10 research outputs found

    A Comparison of Two Open Source LiDAR Surface Classification Algorithms

    Get PDF
    With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by published results. Two of the latter are the multiscale curvature classification and the Boise Center Aerospace Laboratory LiDAR (BCAL) algorithms. This study investigated the accuracy of these two algorithms (and a combination of the two) to create a digital terrain model from a raw LiDAR point cloud in a semi-arid landscape. Accuracy of each algorithm was assessed via comparison with \u3e7,000 high precision survey points stratified across six different cover types. The overall performance of both algorithms differed by only 2%; however, within specific cover types significant differences were observed in accuracy. The results highlight the accuracy of both algorithms across a variety of vegetation types, and ultimately suggest specific scenarios where one approach may outperform the other. Each algorithm produced similar results except in the ceanothus and conifer cover types where BCAL produced lower errors

    Accuracy Comparison of Aerial Lidar, Mobile-Terrestrial Lidar, and UAV Photogrammetric Capture Data Elevations Over Different Terrain Types

    Get PDF
    Lidar and other remotely sensed data such as UAV photogrammetric data capture are being collected and utilized for roadway design on an increasing basis. These methods are desirable over conventional survey due to their efficiency and cost-effectiveness over large areas. A high degree of relative accuracy is achievable through the establishment of survey control. In this case study, elevations (z-values) derived from mobile-terrestrial lidar, aerial lidar, and UAV photogrammetric capture collected with survey control were statistically compared to conventionally surveyed elevations. A cost comparison of the methods is also included. Each set of z-values corresponds to a discrete horizontal point originally part of the conventional survey, collected as cross-sections. These cross-sections were surveyed at three approximate tenth-mile sample locations along US-30 near Georgetown, Idaho. The cross-sections were collected as elevational accuracy verification, and each sample location was selected as an area where the mobile-terrestrial lidar in particular was expected to have more difficulty achieving accuracy off the road surface. Processing and analysis were performed in Esri ArcMap 10.6, and all data were obtained from the Idaho Transportation Department, District 5. Overall, the aerial lidar elevations were found to be closest to conventionally surveyed elevations; on road surface and level terrain, mobile-terrestrial and UAV photogrammetric capture elevations were closer to the conventionally measured elevations

    A comparison of open-source LiDAR filtering algorithms in a mediterranean forest environment

    Get PDF
    Light detection and ranging (LiDAR) is an emerging remote-sensing technology with potential to assist in mapping, monitoring, and assessment of forest resources. Despite a growing body of peer-reviewed literature documenting the filtering methods of LiDAR data, there seems to be little information about qualitative and quantitative assessment of filtering methods to select the most appropriate to create digital elevation models with the final objective of normalizing the point cloud in forestry applications. Furthermore, most algorithms are proprietary and have high purchase costs, while a few are openly available and supported by published results. This paper compares the accuracy of seven discrete return LiDAR filtering methods, implemented in nonproprietary tools and software in classification of the point clouds provided by the Spanish National Plan for Aerial Orthophotography (PNOA). Two test sites in moderate to steep slopes and various land cover types were selected. The classification accuracy of each algorithm was assessed using 424 points classified by hand and located in different terrain slopes, cover types, point cloud densities, and scan angles. MCC filter presented the best overall performance with an 83.3% of success rate and a Kappa index of 0.67. Compared to other filters, MCC and LAStools balanced quite well the error rates. Sprouted scrub with abandoned logs, stumps, and woody debris and terrain slopes over 15° were the most problematic cover types in filtering. However, the influence of point density and scan-angle variables in filtering is lower, as morphological methods are less sensitive to them

    Adaptive Methods for Point Cloud and Mesh Processing

    Get PDF
    Point clouds and 3D meshes are widely used in numerous applications ranging from games to virtual reality to autonomous vehicles. This dissertation proposes several approaches for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. Order statistic filters have been proven to be very successful in image processing and other domains as well. Different variations of order statistics filters originally proposed for image processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector median is proposed in this dissertation for removing noise and outliers from noisy point cloud data. The major contributions of this research lie in four aspects: 1) Four order statistic algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud with improved results such as preserving significant features. These methods are applied to standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the proposed method using Microsoft parallel pattern library for filtering point clouds is implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is proposed. The objective is to develop a method to enable automatic extraction of ground points from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh color sharpening using the discrete Laplace-Beltrami operator is proposed. Median and order statistics-based filters are widely used in signal processing and image processing because they can easily remove outlier noise and preserve important features. This dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point cloud data. The experiments show that large-scale noise is removed while preserving important features of the point cloud with reasonable computation time. Quantitative criteria (e.g., complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess the performance of the filters in various cases corrupted by different noisy models. The adaptive vector median is further optimized for denoising or ground filtering aerial LIDAR data point cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami operator of the vertex color weighted by a factor to its original value. Different discretizations of the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D mesh colors and compares their performance. Experimental results demonstrated the effectiveness of the proposed algorithms

    Spatio-temporal and structural analysis of vegetation dynamics of Lowveld Savanna in South Africa

    Get PDF
    Savanna vegetation structure parameters are important for assessing the biomes status under various disturbance scenarios. Despite free availability remote sensing data, the use of optical remote sensing data for savanna vegetation structure mapping is limited by sparse and heterogeneous distribution of vegetation canopy. Cloud and aerosol contamination lead to inconsistency in the availability of time series data necessary for continuous vegetation monitoring, especially in the tropics. Long- and medium wavelength microwave data such as synthetic aperture radar (SAR), with their low sensitivity to clouds and atmospheric aerosols, and high temporal and spatial resolution solves these problems. Studies utilising remote sensing data for vegetation monitoring on the other hand, lack quality reference data. This study explores the potential of high-resolution TLS-derived vegetation structure variables as reference to multi-temporal SAR datasets in savanna vegetation monitoring. The overall objectives of this study are: (i) to evaluate the potential of high-resolution TLS-data in extraction of savanna vegetation structure variables; (ii) to estimate landscape-wide aboveground biomass (AGB) and assess changes over four years using multi-temporal L-band SAR within a Lowveld savanna in Kruger National Park; and (iii) to assess interactions between C-band SAR with various savanna vegetation structure variables. Field inventories and TLS campaign were carried out in the wet and dry seasons of 2015 respectively, and provided reference data upon which AGB, CC and cover classes were modelled. L-band SAR modelled AGB was used for change analysis over 4 years, while multitemporal C-band SAR data was used to assess backscatter response to seasonal changes in CC and AGB abundant classes and cover classes. From the AGB change analysis, on average 36 ha of the study area (91 ha) experienced a loss in AGB above 5 t/ha over 4 years. A high backscatter intensity is observed on high abundance AGB, CC classes and large trees as opposed to low CC and AGB abundance classes and small trees. There is high response to all structure variables, with C-band VV showing best polarization in savanna vegetation mapping. Moisture availability in the wet season increases backscatter response from both canopy and background classes

    Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    Get PDF
    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE

    Assessment of forest canopy vertical structure with multi-scale remote sensing: from the plot to the large area

    Get PDF
    Assessment of vegetation over large, remote and inaccessible areas is an ongoing challenge for land managers in Australia and around the world. This research aimed to develop metrics, techniques and acquisition specifications that are suitable for characterising vegetation across large forested areas. New methods were therefore required to be transferable between forest types as well as robust where forest structure is unknown a priori. Remote sensing techniques were utilised as they have been previously identified as key in forest assessment, owing to their synoptic capture as well as relative cost. Additionally, active remote sensing instruments, such as LiDAR, are capable of sensing 3-dimensional canopy structure. Canopy height and the canopy height profile are fundamental descriptors of forest structure and can be used for estimating biomass, habitat suitability and fire susceptibility. To investigate the ability of remote sensing to characterise vegetation structure across large areas, three key research questions were formulated: I. Which metrics of canopy height and vertical canopy structure are suitable for application across forested landscapes? II. What is the appropriate ALS sampling frequency for attribution of forest structure across different forest types? III. How can plot level estimates of canopy structure be scaled to generate continuous large area maps? A number of inventory measured canopy height metrics were compared with LiDAR analogues, these were shown to be accurate at estimating canopy height and transferable between forest types. Existing techniques for attributing the canopy height profile were found to be inadequate when applied across heterogeneous forests. Therefore a new technique was developed that utilised a nonparametric regression of LiDAR derived gap probability that identified major canopy features e.g. dominant canopy strata and shade tolerant layers beneath. The impact of sampling frequency was assessed using three key descriptors of canopy structure at six sites across Australia covering a range of forest types. The research concluded that forest structure can be adequately characterised with a pulse density of 0.5 pulses m-2 when compared to a higher density acquisition - 10 pulses m-2. At pulse density of <0.5 pulses m-2, the inability to generate an adequate ground surface model lead to poor results, particularly in high biomass forest. The outcomes of this research will allow land managers to specify lower pulse densities when commissioning LiDAR capture, which may result in significant cost savings. Finally, LiDAR derived plot estimates were scaled to an area of 2.9 million hectares of forest, where forest type ranged from short, open woodland to tall, closed canopy rainforest. Attribution was achieved using a two-stage sampling approach utilising the ensemble regression technique Random Forest. Predictor variables included freely available datasets such as Landsat TM and MODIS satellite imagery. Canopy height was estimated with a RMSE of 30% or ~5.5 m when validated with an independent forest inventory dataset. Attribution of the canopy height profile was less successful for a number of reasons, for example, the relatively high spatial variability of shade tolerant vegetation. Inclusion of additional synoptic datasets, such as radar, may improve this in the future
    corecore