P 2−2
2

+ P , the sampling pattern

C =

{{
{n} ∪

{
n(
P

2
+ 1)

}}
+ α, n = 1, 2, · · · , P

2

}
where α ∈ {{−1} ∪ {1, 2, · · · , L−1

2
}} guarantees a full rank Q.
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4.3.4 Digital Implementation

In practice, the Fourier transform is implemented in the digital domain by using the

FFT. In this subsection, we discuss the digital implementation of the power spectrum

estimation method described in the previous section.

The wideband signal is sampled via the multicoset sampling scheme in which P

cosets are used, each with a sampling rate of 1
LT

. Although in (4.3) each sequence

yi [n] , i = 0, . . . , P − 1 contains L − 1 zeros in between the down-sampled signal, in

practice, the FFT of yi [n] can be obtained from the FFT of yi [m], where yi [m] =

yi[mL + ci], is the down-sampled signal without the zero insertions. In particular,

consider the U -point FFT of yi [n] where U = NL. We have

Yi[k] =
1√
U

U−1∑
n=0

yi [n] e−j
2π
U
nk =

1√
U

N−1∑
m=0

x [mL+ ci] e
−j 2π

NL
(mL+ci)k

=

(
1√
U

N−1∑
m=0

yi [m] e−j
2π
N
mk

)
e−j

2π
U
cik, 0 ≤ k ≤ U − 1 (4.18)

That is the U -point FFT of yi [n] is obtained by multiplying the N -point FFT of yi [m]

by a constant phasor e−j
2π
U
cik. Note that the frequency resolution is ∆f = 1

NLT
= 1

UT

and this corresponds to discretizing [0, 1
LT

)
into N grids.

On the other hand, if the signal is sampled at the Nyquist rate 1
T

, i.e., y [n] =

x(nT ), then the U -point FFT of y [n] also has a frequency resolution ∆f = 1
UT

which

corresponds to discretizing F = [0, 1
T

)
into U grids. Thus, although in our proposed

method, the sampling rate is L-times lower than the Nyquist rate, the frequency

resolution remains the same.

For the finite-length discrete-time signals we can derive the DFT version of (4.6)

as follows. Note that the finite-length discrete impulse train is

vi[n] =
N−1∑
m=0

δ [n− (mL+ ci)] , 0 ≤ n ≤ NL− 1.
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Its DFT can be expressed as

Vi [k] =
1√
NL

NL−1∑
n=0

{
N−1∑
m=0

δ [n− (mL+ ci)]

}
e−j

2π
NL

nk

=
1√
NL

N−1∑
m=0

NL−1∑
n=0

δ [n− (mL+ ci)] e
−j 2π

NL
nk

=
1√
NL

N−1∑
m=0

e−j
2π
N
mke−j

2π
NL

cik

=

√
N

L

L−1∑
`=0

δ [k − `N ] e−j
2π
NL

cik

=

√
N

L

L−1∑
`=0

δ [k − `N ] e−j
2π
L
ci`, 0 ≤ k ≤ NL− 1. (4.19)

Define x[n] , x(nT ), its DFT X[k] , 1√
NL

∑NL−1
n=0 x[n]e−j

2π
NL

nk, 0 ≤ k ≤ NL − 1,

and the partitions Xi [k] , X [k + iN ] , 0 ≤ i ≤ L − 1, 0 ≤ k ≤ N − 1. Since

yi [n] = x[n]·vi[n], after taking the DFT, we have Yi [k] = X[k]?Vi[k], where ? denotes

the circular convolution. Let z [(n−m)L] denote the circular shift of a sequence z[n]

of length L. Then for 0 ≤ k ≤ N − 1,

Yi [k] =

√
N

L

L−1∑
`=0

X [k] ? δ [(k − `N)] e−j
2π
L
ci` =

√
N

L

L−1∑
`=0

X [(k − `N)NL] e−j
2π
L
ci`

=

√
N

L

{
X[k]e−j

2π
L
ci0 +X [k + (L− 1)N ] e−j

2π
L
ci1 +X[k + (L− 2)N ]e−j

2π
L
ci2+

· · ·+X[k +N ]e−j
2π
L
ci(L−1)

}
=

√
N

L

{
X0[k]+XL−1 [k] ej

2π
L
ci(L−1)+XL−2 [k] ej

2π
L
ci(L−2)+· · ·+X1[k]ej

2π
L
ci
}
,(4.20)

where e−j
2π
L
ci` = e−j

2π
L
ci(`−L) = ej

2π
L
ci(L−`) is used in the last equality. Thus, from
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(4.20), we have the discrete-time form of (4.6):
Y0 [k]

Y1 [k]
...

YP−1 [k]


︸ ︷︷ ︸

Y[k]

=

√
N

L


e
j2πc10
L e

j2πc11
L

e
j2πc20
L e

j2πc21
L

. . . e
j2πc1L−1

L

. . . e
j2πc2L−1

L

...
...

e
j2πcP 0

L e
j2πcP 1

L

. . .
...

. . . e
j2πcP L−1

L


︸ ︷︷ ︸

A


X0 [k]

X1 [k]
...

XL−1 [k]


︸ ︷︷ ︸

X[k]

, k=0, 1,· · ·, N−1.

(4.21)

The following definitions are instrumental to deriving the spectrum estimator.

Definition 3: The cyclic cross-spectrum of a signal z1(t) and z2(t) is defined as

Sz1z2 (α; f) = E {Z1(f)Z∗2 (f − α)} [Antoni, 2007], [Gardner, 1988]. Similarly, the

complimentary spectral correlation is defined as Scz1z2 (α; f) = E {Z1(f)Z2 (f − α)}.

Also, the cyclic (auto)-spectrum of a signal x(t) is defined in terms of the spectral

correlation as Sxx (α; f) = E {X(f)X∗ (f − α)}. If the cyclic frequency α = 0, the

cyclic spectrum reduces to the power spectrum Sxx (α = 0; f) = E {| X(f) |2}. The

complimentary cyclic (auto)-spectrum is defined as Scxx (α; f) = E {X(f)X (f − α)}.

Definition 4: The frequency-smoothed cyclic cross-periodogram is utilized as a con-

sistent estimate of the cyclic cross-spectrum Sz1z2 (α; f) [Dandawate and B.Giannakis,

1994], given by

ŜZ1Z2 (α; f) ,
1

N

N−1∑
n=0

wN

(
ej2π(f−

n
NT )T

)
Z

(N)
1

(
ej2π

n
N

)
Z

(N)∗
2

(
ej2π(

n
NT
−α)T

)
,

where Z
(N)
i

(
ej2πfT

)
= 1√

N

∑N−1
n=0 zi [n] e−j2πfnT is the finite DTFT of zi[n] , zi(nT ),

and wN(·) is the spectral window function given by [Brllinger, 1981]

wN
(
ej2πfT

)
=

1

BN

∞∑
n=−∞

W

(
fT + n

BN

)
,

where BN > 0, and as N → ∞, BN → 0, BNN → ∞, and W (f) is an even,

real-valued function satisfying
∫∞
−∞W (f) df = 2π and

∫∞
−∞ |W (f) |df <∞.
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In digital implementations, the finite DTFT is replaced by FFT. Correspondingly,

the frequency-smoothed cyclic cross-periodogram is given by

ŜZ1Z2

(
α =

m

NT
; f =

k

NT

)
,

1

N

N−1∑
n=0

wN [k − n]Z1 [n]Z∗2 [n−m] , (4.22)

where wN [k] , wN
(
ej2πfT

)
|f= k

NT
, and Zi [k] = Zi

(
ej2πfT

)
|f= k

NT
. Therefore the

frequency-smoothed estimate R̂Y [k] of the correlation matrix RY[k] is given by

R̂Y [k] =
1

N

N−1∑
n=0

wN [k − n]Y [n] YH [n]

= A

(
1

N

N−1∑
n=0

wN [k − n]X[n]XH [n]

)
AH = AR̂X[k]AH . (4.23)

Note that by the consistency of the frequency-smoothed estimator, for large N , the

(i, j)-th element of R̂Y [k] in (4.23) satisfies[
R̂Y [k]

]
i,j
→ E

{
Yi[k]Y ∗j [k]

}
= ŜYiYj

(
α = 0; f =

k

NLT

)
(4.24)

= E
{
Y

(
i

LT
+

k

NLT

)
Y ∗
(

j

LT
+

k

NLT

)}
= ŜY Y

(
α=

i− j
LT

; f=
i

LT
+

k

NLT

)
.(4.25)

Similarly to (4.15), we can then obtain the power spectrum estimates, given by

r̂X[k] = Q† r̂Y[k], k = 0, 1, . . . , N − 1, (4.26)

where r̂Y[k] = vec
(
R̂Y[k]

)
.

Finally the spectral detection is performed to identify the active subbands, which

is discussed in the next subsection.

4.4 Spectral Detection

4.4.1 Analysis of Spectrum Estimation Error

Recall that each element of r̂X[k] in (4.26) is an estimate of the energy of a frequency

bin, based on which we perform spectral detection, i.e., to decide whether this fre-

quency bin is occupied by a primary user or not. In order to perform such detection,

we first characterize the statistics of r̂X[k], due to the finite sample size.
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We start with the analysis of the estimation error of RY in (4.23). Define the

estimation error of the correlation matrix as EY [k] , R̂Y [k] −RY [k] and eY[k] =

vec(EY [k]). Denote {i}P , mod(i, P ) and [i]P , bi/P c. Then we have the following

result on the asymptotic distribution of eY[k]. The proof is given in Appendix A.

Proposition 5: As N → ∞, the estimation error eY [k] is asymptotically Gaussian

with zero mean, and the covariance matrix ΣeY[k] whose (i, j)-th element is given by

[
ΣeY[k]

]
ij

= E
{

[eY [k]]i [eY [k]]∗j

}
= SY{i}P Y{j}P

(
α = 0; f =

k

NLT

)
SY[i]P

Y[j]P

(
α = 0; f =

k

NLT

)
+ ScY{i}P Y[j]P

(
α = 0; f =

k

NLT

)
ScY[i]P

Y{j}P

(
α = 0; f =

k

NLT

)∗
.(4.27)

Note that the estimates of SYiYj
(
α = 0; f = k

NLT

)
are contained in R̂Y [k] as shown

in (4.24). And similarly the estimates of ScYiYj
(
α = 0; f = k

NLT

)
are contained in

R̂c
Y [k] = 1

N

∑N−1
n=0 wN [k − n]Y [n] Y[n]. Once the covariance matrix ΣeY[k] is esti-

mated, it then follows from (4.26) that the covariance of the estimator r̂X[k] is given

by

cov
(
r̂X[k]

)
= Q†ΣeY[k]

(
Q†
)H

. (4.28)

However, the above procedure for estimating cov
(
r̂X[k]

)
is computationally very

intensive. We next develop a simpler estimator that is based directly on r̂X[k] itself.

4.4.2 A Simple Error Covariance Estimator

Recall that by denoting rX[k] , vec(RX[k]), we have rX[k] = BrX[k] [cf. (4.12)].

Denote G , B†. Then we have

cov (rX[k]) = G cov (rX[k]) GH . (4.29)

Note that since the Nyquist-rate samples X[n] are not available, the estimate of

rX[k], i.e., R̂X[k] in (4.23) cannot be obtained. We next show that the error covari-
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ance cov (rX[k]) can be estimated using sub-Nyquist samples, if the signal x(t) has a

statistical property called proper [Neeser and Massey, 1993b].

Definition 6: A complex random process x(t) is said to be proper if E {x (t)x (t+ τ)} =

0, for all τ .

Hence a proper process has a vanishing complementary covariance. For example,

most quadrature amplitude modulated (QAM) signals are proper because of a spe-

cial symmetry in the signaling constellation.

Proposition 6: If the signal x(t) is proper, then cov (rX[k]) is a diagonal matrix with

the diagonal elements

[cov (rX[k])]i,i = E
{
| X

(
{i}L
LT

+
k

NLT

)
|2
}
E
{
| X

(
[i]L
LT

+
k

NLT

)
|2
}

= SXX
(
α=0; f=

{i}L
LT

+
k

NLT

)
SXX

(
α=0; f=

[i]L
LT

+
k

NLT

)
, 0≤ i≤L2−1.(4.30)

The proof is given in Appendix B. Note that

E
{
| X

(
`

LT
+

k

NLT

)
|2
}

= [rX[k]]` ,

which is the power spectrum of x(t) at frequency f = `
LT

+ k
NLT

. Hence the error

covariance cov (rX[k]) can be approximated using the estimated power spectrum r̂X[k]

as

[cov (rX[k])]i,i ≈
[
r̂X[k]

]
{i}L

[
r̂X[k]

]
[i]L

, 0 ≤ i ≤ L2 − 1. (4.31)

Finally using (4.29), the variance of the i-th element of r̂X [k] can then be approxi-

mated as

var
{[

r̂X [k]
]
i

}
=

[
G cov (rX[k]) GH

]
i,i

≈
[
r̂X[k]

]
{i}L

[
r̂X[k]

]
[i]L

L2−1∑
j=0

| gij |2 . (4.32)

Note that this estimator is much simpler than that based on (4.28).
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4.4.3 Constant-False-Alarm Frequency-bin Energy Detector

Denote the output of the power spectrum estimator as r̂X[k] =
[
ˆ̄r0[k], ˆ̄r1[k], . . . , ˆ̄rL−1[k]

]T
.

From the error analysis in the previous subsection, we can formulate the spectrum de-

tection problem as the following binary hypothesis testing problem for each frequency

bin,

H0 : ˆ̄r`[k] ∼ N
(
σ2, υ2

`,k

)
,

H1 : ˆ̄r`[k] ∼ N
(
P`[k] + σ2, υ2

`,k

)
, (4.33)

where υ2
`,k = var

{[
r̂X [k]

]
`

}
. We assume that the noise power level σ2 is known

but the signal power spectrum P`[k] is unknown. We impose a constant false alarm

probability PFA across all frequency bins, it then follows that the detection threshold

θ`[k] is given by

θ`[k] =
√
υ2
`,kQ

−1(PFA) + σ2, (4.34)

where Q(x) , 1
2π

∫∞
x
e−

t2

2 dt. Then the spectral detection for each frequency bin can

be performed as follows: declare H1 if ˆ̄r`[k] > θ`[k] and H0 otherwise. Finally the

active frequency bands can be found by aggregating the frequency bins for which H1

is declared, which is discussed next.

After performing the spectrum detection on all frequency bins, a binary set

T = {T0, . . . , TU−1} , Ti ∈ {0, 1} can be formed, where Ti with i = (N`+ k), is

the detection result on ˆ̄r`[k]. Further refinement can be performed if more informa-

tion about the signal is available. For example, similar to [Mishali and Eldar, 2010],

the spectral detection results can be refined based on the minimum bandwidth Wmin

of a subband among all m subbands, and the smallest possible spacing between sub-

bands ∆min. In particular, denote ∆f as the bandwidth of each frequency bin. Then

we can perform the following two refinement steps. (1) For any segment of consec-

utive 1’s with length less than Wmin/∆f , flip those 1’s to 0’s; (2) For any adjacent

two segments of consecutive 1’s, if there are less than ∆min/∆f consecutive 0’s in

between, flip those 0’s to 1’s.
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4.5 Simulation Results

4.5.1 Simulation Setup

We provide three simulation experiments for illustration purpose. In the first ex-

periment, we assume that there are m = 5 subbands in the frequency range F ∈

[0, fmax] = [0, 1.5] GHz. Hence the Nyquist rate is fmax = 1/T = 1.5 GHz. The

bandwidths of the subbands are W1 = W2 = W3 = W4 = W5 = 5 MHz. The cen-

tral frequencies of the subbands are f1 = 750, f2 = 880, f3 = 1000, f4 = 1100 and

f5 = 1300 MHz. To sample the whole band it requires GHz A/D converters which

is very difficult and expensive with the current technologies. Fig. 4.3(a) illustrates

the power spectrum for the first experiment. The down-sampling factor is chosen as

L = 20, corresponding to a sub-Nyquist rate of 1/LT = 75 MHz ( > Bmax = 5 MHz

[cf. Proposition 1]). According to Proposition 2, the number of cosets should satisfy

P ≥
⌈
L+1

2

⌉
= 11 when university sampling pattern is used. At least, compared with

the polyphase implementation of the Nyquist-rate sampling, the number of A/D con-

verters can be saved up to 1− 11/20 = 45%. Based on Property 1 and Proposition 2,

the universal sampling pattern C = {0, 1, . . . , P − 1 = 10} is used as a baseline. How-

ever, according to Proposition 3, the minimum sampling cosets P > 5 are required.

Hence, the maximum compression rate is bound to L/P = 20/5 = 4 in this example.

Note that although a larger L leads to lower sub-Nyquist sampling rate, the number

of A/D converters (cosets) will be increased. Thus there is a trade-off between the

sub-Nyquist sampling rate and required number of A/D converters. Two FFT sizes

are considered, i.e., N = 12000 and N = 24000, corresponding to the frequency reso-

lution ∆f = 1
NLT

= 12.5 and 6.25 KHz, respectively, or sensing time τ = NLT = 80

and 160 µs, respectively. On each subband QPSK symbols {di[n]} are transmitted,

and the root-raised cosine pulse shaping gi(t) with roll-over factor 0.1 is employed.

The Hamming function [Proakis, 1996c] is used as the spectral window function in

the estimator (4.23), with a fixed frequency-smoothed bandwidth BN = 512.5 KHz.
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Therefore, corresponding to the sensing time τ = 80 and 160 µs the spectral window

sizes are 512.5/12.5 = 41, and 512.25/6.25 = 81 respectively.

In the second experiment, we assume that there are m = 8 subbands in the

frequency range F ∈ [0, fmax] = [0, 1.5] GHz. The bandwidths the subbands are

W1 = 5, W2 = 5, W3 = 10, W4 = 4, W5 = 4, W6 = 4, W7 = 4 and W8 = 6 MHz.

The central frequencies are f1 = 400, f2 = 700, f3 = 750, f4 = 800, f5 = 900,

f6 = 1000, f7 = 1100 and f8 = 1300 MHz. Fig. 4.3(b) illustrats the power spectrum

for the second experiment. The down sampling factor is set as L = 12. Then the

maximum number of cosets satisfies P ≥
⌈
L+1

2

⌉
= 7 and the universal sampling

pattern C = {0, 1, . . . , P − 1 = 6} is used in this example as baseline. All other

simulation parameters are the same as those in the first experiment.

In the third experiment, we assume that there arem = 6 subbands in the frequency

range F ∈ [0, fmax] = [0, 1.5] GHz. The bandwidths the subbands are W1 = 50,

W2 = 30, W3 = 50, W4 = 50, W5 = 30, and W6 = 20 MHz. The central frequencies

are f1 = 200, f2 = 400, f3 = 600, f4 = 750, f5 = 900 and f6 = 1100 MHz.

Fig. 4.3(c) illustrates the power spectrum for the second experiment. The down

sampling factor is set as L = 15 and L = 25 in this example since both 1/(15T ) = 75

MHz and 1/(25T ) = 60 ( > Bmax = 50) MHz. Then the number of cosets satisfies

P ≥
⌈

15+1
2

⌉
= 8 for L = 15 and P ≥

⌈
25+1

2

⌉
= 13 for L = 25, respectively. All other

simulation parameters are the same as those in the first experiment.

4.5.2 Multiband Spectrum Sensing Performance

We first illustrate the performance of the spectrum estimator based on the multicoset

sampling proposed in Section 3. Fig. 4.4(a) shows the estimated power spectrum

corresponding to the first experiment setup where there are m = 5 active frequency

bands. Clearly there are 5 peaks in the estimated power spectrum. We then apply the

spectral detector given in Section 4.3 on each frequency bin, with a target false alarm

probability PFA = 0.01. The detection results are shown in Fig. 3.4(b). It is seen that
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Figure 4.3: (a) The power spectrum for experiment 1 with five subbands. (b) The

power spectrum for experiment 2 with eight subbands. (c) The power spectrum for

experiment 3 with six subbands.
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there are quite a few false spurs due to the false alarm of the detector. Finally we

perform the refinement step using a bandwidth threshold Wmin = 2.5 MHz, i.e., all

detected subbands with bandwidths less than Wmin are eliminated. The results after

the refinement is shown in Fig. 4.4(c), where it is seen that 5 subbands are identified.
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Figure 4.4: (a) The estimated power spectrum for experiment 1. L = 20, P = 12. (b)

The detection results for the frequency bins using the constant-false alarm detector.

(c) The subbands obtained after applying the refinement step on the detection results

of (b).

In Fig. 4.5 we plot the actual false alarm probabilities of the frequency-bin detector

for both experiment setups. The target is PFA = 0.01. It is seen that the actual false

alarm rate fluctuates around the target PFA and hence the proposed detector does

achieve constant false alarm. This also demonstrates the effectiveness of the simple

variance estimator developed in Section 4.2.

Next we define the multiband normalized spectrum sensing error as the sum of the
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ex1, sub−Nyquist τ=80µs, L=20, P=12

ex2, sub−Nyquist τ=80µs, L=12, P=7

ex3, sub−Nyquist τ=80µs, L=15, P=8

ex1, sub−Nyquist τ=160µs, L=20, P=12

ex2, sub−Nyquist τ=160µs, L=12, P=7

ex3, sub−Nyquist τ=160µs, L=15, P=8

Figure 4.5: The probability of false alarm performance of the frequency bin detector

for experiments 1, 2 and 3.
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band boundary estimation errors of all subbands, each normalized by the bandwidth

of the corresponding subband, i.e.,

ε ,
m∑
i=1

∣∣∣f̂ li − f li ∣∣∣+
∣∣∣f̂ui − fui ∣∣∣

fui − f li
. (4.35)

In Figs. 4.6(a) - (c), the multiband sensing error performances are shown for experi-

ments 1, 2 and 3, respectively. In each figure, we plot the error performances under

both the sub-Nyquist sampling (P < L) and Nyquist sampling (P = L), and for sens-

ing durations of τ = 160 and τ = 80 µs. It is seen that a longer sensing time leads to

improved sensing accuracy, because increased sensing time results in better estimation

of R̂Y[k] in (4.23). The performance loss by the sub-Nyquist-rate sampling compared

to the Nyquist-rate sampling is due to the noisier estimate of R̂Y[k]. This performance

gap can be reduced by increasing the sensing time. In the following two figures, i.e.,

Fig. 4.7 and Fig. 4.8 shows the spectrum sensing error performance for the second and

third experiment with a range of number of cosets P corresponding to different com-

pression ratios are simulated. To demonstrate higher compression ratio in this exam-

ple, the down-sampling factor L = 50 is selected for second experiment. According to

Proposition 3, the minimum number of cosets P = 8 can satisfy the rank L = 50 and

it is corresponding to maximum compression ratio is equal to 50/8 = 6.25 in this case.

The sensing time is fixed τ = 160 µs for Fig. 3.6 and the range of number of cosets

P = 8, 12, 16, 20, 24 are simulated which are corresponding to the compression ra-

tio is from 6.25, 4.167, 3.125, 2.5, 2.08, respectively. The sampling pattern for P =

8, 12, 16, 20, 24 is obtained by using blind search method. Here, for P = 8, the sam-

pling pattern C = {20, 24, 30, 31, 40, 43, 45, 48} is used, for P = 12, the sampling pat-

tern C = {3, 12, 13, 14, 15, 28, 33, 38, 42, 44, 45, 47} is used, for P = 16, the sampling

pattern C = {1, 8, 13, 17, 20, 22, 23, 24, 28, 30, 31, 32, 36, 42, 45, 49} is used, and for P =

24, the sampling pattern C = {0, 4, 8, 9, 10, 13, 16, 19, 20, 22, 23, 26, 27, 28, 35, 36, 37, 38,

43, 44, 45, 46, 47, 48} is used. From Fig. 4.7, it is seen that when P increases, the per-

formance improves. This is because we observe the variance in (4.32) is getting higher
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when lower compression ratio is used to maintain the CFA. Hence, the compression

ratio is an engineering trade-off with the detection performance for compressive spec-

trum sensing. In Fig. 4.8, the down sampling rate L = 15 are L = 20 used for

evaluation. So according to Proposition 3, the minimum number of cosets P = 5 can

satisfy the full rank of Q matrix for L = 15 and the compression ratio is equal to

15/5 = 3 in this case. From Proposition 4, the sampling pattern C = {0, 1, 2, 3, 7},

and C = {0, 1, 2, 5, 8} [Pal and Vaidyanathan, 2010] for two-level are selected to guar-

antee Q matrix having full rank as well. The sensing time is set to τ = 160 µs

in this simulation. When L = 25, the minimum number of cosets P = 6 can sat-

isfy the full rank of Q matrix and the corresponding compression ratio is equal to

25/6 = 4.167. If we choose the sampling pattern from Proposition 4 then the num-

ber of cosets P = 8 are required and the corresponding compression ratio is equal

to 25/8 = 3.12. If the sampling pattern is chosen from two-level methods then the

number of cosets P = 7 are required and the corresponding compression ratio is equal

to 25/7 = 3.57. For minimum number of cosets P = 6 case, the sampling pattern

C = {0, 1, 2, 3, 8, 12} is used. For number of cosets P = 8 case, the sampling pattern

C = {0, 1, 2, 3, 4, 5, 6, 13} is used. For number of cosets P = 7, i.e., two-level case,

the sampling pattern C = {0, 1, 2, 3, 7, 11, 15} is used. Similar to previous experiment

show in Fig. 4.7, the spectrum detection performance is enhanced when compression

ratio is getting lower. The detection performance among Proposition 4, two-level and

minimum number of cosets are similar when L is small.

4.6 Conclusions

We have proposed a new technique for multiband spectrum sensing using sub-Nyquist

sampling. The basic procedure of the proposed method involves multicoset sampling

of the signal, followed by power spectrum estimation and energy detection on the fre-

quency bins. The only prior knowledge needed is an upper bound on the number of
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Figure 4.6: The multiband spectrum sensing performance as a function of SNR.

Sensing times τ = 160 and τ = 80 µs are considered. (a) experiment 1: L=20, P=12.

(b) experiment 2: L=12, P=7. (c) experiment 3: L=15, P=8.
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Figure 4.7: The multiband spectrum sensing performance for experiment 2 with dif-

ferent P = 8, 12, 16, 20, 24 cosets which are corresponding to the compression ratio

from 6.25, 4.167, 3.125, 2.5, 2.08, when L = 50, τ = 160 µs.
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Figure 4.8: The multiband spectrum sensing performance for experiment 3 with dif-

ferent sampling patterns with L = 15 and L = 25, τ = 160 µs.
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active subbands in the frequency range of interest. And the proposed multiband sens-

ing algorithm outputs the number of active subbands and the location of each active

subband. The key ingredients of the proposed wideband sensing algorithm, including

a power spectrum estimator based on multicoset sampling, and a constant-false-alarm

frequency-bin energy detector, are developed theoretically; and their effectiveness is

demonstrated by simulations. Compared with the polyphase implementation of the

Nyquist sampling approach, for a large down-sampling factor, the new method can

reduce the sampling rate by a factor of at least about 2, which translates into the

same factor of saving in terms of the number of A/D converters needed at the front

end.

Appendix A: Proof of Proposition 5

We first introduce the following definition.

Definition 6: Given the complex signals zi(t) and zj(t), their cyclic cross-periodogram

is defined as

I
(N)
ZiZj

(α; f) ,
1

N
Z

(N)
i

(
ej2πfT

)
Z

(N)∗

j

(
ej2π(f−α)T

)
,

and their complimentary cyclic cross-periodogram is defined as

C
(N)
ZiZj

(α; f) ,
1

N
Z

(N)
i

(
ej2πfT

)
Z

(N)
j

(
ej2π(f−α)T

)
,

where Z
(N)
i

(
ej2πfT

)
, 1√

N

∑N−1
n=0 zi [n] e−j2πfnT , and zi[n] , zi(nT ).

The following Lemma is useful for the proofs of Proposition 3 and 4.

Lemma 1 (Cross-covariance of the cyclic cross-periodogram) If the 4-th order cyclic

cumulant spectrum SZ1Z2Z3Z4 (α; f1, f2, f3) exists and is finite, then the cross-covariance

of the cyclic cross-periodogram is asymptotically

lim
N→∞

cov
{
I

(N)
Z1Z2

(α1; f1) , I
(N)
Z3Z4

(α2; f2)
}

= SZ1Z3 (f1 − f2; f1)SZ4Z2 (f2 − α2 − f1 + α1; f2 − α2)

+ScZ1Z4
(f1 − f2 + α2; f1)Sc∗Z2Z3

(f1 − f2 − α1; f1 − α1) . (4.36)
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Proof: The asymptotic cross-covariance of the cyclic cross-periodogram for real signals

is given in Theorem 1 in [Sadler and Dandawate, 1997]. Here we extend it to complex

signals. According to Theorem 2.3.2 in [Brllinger, 1981], the cross-covariance can be

evaluated as

cov
{
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= cum
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(4.37)

From the proof of Theorem 1 in [Sadler and Dandawate, 1997], we have

1

N
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Since SZ1Z2Z3Z4 (α1 − α2; f1, α1 − f1,−f2) exists and is finite, the first term in (4.37)

goes to zero whenN →∞. Moreover, we have 1
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Thus (4.36) is obtained �

Now we proceed to prove Proposition 3. Note that[
rY [k]

]
i

=
[
RY [k]

]
({i}P ,[i]P )

= E
{
Y{i}P [k]Y ∗[i]P [k]

}
= SY{i}P Y[i]P

(
α = 0; f =

k

NLT

)
.

(4.38)
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It is shown in [Dandawate and B.Giannakis, 1994] that the frequency-smoothed

cyclic cross-periodogram defined in Definition 4 is asymptotically Gaussian, unbiased

and consistent. Therefore we have for large N , E {eY [k]} = 0. Using Lemma 1, for

large N , the covariance of eY [k] is given by

E
{[

eY [k]
]
i

[
eY [k]

]∗
j

}
= cov

{
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}
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)
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)
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�

Appendix B: Proof of Proposition 6

Using Lemma 1, the error covariance of rX[k] can be evaluated in terms of the cyclic

spectrum as[
cov {rX[k]}

]
i,j

= cov
{
X{i}P [k]X∗[i]P [k], X{j}P [k]X∗[j]P [k]

}
= SXX
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+
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)
︸ ︷︷ ︸

0

,

(4.40)

where we have used the fact that for a proper signal x(t), the complementary cyclic

spectrum is zero, i.e. ScXX (α; f) = 0.

Moreover, for any (i, j) such that {i}L 6= {j}L or [i]L 6= [j]L, we have i 6= j. When

i 6= j, the terms in (4.40) are the cross-correlations between X
(
{i}L
LT

+ k
NLT

)
and

X
(
{j}L
LT

+ k
NLT

)
, which from the proof of the Proposition 1, must be from distinct

subbands. Thus when i 6= j, (4.40) is zero because it is assumed that signals from

different subbands are independent and zero-mean. �
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Chapter 5

Beamformed Millimeter-Wave

Full-dimensional MIMO Channel

Estimation Based on Atomic Norm

Minimization

5.1 Introduction

Millimeter wave (mmWave) communications have been proposed as an important

physical-layer technology for the 5th generation (5G) mobile networks to provide

multi-gigabit services [Rappaport et al., 2013]. Two prominent features of the mmWave

spectrum are the massive bandwidth available and the tiny wavelengths compared to

conventional microwave bands, thus enabling dozens or even hundreds of antenna ele-

ments to be accommodated at communication link ends within a reasonable physical

form factor. This suggests that massive MIMO and mmWave technologies should

be considered jointly to provide higher data rates and spectrum efficiency. In par-

ticular, the mmWave full-dimensional MIMO (FD-MIMO) systems [Cheng et al.,

2014],[Hur et al., 2013] employ uniform or non-uniform planar arrays at both the
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basestation (BS) and user equipment (UE) and provide an extra degree of freedom in

the elevation-angle domain. Users can now be distinguished not only by their AoAs

in the azimuth domain but also by their AoDs in the elevation domain [Nam et al.,

2013]. In this paper, we consider channel estimation for mmWave FD-MIMO systems

that simultaneously support both azimuth and elevation beamforming.

The mmWave band channel is significantly different from those in sub-6GHz

bands. The key challenge in designing new radio access technologies for mmWave

is how to overcome the much larger path-loss and reduce blockage probability. To

that end, beamforming is essential in combating the serve path-loss for wireless sys-

tem operating in mmWave bands [Kutty and Sen, 2016]. However, to estimate the

full channel state information (CSI) under beamformed FD-MIMO is somehow chal-

lenging because the receiver typically only obtains the beamformed CSI instead of full

CSI. To address this issue, fast beam scanning and searching techniques have been

extensively studied [Hur et al., 2013; Wang, 2009]. The objective of beam scanning

is to search for the best beamformer-combiner pair by letting the transmitter and re-

ceiver scan the adaptive sounding beams chosen from pre-determined sounding beam

codebooks. However, the exhaustive search may be hampered by the high training

overhead in practice and suffer from low spectral efficiency. Another approach is to

estimate the mmWave channel or its associated parameters, by exploiting the sparse

scattering nature of the mmWave channels [Samimi and Rappaport, 2016],[Thomas

et al., 2014],[Ayach et al., 2014], that is, mmWave channel estimation can be formu-

lated as a sparse signal recovery problem [Alkhateeb et al., 2014], [Alkhateeby et al.,

2015], [Guo et al., 2017], [Sun and Rappaport, 2017] and solved using the compressive

sensing (CS)-based approach [Donoho, 2006b]. In the CS-based approach, a sensing

matrix needs to be constructed first, by dividing certain parameter space into a finite

number of grids and thus the channel estimation performance is limited by the grid

resolution. On the other hand, in [Rappaport et al., 2014], a subspace-based mmWave

MIMO channel estimation method that makes use of the MUSIC algorithm is pro-
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posed. A 2D-MUSIC algorithm for beamformed mmWave MIMO channel estimation

is proposed in [Guo et al., 2017] to further enhance the channel estimation perfor-

mance. The MUSIC algorithm is able to identify multiple paths with high resolution

but it is sensitive to antenna position, gain, and phase errors.

Recently, the atomic norm minimization [Tang et al., 2013] has been applied

to many signal processing problems such as super-resolution frequency estimation

[Bhaskar et al., 2013b], [Steinwandt et al., 2016], spectral estimation [Bhaskar et

al., 2013a], AoA estimation, [Zhang et al., 2017; Tian et al., 2017], uplink multiuser

MIMO channel estimation [Zhang et al., 2015] and linear system identification [Shah

et al., 2012]. Under certain conditions, atomic norm minimization can achieve exact

frequency localization, avoiding the effects of basis mismatch which can plague grid-

based CS techniques. Different from the prior works such as CS-based and subspace-

based channel estimation methods mentioned above, we formulate the mmWave FD-

MIMO channel estimation as an atomic norm minimization problem. Unlike [Zhang

et al., 2015] that considers uplink multiuser MIMO channel estimation, in which the

uniform linear array is assumed and only the AoA parameter is estimated, in this

paper, we consider the mmWave beamformed FD-MIMO channel, which involves the

estimation of both AoA and AoD. Hence, instead of one-dimensional (1D) atomic

norm minimization, our problem is formulated as a four-dimensional (4D) atomic

norm minimization problem. The 4D atomic norm minimization can be transformed

into semi-definite program (SDP) which is of high dimensional and involves block

Toeplitz matrices, leading to very high computational complexity. Therefore, we

introduce a 4D atomic norm approximation method to reduce the computational

complexity and an efficient algorithm based on the alternating direction method of

multipliers (ADMM) is derived.

Recently, non-uniform planar array (NUPA) has attracted more interest due to

its ability in reducing sidelobes and antenna correlation [Liu et al., 2017; Wang et al.,

2016]. NUPA can potentially increase the achievable multiplexing gain of mmWave
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FD-MIMO beamforming. However, the corresponding atomic norm minization prob-

lem cannot be transformed into an SDP when the antennas are not uniformly placed

[Tang et al., 2013]. Hence, we propose a gradient descent method for mmWave FD-

MIMO channel estimation with NUPA.

The remainder of the paper is organized as follows. In Section 5.2, the mmWave

beamformed FD-MIMO channel model is introduced. In Section 5.3, we formulate

the mmWave FD-MIMO channel estimation as an atomic norm minimization problem

for the case of UPA. In Section 5.4, we develop efficient algorithms for implementing

the proposed atomic-norm-based channel estimator. In Section 5.5, we consider the

case of NUPA and provide the formulation and algorithm for the atomic-norm-based

channel estimator. In Section 5.6, simulation results are provided. Finally, Section

5.7 concludes the paper.

5.2 System Descriptions and Background

5.2.1 System and Channel Models

We consider a mmWave FD-MIMO system with M receive antennas and N transmit

antennas that simultaneously supports elevation and azimuth beamforming. The

channel matrix can be expressed in terms of transmit and receive array responses

[Ayach et al., 2014]:

H = BΣAH =
L∑
l=1

σlb(fl)a(gl)
H , (5.1)

where (·)H denotes the Hermitian transpose; the matrix

Σ = diag(σ) = diag
(

[σ1 σ2 . . . σL]T
)

is a diagonal matrix with each σl ∈ C denoting the l-th multipath gain; L denotes

the number of paths; the matrices B = [b(f1) . . .b(fL)] and A = [a(g1) . . . a(gL)]

denote the steering responses of the receive and transmit arrays, respectively. For a
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linear array with half-wavelength separation of adjacent antenna elements, the array

response is in the form of a uniformly sampled complex sinusoid with frequency

x ∈ [−1
2
, 1

2
):

cn (x) =
1√
n

[
1 ej2πx · · · ej2π(n−1)x

]T ∈ Cn×1. (5.2)

We assume that both the transmitter (Tx) and receiver (Rx) are equipped with uni-

formly spaced planar antenna arrays (UPA)s [Choi et al., 2015; Han et al., 2014], each

with half-wavelength antenna element separations along the elevation-and-azimuth-

axis. Then the Tx and Rx array responses can be expressed as [Han et al., 2014]

a(gl) = cN1 (gl,1)⊗ cN2 (gl,2) , (5.3)

b (fl) = cM1 (fl,1)⊗ cM2 (fl,2) , (5.4)

with

gl =

{
gl,1 =

1

2
sin (ϑl) cos (ϕl) , gl,2 =

1

2
cos (ϑl)

}
, (5.5)

fl =

{
fl,1 =

1

2
sin (θl) cos (φl) , fl,2 =

1

2
cos (θl)

}
, (5.6)

where ⊗ denotes the Kronecker product; ϑl, ϕl denote elevation and azimuth angles of

the angle of departure (AoD) of the l-th path, respectively; and θl, φl denote elevation

and azimuth angles of the angle of arrival (AoA), respectively. Here, N1, N2 denote

the numbers of elevation and azimuth transmit antennas, respectively, and the total

number of transmit antennas is N = N1N2. Similarly, M1, M2 denote the numbers of

elevation and azimuth receive antennas, respectively, and the total number of receive

antennas is M = M1M2. For the UPA configuration, it can resolve the AoA and AoD

in 360◦ range, thereby ϑl, θl, ϕl, φl ∈ [−π, π] and gl,1 = 1
2

sin (ϑl) cos (ϕl) ∈ [−1
2
, 1

2
),

gl,2 = 1
2

cos (ϑl) ∈ [−1
2
, 1

2
), fl,1 = 1

2
sin (θl) cos (φl) ∈ [−1

2
, 1

2
), fl,2 = 1

2
cos (θl) ∈

[−1
2
, 1

2
).

To estimate the channel matrix, the transmitter transmits P distinct beams during

P successive time slots. i.e., in the p-th time slot, the beamforming vector pp ∈
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CN×1 is selected from a set of unitary vectors in the form of Kronecker-product-based

codebook, e.g., pp = pp,1 ⊗ pp,2 where pp,1 ∈ CN1 and pp,2 ∈ CN2 are selected from

two DFT codebooks of dimensions N1 and N2, respectively [Yang et al., 2010]. The

p-th received signal vector can be expressed as

yp = Hppsp + wp, (5.7)

where wp ∼ CN (0, σ2
wIM) is the additive white Gaussian noise (AWGN) with IM

denoting the M ×M identity matrix, and sp denotes the pilot symbol in the p-th

time slot. The receiver collects yp ∈ CM×1 for p = 1, . . . P and concatenates them to

obtain the signal matrix

Y = [y1 y2 . . .yP ] = HPS + W = BΣAHPS + W, (5.8)

where P = [p1 p2 . . .pP ] ∈ CN×P , W = [w1 w2 . . .wP ] ∈ CM×P and

S = diag ([s1 s2 . . . sP ]) ∈ CP×P .

For simplicity, we assume that S =
√
PtIP , where Pt is the power of the pilot symbol.

Then we have

Y =
√
PtHP + W =

√
PtBΣAHP + W. (5.9)

Our goal is to estimate the channel matrix H ∈ CM×N from the measurements Y ∈

CM×P . Note that the number of pilots is usually smaller than the number of transmit

antennas, i.e., P < N . Hence, we need to exploit the sparsity of H for its estimation,

which will be discussed in the next section.

5.2.2 Existing mmWave Channel Estimation Methods

Before describing our proposed mmWave channel estimator, we briefly discuss some

existing mmWave channel estimation methods [Alkhateeb et al., 2014; Lee et al., 2014;

Sun and Rappaport, 2017; Guo et al., 2017] which can be divided into two categories.
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5.2.2.1 CS-based mmWave channel estimators

The mmWave channel is usually composed of small number of propagation paths and

CS-based algorithms have been developed [Alkhateeb et al., 2014; Lee et al., 2014;

Sun and Rappaport, 2017] for channel estimation. First the dictionary matrices

AD ∈ CN×NG and BD ∈ CM×NG are constructed based on quantized AoD angle of

the transmitter and AoA angle of the receiver. The AoDs and AoAs are assumed to

be taken from a uniform grid of NG points with NG � L. The resulting dictionary

matrix is expressed (take the transmitter AD for example, the receiver dictionary

matrix BD is similar.)

AD = [a(ḡ1) a(ḡ2) . . . a(ḡNG)] , (5.10)

where ḡi = {ḡi,1, ḡi,2} =
{

1
2

sin
(
ϑ̄i
)

cos(ϕ̄i),
1
2

cos(ϑ̄i)
}

with ϑ̄i = (i−1)2π
NG

− π, ϕ̄i =

(i−1)2π
NG

−π denotes the transmit array response vector for the grid point ϑ̄i and ϕ̄i for

i = 1, 2, . . . , NG. The size NG of the angle grids can be set according to the desired

angular resolution. On this basis, the received signal Y in (5.9) can be vectorized as

[Alkhateeb et al., 2014]

y = vec (Y) =
√
Pt
(
PT ⊗ IM

)
vec (H) + w (5.11)

=
√
Pt
(
PT ⊗ IM

)
(A∗D �BD)x + w =

√
PtGx + w, (5.12)

where � denotes the matrix Khatri-Rao products, (·)T denotes the transpose opera-

tion, (·)∗ denotes the complex conjugate, x ∈ CN4
G is a sparse vector that has non-zero

elements in the locations associated with the dominant paths. Note that the angle

spaces of interest are discretized into a large number of grids, and the actual AoA and

AoD angles may not exactly reside on the predefined grids. Those off-grid angles can

lead to mismatches in the channel model and degrade the estimation performance.

5.2.2.2 Subspace-based mmWave channel estimators

Another existing approach to mmWave channel estimation is based on the subspace

methods such as the MUSIC algorithm [Guo et al., 2017]. The MUSIC algorithm
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firstly calculates the covariance matrix of the received signal Y and then finds the

signal and noise subspaces via eigendecomposition. It then estimates each channel

path’s array response, i.e., ĝl and f̂l for l = 1, 2, . . . , L̂, where L̂ is the estimated num-

ber of paths, by exploiting the orthogonality between the signal and noise subspaces.

Finally, each channel path’s coefficient, i.e., σ̂l can be estimated via the least-squares

(LS) method. The MUSIC algorithm has been popular for its good resolution and ac-

curacy in AoD/AoA estimation [Gupta and Kar, 2015], [Zhang et al., 2014]. However,

it is also reported that the off-grid CS method [Tang et al., 2013] can outperform the

MUSIC algorithm in terms of estimation accuracy in noisy environments [Bhaskar et

al., 2013a; Yang and Xie, 2016].

5.3 Channel Estimation via Atomic Norm Mini-

mization

As explained in the previous section, the performance of the mmWave channel esti-

mators based on on-grid methods such as CS can be degraded due to grid mismatch.

In this section, we propose a new mmWave channel estimator based on an off-grid

CS method, i.e., the atomic norm minimization method.

5.3.1 Background on Multi-dimensional Atomic Norm

First we briefly introduce the concept of multi-dimensional atomic norm [Yang et al.,

2016]. A d-dimensional (d-dim) atom is defined as

qd (x1, . . . , xd) = cn1 (x1)⊗ . . .⊗ cnd (xd) , (5.13)

where ni is the length of the normalized vector cni (xi) defined in (5.2) and xi ∈[
−1

2
, 1

2

)
for i = 1, 2, . . . , d. The d-dim atomic set is then given by

A =

{
qd (x1, . . . , xd) : xi ∈

[
−1

2
,
1

2

)
, i = 1, . . . , d

}
. (5.14)
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For any vector td of the form td =
∑
l

αlqd(xl,1, xl,2, . . . , xl,d), its d-dim atomic norm

with respect to A is defined as

‖td‖A = inf {t : td ∈ tconv (A)} ,

= inf
xl,1,xl,2,...,xl,d∈[− 1

2
, 1
2

)
αl∈C

{∑
l

|αl|

∣∣∣∣∣ td =
∑
l

αlqd(xl,1, xl,2, . . . , xl,d)

}
,(5.15)

where conv (A) is the convex hull of A. The d-dim atomic norm of td has following

equivalent form [Yang et al., 2016]:

‖td‖A = inf
Ud∈C(2nd−1)×(2nd−1−1)×...×(2n1−1),t∈R



1
2n1n2...nd

Tr (Td(Ud)) + 1
2
t

s.t.

 Td(Ud) td

tHd t

 � 0


, (5.16)

where Tr (·) is the trace of the input matrix, Ud ∈ C(2nd−1)×(2nd−1−1)×...×(2n1−1) is a

d-way tensor and Td(Ud) is a d-level block Toeplitz, which is defined recursively as

follows. Denote nd = (nd, nd−1, . . . , n1) and Ud−1(i) = Ud(i, :, :, ..., :) for i = −nd +

1,−nd + 2, ..., nd − 1. For d = 1, n1 = (n1) and T1(u1) = Toep(u1) with u1 ∈

C(2n1−1)×1, i.e.,

T1(u1) = Toep(u1) =


u1(0) u1(1) · · · u1(n1 − 1)

u1(−1) u1(0) · · · u1(n1 − 2)
...

...
. . .

...

u1(1− n1) u1(2− n1) · · · u1(0)

 . (5.17)

For d ≥ 2, we have

Td(Ud) =


Td−1(Ud−1(0)) Td−1(Ud−1(1)) . . . Td−1(Ud−1(nd − 1))

Td−1(Ud−1(−1)) Td−1(Ud−1(0)) . . . Td−1(Ud−1(nd − 2))
...

...
. . .

...

Td−1(Ud−1(1− nd)) Td−1(Ud−1(2− nd)) . . . Td−1(Ud−1(0))

 .(5.18)
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5.3.2 Atomic Norm Minimization Formulation

In this subsection, we formulate the atomic norm minimization problem for channel

estimation. First, we vectorize the mmWave FD-MIMO channel matrix H in (5.1) as

h = vec(H) =
L∑
l=1

σla(gl)
∗ ⊗ b(fl)

=
L∑
l=1

σl

(
cN1 (gl,1)⊗ cN2 (gl,2)

)∗
⊗
(
cM1 (fl,1)⊗ cM2 (fl,2)

)
=

L∑
l=1

σlc
∗
N1

(gl,1)⊗ c∗N2
(gl,2)⊗ cM1(fl,1)⊗ cM2(fl,2). (5.19)

Comparing (5.15) and (5.19), for the mmWave FD-MIMO channel with UPA config-

uration, the atom has the form of

q4 (g, f) = c∗N1
(g1)⊗ c∗N2

(g2)⊗ cM1(f1)⊗ cM2(f2), (5.20)

and the set of atoms is defined as the collection of all normalized 4D complex si-

nusoids: A =
{
q4 (g, f) : f ∈ [−1

2
, 1

2
)× [−1

2
, 1

2
), g ∈ [−1

2
, 1

2
)× [−1

2
, 1

2
)
}

[Chi and

Chen, 2013; 2015]. The 4D atomic norm for any h defined in (5.19) can be written

as [Chi and Chen, 2013]:

‖h‖A = inf
fl∈[− 1

2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣h =
∑
l

σlq4 (gl, fl)

}
. (5.21)

The atomic norm can enforce sparsity in the atom set A. On this basis, an optimiza-

tion problem will be formulated for the estimation of the path frequencies {fl,gl}.

For the convenience of calculation, we will use the equivalent form of the atomic norm

given by (5.16), i.e.,

‖h‖A = inf
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1),

t∈R



1
2MN

Tr (T4(U4)) + 1
2
t

s.t.

 T4(U4) h

hH t

 � 0


, (5.22)
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where T4(U4) is a 4-level Toeplitz matrix defined in (5.18). Define the minimum

frequency separations as

∆min,fi = min
l 6=l′

min{|fl,i − fl′,i|, 1− |fl,i − fl′,i|}, (5.23)

∆min,gi = min
l 6=l′

min{|gl,i − gl′,i|, 1− |gl,i − gl′,i|}, (5.24)

for i = 1, 2. To show the connection between the atomic norm and the channel

matrix, we obtain the following theorem via extending Theorem 1.2 in [Candès and

Fernandez-Granda, 2014] for 1D atomic norm to 4D atomic norm.

Theorem 1. If the path component frequencies are sufficiently separated, i.e.,

∆min,fi ≥
1

b(Mi − 1)/4c
, (5.25)

∆min,gi ≥
1

b(Ni − 1)/4c
, (5.26)

for i = 1, 2, then we have ‖h‖A =
∑

l |σl|, so the component atoms of h can be

uniquely located via computing its atomic norm.

The proof follows the same line as that in Theorem 1.2 [Candès and Fernandez-

Granda, 2014], with the dual polynomial constructed by interpolation with a 4D

kernel. The theorem holds because all bounds in the proof of [Theorem 1.2, 34] hold

by leveraging the 1D results.

To estimate the mmWave FD-MIMO channel H in (5.1) based on the signal Y in

(5.9), we then formulate the following optimization problem:

ĥ = min
h∈CMN

µ‖h‖A +
1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2
, (5.27)

where y = vec(Y) is given by (5.11) and µ ∝ σw
√
MN log (MN) is a weight factor

[Zheng and Wang, 2017]. Using (5.22), (5.27) can be equivalently formulated as a

semi-definite program (SDP):

min
U4∈C(2N1−1)×(2N2−1)×(2M1−1)×(2M2−1),

h∈CMN , t∈R

µ

2MN
Tr (T4(U4)) +

µ

2
t+

1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2

s.t

 T4(U4) h

hH t

 � 0. (5.28)
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The above problem is convex, and can be solved by using a standard convex solver.

Suppose the solution to (5.28) is ĥ. Then the estimated channel matrix is given by

Ĥ = vec−1
(
ĥ
)

where vec−1(·) is the inverse operation of vec(·).

5.4 Efficient Algorithm for Channel Estimation un-

der UPA

5.4.1 A Formulation Based on 2D MMV Atomic Norm

Note that the dimension of the positive semidefinite matrix in (5.28) is (MN + 1)×

(MN+1), and the 4D atomic norm minimization formulation is of high computational

complexity and has large memory requirements. To reduce the complexity, we can

treat Y as 2D multiple measurement vectors (MMV) [Yang and Xie, 2016] in transmit

and receive dimensions.

Unlike the 4D atomic norm that is calculated with input vector h, the MMV

atomic norm is calculated with the matrix input H. Specifically, we define the atom

Q̄ (f , ā) = b (f) āH with f ∈ [−1
2
, 1

2
) × [−1

2
, 1

2
), and ā ∈ CN×1 with ‖ā‖2 = 1.

Correspondingly, the atom set is defined as

AMMV =

{
Q̄ (f , ā) : f ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
), ‖ā‖2 = 1

}
. (5.29)

It is worth noting that ā is not restricted by the structural constraint in (5.3). With

(5.29), we extend the 1D MMV atomic norm [Yang and Xie, 2016] to the 2D MMV

atomic norm of H defined by

‖H‖AMMV
= inf

fl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

āl∈CN×1, σl∈C

{∑
l

|σl|

∣∣∣∣∣H =
∑
l

σlQ̄ (fl, āl) , ‖ā‖2 = 1

}
. (5.30)

This atomic norm is equivalent to the solution of the following SDP [Yang and Xie,
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2016]:

‖H‖AMMV
= inf

U2∈C(2M2−1)×(2M1−1),X∈CN×N



1
2M

Tr (T2(U2)) + 1
2N

Tr (X)

s.t.

 T2(U2) H

HH X

 � 0


, (5.31)

where X is constrained to be a Hermitian matrix. Then using (5.9), we can formulate

the following optimization problem for channel estimation:

Ĥ = min
H∈CM×N

µ‖H‖AMMV
+

1

2

∥∥∥√PtHP−Y
∥∥∥2

F
, (5.32)

where ‖·‖F denotes matrix Frobenius norm. Plugging (5.31) into (5.32), the size of

the positive semidefinite matrix in the constraint is (M +N)× (M +N), resulting in

considerably lower computational complexity and memory requirement than (5.28).

5.4.2 An Approximation to 4D Atomic Norm Minimization

Next we propose an approximation to the 4D atomic norm to reduce the computa-

tional complexity. Similar to the 2D MMV atomic norm, the proposed approximation

is calculated with input H. From (5.1), H is the sum of σlb(fl)a(gl)
H , in which both

a(gl) and b(fl) are Fourier bases. Different from the vectorized atomic norm, we

introduce the matrix atom Q (f ,g) = b(f)a(g)H and the matrix atom set

AM =

{
Q (f ,g) = b(f)a(g)H : f ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
),g ∈ [−1

2
,

1

2
)× [−1

2
,

1

2
)

}
.(5.33)

The matrix atomic norm is then given by

‖H‖AM = inf
fl∈[− 1

2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣H =
∑
l

σlQ (fl,gl)

}
. (5.34)

The matrix atom set is composed of rank-one matrices, and hence it amounts to

atomic norm of low rank matrices. Since the operator vec(·) is a one-to-one mapping
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and the mapping AM → A is also one-to-one, it is straightforward to conclude that

‖H‖AM = ‖h‖A. Hence, if the component frequencies satisfy the sufficient separation

condition given by (5.25) and (5.26), we have ‖H‖AM =
∑

l |σl| by Theorem 1.

Finding the harmonic components via atomic norm is an infinite programming

problem over all feasible f and g, which is difficult. For better efficiency, we use

SDP(H) in the following Lemma to approximate ‖H‖AM .

Lemma 1. For H given by (5.1), we have ‖H‖AM ≥ SDP(H) ≥ ‖H‖AMMV
, where

SDP(H) , inf
U2∈C(2M2−1)×(2M1−1),V2∈C(2N2−1)×(2N1−1)



1
2MTr (T2(U2)) + 1

2NTr (T2(V2))

s.t.

 T2(U2) H

HH T2(V2)

 � 0


, (5.35)

with T2(U2) and T2(V2) being 2-level Toeplitz matrices defined in (5.18).

Proof. The relation SDP (H) ≥ ‖H‖AMMV
can be directly obtained from the defini-

tions in (5.31) and (5.35). It remains to show ‖H‖AM ≥ SDP(H). Denote

ã(gl, ωl) =
1√
N
ej2πωlc∗N1

(gl,1)⊗ c∗N2
(gl,2),

b̃(fl, χl) =
1√
M
ej2πχlcM1(fl,1)⊗ cM2(fl,2),

with ωl ∈ [0, 2π] and χl ∈ [0, 2π] such that σl = |σl| ej2π(ωl+χl). For any H =∑
l σlb (fl) a (gl)

H , if we set

U2 = [u1(−M1 + 1),u1(−M1 + 2), ...,u1(M1 − 1)], (5.36)

V2 = [v1(−N1 + 1),v1(−N1 + 2), ...,v1(N1 − 1)], (5.37)

where

u1(i) =
1√
M

∑
l

|σl|c̃M2(fl,2)ej2π(i−1)fl,1 , (5.38)

v1(i) =
1√
N

∑
l

|σl|c̃∗N2
(gl,2)e−j2π(i−1)gl,1 , (5.39)
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with c̃n(x) = 1√
n

[
ej2π(1−n)x, ej2π(2−n)x, · · · , ej2π(n−1)x

]T ∈ C2n×1, then the 2-level

Toeplitz matrices T2(U2) and T2(V2) satisfy

T2(U2) =
∑
l

|σl|b (fl) b (fl)
H

=
∑
l

|σl|b̃ (fl, χl) b̃ (fl, χl)
H , (5.40)

T2(V2) =
∑
l

|σl|a (gl) a (gl)
H

=
∑
l

|σl|ã (gl, ωl) ã (gl, ωl)
H . (5.41)

Moreover, the matrix

M =

 T2(U2) H

HH T2(V2)

 =
∑
l

|σl|

b̃ (fl, χl)

ã (gl, ωl)

b̃ (fl, χl)

ã (gl, ωl)

H (5.42)

is positive semidefinite, indicating that the constraints in (5.35) are satisfied. Note

that SDP(H) ≤ 1
2M

Tr (T2(U2))+ 1
2N

Tr (T2(V2)) =
∑

l |σl| according to the definition

in (5.35). Since this holds for any decomposition of H, we obtain SDP (H) ≤ ‖H‖AM .

The above lemma shows that SDP(H) is a lower bound of the matrix atomic

norm. Moreover, the following lemma states that if the component frequencies are

sufficiently separated, then SDP(H) is equivalent to ‖H‖AM .

Lemma 2. If (5.25)-(5.26) hold, then ‖H‖AM = SDP(H).

Proof. First it follows from Theorem 4 in [Yang and Xie, 2016] that if (5.25)-(5.26)

hold, then we have ‖H‖AMMV
=
∑

l |σl|. Using Theorem 1 and the fact that ‖h‖A =

‖H‖AM , we have ‖H‖AM = ‖H‖AMMV
. Finally by Lemma 1 we have ‖H‖AM =

‖H‖AMMV
= SDP(H).

When the sufficient separation condition given by (5.25) and (5.26) is not satisfied,

SDP(H) may not be the same as ‖H‖AM . However, it is found via simulations
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that SDP(H) still provides a good approximation to ‖H‖AM and usually results in

good performance in channel estimation. Moreover, as shown by Lemma 1, SDP(H)

is a lower bound of the atomic norm ‖H‖AM (or ‖h‖A equivalently), i.e., ‖h‖A =

‖H‖AM ≥ SDP(H) in general.

Figure 5.1: The approximation errors
∣∣‖H‖AM − SDP(H)

∣∣ and
∣∣‖H‖AM − ‖H‖AMMV

∣∣
when the separations satisfy ∆min,fi ≥ δ(Mi−1), ∆min,gi ≥ δ/(Ni−1), Ni = Mi = 16,

for i = 1, 2. The simulations are run 100 times for each δ.

To show the approximation performances of both ‖H‖AMMV
and SDP(H) to ‖h‖A,

we perform a series of Monte Carlo trials for parameters M1 = M2 = 16, N1 =

N2 = 16 with L = 2. fl and gl take random values from [−1
2
, 1

2
) × [−1

2
, 1

2
) such

that the separations satisfy ∆min,fi ≥ δ/ b(Ni − 1)c, ∆min,gi ≥ δ/ b(Ni − 1)c with

1 ≤ δ ≤ 6. In Fig. 5.1, we plot the approximation error against δ and the bars show

95% confidence interval. As δ decreases, both approximation errors become larger.

However, SDP(H) provides a more accurate approximation than ‖H‖AMMV
. When

δ ≥ 4, both approximation errors become zero.

Therefore, instead of solving the original 4D atomic norm minimization in (5.28),
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we can solve the following SDP

Ĥ = min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),
V2∈C(2N2−1)×(2N1−1)

µ

2M
Tr (T2(U2))+

µ

2N
Tr(T2(V2))+

1

2

∥∥∥√PtHP−Y
∥∥∥2

F
(5.43)

s.t. M =

 T2(U2) H

HH T2(V2)

 � 0.

The size of the positive semidefinite matrix in the constraint is (M +N)× (M +N),

resulting in considerably lower computational complexity and memory requirement

than (5.28).

5.4.3 ADMM for Approximate 4D Atomic Norm Minimiza-

tion

To meet the requirement of real-time signal processing, we next derive an iterative

algorithm for solving the SDP in (5.43), based on the alternating direction method of

multipliers (ADMM) [Boyd et al., 2011]. To put our problem in an appropriate form

for ADMM, rewrite (5.43) as

arg min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),

V2∈C(2N2−1)×(2N1−1)

1

2
‖HP−Y‖2F +

γ

2M
Tr (T2(U2))+

γ

2N
Tr (T2(V2))+I∞(M � 0),(5.44)

where I∞(z) is an indicator function that is 0 if z is true, and infinity otherwise.

Dualize the equality constraint via an augmented Lagrangian, we have

Lρ(U2,V2,H,Υ,M) =
γ

2M
Tr (T2(U2)) +

γ

2N
Tr (T2(V2)) +

1

2
‖HP−Y‖2F + I∞(M � 0)

+

〈
Υ,M−

 T2(U2) H

HH T2(V2)

〉

+
ρ

2

∥∥∥∥∥∥M−
 T2(U2) H

HH T2(V2)

∥∥∥∥∥∥
2

F

, (5.45)
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where Υ is the dual variable, 〈Υ,M〉 , Re
(
Tr(MHΥ)

)
, ρ > 0 is the penalty

parameter. The ADMM consists of the following update steps:

(Ul+1
2 ,Vl+1

2 ,Hl+1) = arg min
H∈CM×N ,

U2∈C(2M2−1)×(2M1−1),
V2∈C(2N2−1)×(2N1−1)

Lρ(U2,V2,H,Υl,Ml), (5.46)

Ml+1 = arg min
M∈C(M+N)×(M+N)�0

Lρ(Ul+1
2 ,Vl+1

2 ,Hl+1,Υl,M),(5.47)

Υl+1 = Υl + ρ

Ml+1 −

 T2(Ul+1
2 ) Hl+1

(Hl+1)H T2(Vl+1
2 )

 . (5.48)

Now we derive the updates of (5.46) and (5.47) in detail. For convenience, the

following partitions are introduced:

Ml =

 Ml
0 Ml

2

(Ml
2)H Ml

1

 , (5.49)

Υl =

 Υl
0 Υl

2

(Υl
2)H Υl

1

 , (5.50)

where Ml
0 and Υl

0 are M ×M matrices, Ml
2 and Υl

2 are M ×N matrices, Ml
1 and Υl

1

are N ×N matrices. Computing the derivative of Lρ(U2,V2,H,Υ,M) with respect

to H, U2 and V2, we have

∇HLρ = (HP−Y)PH − 2Υl
2 + 2ρ(H−Ml

2), (5.51)

∇U2(i,k)Lρ =


γ
2 +M1ρU2(i, k)− Tr(ρMl

0 + Υl
0), i = k = 0,

(M1 − i)(M2 − k)ρU2(i, k)−
M2−i−1∑
m=0

Trk

(
S(1)i,k (ρMl

0 + Υl
0)
)
, i 6= 0 or k 6= 0,

(5.52)

∇V2(i,k)Lρ =


γ
2 +N1ρV2(i, k)− Tr(ρMl

1 + Υl
1), i = k = 0,

(N1 − i)(N2 − k)ρV2(i, k)−
N2−i−1∑
m=0

Trk

(
S(2)i,k (ρMl

1 + Υl
1)
)
, i 6= 0 or k 6= 0,

(5.53)

where U2(i, k) and V2(i, k) are the (i, k)-th elements of U2 and V2, respectively. For

X ∈ CM×M , S(1)
i,k (X) returns the (i, k)-th M1 ×M1 submatrix Xi,k. For X ∈ CN×N ,

S(2)
i,k (X) returns the (i, k)-th N1 ×N1 submatrix Xi,k. Trk(·) outputs the trace of the

k-th sub-diagnal of the input matrix. Tr0(·) outputs the trace of the input matrix.
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By setting the derivatives to 0, Hl+1, Ul+1
2 and Vl+1

2 can be updated by:

Hl+1 = (YPH + 2ρMl
2 + 2Υl

2)(PPH + 2ρIN)−1, (5.54)

Ul+1
2 = T∗2(Ml

0 + Υl
0/ρ)− γ

2Mρ
e1, (5.55)

Vl+1
2 = T∗2(Ml

1 + Υl
1/ρ)− γ

2Nρ
e1, (5.56)

where e1 = [1, 0, 0, ..., 0]T , T∗2(·) denotes the adjoints of the map T2(·). Specifically,

suppose Z = T∗2(X) where Z = [z−M2+1, z−M2+2, ..., zM2−1] with zi = [zi(−M1 +

1), zi(−M1 + 2), ..., zi(M1 − 1)]T when X ∈ CM×M . Then we have

zi(k) =
1

(M1 − i)(M2 − k)

M1−i−1∑
m=0

Trk(S(1)
i,m(X)), (5.57)

for i = −M2 + 1,−M2 + 2, ...,M2 − 1 and k = −M1 + 1,−M1 + 2, ...,M1 − 1.

The update of M is given by

Ml+1 = arg min
M∈C(M+N)×(M+N)�0

∥∥∥M− M̃l+1
∥∥∥2

F
, (5.58)

where

M̃l+1 =

 T2(Ul+1
2 ) Hl+1

(Hl+1)H T2(Vl+1
2 )

−Υl+1/ρ. (5.59)

It is equivalent to projecting M̃l+1 onto the positive semidefinite cone. Specifically,

the projection is accomplished by setting all negative eigenvalues of M̃l+1 to zero.

Note that in ADMM the update of variables H, U2, V2 and M are in closed-form.

Compared to the off-the-shelf solvers such as SeDuMi [Sturm, 1999] and SDPT3 [Toh

et al., 1999], whose computational complexity is O ((M +N)6) in each iteration, the

complexity of ADMM is O ((M +N)3) in each iteration, so it runs much faster.

5.5 The General Planar Array Case

So far we have focused on the uniform planar array (UPA). For mmWave beamformed

FD-MIMO, because of the larger average inter-antenna element spacing, non-uniform
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planar array (NUPA) requires fewer elements than UPA, whereby reducing the weight

and cost of the system in large array applications. Also, the irregular spacing allows

the antenna grid spacing to become larger than a half wavelength so it can effectively

reduce the channel correlation and enhance multiplexing gain [Torkildson et al., 2009].

Furthermore, there is a fundamental limitation of UPA, namely, the lower resolution

of elevation AoA, which limits the UPA performance [Liu et al., 2017].

In this section we consider the beamformed mmWave FD-MIMO channel estima-

tion for NUPA. Define dt = 2
λ

[(dt,1(1), dt,2(1)) . . . (dt,1(N), dt,2(N))] as the normalized

transmit antenna locations, where (dt,1 (i), dt,2 (i)) is the i-th transmit antenna coordi-

nate in a 2D planar surface. Similarly, dr = 2
λ

[(dr,1 (1) , dr,2 (1)) . . . (dr,1 (M) , dr,2 (M))]

is the normalized receive antenna locations where (dr,1 (i), dr,2 (i)) is the i-th receive

antenna coordinate in a 2D planar surface. Then the steering responses of the trans-

mit and receive arrays for the l-th path can be respectively written as [Nai et al.,

2010]

adt (gl) =
1√
N

[
e
j2π

(
2dt,1(1)

λ
gl,1+

2dt,2(1)

λ
gl,2

)
· · · e

j2π

(
2dt,1(N)

λ
gl,1+

2dt,2(N)

λ
gl,2

)]T
,(5.60)

bdr (fl) =
1√
M

[
e
j2π

(
2dr,1(1)

λ
fl,1+

2dr,2(1)

λ
fl,2

)
· · · e

j2π

(
2dr,1(M)

λ
fl,1+

2dr,2(M)

λ
fl,2

)]T
.(5.61)

With (5.60) and (5.61), the channel matrix H of NUPA is given by (5.1) with array

responses a (gl) and b (fl) replaced by adt (gl) and bdr (fl), respectively.

The atom for NUPA is then defined as

qNU (g, f) = a∗dt (g)⊗ bdr (f) . (5.62)

And the atom set for NUPA is given by

ANU ,

{
qNU (g, f) ,g ∈ [

−1

2
,

1

2
)× [−1

2
,

1

2
), f ∈ [

−1

2
,

1

2
)× [
−1

2
,

1

2
)

}
. (5.63)

The atomic norm ‖h‖ANU
for any h = vec (H) is then given by

‖h‖ANU
= inf

fl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

gl∈[− 1
2
, 1

2
)×[− 1

2
, 1

2
),

σl∈C

{∑
l

|σl|

∣∣∣∣∣h =
∑
l

σlqNU (gl, fl)

}
. (5.64)
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To estimate the channel, we propose to solve the following optimization problem

min
h
µ ‖h‖ANU

+
1

2

∥∥∥y −√Pt
(
PT ⊗ IM

)
h
∥∥∥2

2
. (5.65)

Note that the atom defined in (5.62) is not based on uniform sampling, and conse-

quently the atomic norm in (5.64) does not have the equivalent SDP form as in (5.28)

or (5.43). Hence, (5.65) cannot be solved via convex optimization. According to

Corollary 2.1 of [Li and Tang, 2016], (5.65) shares the same optimum as the following

optimization problem

min
fl∈[− 1

2 ,
1
2 )×[−

1
2 ,

1
2 ),

gl∈[− 1
2 ,

1
2 )×[−

1
2 ,

1
2 ),

σl∈C

Γ ({gl, fl, σl}) = µ ‖σ‖1 +
1

2

∥∥∥∥∥y −√Pt (PT ⊗ IM
) L∑
l=1

qNU (gl, fl)σl

∥∥∥∥∥
2

2

. (5.66)

Since the problem given by (5.66) is nonconvex, we will employ a gradient-descent

algorithm to obtain its local optimum. In practice, L is unknown, so we initialize

q (gl, fl) on L̃0 grid points such that L ≤ L̃0 ≤ MP , where P is the number of

training beams defined in (5.8). For example, let each gl and fl be taken from a

uniform grid of NG points with L̃0 = N4
G ≤MP , i.e., g0

l,i and f 0
l,i are uniformly taken

from [−1/2, 1/2) for i = 1, 2 and 1 ≤ l ≤ N4
G, where the supercript 0 indicates iteration

0, i.e., initialization. Let Ω0 =
{

(g0
l , f

0
l )1≤l≤L̃

}
. The initial value of σ0 =

[
σ0

1 . . . σ
0
L̃

]T
can then be obtained by the least-squares (LS) estimate

σ0 =
((

PT ⊗ IM
) [

qNU

(
g0

1, f
0
1

)
. . .qNU

(
g0
L̃
, f0
L̃

)])†
y, (5.67)

where † indicates the pseudo inverse of the matrix. Then the gradient descent method

is used to find the local optimum. We use superscript k to denote the quantities in

the k-th iteration. Then the gradient descent search proceeds as follows

gk+1
l,i =

[
gkl,i − κk∇gl,iΓ

(
{gkl , fkl , σkl }

)] 1
2

− 1
2

, (5.68)

fk+1
l,i =

[
fkl,i − κk∇fl,iΓ

(
{gkl , fkl , σkl }

)] 1
2

− 1
2

, (5.69)

σk+1
l = σkl − κk∇σlΓ

(
{gkl , fkl , σkl }

)
, (5.70)

for l = 1, . . . , L̃k and i = 1, 2, where κk is the step size that can be obtained via

Armijo line search [Boumal and Absil, 2015] and [x]ab defines the operator that outputs
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x = mod (x, a) when x < b, and outputs x = mod (x, b) when x > a, mod (a, b)

defines the modulo operator. Specifically, in the k-th iteration, κk is initialized as κk =

κ̄. If Γ
(
{gk+1

l , fk+1
l , σk+1

l }
)
≥ Γ

(
{gkl , fkl , σkl }

)
, then κk is updated by multiplication

with a constant 0 < α < 1, i.e., κk ← ακk. The gradients are calculated

∇gl,iΓ ({gl, fl, σl}) = R

σl
P̄

L̃∑
l=1

qNU (gl, fl)σl − y

H

P̄
(
a∗dt,i

(gl)⊗ bdr
(fl)
) ,(5.71)

∇fl,iΓ ({gl, fl, σl}) = R

σl
P̄

L̃∑
l=1

qNU (gl, fl)σl − y

H

P̄
(
a∗dt

(gl)⊗ bdr,i (fl)
) , (5.72)

∇σl
Γ ({gl, fl, σl}) = µ

σl
2|σl|

+
1

2

P̄

L̃∑
l=1

qNU (gl, fl)σl − y

T (
P̄qNU (gl, fl)

)∗
, (5.73)

where R{·} returns the real part of the input,

P̄ =
√
Pt
(
PT ⊗ IM

)
, (5.74)

adt,i (gl) =

(
j2π

λ
[dt,i(1), . . . , dt,i(N)]T

)
◦ adt (gl) , (5.75)

bdr,i (fl) =

(
j2π

λ
[dr,i(1), . . . , dr,i(M)]T

)
◦ bdr (fl) , (5.76)

and ◦ denotes Hadamard product. The derivations of (5.71) - (5.73) are given in the

Appendix. To accelerate the convergence, we introduce a pruning step to remove the

atoms whose coefficients are smaller than a threshold during each iteration. Specif-

ically, at the k-th iteration, if |σkl | < ηk where ηk is a given threshold at the k-th

iteration, then l-th path are removed from the set and number of estimated paths is

decreased by one, i.e., Ωk ← Ωk \
{(

gkl , f
k
l

)}
and L̃k ← L̃k − 1 at the k-th iteration.

The algorithm stops when
∥∥hk+1 − hk

∥∥ < ε, where hk =
∑L̃k

l=1 qNU

(
gkl , f

k
l

)
σkl denotes

the channel estimation at the k-th iteration.
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5.6 Simulation Results

5.6.1 Simulation Setup

In this section, we evaluate the performance of the proposed channel estimators for

mmWave FD-MIMO links with UPA or NUPA. We compare the channel estimation

performance of the proposed algorithm with some existing algorithms including the

4D-MUSIC [Guo et al., 2017] and the orthogonal matching pursuit (OMP) [Cai and

Wang, 2011]. The simulation parameters are set as follows.

1, The numbers of transmit and receive antenna are N = 16 and M = 16, respec-

tively. For UPA, we set N1 = 4, N2 = 4, M1 = 4 and M2 = 4.

2, In the UPA case, the DFT codebooks at the transmitter for elevation and azimuth

are given by

P1 = [cN1 (ψ1,0) cN1 (ψ1,1) · · · cN1 (ψ1,P1−1)] ∈ CN1×P1 ,

P2 = [cN2 (ψ2,0) cN2 (ψ2,1) · · · cN2 (ψ2,P2−1)] ∈ CN2×P2 ,

where P1 and P2 are the sizes of elevation and azimuth codebooks, respectively.

The DFT angles are ψ1,i = i
P1

for i = 0, . . . , P1−1 and ψ2,i = i
P2

for i = 0, . . . , P2−

1. We take the Kronecker product of P1 and P2 to form the product codebook

P = P1⊗P2 with size P = P1P2. Each beamforming vector has a unit norm, i.e.,

‖pp‖ = 1 for p = 1, . . . , P and rank (P) = P .

3, The weight factor in (5.28) and (5.43) is set as µ = σw
√
MN log (MN). The

weight for the augmented Lagrangian in (5.45) is set as ρ = 0.05.

4, gl and fl for each path are assumed to uniformly take values in [−1
2
, 1

2
)× [−1

2
, 1

2
).

The number of paths L = 3.

5, The signal power is controlled by the signal-to-noise ratio (SNR) which is defined

as SNR = Pt
σ2
w

with σ2
w = 1.
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6, For NUPA, we use circular arrays for both transmitter and receiver with N and

M antenna elements located on the 2D plane, respectively. Specifically, the n-th

transmit antenna location is set as dt,1(n) = Rt cos (χn) , dt,2(n) = Rt sin (χn) , n =

1, 2, . . . , N , where χn = 2π
(
n
N

)
is the angular position of the n-th element and Rt

is the radius of the transmit array. Similarly, the m-th receive antenna location

is dr,1(m) = Rr cos (χm) , dr,2(m) = Rr sin (χm) , m = 1, 2, . . . ,M , where χm =

2π
(
m
M

)
is the angular position of the m-th element and Rr is the radius of the

receive array.

7, For the gradient descent algorithm, we set L̃0 = MP as the initial value in both

UPA and NUPA cases. The pruning threshold in the k-th step is set as ηk =

0.7 max1≤l≤L̃k
{
σkl
}

.

8, For the OMP and 4D-MUSIC algorithms, the AoD and AoA grid points are set as

ϑ̄i = (i−1)2π
NG

−π, ϕ̄i = (i−1)2π
NG

−π and θ̄i = (i−1)2π
NG

−π, φ̄i = (i−1)2π
NG

−π, respectively,

for i = 1, . . . NG.

9, In the simulation, we use the CVX package [Grant and Boyd, 2014] to compute

the 4D atomic norm-based estimator.

5.6.2 Performance Evaluation

We use the normalized mean square error (NMSE), i.e., NMSE = E
{
‖Ĥ−H‖2

F

‖H‖2F

}
as the

channel estimation performance metric. The NMSE statistics across different SNRs

with different test setups are evaluated. Each curve is obtained by averaging over

100 realizations. First we compare the channel estimation performance of different

algorithms under the UPA setting. Then we show the channel estimation performance

for NUPA with the proposed gradient descent estimator and compare it with the 4D-

MUSIC and OMP algorithms.

The computational complexity of the proposed approximate 4D atomic-norm-

based channel estimator is O((M +N)3) per-iteration. The computational complex-
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ity of the MUSIC estimator isO
(
(NM)3 +N4

G (NM)2) whereO
(
(NM)3) is for eigen

decomposition and O
(
N4
G (NM)2) is for grid search. The complexity of the OMP es-

timator is O
(
N4
G (NM)2) per iteration. The complexity of proposed gradient descent

estimator is O (M (N + P )) per iteration.

5.6.2.1 Convergence Behavior of the Proposed Channel Estimators

We illustrate the convergence of the proposed ADMM implementation of the approx-

imate 4D atomic-norm-based channel estimator through a simulation example. We

compare the NMSE of the ADMM channel estimator with that of the CVX solver

[Grant and Boyd, 2014] that directly solves (5.43). As can be seen from Fig. 5.2,

5.3, the proposed ADMM channel estimator converges to the solution given by the

CVX after 300-400 iterations for different SNR. It is worth noting that the ADMM

runs much faster than the CVX solver because the calculation in each iteration is in

closed-form.

Figure 5.2: Convergence of proposed ADMM channel estimator with different SNR

(a) SNR= 4dB.
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Figure 5.3: Convergence of proposed ADMM channel estimator with different SNR

(b) SNR= 10dB.

We then show the convergence behavior and the number of estimated paths of the

proposed gradient-descent-based channel estimator for UPA and NUPA in Fig. 5.4-

5.7. It is seen that the algorithm converges within 1500-2000 iterations for different

SNR. The estimated number of paths is more accurate at higher SNR when the

algorithm converges, as more spurious frequencies arise when the noise is stronger.

It is also worth noting that the computational complexity of the gradient descent

method is lower than that of the ADMM, but the overall running time is higher

because it takes more iterations.
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Figure 5.4: (a)

Figure 5.5: (b)
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Figure 5.6: (c)

Figure 5.7: Convergence and the number of estimated paths of the proposed gradient

descent algorithm for (a)(c) UPA and (b)(d) NUPA.

5.6.2.2 Comparison of On-grid and Off-grid Algorithms

We compare the proposed off-grid channel estimator with two existing on-grid ap-

proaches including OMP and MUSIC. For the on-grid algorithms, the continuous

AoA and AoD parameter spaces are discretized into a finite set of grids covering

[−π, π], and the estimation performance improves with higher grid resolution (i.e.,

larger NG). However, higher grid resolution leads to higher computational complexity.

In Fig. 5.8 and 5.9, the NMSE and running time of different channel estimators
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are plotted against NG. In this simulation, we use CVX solver to compute the 4D

atomic-norm-based estimator and the ADMM algorithm to compute the approximate

4D atomic-norm-based estimator. It is worth noting that the proposed approximate

4D atomic-norm-based estimator has the smallest complexity while its NMSE is much

smaller than those of the on-grid algorithms. As the algorithm does not require the

grids, its computational complexity does not change with NG. In addition, its NMSE

performance is only slightly worse than the 4D atomic-norm-based channel estima-

tor, indicating that the performance loss caused by the approximation of ‖H‖AM by

SDP(H) is small.

Figure 5.8: Comparison of channel estimation performance and running time against

grid size, SNR= 10dB. (a) NMSE performance
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Figure 5.9: Comparison of channel estimation performance and running time against

grid size, SNR= 10dB. (b) running time.

5.6.2.3 Channel Estimation Performance

Fig. 5.10 plots the NMSE curves as a function of SNR for different channel estimators

under UPA. The number of grid points are set as NG = 90, 180 for 4D-MUSIC-based

and OMP-based channel estimators.

It is seen that 4D atomic-norm-based and approximate 4D atomic-norm-based

estimators outperform the 4D-MUSIC-based and OMP-based estimators. Mean-

while, the 4D atomic-norm-based channel estimator achieves better performance than

the approximate 4D atomic-norm-based channel estimator by about from 0.5 - 0.8

dB. And the approximate 4D atomic-norm-based channel estimator outperforms the

gradient-descent-based algorithm by more than 1.0 dB.
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Figure 5.10: The NMSE performance as a function of SNR for UPA.

In Fig. 5.11, we plot the NMSE curves as a function of SNR for different channel

estimators under NUPA. It is seen that the proposed gradient-descent-based channel

estimator outperforms the 4D-MUSIC and OMP-based channel estimators across the

range of SNRs from 2 to 10 dB. This is because the proposed gradient-descent-based

channel estimator optimizes the frequency basis in each iteration, so it outperforms

the on-grid algorithms.

Figure 5.11: The NMSE performance as a function of SNR for NUPA.
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5.7 Conclusions

In this paper, we have proposed new channel estimation schemes for mmWave beam-

formed FD-MIMO systems based on atomic norm minimization under both UPA

and NUPA settings. For the UPA case, we approximate the original large-scale 4D

atomic norm minimization problem using a semi-definite program (SDP) containing

two decoupled two-level Toeplitz matrices which is then solved by an ADMM-based

fast algorithm. For the NUPA case, a gradient descent-based algorithm is provided to

obtain a suboptimal solution. Simulation results show that the proposed atomic norm

based mmWave FD-MIMO channel estimators provide better performance compared

to the existing methods based on compressed sensing and MUSIC algorithms.

.0.1 Derivation for (5.71) and (5.72)

For clarity, define P̄ =
√
Pt
(
PT ⊗ IM

)
. Then the gradient with respect to gl,i can be

calculated by

∇gl,iΓ ({gl, fl, σl}) =
1

2

∂
(
y − P̄h

)H (
y − P̄h

)
∂gl,i

= R
{(

P̄h− y
)H ∂P̄h

∂gl,i

}
, (77)

where

∂P̄h

∂gl,i
=
∂P̄
∑L

l=1 qNU (gl, fl)σl
∂gl,i

= σlP̄
∂qNU (gl, fl)

∂gl,i
, (78)

∂qNU(gl, fl)

∂gl,i
=
∂a∗dt (gl)⊗ bdr (fl)

∂gl,i
=
∂a∗dt (gl)

∂gl,i
⊗ bdr (fl) , (79)

∂a∗dt (gl)

∂gl,i
=

(
−j2π
λ

[dt,i(1), . . . , dt,i(N)]T
)
◦ a∗dt (gl) . (80)

By plugging (80) into (77), we have (5.71). Similarly we can obtain (5.72).
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.0.2 Derivation for (5.73)

The gradient with respect to σl can be calculated by

∇σlΓ ({gl, fl, σl}) =
∂
(
µ ‖σ‖1 + 1

2

∥∥y − P̄h
∥∥2

2

)
∂σ∗l

=
∂‖σ‖1

∂σ∗l
− 1

2

∂yHP̄h

∂σ∗l
− 1

2

∂hHP̄Hy

∂σ∗l
+

1

2

∂hHP̄HP̄h

∂σ∗l
, (81)

where

∂yHP̄h

∂σl∗
= yHP̄qNU (gl, fl)

∂σl
∂σ∗l

= 0, (82)

∂hHP̄Hy

∂σ∗l
=
((

P̄qNU (gl, fl)
)H

y
)T ∂σ∗l

∂σ∗l
=
((

P̄qNU (gl, fl)
)H

y
)T

, (83)

∂hHP̄HP̄h

∂σ∗l
=
((

P̄qNU (g, f)
)H

P̄qNU (gl, fl)σl

)T
, (84)

∂‖σ‖1

∂σ∗l
=
∂
∑

l |σl|
∂σ∗l

=
∂|σl|
∂σ∗l

=
1

2

(
∂|σl|

∂R{σl}
+ i

∂|σl|
∂I{σl}

)
(85)

=
1

2

(
∂
√
R2{σl}+ I2{σl}
∂R{σl}

+ i
∂
√
R2{σl}+ I2{σl}
∂I{σl}

)
=

σl
2|σl|

,

where I {·} returns the imaginary part of the input. Plugging (82)-(85) into (81), we

obtain (5.73).
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