
Virtual Prototyping for Dynamically Reconfigurable Architectures
using Dynamic Generic Mapping

D. J. Gibson, M. Vasilko & D. Long
School of Design, Engineering & Computing,

Department of Electronics,
Bournemouth University,

Fern Barrow, Poole, Dorset. UK
gibsond@bournemouth.ac.uk

Abstract

This paper presents a virtual prototyping methodology
for Dynamically Reconfigurable (DR) FPGAs. The
methodology is based around a library of VHDL image
processing components and allows the rapid prototyping
and algorithmic development of low-level image
processing systems. For the effective modelling of
dynamically reconfigurable designs a new technique
named, Dynamic Generic Mapping is introduced. This
method allows efficient representation of dynamic
reconfiguration without needing any additional
components to model the reconfiguration process. This
gives the designer more flexibility in modelling dynamic
configurations than other methodologies. Models created
using this technique can then be simulated and targeted to
a specific technology using the same code. This technique
is demonstrated through the realisation of modules for a
motion tracking system targeted to a DR environment,
RIFLE-62.

1. Introduction

The recent introduction of FPGAs that can be
dynamically reconfigured has pre-empted research into
various applications. However, very little CAD tool
support exists for these devices at present [1],[2].
Therefore, designers are currently forced to use
conventional tools and work around the dynamic
reconfiguration manually. A number of signal processing
applications have been targeted to DR architectures using
existing tools [3],[4]. These have been designed at a low-
level with the partitioning into consecutive dynamic
configuration performed manually. However, the more
complex the system the less obvious it becomes where and
how the reconfiguration should take place. This paper
proposes the use of a modified rapid prototyping

methodology for the realisation of low-level image
processing systems on DR architectures. The
methodology promotes early characterisation of the design
and speeds up the lengthy algorithmic development of
image processing systems. Moreover, it can be used with
existing CAD tools. This methodology has been used in
conjunction with a prototyping environment for
Dynamically Reconfigurable Logic (DRL), to develop a
real-time movement detection system.

2. RIFLE-62: DRL Prototyping Environment

RIFLE-62 is an FPGA based prototyping board that
has been developed for the rapid prototyping of
dynamically reconfigurable logic. The board has a
flexible architecture based around the Xilinx XC6200
family of dynamically reconfigurable FPGAs. In addition,
the board has two other FPGAs (XC4013E and
XC3100A), static and dynamic memory, a 32-bit data bus,
a 24-bit address bus, control signals, dual clocks and four
dedicated interfaces [5]. A block diagram of the RIFLE-
62 architecture is shown in Figure 1.

This board provides a flexible platform for the
prototyping of dynamically reconfigurable applications.
With RIFLE-62 it is possible to experiment with different
reconfiguration strategies, such as various sizes of
temporarily stored dynamic configurations or different
configuration control schemes.

The fast configuration cache allows partial
reconfiguration of the XC6200 at full speed. The
reconfiguration overhead can be minimised to permit
realistic estimation of system performance. The three
FPGA architectures on the board suit the requirements of
most logic circuits, whilst the large memory storage
provides sufficient capacity and throughput for the
implementation of real-time image processing tasks.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/4898859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1 Block Diagram of RIFLE-62 (DRL) Prototyping Board

3. Dynamically Reconfigurable Real-Time
Motion Detection

To demonstrate the design flow and the capabilities of
RIFLE-62, a real-time motion detection system has been
modelled and targeted to this environment. This
application operates on an input data-stream from a video-
camera, processes the data on the RIFLE-62 board and
outputs the results to a video monitor. The system uses an
Audio/Video interface board developed for the RIFLE-62.
This unit has a multi-standard video processor that
digitises an input signal and a video RAMDAC capable of
translating a digital input to an analogue output.

The motion detection system consists of three
functions: median filtering, edge detection and frame
differencing. These were selected to represent three
different categories of low-level image processing
operation, each with different requirements on processing
speed, memory and configurable logic area. A schematic
diagram of the motion detection system is shown in Figure
2.

The median operation is a non-linear filter that is ideal
for removing impulse noise from images. The algorithm
replaces the grey scale value of each pixel with the median
value of the neighbouring pixels. These values are taken
from an odd sized window around the current pixel. This
filter offers good low-pass performance whilst preserving
the sharpness of edges within the image [6]. The hardware
realisation of a median filter is challenging as it requires a

rank ordering unit to sort the pixel values. Sorting nine
pixel values requires a total of thirty-six compare
functions. Therefore, a fast heavily pipelined design is
required.

The edge detection is realised as two linear
convolutions using the Sobel operators. This highlights
changes in grey scale values in the vertical and horizontal
directions and can be used to perform estimation of an
edge's magnitude and phase angle [7]. The Sobel
operators are attractive for a hardware realisation as the
mask coefficients are all powers of two. This eliminates
the need for hardware multipliers as binary shifts will
suffice. As the two convolutions are performed
concurrently the immediate implication is that a sequential
structure could be utilised with resource sharing by
reconfiguration.

Finally, frame differencing is performed between
consecutive images to locate moving objects. Although
the computational requirement for this unit is fairly trivial
the storage requirement is high as an entire image must be
stored. Therefore, fast access time memory is required
together with an effective memory management strategy.

Partial dynamic reconfiguration is used to dynamically
allocate operations within the required area of the
XC6200. The design is heavily pipelined in order to
provide the required throughput for real-time operation. A
partial reconfiguration technique known as pipeline
morphing could be exploited to minimise the total
configuration overhead [8].

.

Figure 2 Schematic diagram of the Motion Detection System on RIFLE-62

4. Virtual Prototyping Methodology

Using this presented virtual prototyping methodology,
high-level design is performed using a pre-designed
VHDL component library [9]. This library contains
models of basic arithmetic functions as well as specific
image processing components. All the components are
fully generic in terms of algorithmic implementation, size
and degree of pipelining. The library allows designers to
develop the required algorithms from the system
specifications. This is achieved by creating an abstract
‘virtual prototype’ of the system from the components
contained in the library [9]. As far as the designer is
concerned the components are functional ‘black boxes’.

These boxes are used to construct and verify the hardware
implementation of a desired algorithm.

Having established the algorithmic realisation, the
designer should next consider whether any dynamic
reconfiguration is required within the system. This
includes not only areas where it is possible to dynamically
reconfigure the design, but also which areas can afford to
be reconfigured. Using the presented methodology this is
achieved by generating sub-components for elements that
are to be reconfigured. These should be parameterised
with generics in terms of not only performance, but also
reconfiguration. For example, Figure 3 shows an entity
declaration of a coefficient multiplier module that will be
dynamically reconfigured.

Library IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.convolverpack.BusSize;

ENTITY Coefficient_Multiplier IS
 GENERIC (GreyScale : INTEGER := 256; -- No. of grey scales per pixel

 CoefficientRange : INTEGER := 5; -- Value of largest coefficient size
 Coeff_1 : INTEGER := 3; -- Value of coefficient one
 Coeff_2 : INTEGER := 5; -- Value of coefficient two
 Coefficient_1_2 : BOOLEAN := FALSE; -- Coefficient 1 or coefficient 2

 PORT (PixelIP : IN std_logic_vector(((BusSize(GreyScale))-1) DOWNTO 0); -- Pixel input to coefficient multiplier
Clk : IN std_logic; -- Pipeline clock
Rst : IN std_logic; -- Pipeline Reset
ResultOP : OUT std_logic_vector(((BusSize(GreyScale*CoefficientRange))-1) DOWNTO 0)); -- Resulting output

END Coefficient_Multiplier;

Figure 3 Entity for a Coefficient Multiplier using a Generic Reconfiguration strategy

In this example the reconfiguration of the coefficient
multiplier is dependent upon the generic parameter
Coefficient_1_2. This generic has been given a data type
of Boolean. When the generic has a value of false the unit
will perform multiplication between the input pixel and the
first coefficient (coeff_1). Similarly when the generic has
a value of true the second coefficient (coeff_2) is used.
This reconfiguration generic allows simulation of the
module by effectively switching between two realisations.
This method offers a more flexible mechanism for
controlling the configurations than Dynamic Circuit
Switching (DCS) [1], as no extra components are required
in the design to model the reconfiguration. Therefore, it is
possible to simulate a design and directly synthesise
partial configurations from the same code. In addition, the
reconfiguration generics can be used for more than just
switching circuits. For example, a counter's maximum
value could be controlled by a generic and the realisation
reconfigured depending upon this value. In addition, the
use of generics removes the configuration control scheme
from the design under test and allows it to be considered at
the next level of design hierarchy.

A generic map in VHDL is a construct that allows the
communication of static values to a specific instance of a
component. These values are evaluated at elaboration of
the component and are therefore globally static. The
nature of dynamic reconfiguration requires a method for
modifying the internal parameters of a component from an
external source. As the reconfiguration is controlled by
generic values a strategy is required for the dynamic
modification of these values. This is achieved using the
presented technique named, Dynamic Generic Mapping,
which allows generic values for a specific instance of a
component to be changed at any point in simulation time.

5. Dynamic Generic Mapping

In the presented methodology the Dynamic Generic
Maps (DGM) have been implemented manually using a
combination of ASSERT statements and (QuickHDL)
simulator commands. Figure 4 shows an example of a
Dynamic Generic Map.

ARCHITECTURE reconfigurable OF convolve IS

 TYPE b2s_type IS ARRAY (BOOLEAN) OF STRING(1 TO 5);
 CONSTANT Boo2Strg : b2s_type := (TRUE => "TRUE ",

 FALSE => "FALSE");
 SIGNAL reconfigure : BOOLEAN;

 COMPONENT Coefficient_Multiplier
 GENERIC (GreyScale : INTEGER := 256; -- No. of grey scales per pixel

 CoefficientRange : INTEGER := 5; -- Value of largest coefficient size
 Coeff_1 : INTEGER := 3; -- Value of coefficient one
 Coeff_2 : INTEGER := 5; -- Value of coefficient two
 Coefficient_1_2 : BOOLEAN := FALSE); -- Coefficient 1 or coefficient 2

 PORT (PixelIP : IN std_logic_vector(((BusSize(GreyScale))-1) DOWNTO 0); -- Pixel input to coefficient multiplier
 Clk : IN std_logic; -- Pipeline clock
 Rst : IN std_logic; -- Pipeline Reset
 ResultOP : OUT std_logic_vector(((BusSize(GreyScale*CoefficientRange))-1) DOWNTO 0)); -- Resulting output

 END COMPONENT;

BEGIN

 CM1 : Coefficient_Multiplier
 GENERIC MAP (Greyscale => 256,

 CoefficientRange => 5,
 Coeff_1 => 2,
 Coeff_2 => 5,
 Coefficient_1_2 => reconfigure)

 PORT MAP (PixelIP => Data_IN,
 Clk => Clk,
 Rst => Rst,
 ResultOP => Data_OUT);

 ASSERT NOT (reconfigure'EVENT)
 REPORT "Update the value of the generic COEFFICIENT_1_2 to " & Boo2Strg(reconfigure)
 SEVERITY NOTE;

 •
 •
 •

END reconfigurable;

Figure 4 Example of manual realisation of a Dynamic Generic Map (DGM)

In this example the reconfiguration generic,
Coefficient_1_2 is assigned to the value of a control
signal, reconfigure. When an event occurs on this signal
the assert statement is activated and a severity level note is
issued to the simulator. This note requests that the value
of the reconfiguration generic is updated. With the
simulator set to break upon a severity note the simulation
is halted when the signal reconfigure is updated. Then a
simulator command can be issued to modify the generic
value. This method allows the dynamic updating of the
reconfiguration generics and hence the modelling of
dynamic reconfiguration. It should be noted that upon
initialisation the generic Coefficient_1_2 is assigned the
default value of the reconfigure signal's data type (false).
Therefore, this value should be equivalent to the first
required configuration. Having established the DGM the
architecture can then model the reconfiguration strategy
and any additional functionality of the module. Hence, it
is possible to establish estimates of the reconfiguration
overheads such as resource utilisation, I/O requirements
and the allocation of memory. The component
Coefficient_Multiplier can then be synthesised for every
value of the reconfiguration generic. As synthesis tools
consider the generic values to be globally static, all
statements that dependent on other values of the
reconfiguration generics will be removed by optimisation.
This allows estimation of the hardware realisation for
different configurations.

6. Realisation Estimates

The Dynamic Generic Mapping technique has been
used in the virtual prototyping of the motion detection
system outlined in Section 3. This has allowed the
assessment of various reconfigurations and the hardware
overheads. For example, the edge detector possesses a
threshold unit that determines if the convolved pixel value
is representative of an edge in the resulting image. This is
realised as a unit that compares the current convoloution
output with a given threshold. When this value is greater
than the threshold it is considered to be an edge and the
output pixel is set to the maximum grey scale value. In all
other cases the pixel is set to the minimum grey scale
value. This results in a black and white image from the
edge detector with the edges highlighted in white. For
accurate results from a real-world scene it is desirable to
have between 9-11% of pixels in the resulting image being
representative of edges. This can be achieved using an
adaptive algorithm that counts the number of edge pixels
identified in the previous image [6]. If the total number of

edges is less than 9% the threshold value is decremented
by one. If the value is greater than 11% the threshold is
incremented by one. A pseudo code representation of this
adaptive algorithm is shown in Figure 5.

Threshold := Thresholding value

BEGIN
Count = No. of edge pixels in the previous image
IF Count <= 9% of total image size THEN

Threshold = Threshold - 1
ELSE IF Count >= 11% of total image size THEN

Threshold = Threshold + 1
ELSE

Threshold = Threshold
END IF
Threshold next image

END

Figure 5 Pseudo code representation of adaptive
threshold algorithm

This adaptive algorithm will maintain an edge count of
between 9-11% in the resulting image irrespective of
changes in ambient lighting. Due to the adaptive nature of
this algorithm it is suited to a realisation using dynamic
reconfiguration. From the component library available a
basic threshold unit exists. The component declaration for
this unit is shown in Figure 6. This component purely
performs the thresholding operation between the pixel
value and the threshold, which is represented by the
generic ThresholdVal. Therefore, in the realisation of a
reconfigurable adaptive threshold module this sub-
component is required and ThresholdVal becomes the
reconfiguration generic. When the value is changed using
the DGM it represents a new configuration with a different
threshold value. Figure 6 shows the VHDL model of the
adaptive threshold unit. In this example the threshold
component is instantiated and the reconfiguration generic
is assigned to the value of the signal Adapt_thres. The
value of this signal is modified as represented by the
pseudo code (shown in Figure 5), at the start of each new
image frame. Note that this value is also an output from
the module via the port Reconfigure. A change in this
value represents a new configuration and all that is
necessary externally is an address decoder to enable the
new configuration to be read from memory. On the
RIFLE-62 the address decoder could be implemented
easily in the XC4013E device.

Library IEEE;
USE IEEE.std_logic_1164.ALL ;
USE WORK.convolverpack.BusSize;

ENTITY Threshold_dyn_config IS
 GENERIC (GreyScale : INTEGER := 256; -- No. of grey scales in image

 ImageSize : INTEGER := 256; -- Size of image (ImageSize x ImageSize)
 MaskSize : INTEGER := 3; -- Size of convolver mask (Masksize x MaskSize)
 CoefficentRange : INTEGER := 2; -- Value of largest coefficent size
 ThresholdVal : INTEGER := 12); -- images threhold value

 PORT (ThresIP : IN std_logic_vector (((BusSize(((GreyScale*CoefficentRange)-1)*(MaskSize**2)))) DOWNTO 0); -- Data input
 ThresClk : IN std_logic;
 ThresRst : IN std_logic;
 ThresEdgeIP : IN std_logic; -- Input from edge counter entity
 Frame : IN std_logic;
 Reconfiguration : OUT INTEGER RANGE 0 TO (greyscale-1);
 ThresOP : OUT std_logic_vector (((BusSize(GreyScale))-1) DOWNTO 0)); -- Data output
END Threshold_dyn_config;

ARCHITECTURE Behave_adapt OF Threshold_dyn_config IS

 SIGNAL Adapt_thres : INTEGER RANGE 0 TO (greyscale-1);
 SIGNAL Edge_Cnt : INTEGER RANGE 0 TO ((Imagesize*Imagesize)-1);
 SIGNAL Cnt_rst : std_logic;
 SIGNAL Output : std_logic_vector (((BusSize(GreyScale))-1) DOWNTO 0);

 COMPONENT Threshold
 GENERIC (GreyScale : INTEGER := 256; -- No. of grey scales in image

 ImageSize : INTEGER := 256; -- Size of image (ImageSize x ImageSize)
 MaskSize : INTEGER := 3; -- Size of convolver mask (Masksize x MaskSize)
 CoefficentRange : INTEGER := 2; -- Value of largest coefficent
 ThresholdVal : INTEGER := 12); -- images threhold value

 PORT (ThresIP : IN std_logic_vector (((BusSize(((GreyScale*CoefficentRange)-1)*(MaskSize**2)))) DOWNTO 0); -- Data input to threshold component
 ThresClk : IN std_logic;
 ThresRst : IN std_logic;
 ThresEdgeIP : IN std_logic; -- Input from edge counter entity
 Frame : IN std_logic;
 ThresOP : OUT std_logic_vector (((BusSize(GreyScale))-1) DOWNTO 0)); -- Data output from threshold component
 END COMPONENT;

BEGIN

Reconfiguration <=Adapt_thres;
ThresOP <= Output;

 TH1 : Threshold
 GENERIC MAP (GreyScale => 256,
 Imagesize => 256,

 MaskSize => 3,
 CoefficentRange => 2,
 ThresholdVal => Adapt_thres)

 PORT MAP (ThresIP => ThresIP,
 ThresClk => ThresClk,
 ThresRst => ThresRst,
 ThresEdgeIP => ThresEdgeIP,
 Frame => Frame,
 ThresOP => Output);

ASSERT NOT (Adapt_thres'EVENT)
 REPORT "Update the value of the generic ThresholdVal in the threshold component to equal the ADAPT_THRES signal"
 SEVERITY NOTE;

 Edge_counter : PROCESS(ThresClk, ThresRst, Cnt_rst, Output, Edge_Cnt) -- Process modelling the edge pixel counter
 BEGIN
 IF ThresRst = '1' OR Cnt_rst = '1' THEN
 Edge_cnt <= 0;
 ELSIF ThresClk'EVENT AND ThresClk = '1' THEN
 IF Output(0) = '1' THEN

Edge_cnt <= Edge_cnt +1;
 END IF ;
 END IF ;
END PROCESS Edge_counter;

Change_Threshold : PROCESS (Cnt_Rst, Edge_Cnt) -- Process modelling the changing of the threshold value
 BEGIN
 IF Cnt_Rst'EVENT AND Cnt_Rst = '1' THEN
 IF Edge_Cnt >= (((Imagesize*Imagesize)/100)*11) THEN

Adapt_thres <= Adapt_thres+1;`
 ELSIF Edge_Cnt <= (((Imagesize*Imagesize)/100)*9) THEN

Adapt_thres <= Adapt_thres-1;
 ELSE

Adapt_thres <= Adapt_thres;
 END IF ;
 END IF;
 END PROCESS Change_threshold;

 Reset_counter : Process (ThresRst, Frame, Cnt_rst) -- Process modelling the counter reset controller
 BEGIN
 IF ThresRst = '1' OR Cnt_rst = '1' THEN
 Cnt_rst <= '0';
 ELSIF Frame'EVENT AND Frame = '1' THEN
 Cnt_rst <= '1';
 END IF;
 END PROCESS Reset_counter;

END Behave_adapt;

Figure 6 VHDL model of the adaptive threshold unit using Dynamic Generic Mapping

Library Threshold
(non adaptive)

Adaptive threshold
(Non-reconfigurable)

Dynamically
Reconfigurable

Adaptive threshold
XC6264 Primitive Cells 25 248 91
I/O Ports 25 25 33
External configuration cache
Memory

- - 64×32 Bits

Table 1 Threshold units hardware realisation

Figure 7 Virtual Prototyping Design Flow

To assess the hardware realisation of the threshold
module, synthesis was performed using the prototyping
design flow, shown in Figure 7. For comparison
purposes synthesis was undertaken on the non adaptive
threshold model from the image processing library [9], a

dynamic reconfigurable adaptive threshold unit and a
realisation of the adaptive threshold module without using
reconfiguration. These results are shown in Table 1.

The non-reconfigurable realisation requires 248
primitive cells and 25 ports. Whereas the dynamic
implementation utilises 91 primitive cells and 33 ports.
The dynamic system saves 157 cells in the reconfigurable
FPGA as logic is not required to modify the threshold
value. However, the logic overhead required for the
instantiated threshold unit and the part of the algorithm that
determines the new threshold value remains constant. This
design also requires an extra 8-bit port, 64×32 bits of
memory and an address decoder, (not shown in Table 1). It
should also be noted that the memory requirement for the
partial configurations is dependent upon the placing of the
design within the device. This example has demonstrated
that the use of dynamic reconfiguration has shifted the
resource utilisation from the XC6264 to other resources on
the RIFLE-62 board.

7. Conclusions

In this paper it has been shown how Dynamic Generic
Mapping can be used in the virtual prototyping of DR
systems. This technique allows reconfigurable components
to be modelled and then integrated within larger systems.
Using generics to parameterise reconfigurable elements
gives a number of advantages: Firstly, the dynamic model
can be kept completely separate from the configuration
control scheme and no extra components are required to
model the reconfiguration. Secondly, generics offer greater
flexibility in the parameterisation and modelling of
reconfiguration. Finally, the Dynamic Generic Map
(DGM) allows various configuration strategies to be
evaluated and the hardware requirements for each
established.

After generation of the reconfigurable components the
DGM permits the simulation of a system containing any
number of dynamic elements. The same model can then be
synthesised for all the possible values of the

reconfiguration generics. As these values are globally
static during synthesis any elements that are dependent
upon other values of the reconfiguration generic will be
optimised. This will generate the circuits required for
each partial configuration.

As further work it is intended to automate the
implementation of the DGMs. This could be achieved by
extending VHDL, adding two extra constructs to the
language. These being a Dynamic Generic List and a
Dynamic Generic Map. The introduction of these new
clauses will allow the modelling of dynamically
reconfigurable logic, whilst leaving the standard
constructs in place for ordinary model parameterisation.

Acknowledgements

The authors would to thank the Xilinx Incorporated
for the beta release of XACT6000 and the Synopsys
libraries.

References

[1] Stockwood, J., and P. Lysaght, ‘A Simulation Tool
for Dynamically Reconfigurable Field
Programmable Gate Arrays.’ ASIC '95, Texas, Sept.
1995.

[2] Luk, W., N. Shirazi & P. Y. K. Chung, ‘Compilation
Tools for the Run-Time Reconfigurable Design.’
FCCM97, K. L. Pocek & J. Arnold (eds.), IEEE
Computer Society Press, 1997.

[3] Brebner, G., & J. Gray ‘Use of Reconfigurablity in
Variable-length Code Detection at Video Rates.’
Field Programmable Loic and Applications, W.
Moore & W. Luk (eds.), LNCS 975, Springer. 1995.

[4] Lysaght, P., & H. P. Dick, ‘Implementation of
Adaptive Signal Processing Architectures Based on
Dynamically Reconfigurable FPGAs.’ Proceedings
of EUSIPCO-94, Edinburgh, Scotland, Vol III.

[5] Vasilko, M., & D. Long, ‘RIFLE-62: A Flexible
Environment for Prototyping Dynamically
Reconfigurable Systems.’ 9th IEEE International
Workshop on Rapid System Prototyping, 1998.

[6] Gonzalez, R., & R. Woods Digital Image
Processing. Addison-Wesley. 1992

[7] Pratt, W., Digital Image Processing (Second
Edition). John Wiley & Sons, New York, 1991.

[8] Luk, W., N. Shirazi, S. R. Guo & P. Cheung,
‘Pipeline Morphing and Virtual Pipelines.’ Field
Programmable Logic and Applications (FPL’97
Proceedings), LNCS 1304. Springer-Verlag, 1997.

[9] Gibson, D. J., M. K. Teal, D. Ait-Boudaoud & M.
Winchester ‘A New Methodology and Generic

Model Library for the Rapid Prototyping of Real-Time
Image Processing Systems.’ VIUF Rapid Systems
Prototyping with VHDL Conference, Fall 1997.

