1,647 research outputs found

    Empowering parallel computing with field programmable gate arrays

    Get PDF
    After more than 30 years, reconfigurable computing has grown from a concept to a mature field of science and technology. The cornerstone of this evolution is the field programmable gate array, a building block enabling the configuration of a custom hardware architecture. The departure from static von Neumannlike architectures opens the way to eliminate the instruction overhead and to optimize the execution speed and power consumption. FPGAs now live in a growing ecosystem of development tools, enabling software programmers to map algorithms directly onto hardware. Applications abound in many directions, including data centers, IoT, AI, image processing and space exploration. The increasing success of FPGAs is largely due to an improved toolchain with solid high-level synthesis support as well as a better integration with processor and memory systems. On the other hand, long compile times and complex design exploration remain areas for improvement. In this paper we address the evolution of FPGAs towards advanced multi-functional accelerators, discuss different programming models and their HLS language implementations, as well as high-performance tuning of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pitfalls, and identify opportunities for language enhancements and architectural refinements

    GPU acceleration of brain image proccessing

    Get PDF
    Durante los últimos años se ha venido demostrando el alto poder computacional que ofrecen las GPUs a la hora de resolver determinados problemas. Al mismo tiempo, existen campos en los que no es posible beneficiarse completamente de las mejoras conseguidas por los investigadores, debido principalmente a que los tiempos de ejecución de las aplicaciones llegan a ser extremadamente largos. Este es por ejemplo el caso del registro de imágenes en medicina. A pesar de que se han conseguido aceleraciones sobre el registro de imágenes, su uso en la práctica clínica es aún limitado. Entre otras cosas, esto se debe al rendimiento conseguido. Por lo tanto se plantea como objetivo de este proyecto, conseguir mejorar los tiempos de ejecución de una aplicación dedicada al resgitro de imágenes en medicina, con el fin de ayudar a aliviar este problema

    Support for Programming Models in Network-on-Chip-based Many-core Systems

    Get PDF

    Implementation of soft processor based SOC for JPEG compression on FPGA

    Full text link
    With the advent of semiconductor process and EDA tools technology, IC designers can integrate more functions. However, to reduce the demand of time-to-market and tackle the increasing complexity of SoC, the need of fast prototyping and testing is growing. Taking advantage of deep submicron technology, modern FPGAs provide a fast and low-cost prototyping with large logic resources and high performance. So the hardware is mapped onto an emulation platform based on FPGA that mimics the behaviour of SOC. In this paper we use FPGA as a system on chip which is then used for image compression by 2-D DCT respectively and proposed SoC for image compression using soft core Microblaze. The JPEG standard defines compression techniques for image data. As a consequence, it allows to store and transfer image data with considerably reduced demand for storage space and bandwidth. From the four processes provided in the JPEG standard, only one, the baseline process is widely used. Proposed SoC for JPEG compression has been implemented on FPGA Spartan-6 SP605 evaluation board using Xilinx platform studio, because field programmable gate array have reconfigurable hardware architecture. Hence the JPEG image with high speed and reduced size can be obtained at low risk and low power consumption of about 0.699W. The proposed SoC for image compression is evaluated at 83.33MHz on Xilinx Spartan-6 FPGA

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Virtual Prototyping for Dynamically Reconfigurable Architectures using Dynamic Generic Mapping

    Get PDF
    This paper presents a virtual prototyping methodology for Dynamically Reconfigurable (DR) FPGAs. The methodology is based around a library of VHDL image processing components and allows the rapid prototyping and algorithmic development of low-level image processing systems. For the effective modelling of dynamically reconfigurable designs a new technique named, Dynamic Generic Mapping is introduced. This method allows efficient representation of dynamic reconfiguration without needing any additional components to model the reconfiguration process. This gives the designer more flexibility in modelling dynamic configurations than other methodologies. Models created using this technique can then be simulated and targeted to a specific technology using the same code. This technique is demonstrated through the realisation of modules for a motion tracking system targeted to a DR environment, RIFLE-62

    Face Detection on Embedded Systems

    Get PDF
    Over recent years automated face detection and recognition (FDR) have gained significant attention from the commercial and research sectors. This paper presents an embedded face detection solution aimed at addressing the real-time image processing requirements within a wide range of applications. As face detection is a computationally intensive task, an embedded solution would give rise to opportunities for discrete economical devices that could be applied and integrated into a vast majority of applications. This work focuses on the use of FPGAs as the embedded prototyping technology where the thread of execution is carried out on an embedded soft-core processor. Custom instructions have been utilized as a means of applying software/hardware partitioning through which the computational bottlenecks are moved to hardware. A speedup by a factor of 110 was achieved from employing custom instructions and software optimizations

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org
    corecore