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Abstract. Over recent years automated face detection and recognition (FDR) 
have gained significant attention from the commercial and research sectors. 
This paper presents an embedded face detection solution aimed at addressing 
the real-time image processing requirements within a wide range of 
applications. As face detection is a computationally intensive task, an 
embedded solution would give rise to opportunities for discrete economical 
devices that could be applied and integrated into a vast majority of applications. 
This work focuses on the use of FPGAs as the embedded prototyping 
technology where the thread of execution is carried out on an embedded soft-
core processor. Custom instructions have been utilized as a means of applying 
software/hardware partitioning through which the computational bottlenecks 
are moved to hardware. A speedup by a factor of 110 was achieved from 
employing custom instructions and software optimizations. 

1 Introduction 

The identification and localization of a face or faces from either an image or video stream 
is a branch of computer vision known as face detection [1, 2]. Face detection has attracted 
considerable attention over recent years in part due to the wide range of applications in 
which it forms the preliminary stage. Some of the main application areas include: human-
computer interaction, biometrics, content-based image retrieval systems (CBIRS), video 
conferencing, surveillance systems, and more recently, photography. 

The existing visual sensing and computing technologies are at a state where reliable, 
inexpensive, and accurate solutions for non-intrusive and natural means of human-
computer interactions are feasible. Biometrics is an evolving application domain for face 
detection and is concerned with the use of physiological information to identify and verify 
a person’s identity. In most cases, face recognition algorithms are designed to operate on 
images assumed to only contain frontal faces [2]. Therefore, face detection is required to 
first extract faces from an image prior to the recognition step. Examples of commercial 
biometric systems are BioID [3] and ViiSage1. HumanScan is the company that developed 
BioID; a multimodal system incorporating voice, lip movement and face recognition to 
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authenticate a person. This system implements a model-based face detection algorithm 
based on the Hausdorff distance [4]. 

Another application area that can clearly benefit from face detection is surveillance 
systems that would allow easier identification of criminals in public spaces. Shan et al [5] 
presented a robust face recognition system specifically designed for Intelligent CCTV 
systems. Another video surveillance system which has the capacity to detect faces is that 
proposed by Kim et al [6]. More recently, FujiFilm2 and Nikon Corporation3 have 
incorporated face detection technologies into some of their camera series to automatically 
improve pictures taken under poor lighting conditions. 

The majority of the research work to date has primarily focused on developing novel 
face detection algorithms and/or improving the efficiency and accuracy of existing 
algorithms. As a result, most solutions deployed (similar to the examples given above) are 
typically high-level software programs targeted for general purpose processors that are 
expensive and usually non-real-time solutions. Since face detection is typically the first 
step and frequently a bottleneck in most solutions due to the large search space and 
extensive amount of computationally intensive operations, it is reasonable to suggest an 
embedded implementation specifically optimized to detect faces. An embedded solution 
would entail many advantages including 1) low cost, as only a subset of hardware 
components are required compared to the general computer based solutions, 2) 
optimization of the face detection algorithms for real-time operations independent of face 
recognition or other post-processing concerns and 3) integration with other technologies 
such as security cameras to create smart devices. 

Related Work 
Now that reliable, accurate, and efficient face detection algorithms are available coupled 
with advances in embedded technologies; low-cost implementations of robust real-time 
face detectors can be explored. The most common target technologies are: pure hardware, 
embedded microprocessors, and configurable hardware. 

Pure hardware systems are typically based on very large scale integrated circuit (VLSI) 
semiconductor technology implemented as application specific integrated circuits (ASIC). 
Compared to the other technologies, ASICs have a high operating frequency resulting in 
better performance, low power consumption, high degree of parallelism, and well 
established design tools. However, a large amount of development time is required to 
optimize and implement the designs. Also, due to the fixed nature of this technology the 
resulting solutions are not flexible and cannot be easily changed, resulting in high 
development costs and risk. Theocharides et al [7] investigated the implementation of a 
neural network based face detection algorithm in 160 nm VLSI technology based on 
algorithm proposed by Rowley et al in [8, 9], which has a high degree of parallelism.  

On the other hand, software programs implemented on general purpose processors 
(GPP) offer a great deal of flexibility, coupled with very well established design tools that 
can automatically optimize the designs with little development time and costs. GPPs are 
ideally suited to applications that are primarily made up of control processing. However, 
they are disadvantaged because minimal or no special instructions are available to assist 
with data processing [10]. Digital signal processors (DSP) extend GPPs in the direction of 
increasing parallelism and providing additional support for applications requiring large 
amounts of data processing. The drawbacks of microprocessors (both GPPs and DSPs) are 
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high power consumption, and inferior performance compared to an ASIC. The 
performance of the final solution is limited to the selected processor. 

Finally, configurable platforms such as field programmable gate arrays (FPGA) 
combine some of the advantages from both pure hardware and pure software solutions. 
More specifically, the high parallelism and computational speed of hardware, and the 
flexibility and short design time of software. By inheriting characteristics from both 
hardware and software solutions, the design space for FPGAs is extended for better trade-
offs between performance and cost. These design trade-offs are far superior to that of pure 
hardware or software solutions alone. From an efficiency point of view, the performance 
measures for FPGAs, that is, operating frequency, power consumption, and so on, are 
generally half way in between the corresponding hardware and software measures. 

Several configurable hardware based implementations exist, including that by 
McCready [11] and Sadri et al [12]. McCready specifically designed a novel face 
detection algorithm for the Transmogrifier-2 (TM-2) configurable platform. The 
Transmogrifer-2 is a multi-board FPGA based architecture proposed by Lewis et al [13]. 
The algorithm was intentionally designed with minimal mathematical operations that 
could execute in parallel — engineering effort has been put in to reduce the number of 
multiplications required. The implemented system required nine boards of the TM-2 
system, requiring 31,500 logic cells (LC). The system can process 30 images per second 
with a detection accuracy of 87%. The hardware implementation is said to be 1,000 times 
faster than the equivalent software implementation. 

On the other hand, Sadri et al [12] implemented the neural network based algorithm 
proposed by Rowley et al [8] on the Xilinx Virtex-II Pro XC2VP20 FPGA. Skin color 
filtering and edge detection is incorporated to reduce the search speed. The solution is 
partitioned such that all regular operations are implemented in hardware while all irregular 
control based operations are implemented on Xilinx’s embedded hardcore PowerPC 
processor. This partitioning allows the advantages of both hardware and software to be 
simultaneously exploited. The system operates at 200 MHz and can process up to nine 
images per second.  

The examples presented illustrate the obvious compromises between accuracy and 
algorithm robustness versus the amount of resources required. That is, to improve the 
performance of the face detection algorithms, we must either increase the embedded 
design complexity, which generally results in higher power consumption and hardware 
costs, or settle for a lesser solution.  

2. PC Based Software Prototype 

The initial software prototype of the standard Viola-Jones algorithm was implemented 
based on the trained classifiers provided in the Open Computer Vision Library 
(OpenCV)4. The particular classifiers used in this implementation are those trained for a 
base detection window size of 24x24 pixels. The classifiers are trained to detect upright 
frontal faces. These classifiers were created and trained by Lienhart et al who used a total 
of 8,000 training samples, of which 5,000 are face images and 3,000 non-face images [14]. 
The accuracy of the implemented Viola-Jones face detection algorithm was validated 
using a subset of images from the CMU + MIT face databases, and images retrieved from 
a random web crawl.  
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To ensure that the results obtained can be compared with other published sources, 
detection and false detection events use the definition of Lienhart et al [14], as follows. A 
detection window is said to correctly identify a face if the following criteria are satisfied: 

i) The maximum displacement between the centre of the detected window and the 
actual face do not exceed 30% of the actual face size. 

ii) The difference between the detected window and actual face size does not exceed 
50% of the actual face size. 

At ∆ = 1.0 and s = 1.255, the detection accuracy for the CMU+MIT image set is 80%. This 
result is consistent with that presented by Lienhart et al [14]. On the other hand, the 
detection accuracy for the web crawl image set is 92%. The slightly better results obtained 
in the web crawl image set is possibly due to the following factors: 

i) The images from the web crawl image set had a higher resolution and better quality 
ii) The images’ backgrounds were less complex, resulting in less misclassification. 

2.1 Implementation Details 
In order to standardize the input data for all implementation platforms so that the 
performance results can be benchmarked, a set of 10 images arbitrarily chosen from a web 
search is used as input. Each image contains a single frontal face. Multiple images are 
used so that any variability in the processing time for individual images is better averaged 
out. All the images are stored as grayscale bitmaps of size 576x720 pixels — image size 
being arbitrarily chosen. Variability in execution times is primarily attributed to the 
cascaded nature of the Viola-Jones algorithm. The amount of time required to search an 
image for a face is closely related to the “complexity” of the image; that is, if an image has 
large areas that do not contain faces but passes many of the cascaded classifier stages, then 
more time is required to process the image. Other aspects that contribute to varying the 
execution times are platform dependent and include: cache and memory access times, 
pipeline schedule, interrupt mechanisms, and so on.  

The software prototype was developed in C and compiled with a GNU GCC compiler 
under Cygwin. The compiler was set to highest optimization for speed, and the PC was a 
Pentium 4 processor, 3.20 GHz, with 1.0 GB RAM with Windows XP as the operating 
system. 

2.2 Software Implementation Results 
All 10 faces within the 10 images were located with two false positives. Due to the small 
number of images, the ratio between detection and false detection rates may be skewed. 
The total execution time for the program to process all 10 images is 19.91 seconds. A 
breakdown of each function and their contribution to the final time are presented in the 
Table 1. 

Not all functions used in the program are in Table 1; this is because the profiling 
process is based on samples taken when the program is running. As a result, functions that 
execute quickly may not be acknowledged. An arrow before a function name indicates that 
it is called from another function where the function that called it has one less indentation 
level. As an example, referring to Table 1, InitialiseClassifierStages, 
UpdateClassifierStages, and so on are all called from the FaceDetection 
function. As seen in the flat profile, the RunClassifierCascade function consumes 
the majority of the execution time. This function is responsible for checking if a sub-
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window contains a face. The function itself is executed in close to no time; the long 
processing time is due to the accumulation of over 7.5 million calls. The number of calls 
to RunClassifierCascade is related to the number of search locations which in turn is 
proportional to the size of the image. 

Table 1. Flat profile of the Viola-Jones algorithm. 

CalculateIntegralImage 0.35 10 0.04 1.76
CalculateSqIntegralImage 0.03 10 0 0.15
FaceDetection 19.53 10 1.95 98.09
  → InitialiseClassifierStages 0.02 10 0 0.1
  → UpdateClassifierStages 0.02 150 0 0.1
  → RunClassifierCascade 19.46 7,458,250 0 97.74
  → round 0.01 Unknown N/A 0.05
  → AddSubWindow 0 110 0 0
  → GetFaceWindows 0 10 0 0
FreeIntegralImage 0 20 0 0
FreeFaceWinList 0 10 0 0
FreeSubWinList 0 10 0 0

Percentage of 
Total Time (%)

Total Time Taken 
(sec)

Function Name Average Time 
(sec)

Number of 
Calls

 

2.3 Initial Embedded System and Port of Software Code  
A fully functional embedded system based on Altera Nios II softcore processor was 
created on a Stratix FPGA development board. Overall the maximum system operating 
frequency is 96.42 MHz. However, due to the limitations of the possible frequencies that 
can be generated by the PLL module, the maximum feasible operating frequency without 
violating timing constraints is 80 MHz. From this point onwards unless otherwise stated 
the actual operating frequency for each system is 80 MHz. 

Given that the code implemented on the PC is based on GNU libraries which is the 
same as the software development in the Nios II environment, it was possible to be 
directly ported across to the Nios II system without many changes. 

2.4 Profile of Embedded Code 
Initially, the GNU profiler was used to profile the code which was compiled with 

maximum speed optimization. The original code runs quite slowly. The lengthy 
processing time is attributed to the extensive number of locations searched within each 
image. The amount of searching is directly proportional to the input image size and the 
step size of the detection window. There are several methods available to help reduce the 
search space, common approaches being, image differencing and skin color modeling. 
Image differencing as its name suggests involves taking the difference between image 
frames. Since humans are generally the only objects that move within a scene, searching 
can be concentrated on the sections that are changing. On the other hand, the skin color 
modeling method makes use of statistical models of human skin to filter the input image 
hence the search for faces can then be restricted to those areas. An alternative method is to 
reduce the size of the input images using an image interpolation algorithm. Once the faces 
are found in the smaller image, the location and dimension of the detection windows can 
be rescaled to the size of the original image. 

The most popular techniques for enlarging or shrinking images are nearest 
neighborhood, bilinear, and bicubic down-sampling. Of these methods, bicubic offers the 
best results in terms of sharpness and preservation of image details. Every point in the 
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resulting image is calculated from a weighted average of 16 pixels adjacent to the 
corresponding pixel in the original image. The bicubic interpolation algorithm can be 
expressed as the following set of equations: 
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Bicubic interpolation function and its kernel [15]. 
 

Where g is the interpolation function, c is points in the original image, u is the 
interpolation kernel, and s is the distance between the pixel of interest and its neighboring 
pixels. As noted in [15], the accuracy and efficiency of the algorithm lies solely on the 
interpolation kernel, u. It was empirically found that the smallest possible scale factor 
without compromising the detection accuracy of the 10 input images is 0.25. All the faces 
in the original image were detected with no false positives. The performance report after 
applying bicubic down-sampling is given in Table 2. 

Table 2. Performance report after applying bicubic down-sampling. 

Imresize 84.74 10 8.47 7.46
CalculateIntAndSqIntImages 0.16 10 0.02 0.01
FaceDetection 1050.27 10 105.03 92.52
  → InitialiseClassifierStages 0.19 10 0.02 0.02
  → UpdateClassifierStages 49.14 90 0.55 4.33
  → RunClassifierCascade 1000.78 315,100 0.003 88.16
Average Time Per Image 113.52

Percentage of 
Total Time (%)

Section Total Time 
(sec)

Occurance Average 
Time (sec)

 
 

The down-sampling calculations are carried out in the Imresize function. As seen in the 
performance report, the size reduction of the input image has a positive performance affect 
on all functions that carry out operations on the image. On average, a speedup factor of 
16.5 is achieved after down-sampling the input image to a quarter of its original size.  
An additional optimization applied was to combine the CalculateIntegralImage 
and CalculateSqIntegralImage functions together. This is a logical step given that 
these functions have a similar structure and operate on the same data. The resulting 
function name is CalculateIntAndSqIntImage, and completes execution in 
approximately half the time originally required to calculate the integral and square integral 
images separately. The reduction in time is a result of not having to fetch the same image 
data from extended memory (SDRAM) twice. 

3. Optimization Using Custom Instructions 

Configurable custom processors are becoming an ever more popular implementation 
technology of choice for addressing the demands of complex embedded applications. 
Unlike traditional hardwired processors that consist of a fixed instruction set from which 
application code is mapped; configurable processors can be augmented with application 
specific instructions, implemented as hardware logic to optimize bottlenecks. This lends 
towards a method for hardware-software partitioning whereby the efficiency of hardware 
and the flexibility of software are integrated. 
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There are a number of benefits in extending a configurable processor with custom 
instructions. First, transparency; the added custom instructions will improve the 
performance of the tasks for which they are designed with minor changes to the original 
code. Second, rapid development; there is a wide variety of off-the-self configurable cores 
that could be used as a base for development. Additional instructions could be integrated 
into the processor core as the need to extend its computational capabilities arises. Finally, 
low-cost access to domain specific processors; generally the fundamental characteristics of 
an application area is similar. These characteristics can be summarized as a set of 
instructions and applied to a variety of similar applications, for example, multimedia 
applications [16]. 

Unfortunately, there are two minor drawbacks to using custom instructions. For one, 
additional hardware is required, although this is becoming less of an issue as embedded 
technologies become more economical. Secondly, as the custom instructions are directly 
integrated into the processor’s pipeline, the maximum operating frequency may be 
degraded if the instruction is poorly designed. Adding custom instructions is a proven 
optimization technique that has been applied to a wide range of embedded applications. 
Some published examples include, embedded real-time operating systems (RTOS) [17], 
biometrics [18], and multimedia [19]. 

3.1 Custom Instruction Design Flow 
The design flow for identifying and integrating custom instructions into configurable 
processors is summarized in Figure 1. This is a generic framework that could be applied 
to any application. Firstly, the software code is profiled to reveal bottlenecks that could be 
alleviated with the introduction of custom instructions. Once the hardware module for the 
instruction is implemented and tested, it is added to the processor and the whole system is 
regenerated. Then the software code is updated to make use of the new instructions. 
Finally, the functionality of the system is verified to ensure bugs are not introduced with 
the new instruction. This process is repeated until either the performance requirements or 
resource limits are met. 

3.2 Extending Nios II with Custom Instructions 
All of the Altera Nios II processor cores are designed to support up to 256 new custom 
instructions. The logic for the new instructions is directly connected to the arithmetic logic 
unit (ALU), as illustrated in Figure 2. In the face detection application, this comes does to 
applying the custom instructions to the Viola-Jones algorithm The Viola-Jones application 
code which includes the initial software optimizations is profiled using performance 
counters. As expected, the FaceDetection function, more specifically, the 
RunClassifierCascade function is the most time consuming. It should be noted that 
it is not the RunClassifierCascade function itself that is time consuming, but due to 
the large number of times it is called, the accumulated time is large. Hence, the overall 
processing time could be improved if either the number of calls to 
RunClassifierCascade or its execution time is reduced. Since reducing the number 
of calls to RunClassifierCascade is going to compromise the accuracy of the face 
detector, the focus is placed on reducing the execution time of the function itself. Any time 
savings made in each function call will correspond to a large overall saving. 

The main operations carried out in the RunClassifierCascade function are 
addition and multiplication of integer values associated with the calculation of indexes 
into the input image. There are also floating point multiply and addition operations that are 
required for image normalization and weighting of the classifier features. Since all the 
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integer related instructions are already implemented in hardware, it is believed that there 
are opportunities to improve the performance of the floating point operations through 
custom instructions. 

 
 

Fig. 1. Custom instructions design flow. Fig. 2. Connection of custom instruction logic 
with the Nios II ALU. 

 
Floating point multiply is the first operation of interest as it is used most frequently. 
Further profiling of the RunClassifierCascade function indicates that this operation 
takes up roughly 559 seconds of the total 1135 seconds, approximately 49% of the total 
processing time. By default all floating point arithmetic are emulated in software. For 
these reasons the first operation to be implemented as a custom instruction is the floating 
point multiply.  The next instruction that was implemented was floating point add/subtract 
Instructions. A summary of the performance reported for the face detector after the 
addition of the floating point multiply instruction and add/subtract Instruction are 
presented in Table 3 and Table 4 respectively. 

Table 3. Performance with the use of the floating point multiply custom instruction. 

Imresize 56.5 10 5.65 9
CalculateIntAndSqIntImages 0.16 10 0.02 0.03
FaceDetection 571.17 10 57.12 90.98
  → InitialiseClassifierStages 0.19 10 0.02 0.03
  → UpdateClassifierStages 36.62 90 0.41 5.83
  → RunClassifierCascade 534.03 315,100 0.002 85.06
Average Time Per Image 62.79

Percentage of 
Total Time (%)

Section Total Time 
(sec)

Occurance Average 
Time (sec)

 

Table 4. Performance with the use of the floating point addition/subtraction custom instruction. 

Imresize 57.46 10 5.75 12.73
CalculateIntAndSqIntImages 0.16 10 0.02 0.04
FaceDetection 393.61 10 39.36 87.23
  → InitialiseClassifierStages 0.19 10 0.02 0.04
  → UpdateClassifierStages 34.78 90 0.39 7.71
  → RunClassifierCascade 358.43 315,100 0.001 79.43
Average Time Per Image 45.13

Percentage of 
Total Time (%)

Section Total Time 
(sec)

Occurance Average 
Time (sec)
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3.4 Optimization of the Imresize Function 
The next most time consuming function to focus on is Imresize. Since the bicubic 
resizing algorithm used in the Imresize function is not specific to the Viola-Jones 
algorithm and could also be applied to many other applications, it is an ideal candidate for 
optimization. As it stands, the Imresize function accounts for 13% of the total time.  

By examining the bicubic interpolation algorithm more closely, it becomes evident that 
the coefficients calculated by the interpolation kernel can be fixed constants. More 
importantly, the exact value of these constants is not essential [20]. A graphical illustration 
for computing an interpolated value is depicted in Figure 3. In essence, the two 
dimensional convolution like calculations described in Equation 1 can be decomposed to 
five sets of one dimensional operations. The coefficients, a0, a1, a2, and a3, as seen in 
Figure 3 all add to one; hence, the intermediate sums will never exceed the largest pixel 
value of 255. Also, the intermediate results after multiplication are truncated to 8-bit 
integer values. 

 
Fig. 3. Graphical description for calculating an interpolation value. 

A series of experiments were conducted using the original implementation of the bicubic 
interpolation algorithm to look at the behavior of a0, a1, a2 and a3 for a variety of 
different scale factors. The following observations were made: 

• a0 and a3 have the same values 
• a2 is roughly four times larger than a0 and a3 while a1 is roughly two times 

larger than a0 and a3 
• when the coefficients are set to the same value and are close to zero, the resulting 

image is very dark (basically black) 
• when the coefficients are set to the same value and close to one, the resulting 

image is extremely noisy 
Based on these observations, the chosen values for a0, a1, a2, and a3 are 0.125, 0.5, 0.25, 
and 0.125, respectively. These coefficients are chosen because they correspond to dividing 
the pixel values by 2, 4, and 8, that is, shifting of the pixel values to the left by 1, 2, and 3 
bits, respectively. The images produced based on the new implementation of the 
Imresize function using these coefficients is identical to the original implementation 
and that from Matlab — Matlab’s implementation is used as an additional confirmation 
step. The Imresize function that utilizes the coefficients, a0, a1, a2, and a3 is referred to 
as the “new implementation”, while the implementation that makes use of the bicubic 
kernel is referred to as the “original implementation”. 
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(a) (b) (c) 

Fig. 4. Examples of images resized to a quarter of their original size. The methods used are: (a) 
original implementation, (b) new implementation, and (c) Matlab’s bicubic resize function. 

The performance of the original and new implementation of the Imresize function is 
summarized in Table 5; the values obtained are averaged across all 10 face images. The 
new implementation is 115 times faster than the original implementation. 

Table 5. Performance summary of the original and new implementation of the Imresize. 

Section Average Clock Cycles Average Time (sec)
Original Imresize 459,693,061 5.75
New Imresize 3,949,404 0.05  

4. The Effect of Data and Instruction Caches on Performance 

It is also important to investigate what the effects data and instruction caching behavior 
and size have on performance. Initially, the Nios II processor is configured with the 
default data cache settings, that is, an on-chip memory size of 16 KB with a data cache 
line size of 4 bytes. According to the Nios II core documentations, if the line size is greater 
than 4 bytes, data retrieval from extended memory (SDRAM in our case) is pipelined; 
hence reducing the impact of data transfer latency. A new system with exactly the same 
configuration but with the data cache line size increased to 32 bytes is generated. When 
the face detector and face detector beta programs are ran on this system, the total 
execution times are 466.23 and 394.18 seconds, respectively – the difference between the 
two execution times are less. These results give a positive indication that the processor’s 
caches have an influence on performance.  

The next experiment is to look at the effects of altering the size of the data cache. A 
series of eight systems with all the possible data cache sizes are generated. All these 
systems have a data cache line size of 32 bytes and the instruction cache size is fixed to 4 
KB. Table 6 summarizes these results. The usage of other resources such as DSP blocks, 
PLLs, and pins remain the same. There are minor fluctuations in the amount of LEs used 
and operating frequencies, but this is likely due to the variability in optimizations by the 
synthesis and fitting tools. Logically, the total amount of memory bits utilized linearly 
scales with the data cache size. As seen in Table 6, the size of the data cache does have an 
affect on the performance of the programs, particularly in the size range from 0.5 to 16 
KB. Also, the performance continues to improve with a larger data cache. 

A similar system but with data and instruction cache sizes of 64 KB (the largest cache 
sizes possible) were also generated on a Stratix EP1S40 development board (with roughly 
four times more resources than EP1S10) to confirm that no further improvements were 
possible with an instruction cache larger than 16 KB. Similarly other computational 
functions including Divide, Compare, and Round were added as custom instructors and 
similar speed-ups were observed. 
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Table 6. Summary of the resource usage and executions times for varying data cache sizes. 

0.5 66 5.65 589.26 483.07
1 68 6.13 555.3 452.11
2 66 7.07 527.24 433.59
4 66 8.96 507.48 421.03
8 66 12.71 481.64 406.13

16 68 20.19 466.23 394.18
32 68 35.1 458.8 389.05
64 68 64.8 455.79 386.89

Face Detector 
Beta (sec)

Data Cache Size 
(KB)

LE (%) Total Memory 
Bits (%)

Face Detector 
(sec)

 

5. Conclusion 

This paper investigated the effects of replacing software bottleneck operations of a Face-
Detection System based on Viola-Jones algorithm with custom instructions on 
performance. Table 7 presents a summary of the new instructions implemented along with 
a measure of their efficiency — in-order for comparisons to be made fairly, the floating 
point multiply custom instruction is re-synthesized without the use of DSP blocks.  

Table 7. Speedup, resource usage, and efficiency measure for each custom instruction. 

Floating Point Operation Resource (LE) Speedup Speedup/Area (10-3)
Multiply 1,019 18 18
Add/Sub 806 21 26
Divide 1,061 11 10
Compare 77 16 208
Round 354 37 105  

 
These results indicate that the floating point compare custom instruction is by far the most 
efficient in terms of speedup to area, even though it has a low overall speedup factor when 
integrated with the face detector application. On the other hand, even though the floating 
point multiply instruction has a reasonably low speedup to area ratio, when used in the 
face detector application the speedup for this instruction is high, in part because it is one 
of the most commonly used operations. 

As the Viola-Jones face detection algorithm is primarily dominated by control 
operations and calculations involving 32-bit integer or floating point numbers, very little 
benefit is likely to result from the movement of larger functions to hardware.  
     An inadvertent result revealed through this investigation is that both the size and 
behavior of the caches, specifically the instruction cache, has a significant affect on the 
software performance. Experiments have shown that the total execution time may 
noticeably fluctuate depending on the code or instruction cache size. The implication of 
this result is that, it is difficult to determine the effectiveness of the optimizations applied 
— even with custom instructions; since changes to the software code results in a change to 
the code size and hence caching behavior. Lastly, it has been shown that incremental 
changes to the software code can add up to substantial reductions in the total execution 
time. However, the extent and effectiveness of these optimizations is largely attributed to 
the designer’s experience. 
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