
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA
GRADO EN INGENIERÍA DEL SOFTWARE

ACELERACIÓN EN GPU DEL PROCESAMIENTO
DE IMÁGENES CEREBRALES DE ALTA

RESOLUCIÓN

GPU ACCELERATION OF BRAIN IMAGE
PROCCESSING

Realizado por
Pablo Sánchez Rodríguez

Tutorizado por
Manuel Ujaldón Martínez

Departamento
ARQUITECTURA DE COMPUTADORES

UNIVERSIDAD DE MÁLAGA
MÁLAGA, OCTUBRE 2015

Fecha defensa:
El Secretario del Tribunal

Resumen:

Durante los últimos años se ha venido demostrando el alto poder computa-

cional que ofrecen las GPUs a la hora de resolver determinados problemas.

Al mismo tiempo, existen campos en los que no es posible beneficiarse comple-

tamente de las mejoras conseguidas por los investigadores, debido principalmente

a que los tiempos de ejecución de las aplicaciones llegan a ser extremadamente

largos. Este es por ejemplo el caso del registro de imágenes en medicina.

A pesar de que se han conseguido aceleraciones sobre el registro de imá-

genes, su uso en la práctica clínica es aún limitado. Entre otras cosas, esto se debe

al rendimiento conseguido.

Por lo tanto se plantea como objetivo de este proyecto, conseguir mejorar los

tiempos de ejecución de una aplicación dedicada al resgitro de imágenes en medic-

ina, con el fin de ayudar a aliviar este problema.

Palabras claves:

CUDA, GPU, IMAGEN, REGISTRO, RENDIMIENTO

Abstract:

During last few years it has become clear the high computational power offered

by GPUs when certain problems are presented.

At the same time, there are fields in which it is not possible to completely

take advantage of improvements achieved by reserachers, mainly because execu-

tion times become extremely long. This is for example the case of medical image

registration.

Although speedups have been achieved on image registration, their use in

clinical practice is still limited. Among other things, this is due to the performance

achieved.

Thus, it is suggested as the aim of this project to accomplish execution time

enhancements for an image registration application, helping to relieve this problem.

Keywords:

CUDA, GPU, IMAGE, PERFORMANCE, REGISTRATION

Contents 0

1 The GPGPU movement 1

1.1 The GPU Streaming Processor . 1

1.1.1 Advantages and drawbacks . 1

1.2 Evolution to a general purpose architecture 2

1.2.1 Starting point . 2

1.2.2 GPGPU first steps . 3

1.2.3 The arrival of CUDA . 4

1.2.4 OpenCL . 5

1.2.5 Last years and the future of GPGPU 6

2 Programming with CUDA 9

2.1 CUDA (Compute Unified Device Architecture) 9

2.2 Programming model . 10

2.2.1 Processing levels . 10

2.2.2 Streams . 11

2.2.3 Processing flow . 11

2.3 Hardware model . 12

2.4 Evolution of the architecture by generations 13

2.4.1 The first generation: Tesla (G80 and GT200) 13

2.4.2 The second generation: Fermi (GF100) 15

2.4.3 The third generation: Kepler (GK110 y GK210) 16

2.4.3.1 Dynamic Parallelism . 18

2.4.3.2 Hyper-Q . 19

2.4.4 The fourth generation: Maxwell (GM204) 19

2.4.4.1 Memory improvement . 20

2.4.4.2 Shared memory atomics 20

3 Speeding up the code 23

3.1 Introduction . 23

3.1.1 Image Registration . 23

3.1.1.1 Operating mode . 23

3.2 Starting point for optimizations . 24

3.3 Adding GPU support to RNiftyReg . 25

3.4 Optimizing NiftyReg . 25

3.4.1 First iteration: Identifying the problem 25

3.4.2 Second iteration: reg_getNMIValue() optimizations 27

3.4.2.1 Histogram smoothing . 27

3.4.2.2 Histogram smoothing (a failed alternative) 29

3.4.2.3 Histogram normalization 30

3.5 About the achieved results . 30

4 Conclusions 35

4.1 Conclusiones . 36

A Appendix 37

The GPGPU movement 1

1.1 The GPU Streaming Processor

Graphics Processing Units (GPU) were conceived as a processor dedicated to graph-

ics. That is a piece of hardware which frees the CPU from tasks related to graphic

processing. One of the reasons for the existence of this dedicated graphics proces-

sor is the high computational cost of these tasks, due to the large amount of data to

be processed in short time intervals.

Since its inception, the CPU, based on the Von Neumann architecture, has given

more importance to the instructions that manipulate data than to the data itself. Be-

cause of that, processors are not efficient when accessing to multiple data simulta-

neously.

The high performance offered by the GPU versus CPU is due to a large change

in the way information was handled historically, from a sequential pattern, to a new

data-centric model. In this new model, data were grouped into streams, and it was

possible to perform calculations on each of their elements at the same time.

The model came as a programming paradigm and resulted in the development

of a processor specialized in streams, which was referred to as a Streaming Processor.

1.1.1 Advantages and drawbacks

The operation of the GPU processor-based streaming is what has mainly defined its

advantages and drawbacks.

Its main advantage is scalability, that is, the ability to handle a growing amount

of work in a capable manner. Since this benefit is based on its architecture, the ex-

pectations for the future are very high. For this, the GPU performance doubles every

six months, much faster than the CPU.

However, we have to point out that not all applications benefit from its archi-

1

CHAPTER 1. THE GPGPU MOVEMENT

tecture. On one hand, we have applications which are hard to parallelize; and on the

other hand, some of them make heavy use of selection structures in their algorithms.

1.2 Evolution to a general purpose architecture

Over the past few years, it has been increased the use of GPUs to speed up codes that

originally ran on a CPU. This change was mainly due to the evolution of GPUs from

its original approach (rendering graphics) to a flexible and programmable computer

(General Purpose GPU or GPGPU).

Despite being a relatively recent technology, it is having a great acceptation,

firstly due to the continuous evolution of GPUs to the GPGPU, and secondly by the

results obtained against the CPU and its future expectations.

Since the arrival of the first graphic platforms, a number of improvements have

followed to build more efficient devices. So in the following sections we are going to

examine in a deeper way the most important stages of this evolution.

1.2.1 Starting point

Since its inception, the GPU has executed parallel algorithms. However, these were

responsible for the different stages of the rendering process (graphics pipeline), so

these were fixed.

During the 90s, it began to normalize programming GPU since the boom of

graphical programming gave birth programming interfaces (including OpenGL and

later DirectX). They allowed developers to work with the GPU in a more transparent

and efficient manner.

While the software was evolving, hardware companies also modified the graph-

ics pipeline introducing two programmable processors called shaders, making more

versatile GPUs. However, these processors were programmed in assembler, so it was

necessary for popularizing the emergence of new tools to make more simple their

programming.

Thus, in 2002 was born HLSL (High-Level Shading Language) as an initiative of

Microsoft. It was a language of a higher level of abstraction than the assembler, but

it required the programmer to know the GPU architecture.

Thereafter, in late 2002, appeared Cg (C for graphics). It was developed by

Nvidia in collaboration with Microsoft and was very similar to HLSL. The language was

2

1.2. EVOLUTION TO A GENERAL PURPOSE ARCHITECTURE

Figure 1.1: Graphics pipeline after shaders inclusion.

based on C programming language with elements adapted to GPUs. Faced with HLSL,

Cg had all the features of a high level language, more functions to the programmer,

and also made the code less dependent on hardware.

Finally, GLSL (OpenGL Shading Language) appeared as an alternative of the

OpenGL Architecture Review Board. Also based on C, allowed developers to make

cross-platform applications that took advantage of most of the new features of GPUs.

It was initially introduced as an extension to OpenGL 1.4, and officially included in

version 2.0 of OpenGL in 2004.

1.2.2 GPGPU first steps

At the beginning of this century, GPUs were incredibly programmable. However, until

then they had only been used for programming graphics applications.

It was in the scientific sphere when seeing the power of GPUs, tried to com-

pute more general-purpose applications. From the conventional implementation of

an algorithm for CPU, a GPU algorithm needed a rewriting to structure input data, in-

structions and operators to the geometry of a spatial problem. That way the problem

was able to be computed by the programmable graphics processors.

Unfortunately, developers must check that no side effects or changes occurs

within the graphics pipeline, as it was not designed for this purpose. These tasks

required knowledge of the internal architecture, with sufficient skills and previous

experience.

Since 2003, we started to see codes taking advantage of GPUs performance.

These programs made clear the difference between the CPU and the GPU, which

would increase in coming years as developers gained experience and improved their

3

CHAPTER 1. THE GPGPU MOVEMENT

Algorithms Improvements

Particle systems

Physic simulations

Molecular dynamics

2-3

Database queries

Data mining

Reduction operations

5-10

Signal processing

Volume rendering

Image processing

Biocomputing

10-20

Raytracing

3D visualization
+20

Tabla 1.1: Improvement when executing different kinds of parallel algorithms.

algorithms. Table 1.1 shows the differences that were observed.

1.2.3 The arrival of CUDA

In 2003, a team of researchers from outside NVIDIA and led by Ian Buck announced

the first programming model that allowed to develop on a GPU using a high level

language as if it were a general purpose processor. This not only meant facilities

when developing code, but also improved performance.

NVIDIA knew his incredibly fast hardware should be accompanied by a soft-

ware that were at the cutting edge, so they invited the team to join the company to

start developing the next big step for the company. As a union of hardware and soft-

ware, NVIDIA released CUDA in 2006 as the first global solution for general purpose

computing on GPUs. Some of the improvements were:

• Code readability.

• Easy to program and shorter development time.

• Easy to debug and optimize code.

• Independent code of the GPU.

• Complex mathematical operations and accurate results.

CUDA computing platform provided developers with a system based on C/C++

along with several extensions that allowed programmers to implement parallel ap-

4

1.2. EVOLUTION TO A GENERAL PURPOSE ARCHITECTURE

2008 2015

CUDA GPUs 100.000.000 600.000.000

Supercomputers in top500.org 1 75

University courses 60 840

Scientific articles 4.000 60.000

Tabla 1.2: Evolution of CUDA.

plications. It also offered alternatives that gave programmers the ability to express

parallelism using other high level languages (Fortran, Python ...) and open standards

(such as OpenACC directives).

The release of CUDA was widely accepted by scientific, academic and devel-

oper communities in general. And the NVIDIA paradigm brought a number of im-

provements that eliminated all the difficulties encountered. In fact, since its arrival

day to today, the CUDA platform has been used in more than 600.000.000 GPUs and

60.000 research applications (see 1.2).

1.2.4 OpenCL

At the end of 2008, OpenCL was released as an open alternative to proprietary solu-

tions for GPGPU. OpenCL was the product of many years of development by an open

software consortium. It was originally conceived by Apple and developed in conjunc-

tion with AMD, IBM, Intel and NVIDIA; took the realy the Khronos Group and converted

into an open, royalty-free standard.

Unlike CUDA, OpenCL is defined as a general purpose programming standard

in heterogeneous systems that can run on different architectures, such as CPUs,

GPUs and FPGAs. OpenCL provides an API for parallel computing and a programming

language based on ISO C99 with extensions for data parallelism.

The operation of OpenCL is based on a host machine that distributes the work-

load between all devices in the system, which can be one or more computational

units. The latter is divided into multiple processing elements.

Although OpenCL is a valid alternative to CUDA, the distance between both is

sometimes tremendous. If the implementation and distribution of work is perfectly

adjusted to the target architecture, OpenCL performance should not be much less

than CUDA. However, here is the key, since the main feature of OpenCL is portability.

5

CHAPTER 1. THE GPGPU MOVEMENT

Figure 1.2: The OpenCL model.

June 2011 June 2012 June 2013 June 2014

NVIDIA Fermi 12 53 31 18

NVIDIA Kepler 0 0 8 28

Intel Xeon Phi 0 1 11 21

ATI Radeon 2 2 3 3

IBM Cell 5 2 0 0

Hybrid 0 0 1 4

Total 19 58 54 74

Tabla 1.3: Evolution of GPUs in TOP500.

1.2.5 Last years and the future of GPGPU

The programming of GPUs has evolved a lot in recent years. However, knowing its

evolution, the following step was obvious, to increase scalability out of the GPU itself.

To do that, clusters of computers arise and more devices interconnect, which

operate in groups acting as one graphics device, and this led to emergence the

GPGPU movement to gain momentum in the field of high performance computing.

The enhancement was not limited only to the appearance of servers and work-

stations, but at the same time allow to raise the number of heterogeneous supercom-

puters that incorporated latest generation GPUs as coprocessors to carry out part of

the work. The table 1.3 shows the evolution of graphics coprocessors in the TOP500

supercomputers list in the last four years.

6

1.2. EVOLUTION TO A GENERAL PURPOSE ARCHITECTURE

The change to the GPGPU model is relatively recent, so it still has a long way to

go. GPUs offer performance several orders of magnitude greater than the CPU so they

are positioned as an alternative to traditional processors and could be considered as

the computing engine for the future.

7

CHAPTER 1. THE GPGPU MOVEMENT

8

Programming with CUDA 2

2.1 CUDA (Compute Unified Device Architecture)

CUDA[20] is a parallel computing platform and programming model designed by

NVIDIA that allows developers to access the computing power of GPUs to solve data-

parallel problems. The model is composed of three different levels:

• Software: On the software level, the CUDA model offers a set of different ways

to develop applications and write code to be run on GPUs. Among them we can

find:

– Programming APIs: Allow developers to implement GPU code in their

programming language of choice. Although C/C++ are the most common

high-level languages to develop CUDA applications, there exist APIs for

other languages such as Fortran, Java or Python.

– Optimized libraries: There are several libraries prepared so that devel-

opers can make full use of them with just a few lines of code, allowing them

to make use of GPU-acceleration. (cuBLAS, cuFFT, Thrust, etc.)

– Compiler directives: Standard compiler directives, like those from Ope-

nACC, simplify code acceleration by only requiring prorgrammers to iden-

tify code sections that can exploit data parallelism.

• Firmware: NVIDIA offers a computing driver that is compatible with the one

responsible for rendering. This driver can be controlled through simple APIs to

manage CUDA devices, video memory and other components of the architec-

ture.

• Hardware: CUDA is implemented so that applications can be run on different

compatible hardware implementations. This point is explained in detail in sec-

tion 2.3.

9

CHAPTER 2. PROGRAMMING WITH CUDA

2.2 Programming model

Next, the CUDA programming model is presented in its C/C++ version. It is an ex-

tension for the C language that serves as an interface for parallel programming on

GPUs.

In this model, the GPU acts like a coprocessor and only executes a fraction of

the code, while the rest is handled by the CPU. In order to be able to work in this way,

the CUDA compiler (NVCC) has to separate device (GPU) code from host (GPU) code:

1. Device code compiles to PTX, a low-level instruction set. It is compatible with

diferent devices, allowing the developer to avoid the details of the particular

hardware implementation.

2. Host code is sent to C compiler, just like any other application code, and allows

the program to communicate with the GPU drivers.

Finally, the linker produces a CPU-GPU executable. For NVCC to be able to di-

vide the code, it is necessary to introduce new syntax elements that are used by

the programmer to define kernels, CUDA-C functions which contains the code to be

executed in each GPU thread.

2.2.1 Processing levels

In order to be used from CPU code, kernels have to be declared as __global__. To

launch a kernel, host code must include a declaration similar to KernelNameToLaunch«<G,

B, m, s»>, with G and B being grid and block sizes, m being shared memory size and

s being the stream to be used. We will describe these arguments more thoroughly,

starting with G and B. Threads are identified inside kernels as follows:

1. Threads are organized in blocks. Each thread has an identifier that is ac-

cessible within the kernel through the built-in variable threadIdx.

2. Blocks are grouped into a grid and, like threads, to each block is also given

a unique identifier, blockIdx.

Both grid and thread blocks can be 1D, 2D or 3D, and their sizes are set by the

programmer under certain constraints. Their dimensions are accessible within the

kernel through the variables blockDim and gridDim respectively. This allows CUDA

code to be scalable by being able to run on any compatible hardware without a need

to recompile for different target sizes.

10

2.2. PROGRAMMING MODEL

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Grid

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (1,1)

Figure 2.1: Graphical representation of
a grid with six thread blocks each one of
12 threads.

In addition to configurable grid and

block sizes, threads are also grouped into

warps, that up to this day contain 32 threads.

They are the minimal processing unit, and

are executed in random order although they

can be synchronized if required.

Warps execute one common instruc-

tion at a time for all their threads. Because

of this, warp divergence caused by branch-

ing is very costly in terms of performance.

If such divergence happens, only threads

in the same brach are running simultane-

ously. When all execution paths complete,

the threads converge back. This serialization

only occurs within a warp, and never hap-

pens when two different warps are able to

execute distinct paths at the same time.

In the same way as threads, blocks are also executed in random order, but they

cannot be synchronized. Threads are able to comunicate only with others threads in

the same block using shared memory.

2.2.2 Streams

Since the second generation of CUDA, concurrent execution of different kernels has

been made posible using streams. A stream is a sequence of kernels that execute in

order.

In spite of kernels in different streams are able to execute independently, by

default, all the kernels are executed in the same stream. To allow this behaviour, it is

mandatory to assign manually each kernel to a different stream through the fourth

parameter of the kernel call interface, s, we previously saw.

2.2.3 Processing flow

As already mentioned in section 2.2 with CUDA the GPU (device) acts as a copro-

cessor for the CPU (host) but with its own memory. Because of this, it is necessary

to transfer data from host memory to device memory, perform the computation and

bring the databack [5].

11

CHAPTER 2. PROGRAMMING WITH CUDA

Although this schema is still in use, future generations will simplify it by adopt-

ing an unified memory architecture for both: host and device.

2.3 Hardware model

The massively parallel threading model is built upon the CUDA hardware model.

Each generation, the model is expanded upon while backwards compatibility is main-

tained.

Multiprocessor N

Multiprocessor 2

Registers Registers Registers

Processor 1 Processor 2 Processor M

Instruction

Unit

...

Shared Memory

Constant

Cache

Texture

Cache

Multiprocessor 1

Device

Device Memory

Figure 2.2: CUDA hardware model.

The NVIDIA GPU architecture is based on

SIMT (Single-Instruction, Multiple- Thread) pro-

cessing, similar to SIMD (Single Instruction, Mul-

tiple Data) but different, because it specifies the

execution and branching behaviour of each sin-

gle thread. This is achieved in hardware by an

array of Streaming Multiprocessors (SMs) where

each of them contain lots of CUDA cores.

All these cores are conected through a

memory hierarchy. In order from faster to slow-

est are:

• Registers: fastest and used by cores to

perform most of their computing work.

• Shared memory: slightly slower than reg-

isters, shared among threads in the same

block and used as a cache memory man-

aged by the programmer.

• Read-only memory: used for constants

and symbols.

• Global memory: the slowest, but with the

advantage that it is common to all multiprocessors. This memory, of a SGRAM

(Synchronous Graphics Random Access Memories) nature, is three times fastest

than CPU RAM. However, it is still 500 times slower than shared memory.

12

2.4. EVOLUTION OF THE ARCHITECTURE BY GENERATIONS

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

TFTFTFTF

TFTFTFTF

L1

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Vtx Thread Issue Geom Thread Issue Pixel Thread Issue

Data Assembler Setup / Rstr / Zcull

Host

T
h

re
a

d
 P

ro
c

e
ss

o
r

Figure 2.3: GeForce 8800 GTX (G80) block diagram.

2.4 Evolution of the architecture by generations

To identify the different architecture models, NVIDIA assigns a version number to

each device generation. This number, called CUDA Compute Capability (or C.C.C.),

is used by applications at runtime to determine which hardware features and/or in-

structions are available on the present GPU.

The main features of the different generations are explained below.

2.4.1 The first generation: Tesla (G80 and GT200)

Tesla was the first CUDA capable GPU generation, launched in 2006. It unified the

vertex shader with the pixel shader, and allowed them to be used for GPGPU by

changing the pipeline going over from a lineal to a loop pipeline.

Each G80 GPU has 8 Thread Processing Clusters (TPC), which in turn have two

SMs with 8 cores each. This means that there are 128 scalar processing cores, that

13

CHAPTER 2. PROGRAMMING WITH CUDA

Core

Core

Core

Core

Core

Core

Core

Core

L
o

c
a

l M
e

m
o

ry

IU

Core

Core

Core

Core

Core

Core

Core

Core

L
o

c
a

l M
e

m
o

ry

IU

Core

Core

Core

Core

Core

Core

Core

Core
L

o
c

a
l M

e
m

o
ry

IU

TFTFTFTF TFTFTFTF

L1 Cache

Figure 2.4: Thread Processing Cluster of GT200

in addition support dual-issuing MAD and MUL operations. G80 GPUs have 8K 32bit

registers and 16Kb of shared memory per SM. Figure 2.3 shows a diagram of the

architecture.

Beyond this, NVIDIA improved the Tesla architecture with the GT200 GPU. The

main enhancements are listed below:

• A rise in the amount of cores. The number of TPC blocks was raised from

8 to 10, with an increase in the amount of SMs per TCP to three. Due to this,

GT200 GPUs had 240 cores.

• More threads per chip. The software limitation on G80 only allows 768 threads

per SM whereas the GT200 accepts until 1024 threads.

• Doubled register file size. The register bank is doubled to the previous ar-

chitecture increasing to 16K registers per SM.

• Double-precision floating-point support. One core for fp64 operation is

added in each SM.

• Shared memory improved. Hardware memory access coalescing was added

to improve memory access efficiency.

In the Figure 2.9 is visible the three SMs inside a TCP of a GT200 revealing

that in this ocasion the increase of cores is produced by mean of a rise of TCP units

instead enlarge the number of cores per SM.

14

2.4. EVOLUTION OF THE ARCHITECTURE BY GENERATIONS

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
M

e
m

o
ry

 C
o

n
tr

o
ll

e
r M

e
m

o
ry

 C
o

n
tro

lle
r

M
e

m
o

ry
 C

o
n

tro
lle

r
M

e
m

o
ry

 C
o

n
tro

lle
r

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

Raster Engine

GPC

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

Raster Engine

GPC

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

Raster Engine

GPC

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

PolyMorph Engine

SM

Raster Engine

GPC

L2 Cache

GigaThread Engine

Host Interface

Interconect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Tex Tex Tex Tex

Texture Cache

PolyMorph Engine

Vertex Fetch Tessellator
Viewport
Transform

Attribute Setup Stream Output

Register File (32,768 x 32-bit)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

SM

CUDA Core
Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

Figure 2.5: GF100 block diagram and Stream Multiprocessor detail.

2.4.2 The second generation: Fermi (GF100)

The TCP disappears and Nvidia makes a new hardware block, called Graphics Pro-

cessing Clusters (GPC), that encapsulates all key graphics processing units. Inside of

this hardware block there are four stream multiprocessors.

In this case, NVIDIA decided to reduce the number of SMs and increase the

number of cores per multiprocessor. Thus, Fermi has three distinct type of cores:

1. Int and floating points units. 32 cores per SM redesigned for optimize 64-bit

int operation. These cores are used for both simple and double precision.

2. Load/Store units. For Load/Store operations 16 cores are incorporated allow-

ing source and destination addresses to be calculated for sixteen threads per

clock.

3. Special Functions Unit (SFU). Four cores are added for quick calculation of

complex functions such as sin, cos, reciprocal and root although losing accu-

racy.

In addition the GF100 has two warp schedulers with an instruction dispatch

unit each one. This configuration allows to launch two warps concurrent and inde-

15

CHAPTER 2. PROGRAMMING WITH CUDA

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
M

e
m

o
ry

 C
o

n
tr

o
ll

e
r M

e
m

o
ry

 C
o

n
tro

lle
r

M
e

m
o

ry
 C

o
n

tro
lle

r
M

e
m

o
ry

 C
o

n
tro

lle
r

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

L2 Cache

SMX SMX SMX SMX SMX SMX SMX SMX

SMXSMXSMXSMXSMXSMXSMX

GigaThread Engine

PCI Express 3.0 Host Interface

Figure 2.6: Kepler GK110 full chip block diagram.

pendently, due to this the schedulers do not need to check for dependencies from

within the instruction stream.

One of the main improvements over the previous generation is the memory

hiearchy. Each Fermi’s SM have 64KB of on-die memory that it is configurable in two

mode: 16KB of shared memory and 48KB of L1 cache and vice versa. The first mode

optimize the algorithms where data addressees are not known beforehand while the

second is the best mode for algorithms with well defined memory access. Moreover

this generation incorporates 768KB of L2 cache common to all stream processors.

2.4.3 The third generation: Kepler (GK110 y GK210)

Following the way taken on Fermi, Kepler increases the number of cores per SM and

reduced the amount of multiprocessors. Even though the GK110 is not the first chip

with Kepler architecture this section is centered in the K110 and higher because they

are the most used on servers present.

The quantity of cores per SM is the same in the distinct incremental improve-

ment to the architecture, although the number of stream multiprocessors changes

from one to another. Thus, the ?? show the differents versions and its main features.

The Kepler’s SMs or SMX have 192 single precision CUDA cores, and each

core has fully pipelined floating-point and integer arithmetic logic units. In addition,

16

2.4. EVOLUTION OF THE ARCHITECTURE BY GENERATIONS

Interconect Network

(64 KB Shared Memory / L1 Cache GK110) | (128 KB Shared Memory / L1 Cache GK210)

48 KB Read-Only Data Cache

Tex Tex Tex Tex Tex Tex Tex Tex

Tex Tex Tex Tex Tex Tex Tex Tex

Register File (65,536 x 32-bit GK110) | (131,072 x 32-bit GK210)

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Core Core Core Core Core CoreDP Unit DP Unit LD/ST SFU

Instruction Cache

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

Warp Scheduler

Dispatch Unit Dispatch Unit

SMX

Figure 2.7: SMX with 192 single-precision CUDA cores, 64 double-precision units, 32 SFU
and 32 LD/ST units.

these SMs increase the double-precision computation capacity with 64 dedicated

units. More the GK110 have 32 LD/ST units,double the amount of load and store

units available in the Fermi architecture. Finally, the SMXs have 32 special function

units (SFU).

For load warps each SMX have four warp schedulers with two dispatch

instruction each one. This allows four warps are issued and executed concurrently

even the double precision operations.

In the side of memory, Kepler continues the hierarchy initiated on Fermi al-

though the texture memory now is accessible for GPGPU as only-read memory

of 48KB. In addition this generation improve all blocks of memory:

• Register Bank. The amount of 32-bit register per multiprocessor grows until

64K.

• Shared Memory and L1 cache. Besides of the two configuration modes of

shared memory were seen in the Section 2.4.2, a new mode is added in this

generation: 38KB for both.

• L2 cache. The amount of memory in this block is doubled compared with Fermi,

reaching 1536KB. In addition the L2 cache on Kepler offers up to 2x of the

17

CHAPTER 2. PROGRAMMING WITH CUDA

CPU Fermi GPU CPU Kepler GPU

GPU Adapts to Data, Dynamically Launches New Threads

Dynamic Parallelism

Figure 2.8: With Dynamic Parallelism the GPU can generate new work for itself.

bandwidth per clock available on Fermi.

The GK210 is very similar to GK110 and they both have the features explained

in the Section 2.4.3.1 and the Section 2.4.3.2. One as much as the other are kepler

architectures but the GK210 has more resource on-chip than its predecessor, the

GK110. Thus, both chips share the same amount of core per SMX but the GK210

have 128K register of 32-bit per SMX and 128KB of shared memory/L1 cache

with the configurations below:

• 112KB shared memory + 16KB L1 chache

• 96KB shared memory + 32KB L1 chache

• 48KB shared memory + 80KB L1 chache

• The anterior amounts reversed.

2.4.3.1 Dynamic Parallelism

Until the GK110 was created, only the CPU sends kernels to the GPU. When a kernel

needed the result of other kernel to be launched was necessary that the CPU sended

the first kernel to GPU, the GPU returned the result to CPU and this last launched

the second kernel. Now, with dynamic parallelism this process is simplified due to

the GPU can generate new work for itself, it does not need to interrupt to the

18

2.4. EVOLUTION OF THE ARCHITECTURE BY GENERATIONS

CPU[19]. The Figure 2.8 shows a example about how functions the dynamic paral-

lelism, releasing of work to the CPU.

This new feature allow the programmer to use recursive techniques for its algo-

rithms. Due to this, the developer is able to make algorithms that were impossi-

ble to achieve on FERMI such as quicksort, nested loops with differing amounts of

parallelism or even dynamically setting up a grid for a numerical simulation focusing

in the interesting zones without an expensive pre-processing.

On Fermi, the host send a grid to the CUDA Work Distributor (CWD) and this

distributes the blocks among the differents SM. On Kepler, is necessary a new unit

for management both the device and host grids. This component, called Grid

Management Unit (GMU), process the grids receives from CPU and GPU and sends

to CWD the work. Then the work distributor, that admits until 32 grids, sends the

blocks to the SMX. In addition the GMU can pause the dispatch of new grids due to

the two-way link.

2.4.3.2 Hyper-Q

On Fermi until 16 streams could be launched concurrently, although they were not

executed simultaneously because they were put in a unique queue, only the end of

a stream and the start of other were executed at the same time. On Kepler until 32

streams can be really executed concurrently due to the fact that each stream

receives its own work queue. Of this form the programmer makes the most of the

GPU computacional capacity.

2.4.4 The fourth generation: Maxwell (GM204)

The new generation of GPUs is focused on maximize the performance per watt con-

sumed. Thus, NVIDIA has reorganized internal components of multiprocessors (SMMs)

and now these are splited in four part. Each CUDA cores processing block contains:

1. 32 int and floating points units (128 per SMM).

2. 1 double precision units (4 per SMM).

3. 8 Load/Store units (32 per SMM).

4. 8 Special Functions Unit (SFU) (32 per SMM).

19

CHAPTER 2. PROGRAMMING WITH CUDA

Figure 2.9: Maxwell GM204 full chip block diagram.

In addition to this, each split contains a warp scheduler, which is capable of

dispatching two instruction per warp every clock cycle. This configuration aligns with

warp size, making it easier to utilize efficiently.

2.4.4.1 Memory improvement

The memory hierarchy is changed too, now the shared memory don’t share the block

with the L1 cache. The size of shared memory grows to 96KB although it is limited to

48KB per thread block[8]. Finally, the size of L2 cache is 2MB on GM204.

Another improvement implemented on Maxwell is the memory compression,

that enables the GPU to reduce DRAM bandwidth demands, making use of lossless

compression techniques.

2.4.4.2 Shared memory atomics

Maxwell introduces native shared memory atomic operations for 32-bit integers and

native shared memory 32-bit and 64-bit compare-and-swap (CAS), which can be used

to implement other atomic functions with reduced overhead compared to the Fermi

and Kepler methods. This should make it much more efficient to implement things

20

2.4. EVOLUTION OF THE ARCHITECTURE BY GENERATIONS

like list and stack data structures shared by the threads of a block. [21].

21

CHAPTER 2. PROGRAMMING WITH CUDA

22

Speeding up the code 3

3.1 Introduction

3.1.1 Image Registration

Image registration is a technology used to calculate a common frame of reference to

a set of images that have been obtained at different times, from different points of

view or from multiple devices [4]. A visual representation can be seen in figure 3.1.

Figure 3.1: Image registration.

To carry out this procedure, one of the im-

ages is taken as reference (target image) and the

rest (floating images) are applied a series of ge-

ometric transformations so that certain points of

an image fit with the corresponding points of an-

other one.

The image registration is not an end itself,

but used to enrich the information you already

have, and it is applied to a large number of fields

such as medicine, geophysics, robotics, etc.

3.1.1.1 Operating mode

There are several methodologies (multimodal,

template, viewpoint and temporary registration)

that allow you to carry out image registration. But, regardless of the type of problem

in which it is going to be applied, any image registration algorithm use the following

components:

1. Similarity measure: It allows you to calculate the degree of similarity between

two images.

23

CHAPTER 3. SPEEDING UP THE CODE

2. Transformation function: It defines the way in which an image can be deformed.

This function would make a transformation per each concrete sequence of pa-

rameters specified.

and it is computed as follows:

First Distinctive elements of images are extracted and matchings established be-

tween them.

Second Based on the matchings, the parameters of the transformation function are

calculated.

Third The image to be registered is then transformed and the similarity to the ref-

erence image is calculated.

This process will be repeated iteratively while trying to maximize the value of

similarity between images.

3.2 Starting point for optimizations

In spite of researchers are actively working on these techniques, its usage in clinical

practice is still limited. Although the reasons may be different, in this project we are

interested in performance. Applications became impractical when computing times

could be extended from seconds to hours.

As a developer, the only option anyone has to carry out image registration

without the need to write their own algorithm is to use a tool that provides that

functionality. The one we are going to use during this project is called RNiftyReg and

can be used through the R computing language.

NiftyReg, the application in which RNiftyReg based its source code, is a open-

source software focused on medical image registration. It has been mainly developed

by members of the Translational Imaging Group together with the Centre for Medical

Image Computing at University College London, in United Kingdom. In addition to

this, NiftyReg provides two versions of its algorithms, a CPU-based and a GPU-based

implementation.

We have the source code of the applications mentioned before, RNiftyReg and

NiftyReg. In addition to this, we also have a set of 23 magnetic resonance images.

Can be seen its properties in the appendix A.1.

24

3.3. ADDING GPU SUPPORT TO RNIFTYREG

Through this chapter, I am going to describe the stages by which this project

has passed until its final version.

3.3 Adding GPU support to RNiftyReg

R modules are add-ons that allow, in the same way a library does, to add functionality

to the language. These modules are written using the R language and C/C++ code

optionally. This is the way in which NiftyReg code is included inside RNiftyReg. How-

ever, the latter does not contain the whole application, so there are some features

that are not available, such as GPU acceleration.

A module like RNiftyReg consists of a part of R code, written in the form of

functions that would be called from a program written in R. On the other hand, it con-

sists of C/C++ code that can be called from the functions mentioned before. Among

several possible ways to add support for GPU module, we finally decided to modify

the RNiftyReg C/C++ code so that it could call an external NiftyReg implementation

already compiled and ready to run.

After finishing all these changes, an RNiftyReg with GPU acceleration was ready.

In the figure 3.2 it is possible to see remarkable differences between execution times.

3.4 Optimizing NiftyReg

3.4.1 First iteration: Identifying the problem

Depending on what we want to optimize, we have to use certain tools to help us

Identify the problem. In the case of this project, I have focused on enhancing the

slowest piece of CPU code I could find inside NiftyReg.

Due to the fact that our aim is to find a piece of code that runs slowly in our

host machine, the tool in which I have relied on is the CPU profiling framework called

Valgrind. It provides you information about the execution of an application, including

the rate of time each function takes to run.

25

CHAPTER 3. SPEEDING UP THE CODE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

50

100

150

200

250

300

Number of image

T
im

e

Non-linear image registering

RNiftyReg (original)
RNiftyReg (external)

Figure 3.2: Comparison between the original RNiftyReg and our version of RNiftyReg

26

3.4. OPTIMIZING NIFTYREG

Figure 3.3: The whole graph. Figure 3.4: Callgraph branch.

That said, we can see the result of Valgrind in the figures 3.3 and 3.4. On the

left side the whole call-graph of NiftyReg appears, while on the right side a concrete

part of the call-graph has been zoomed in for a closeup.

Taking into account that the overall time each function takes also includes the

time spent in auxiliary functions, the one with a maximum difference between this

and its called functions is the slowest. Therefore, in our case, this is the function

called reg_getNMIValue().

3.4.2 Second iteration: reg_getNMIValue() optimizations

reg_getNMIValue() is the method in charge of computing the mutual information, that

is, the quantity of information that a pair of images are sharing.

3.4.2.1 Histogram smoothing

One of the critical parts of the calculation of this value consist of smoothing the

values of a histogram. Its CPU implementation can be seen in Figure 3.5.

The histogram is smoothed in two different ways, and this is why there are

two very similar pieces of code inside the reg_getNMIValue() method. Because of

the similarities among these codes, from now onwards we will only explain in this

report the work done in one of them. However, the other one will experience similar

27

CHAPTER 3. SPEEDING UP THE CODE

...
for(int f=0; f<floatingBinNumber; ++f)
{

for(int r=0; r<referenceBinNumber; ++r)
{

double value=0.0;
int index = r−1;
double *ptrHisto = &jointHistoProPtr[index+referenceBinNumber*f];

for(int it=0; it<3; it++)
{

if(−1<index && index<referenceBinNumber)
{

value += *ptrHisto * kernel[it];
}
++ptrHisto;
++index;

}
jointHistoLogPtr[r+referenceBinNumber*f] = value;

}
}
...

Figure 3.5: Original CPU code.

changes.

The first step taken was the creation of a naive implementation of the algo-

rithm to speed up. In this first version, we did not emphasize on creating a quick and

efficient version, but to create an equivalent piece of code. After finishing this step,

the execution time of NiftyReg was measured obtaining an expected speed-up value:

S0 =
TGPUOLD

TGPU0

=
15.53

15.81
= 0.98

where TGPUOLD is the time taken by the orignal version of NiftyReg, and TGPUn the

time taken by the n− th optimization.

There exist a loss of performance, so our aim after this measurement was to

improve our GPU algorithm. The piece of code is not computationally intensive, so

the main problem must be related to the time wasted while accessing to memory.

It can be seen that every thread in that piece of program collect data from

global memory three times (except from the threads in the edge of the histogram).

28

3.4. OPTIMIZING NIFTYREG

The collected data from one thread is also going to be collected by the previous and

following threads. It is easy to realise that this data can be shared between them,

avoiding the majority of accesses to the farthest memory.

Different types of memory are available to use through CUDA, each one with its

own benefits and drawbacks. In case of trasfer speed, shared memory is around 500

times faster than global memory, so minimize the use of the latter is recommended.

To solve this problem, we have introduced shared memory in our kernel. For

the sharedHistoPro variable, the memory was given a size equal to the number of el-

ements to process plus two. These two extra memory positions were added because

of the way the image is going to be smoothed.

To calculate an element n, a thread access to the elements n− 1, n and n + 1,

so for these accesses to be efficient, they must be coalescing. In our case, the use of

shared memory helps us avoiding part of the problem of non-coalesced access. The

order in which the parameters ’f’ and ’r’ are asigned to threads, achieved that those

who were consecutive, get access to consecutive global memory positions.

The measured speed-up accomplished is:

S1 =
TGPUOLD

TGPU1

=
15.53

12.97
= 1.19

The latest improvement made to this algorithm was to add the #prama unroll

directive, which allows to unroll a loop. The improvement accomplished here is not

as obvious as the other improvements. However, after multiple executions, it can be

seen that there exist a small speed-up:

S2 =
TGPUOLD

TGPU2

=
15.53

12.90
= 1.20

After achieving this speed-ups, we can confirm we were right when we as-

sumed the main problem of this algorithm was the way in which it access to data.

The final version of the CUDA accelerated code can be seen in the figure 3.6.

3.4.2.2 Histogram smoothing (a failed alternative)

Addition to the process described above, another alternative implementation was

attempted unsuccessfully.

It was tried that each thread had to pick a single value from global memory.

Thus, there would be one thread for each iteration of the inner loop, which after

29

CHAPTER 3. SPEEDING UP THE CODE

collecting its data, would add it to the corresponding position of shared memory. To

perform this task it is necessary to use atomic operations.

After several attempts to optimize it, the computing times obtained were far

superior compared to those obtained from the original GPU version. That is why this

implementation was discarded in favour of another one for which was not necessary

neither the use of atomic operations nor many global memory accesses.

3.4.2.3 Histogram normalization

As the final work done in this project, we have implemented two kernels responsible

for normalizing the smoothed histogram.

The first of these kernels is responsible for making a reduction of the histogram,

from which we get the largest element. The second kernel divides each element of

the histogram by the value in the previous step. The implementation can be seen in

the figure 3.7.

In spite this last optimization is smaller than the other explained before, it really

worth it. After measuring the last of our algorithms, the speed-up achieved is:

S3 =
TGPUOLD

TGPU3

=
15.53

11.2
= 1.38

3.5 About the achieved results

The progress achieved can be seen applied to the rest of the images we have in the

figure 3.8. There, it may be noticed that in most cases, the difference among our

version of RNfiftyReg and one with GPU acceleration is constant.

It seemed strage, so after a search we discovered that histograms have a con-

stant size. Therefore, regardless of size of the input/output images, the computa-

tional load of reg_getNMIValue() is always the same.

It is important to highlight that results computed in GPU and CPU may differ,

even when we had not changed NiftyReg. Therefore, it is logical that our changes

also differ from the original GPU solution. This difference in results can be measured

using Root-Mean-Square Difference (RMS).

When calculating the original GPU version RMS error with respect to CPU, we

obtein a value of 45.28. When comparing GPUs versions, it has a value of 28.68.

30

3.5. ABOUT THE ACHIEVED RESULTS

Despite it is not a remarkable error, there are two reasons why these errors appear:

1. CPU operations are not strictly limited to 0.5 ulp (unit of least precision), so se-

quences of operations can be more accurate in CPU due to extended precision

ALUs.

2. Floating-point arithmetic is not associative.

31

CHAPTER 3. SPEEDING UP THE CODE

__global__ void reg_smoothJointHistogramAlongReferenceAxis(double *←↩
jointHistoLogPtr,double *jointHistoProPtr, double *kernel, unsigned ←↩
int floatingBinNumber, unsigned int referenceBinNumber)

{
extern __shared__ double sharedHistoPro[];
__shared__ double sharedKernel[3];

int f = blockIdx.y;
int r = threadIdx.x + blockIdx.x * blockDim.x;

if (!(f < floatingBinNumber && r < referenceBinNumber)) return;

int index = r − 1;
int arrayAddress = index + referenceBinNumber * f;
sharedHistoPro[threadIdx.x] = jointHistoProPtr[arrayAddress];
sharedHistoPro[threadIdx.x+2] = jointHistoProPtr[arrayAddress+2];
__syncthreads();

double value = 0.0;
const int MAX_IT = 3;
#pragma unroll
for (int it = 0; it < MAX_IT; it++)
{

if (−1 < index && index < referenceBinNumber)
{

value += sharedHistoPro[threadIdx.x + it] * sharedKernel[←↩
it];

}
++arrayAddress;
++index;

}
jointHistoLogPtr[r + referenceBinNumber * f] = value;

}

Figure 3.6: Smoothing algorithm implementation.

32

3.5. ABOUT THE ACHIEVED RESULTS

template <unsigned int blockSize, bool nIsPow2>
__global__ void reg_reduction(double *g_idata, double *g_odata, short ←↩

unsigned int n)
{

double *sdata = SharedMemory<double>();
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;

double sum = 0;
while (i < n)
{

sum += g_idata[i];

if (nIsPow2 || i + blockSize < n)
sum += g_idata[i+blockSize];

i += gridSize;
}

// each thread puts its local sum into shared memory
sdata[tid] = sum;
__syncthreads();

// do reduction in shared mememory
if ((blockSize >= 1024) && (tid < 512))
{

sdata[tid] = sum = sum + sdata[tid + 512];
}
...
if ((blockSize >= 2) && (tid < 1))
{

sdata[tid] = sum = sum + sdata[tid + 1];
}
__syncthreads();

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sum;

}

__global__ void reg_div(double *g_data, unsigned dataLen, double n)
{

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < dataLen)
{

g_data[i] /= n;
}

}

Figure 3.7: Kernels involved in histogram normalization.

33

CHAPTER 3. SPEEDING UP THE CODE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

Number of image

T
im

e

Non-linear image registering

RNiftyReg (external)
RNiftyReg (TFG)

Figure 3.8: Comparison between two versions of RNiftyReg: the original version with GPU
acceleration, and the version modified in this project.

34

Conclusions 4

This work has allowed to carry out the improvement of a medical image registration

application. We have made improvements in two different algorithms, one of them

focused on smoothing a histogram and the other one on normalizing a histogram.

The first of the algorithms that we have improved was a memory bound one,

so the following hints were taken into account in the process of enhancing it:

1. Reduction of the number of memory accesses, prioritizing the use of faster

memories when possible (registers and shared memory), while minimizing the

use of more distant memory (global memory).

2. Properly access to memory, meaning that access should be grouped in se-

quences, which should also follow a concrete access pattern to take advantage

of parallelism.

As a result of applying the points mentioned above on the image 23 of our data

set, we have accomplished an speed-up value of 1,19x, in contrast to 0,98x from the

naive implementation. In addition, a second optimization based on loop unrolling was

performed, improving the speed-up to 1,20x.

Changes made on the second algorithm have allowed the application to achieve

an speed-up of 1,38x.

In order to deploy parallelism, have been selected a suitable grid and blocks of

threads size.

Finally, we can conclude that the quality of the improvements achieved over

this project depends on the point of view. On one hand, if we compare our results

to the GPU version NiftyReg, accelerations around 1,38x may not be particularly re-

markable. Although there exist an improvement, the fact that this application was

a GPU-accelerated one has not helped to highlight our enhancements. On the other

hand, if we look at the speed-up obtained from the point of view of a RNiftyReg user,

35

a greater than 27x improvement can be considered quite good, since the only thing

that allowed this module was run CPU versions of NiftyReg algorithms.

4.1 Conclusiones

Este trabajo ha permitido llevar a cabo la mejora de una aplicación destinada al

registro de imágenes en el campo de la medicina. Se han llevado a cabo mejoras

sobre dos algoritmos disintos, uno encargado de suavizar un histograma y el otro de

normalizarlo.

El primero de los algoritmos que nos hemos encontrado era intensivo en memo-

ria, por a la hora de mejorar el rendimiento ha sido muy útil:

1. Reducir el número de accesos a la memoria, priorizando el uso de memorias

más rápidas cuando fuese posible (registros y memoria compartida), a la vez

que se minimiza el uso de la memoria más lejana (memoria global).

2. Acceder de forma adecuada a la memoria, entendiendo que los accesos deben

agruparse en secuencias, que además deben seguir un patrón predeterminado

para aprovechar el paralelismo a la hora de acceder a los datos.

Como resultado de aplicar los puntos citados anteriormente sobre la imágen 23

de nuestro conjunto de datos, se ha conseguido pasar de una aceleración de 0,98x a

1,19x. Además, una segunda optimización basada en el desenrrollado de bucles ha

subido la aceleración a 1,20x.

Los cambios aplicados sobre el segundo de los algoritmos, han permitido a la

aplicación alcanzar una aceleración de 1,38x.

No menos importante ha sido desplegar en la medida de lo posible el par-

alelismo, teniendo que seleccionar para ello un tamaño adecuado de malla (grid) y

bloques de hebras a la hora de optimizar el código en GPU.

Para terminar, se puede concluir que la calidad de las mejoras obtenidas a lo

largo de este proyecto depende del punto de vista tomado. Por un lado, si miramos

la aceleración con respecto a la versi’on GPU de NiftyReg, aceleraciones en torno a

1,38x pueden no ser especialmente significativas. A pesar de que la mejora existe,

el hecho de que esta aplicación ya contase con aceleración por GPU no ha ayudado

a que los resultados puedan destacar. Por otro lado, si miramos la aceleraciones

obtenidas desde el punto de vista de un usuario de RNiftyReg, una mejora superior

a 27x en algunos casos, se puede considerar bastante buena, ya que lo único que

permitía este módulo era ejecutar las versiones CPU de los algoritmos de NiftyReg.

Appendix A

File name x y z total

1 20110225_153840t1sesags002a001 256 256 20 1310720

2 20120302_092511T1SEs201a1002 256 256 22 1441792

3 20120316_113132T1SEGADs901a1009 288 288 22 1824768

4 20120515_184622HIDROCEFALIAs002a1001 512 512 20 5242880

5 20120524_201906HIDROCEFALIAs002a1001 512 512 20 5242880

6 20120515_172040HIDROCEFALIAs007a1001 256 256 130 8519680

7 20130909_191805WIPsT1W3DTFESENSEs301a1003 256 256 175 11468800

8 20120515_172040HIDROCEFALIAs004a1001 512 512 53 13893632

9 20120316_113132NAVEGADORs701a1007 288 288 170 14100480

10 20120515_184622HIDROCEFALIAs004a1001 512 512 56 14680064

11 20121220_174920WIPsT1W3DTFESENSEs901a1009 288 288 185 15344640

12 20130429_210336WIPsT1W3DTFESENSEs301a1003 288 288 185 15344640

13 20130606_175455WIPsT1W3DTFESENSEs301a1003 288 288 185 15344640

14 20140221_142759WIPsT1W3DTFESENSEs601a1006 288 288 185 15344640

15 20140303_110039WIPsT1W3DTFESENSEs301a1003 288 288 185 15344640

16 20120524_201906HIDROCEFALIA4s005a1001 512 512 60 15728640

17 20090713_160720T13DISOTROPICOSENSEs301a... 288 288 190 15759360

18 20090907_172454T13DISOTROPICOSENSEs301a... 288 288 190 15759360

19 20090917_165550T13DISOTROPICOSENSEs301a... 288 288 190 15759360

20 20100413_173204T13DISOTROPICOSENSEs301a... 288 288 190 15759360

21 20100608_190105T13DISOTROPICOSENSEs301a... 288 288 190 15759360

22 20100706_193757T13DISOTROPICOSENSEs301a... 288 288 190 15759360

23 20120316_113132T1SEGADs801a1008 1024 1024 60 62914560

Tabla A.1: Images metadata: file name, high, width, depth and total number of voxels.

37

APPENDIX A. APPENDIX

38

Bibliography A

[1] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Com-

puting Surveys 24:325–376, 1992.

[2] Chris McClanahan. History and Evolution of GPU Architecture. 2010.

[3] Christos Kyrkou. Stream Processors and GPUs: Architectures for High Perfor-

mance Computing. Unknown.

[4] Mark Holden Derek L G Hill, Philipp G Batchelor and David J Hawkes. Medical

image registration. INSTITUTE OF PHYSICS PUBLISHING, pages R2–R4, 2000.

[5] Mark Harris. Introduction to CUDA C, 2013.

[6] Ian Buck. Stream Computing on Graphics Hardware. PhD thesis, September

2006.

[7] William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. Improv-

ing 3D Medical Image Registration CUDA Software with Genetic Programming.

Proceedings of the 2014 conference on Genetic and evolutionary computation

(GECCO 2014), pages 951–958, 2014.

[8] Mark Harris. Maxwell: The Most Advanced CUDA GPU Ever

Made, 2014. URL http://devblogs.nvidia.com/parallelforall/

maxwell-most-advanced-cuda-gpu-ever-made/.

[9] Marc Modat, Zeike A. Taylor, Josephine Barnes, David J. Hawkes, Nick C. Fox, and

Sebastien Ourselin. Fast free-form deformation using the normalised mutual

information gradient and graphics processing units. Med Phys, pages 278–284,

2010.

[10] Modat, M., Cash, D. M., Daga, P., Winston, G. P., Duncan, J. S., and Ourselin,

S. Global image registration using a symmetric block-matching. JOURNAL of

Medical Imaging, 1(2):024003–024003, 2014.

39

http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/

BIBLIOGRAPHY

[11] Modat, M., Ridgway, G. R., Taylor, Z. A., Lehmann, M., Barnes, J., Hawkes, D. J.,

Fox, N. C., et al. Fast free-form deformation using graphics processing units.

Computer Methods And Programs In Biomedicine, 98(3):278–284, 2010.

[12] NVIDIA Corporation. NVIDIA GeForce 8800 GPU architecture overview. Technical

report, November 2006.

[13] NVIDIA Corporation. NVIDIA GeForce GTX 200 GPU architectural overview. Tech-

nical report, May 2008.

[14] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi Whitepaper. 2009.

[15] NVIDIA Corporation. NVIDIA GF100 Whitepaper. Technical report, 2010.

[16] NVIDIA Corporation. NVIDIA Tesla KSeries Data Sheet, October 2012.

[17] NVIDIA Corporation. TESLA K20X GPU Accelerator Board Specification. Technical

report, July 2013.

[18] NVIDIA Corporation. TESLA K20 GPU Accelerator Board Specification. Technical

report, July 2013.

[19] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture: Ke-

pler GK110/210 Whitepaper. Technical report, 2014.

[20] NVIDIA Corporation. CUDA C Programming Guide, 2015. URL http://docs.

nvidia.com/cuda/cuda-c-programming-guide.

[21] NVIDIA Corporation. NVIDIA GeForce GTX 980 Whitepaper. Technical report,

2015.

[22] Stephan Soller. GPGPU origins and GPU hardware architecture. 2011.

[23] UC London Translational Imaging Group. NiftyReg: Open-source software for

efficient medical image registration, 2015. URL http://cmictig.cs.ucl.ac.

uk/research/software/22-niftyreg.

[24] Barbara Zitová and Jan Flusser. Image registration methods: a survey. Image

and Vision Computing, 21:977–1000, 2003.

40

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://cmictig.cs.ucl.ac.uk/research/software/22-niftyreg
http://cmictig.cs.ucl.ac.uk/research/software/22-niftyreg

	Memoriasanchezrodriguezpablo.pdf
	The GPGPU movement
	The GPU Streaming Processor
	Advantages and drawbacks

	Evolution to a general purpose architecture
	Starting point
	GPGPU first steps
	The arrival of CUDA
	OpenCL
	Last years and the future of GPGPU

	Programming with CUDA
	CUDA (Compute Unified Device Architecture)
	Programming model
	Processing levels
	Streams
	Processing flow

	Hardware model
	Evolution of the architecture by generations
	The first generation: Tesla (G80 and GT200)
	The second generation: Fermi (GF100)
	The third generation: Kepler (GK110 y GK210)
	Dynamic Parallelism
	Hyper-Q

	The fourth generation: Maxwell (GM204)
	Memory improvement
	Shared memory atomics

	Speeding up the code
	Introduction
	Image Registration
	Operating mode

	Starting point for optimizations
	Adding GPU support to RNiftyReg
	Optimizing NiftyReg
	First iteration: Identifying the problem
	Second iteration: reg_getNMIValue() optimizations
	Histogram smoothing
	Histogram smoothing (a failed alternative)
	Histogram normalization

	About the achieved results

	Conclusions
	Conclusiones

	Appendix

