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1.1. General introduction 

The correlation between healthy forests and a productive wider ecosystem 
is irrefutable (Costanza et al., 1997; Millennium Ecosystem Assessment, 
2005; Jacob et al., 2014).  Forests provide ecosystem services, such as fresh 
water, food and building materials, as well as less tangible services 
including regulation of climate and maintenance of biodiversity, that make 
life on earth tenable.  In 2010 approximately 40 million km2 or 31% of 
global land area was forested (FAO, 2010); this compares to a preindustrial 
forested area of 55 million km2 (Ramankutty and Foley, 1999).  Pressure 
from forestry and subsequent conversion to agricultural land has increased 
deforestation rates significantly in recent years, for example 1.5 million 
km2 of forest cover were lost between 2000 – 2012 (Hansen et al., 2013).  
Furthermore, as forest degradation is not manifested in the complete 
removal of the canopy, the impact of degradation on the provision of 
ecosystem services is even harder to quantify (Foley et al., 2005).  This is 
exemplified by the negative impact on forests associated with a rapidly 
warming climate, including drought stress and increased susceptibility to 
pest infestation and wildfires (Semple et al., 2010; Park Williams et al., 
2012; Sugden et al., 2015). 

Forests can be characterised by three key primary attributes; composition, 
function and structure (Franklin et al., 1981).  Composition is the species, 
both floral and faunal, that comprise the biomass, function is	the	“work”	a	
forest does e.g. carbon fixation through photosynthesis and nutrient cycling 
through decomposition, and structure is the three-dimensional architecture 
of trees and plants (Franklin and Spies, 1991).  These three attributes are 
highly inter-dependent, this can be exemplified using the tall temperate 
rainforests of south eastern Australia.  Examples of this inter-dependency 
include; composition and function where tree species composition changes 
significantly with succession, in particular during senescence, where the 
tall Eucalyptus canopy (e.g. E. regnans and E. delegatensis) is replaced with 
Northofagus and Acacia species (Lindenmayer et al., 2000); structure and 
composition where cavities in very tall trees provide homes for arboreal 
marsupials (Lindenmayer, 2000); and structure and function where non-
catastrophic events have led to the formation of multi-strata canopies and 
consequently one of the most biomass dense ecosystems on the planet 
(Keith et al., 2009).  As is discussed in more detail below and with regard to 
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sustainable forest management, assessment of structure is the primary 
focus for land managers as it is key to achieving management objectives 
(Franklin and Spies, 1991).  

Although no globally accepted definition of forest exists, definitions tend to 
differentiate forests from other land cover types by their structure, for 
example, as having a minimum geographical  area and populated with trees 
that have potential to reach a minimum height and canopy cover (Sasaki 
and Putz, 2009).  For example, the UN Food and Agriculture Organisation 
(FAO) define forest as having a minimum area of 0.5 ha and a potential to 
reach >10% canopy cover and >5 m in height (FAO, 2000).  The United 
Nations (UN) Land Cover Classification System (LCCS) classifies forests 
from other land cover types based on vegetation height and cover (Di 
Gregorio and Jansen, 1998), then further subdivides forest type on 
attributes including existence of dominant and shade tolerant strata and 
floristic composition. 

The pivotal role that forests play in addressing key environmental, social 
and economic challenges has been recognised in international policy and 
legislation that promotes sustainable forest management.  A key 
framework for assessing the effectiveness of management practices is the 
use of Criteria and Indicators, these are designed to provide guidance and 
assess progress towards sustainable forest management (FAO, 2015).  For 
example, following the 1992 United Nations Conference on Environment 
and Development (Earth Summit) in Rio de Janeiro, the Montreal Process 
Working Group (MPWG) was established.  In February 1995, the MPWG 
(consisting of 12 member countries) endorsed the non-legally binding 
Santiago Declaration that set out seven criteria and sixty-seven indicators 
for national level reporting on sustainable forest management (Montréal 
Process Working Group, 2009).  Of the indicators outlined in the Santiago 
Declaration,	 28	 are	 defined	 as	 ‘biological’	 and	 therefore	 require	
measurement of structure, composition or function (Miles, 2002).  This 
therefore requires national and state level coordination, cooperation and 
standardisation of forest inventory methodologies.  For example in 
Australia, national and state level reporting of forest condition and 
sustainable management practices is done on a 5-yearly cycle and reported 
in the State of the Forest Report (Montreal Process Implementation Group 
for Australia, 2013).   
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A need for a systematic approach to national forest inventory was first 
identified in the early twentieth century (Smith, 2002; Tomppo et al., 2008, 
2010), where forest inventory was designed to assess merchantable timber 
stocks.  As recognition of the wider role forests play has increased, 
inventory protocols have expanded to incorporate additional “ecosystem	
indicators” such as species diversity (including non-commercial species) 
and soil properties (Trumbore et al., 2015).  Assessment is achieved by 
installing small plots within the forest, typically circular with a radius of 10 
– 12 m (Tomppo et al., 2010), where different quantitative (e.g. diameter at 
breast height, tree height) and qualitative (e.g. species composition) 
measurements are recorded.  In most industrialised countries, forest 
inventory programmes have grown into systematic National Forest 
Inventories, where large scale programmes have been established 
(Tomppo et al., 2010).  For example, in the US the Forest Inventory and 
Analysis programme has a network of 1 plot for every 6,000 acres of forest 
(Bechtold and Patterson, 2005) and in Sweden and Finland combined over 
10,000 plots that are visited annually (Tomppo et al., 2008).  

The on-going requirement for knowledge on forests across national scales 
in a cost effective and timely manner has led to the pursuit of techniques 
that identify the spatial configuration of forests over large areas, such as 
remote sensing (McRoberts and Tomppo, 2007).  Remote sensing 
comprises a wide range of measurement techniques, in a forest assessment 
context these can include; hemispherical photography to measure local 
canopy structure, in situ passive sensor networks to measure spatial 
variation of solar radiation, airborne hyperspectral or ranging sensors to 
create high resolution spectral or spatial datasets, or space borne 
multispectral and radar platforms offering high temporal resolution 
imaging.   

Earth Observation (EO) remote sensing, which are typically passive 
spectrometers located on spaceborne satellite platforms, have significantly 
broadened the horizons of possibility for large-area forest assessment 
(Wulder, 1998). These techniques allow for a synoptic capture of the forest 
canopy, not only incorporating an inventory plot, but also the plots context 
within the wider landscape e.g. forest extent and connectivity (Wulder, 
1998).  Since the launch of the first Landsat mission in 1972 and with 
successive EO missions (e.g. subsequent Landsat missions, MODIS etc.), the 
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possibility of large area land cover mapping has been realised.   This has 
led to a profusion of techniques to measure forest attributes including 
extent (Hansen et al., 2013) and canopy height (Cohen and Spies, 1992).  

An inherent limitation of passive remote sensing instruments is the 
inability to penetrate the upper canopy layer to measure the physical three 
dimensional structure of the forest canopy (Hudak et al., 2002).  Active 
instruments such as Light Detection and Ranging (LiDAR) sensors are 
capable of measuring three dimensional structure and have been applied 
successfully to forest inventory challenges (Lim et al., 2003; Wulder et al., 
2012b).  There are two main types of LiDAR instrument; continuous-wave 
and pulse-laser, the latter is most commonly used for operational forest 
inventory (Lim et al., 2003) and will be the focus of this section.  Pulse-laser 
LiDAR instruments measure the range (R) to a target by recording the time 
(t) of flight for an emitted laser pulse to be reflected off a target and 
received back at the sensor: 

𝑅 = 𝑐
𝑡
2

 

EQ. 1 

where c is the speed of light (~3 x 108 m s-1).  LiDAR instruments digitise 
the backscattered signal either, as the full-waveform of backscattered 
energy where signal intensity is recorded over discretised time, or as 
discrete	“returns”.		Discrete	returns	are	recorded	when the intensity of the 
backscattered pulse is greater than a predefined threshold.  Interpretation 
of backscatter intensity can be useful for distinguishing the properties of 
the intercepted surface (Korpela, 2008; Morsdorf et al., 2010).  However, 
this is complicated by the effects of multiple backscattering (i.e. the 
outgoing pulse is reflected off a number of targets), differing reflective 
properties of multiple targets, distance from a target and proprietary 
methods for interpretation  (Ni-Meister et al., 2001; Armston et al., 2013).  
If a sensors position and attitude is recorded concurrently with the laser 
measurement, for example with a Global Position System and additionally 
an Inertial Measurement Unit (IMU) for an instrument in motion (e.g. on 
board an aircraft), the Cartesian position of the target can be computed 
(Baltsavias, 1999).  Post-processing of LiDAR data produces a binary file 
(.las format), which in the case of discrete return data contains the X, Y, Z 
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location of the target and backscatter return intensity along with other 
metadata (American Society of Photogrammetry and Remote Sensing, 
2008).  Therefore, discrete return LiDAR contains a rich information source 
with which to perform analysis, such as classification of returns into 
ground or non-ground or feature extraction. 

The potential for LiDAR to measure forest structure has long been 
recognised (Aldred and Bonnor, 1985; Nilsson, 1996).  For vegetation 
measurement and forestry applications, LiDAR instruments have been 
utilised in situ (i.e. static) with a Terrestrial Laser Scanner (TLS), as well as 
onboard airborne and spaceborne platforms.  Within an operational forest 
assessment context, LiDAR instruments tend to be aircraft mounted, with 
the instrument scanning across a swath (typically ±30° off nadir); a 
technique known as Airborne Laser Scanning (ALS) (Baltsavias, 1999; 
Wulder et al., 2012b).  The instantaneous laser footprint cross-sectional 
diameter for ALS sensors is usually <3 m which is	 referred	 to	 as	 “small-
footprint”.  “Large	 footprint”	 instruments	 can	 have a laser footprint 
diameter >70 m, for example the GLAS sensor on board the ICESat satellite 
(Brenner et al., 2003).  Typically, sensors were configured to record 
discrete returns, for example first-and-last (e.g. from the canopy and 
ground) or as technology improved, up to 4 returns.  More recently, full-
waveform small footprint instruments have been developed, which can 
identify up to 7 returns per outgoing pulse.  Sampling frequency is 
determined by the Pulse Repetition Frequency (PRF), the rate at which 
laser pulses are emitted from the instrument.  This has improved from 2 
KHz in early experiments (Næsset, 1997) to upwards of 800 KHz in 
modern instruments (Hansen et al., 2015).  Depending on aircraft height 
and speed this can result in on-ground pulse densities (i.e. the number of 
pulses that interact with a unit area of open ground) of >25 pulses m-2 
(d’Oliveira	 et	 al.,	 2012).  Figure 1 illustrates an example of ALS data 
captured over a forest. 

Airborne laser scanning has been successfully incorporated within National 
Forest Inventories across the world (Tomppo et al., 2010; Wulder et al., 
2012b), from Norway (Gobakken et al., 2012) to New Zealand (Beets et al., 
2010).  Utilisation of ALS in national forest inventories has been focused on 
the attribution of canopy height and the subsequent inference of biomass.  
However, a number of additional forest structure attributes have been
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Figure 1. ALS derived point cloud captured over a forest stand.  Points are 
classified into either ground or non-ground, where ground points are coloured by 
altitude and non-ground	points	are	coloured	by	low	(<2	m)	or	high	vegetation	(≥2	
m).  The gap running through the middle of the plot is a road. See Table 3 for 
acquisition specifications .

 derived from ALS, these include canopy cover (Armston et al., 2009; 
Hopkinson and Chasmer, 2009), canopy vertical structure (Kane et al., 
2010b; Jaskierniak et al., 2011) and quantification of coarse woody debris 
(Miura and Jones, 2012) to highlight but a few. 

1.2. Problem statement 

Assessment of forests over large, remote and inaccessible areas is an on-
going challenge for land managers (McRoberts et al., 2010; Wulder et al., 
2012a, 2012b).  There is therefore a requirement for techniques that are 
applicable across large areas, where traditional inventory is too costly to 
implement.  In this thesis, “large-area”	 is	 defined	 as	 an	 area	 of	 forest	
greater than a single forest patch or stand i.e. an area that comprises at

least two or more forest types.  Technically therefore there is no upper area 
limit to this definition i.e. large-area can be interpreted as global (Hansen 
et al., 2013).  Applying this definition therefore requires techniques to be 
transferable between different forest types and not tailored to a particular 
locality, albeit, they should also be sensitive to local forest conditions and 
features.  This paradox was introduced by Hansen et al. (2013) who state 
the aim of large area forest assessment is to be globally consistent and yet 
locally relevant. 

Remote sensing has been identified as a key tool in the attribution of forest 
over large areas (McRoberts and Tomppo, 2007; Wulder et al., 2012a, 
2012b), yet there remain unanswered questions regarding the upscaling of 
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remote sensing measurements from the plot scale to large area attribution.  
This is particularly relevant for native forests with limited active 
management where forest structure is not uniform and there is often 
limited prior knowledge of forest structure.  

Owing to the importance of forest structure, for example to define forest, as 
well as the ability to measure structure with traditional and remote sensing 
techniques, and the importance of structure to land management and forest 
scientists (Axelsson et al., 2012), forest structure will be the focus of this 
thesis.  In particular, metrics that are used to estimate canopy height and 
canopy vertical structure.  The importance of measuring canopy height is 
already well recognised, for example, to estimate biomass volume (Sessa, 
2009).  Canopy vertical structure, defined as the quantity and arrangement 
of the canopy along the vertical axis (Brokaw and Lent, 1999), is not 
currently routinely measured by land management agencies. However, 
canopy vertical structure has been shown to offer insight into the provision 
of ecosystem services, such as habitat suitability (Zellweger et al., 2013b) 
and the hydrological cycle (Jaskierniak et al., 2011). 

1.3. Research questions 

To address the gaps identified in Section 1.2, three research questions are 
outlined below: 

Question 1. Which metrics of canopy height and canopy vertical 
structure are suitable for application across forested landscapes? 

A set of ALS metrics, that are transferable across and robust to different 
forest types (Hopkinson et al., 2006), is imperative before up-scaling to the 
large area can be achieved.  This Question aims to test the applicability of 
existing metrics, and develop new techniques where required, for 
attributing canopy height and canopy vertical structure.   

Question 2. What is an appropriate ALS sampling frequency for 
attribution of forest structure for different forest types?  

Sampling frequency is considered the most important acquisition variable 
when capturing ALS data for characterisation of vegetation structure 
(Goodwin et al., 2006).  When capturing LiDAR data over a large area, it is 
likely that different forest types and terrains will be encountered.  This 
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Question aims to test the sensitivity of sampling frequency when 
attributing vegetation structure and to identify an optimal sampling 
frequency that is applicable across a range of forest types.  

Question 3. How can plot level estimates of canopy structure be 
upscaled to generate continuous regional maps? 

Regional scale wall-to-wall capture of ALS remains prohibitively expensive.  
An alternative approach is to couple the ability of ALS to measure three 
dimensional forest structure with the synoptic coverage of passive 
spaceborne EO sensors.  Techniques developed to answer this Question are 
applied over a forested area where forest structure is highly heterogeneous 
and assumed unknown a priori. 

1.4. Thesis structure 

Presented in this thesis are four research chapters that aim to answer the 
questions stated in Section 1.3, this is followed by a synthesis of research 
outcomes.  Chapter 2 tests currently applied techniques to attribute canopy 
height and canopy vertical structure using inventory and ALS data 
captured at three structurally diverse study areas.  Chapter 3 presents a 
new technique for attributing canopy vertical structure using ALS that is 
suitable for application across diverse forested landscapes.  Chapter 4 
focuses on Question 2 where sampling frequency is investigated across a 
wide range of forest types.  Chapter 5 presents a method to upscale ALS 
derived plot estimates of canopy height to an area of ~3 million ha using 
spaceborne passive imagery as predictor data.  Finally the thesis concludes 
with a synthesis of the research presented and a look to the future of 
remote sensing for large area forest attribution. 
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 Chapter	2	 2.
 

Metrics of canopy vertical structure suitable for 
large area forest attribution* 

  

                                                             

 

* This chapter is based on:  

Wilkes, P., Jones, S.D., Suarez, L., Haywood, A., Soto-Berelov, M., Mellor, A., Axelsson, 
C., Woodgate, W., 2012.  Deriving metrics of vertical structure at the plot level for 
use in regional characterisation of S.E. Australian forests. Proceedings of the GSR_2 
Research Symposium, Melbourne, Australia, 10-12 December 2012. 

and 

Jones, S., Haywood, A., Suárez, L., Wilkes, P., Woodgate, W., Soto-Berelov, M., Mellor, 
A., Axelsson, C., (2013). Literature review for determining optimal data primitives 
for characterising Australian woody vegetation and scalable for landscape-level 
woody vegetation feature generation. CRCSI Project Report, 53 pages, January, 
2013. (available online at: http://goo.gl/knst81). 
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2.1. Introduction 

Canopy structure metrics such as canopy height and the canopy vertical 
structure, although useful in themselves, can also be utilised as analogues 
for metrics that cannot be measured empirically e.g. habitat suitability, or 
as the basis of empirical or physical modelling to estimate hard to quantify 
attributes.  Biomass, for example, is an Essential Climate Variable and is 
used to estimate potential sources and sinks of atmospheric carbon dioxide 
(Sessa, 2009).  However, biomass is difficult to measure directly (e.g. with 
destructive harvesting), and therefore the allometric association with 
canopy height is routinely used to extrapolate biomass estimates across 
vegetated landscapes (Lefsky et al., 2002a). 

Traditionally, metrics of canopy structure are measured at the plot scale, 
these are then upscaled to larger areas (e.g. a forest stand) using an 
expansion factor (McRoberts and Tomppo, 2007).  However, a sparse 
network of plot values may not capture the structural variability apparent 
across a large area, particularly over native forest where variability in 
forest structure can be high.  Advances in remote sensing techniques have 
offered an opportunity to synoptically attribute forests (Wulder, 1998; 
McRoberts and Tomppo, 2007).  For example, passive EO instruments and 
airborne and spaceborne LiDAR instruments have allowed wall-to-wall 
attribution of forest structure (Lim et al., 2003; Wulder et al., 2012b). 

The aim of the majority of studies is to determine an accurate empirical 
statistical association between an independent variable (or set of variables 
e.g. ALS return height percentiles or reflectance values) and a dependent 
target attribute, such as canopy height.  The logical technique is therefore 
to develop a function (model) that minimises the estimation error between 
the independent and dependent variables. For example, Ordinary Least 
Squares (OLS) regression fits a linear function that minimises the residual 
error between predictor variables and observations.  The model and its 
coefficients (the slope and intercept coefficients in the case of OLS 
regression) can then be used to estimate unknown dependent values.  
Empirical models have been shown to yield good results in the domain they 
were developed for (e.g. Næsset (2007)), for example, with the same 
sensor (i.e. independent variables) and within the range of 



Metrics of canopy vertical structure suitable for large area forest attribution 

12 

Table 1.  Applications of canopy height and canopy vertical structure 
(CVS). 

canopy height observations. However, beyond this empirical models can 
become unreliable (Hopkinson et al., 2006).  A more robust approach is to 
use a simple metric that is not tailored to a specific study area or forest 
type e.g. standard deviation of return height (Hopkinson et al., 2006), 
where overall accuracy is sacrificed to improve universality.  For example a 
metric that is transferable between forests of differing species composition, 
terrain, land use or disturbance history. 

2.1.1. Canopy height  

Tree height is generally defined as the vertical distance from the base point 
(i.e. the intersection between the ground and the stem) to the highest point 
of the live crown.  Canopy height is then the average height of all, or a 
subset, of tree heights within a delineated area e.g. an inventory plot or 
forest stand (Gschwantner et al., 2009).  Commonly used metrics of canopy 
height include dominant height, defined as the mean height of all trees that 
are not overtopped and whose crowns are not shaded by adjacent trees 

Application Metric Reference 

Forest Biomass 
Height 

Lefsky et al. (2001); Drake et al. (2002); Hurtt et 
al. (2004); Patenaude et al. (2004); Asner et al. 
(2010); Latifi et al. (2010); Swatantran et al. 
(2011); Hudak et al. (2012) 

CVS 
Lefsky et al. (1999b, 2001); Drake et al. (2002); 
Næsset (2004); Zhao et al. (2011) 

Habitat mapping 
Height 

Hill and Thomson (2005); Hyde et al. (2006); 
Goetz et al. (2007); Hinsley et al. (2009); 
Haywood and Stone (2011) 

CVS 
MacArthur and MacArthur (1961); Goetz et al. 
(2007); Zellweger et al. (2013) 

Species/Floristics
/cover 

Height 
Burgman (1996); Hill and Thomson (2005); 
Tickle et al. (2006); Mellor et al. (2012); Zhang 
and Liu (2012) 

CVS 
Lucas et al. (2008); Miura and Jones (2010); 
Zhang and Liu (2012) 

Resource 
management and 
forest inventory 

Height 
Næsset (1997, 2007); Brack (2007); Turner 
(2007); Wulder et al. (2008); Lim et al. (2011) 

CVS Korpela et al. (2012) 
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(Lefsky et al. 1999a),	 and	 “Lorey’s	height”	 (hL) (EQ. 2) which weights the 
height of all trees in a plot by basal area (Næsset, 1997; Lim et al., 2003). 

ℎ =  
∑ ℎ 𝑎

𝑎
 

EQ. 2 

where hi and ai are the height and basal area of individual trees.  
Measurement of tree and canopy height is a core component of a forest 
inventory (Tomppo et al., 2010), where individual trees are measured 
using a clinometer, electronic total station or a hypsometer (Andersen et 
al., 2006; Hollaus et al., 2006).   

Owing to the ability to measure three dimensional forest structure, laser 
ranging techniques, such as LiDAR, lend themselves to the assessment of 
canopy height, (Lim et al., 2003) and LiDAR derived canopy height is now 
considered by some as more accurate than inventory techniques  
(Holmgren and Jonsson, 2004; Maltamo et al., 2006; Magnusson et al., 
2007).  Canopy height has been estimated using full-waveform and discrete 
return airborne (Næsset, 1997; Lefsky et al., 1999a; Wulder et al., 2012a) 
and spaceborne (Baccini et al., 2008; Lefsky, 2010; Simard et al., 2011) 
LiDAR instruments.  To estimate canopy height from LiDAR data, the height 
of the ground surface has to be first determined (Lovell et al., 2003; Hyyppä 
et al., 2008).  As the vertical coordinates of returns are measured to a 
datum (e.g. the Australian Height Datum), returns need to be normalised 
for terrain before canopy height can be estimated.  This is achieved by 
partitioning returns into those either backscattered from the ground or 
not, where ground returns are often identified as the last return from an 
outgoing pulse.  For data captured over dense vegetation the last return 
may be from within the canopy, a filtering process can be used to improve 
identification of the ground returns (Evans and Hudak, 2007).  Once 
ground points have been successfully identified, a Triangular Irregular 
Network (TIN) vector is created, which when rasterised, produces a Digital 
Elevation Model (DEM).  Using the TIN or DEM, the normalised height of 
returns relative to the ground surface can be estimated by subtracting the 
ground height from the return height.  From the normalised point cloud, 
canopy height for an areal unit can be inferred as the vertical distance 
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between the ground to a top-of-canopy metric, for example, maximum or a 
percentile of height (Næsset, 1997, 2005, 2007). 

There are a number of sources of error that need to be considered when 
estimating canopy height with ALS.  The sample of small footprint 
instruments is often incomplete (i.e. not all visible surfaces are sampled) 
and therefore the crown apex may not be detected, which leads to an 
underestimation of canopy height (Lim et al., 2003; Lovell et al., 2003; 
Hyyppä et al., 2008).  The number of identified ground returns may be 
insufficient to derive a reliable DEM and therefore an accurate estimate of 
canopy height (Takahashi et al., 2008).  This again is influenced by 
sampling frequency as well as pulse penetration through the canopy 
(Goodwin et al., 2006) and scan angle (Hyyppä et al., 2008). 

2.1.2. Canopy vertical structure 

The quantity, arrangement and connectivity of foliar and woody material, 
along the vertical axis of a forest canopy, can be defined as canopy vertical 
structure (Brokaw and Lent, 1999).  Canopy vertical structure is 
traditionally measured in situ and at the plot scale.  Popular techniques to 
attribute for canopy vertical structure include measuring the distance to 
intercepting foliage from underneath the canopy, either with a calibrated 
telephoto camera (MacArthur and Horn, 1969; Lefsky et al., 1999a; Lovell 
et al., 2003; Goodwin et al., 2006) or more recently a TLS (Jupp et al., 2008; 
Lovell et al., 2012).  This generates a Canopy Height Profile (CHP), where 
the probability of an intercept is plotted against height (MacArthur and 
MacArthur, 1961).  Alternative techniques include ocular assessment (Van 
Den Meersschaut and Vandekerkhove, 1998; Hnatiuk et al., 2009), use of 
inventory measurements and allometry (Maltamo et al., 1997; Baker and 
Wilson, 2000; Zenner and Hibbs, 2000) or three dimensional geometric 
crown models (Van Pelt and North, 1996; Drake et al., 2002; Scanlan et al., 
2010). As with canopy height however, measurements based on in situ field 
data are logistically expensive to collect and often only capture a relatively 
small subsample (Means et al., 1999; Whitehurst et al., 2013). 

Canopy vertical structure can be estimated with remote sensing, for 
example by derivation of vertically resolved gap probability (Pgap).  Gap 
probability is the proportion of sky (or ground for downward looking 
instruments) relative to the proportion of canopy at a certain height within 



Chapter 2 

15 

the canopy, so that at the top of the canopy Pgap is equal to 1.  Assuming a 
Poisson distribution of vegetation, a logarithmic transformation can be 
applied to Pgap estimates to account for occlusion of vegetation in the 
shadow of observed surfaces (MacArthur and Horn, 1969).  Canopy cover L 
at height z along the canopy vertical axis can be estimated with:  

𝐿(𝑧) =  −log 𝑃 (𝑧)  

EQ. 3 

The derivative of L is	 equivalent	 to	 the	 “apparent”	 canopy	 height	 profile	
(Lovell et al., 2003).  This	 differs	 from	 the	 “actual”	 canopy	height	 profile	
due to the inability to accurately quantify the total volume of vegetation i.e. 
plant volume area density (PAVD).		Derivation	of	the	“actual”	canopy	height	
profile can be achieved either analytically (Ni-Meister et al., 2001) or with 
remote sensing (Ni-Meister et al., 2001; Jupp et al., 2008), where 
assumptions about the angular distribution of vegetation and the non-
Poisson	distribution	of	foliage	(i.e.	“clumping”)	are made.  TLS instruments 
have been able to estimate PAVD as they can operate at	the	“hinge”	angle	of	
57.5q where foliage density measurements are insensitive to leaf angle 
distribution (Jupp et al., 2008).  As the aim of this investigation is to 
characterise vegetation structure over large areas using synoptic remote 
sensing techniques, which tend to have a limited viewing angle, 
quantification of plant volume area density as a metric of canopy vertical 
structure is beyond the scope of this study. 

Owing to the ability to penetrate the upper canopy surface and measure 
three-dimensional vegetation structure, a number of studies have utilised 
LiDAR to estimate canopy vertical structure.  As with canopy height, both 
discrete return (Lovell et al., 2003; Riaño et al., 2003; Jaskierniak et al., 
2011) and waveform recording (Lefsky et al., 1999a; Means et al., 1999; 
Drake et al., 2002) LiDAR have been utilised.  Application of Pgap theroy has 
been extended to discrete return ALS, where the probability of a gap from 
the top of the canopy to a given height (z) is calculated as a proportion of 
the total number of outgoing LiDAR pulses: 

𝑃 (z) = 1 − 
∑ 𝑧  (𝑧 > 𝑧)

𝑁
 

EQ. 4 
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where zi are individual returns and N is the total number of returns.  ALS 
derived CC can then be estimated using EQ. 3. 

Vertically resolved ALS derived L curves can be noisy owing to leaf 
clumping and canopy voids (Coops et al., 2007).  To stabilise vertically 
resolved L a parametric distribution function can be fitted to the curve, for 
example a Weibull function (Lovell et al., 2003; Coops et al., 2007; Mitchell 
et al., 2012).  This not only stabilises the canopy height profile, but can also 
summarise canopy vertical structure into a few parameters which are 
correlated with structure metrics.  For example, Coops et al. (2007) noted a 
good agreement between the Weibull location and scale parameters with 
mid crown depth as a ratio of total height and crown length respectively.   

Jaskierniak et al. (2011) fitted bimodal mixture models to ALS derived 
point clouds captured over multi-strata forests, where single parametric 
functions would have been inappropriate.  An extension of mixture 
modelling is to use a hard classifier such as k-means clustering to 
parameterise different canopy strata (Zhang et al., 2011).  Other techniques 
used to characterise canopy vertical structure include analysing ALS return 
dispersion through the canopy e.g.	 coefficient	 of	 variation	 or	 ‘rumple’	
(Zimble et al., 2003; Kane et al., 2011) or interpreting frequency 
histograms of return height (Næsset, 2004; Maltamo et al., 2005). 

2.1.3. Aims and objectives 

Characterising forest canopy structure metrics, such as canopy height and 
canopy vertical structure, over large and heterogeneous forested 
landscapes requires choosing the most appropriate metrics and techniques 
that are robust to different forest types.  This chapter compares 
methodologies, across a range of forest types, which have been previously 
used to attribute canopy height and canopy vertical structure, with the aim 
of identifying metrics that are universally applicable. 

2.2. Materials and methods 

2.2.1. Study area 

Three 5 km x 5 km study areas (Table 2), situated in Victoria, Australia, 
were selected based on the following criteria: representativeness of a 
vegetation type and structural class at a regional scale (Montreal Process 
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Implementation Group for Australia, 2013) and minimal historical 
disturbance (e.g. fire or timber extraction).    The Low Open Woodland 
(LOW) study area is characterised by a relatively short and discontinuous 
Eucalypt canopy (e.g. Eucalyptus tricarpa and Eucalyptus macrorhyncha) 
with a patchy and shrubby understorey.  The Mixed Species Forest (MSF) 
study area is characterised by undulating terrain and high Eucalypt species 
diversity.  Within steep gullies, patches of temperate rainforest exist where 
canopy	 height	 can	 be	 ≥50	 m.	 	 The	 Tall	 Closed	 canopy	 Forest	 (TCF) is 
dominated by Eucalyptus regnans and Eucalyptus delegatensis species that 
can reach heights of >80 m, canopy cover is dense and there is a tall 
(sometimes >20 m) shade tolerant strata of Northofagus and Acacia 
species.  The TCF forest type is one of the most carbon dense ecosystems 
on earth (Keith et al., 2009).  Figure 2 compares the canopy structure and 
terrain of the three study areas. 

The unique physiology of Eucalypt species and forest stands, such as an 
erectophile leaf angle distribution, asymmetrical crown configuration, low 
foliage density and leaf and crown clumping (Jacobs, 1955), may confound 
the estimation of structural metrics using ALS.  For example, this increases 
the proportion of backscatter from the ground, mid and understorey when 
measured with ALS (Lee and Lucas, 2007; Armston et al., 2009; Jenkins and 
Coops, 2011). 

2.2.2. Forest inventory data 

A total of twenty seven 0.04 ha circular forest inventory plots were 
installed across the three study areas.  Plots were established in the 
summer/autumn 2011-12 following Victorian Department of Environment, 
Land, Water and Planning (DELWP) Victorian Forest Monitoring 
Programme (VFMP) protocols (Department of Sustainability and 
Environment, 2012).  Measurements for all trees within the forest 
inventory plot with a Diameter at Breast Height (DBH) >10 cm included 
DBH, species and live status.  For a subset of trees (including the three 
tallest), height was also recorded where tree height was measured using a 
range finder (TruPulse 200B, Laser Technology, Colorado, USA).  Canopy 
height was then estimated as (i) the maximum recorded tree height 
(INVmax),	 (ii)	 Lorey’s	 height	 (INVLorey’s) (EQ. 2) and (iii) Dominant height 
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(INVdom) which is equal to the mean height of the three tallest trees in a 
0.04 ha plot (Lovell et al., 2003).  

2.2.3. Airborne laser scanning data  

Small-footprint ALS was acquired over an area of 5 km x 5km for each 
study area (Table 3).  A Riegl LMS-Q560 laser scanner was used, this 
digitised the full waveform of backscattered energy in real-time.  Post-
processing with Riegl RiAnalyze® (version 4.1.2) identified discrete peaks 
(“returns”)	 in	 the	 backscattered	 signal using a Gaussian Pulse Estimation 
technique (Riegl, 2006), resulting in a maximum of 7 returns per outgoing 
pulse.   Analysis of discrete return data was performed (as opposed to the 
full-waveform) as this is still the operational norm for large area forest 
characterisation (Wulder et al., 2012b).  Flight line overlap was removed 
using	Airborne	Research	Australia’s	RASP	software	(Lieff, 2009), where for 
each 2 m x 2 m voxel, returns with the scan angle closest to nadir were 
retained.  Returns were then classified into either ground or non-ground. 
Using ground returns only, a TIN ground surface was computed and 
subtracted from all returns to calculate relative return height.  Return 
classification and height calculations were achieved using LAStools 
v.120913 (Isenburg, 2012). 

 Twenty-seven	ALS	“plots”	concurrent	with	the	forest	inventory	plots	were	
extracted from the full-dataset.  ALS plots were circular with a radius of 
11.8 m to replicate the VFMP large tree plot dimensions (DEPI, 2012).  
Following the suggestion of previous studies, a threshold of 2 m was 
applied to discard returns from the shrub layer and coarse woody debris, 
as well as misclassified ground-returns (Nilsson, 1996; Næsset, 1997; 
Maltamo et al., 2005; Jaskierniak et al., 2011). 
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Table 3.  Flight and sensor specifications for the ALS acquisition at the 
three study areas. 

Specifications  
Capture specifications  
Date 15/4 - 18/4/2012 
Flying height <600 m agl 
Pulse density (overlap removed) 10 pulses m-2 
Swath overlap 50% 
Absolute vertical accuracy ±20 cm 
Absolute horizontal accuracy ±30 cm 
Mean footprint diameter 30 cm 
  
Instrument specifications  

Instrument 
Riegl LMS-Q560 laser scanner 
(Horn, Austria)  

Operating wavelength 1550 nm 
Beam divergence 0.5 mrad 
Max off-nadir scan angle ±22.5° 
Outgoing pulse rate 240 kHz 

2.3. Data processing 

2.3.1. Canopy height 

Four commonly derived analogues of canopy height were computed from 
the ALS data.  These were; maximum return height (ALSmax) (Næsset, 
1997), the height of the 95th percentile of return height (ALS95) (Jenkins, 
2012),	 the	 arithmetic	 mean	 of	 return	 height	 ≥80th percentile of return 
height (ALS>80) (Tesfamichael et al., 2010) and	 “predominant	 height”	
(ALSCHM) (Lovell et al., 2003).  ALSCHM was estimated from a 1 m x 1 m 
Canopy Height Model (CHM) of maximum return height, the CHM was 
divided into areas equal to one crown width (~7 m) where the mean of 
local maxima was computed as ALSCHM. 

ALS derived canopy heights were compared with the three forest inventory 
measurements of canopy height by calculating the Root Mean Square Error 
(RMSE) and computing a linear regression of inventory measured 
(dependent variable) and ALS estimated (independent variable) canopy 
height. 
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2.3.2. Canopy vertical structure 

As discussed in Section 2.1.2, characterisation of the canopy vertical 
structure can be achieved with the application of a parametric continuous 
Probability Density Function (PDF).  However in certain forests, for 
example where a shade tolerant of sub-dominant strata is present below 
the upper canopy (e.g. TCF study area, Figure 2), the use of a single function 
may not adequately characterise the vertical distribution of ALS returns. In 
this instance a mixture model of two or more parametric functions is best 
suited (Jaskierniak et al., 2011).  Here, the work of Jaskierniak et al. (2011) 
is extended to forests where the number of parametric functions (k) 
required is not fixed for a particular forest type and is assumed unknown a 
priori.  

More formally, the probability of an ALS return coming from a certain 
height along the vertical profile, from the ground to the canopy top (zmax), 
can be summarised with a nonparametric PDF of the response variable f(z).  
For example, the probability of a return X at height zX is: 

𝑃𝑟[0 ≤ 𝑧  ≤ 𝑧 ] =  𝑓(𝑧)𝑑𝑧 

EQ. 5 

Alternatively, the canopy height profile can be parameterised with a single 
continuous parametric PDF.  A parametric PDF has the form f(T) where T 
consists of two parameters P and V for location and scale respectively, 
some PDFs have up to an additional two shape parameters (X and W).  For 
example, the commonly used 3-parameter (location, scale and a shape 
parameter) Weibull PDF can be used to characterise z (Lovell et al., 2003; 
Coops et al., 2007; Mitchell et al., 2012); 

𝑓(𝑧|𝜇, 𝜎, 𝜐) =   
𝜐
𝜎

 
𝑧 − 𝜇

𝜎
𝑒

 
 

EQ. 6 

A canopy with two or more strata could present a situation where a single 
function may not be satisfactorily representative e.g. a single function 
mapped to two or more distinct stratum.  Complex distributions can 
therefore be expressed by a combination of PDFs, where a single PDF 
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characterises the vertical distribution of a single strata.  This is known as a 
mixture modelling:  

𝑓(𝑧|𝜓) =  𝜋 𝑓 (𝑧|𝜃 ) 

EQ. 7 

where the mixture model f(z) depends on parameter set \ = (T, S), where T 
= (T1, T2,	…,	Tk), S = (S1, S2,	…,	Sk) and K =	1,	 2,	…,	k model components; 
fk(z|Tk) is the PDF of z where Tk are the PDF parameters and 0 < Sk < 1 is the 
prior probability for component k.  Here, k was iterated from 1 – 2 
reflecting the possible occurrence of up to two canopy strata (e.g. single 
dominant strata or dominant and shade tolerant strata), at the TCF study 
area the possibility of a third canopy strata was also tested. 

Mixture modelling was achieved in R (R Development Core Team, 2014) 
using the Generalized Additive Models for Location, Scale and Shape 
(GAMLSS) package (Stasinopoulos et al., 2012).  GAMLSS estimates the 
response	 variable	 distribution	 parameters	 with	 a	 ‘semi-parametric’	
regression model, where the regression model may include non-parametric 
smoothing functions (hence semi-parametric) (Stasinopoulos et al., 2012).  
Optimal parameters were chosen using the Expectation-Maximisation (EM) 
method, EM is an iterative method for finding the maximum likelihood of 
the mixture parameters.  A total of 44 continuous PDFs are available in the 
GAMLSS package, here this was reduced to a set of 27 most appropriate for 
Australian sclerophyll forest canopies (see Table 4 in Jaskierniak et al. 
(2011)). 

Firstly, on a per plot basis, all 27 distributions were fitted to the ground 
normalised ALS data as a single function.  Recursively applying mixture 
models for all combinations of functions, where k = [1, 2, 3], across all 27 
plots, would be computationally time consuming.  Therefore the most 
suitable mixture model where k = 2 were determined by first pairing all 27 
functions with the Normal PDF (NO).  Subsequently and on a per plot basis, 
the PDFs used for the four best fitting NO combination mixture models 
were utilised as the first model component in the next step.  Each PDF was 
combined with the 27 functions to find the most appropriate function for 
the second model component.  For the TCF study area, the four best fitting 



Metrics of canopy vertical structure suitable for large area forest attribution 

24 

mixture models were k = 2 were again combined with all 27 functions to 
determine the most appropriate third function.  It should be noted that if 
the return height probability density function is not clearly bi- or multi-
modal, the order which PDFs are utilised within GAMLSS mixture models 
cannot be specified (e.g. which function is associated with a specific strata). 

An information-theoretic approach, the Akaike Information Criterion (AIC), 
was used to test goodness-of-fit (Akaike, 1974). AIC = -2ln(L) + 2p where L 
is the maximum likelihood of the mixture model and p is the sum of the 
number of model parameters.  Therefore AIC penalises a model for an 
increasing number of model of parameters, with the aim of reducing over-
fitting.  To inter-compare a single model i against the set of all other 
possible models R, AIC values were weighted (wAICi) using the best fitting 
model, per plot, as a benchmark (AICmin) i.e. the model with lowest AIC 
score regardless of k. 

∆ = 𝐴𝐼𝐶 − 𝐴𝐼𝐶  

EQ. 8 

𝑤𝐴𝐼𝐶 =  
𝑒( . ∆ )

∑ 𝑒( . ∆ ) 

EQ. 9 

Weighting AIC values allows confidence in which model is most 
appropriate for characterising an individual plot.  For example, if all models 
from a set had similar wAIC values then there would be little confidence as 
to which is most appropriate.  Conversely, if one model had a far larger 
wAIC value (e.g. wAIC o 1), then that model could be selected with 
confidence. 

2.4. Results 

2.4.1. Canopy height 

When estimating INVmax, ALSmax and ALS95 produce the most accurate 
results (Figure 3).  A strong linear association (r2 > 0.75, p<0.001) and an 
RMSE <5 m (Figure 4) is achieved estimating INVdom with ALS95, ALS>80 and 
ALSCHM.  However, ALS95 performs well when estimating INVdom across the
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Figure 3. Boxplots of residual error when using ALS metrics to estimate 
inventory (INV) measured canopy height.  Within each pane, the four groups 
represent all plots and plots from the Low Open Woodland, Mixed Species Forest 
and Tall Closed canopy Forest (left to right).  Within each group, different point 
cloud components are displayed. 
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Figure 4. Scatter plots comparing different techniques for inventory 
measured and ALS derived canopy height at 27 plots.  Also displayed are the 
metrics derived using three different point cloud components and linear 
regression	using	‘all’	returns	(-) including 95th percentile confidence intervals (--).  
RMSE values are calculated with the outliers (95th percentile of residuals) 
removed. 
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three different forest types where mean error is close to zero (Figure 3).  
Using ALSCHM returns a strongest linear association with regard to INVdom 
(Figure 4), however ALSCHM underestimates INVdom by ~10% (Figure 3).  
Furthermore generation of this statistic is more computationally expensive, 
particularly when generated across a large area.  None of the ALS metrics 
estimate INVLorey particularly well, ALSCHM returns the most accurate 
estimate although this still underestimates INVLorey by ~10%.   

It is clear that the canopy height of shorter forests can be estimated more 
precisely with ALS when compared to inventory measurements, and as 
canopy height increases so does error between measurements (Figure 4).  
Three outliers were identified at the 95th percentile confidence interval 
(Figure 4). All three plots were located at the TCF site; at one plot ALS 
maximum height was greater than inventory height due to the germination 
points of large trees, that comprised the dominant canopy, falling outside 
the inventory plot.  At the other two plots, ALS maximum height was 
significantly less than inventory height and suggested reasons are steep 
terrain and dense vegetation causing geo-registration errors. 

For wall-to-wall maps of canopy height of the three study areas at a 30 m 
resolution, refer to Section 0, Figure 11.   

2.4.2. Canopy height profiles 

When considering k = 1, of the seventeen continuous probability density 
functions (PDF)  tested, the generalised gamma PDF returned the lowest 
AIC value for 16 of the 27 ALS plots.  The relative complexity of the 
generalised gamma PDF (3 parameters) allows it to characterise the high 
negative skew characteristic of ALS derived canopy profiles, when 
compared to simpler functions from the same family e.g. the 2-parameter 
Weibull.  When considering k = 2 to characterise the canopy height profile, 
the generalised gamma again featured prominently, often in combination 
with another generalised gamma function (Figure 5).  For plots at the TCF 
site, parameterising the canopy height profile with k = 3 was also tested i.e. 
assuming three canopy strata.  Mixture models were comprised of a 
number of different combinations of parametric functions, including 
models that used the generalised gamma and the Box-Cox-t functions.  
However, there was no general consensus between plots for a study area 
specific mixture model. 
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Figure 5. (previous page) Canopy height profiles characterised using 
mixture models where k was iterated from 1 - 3.  Values are wAIC calculated using 
EQ. 9. Function abbreviations are: GG generalised gamma, BCT Box-Cox-t, GU 
Gumbel, WEI Weibull, GT generalised y, WEI3 Weibull (µ the mean), LO logistic,  
GIG generalised inverse Gaussian, TF t Family, RG reverse Gumbel, IG inverse 
Gaussian, GA gamma, LGN log normal, ST4 skew t type 4, ZAIG zero adjusted 
inverse Gaussian and NOF normal family.  The order of functions listed for each 
plot is not the order they were necessarily applied. 

In all cases, models with the greater number of components returned the 
best fit i.e. k = 2 at LOW and MSF and k = 3 at TCF.  If considering the 
weighted AIC values (wAIC), one mixture model tended to be a far better fit 
than other single functions or mixture models tested (e.g. wAIC > 0.5).  
Where wAIC is <0.5, for example plot MSF8 (Figure 5), the certainty of any 
single mixture model from the set providing the best fit to characterise the 
plot is reduced.  Over fitting, defined here as two or more functions used to 
characterise a single canopy strata, is not desirable when attributing forest 
over large areas, as parameters describing specific strata cannot be directly 
inter-compared between plots.  It is therefore suggested that AIC is not 
suited as a model selection criteria, as it does not penalise sufficiently for 
increasing model complexity. 

Applying parametric functions over large areas is computationally 
expensive, particularly when attempting to select the most suitable model 
from a set of potential models (Jaskierniak et al., 2011).  In an attempt to 
reduce computation time when applying over a larger area (in this case 
along 200 m transects as in Figure 6), k was assumed for each site and the 
set of potential mixture models was limited to the most appropriate from 
Figure 5.  This again indicates the generalised gamma is the most suitable 
single PDF for characterising single strata forest (Figure 6 A1 – A8) and 
features often in mixture models.	 	 “Mixed”	plots, which are comprised of 
two different dominant height cohorts, are characterised by a canopy 
height profile where two functions are fitted near the top of the canopy 
(e.g. Figure 6 B3 and C5).  For some plots, the assumption of k maybe 
unrealistic.  For example in Figure 6 C8 where the assumption was k = 3, a 
third function is used to parameterise an apparent mid-storey stratum 
which has a low relative amplitude.  It is suggested a more appropriate 
assumption would be k =2.  This is also apparent at plots B1 – B4 (Figure 6) 
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where k = 2 is assumed but a more appropriate value for k may have been 
1.  This suggests that for native forest k cannot be assumed.   

2.5. Discussion 

To be able to characterise forest structure across large, continuous and 
heterogeneously forested areas, metrics as well as the remote sensing 
techniques used to measure them, need to be transferable between forest 
types.  Furthermore, techniques also need to be robust when applied over 
forest of where there is no a priori knowledge of forest type or structure.  
The aim of this chapter was to apply metrics, which have been previously 
used to characterise canopy height and canopy vertical structure, across 
three structurally distinct forest types.  

Canopy height can be accurately estimated from Airborne Laser Scanning 
(ALS) data using a single metric.  Maximum canopy height (INVmax) was

Figure 6. Mixture models fitted to 25 m x 25 m ALS plots along a 200 m x 25 
m transect (dashed lines identifies plot boundaries). The three forest types 
represented are; LOW [top], MSF [middle] and TCF [bottom], where k is assumed to 
be 1, 2 and 3 respectively.  ALS data (grey points) has been ground normalised.   
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generally well estimated by ALS (ALSmax), indicating the sampling 
frequency of the ALS acquisition (~9 pulses m-2) was sufficient for 
detecting the apex of tallest trees.  ALS95 returned the most accurate results 
when predicting INVdom.  All ALS metrics overestimated	 Lorey’s	 height,	
particularly for taller plots.       

A good agreement between in situ and ALS is apparent for shorter forests 
and are similar to errors reported in other studies.  For example, Lovell et 
al. (2003) reported errors of 1 – 2 m for plots where canopy height was 
~30 m, this similar to errors reported in the comparative LOW forest type 
where the RMSE for INVdom estimated with ALS95 is ~1 m.  To estimate 
Lorey’s	 height,	 Hopkinson et al. (2006) used ALSMAX which returned an 
RMSE of 2.5 m for plots with a canopy height of 4 – 28 m.  However in this 
study ALSMAX significantly	 overestimated	 Lorey’s	 height,	 although	
overestimation occurred mainly occurred at plots where canopy height 
was >20 m.  Improved estimates of canopy height have been produced 
using predictive models e.g. stepwise linear regression of ALS derived 
variables.  For example (Næsset, 2007) reported RMSE values of <6% when 
predicting dominant canopy height of coniferous forests.  However, such 
predictive models are tailored to a specific forest type and may lack general 
applicability.  

ALSmax slightly overestimates INVmax for the MSF plots, which would 
suggest that the inventory measurements underestimated canopy height 
(Andersen et al., 2006).  This can be caused by a number of factors 
including steep terrain and dense vegetation causing difficulties sighting 
tree tops (Drake et al., 2002; Lee et al., 2004; Goodwin et al., 2006), 
furthermore the asymmetrical and modular shape of Eucalypt trees may 
exacerbate accurate in situ measurements. 

When parameterising the vertical distribution of foliage along the vertical 
canopy axis, the 2-parameter Weibull function has been widely applied to 
characterise forest canopies (Lovell et al., 2003; Coops et al., 2007; Mitchell 
et al., 2012).  However, results presented here would indicate that the 
generalised gamma distribution is more suited to characterising the 
vertical distribution of ALS returns at forest plots characterised by a single 
strata; the generalised gamma PDF also features prominently in mixture 
models of two or more parametric functions.  The crown archetype of 
Eucalypt species can be described as an inverted and fluted cone (Sillett et 
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al., 2010), this results in a concentration of leaves towards the top of the 
canopy (Jacobs, 1955).  The generalised gamma is suited to highly skewed 
distributions, such as the distribution of foliage within Eucalypt canopies.  
These results are contrary Jaskierniak et al. (2011), who found that 
mixtures which included the Gumbel distribution were most commonly 
selected to characterise Mountain Ash forest plots (similar to the TCF study 
area). 

Even for forest plots characterised by a single canopy strata (e.g. LOW in 
Figure 2), mixture models produced a lower AIC value when compared to 
any single function.  If the aim is to characterise forests over large and 
continuous areas, it would be preferable for a single function to 
characterise a single strata within the canopy height profile.  The over-
fitting of 2 or more parametric functions to a single stratum would make 
estimating the presence and distribution of stratum more difficult.  
Conversely, using a set number of parametric functions to characterise a 
canopy height profile (e.g. k = 2) may lead to the identification of intra-
canopy features (LOW plots in Figure 6) as well as making inter-
comparison of model parameters, such as mode height, difficult between 
plots.  As AIC penalises for cumulative number of model parameters and 
not explicitly for number of model components, it is suggested AIC is 
inadequate for penalising model complexity for this application.  Other 
information-theoretic approaches penalise increasing model complexity 
more strongly, such as the Schwatz Bayesian Criterion which penalises 
using the logarithm of number of model parameters (Stasinopoulos and 
Rigby, 2007). 

When considering attribution of a forested landscape, the use of mixture 
models to determine the canopy height profile is computationally intensive 
(Jaskierniak et al., 2011).  This problem could be addressed in a number of 
ways, for example, by limiting the number of functions or mixture models 
to a set of the most appropriate for a particular forest type (Jaskierniak et 
al., 2011).  Model selection could be further enhanced by utilising a look-up 
table approach, where species composition or structural attributes (e.g. 
canopy height) are used to preselect the most appropriate models.  
However, even over a single forest type, particularly old-growth forest and 
native forest where disturbances can lead to multi-age stands, the number 
of canopy strata cannot be assumed (Lindenmayer et al., 2000).  In this 
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circumstance a tool that could estimate the number of model components a 
priori would be beneficial.  For example Hofton et al. (2000) used inflection 
points of Gaussian smoothed GLAS waveforms to estimate the number of 
Gaussian functions required in the deconvolution. 

There are a number of limitations to this study worthy of discussion.  
Firstly, the number of plots considered for each forest type was limited.  A 
larger number of plots may have produced a study area consensus with 
regard to the set of functions for creating mixture models.  Furthermore, 
plots of only one size were considered.  Increasing the plot size would 
integrate more trees within a sample, this has been shown to change the 
parameters of the Weibull PDF when applied to canopy height profiles 
(Wilkes et al., 2013).  However the utilised plot size allows comparison 
with inventory plots, is common amongst remote sensing studies of forest 
structure and is similar to the resolution of passive remote sensing 
products which are useful for upscaling (Hudak et al., 2002).  Different ALS 
capture specifications were not considered, for example a comparison of 
metric retrieval across the a range of scan angles (Lovell et al., 2005).  
Finally, with regard to use of mixture models to characterise the canopy 
height profile, the method presented does not account for occlusion of 
vegetation.  In forests with a dense dominant canopy, the proportion of 
vegetation in the sub-canopy strata may differ significantly to that 
estimated using ALS.  Applying a technique to transform the distribution of 
the point cloud to account for occlusion (e.g. resampling with a logarithmic 
transformation) would mitigate for this.   

2.6. Conclusion 

Techniques to characterise forest structure over large areas are required to 
be universally applicable across different forest types and where there is 
no knowledge of forest structure a priori.  ALS derived metrics of canopy 
height and canopy vertical structure were tested across three forested 
landscapes that have distinctly different structural characteristics.  When 
compared to forest inventory measured dominant canopy height, ALS 
derived metrics performed well, in particular the 95th percentile of non-
ground return height estimated dominant canopy height consistently 
across all three study areas.   



Metrics of canopy vertical structure suitable for large area forest attribution 

34 

To characterise canopy vertical structure, a mixture model approach was 
taken. However, parameterisation of mixture models with the correct 
number of model components, that allows consistent characterisation over 
large areas, or even locally in more structurally complex forest, was not 
feasible.  Over-fitting of mixture models was caused by the AIC model 
selection criteria not being aggressive enough to increasing model 
complexity. 
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 Chapter	3 3.
 

Using discrete-return ALS to quantify number of 
canopy strata across diverse forest types†  

                                                             

 

† This chapter is based on:  

Wilkes, P., Jones, S.D., Suarez, L., Haywood, A., Soto-Berelov, M., Mellor, A., 
Woodgate, W., Skidmore, A., in press.  Using discrete-return ALS to quantify 
number of canopy strata across diverse forest types.  Methods in Ecology 
and Evolution. 
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3.1. Introduction 

Forests are complex ecosystems especially when considering structure and 
spatial arrangement (Brokaw and Lent, 1999; Franklin and Pelt, 2004; 
McElhinny et al., 2005).  Horizontal structure and spatial arrangement (e.g. 
extent, fragmentation, fractional cover etc.) has been the subject of much 
research and there are a number of techniques to describe horizontal 
arrangement across different scales (Bradshaw and Spies, 1992; Jennings 
et al., 1999; Plotkin et al., 2002).  Techniques to characterise canopy 
vertical structure, particularly over large and continuous spatial domains, 
are less well described and are often surmised by an estimation of 
(variation in) canopy height alone (Zimble et al., 2003; Parker and Russ, 
2004).  This oversimplification could miss important structural features 
below the principal canopy such as presence/absence of a mid-storey 
and/or understorey. 

Detail of forest canopy vertical structure provides additional information 
on within canopy interaction of radiation, temperature, wind speed and 
humidity (Koike and Syahbuddin, 1993) and consequently provision of 
ecosystem services including hydrology and habitat (Vierling et al., 2008; 
Jaskierniak et al., 2011).  The characterisation of habitat structure has 
recently been recognised as an Essential Biodiversity Variable, defined as 
key measurements for monitoring and reporting of biodiversity change 
(Pereira et al., 2013).  Non-catastrophic disturbances such as low intensity 
fire or thinning can cause divergence from a simple successional paradigm, 
leading to the removal of canopy strata or establishment of a multi-age and 
potentially multi-strata stand (Lindenmayer et al., 2000; Kane et al., 2013).  
Canopy structure cannot therefore be assumed to be a function of 
successional stage or other independent drivers (Kane et al., 2010a). 

There are a number of definitions of canopy vertical structure applicable to 
forests (Parker and Brown, 2000).  Here we apply the definition where 
non-uniformity of plant area volume density can be used to identify canopy 
stratum by locating modal peaks in the density curve (MacArthur and Horn, 
1969; Lefsky et al., 1999).  By extension a canopy can be stratified into one 
or more canopy strata (Koike and Syahbuddin, 1993; Whitehurst et al., 
2013).  As with other attributes of vegetation structure (Lovell et al., 2003), 
metrics of canopy vertical structure are scale dependent and therefore 
scale is intrinsic in a metrics definition (Wilkes et al., 2013).  
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Active ranging sensors, such as Light Detection And Ranging (LiDAR), have 
long been recognised as having the capability for remote sensing of forest 
structure.  This is due to the ability of active sensors to penetrate the upper 
canopy surface allowing top-to-bottom measurement of the location of 
intercepted surfaces (e.g. leaf, branch, stem and ground surface) in three 
dimensions (Lefsky et al., 1999a; Lim et al., 2003).  Over large areas and in 
operational scenarios, small-footprint (⌀ <3 m) Airborne Laser Scanners 
(ALS), configured to capture discrete pulses of backscattered energy (or 
“returns”),	have	been	used	to	estimate	forest	structure	attributes	(Næsset, 
1997; Means et al., 2000; Wulder et al., 2012b).   

With regard to the vertical distribution of vegetation, ALS data has been 
analysed using a variety of statistical techniques, for example, using return 
height coefficient of variation (Bolton et al., 2013) and the three 
dimensional	 equivalent	 “rumple”	 (Kane et al., 2010b).  More advanced 
parametric and nonparametric analytical techniques include cluster 
analysis and other segmentation algorithms (Riaño et al., 2003; Morsdorf et 
al., 2010; Zhang et al., 2011), application of single mathematical functions 
e.g. the Weibull (Lovell et al., 2003; Coops et al., 2007) or mixture 
modelling (Jaskierniak et al., 2011) and classification of points into strata 
by return height, type or intensity (Miura and Jones, 2010; Morsdorf et al., 
2010;	d’Oliveira	et	al.,	2012;	Zellweger	et	al.,	2013b).  Nevertheless, where 
knowledge of canopy structure is not available a priori, it is unlikely a 
model can be parameterised with the correct number of components (i.e. 
number of canopy strata) – particularly as structural complexity increases 
(Jaskierniak et al., 2011; Muss et al., 2011). This is important when 
attributing heterogeneous forested landscapes where forest structure may 
be highly variable (Lindenmayer et al., 2000).   

Techniques to characterise canopy arrangement where an assumption of 
structure is not required include polynomial regression, wavelet and 
Fourier transformations and Gaussian kernel smoothing (Popescu and 
Zhao, 2008; Hopkinson et al., 2013).  Although these techniques can 
characterise the distribution of foliage in a dynamic way, they do not 
explicitly attribute for vertical structure.  The only existing method to use 
small footprint ALS, that is automated and makes no prior assumptions of 
structure is presented by Maltamo et al. (2005), who used a hierarchical 
histogram method to classify plots into single or multi-strata canopy. 
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This chapter introduces a new method for characterising forest canopy 
vertical structure from discrete return ALS that is applicable to large area 
characterisation.  Model output is an ecologically meaningful metric of 
canopy vertical structure where the Number of Strata (NoS) within the 
canopy vertical profile is estimated.  The new metric is applied across 
structurally diverse forests; from dry sclerophyll woodland to temperate 
rainforest.  Validation is achieved with a comparison of crown volume 
models derived from field measurements at 27 permanent inventory plots. 

3.2. Attributing canopy vertical structure 

The new method to estimate Number of Strata (NoS) from discrete return 
ALS is outlined in Figure 7 and is described in more detail in Sections A – C.  
Processing of ALS data was achieved with the open-source ForestLAS 
Python package (https://goo.gl/YkIhGL). 

A. Gap probability derivation 

Gap probability (Pgap) can be estimated from large-footprint waveform 
recording LiDAR where the proportion of accumulated energy returned to 
the sensor from the top of the canopy to a height within the canopy is 
divided by the total returned backscattered energy (Ni-Meister et al., 
2001).  The theory has been extended to discrete return ALS where 
backscattered returns are aggregated into plots (Lovell et al., 2003; Riaño 
et al., 2003; Hopkinson and Chasmer, 2009) Occluded surfaces beneath the 
upper canopy can lead to an underestimation of plant area of the lower 
strata, which can be mitigated by applying a logarithmic transformation to 
Pgap.  Projected cover L can therefore be estimated as L = -log(Pgap) 
(MacArthur and Horn, 1969; Aber, 1979; Lovell et al., 2003; Riaño et al., 
2003). 

B. Probability Density Function (PDF) from projected 
cover (L)  

If vertically resolved L is equivalent to a cumulative density function of ALS 
returns (or foliage), the derivative of L can be considered the probability 
density function (LPDF). This	 is	analogous	 to	 the	 “apparent”	canopy	height	
profile (Lovell et al., 2003). With the addition of the probability of a return 
coming from the ground or below a height threshold (zt), LPDF can be used  
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Figure 7. Derivation of canopy vertical structure from ALS derived 
gap probability (Pgap) 
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to estimate the probability of a return X coming from height z within the 
plot voxel (EQ. 10), where the integral of LPDF = 1 – L(zt). 

Pr[𝑧 > 𝑧 > 0] =  

⎩
⎨

⎧ 𝐿 (𝑧),  𝑧 ≥ 𝑧   

𝐿(z ), 𝑧 < 𝑧   

 

EQ. 10 

C. Bootstrapping and Pgap filtering  

ALS is a sampling tool, and therefore may not measure distance to all 
visible surfaces within the canopy, particularly at lower pulse densities 
common in operational acquisition (Lim et al., 2003).  Therefore, to derive 
a robust estimate of NoS as well as to quantify variance, NoS is estimated 
from simulated point clouds that are generated in a bootstrap (Efron, 
1979).  Points are drawn from EQ. 10 until the simulated point cloud has 
the same number of returns as the original; in this way each simulated 
point cloud has a different configuration.  In addition, simulated points are 
also	attributed	with	an	estimate	of	a	 ‘Number	of	Returns’	(NoR)	metadata	
value (see Section 3.3.2).  This is achieved by calculating the NoR value 
probability from the original point cloud, in 1 m height intervals, then 
assigning simulated points an NoR value based on this probability. 

From each simulated point cloud Pgap is again generated.  At this stage, 
filtering of the Pgap curve is applied to remove signal noise, a result of intra-
crown voids and foliage clumping, and to generalise canopy structure 
(Lovell et al., 2003; Coops et al., 2007).  Filtering is achieved by application 
of a nonparametric cubic spline regression (Silverman, 1985).  This differs 
from previous approaches to smooth canopy profiles with cubic splines 
(Jung and Crawford, 2008; Muss et al., 2011) by applying the 
transformation directly to the Pgap curve.  Owing to the relative simplicity of 
the Pgap curve, compared to the canopy height profile, transformation of Pgap 
is more robust to a non-optimal smoothing coefficient.  A new curve Ps is 
automatically generated so that the sum of squares, calculated at the 
intersections (t or	 “knots”) of spline section, satisfies the smoothing 
coefficient	α	(EQ. 11) (Dierckx, 1993). 
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𝛼 =<  𝑃 (𝑡 )  − 𝑃 (𝑡 )  

EQ. 11 

When α is equal to zero, Ps is equivalent to an interpolating spline fitted 
through every point in the Pgap curve resulting in a close fit to Pgap.  When α 
→	∞,	Ps tends to an ordinary least squares solution.  For a plot, a correct 
estimate of the number of strata can be derived from a range of α	
coefficients	 (αS) where αS+1 < αS < αS-1,	 with	 increasing	 α	 the	 number	 of	
strata identified quickly decreases before reaching an asymptote (Figure 
8A).		When	α	=	0,	the	derived	canopy	height	profile	is	dominated	by	noise, 
as α	 increases	 canopy scale features begin to dominate the shape of the 
curve until the canopy height profile becomes over-smoothed and canopy 
features are masked (Figure 8B – E).  Determination of an appropriate α	
coefficient is therefore required. 

For the spline regression to correctly interpret the top of the canopy, Pgap is 
extended	by	a	further	10%	of	maximum	canopy	height	where	the	“leading	
edge”	 is	 given	 a	 Pgap value of 1.  Large voids in the canopy profile can 
produce erroneous local maxima with relatively low amplitude compared 
to the amplitude of modes coincident with canopy strata.  These are 
removed by discounting local maxima in f(x)c, where x = 1 – Ps, whose 
amplitude is <5% of the largest maxima. 

Positive zero-crossings of f(x)″ are indicative of local maxima in foliage 
density (Hofton et al., 2000; Popescu and Zhao, 2008).  Therefore a count of 
the positive zero-crossings of f(x)″ is used to estimate the number of strata 
and a mean of bootstrapped samples is computed as the metric of canopy 
vertical structure (Figure 7). 

3.3. Application across a diverse forested landscape 

3.3.1. ALS acquisition and pre-processing  

Study areas and data acquisition are outlined in Section 2.2.  As with the 
previous chapter, ALS data was ground normalised and points <2 m were 
removed from analysis. 
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Figure 8. Sensitivity of NoS to increasing α	 [A]	 and	 “apparent”	 Canopy	
Height Profiles (CHP) derived by increasing α [B – E].  Also included is the canopy 
height profile histogram (2 m bins) used in the supervised classification [F] (see 
Section 3.3.3).  Results from a supervised classification suggested this plot is 
characterised by two canopy strata (equivalent to pane D) and therefore an αS of 
0.04 – 0.38 [A]. 

Circular ALS plots with a radius of 11.2 m (0.04 ha) were extracted from 
the full ALS dataset to replicate the DELWP VFMP large tree plot 
dimensions (DEPI, 2012).  ALS plot locations were determined by 
superimposing a regular grid (100 m intervals) over the three study areas.  
The grid was then stratified by forest type (Woodgate et al., 1994), from 
which 30% of sample points (up to a maximum of 30) that intersected each 
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forest type were randomly selected.  To ensure independence of validation 
data, any selected points that were within 50 m of a permanent forest 
inventory plot were disregarded.  In total, 239 plots were extracted from 
across the three areas; 59 for the LOW area, 76 for the MSF area and 104 
for the TCF area.  ALS data coincident with the 27 forest inventory plots 
was used for validation. 

3.3.2. Pgap from ALS 

Ignoring the assumption of ALS return dependence from a single outgoing 
pulse when computing Pgap can lead to an overestimation of Pgap (Lovell et 
al., 2003; Armston et al., 2013).  Owing to factors such as the proprietary 
derivation of return intensity values, return intensity can be uninformative 
when estimating the proportion of backscattered energy (Armston et al., 
2013).  A robust estimate of return intensity was instead derived by 
weighting individual returns by the Number of Returns (NoR) metadata 
value (ASPRS, 2008) recorded for each outgoing pulse i.e. 1 / NoR.  
Although this is an oversimplification, for example ignoring the differing 
surface reflective properties, partial backscatter or transmission losses (Ni-
Meister et al., 2001; Hopkinson and Chasmer, 2009), Armston et al. (2013) 
reported a good agreement when comparing Pgap derived with this method 
and full-waveform data captured over the same plot.  Here, Pgap is 
estimated using: 

𝑃 (𝑧) =  1 − 
∑ 𝑤  (𝑧 > 𝑧)

𝑊
 

EQ. 12 

where W is the per plot sum of 1 / NoR (including ground returns) and wj is 
1 / NoR for return i above height z.   

3.3.3. Derivation of smoothing coefficient (α) 

As mentioned in Section 2C, derivation of a suitable α coefficient used in 
EQ. 11 is required.  To test the universal applicability of α,	 a forest type, 
study	area	and	a	universal	α	coefficient were estimated.  This was achieved 
using a supervised classification of 82 plots from across the three study 
areas in a cross validation with modelled output.  Using histograms of 
weighted return height, binned at 2 m intervals (e.g. Figure 8F), ten 
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individuals were asked to visually estimate the number of strata (NoSSC) 
that characterised each of the 82 plots.  The mode classifier response was 
calculated and used to determine αS for each plot.  Next, a suboptimal forest 
type, study area and universal α	 (ᾶ)	 was estimated using random sub-
sampling cross-validation (N = 50).  For each iteration the most common α 
for a randomly generated 75% training cohort (Figure 9A) was selected as 
ᾶ (Figure 9B).  If two or more ᾶ	values	were	equally	common,	the	median ᾶ	
was chosen (Figure 9B).  The ᾶ coefficient was substituted into EQ. 11 to 
then compute the number of strata for the withheld samples (Figure 9C).  A 
weighted average (EQ. 13) was then used to compute the most appropriate 
forest type, study area or universal α. 

ᾶ =  
∑ ᾶ (𝐸 − 𝐸 )

∑ (𝐸 − 𝐸 )
 

EQ. 13 

where Ei is the mean of |NoSSC – NoS| for the withheld sample of each 
iteration i, and Emax is the maximum Ei value. 

3.3.4. Bootstrapping simulated point clouds 

For each plot, sample point clouds were generated from EQ. 10 in a 
bootstrap as described in Section 3.2.  A sensitivity analysis to determine 
the appropriate number of bootstrap samples suggested a maximum of 100 
samples was sufficient to reduce variance in NoS estimates.  This number 
was significantly reduced for structurally less complex forest plots 
dominated by a single stratum.  In addition to NoS, canopy height, canopy 
cover and return height coefficient of variation (Cv) was calculated, where 
for each the mean value from the bootstrap simulations was used.  Canopy 
height was computed as the 95th percentile of return height of all non-
ground returns >2 m and canopy cover was estimated as 1 - Pgap(z) where z 
= 2 m. 
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Figure 9. Cross validation to determine a suboptimal smoothing coefficient.  
For this 75% of plots were subset as training data [A], where the horizontal bars 
represent	αS	as	determined	by	a	supervised	classification	(NoSSC).	 	A	suboptimal	
coefficient	ᾶ	was	selected	as	the	median	value	from	the	range	of most frequently 
observed α	values	[B].	ᾶ	was	subsequently	substituted	into	EQ. 11 and applied to 
the test plots [C]. 
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3.3.5. Validation with field inventory 

A Geometric Crown Volume Model (GCVM) approach was used to validate 
ALS derived canopy vertical structure (Drake et al., 2002; Morsdorf et al., 
2010) where the modelling of GCVM follows Scanlan et al. (2010).  This 
approach was chosen as it is not affected by occlusion of the upper canopy, 
which can be a drawback of in-situ ranging techniques (Lovell et al., 2003), 
it can also be parameterised with existing inventory data.  Field 
measurements and allometry were used to parameterise geometric models 
of crown volume for individual tress.  Crown volume was integrated across 
each plot producing a histogram of canopy volume.  The number of strata 
was subsequently estimated by visual inspection of the canopy volume 
histogram and compared to the ALS estimate. 

Inventory data was gathered concurrent with the ALS acquisition at 27 
plots across the three study areas.  At each point a circular 0.04 ha plot was 
established following the VFMP protocol, measurements included tree 
species, diameter at breast height and tree height (DEPI, 2012).  Additional 
height to live crown and crown radius measurements were taken at the 
LOW and TCF study areas, these were used to derive allometry between 
maximum crown height and height to live crown base and stem diameter at 
breast height and crown radius.  The exception was for the TCF study area 
where allometrics for height to live crown were taken from Van Pelt et al. 
(2004).   

For crown modelling, an ellipsoidal crown archetype was assumed for all 
species (Haverd et al., 2012). Crowns were modelled as a solid volume (i.e. 
assuming a Poisson distribution of foliage) and crown densities were 
weighted according to position (dominant or sub-dominant) and species.  
The exception to this was eucalypt trees where the disparity in foliage 
density between the outer crown shell and the interior was modelled by 
computing an inner ellipsoid of less dense foliage. Only crowns that were 
recorded	 as	 “live	 standing”	 were	 modelled	 (~86%	 of	 trees)	 and	 as	 the	
relative xy position of trees was not recorded, crown overlap and 
protrusion of beyond a plot boundary was not considered.  Three plots 
were removed from validation due to a poor agreement between inventory 
and ALS measured maximum canopy height. 
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3.4. Results and Discussion 

This chapter presents a new technique, which utilises ALS to estimate the 
number of canopy strata that characterise a forest plot, in an attempt to 
quantify canopy vertical structure.  The new technique was successful in 
identifying local maxima in vegetation density, coincident with the upper 
canopy and shade tolerant canopy strata beneath, and therefore generating 
an estimate of Number of Strata (Figure 10).  A metric of canopy vertical 
structure on its own may not be informative when used in an abstract 
comparison e.g. comparing a tropical rainforest and dry sclerophyll forest 
(Parker and Brown, 2000).  Nevertheless, the evaluation of a spatially 
continuous layer of canopy vertical structure across a landscape (Figure 
11) can identify patterns useful for understanding disturbance history 
(Angelo et al., 2010) or the distribution of biomass (Keith et al., 2009).  It is 
also suggested the new method provides a candidate Essential Biodiversity 
Variable with which to characterise terrestrial habitat structure, as 
discussed by Pereira et al. (2013).  Furthermore, this method offers a 
means to dynamically parameterise techniques such as mixture modelling 
or cluster analysis of canopy vertical arrangement  (Jaskierniak et al., 2011; 
Zhang et al., 2011), where a prior estimate of the number of model 
components is required. 

3.4.1. Methodology evaluation 

Parameterising the α	coefficient	with	a	supervised classification and cross 
validation was successful (kappa 0.64 – 0.67), particularly for plots where 
NoS ≤2	 (Figure 12). An improved classification (kappa = 0.72) can be 
obtained when plots are classified into a single and multistrata schema 
(Zimble et al., 2003; Maltamo et al., 2005), although this would ultimately 
reduce structural information in more complex forests.  It is suggested the 
poor performance where NoS >2 is due to the low number of ALS plots in 
the training data for of this cohort (n = 5).   
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Figure 10. Canopy vertical structure from ALS derived Pgap for four 
structurally diverse forest plots [A – D] using forest type (green), study area 
(purple) and universal (blue) α.  Pgap from a single bootstrap sample is transformed 
with a nonparametric cubic spline regression (Ps)	[1].				“Apparent”	canopy	height	
profile (Lovell et al., 2003) from f(x)′, where x = 1 - Ps [2]. ALS return density 
maxima identified as strata (Si) from the positive zero-crossings of f(x)″ [3].  A 
comparison of f(x)′ and a histogram of weighted ALS return (wALS) frequency [2] 
illustrates the generalisation of the canopy height profile possible with this 
technique. 
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Figure 11. NoS and canopy height computed across three diversely forested 
study areas (Error! Reference source not found.) at a 30 m resolution.  Map 
coordinates are Map Grid of Australia Zone 55. 
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Table 4.  Forest type, study area and universal α.  Riparian forest is found in 
both the MSF and TCF study areas.  Too few plots were located in Montane Damp 
Forest to compute α. 

Forest type Study area Universal 

Heathy Dry Forest 0.58 
LOW 0.58 

0.30 

Box Ironbark Forest 0.54 

Damp Forest 0.37 
MSF 0.20 

Shrubby Dry Forest 0.13 

Riparian Forest 0.19   

Montane Wet Forest 0.31 

TCF 0.30 
Wet Forest 0.21 

Cool Temperate 
Rainforest 0.26 

Montane Damp Forest - 

 

Forest type, study area and universal α	 (Table 4) returned similar Pgap 
curves and canopy profiles when applied to plot data (Figure 10).  
Furthermore there was no overall improvement in results when a forest 
type or site specific α	 was applied (Figure 12).  This would indicate a 
universal α	 is sufficient to characterise vegetation structure across the 
three diversely forested study areas, this would suggest no prior 
assumption of forest structure or type is required (Figure 11).  The 
requirement for forest type assumptions have been previously recognised 
as a limitation of ALS techniques for deriving forest structure, particularly 
Pgap, over heterogeneously forested areas (Hopkinson and Chasmer, 2009).  
A suggested reason for the general applicability is the technique 
generalises canopy structure, therefore for the majority of plots, αS is 
relatively large and overlaps for different forest type (Figure 9).  
Furthermore, the method scales linearly with increasing canopy height 
(Figure 13) which maintains smoothing characteristics regardless of 
canopy height. 
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Figure 13. Linear regression of per plot mean height and mean number of 
spline polynomials.  Mean values were derived from the bootstrap simulations. 

The standard deviation of number of strata from the bootstrapped output 
was small for ~80% of plots (<0.4 strata).  For the remaining plots, 
bootstrap iteration produces a sufficiently different canopy profile so that a 
range of NoS estimates were derived; typically ±1 canopy strata but as 
much as ±2 strata in more structurally complex forests.  A number of 
reasons are suggested for a plot returning a range of NoS values, these 
include; (i) under sampling of the sub-canopy in the original acquisition 
which caused greater variability in simulations, (ii) the influence of 
partially represented trees on a plot voxel boundary and (iii) the partial 
convergence of large tree crowns in the dominant canopy or of the 
dominant and shade tolerant strata.  It is suggested that bootstrapping of 
point cloud configuration to reduce uncertainty in structure estimates has 
wider application, particularly where acquisition pulse density is low 
(Figure 14). 

Gaussian smoothing is commonly applied to remove noise from canopy 
height profiles derived from large footprint full-waveform instruments 
(Hofton et al., 2000).  Here the filtering of Pgap was opted for instead of 
smoothing the canopy height profile, as this was more robust to non-
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optimal regression coefficients (i.e. αS was larger).  Application of Gaussian 
smoothing produced a monotonically decreasing Ps, however it resulted in 
far more false-positives in f(x)″.  There are a number of techniques to 
enforce monotonic behaviour when fitting splines (e.g. He and Shi, 1998) 
which could be explored further if derivation of the canopy height profile is 
required.  Other techniques to identify canopy strata include Gaussian 
decomposition, however over large areas the iterative nature of this 
technique can be computationally expensive (Hancock et al., 2015).  Here, 
determination of an appropriate smoothing coefficient was sufficient to 
identify canopy scale features in f(x)″, this negated the requirement for an 
iterative process and therefore improved algorithm efficiency. 

Figure 14. A comparison of canopy height profiles derived using a point 
cloud with a pulse density of 10 pl m-2 (black) and a bootstrap (N=50) of a point 
cloud thinned to 1 pl m-2 (see Chapter 4).  NoS equals 3 for the original point cloud, 
4 for the thinned point cloud and 3.12 for the bootstrap mean of the thinned 
dataset.  Also included as a comparison is a histogram of weighted ALS returns 
(wALS). 
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3.4.2. Validation results 

A comparison at 24 plots of ALS and Geometric Crown Volume Modelling 
(GCVM) derived NoS returned a RMSE of 0.69 strata (Table 5).  Generally, 
ALS tended to underestimate NoS when compared to GCVM (Table 5).  
Improvements were made across all study areas when the ALS plot radius 
was increased to 15 m (RMSE = 0.41).  This would suggest that individual 
trees, particularly large tress both inside and outside the inventory plot, 
have a significant influence on the canopy height profile at the VFMP plot 
radius (Figure 15).  Increasing the ALS plot radius integrates a larger 
number of trees into the ALS plot voxel and therefore provides a more 
robust estimate.  Differences in curve shape are evident between the two 
ALS plot sizes (11.8 m and 15 m radii), where the larger ALS plot produces 
a more generalised curve (e.g. Figure 15 TCF1 and TCF2).  The poorest 
results were seen at the TCF study area (Table 5) and this was attributed to 
the increasing difficulty (with both techniques) to accurately measure 
forest structure.  For example, GCVM requires accurate measurement of 
crown dimensions, which in turn requires the ability to accurately sight 
crown dimensions.  This ability can be somewhat diminished in more 
structurally complex forests such as that found in the TCF plots (Drake et 
al., 2002; Lee et al., 2004). 

A qualitative comparison of pseudo-waveforms generated using ALS and 
GCVM reveals a generally good agreement between techniques, for 
example the similar location of canopy strata modes and layer boundaries 
(Figure 15).  It is clear where the dominant and shade tolerant strata have 
converged (e.g. Figure 15 MSF2), the ALS generated canopy height profile 
may only identify a single canopy; this could be mitigated for by decreasing 
α.	 In general, ALS tended to underestimate dominant canopy volume and 
overestimate the density of the shade tolerant strata.  A suggested reason 
for this is the equal weighting applied to ALS returns from the eucalypt and 
non-eucalypt strata.  This may misrepresent the proportion of 
backscattered energy as a function of plant area volume density from the 
respective strata, caused by the different leaf projection functions of the 
eucalypt and non-eucalypt strata (Ross, 1981).  This results in eucalypt 
crowns seeming more permeable when viewed from nadir (Lovell et al., 
2003).   
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Figure 15. A comparison of 
24 canopy height profiles (CHP) 
generated with GCVM and ALS.  
Light green and dark green crowns 
represent eucalypt and non-
eucalypt species respectively. Trees 
are randomly placed within the 
scene as individual stem location 
was not recorded.  Grey histograms 
were generated using GCVM and 
green and blue CHPs were derived 
from ALS plots with a radius of 11.8 
m and 15 m respectively 
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Table 5. Comparison of GCVM and ALS derived estimates of NoS. 

Study 
site n 

GCVM – ALSRadius (NoS) 

Radius = 11.8 Radius = 15 Radius = 20 

min max μ RMSE min max μ RMSE min max μ RMSE 

ALL 24 -2.0 1.3 -0.2 0.69 -1.0 1.0 -0.1 0.41 -1.0 1.0 -0.2 0.47 

LOW 9 -2.0 0.0 -0.2 0.66 -1.0 0.1 -0.1 0.33 -1.0 0.0 -0.1 0.33 

MSF 9 -1.0 0.0 -0.4 0.60 -1.0 0.0 -0.2 0.36 -1.0 0.0 -0.3 0.52 

TCF 6 -1.0 1.3 0.1 0.83 -1.0 1.0 -0.1 0.56 -1.0 1.0 -0.26 0.67 

3.5. Canopy vertical structure as an independent metric 

Of the 239 plots extracted from across the three study areas, 57% were 
found to have a single canopy, 31% by two canopy strata and 6% had three 
or more strata.  Eleven plots returned a NoS value of <0.5 (i.e. no canopy), 
these were characterised by a very sparse canopy (canopy cover <0.2) and 
a single and negatively skewed regression spline; this would indicate the 
understorey or shrub strata was significantly more dense than the 
dominant canopy.   

NoS was only moderately correlated with other ALS metrics of canopy 
structure (r2 <0.4, p<0.001), suggesting the method offers new information 
on ALS derived vegetation structure.  For example, although the probability 
of an increasing number of strata increases with canopy height (Figure 
16A) and indeed only taller forests can accommodate multiple strata 
(Brokaw and Lent, 1999); yet canopy height was a relatively poor predictor 
of NoS (RMSE ~1 strata), particularly when distinguishing plots with 
between single and two strata plots (Figure 16A). Utilising a proxy metric, 
such as canopy height, to predict NoS may seem appealing over large areas.  
However this may mask forested areas that have less common and 
regionally significant characteristics, for example high biomass multi-strata 
forest caused by partial stand replacement (Keith et al., 2009). 

Return height coefficient of variation (Cv) has been used as a metric of 
canopy vertical structure heterogeneity (e.g. Bolton et al., 2013), however
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Figure 16. Boxplots summarising the statistical association between NoS 
(rounded to integer values) and canopy height [A], canopy cover [B] and return 
height coefficient of variation [C].  Boxplot whiskers represent the 95th percentile.  
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here Cv explains the least variance in NoS (r2 = 0.15, p<0.001) and there is 
no association between Cv and increasing NoS (Figure 16C).  A suggested 
reason for this is Cv is a measure of relative return dispersion through the 
canopy and not an explicit metric of canopy vertical structure.  Therefore 
different canopy structure types or capture specifications (e.g. scan angle) 
may return similar Cv values.  For example a plot with a single canopy 
strata and a canopy height of <30 m shares a similar Cv value to a plot that 
has three or more strata and a canopy height of >50 m (Figure 17). 

3.6. Conclusion 

This chapter presents a new method for quantifying forest canopy vertical 
structure, where discrete return ALS is used to derive an estimate of the 
number of canopy strata.  This investigation aimed to develop a technique 
that could be applied across forested landscapes where no a priori 
assumption of forest structure is required.  The proposed technique is well 
suited for this purpose as the α coefficient used in the cubic spline 
transformation did not require a specific calibration for forest type or 
study area.  This was demonstrated in forest systems ranging from short 
woodland with a discontinuous single canopy to tall and structurally 
complex temperate rainforests.  We suggest this method offers additional 
information for ALS derived vegetation structure that, along with a metric

 

Figure 17.  Comparison of coefficient of variation of return height (Cv) and 
NoS.  Cumulative histogram of Cv where NoS are classified into integers for 239 
plots [A]. Canopy height profiles for plots with increasing NoS and similar Cv values 
[B – E] where canopy height profiles are represented by weighted ALS returns 
(wALS) and pseudo-waveform generated from f(x)′	where	x = 1 - Ps. 
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of canopy height and cover, it could be used as a fundamental descriptor of 
forest structure (Lefsky et al., 2005b).  Furthermore, the technique could 
also be utilised as an Ecological Biodiversity Variable to characterise 
habitat structure over large areas (Pereira et al., 2013). 
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Understanding the effects of ALS pulse density 
for metric retrieval across diverse forest types‡ 

                                                             

 

‡ This chapter is based on:  

 

Wilkes, P., Jones, S.D., Suarez, L., Haywood, A., Soto-Berelov, M., Mellor, A., 
Woodgate, W., Skidmore, A., (2015).  Understanding the effects of ALS pulse 
density for metric retrieval across diverse forest types.  Photogrammetric 
Engineering and Remote Sensing 81(8), pp. 625 – 635. 
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4.1. Introduction 

The accurate and timely retrieval of vegetation structure metrics is a key 
component of vegetation management, monitoring and reporting activities, 
and ecosystem modelling by land management agencies and forest 
scientists.  For example, canopy height is routinely gathered by land 
management agencies around the world e.g. Forest Inventory and Analysis 
in the US, the Canadian National Forest Inventory and the Victorian Forest 
Monitoring Programme in Australia.  This information is needed for the 
assessment of vegetation condition to fulfil statutory and non-legislative 
reporting obligations such as that agreed by the Santiago Declaration 
(Miles, 2002).  Canopy height is also widely used by forest scientists as a 
proxy to estimate forest biomass (Drake et al., 2002; Asner et al., 2010) and 
it is an Essential Climate Variable (Sessa, 2009).  

Over the past decade, Light Detecting and Ranging (LiDAR) and in 
particular small-footprint Airborne Laser Scanner (ALS) systems have 
progressed from an experimental technique to an operational tool for area 
based (e.g. plot or stand scale mapping unit) attribution of vegetation 
structure (Wulder et al., 2012a, 2012b).  ALS allows for synoptic capture of 
large areas of the landscape where remoteness or terrain complexity 
complicates and increases the cost of establishing inventory plots or where 
variance in structure is not captured with traditional sampling (McRoberts 
and Tomppo, 2007; Mora et al., 2013).  Furthermore, ALS is now 
recognised by some authors as a more accurate method of directly 
measuring vegetation attributes as compared to traditional forest 
inventory methods (Holmgren and Jonsson, 2004; Maltamo et al., 2006; 
Magnusson et al., 2007). 

Acquisitions over very large areas that transect regional to continental 
extents are becoming viable as the ability to capture and process large 
volumes of data improves.  For example, the Canadian Forest Service 
captured data along a ~25,000 km transect (Wulder et al., 2012a) and the 
Department of Environment, Land, Water and Planning (DELWP) captured 
LiDAR along ~27,000 km of riparian corridors in Victoria, Australia 
(Quadros et al., 2011).  However, the cost of large-area ALS acquisitions 
remains significant. There are a number of possibilities for reducing 
acquisition expenditure, such as using a sample based approach where 
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LiDAR	 “plots”	 are	 targeted	 to	 capture	 the	 variance	 in	 forest	 structure 
(Wulder et al., 2012a) or optimising acquisition parameters, such as 
sampling frequency, to capture vegetation type and terrain conditions. ALS 
sampling	 frequency	is	referred	 to	as	“pulse	density”	and	 is	defined	as	 the	
number of emitted laser pulses that intercept a given area of open ground 
(Evans et al., 2009); pulse density is expressed here as pulses per m2 (pl m-

2).  Pulse density is determined by the pulse repetition frequency (PRF) of 
the instrument and acquisition parameters such as aircraft flying height 
and aircraft speed.  Although a number of factors mean PRF and flying 
height or speed are not independent, at a constant PRF decreasing pulse 
density (on the ground) is achieved by increasing flying height and/or 
aircraft speed (Baltsavias, 1999). 

The primary benefit of acquiring ALS at a greater altitude or aircraft speed, 
and therefore a lower pulse density, is decreased project costs (Jakubowski 
et al., 2013), although this is potentially offset by a reduction in the 
accuracy of metric retrieval.  For example, decreasing pulse density 
reduces the probability of intercepting crown apexes (Goodwin et al., 
2006) or over dense vegetation, decreases the probability of a ground 
return (Takahashi et al., 2008).  Other capture specifications altered by 
increasing flying height include increasing laser footprint size which 
integrates the intercepted energy over a larger area that in turn reduces 
instantaneous laser power at the receiver. However these factors are 
considered less significant than sampling frequency (Goodwin et al., 2006; 
van Leeuwen and Nieuwenhuis, 2010).  Although there are a number of 
studies that assess the impact of reducing pulse density on the accuracy of 
metric retrieval, these are generally limited to a single forest type or small 
capture area (Goodwin et al., 2006; Magnusson et al., 2007; Gobakken and 
Næsset, 2008; Takahashi et al., 2008; Næsset, 2009; Jakubowski et al., 
2013).  Previous studies have concluded that for area based attribution of 
vegetation structure, successful analysis can be achieved with a pulse 
density between 0.5 – 1 pl m-2, even in mixed species multi-strata forests 
(Hayashi et al., 2014).  In this study we extend previous work by assessing 
and comparing the direct retrieval of vegetation structure metrics from a 
broad range of forest types and topographies across continental Australia; 
from open savanna  woodland to dense tropical forests (Figure 18).  The 
focus of this investigation is to assess the error and variance of vegetation 
structure metrics when captured at decreasing pulse densities, as well as to 
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estimate intra-plot variability and the reproducibility of structural 
measurements from repeat capture.  To facilitate metric estimation 
accuracy, a new technique for the systematic thinning of point clouds is 
also introduced.  

4.2. Method 

4.2.1. Study area and data capture 

Six study areas, located across continental Australia (Figure 18), were 
selected from the Terrestrial Ecosystem Research Network AusCover 
Facility.  Study areas were selected to capture a broad range of forest

Figure 18. Map displaying the location of the six TERN sites used in this 
investigation, shaded areas indicate forest extent (Montreal Process 
Implementation Group for Australia, 2013). 
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structure and types (Error! Reference source not found. and Figure 19).  
ALS data (TERN/AusCover 2012) was acquired between April 2012 – June 
2013 for all areas by a single provider (Airborne Research Australia) 
utilising the same capture specifications (Table 6) which facilitates 
comparison between study areas.  Flight lines followed a regular north-
south pattern spaced 125 m apart.  This, in conjunction with a maximum 
scan angle of ±22.5°, resulted in an approximate swath overlap of 50%.  
Owing to steep terrain additional flight lines were required at two study 
areas (TCF and NVF).  A minimum pulse density of 10 pl m-2 was stipulated 
prior to capture.  By maintaining swath overlap in post-processing 
acquisition pulse density is approximately doubled, though variation in 
density still occurred.  Although capture over a large area at this density 
with a 50% swath overlap would not be considered operational for a land 
management agency (Wulder et al., 2012b), oversampling allows a 
methodical simulation of various pulse densities. 

For each study area, 50 plot centres were randomly located across the 5 km 
x 5 km capture footprint. To ensure spatial independence of extracted 
plots, plot centres were located at a minimum distance of 250 m apart.  
From each plot centre, ALS data for a circular plot with a 25 m radius was 
extracted. To decrease the risk of duplication of returns in a thinned 
dataset, extracted plots with a pulse density of <10 pl m-2 were rejected and 
number of first-returns (i.e. points with a return number metadata value of 
1) per plot and dividing by plot area (Jakubowski et al., 2013). 

Table 6.  Description and location of study areas sorted by mean canopy 
height. See Table 2 for additional study areas. 

 
^ Rainfall data from Hijmans et al. (2005) 

Site Coordinates Elevation 
Mean 
slope 

Description 
Canopy 
height 

Mean 
annual 
rainfall^ 

Notophyll Vine 
Forest (NVF) 

17° 6' 20"  
145° 37' 16"  

1160 – 700 m 24° 
Tropical rainforest with a 
tall canopy. High species 
diversity.  

25 – 40 m 1890 mm 

Savanna (SAV) 
13° 10' 39" 
130° 47' 23" 

210 – 230 m 3° 

Sparse open eucalypt 
forest with isolated 
patches of monsoon 
rainforest. 

10 – 25 m 1370 mm 

Great Western 
Woodlands 
(GWW) 

30° 11' 22" 
120° 39' 17" 

440 – 480 m 2° 

Open woodland inter-
dispersed with open, 
treeless areas. Small shrub 
layer prevalent. 

5 – 25 m 260 mm 

 



Chapter 4 

65 

Figure 19. Descriptive statistics for 4 metrics of canopy structure across 6 
study areas. 95th percentile of canopy height [A]; proportion of cover calculated as 
1 – Pgap(z) where z equals 1 m [B]; coefficient of variation (Cv) for non-ground 
return height[C] and NoS [D]. 



Understanding the effects of ALS pulse density for metric retrieval  

66 

Table 6.  Flight and sensor specifications for the ALS acquisitions. 

4.2.2. Data processing 

There are a number of existing studies that assess the accuracy of forest 
metric retrieval from point clouds of different densities.  Ideally, analysis of 
different pulse densities would be undertaken on datasets captured at 
different flying altitudes or aircraft speeds (Goodwin et al., 2006; Thomas 
et al., 2006; Magnusson et al., 2007; Morsdorf et al., 2008; Takahashi et al., 
2008).  This permits analysis of additional variables altered by changing 
capture specifications such as instantaneous laser pulse power and laser 
footprint size.  However, capture at multiple altitudes and aircraft speeds is 
limited by cost, particularly over large or discontinuous study areas such as 
in this study, and alternative modelling methods are required.  A number of 
authors have decreased the number of points in a dataset to match a 
required point density (Maltamo et al., 2006; Tesfamichael et al., 2010; 
Watt et al., 2013); however this does not necessarily replicate the 
reduction in pulse density caused by change in altitude or aircraft speed if 
simulating anything other than a first-return dataset (Jakubowski et al., 
2013).  The majority of techniques that simulate a reduction in pulse 
density do so by superimposing a regular grid over the study area of a 
specified spatial resolution to attain required pulse densities, returns are 
then randomly selected from within each voxel (Gobakken and Næsset, 
2008; Næsset, 2009; Korhonen et al., 2011; Jakubowski et al., 2013; Hansen 

Specifications  
Capture specifications  
Flying height 300 – 600 m agl 
Target pulse density (excl. overlap) 10 pulses m-2 
Absolute vertical accuracy <0.15 m 
Absolute horizontal accuracy <0.15 m 
Mean footprint diameter 0.15 m 
  
Instrument specifications  

Instrument 
Riegl LMS-Q560 laser scanner 
(Horn, Austria) 

Operating wavelength 1550 nm 
Beam divergence 0.5 mrad 
Max off-nadir scan angle ±22.5° 
Outgoing pulse rate 240 kHz 
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et al., 2015). However, application of this technique may not replicate the 
regular scan pattern in which data is collected (Baltsavias, 1999), 
particularly when simulating low pulse densities.  Other techniques include 
the removal of alternate pulses and scan lines (Treitz et al., 2012), 
stipulating a minimum horizontal distance between returns (Magnusson et 
al., 2007) or systematically thinning a dataset utilising GPS time 
(Khosravipour et al., 2014); albeit these techniques are only suitable for 
generating single or first-return datasets. 

Here we introduce a new technique that can (a) systematically sample the 
original dataset to allow analysis of sampling variance and acquisition 
reproducibility, and (b) simulate multi-return capture (i.e. as opposed to 
first or first-and-last capture) that state-of-the-art small-footprint 
instruments can produce.  Computations were carried out with the 
ForestLAS Python module except where stipulated.  For the 250 extracted 
plots, nine different plotwise realisations were simulated at 6 different 
pulse densities (Table 3).  This resulted in a total of 15,500 simulations. 

As illustrated in Figure 20, thinning was achieved by superimposing a 
point-grid over the area at a resolution required to achieve a target pulse 
density (Table 3). First-returns with the shortest Cartesian distance to the 
grid point were selected and the attributes retained i.e. selected points 
were not snapped.  A search window was utilised when selecting points to 
filter points that may lie closer to an adjacent grid point (Figure 20), this 
was optimised at 2/3 the point-grid resolution to minimise duplication of 
returns whilst maintaining pulse density (Figure 20A).  For each first-
return selected, the number of returns metadata value (X) was extracted.  

Table 3.  Pulse density and required pulse spacing.  

Pulse density (pulse m-2) Pulse spacing (m) 
0.05 4.47 
0.1 3.16 
0.5 1.41 
1 1.00 
2 0.71 
4 0.5 

10 0.32 
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An additional X points with a corresponding return number metadata value 
were subsequently selected. For example, if a selected first-return had a 
number of returns value of Y then [R2, R3,	 …	RY] additional returns were 
selected where the subscript value refers to the return number. Additional 
returns were again selected by shortest Cartesian distance from the grid 
point.  Maximum distance for additional returns was likewise restricted to 
a search voxel where the extent (SWe) was determined from an estimate of 
canopy height (zmax)	 and	 an	assumed	maximum	scan	angle	 (θ)	of	 5°	 (EQ. 
14) (Figure 20A).  The extracted dataset therefore simulates a near nadir 
acquisition with a regular scan pattern (Baltsavias, 1999), this standardises 
simulated capture specifications aiding comparison between plots and 
study areas. 

𝑆𝑊  =  2(𝑧  ·  tanθ) 

EQ. 14 

For the simulated datasets ground points were identified and used to 
compute a Triangulated Irregular Network (TIN), from which height 
relative to ground was calculated for all returns.  Computing a TIN and 
relative height for each simulated dataset was necessary so that 
miscalculation of the ground surface can be accounted for (Magnusson et 
al., 2007).  Identification of ground returns and relative return height 
calculation was computed using default settings with the lasground and 
lasheight tools respectively from the LAStools software package (version 
130225) (Isenburg, 2012). 

A plot with a radius of 11.8 m was clipped from each thinned and ground 
normalised dataset to replicate standard forest inventory plot dimensions 
(Victorian Department of Sustainability and Environment, 2012b).  
Thinning and TIN creation were computed for the larger dataset to ensure 
all ground returns within the clipped area had a full neighbourhood from 
which to generate a TIN.  Furthermore, scan pattern towards the edges of 
the larger dataset became irregular owing to the circular plot shape; 
clipping removed this effect from the smaller plots. 
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Figure 20. Visualisation describing the point cloud thinning technique using 
a target pulse density of 0.5 pl m-2 as an example. [A] A single first return is 
selected for each grid point (+) where the ALS return with the lowest Cartesian 
distance is selected. Selection is restricted to a search-window around each grid 
point where the search window dimensions are determined by the desired pulse 
density (d).  Selection of X further returns, determined by the number of returns 
metadata field (in this case X = 4), are again chosen by their proximity to the grid 
point.  A search-window	restricts	the	maximum	distance	of	“other”	returns	where	
the extent is determined by an estimate of the maximum height of the forest (zmax = 
40	m)	and	an	assumed	scan	angle	≤5°,	in	this	way	a	nadir	acquisition	is	simulated.			
NB. Points have been removed from outside the plot boundary to enhance 
visualisation [B], when point clouds were thinned points from outside the plot 
boundary could be selected. 

Owing to the density of the original dataset and the systematic way in 
which simulated datasets were constructed, additional realisations could 
be computed from the original dataset with minimal duplication of returns 
between realisations.  Therefore nine simulated datasets were generated 
for each plot, where the origin of the sample point grid was offset 
recursively by 1/3 of the sampling resolution in both the x and y direction.  
From the nine realisations, a robust set of descriptive statistics were 
generated and compared to a value derived from a high pulse density 
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dataset (see below).  Generating different plotwise realisations also 
allowed the repeatability of ALS capture to be assessed (Bater et al., 2011). 

4.2.3. Metrics 

Forest structure could be characterised by three categories of primary 
descriptor: (1) canopy height, (2) canopy cover and (3) canopy vertical 
structure or canopy vertical structure (Lefsky et al., 2005a; Kane et al., 
2010b).  Three metrics representing each of these categories were 
selected: the 95th percentile of non-ground return height as an analogue of 
dominant canopy height; canopy cover was estimated using 1 – Pgap(z) 
where z equals 1 m; and coefficient of variation (Cv) of return height as a 
metric of vertical canopy structure (Zimble et al., 2003; Kane et al., 2010b; 
Bolton et al., 2013).  Vertically resolved gap probability Pgap(z) was 
computed using ALS returns weighted by the return number, as Armston et 
al. (2013) concluded this produced a more accurate estimate of Pgap than a 
frequency based estimate. As techniques for describing vertical structure 
are less well described, a metric that characterises vertical canopy 
arrangement by estimating the Number of canopy Strata (NoS) from the 
second derivative of transformed Pgap was also included.  Figure 19 
compares the range of values for each of the four metrics at each study 
area.  

To ascertain the benefit of increasing pulse density when charactering 
forest structure, metrics derived using thinned datasets were compared to 
a dataset with a common density of 10 pl m-2 (Næsset, 2009).  Mean values 
were computed from the nine plotwise realisations at six pulse densities 
from which difference and root mean square difference were calculated. 
Coefficient of determination values were also calculated where the thinned 
datasets were the independent variable and the dependent variable was 
the metric computed from the high pulse density dataset.  Furthermore, 
descriptive statistics for the nine plotwise realisations were calculated to 
ascertain intra-plot variability.    

4.3. Results  

Airborne Laser Scanning (ALS) data for three hundred plots were extracted 
across six vegetation systems that characterise diverse forested landscapes 
in Australia.  For each plot, vegetation metrics representing three primary 
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descriptors of vegetation structure (Lefsky et al., 2005a; Kane et al., 2010b) 
were computed at to six different simulated pulse densities (0.05 – 4 pl m-

2).  Results for each descriptor are presented below. 

4.3.1. Canopy height 

Differences in canopy height estimates are low for high pulse densities and 
increase with decreasing sampling frequency (Figure 21A). For example, at 
pulse	densities	≥0.5	pl	m-2, Root Mean Square Difference (RMSD) is <0.5 m 
for the LOW, GWW, MSF and SAV study areas, <1 m at TCF and <1.5 m at 
NVF.  At the structurally simple and homogenous LOW study area (Figure 
19) where pulse density was simulated at 4 pl m-2, RMSD in height 
estimation is less than the quoted vertical accuracy of the bare earth 
ground surface as stated by the data provider.  When pulse density <0.5 pl 
m-2, RMSD is generally less than 2 m, however for the NVF study area error 
can be >10 m (Figure 21A).  Furthermore, at low pulse densities differences 
in height estimation is not necessarily a simple systematic offset, this is 
highlighted by a decrease in coefficient of determination values with 
decreasing pulse density (Figure 21A and 22A).  As noted in previous 
studies, canopy height estimates decrease with decreasing pulse density as 
a result of the incomplete sampling of crown apexes (Goodwin et al., 2006; 
Morsdorf et al., 2008).  However, in this investigation the largest errors 
occurred as a result of the misidentification of the ground surface, this 
resulted in a poor TIN model from which to calculate vegetation height 
Intra-plot variance in canopy height estimation increases with decreasing 
pulse density for all study areas (Figure 23A).  Standard deviation in 
canopy height estimates derived from different realisations of the same 
dataset can exceed 4 m.  Calculation of canopy height Coefficient of 
Variation (Cv) normalises for the large differences in canopy height when 
comparing plots and study areas (Figure 19A).  Variance in Cv of canopy 
height is greatest for plots in the SAV and CR study areas, particularly at 
low pulse densities (Figure 23B).  This is attributed to clumped vegetation 
and low tree density where successive realisations capture a significantly 
different proportion of vegetation. 
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Figure 21. Difference between the plotwise mean value calculated at 6 pulse 
densities (0.05 - 4 pl m-2) and the value calculated at 10 pl m-2.  Four metrics are 
used to summarise canopy structure; [A] canopy height, [B] canopy cover, [C] 
coefficient of variation (Cv) of return height and [D] NoS.  Additionally difference in 
ground height is shown [E].  Error bars represent the 95th percentile range. 
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Figure 22. Coefficient of determination where the independent variable was 
[A] canopy height, [B] canopy cover, [C] return height coefficient of variation (Cv) 
and [D] NoS at 6 different pulse densities (0.05 – 4 pl m-2). The dependent variable 
was the metric derived from a pulse density of 10 pl m-2.  
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Figure 23. Mean intra-plot variance for vegetation structure metrics where 
variance is calculated as the standard deviation of 9 realisations drawn 
systematically from the original dataset.  Four metrics were computed; [A] canopy 
height, [C] canopy cover, [D] coefficient of variation (Cv) of return height and [E] 
NoS.  Additionally, [B] Cv of canopy height was included, which normalises for 
canopy height when calculating variance.  Error bars represent standard deviation 
of mean variance. 
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4.3.2. Canopy cover 

Difference in canopy cover estimates as a function of sample density are 
smaller when compared with canopy height.  For example the difference in 
cover estimates is close to zero for all point densities across all areas with 
the exception being NVF (Figure 21B).  The larger error at NVF at pulse 
densities <0.5 pl m-2 is again attributed to the poor identification of ground 
surface.  This has shifted the height of the ground datum and therefore 
altered the proportion of vegetation returns included relative to the 
nominal height threshold.  The trend is further reflected in the low 
coefficient of determination values at the NVF area (R2 < 0.2) (Figure 22B).  
Replication of cover estimates are also robust to diminishing pulse 
densities (Figure 23C), where standard deviation of plotwise estimates is 
<10% of total cover for 0.05 pl m-2. 

4.3.3. Canopy vertical structure 

Difference in Cv of return height are close to zero for all areas when pulse 
density	 ≥0.5	 pl	 m-2.  When pulse density decreases to <0.5 pl m-2 the 
differences become positive for sparsely vegetated areas and negative for 
other areas (Figure 21C).  The largest differences are seen at the SAV and 
GWW areas where canopy cover is the lowest (Figure 19B).  Here it is 
suggested that large positive differences are caused by the under 
representation of vegetation in the return height profile at lower pulse 
densities.  The opposite effect is seen to a lesser degree at the NVF study 
area where returns cluster towards the top of the canopy.  Analysis of NoS 
values suggests the canopy height profile is generally well represented 
when pulse density is ≥0.5	pl m-2.  This is reflected in an error of <1 canopy 
strata across all areas (Figure 21D).  Pulse density <0.5 pl m-2 leads to an 
overestimation in the number of canopy strata as layers appear 
increasingly fragmented, this trend becomes more apparent with 
increasing canopy height .  

Standard deviation of plotwise Cv of return height increases with 
decreasing pulse density.  Similar to canopy height estimates, variance in Cv 
of return height is greatest for plots with low canopy cover at pulse 
densities of <0.5 pl m-2 (Figure 19).  The Cv of return height for plots where 
canopy cover >20% have a relatively small standard deviation which 
suggests the dispersion of returns through the canopy is constant with each 
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realisation.  Standard deviation of plotwise NoS is also low for pulse 
densities >0.5 pl m-2 where intra-plot variation is <0.5 canopy strata 
(Figure 23E). In forest types where vertical structure is relatively simple 
(Figure 19D), standard deviation remains low for lower pulse densities. 

4.3.4. Characteristics of thinned point clouds 

For the original datasets used in this investigation, mean pulse density was 
~22 pl m-2.  Generating different realisations of point clouds from an 
original dataset introduces the potential for shared points between subsets.  
At pulse density of 4 pl m-2,	~85%	of	returns	were	shared	between	≤2	of	9	
subsets.  This is suggested as the upper limit for simulation when applying 
this technique to a dataset with an original pulse density of 20 pl m-2.  
Simulations at a pulse density of 0.01 pl m-2 were also attempted.  However, 
for forest types where canopy cover was high, poor ground identification 
limited the number of successful simulations (even within plots) and 
therefore these results were disregarded.  Pulse densities for thinned 
datasets were an average of 10% less than the prescribed density, which is 
a result of grid points identifying no returns within the search window. 
This is caused by irregular pulse spacing which in turn is attributed to 
transmission losses (Korpela et al., 2012), oblique viewing angles (Lovell et 
al., 2005) or gaps between flight line overlap.  An iterative approach could 
have been used to dynamically alter search window dimensions until the 
prescribed pulse density was achieved (Næsset, 2009) although this would 
have increased the risk of return duplication in subsets.   

Examples of thinned point clouds for the six forest types are presented in 
Figure 24, this illustrates the differences in vegetation cover density and 
homogeneity apparent between study areas.  It is clear that the fidelity of 
canopy scale features is reduced with decreasing pulse density particularly 
at the sparsely vegetated sites (SAV and GWW).  For higher pulse densities 
(10 and 4 pl m-2) a reasonable identification of the ground surface was 
achieved across all areas.  As pulse densities decrease, the number of 
ground returns at the NVF and TCF areas quickly diminishes.  This is in 
contrast to areas where canopy cover is less (Figure 19) where a regular 
grid of ground returns is still clearly visible at 0.05 pl m-2. 
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Figure 24. Example point clouds for each forest type displayed at 4 different 
pulse densities.  Points are classified into either ground (black) or non-ground i.e. 
vegetation (grey).  Altitude is relative to the Australian Height Datum.  Point size is 
shown to increase with decreasing density for visualisation purposes only. 

4.4. Discussion  

The 250 plots across six study areas used in this investigation covered a 
broad spectrum of vegetation structure where canopy cover ranged from 2 
– 98%, canopy height from 2 – 80 m and canopy structure ranged from 
shrub dominated through to vertically complex systems (Figure 19).  Yet 
for all vegetation types an asymptote in achievable accuracy is reached at a 
pulse density of 0.5 pl m-2 when compared to a high density acquisition 
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(Figure 21 and Figure 22).  This suggests there is only marginal 
improvement in achievable accuracy by capturing data at higher densities 
for area based vegetation structure estimates.  Furthermore, intra-plot 
variance is captured at a pulse density of 0.5 pl m-2, although small 
improvements are evident with increasing pulse density (Figure 23).  
These results are comparable to results found in similar studies (Goodwin 
et al., 2006; Treitz et al., 2012; Jakubowski et al., 2013; Watt et al., 2013; 
Hansen et al., 2015).  

Structural measurements derived from pulse densities <0.5 pl m-2 returned 
larger differences, particularly at the tropical rainforest (NVF) study area 
which is attributed to a dense canopy cover occluding the ground.  Small 
overestimations of ground height are common in forests where ground 
vegetation cover is dense (Ni-Meister et al., 2001; Su and Bork, 2006; 
Magnusson et al., 2007).  This was evident at the TCF and MSF plots where 
ground height is overestimated by <2 m for all simulated pulse densities 
(Figure 21E).  However at the NVF area, erroneous ground models are 
caused by the minimal number of returns that penetrate through the upper 
canopy (Takahashi et al., 2008).  For example at all pulse densities <2% of 
returns are classified as ground, which for the pulse density <0.5 pl m-2 
results in an average of ~3 identified ground returns in the plot area.  In 
reality a number of simulations had no returns classified as ground which 
led to the failure of metric calculation (Figure 24).  The effect of increasing 
flying height to attain a lower sampling frequency will only exacerbate 
poor penetration of pulses to the ground owing to a reduction in pulse 
intensity (Goodwin et al., 2006; Takahashi et al., 2008).  A comparison of 
the mean height of returns classified as ground for low pulse density 
datasets reveals that points within the canopy were miss-classified.  This 
increases the height of the ground layer (Figure 21E) and propagates to 
estimation errors in all metrics.  It is acknowledged that a generic 
approach, using commonly available software, was taken when classifying 
ground returns and a customised solution may have identified the ground 
surface more accurately (Evans and Hudak, 2007; Tinkham et al., 2011).  
Nevertheless, for large area acquisitions (e.g. regional to continental 
transects) where many different vegetation and terrain types maybe 
encountered, a bespoke solution for a particular scenario may not be 
feasible or warranted.  The opposite is apparent at study areas where 
vegetation cover is sparse and can therefore be underrepresented in the 
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ALS capture at lower pulse densities (Figure 21).  This effect is enhanced 
where vegetation cover is heterogeneous (e.g. clumped) as at the savanna  
and woodland areas.  

Differences in canopy height estimates at diminishing pulse densities are 
similar to those reported in studies over different forest types.  For 
example, when comparing different flying heights Goodwin et al. (2006) 
found only small differences in the 99th percentile of canopy height (~1 m) 
estimated at three pulse densities between ~0.5 and 1 pl m-2.  Jakubowski 
et al. (2013) reported relatively large errors when using predictive models 
to estimate field derived canopy cover metrics.  Although this investigation 
does not compare results to field estimates, it is suggested that the 
weighted 1 – Pgap(z) method is robust to diminishing pulse density and 
could be used to improve predictive models.  Previous studies have 
suggested that if sub-canopy structure is to be assessed satisfactorily then 
higher pulse densities are required, however these studies have been 
mostly limited to first-return or first-and-last-return captures (Thomas et 
al., 2006; Jakubowski et al., 2013).  The inclusion of intermediate returns 
suggests that the canopy profile can be satisfactorily attributed at 0.5 pl m-2 
when compared to a more dense acquisition (Figure 21C and D).  Observed 
patterns of increasing variance with decreasing pulse density are similar 
for the four metrics tested and to trends reported in previous studies 
(Gobakken and Næsset, 2008).  Random error in metric estimation 
increases with decreasing pulse density (Takahashi et al., 2010), this is 
illustrated by a simultaneous decrease in coefficient of determination 
values with pulse density (Figure 22).   

Systematically applying an offset to the point-grid allowed robust estimates 
of vegetation metrics independent of sampling location origin.  This is 
particularly useful when analysing low pulse densities where large 
variation is evident between realisations (Figure 23).  Analysis of intra-plot 
results suggests that variance in metrics is captured	at	pulse	densities	≥0.5	
pl m-2.  For lower pulse densities, difference between realisations can be 
more significant.  For example at the TCF plots, difference in height 
estimations between realisations had a standard deviation of ~3 m at the 
lowest pulse density, this drops to <1 m at a pulse density of 0.5 pl m-2 

(Figure 23A).  Intra-plot variance was lowest for plots where canopy cover 
was homogenous and structurally simple e.g. a single canopy (Figure 19 
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and 24).  For example standard deviation of canopy height remained <1 m 
for the LOW study area, even when considering the lowest pulse density 
simulated (Figure 23A).  Conversely at the sparsely vegetated SAV study 
area where vegetation is clumped, the Cv of canopy height and Cv of return 
height is highly variable (Figure 23B and D respectively).  This is due to 
vegetation cover being heterogeneous and therefore subsequent plotwise 
realisations capture significantly different proportions of vegetation, 
resulting in dissimilar interpretations of the canopy profile.  When 
comparing 4 overlapping flight lines acquired on the same day with the 
same capture specifications, Bater et al. (2011) found a similar difference 
between height estimates of <1 m at a pulse density of 2 pl m-2.  The 
authors also noted significant differences in metrics calculated from last-
returns e.g. describing the ground and lower region of the canopy.  This is 
again less apparent in this study owing to the utilisation of a multi-return 
recording instrument. 

The technique introduced in this paper has allowed a robust comparison of 
estimating vegetation structure metrics simulating different capture pulse 
densities across a range of vegetation types.  The inclusion of a TIN model 
calculation is seen as an important step that is not always included in 
thinning simulations.  TIN modelling highlighted that utilising a pulse 
density <0.5 pl m-2 in dense forests is unlikely to identify the ground 
surface adequately to accurately determine vegetation structure.  It is 
recognised the presented technique does not account for factors caused by 
an increased flying height such as increase in laser footprint size or 
attenuation of laser power caused by increased atmospheric thickness 
(Goodwin et al., 2006), as well as acquisition at oblique viewing angles 
(Lovell et al., 2005) or with a different instrument.  Physical models such as 
that presented by Disney et al. (2010) could potentially be used to more 
accurately model different acquisition scenarios.  However this would 
require significant effort to recreate landscape scale variance in native 
forest structure and is therefore beyond the scope of this study. 

4.5. Conclusion 

Land managers are commissioning small-footprint discrete return airborne 
laser scanning (ALS) acquisitions over increasingly large areas which may 
in turn capture a variety of forest types. This study examines the sensitivity 
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of pulse density (sampling frequency) on primary descriptors of vegetation 
structure (canopy height, canopy cover, return height coefficient of 
variation and NoS) across a broad range of forest types; from sparsely 
vegetated savanna  woodlands to dense rainforest.  ALS was acquired with 
the same campaign and capture specifications and ALS instrument which 
facilitated comparisons between forest types.  Point clouds were thinned to 
six different densities (0.05 – 4 pl m-2) using a novel technique that 
systematically selected nine subsets of data from each original plot dataset, 
this allowed metrics to be computed in a robust way as well as assessing 
the reproducibility of ALS acquisition.  Metrics derived from thinned 
datasets were compared to a dataset with a pulse density of  
10 pl m-2. 

Simulated	 acquisition	 with	 a	 pulse	 density	 of	 ≥0.5	 pl	 m-2 resulted in 
minimal differences for all metrics across all forest types when compared 
to a dataset with a pulse density of 10 pl m-2. Furthermore, intra-plot 
variance was significantly lower at higher pulse densities than for less 
dense simulations.  This result suggests there is minimal gain from 
acquiring ALS data at a pulse density >0.5 pl m-2 which could result in 
potential cost savings for land management agencies.  The primary reason 
for erroneous estimation at lower pulse densities was the poor 
identification of the ground surface, which propagated to metric 
estimation, and heterogeneous (e.g. clumped) vegetation being 
inadequately sampled.  The analysis presented here will allow land 
managers to be confident in specifying lower pulse densities when 
planning ALS capture for large area vegetation characterisation, even over 
dense, very sparse, tall or vertically complex forests.  



 

82 

 Chapter	5 5.
 

Mapping forest canopy height across large areas 
by upscaling ALS estimates with freely available 
satellite data§  

                                                             

 

§ This chapter is based on:  

 

Wilkes, P., Jones, S.D., Suarez, L., Mellor, A., Soto-Berelov, M., Woodgate, W., 
Haywood, A. and Skidmore, A., 2015.  Generating a continuous map of 
canopy height over a regional area using a step sampling with LiDAR and 
multispectral imagery. Remote Sensing 7(9) pp. 12563 - 12587. 
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5.1. Introduction 

For large, inaccessible and remote forested areas, the assessment of 
vegetation structure in an operational framework remains an on-going 
challenge for land managers (McRoberts et al., 2010; Wulder et al., 2012a, 
2012b).  Synoptic capture of large forested areas is provided by space 
borne passive optical remote sensing platforms and has proved useful for 
the attribution of forest structure (Franklin and Strahler, 1988; Wulder, 
1998; Armston et al., 2009; Wulder et al., 2012b; Hansen et al., 2013).  
However, the inability of passive instruments to sense below the principal 
canopy limits their applicability for assessing three-dimensional forest 
structure attributes, such as canopy height (Cohen and Spies, 1992; Lefsky 
et al., 2002b; Pasher and King, 2011).  Over the last two decades Light 
Detection and Ranging (LiDAR) technologies, and in particular discrete 
return Airborne Laser Scanners (ALS), have become an operational 
alternative to traditional forest inventory (Holmgren and Jonsson, 2004; 
Maltamo et al., 2006; Wulder et al., 2012a).  Consequently, there has been 
recent interest in the fusion of ALS and satellite multispectral imagery for 
the improved retrieval of vegetation parameters (see review by 
Torabzadeh et al. (2014).  However, although examples of acquisition of 
ALS over very large areas exist (Asner et al., 2010; Gregoire et al., 2011; 
Quadros et al., 2011; Gobakken et al., 2012; Wulder et al., 2012a; Hansen et 
al., 2014), ALS coverage is often incomplete and follows a transect or linear 
pattern and is therefore inappropriate for deriving wall-to-wall maps of 
vegetation structure. 

To achieve large area attribution, ALS can be used as a sampling tool in a 
two-stage approach where ALS is captured over a fraction of the study 
area.  This is achieved by first establishing an empirical statistical model 
between ALS metrics and spectral reflectance and/or other spatially 
synoptic datasets.  The model is then applied to the reflectance/synoptic 
data and therefore upscales estimates of canopy structure beyond the 
confines of the ALS survey extent (Hudak et al., 2002; McInerney et al., 
2010; Ørka et al., 2010; Pascual et al., 2010; Cartus et al., 2012; Mora et al., 
2013).  Examples where assessment has been carried out over large areas 
of heterogeneous forest include Asner et al. (2010) who estimated forest 
biomass across ~4 million hectares of Peruvian rainforest and Wulder and 
Seemann (2003) who estimated canopy height over 700,000 ha of boreal 



Mapping forest canopy height across large areas 

84 

forest in Canada.  Both studies used a linear regression of ALS derived 
variables with segmented Landsat imagery to predict canopy structure.  
Continental and global maps of forest structure have also been produced 
using this method where LiDAR data from the spaceborne the Geoscience 
Laser Altimeter System (GLAS) sensor was used as a sampling tool in 
conjunction with coarse resolution satellite imagery (250 – 1000 m) 
(Baccini et al., 2008; Lefsky, 2010; Simard et al., 2011). 

Modelling approaches that have determined a parametric association 
between response and predictor variables have been successfully applied 
to the attribution of forest structure (Hudak et al., 2002; Wulder and 
Seemann, 2003; Pascual et al., 2010).  However, in more recent years 
machine learning techniques have been utilised for remote sensing 
applications, where the complex statistical associations of multi-source 
datasets require more advanced approaches to characterise forests over 
large areas (McInerney et al., 2010; Mellor et al., 2013; Mora et al., 2013).  A 
machine learning technique that has gained in popularity is random forest, 
an ensemble regression tree technique from the Classification And 
Regression Tree or CART family (Breiman, 2001).  Random forest works by 
constructing	 “weak”	 regression	 trees	 (usually	 in	 the	 order	 of	 hundreds)	
from	bootstrapped	samples	of	input	variables.		The	“weak”	regression	trees	
are then aggregated in an ensemble to produce a robust model that is 
insensitive to collinear predictor variables and a non-normal distributed 
response variable (Breiman, 1996).  Furthermore, the ease of application 
(e.g. only two model parameters, see Section 2.3.1) and the ability to run 
efficiently over large datasets makes random forest an ideal choice for 
large area attribution (Rodriguez-Galiano et al., 2012b).  A number of 
studies have utilised random forest for mapping forest attributes with 
remotely sensed data, including biomass (Baccini et al., 2008; Mascaro et 
al., 2014), species extent (Evans and Cushman, 2009), forest extent (Ørka et 
al., 2010; Mellor et al., 2012, 2015), canopy cover (Armston et al., 2009; 
Johansen et al., 2010; Ahmed et al., 2015) and canopy height (Kellndorfer et 
al., 2010; Stojanova et al., 2010; Simard et al., 2011; Cartus et al., 2012; 
Peterson and Nelson, 2014; Ahmed et al., 2015).   

The majority of studies use a combination of predictor variables that can be 
roughly split into two cohorts: (a) variables that respond to changes in 
vegetation and are derived from surface reflectance, and (b) variables that 
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determine vegetation growth potential (in the absence of disturbance) such 
as site quality and climate.  Particular choices of predictor datasets are 
dictated by the target variable, scale of analysis and data costs or 
accessibility; the ready access to free satellite imagery has been recognised 
as crucial for the long term modelling of environmental systems (Turner et 
al., 2015).  Large area forest assessment should be consistent across the 
domain of the study, providing an accurate estimate of forest structure 
regardless of forest type, as well as being locally relevant, for example 
identifying features in the landscape (Hansen et al., 2013).  An earth 
observing platform that has proved useful in this respect is the Landsat 
programme, for example, 9 of the 11 random forest studies listed above 
used Landsat products as a predictor variable in some way. 

Random forest is capable of efficiently incorporating a large number of 
both continuous and categorical variables, as a result of sub-sampling 
predictor variables at each node when constructing regression trees.  From 
a remote sensing perspective, this enables additional contextual or textural 
variables (and the large number of variables this can produce) to be easily 
incorporated into modelling (Rodriguez-Galiano et al., 2012a).  The 
addition of first and second order textural information from satellite 
imagery has been shown to improve the classification accuracy of forest 
structure (Franklin et al., 2001; Coburn and Roberts, 2004; Ghimire et al., 
2010; Rodriguez-Galiano et al., 2012a).  Additionally, the incorporation of 
variables generated from a remote sensing time series have also improved 
model performance.  For example, when estimating canopy height Ahmed 
et al. (2015) included a time-since-disturbance variable generated from a 
Landsat ETM time series, which led to improvements in RMSE of ~20%. 

This manuscript extends the work of previous authors by presenting a 
method for the production of a medium-resolution (30 m) continuous map 
of canopy height, for a large area (millions of hectares) of highly 
heterogeneous forest, using freely available datasets as predictive variables 
and in an open source computing framework.  The presented method is 
intended to be easily adopted (and adapted) by forest scientists and land 
management agencies for the routine assessment of canopy height. Canopy 
height was chosen as a candidate metric owing to its importance across 
many applications including biomass estimation (Lefsky et al., 2001; Lucas 
et al., 2008b; Asner et al., 2010), habitat assessment (Hyde et al., 2006; 
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Goetz et al., 2007) and forest inventory (Næsset, 1997, 2007; Wulder et al., 
2008a).  An estimate of canopy height is also required to fulfil international 
assessment and reporting obligations such as those outlined in the 
Montreal process (Miles, 2002). 

5.2. Materials and methods 

5.2.1. Study area 

The study area is located in the state of Victoria, Australia (Figure 25A) and 
comprises a total area of 4 million ha, an area similar in size to the country 
of Switzerland or the US state of Maryland.  Land tenure is predominantly 
public (>70%), the majority of which is located in state forest and national 
parks; the remainder is privately owned and primarily used for grazing 
livestock. Within this boundary, forest covers 2.9 million ha (Mellor et al., 
2012) where	 forest	 is	 defined	 as	 “having	 the	 potential	 to	 reach	 >2	m	 in	
height	and	>20%	canopy	cover”	(National Forest Inventory, 1998) (Figure 
25D).  Canopy height across the study area ranges from 0 – 70 m (Figure 
25B). 

The forested area extends across seven Interim Biogeographic 
Regionalisation for Australia (IBRA) regions, IBRA regions have distinct 
ecological, geological and climatological features (Department of 
Environment, 2012). Vegetation is dominated by dry sclerophyll forest and 
woodlands which have a relatively sparse canopy and a patchy, scrubby 
understorey.  In the foothills of the Australian Alps there are areas of 
highly-productive wet forest and rainforest characterised by a tall (>40 m) 
and closed canopy with high species richness (Gellie et al., 2005).  There 
are also subalpine and alpine areas in the Australian Alps that straddle the 
middle of the study area, these are characterised by relatively short 
vegetation. 

Two factors confound the estimation of canopy height in the study area 
when using remote sensing.  Firstly, the area is subject to regular 
disturbance from fuel reduction burns, bush fires and drought.  For 
example, the area experienced the most severe drought in a century in the 
decade prior to the study, which led to large scale tree mortality (Semple et 
al., 2010; Van Dijk et al., 2013).  Secondly, the physiology of Eucalypt trees 
and stands, such as an erectophile leaf angle distribution, asymmetrical 



Chapter 5 

87 

crown configuration, low foliage density and leaf and crown clumping 
(Jacobs, 1955) increase the proportion of reflectance coming from the 
ground, mid and understorey as well as increasing the shadow fraction 
(Armston et al., 2009; Jenkins and Coops, 2011). 

 

 

Figure 25. Study area in east Victoria, Australia.  A mosaic of 5 Landsat TM 
false colour composite images covering the study area (outlined in white) and 
location of the study area within Australia (inset) [A].  Canopy height derived from 
ALS capture where canopy height values are aggregated into 10 x 10 km cells (grey 
indicates no data) [B].  The extent of the ALS capture [C]. Forest extent (Mellor et 
al., 2012) and location of Victorian Forest Monitoring Programme forest inventory 
plots (VFMP) [D].  Map coordinate system is the projected Map Grid of Australia 
(MGA) Zone 55. 
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5.2.2. Data collection 

5.2.2.1. Forest inventory 

Forest inventory plot data was collected as part of the Department of 
Environment, Land, Water and Planning (DELWP) Victorian Forest 
Monitoring Programme (VFMP).  A total of 130 forest inventory plots were 
within the study area including 22 that intersected the ALS acquisition 
extent.  Forest inventory plots were installed between May 2011 – 
December 2014, where at each sampling location a 0.04 ha plot was 
established following DELWP protocol (Department of Sustainability and 
Environment, 2012).  Measurements for all trees within the forest 
inventory plot included diameter at breast height, species and live status.  
For a subset of trees (including the three tallest) height was also recorded.  
Dominant canopy height, the mean height of the three tallest live trees in a 
forest inventory plot, was calculated as the metric summarising canopy 
height (Lovell et al., 2003). 

5.2.2.2. Airborne laser scanning data 

Airborne Laser Scanning (ALS) data was acquired as part of the DELWP 
River Health Programme (Quadros et al., 2011).  ALS instrument and 
survey specifications are presented in Table 1.  The ALS data was originally 
acquired to assess stream bank condition and therefore capture was 
targeted at the riparian zone, although actual extent ranges from 0.3 – 2.5 
km either side of a watercourse.  Flight lines followed the course of the 
rivers and streams and were therefore off cardinal (Figure 25C), this 
resulted in a substantial and multiple overlap at flight line intersections. A 
combination of pulse density and the ability of the two ALS instruments 
utilised to record up to 4 discrete returns per outgoing laser pulse meant 
the data was suitable for characterising vegetation structure (Wulder et al., 
2012b; Wilkes et al., 2015). 

The ALS acquisition extent was clipped to the existing forest area (Mellor et 
al., 2013) and totalled 520,000 ha (Figure 25C).  A regular grid with a 250 
m spacing (to reduce the spatial autocorrelation of the response variable) 
was placed over the study area and a total of 12,000 ALS plots were 
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Table 7.  ALS capture and instrument specifications 

Specifications  
Capture specifications  
Date December 2009 – January 2011 
Flying height 600 – 1500 m above ground level 
Mean pulse density  9.4 pl m-2 
Swath overlap 20% 
Absolute vertical accuracy ±20 cm 
Absolute horizontal accuracy ±30 cm 
Mean footprint diameter ~35 cm 
  
Instrument specifications  

Instrument 
Leica ALS50-II and ALS60 (Heerbrugg, 
Switzerland)  

Operating wavelength 1064 nm 
Max off-nadir scan angle ±15° 
Outgoing pulse rate 36.4 Hz 

extracted using random stratified sampling. To capture canopy structural 
variance across the study area, the IBRA bioregion layer was used to 
stratify the area into distinctive vegetation types.  ALS plots that either 
intersected the edge of the ALS acquisition or had a pulse density <0.5 
pulses m-2 (Wilkes et al., 2015) were removed from analysis.  This resulted 
in ~11,000 ALS plots for model construction and evaluation. 

Square plots (50 m x 50 m) were extracted from the ALS dataset, after 
computation of canopy height plots were clipped to 30 m x 30 m to be 
consistent with Landsat TM pixel dimensions.  Plots were initially extracted 
at larger plot dimensions to ensure points around the plot edge had a large 
enough neighbourhood to create a representative ground surface model.  
Point height data was normalised to ground surface by first classifying 
points into either ground or non-ground, then using ground classified 
returns only, creating a triangulated irregular network (TIN) surface.  
Using the TIN, the ground normalised height for all points was then 
calculated.  Point classification, TIN creation and height normalisation were 
computed using LAStools (version 130225) (Isenburg, 2012).  The 95th 
percentile of return height for returns classified as non-ground was 
calculated for each plot as an analogue of dominant canopy height. 



Mapping forest canopy height across large areas 

90 

5.2.2.3. Satellite imagery and ancillary data  

A full list of predictor variables initially processed is presented in Table 2.  
A total of 10 Landsat Thematic Mapper (TM) images were acquired for two 
seasons; January – March 2009 (summer) and October – November 2009 
(spring).  Two seasons were acquired as different vegetation cover and 
composition characteristics are evident at different times of year.  For 
example, imagery captured in summer maximises the spectral difference 
between evergreen (overstorey) and cured grass whereas spring imagery 
captures the green flush (Mellor et al., 2013).  Images were geo-rectified 
and corrected for atmospheric and bi-directional reflectance distribution 
function effects to obtain surface reflectance (Flood et al., 2013), before 
being mosaicked.  Both image mosaics were captured at a time (pre- and 
post- summer equinox) when sun angle was relatively high to minimise 
shadow.  Although the summer imagery was captured approximately one 
year prior to the start of the ALS acquisition, imagery from summer 2010 
was significantly cloud affected and therefore unsuitable A Tasselled Cap 
(TC) transformation (Crist and Cicone, 1984) was applied to the Landsat 
TM mosaics, reducing the 6 visible bands to 3 features; brightness, 
greenness and wetness (Kellndorfer et al., 2010; Rodriguez-Galiano et al., 
2012a; Ahmed et al., 2015).  From each TC feature, 2 first order texture 
metrics (mean and variance or contextual and textural metrics 
respectively) were calculated using a range of kernel sizes (3, 5, 15, 33, 65 
and 99 Landsat TM pixels).  Maximum kernel size was determined using 
semivariance analysis of ALS derived canopy height models (30 m x 30 m 
resolution) captured over three representative forest areas in Victoria.  
Smaller kernel sizes were used to capture forest structure variance for 
forests that have a shorter lag and also to characterise forest patches 
smaller than a continuous canopy e.g. fragmented forests or linear features 
such as riparian vegetation.   

A time series of the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Normalised Difference Vegetation Index (NDVI) product 
(MOD13Q1) was utilised to capture changes in vegetation structure in the 
decade prior to the study period.  The MODIS NDVI product was chosen as 
it is highly correlated with vegetation phenology (Zhang et al., 2003) and 
also has the highest spatial resolution of MODIS products (250 m).  Two 
scenes (summer and spring) were acquired for each year between 2000 – 
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Table 8.  List of predictor variables with original image resolution in 
brackets (+kernel sizes: 3, 5, 15, 31, 65, 99 pixels) 

Source 

Landsat TM (30 m) 
MOD13Q1 (NDVI) time series (2001 – 
2010) (250 m) 

Tasselled Cap features and NDVI 

Summer brightness  
Summer greenness  
Summer wetness 
Spring brightness 
Spring greenness 
Spring wetness 
Summer NDVI 
Spring NDVI 
 

Image context/texture+ 

Summer mean brightness 
Summer mean greenness 
Summer mean wetness 
Spring mean brightness  
Spring mean greenness  
Spring mean wetness 
Summer brightness variance 
Summer greenness variance 
Summer wetness variance 
Spring brightness variance 
Spring greenness variance 
Spring wetness variance  

Summer mean 
Summer standard deviation 
Summer coefficient of variation 
Summer linear regression slope 
coefficient 
Spring mean 
Spring standard deviation 
Spring coefficient of variation 
Spring linear regression slope 
coefficient 

SRTM (~30 m) 

Elevation 
Aspect 
Slope 

Climatic (1 km) [66]  

Total annual precipitation  
Mean annual temperature 

Soils 

Soil moisture (1 km) [67] 
Major soil type (vector) [68] 

Coordinates (MGA zone 55) (30 m) 

X location  
Y location 

2010, where images were captured at the same time each year (first week 
of February and first week of November respectively).  Images were 
subsequently ordered into a chronological stack (for each season) and four 
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statistics were computed for each pixel stack: mean, standard deviation, 
coefficient of variation and the slope coefficient of a linear regression of 
NDVI with acquisition year. 

Site quality and climatological variables can constrain maximum canopy 
height, for example, a forest plots topographical position or air 
temperature (Austin, 1987; Jenkins and Coops, 2011).  To capture this 
within the predictive model, additional variables included elevation, slope 
and aspect derived from the Shuttle Radar Topography Mission (SRTM) 1 
arc-second resolution (~30 m) dataset; mean annual temperature and 
mean total rainfall (Hijmans et al., 2005); soil water balance (Trabucco and 
Zomer, 2010) and major soil type (National Resource Information Centre, 
1991).  Additionally Cartesian coordinate layers (X and Y location) were 
included (Mascaro et al., 2014). All datasets were resampled to a 30 m 
resolution to match that of Landsat TM and reprojected to MGA zone 55.   

5.2.3. Canopy height estimation with random forest 

For	the	estimation	of	canopy	height,	random	forest	was	run	in	‘regression’	
mode where canopy height was the response (dependent) variable and the 
satellite and ancillary data were the predictor (independent) variables.  In 
order to preserve the spatial heterogeneity present in native forests 
managed for conservation (Lindenmayer et al., 2000; McGarigal et al., 
2009; Jenkins and Coops, 2011), canopy height output is computed as a 
continuous surface i.e. not segmented into forest stands.  Random forest 
models were constructed and validated over the entire study area by 
randomly sampling 5,000 ALS plots from the global dataset in a bootstrap 
(N=50).  For each bootstrap iteration, the resulting random forest model 
was applied to a withheld random sample of 1,000 ALS plots, from which 
Root Mean Squared Error (RMSE) was estimated.  Outliers at the 95th 
percentile confidence interval were removed from RMSE calculations.  To 
produce a wall-to-wall map of canopy height, individual random forest 
models from the bootstrapped cross-validation were combined to improve 
generalisation and then applied to the synoptic datasets.  A second 
validation was achieved by comparing forest inventory measured canopy 
height from outside ALS acquisition area with model output. 

Two further experiments were conducted to assess the suitability and 
applicability of random forest for estimating canopy height over large 
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areas: (a) models were constructed and validated using ALS data within 
smaller geographic extents, and (b) models were constructed from smaller 
geographic subsets and validated using ALS data from the remaining 
portion of the study area.  For experiment (a) the hypothesis was that 
improvements can be made in performance by constructing and validating 
models over smaller geographic areas owing to the reduced range and 
variability of the response and predictor variables.  Experiment (a) was 
evaluated by dividing the study area into 24 grid squares (50 km x 50 km), 
then for each grid square a model was constructed using 75% of ALS plots 
as training data and the remainder for validation.   

LiDAR surveys usually cover a much smaller extent than the River Health 
capture.  Experiment (b) therefore tested the possibility of combining 
disparate acquisitions to estimate canopy height over a larger area.  This 
was achieved by randomly sampling the twenty-four 50 km x 50 km grid 
squares, where the number of squares included was iteratively increased 
from 2 to 23 (5 – 95% of the ALS footprint or 1 – 16% of the forested area).  
ALS plot data from the selected grids was combined and used as a training 
sample, creating a non-random distribution of training samples.  A random 
sample of 2,000 ALS plots from outside the selected grid squares was used 
as validation.  An additional 18,000 ALS plots were randomly extracted 
from the River Health dataset (using the method described in Section 
2.2.2), and combined with 2,000 from the original sample to create a 
randomly distributed dataset for the entire study area (i.e. not stratified by 
IBRA bioregion). 

5.2.4. Random forest implementation 

To facilitate the uptake of this method by land management agencies and 
forest scientists, computation was achieved using an open source 
framework (Mellor et al., 2013).  ForestLAS (Wilkes, 2015) and LAStools 
(Isenburg, 2012) were used to extract and process ALS data; GRASS 
(GRASS Development Team, 2015) and QGIS (QGIS Development Team, 
2015) software were used to extract and pre-process predictor variables; 
data management was achieved with Python (Python Software Foundation, 
2015); and random forest was implemented in Python via RPy2 using the R 
(R Development Core Team, 2014) randomForest package (Liaw and 
Wiener, 2013). 
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The randomForest implementation has two primary user defined 
parameters; number of candidate variables selected at each node split 
(mtry) and the total number of trees constructed in each forest (ntree).  The 
default mtry value was used, this is calculated as the total number of 
predictor variables divided by three (Liaw and Wiener, 2013).  Stabilisation 
of out-of-bag error (the error calculated using the withheld sample from 
the construction of each regression tree) occurred at ~100 trees and was 
therefore used for ntree.  Additionally, a sensitivity analysis of the number 
of training samples was undertaken, indicating an asymptote in achievable 
accuracy was reached at ~5,000 plots. 

5.2.5. Selecting predictor variables 

A more parsimonious model can be obtained by removing highly collinear 
variables and variables that contribute least to the predictive capability of 
the model (Svetnik et al., 2004; Murphy et al., 2010).  Variable collinearity 
was tested by constructing a coefficient of determination matrix for all 
combinations of variables.  For each highly correlated pair (r2 > 0.9), 
correlation coefficients were calculated between the variables and canopy 
height, where the predictor variable with the highest coefficient of 
determination was kept.  The second step followed the method of Murphy 
et al. (Murphy et al., 2010) where cohorts of predictor variables were 
iteratively removed from model construction based on their importance 
within the model.  After each iteration model performance was evaluated.   

A total of 19 variables were finally selected (Figure 26) from the original 
set of 97 (Table 2).  Using the cohort of 19 variables resulted in a <1% 
decrease in model accuracy when compared to using the full set.  The 
cohort consisted almost exclusively of reflectance variables, of which 
fifteen were derived from Landsat TM and 4 were derived from the 
Tasselled Cap wetness feature alone.  Contextual predictor variables 
featured prominently and were more important than single pixel variables.  
Landsat TM imagery captured in the summer was more important than 
spring imagery.  Ten year summer and spring mean NDVI was the only 
MODIS time series variable to feature prominently.  Ancillary variables 
were of less importance, only the X and Y Cartesian coordinates featured 
significantly.  The relatively small range of MSE values from the cross 



Chapter 5 

95 

 

Figure 26. Relative importance of the 18 variables selected for the final 
random forest model.  Confidence intervals (95th percentile) for variable 
importance were calculated in a bootstrap (N=50).  Increase mean square error 
(MSE) is the mean of the squared prediction error when the variable is permuted 
for a random variable (Cutler et al., 2007).  Numbers in brackets indicate the 
kernel size. 

validation for each predictor variable (Figure 26) suggests that the order of 
the most significant variables was stable. 

5.2.6. Systematic error in model output 

Exploratory analysis suggested a systematic bias in modelled canopy height 
output, where the height of shorter and taller plots were over and 
underestimated respectively.  Spatially incorporating an estimate of error 
(e.g. kriging or cokriging of model residuals) has been utilised previously 
(Hudak et al., 2002).  However, here this was inappropriate owing to the 
low	 spatial	 autocorrelation	 in	model	 error	 (Moran’s	 I	 =	 0.018, p<0.001).  
Alternatively, two aspatial methods were tested to mitigate the systematic 
bias; (a) resampling of the response variable to a uniform distribution and 
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(b) subtracting from model output a linear model that characterises the 
systematic	error	component.		When	running	random	forest	as	a	‘classifier’,	
inequity in class representation can be addressed by either up-sampling or 
down-sampling the minority and majority classes respectively (Chen et al., 
2004).  Here a pseudo-uniform distribution for the response variable was 
computed by aggregating ALS plots into 10 m height cohorts, then using 
random sampling (with replacement), increasing or decreasing the number 
of plots in each class accordingly.   

For the second approach, a random forest model and a linear model of 
systematic error were derived from the training dataset, these were then 
applied to the withheld dataset or across the whole study area.  To ensure 
independence of training and withheld datasets, the training dataset was 
divided into two halves.  The first half of the training data was used to 
construct the random forest.  Linear coefficients were then determined by 
regressing model residual error, derived from applying the random forest 
model to the second training dataset, with ALS estimated canopy height.  
To then estimate canopy height of the withheld dataset (HRF-SE), the random 
forest model was applied to the dataset (HRF) and the systematic 
component was subtracted as follows:  

𝐻 =  𝐻 −  (𝛼𝐻 + 𝛽 ) 

EQ. 15 

where D and E are the regression coefficients.  When applying the 
technique across the whole study area using the combined random forest 
model, mean D and E regression coefficients from the cross-validation were 
used. 

5.3. Results 

5.3.1. Canopy height estimation 

Cross-validation of random forest for estimating canopy height returned a 
mean RMSE of 31.3% (5.68 m) at the 95th percentile confidence interval, 
where the model explained 58% of variance in canopy height (p<0.0001).  
Systematic error was apparent in the over and underestimation of shorter 



Chapter 5 

97 

 

Figure 27. ALS derived canopy height (H95) compared to model residual 
error for random forest models (HRF); constructed using 5,000 ALS plots of 
untransformed response data [A], 5,000 ALS plots where the response variable 
was resampled to a uniform distribution [B], and subtraction of systematic error 
from modelled canopy height [C].  The coefficient of determination values (r2) 
were calculated from a linear regression of measured canopy height and model 
residuals. 

and taller canopy heights respectively (Figure 27A), systematic error 
accounted for ~2 m of total error.  This error was caused by forest plots 
located towards the tails of the response variable distribution having 
similar predictor variable values to plots closer to the mean (Figure 4).  As 
a result, canopy height values closer to the mean were preferentially 
modelled to reduce overall prediction error.  For example, plots with a 
canopy height <10 m have a comparable spectral response to plots where 
canopy height is 10 – 20 m (Figure 28B).  As plots in the 10 – 20 m cohort 
are more numerous, modelled canopy height for plots where ALS estimated 
canopy height is <10 m are allocated to the 10 – 20 m cohort (Figure 28C).  
The systematic error resulted in additional kurtosis for modelled canopy 
height when compared to the distribution of the response variable 
(compare Figure 28A and C).  This effectively reduced the range of canopy 
height from 1.4 – 71.9 m for ALS measured canopy height to 7.9 – 60.7 m 
for modelled canopy height.  

Training random forest with response data that had been resampled to a 
uniform distribution resulted in a marginal reduction in overall model 
performance (RMSE = 33% at the 95th percentile confidence interval), 
however the predicted range of canopy height values increased 
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Figure 28. A comparison of the response variable distribution [A], range of 
Tasselled Cap wetness values (3 x 3 pixels) [B] and the distributions of modelled 
canopy height (random forest [C] and random forest - systematic error [D]) for 
different height classes.  The solid arrows indicate the direction in which the 
random forest model output was “squeezed”	 by	 inequity	 in	 response	 variable	
distribution; the dashed arrow indicates the direction canopy height values were 
rescaled after correcting for systematic error. 

to 6.7 – 63.3 m (Figure 27B).  When an estimate of systematic error was 
accounted for the distribution of canopy height closely represents ALS 
estimate height (Figure 28).  Furthermore, the range of canopy height was 
more representative of the response variable (0.5 – 68.0 m) and mean 
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error for plots where canopy height was >50 m and <10 m were reduced by 
4.2 m and 1.2 m respectively (Figure 28D).  Although error became 
independent of the response variable (Figure 27C), overall model accuracy 
increased only marginally when compared to the original output (RMSE = 
30.4% (6.46 m) at the 95th percentile confidence interval) owing to the 
rescaling of correctly modelled plots. 

A map of canopy height derived from random forest after correcting for the 
systematic error is presented in Figure 29A.  When ALS plots are 
aggregated into 10 km x 10 km cohorts and compared to the ALS dataset, 
error was less than ±15% of ALS derived canopy height for 74% of the 
study area, less than ±10% for 57% and less than ±5% for 33%.  Larger 
errors occur in the taller (south east corner) and shorter (central strip) 
forests in the study area (Figure 29B and C), which was consistent with the 
tails of the canopy height distribution being under represented. 

Generating a continuous map of canopy height at a 30 m resolution allows 
for the identification of features in the landscape, for example, caused by 
land-use and disturbance history.  An area of mixed-use forest is presented 
in Figure 30 where the location, extent and regeneration of (clear-felled) 
logging coupes are clearly evident.  A map generated at a coarser spatial 
resolution would not identify land-use history with such fidelity. In Figure 
30 example A, the poorer model performance for estimating the tails of the 
canopy height distribution is evident, as it would be expected that canopy 
height for a recently logged coupe would be closer to 0 m. 

5.3.2. Validation with inventory data 

Further validation of model output was provided by comparing random 
forest generated canopy height with forest inventory plots from outside the 
extent of the ALS capture (Figure 31), the random forest model and 
random forest minus systematic error returns a RMSE of 29% (5.5 m) and 
32% (6.3 m) respectively at the 95th percentile confidence interval.  
Although the model output from random forest produces a more accurate 
result (Figure 31A), correcting for systematic error improved estimates of 
taller forest inventory plots in particular (Figure 31B).   
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Figure 29. Canopy height at a 30 m resolution (clipped to forest extent) 
generated using random forest - systematic error [A].  Model output when 
compared to ALS derived canopy height (10 km x 10 km resolution) where error is 
represented as height difference [B] and percentage of height [C]. Coordinate 
system is the projected Map Grid of Australia (MGA) Zone 55 

Figure 32 compares ALS and random forest derived canopy height with 
inventory measurements from within the ALS capture extent.  A good 
statistical association is evident between inventory and ALS measured 
canopy height where ALS estimates canopy height with a RMSE of 11% (2.9 
m).  This highlights the suitability of ALS for measuring canopy height over 
a large area using a single metric, even where forest type is heterogeneous.  
The association between random forest estimated and inventory measured 

A 
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Figure 31. A comparison of inventory measured canopy height (Hinv) with 
random forest (HRF) [A] and random forest corrected for systematic error (HRF-SE) 
[B] estimated canopy height, at 108 forest inventory plots. 

Figure 32. A comparison of inventory (Hinv) measured canopy height and 
ALS (HALS) and random forest - systematic error (HRF-SE) estimated canopy height, 
for 22 plots from within the ALS capture area.  Vertical dotted lines link the same 
plot estimated with ALS or random forest. 
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canopy height is similar to the comparison with forest inventory plots 
outside the ALS acquisition extent (RMSE = 29% 6.0m)).  Interrogation of 
the outlier in Figure 32 indicates this was the result of a single emergent 
tree that was significantly taller than the other trees used to estimate 
dominant canopy height, thereby increasing the ALS estimate of canopy 
height. 

5.3.3. Training and validation of random forest using 
smaller geographic areas 

There was generally no improvement in model performance for random 
forest trained and validated on smaller geographic areas, when compared 
to the same area trained using the complete dataset (paired t-test; 
p=0.4766).  As there is no increase in model performance when training 
and validating over smaller geographic areas, this would indicate there is 
no upper limit to modelled area size, as long as training data captures the 
variance in canopy height and predictor variables.  For some locations a 
large error (>10%) was observed from a random forest model trained and 
validated on a smaller area when compared to the whole area model, this is 
attributed to a small training dataset (N<150).  Improvements in model 
performance were seen for an area where mean ALS derived canopy height 
was 37 m.  Taller forests were generally less well represented in the study-
area wide model, therefore for areas of extreme canopy height values a 
local model yields improved results. 

5.3.4. Simulating disparate ALS capture for training a 
random forest 

When training the model with non-randomly distributed sample points 
(e.g. simulating aggregation of smaller ALS acquisitions) achievable 
accuracy reaches an asymptote at ~6% of the total forest area (Figure 33). 
RMSE and variance in estimates is greater than when compared to a 
stratified random sample approach.  It is suggested that the ~3% increase 
in RMSE is caused by random forest over-fitting to the training data, 
therefore extrapolation beyond the training areas is impeded (Mascaro et 
al., 2014).  The large estimate variance is due to the training data either not 
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Figure 33. Error in canopy height estimates when constructing random 
forest models from ALS data selected to represent a combination of a number of 
disparate (non-random) acquisitions.  Model output was validated with ALS plots 
from outside the training area.  For comparison (see boxplot), the results from 
bootstrapping (N=50) random forest trained with a random stratified (by IBRA 
bioregion) sample from across the whole study area (~18% of forested area) is 
included. 

capturing the variance within the withheld sample (larger error) or the 
training and withheld samples having similar canopy height distributions 
(smaller error).  This is exemplified by RMSE of >40% for a training sample 
derived from >90% of the acquisition area (Figure 33), in these instances 
areas of taller and shorter forest plots were not included in the training 
cohort. 

5.4. Discussion 

This manuscript demonstrates a method for assessing canopy height, over 
a large area, where forest structure is heterogeneous and canopy height 
ranges from 0 – 70 m, using freely available predictor data and in an open 
source computing framework.  Forest canopy height was modelled from 
satellite imagery and ancillary data with a two-stage approach, where ALS 
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data captured over 18% of the study area was used to train the ensemble 
regression tree model, random forest.  Two validation approaches were 
used, both of which indicate a good agreement between measured and 
modelled canopy	 height	 (RMSE	 ≤31% at the 95th percentile confidence 
interval).  Model error is at the upper limit of acceptable error as stipulated 
by the European Space Agency (ESA) in the upcoming BIOMASS project 
when estimating forest biomass from canopy height (Seifert et al., 2015).  
However the ESA target resolution for a canopy height product is much 
coarser (200 m) than the one presented in this study (30 m).   

Previous studies have used regression and machine learning techniques to 
model canopy height, however these studies have been limited to forests 
with a maximum canopy height <30 m or plantations.  For example, Mora 
et al. (2013) used high spatial resolution imagery to estimate canopy height 
for a 7000 ha area of conifer forest, reporting errors of 21% using a k-
Nearest Neighbour method.  Using a segmented Landsat image to estimate 
height over 707,000 ha of coniferous forest, Wulder and Seemann (2003) 
reported a standard error of 3.3 m.  Applying random forest Ahmed et al. 
(2015) and Cartus et al. (2012) estimated canopy height with an RMSE of 
≤3.5	 m	 and	 <1.7	 m	 for	 managed	 coniferous	 and	 eucalyptus	 forests	
respectively.  When using regression tress to classify plots in height classes 
ranging from 0 to >50 m, Peterson and Nelson (2014) significantly 
underestimated canopy height for plots >50 m when compared to 
inventory data.  A comparison of model output (resampled to 1 km) with 
the Simard et al. Simard et al. (2011) global canopy height product reveals 
discrepancies between the two approaches of up to ±20 m over tall and 
short forest. 

The capture or ALS over large areas is still uncommon and previous studies 
have shown that, over relatively homogeneously forested landscapes, 
acceptable results can be obtained from a capture of <1% of the forest area 
(Wulder and Seemann, 2003).  If a wall-to-wall ALS acquisition is 
unrealistic, a sample cohort could be created by combining a number of 
smaller (existing) acquisitions.  Results for this study area would suggest 
that RMSE reaches an asymptote when ALS is acquired over ~6% of 
forested area.  However, a non-random sample returned a larger error 
when compared to a stratified random sample, even when comprised of 
plots from over a relatively large area.  It is suggested that with a targeted 
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ALS sampling strategy, total area acquired could be reduced.  However, this 
would require detailed a priori knowledge of forest structure or 
segmentation of a synoptic predictor dataset to infer forest structure 
variability (McRoberts and Tomppo, 2007). 

Systematic error was apparent in the tails of modelled canopy height 
distribution, a similar systematic error was evident in other studies that 
used random forest to model canopy height and biomass (Baccini et al., 
2008; Kellndorfer et al., 2010; Peterson and Nelson, 2014).  Two methods 
were tested to reduce the error; a resampling of the response variable to a 
uniform distribution and subtracting an estimate of the systematic error 
component from modelled output.  The latter technique proved most 
successful in recreating the range of canopy heights evident in the training 
data.  However the transformation is non-discriminate when rescaling 
canopy height values and therefore inevitably introduced noise to the 
modelled output (e.g. rescaling values correctly modelled by random 
forest).  This is evident from there being a minimal overall improvement in 
model performance after subtracting the modelled error component.   

Overall, reflectance predictor variables were far more important in the 
model than other data sources.  This would suggest that disturbance has a 
far greater influence on determining canopy height than underlying site 
condition or climatic processes that constrain maximum canopy height.  
Mascaro et al. (2014) found the addition of coordinate variables within the 
model greatly improved accuracy when estimating biomass, however in 
this instance this was not the case.  The preference of reflectance based 
model drivers may also indicate that the complex set of environmental 
variables that limit canopy height are not captured within the datasets 
used, although the low spatial autocorrelation of model error may suggest 
otherwise.  Furthermore, the resolution of the ancillary datasets were 
generally much coarser and required resampling, therefore these variables 
would not have adequately captured the within pixel variance.  It should be 
noted that the specific variables and their relative importance will not be 
universally applicable across all forests outside of the study area, or in 
previous or subsequent years (Foody et al., 2003).  For example, previous 
and subsequent years would have to be treated as independent and 
therefore new models created for each (Hudak et al., 2012b). 
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By far the most important variable was the Tasselled Cap (TC) wetness 
feature, in particular the mean value calculated for a kernel size of 3 x 3 
Landsat TM pixels (90 m x 90 m).  Calculating a mean value over a kernel, 
as opposed to individual pixel values, limits the impact of pixel level noise 
(Armston et al., 2009).  Variable importance calculated for 50 km x 50 km 
sub areas, across a wide range of forest types and environmental gradients, 
also consistently ranked TC wetness as the most important variable.  The 
TC wetness feature is driven by contrast between the visible and infrared 
and short wave infrared wavelengths, highlighting moisture gradients in a 
scene (Crist and Cicone, 1984).  This would indicate that the canopies of 
taller, denser forests contain more moisture (owing to decreased 
temperatures and increased evapotranspiration) and shorter forest 
canopies are more arid, a paradigm that fits the environmental gradients of 
the study area (Gellie et al., 2005; Jenkins and Coops, 2011).  Previous 
studies have highlighted the strong association between forest structure 
and the TC wetness feature (Cohen and Spies, 1992; Pascual et al., 2010) 
and middle/short wave infrared wavelengths (Steininger, 2000; Baccini et 
al., 2008).  However, a linear regression of TC wetness (3 x 3 pixels) and 
canopy height returns a fairly weak statistical association (r2 = 0.35), 
highlighting the requirement for a more complex statistical approach. 

Although successful results were obtained, there are a number of potential 
sources of error worthy of discussion.  For example, there is up to 2 years 
between ALS and Landsat TM acquisition and up to 5 years between ALS 
capture and plot measurements.  An assessment of forest inventory plots 
that have been revisited (a total of 60 state wide) reveals that absolute 
mean change in canopy height is ~0.5 m per annum.  This would therefore 
suggest that changes in canopy height are minimal at plots that have not 
been affected by fire or logging in the interim years.  Another potential 
source of error is the limited extent of the ALS capture that was restricted 
to the riparian zone.  Vegetation composition, and therefore structure, is 
known to differ from non-riparian areas, such as having a lower proportion 
of Eucalypt species (Lindenmayer, 2000).  However, ALS transects were the 
same width along the entire reach of the river and therefore the proportion 
of riparian vegetation within the sample decreased in the upper 
catchments.  The strong statistical association of forest inventory data from 
outside the ALS acquisition extent (and therefore away from riparian 
vegetation) with modelled canopy height would indicate that the impact of 
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the limited sample extent was negligible.  Forest management practices 
area poorly represented (e.g. Figure 30 plot A) in the model, where clear-
felling practices (1990 - 2010) accounted for <1% of the ALS extent.  Under 
sampling of actively managed areas is partly a result of logging coupes and 
plantations requiring a 200 m riparian retention strip (VicForests, 2014). 

The analysis presented in this manuscript was achieved using an open 
source computing framework, in addition, model predictor variables are 
publically available with a global coverage.  Therefore, if training data is 
available (e.g. canopy height measurements from ALS or forest inventory) 
the presented methodology could be easily adopted by scientists and land 
management agencies who wish to map canopy height over large areas.  
Furthermore, with the planned launch of the Global Ecosystem Dynamics 
Investigation (GEDI) space borne LiDAR mission in 2018, the opportunity 
to replace costly ALS or inventory acquisitions with a freely available and 
spatially continuous sampling method is presented (within the temperate 
and tropical latitudes) (Dubayah and Schaaf, 2015).  

5.5. Conclusions 

This study presents a method for estimating canopy height at a large-area 
(i.e. millions of hectares) scale at a 30 m resolution. Application of this 
method was demonstrated across 2.9 million hectares of heterogeneous 
forest, comprising a broad range of forest types from open woodland to 
temperate rainforest, where canopy height ranged from 0 – 70 m.  Canopy 
height was estimated using a two-stage approach, firstly a random forest 
ensemble regression tree model was trained with ALS derived canopy 
height, canopy height estimates were then upscaled to the large area using 
the synoptic datasets.  This was achieved utilising existing ALS data (i.e. not 
a bespoke acquisition) in conjunction with synoptic medium resolution 
freely available satellite imagery (e.g. Landsat Thematic Mapper (TM) and 
Moderate Resolution Imaging Spectroradiometer).  Root mean square error 
in estimated canopy height was ≤31%	 (~5.6 m) when validated with (a) 
cross-validation of ALS derived canopy height and (b) a network of forest 
inventory plots from outside the ALS extent.   

Systematic error was evident in model output where taller and shorter 
forest plots were under and overestimated respectively.  This was 
corrected for by subtracting an estimate of systematic error, derived from a 



Chapter 5 

109 

linear regression of model residuals, from model output.  It should be noted 
that correcting for systematic error did not improve overall model 
estimates, as plots closer to the mean canopy height were incorrectly 
rescaled.  It is a modellers prerogative to estimate broad trends (e.g. using 
the random forest output) or more accurately attribute outlier values (e.g. 
subtracting an estimate of systematic error). The model was predominantly 
driven by reflectance data, in particular the Landsat TM Tasselled Cap 
transformed wetness feature.  This would suggest that in the study area 
disturbance is the primary constraint on canopy height. 

The method framework is designed to be easily adopted by land 
management agencies.  It was shown that the combination of disparate ALS 
acquisitions (i.e. a non-random sample) covering ~6% of the forested area 
could be used to successfully estimate canopy height, although results were 
slightly worse than for a random stratified sample of the entire study area.  
In the absence of suitable ALS data, the use of forest inventory plot data to 
train the random forest model is suggested, if the inventory plot network is 
sufficiently representative.  Alternatively, the planned Global Ecosystem 
Dynamics Investigation (GEDI) space borne LiDAR will offer a near global 
sampling of forest structure and furthermore will be freely available.  This, 
coupled with the scalability of random forest, suggests application of the 
technique at a continental or global scale would be entirely feasible. 
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6.1. Summary of results 

The development of metrics and techniques to assess biospheric attributes, 
which are universally applicable across large-areas, is becoming 
increasingly important as the extent and impact of anthropogenic 
modifications to the biosphere and atmosphere are becoming apparent 
(Schaaf et al., 2008; Pereira et al., 2013).  Remote sensing techniques have 
been identified as a key tool with which to measure and model metrics, as 
technological improvements continue to provide more extensive, detailed, 
accurate and timely information on the biophysical properties of the 
earth’s surface (Hollmann et al., 2013; Skidmore et al., 2015).  The 
requirement for metrics and techniques to assess ecosystems over large 
and heterogeneous areas is exemplified by the needs of sustainable forest 
management, and this was the motivation of the thesis.   

Large area attribution, particularly in remote or inaccessible areas has 
proved an on-going challenge for land managers.  Heterogeneity in forested 
landscapes also presents challenges as assessment solutions have to be 
capable of generalising to varying land cover, possibly without a priori 
knowledge of forest type.  Two forest structure metrics were chosen to 
investigate techniques for upscaling plot scale measurements to large-area 
attribution; these were canopy height and canopy vertical structure.  
Chapter 1 provides a broad introduction to the role and importance of 
forests in a global context, legislative frameworks for their assessment and 
past and current techniques for forest inventory, with an emphasis on 
remote sensing and LiDAR.  Chapters 2 – 5 focus on answering the research 
objectives outlined in Section 1.3, key results from which are discussed 
below.  This final chapter provides a summary and synthesis of the major 
research outcomes, highlighting the benefits of large area analysis of 
forests and frame the current work in future remote sensing programmes 
and technologies applicable to a sustainable forestry management context. 

Outlined in Table 9 are the airborne laser scanning datasets used in the 
preparation of this thesis.  Determination of appropriate canopy height and 
canopy height profile metrics was accomplished using the CRC-SI 2.07 
dataset.  Although the three study areas were located within 300 km of 
each other, they covered a broad range of forest structure types 
representative of south eastern Australia; from short open woodland with 
a discontinuous canopy to very tall and dense cool and temperate 
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rainforest.  To investigate Question 2, the TERN/Auscover datasets were 
used, this incorporated additional structural variability from sites across 
Australia, such as savanna  and tropical rainforest.  The TERN/Auscover 
sites were not included in the determination of appropriate metrics 
investigated in Question 1 owing to a lack of detailed forest inventory.  To 
investigate upscaling with passive satellite imagery, the River Health 
dataset was utilised, as this provided continuous ALS data over a much 
larger extent.  Importantly, vegetation metrics did not require tailoring or 
recalibration when applied to different ALS instruments, capture 
specifications or vegetation types.  This would indicate the presented 
metrics and techniques are transferable and robust when generating plot 
level vegetation structure estimates. 

Table 9 Airborne laser scanning datasets utilised 

Dataset 
name 

Capture 
date 

Geographic area  Instrument Mean 
pulse 
density  
(pl m-2) 

CRC-SI 
2.07 

April 2012 Three 25 km2 study 
areas in Victoria, 
Australia (Figure 2). 

Riegl LMS-
Q560 

9 

TERN/ 
Auscover 

2012 - 2013 As above plus an 
additional three 25 km2 
study areas in 
Queensland, Western 
Australia and the 
Northern Territory, 
Australia (Figure 18). 

Riegl LMS-
Q560 

9 

DELWP 
River 
Health 
project 

December 
2009 – 
January 
2011 

5200 km2 capturing the 
riparian strip in the 
East Gippsland and 
Northern Catchment 
Management Authority 
areas, Victoria Australia 
(Figure 25).   

Leica 
ALS50-II 
and Leica 
ALS60 

4 
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Question 1. Which metrics of canopy height and canopy vertical 
structure are suitable for application across forested landscapes? 

The empirical statistical association between field measured canopy height 
and ALS derived analogues were robust across a range of forest types.  This 
would imply a ‘broad-brush’	metric based approach can be applied to ALS 
surveys captured over large areas, and a tailored metric or calibrated 
model (e.g. multiple regression of ALS derived variables) for specific areas 
or forest types unnecessary.  The applicability of using a single metric 
approach was demonstrated when answering Questions 2 and 3 where 
canopy height was estimated across a range of forest types as well as over a 
large area of heterogeneous forest (~3 million ha).  For both examples this 
was achieved using the 95th percentile height of non-ground ALS returns.  A 
comparison of ALS and inventory measurements at 30 points from within 
the DEWLP River Health study area resulted in a good agreement between 
the two techniques (RMSE = 3.3 m) with no bias towards forest type. 

Using a mixture model to characterise or parameterise canopy vertical 
structure was less effective when applied across heterogeneous forested 
landscapes.  This was due to mixture models requiring an a priori 
assumption of the number of model components i.e. k or the number of 
canopy strata, used to characterise foliage distribution.  A new technique 
was introduced that utilised ALS to dynamically attribute canopy vertical 
structure by estimating the Number of Strata (NoS) present.  The technique 
generated a generalised curve of ALS derived gap probability (Pgap) that 
allowed the identification of canopy scale features.  Furthermore, it was 
shown a universal parameterisation was sufficient to generalise Pgap across 
forest types, negating the requirement for a forest type specific 
parameterisation.  This was demonstrated in Chapter 4, where NoS was 
calculated for a range of forest types and simulated capture specifications 
without	recalibrating	α. 

The new technique would allow for existing methods, such as mixture 
modelling or cluster analysis, to be applied dynamically across a forested 
landscape.  This would improve the fit of the curve to the canopy height 
profile when compared to the pseudo-waveform generated to calculate NoS 
and allow parameterisation of the upper canopy and shade tolerant or sub-
canopy strata beneath (Figure 34). 
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Figure 34. Canopy height profiles, generated with parametric mixture 
models and pseudo-waveforms from the derivative of 1 – Ps, fitted to 25 m x 25 m 
ALS plots along a 200 m x 25 m transect (dashed lines identify plot boundaries).  
NoS values have been used as an a priori estimate of the number of model 
components.  Compare with Figure 6. 

Validation of NoS proved difficult, owing partly to the lack of agreement in 
techniques to characterise canopy vertical structure or quantify the 
number of canopy strata (Parker and Brown, 2000) as well as the number 
and remoteness of inventory plots.  The Geometric Crown Volume Model 
approach, although using an independent dataset, is still an (abstract) 
model of a forest plot and assumptions, such as an ellipsoidal crown 
archetype, will have compromised the quality of the comparison.  The use 
of 3D tree reconstruction, either through inventory measurements 
(Woodgate, 2015) or with terrestrial laser scanning (Burt et al., 2013), 
could provide a more robust validation dataset.  This could be further 
coupled with a radiative transfer model which would allow 
parameterisation of both the forest and the ALS acquisition (Disney et al., 
2010). 
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A component of the new technique to assess NoS was simulation of point 
clouds within in a bootstrap.  As far as it is known, bootstrapping of ALS 
point cloud configuration, either from a probability density function (as in 
Chapter 3) or with the original point cloud, is a new approach.  This not 
only allows for the derivation of more robust estimates of vegetation 
structure, but could also be used to report confidence interval alongside 
metrics of vegetation structure.  This would be particularly useful where 
pulse density is low, for example where pulse density <0.5 pulses m-2 as 
discussed in Chapter 4. 

Question 2. What is the appropriate ALS sampling frequency for 
attribution of forest structure for different forest types?  

Plot scale vegetation metrics can be accurately estimated from ALS 
acquired at a pulse density of 0.5 pulses m-2 (pl m-2), when compared to a 
more dense acquisition (10 pl m-2).  This was demonstrated across a range 
of vegetation types, from open woodland to dense tropical rainforest.  A 
new technique to systematically thin point cloud data was developed to 
investigate Question 2.  This was required as existing techniques were (a) 
incapable of recreating the systematic way in which ALS instruments 
capture data, particularly at low pulse densities, and (b) not suited to 
multi-return instruments where more than two returns can be recorded for 
each outgoing pulse. 

ALS capture still tends to be a one-off acquisition at a relatively high pulse 
density (>4 pl m-2), and repeated surveys are unusual, particularly over 
large-areas and native forests.  As the new algorithm selects points in a 
systematic way, this allows simulation of repeat capture over the same 
plot.  Results indicated that at a pulse density of 0.5 pl m-2 canopy structure 
is well represented and comparable to higher pulse densities.  This would 
suggest that quantification of change in vegetation structure over time by 
repeat capture is feasible (Hudak et al., 2012b), although this does not take 
into consideration differences in capture parameters, such as scan angle or 
atmospheric conditions. 

Advances in LiDAR instrument technology have seen an exponential 
increase in pulse repetition frequencies from 2 KHz to upwards of 800 KHz 
in little over a decade.  The prevalence of commercially available small-
footprint full-waveform instruments allows for a greater number of returns 
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to be identified for a single out-going pulse.  Furthermore, computational 
power and data storage has increased, allowing for efficient processing of 
large datasets.  However, acquisition costs (mobilisation, wages, fuel costs 
etc.) have remained relatively stable.  It is suggested therefore, the trade-off 
between an acceptable pulse density and the extent of capture may become 
decoupled as acquisition cost become the dominant factor. 

Question 3. How can plot level estimates of canopy structure be scaled 
to generate continuous regional maps? 

Building on the knowledge from the previous two research questions, a 
map of canopy height was produced for 2.9 million hectares of forest with 
heterogeneous structure.  This was achieved by using ALS data to train a 
random forest regression model, where synoptic satellite imagery was 
used as predictor data.  As the definition of large-area used in this thesis 
has no upper limit, it is proposed the technique presented in Chapter 5 
could be applied to generate a global scale canopy height product at a 
resolution not yet achieved.  This would be possible owing to the scalability 
of the random forest technique, which has been demonstrated in a number 
of previous studies (Clark et al., 2010; Simard et al., 2011).  A similar 
approach for estimating global deforestation was used by Hansen et al. 
(2013) who utilised the Google Earth Engine cloud computing facility. 

A pilot study to predict canopy vertical structure using random forest and 
satellite imagery was successful when applied to the CRC-SI 2.07 sites 
(Wilkes et al., 2014).  However, attempts to upscale estimates of canopy 
vertical structure over the River Health area was less successful and a 
number of reasons are suggested for this.  Firstly, the CRC-SI 2.07 data is 
from three distinct sites where structural attributes and reflectance 
characteristics are somewhat unique to each site and therefore easier to 
classify.  This is in contrast to the River Health dataset which covered a 
continuum of forest types and structural characteristics.  Secondly, the 
CRC-SI 2.07 sites were exemplar of the forest type they represented, this 
meant there were no recent disturbances or anthropogenic land use, 
therefore variance in vertical forest structure caused by disturbance would 
be minimised.  The River Health extent captured areas previously (and 
recently) affected by disturbances including planned burns, bushfires, 
drought and active forest management which adds complexity to the 
model.  Thirdly, canopy vertical structure is more locally variable than 
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canopy height (Figure 11), making identification of patterns in predictor 
datasets more challenging for machine learning methods. The inclusion of 
additional data sources, for example radar tomography (Caicoya et al., 
2014), may in the future improve canopy vertical structure attribution over 
large areas.    

A suggested further avenue of research is to investigate a move towards a 
monitoring framework where maps of canopy height change are produced.  
It is suggested this could be achieved using training data that is captured 
with less regularity than predictor variables e.g. the revisit time of 
permanent inventory plots is ~5 years, whereas cloud free image mosaics 
could potentially be created seasonally.  The challenge moving from an 
assessment to a monitoring programme would be (potentially large) shifts 
in predictor variable values caused by dynamic environmental conditions 
(e.g. drought to wet), meaning each epoch would have to be treated 
independently (Hudak et al., 2012b).  

6.2. Identifying trends in large-area forest structure 

Tools presented in this thesis allow for analysis of trends in large-area 
forest structure that may not be apparent at more local scales.  Presented 
in Figure 35 are results from generating canopy height profile attributes 
from the River Health dataset for 11,000 plots across 2.9 million hectares.  
This analysis reveals trends in forest structure that an analysis of canopy 
height alone may not identify.  For example it is suggested three broad and 
distinct forest classes occur within the study area, identified in Figure 35 as 
A, B and C.  Classes were assigned by determining the height of the 
vegetation density modal peak for the dominant canopy strata.  As there is 
a large overlap between classes when considering canopy height alone, 
classes would be hard to distinguish without the inclusion of this additional 
information.  When the classification is applied across the study area it 
identifies classes A, B and C as short open woodland (including alpine 
vegetation), mixed species forests and temperate rainforest (Figure 36).  A 
suggested reason for the increase in canopy depth with increasing 
maximum canopy height within each class is the shift from a canopy 
comprised of a dense population of co-dominant trees to a canopy of fewer 
dominant individuals.  This transition reduces competition for light and 
therefore changes crown archetype from an inverted cone, where foliage
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Figure 35. Landscape forest structure captured with ALS transects for a total 
area of 2.9 million ha.  Green, red and blue markers indicate the height of the 
dominant, shade tolerant and intermediate strata that were calculated using the 
pseudo-waveform described in Chapter 3.  Also illustrated is the suggested limit of 
the shade tolerant strata and the presence of 3 distinct forest structure types 
(labelled A - C). 

clumps towards the top, to an ellipsoidal shape where the maximum in 
foliage density is shifted downwards within the crown. 

The presence of a second modal peak in the canopy height profile is 
indicative of a shade tolerant or sub-dominant stratum beneath the 
dominant canopy.  This strata begins to occur in forests where maximum 
canopy height >10 m, with increasing maximum canopy height the height 
of the shade tolerant strata increases proportionally (shaded area in Figure 
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35).  This is consistent with the vertical canopy transects presented in 
Figure 6.  It is likely the species composition of these strata changes with 
increasing maximum canopy height, from larger shrubs in open woodland 
to a shade tolerant tree strata in taller rainforest (e.g. Acacia and 
Nothofagus spp.).  

An intermediate strata occurring between the shade tolerant strata and the 
dominant canopy is uncommon, occurring in <0.5% of all plots and ~3% of 
plots where canopy height >40 m.  The absence of this stratum in tall forest 
is clearly visible in Figure 2 where a large gap is apparent between the shade 
tolerant strata and dominant canopy.  The presence of an intermediate 
strata in tall forest is the product of a partial stand replacing disturbance 
which has led to the initiation of a second generation of dominant canopy 
species.  Locations where an intermediate strata exists are globally 
important biomass hotspots where carbon density can reach 2,844 tonnes 
of carbon per hectare (Keith et al., 2009). 

Figure 36. Classification of forest type according to the three types identified 
in Figure 35. 
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The application of the canopy vertical structure method presented in 
Chapter 3 across a large area highlights the additional information that can 
be extracted from ALS data to characterise forest structure.  It also 
indicates that when parameterising the model so it is suitable for large area 
analysis, not all plots will be attributed correctly.  This is illustrated in 
Figure 35 where, for certain plots, the last mode is identified high in the 
canopy profile i.e. above the shade tolerant zone.  A suggested 
improvement to the model would be the capability to correctly identify 
understorey shrubs e.g. vegetation <2 m or ground (as with the processing 
of large-footprint full-waveform data) and therefore characterise the 
complete canopy profile. 

6.3. Remote sensing in sustainable forest management: a 
future perspective 

This thesis aimed to shift emphasis away from tailored approaches suited 
to a single study site or vegetation type and towards generic solutions 
which are applicable across large and heterogeneous forested areas (Figure 
37).  Although this may have not been fully realised here owing to the 
“proof	 of	 concept” requirement, this thesis presents metrics, acquisition 
specifications and processing frameworks for generating large area forest 
attribution.  This culminated in a framework for the production of a 
continuous map of canopy height where, with regard to Figure 37; canopy 
height was estimated over a large area, using a universally applicable 
metric, computation was achieved with open-source software, using a 
machine learning technique which utilised multiple freely available 
datasets (regarding both cost and accessibility). 

A requirement for the paradigm shift is prompted by the need for routine 
assessment of forests over large areas in a consistent, transferable and 
transparent manner that has not yet been achieved (Trumbore et al., 2015).  
The need for assessment is driven by new and existing national and 
international initiatives and legislative commitments on reporting forest 
condition as well as monitoring environmental degradation and ensuring 
the provision of ecosystem services.  Examples of these include the UN-
REDD (FAO et al., 2008), the Montreal Process (Montréal Process Working 
Group, 2009), the Essential Climate Variables (Schaaf et al., 2008) and 
Essential Biodiversity Variables (Pereira et al., 2013). 
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Figure 37. A conceptual model to illustrate the paradigm shift in large-area 
forest assessment utilising remote sensing. 

Setting targets for the accounting of ecosystem services across large areas 
has been made possible by considerable investment and improving remote 
sensing technologies (Hollmann et al., 2013; Skidmore et al., 2015).  For 
example, the ESA’s	 Copernicus and BIOMASS projects aim to provide 
accurate and timely remote sensing data for environmental monitoring.  
The latter will utilise radar to estimate changes in global forest biomass, 
this will require a global estimate of canopy height at a resolution of 200 m 
on a 6 monthly basis (Seifert et al., 2015).  Therefore it is suggested the 
paradigm shift will ultimately extend from an assessment framework to 
include monitoring in a timely fashion (Lewis et al., 2013). 

Recent advances in remote sensing technologies already allow for data to 
be captured across large areas at applicable resolutions.  For example, 
current global canopy height products highlight the potential for earth 
observing techniques to characterise vegetation structure and biomass 
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(Lefsky, 2010; Simard et al., 2011; Los et al., 2012).  However, as 
demonstrated	 in	Chapter	6,	 these	products	are	yet	 to	be	 ‘locally	 relevant’	
for Australian forests, a key requirement of large area assessment (Hansen 
et al., 2013).  Furthermore, products such as these are still produced as 
scientific exemplars, and as yet operational products – useful in a 
monitoring context – have not been attained.  This is partly due to the lack 
of continuity of earth observation datasets, highlighted as a major issue 
with monitoring and ultimately tackling ecosystem degradation (Carpenter 
et al., 2006). 

Looking towards the future, the cost of information to the end-user will 
continue to decrease.  Concurrently, the volume and availability of remote 
sensing data will increase with ever increasing spaceborne remote sensing 
platforms and terrestrial sensor networks.  The recent launch of Landsat 8 
has seen the continuation of one of the most beneficial earth observation 
programmes to forest and landscape science.  Planned missions, such as the 
ESA’s	Sentinel	constellation	and	BIOMASS	radar	programmes,	will	continue	
to supply data for forest characterisation into the future.  Combining 
multiple data sources (with different spatial, spectral and angular 
characteristics) has been recognised as a major challenge of large area 
assessment and monitoring programmes (Lewis et al., 2013).   

For large area vegetation structure assessment, the opportunity presented 
by spaceborne LiDAR is unrivalled.  Studies that have utilised data from the 
now defunct IceSAT mission have illustrated the utility of spaceborne 
LiDAR for calibrating models of canopy height and biomass.  The planned 
deployment of the Global Ecosystem Dynamics Investigation LiDAR (GEDI) 
on the International Space Station in 2018 presents an opportunity to once 
again measure and map canopy structure on a global scale.  A major 
advantage of GEDI is the near continuous spatial coverage of laser 
footprints (Dubayah and Schaaf, 2015),	 this	 is	 compared	 to	 IceSAT’s	
repeated ground track coverage which had a relatively limited coverage.  
The move towards spaceborne ranging sensors and radar tomography may 
eventually negate the requirement for airborne platforms as a sampling 
tool for vegetation structure assessment.   

With the reduction in instrument costs and the increasing ubiquity of the 
Internet of Things, terrestrial wireless sensor networks will allow for ever 
increasing profusion of data at the plot scale, where measurements will still 
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be required for calibration and validation purposes.  Examples of sensor 
networks include VEGNET, an in situ LiDAR system that scans the forest 
canopy on a nightly basis and records changes in plant area index 
(Culvenor et al., 2014), in situ digital repeat photography for measuring 
canopy greenness (Keenan et al., 2014) and eddy covariance methods that 
measure fluxes of mass and energy between the canopy and atmosphere 
(Baldocchi, 2014).  With the increased availability of cheap and light-
weight laser scanners, ALS as a calibration or validation tool may soon be 
replaced by terrestrial laser scanning (Calders, 2015) or the use of 
unmanned airborne vehicles (Wallace et al., 2012). 

With the potential of data from numerous satellite and terrestrial sensors, 
computing capability to process large and complex datasets will also need 
to respond accordingly.  This will represent a shift from desktop machines 
to high performance computing (HPC) servers housed in centralised data 
centres where large-scale parallel computing is possible.  Utilisation of such 
technology has already begun, for example Hansen et al. (2013) processed 
>650,000 Landsat scenes with the Google Earth Engine (GEE).  The GEE is a 
cloud computing service which allows users to process large amounts of 
archived satellite remote sensing data through a browser based Javascript 
interface.  Facilities such as the GEE therefore open up the satellite archive, 
making it available to scientists around the world regardless of location 
and computing infrastructure.   

The requirement for data sharing has been recognised as key to ensuring 
continued progress against ecosystem degradation (Wulder et al., 2008b; 
Roy et al., 2014; Turner et al., 2015).  Open-access data policies are 
becoming more common as organisations are realising the benefits of data 
sharing.  For example since December 2008, Landsat data from United 
States Geological Survey has been available under an open data policy 
which allows free access and redistribution of Landsat data products.  This 
has increased the utilisation of Landsat data significantly, from <30,000 
scenes downloaded in 2007 to >5,500,000 scenes accessed in 2014 (Turner 
et al., 2015).  Within Australia, the TERN/Auscover facility captures and 
disseminates remote sensing and biophysical data under a Creative 
Commons Licence.  Open-access policies are also extending to the 
publication of scientific computer programming source code in open-access 
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repositories, where in most cases this is written for open-source software 
packages.  
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 Summary 8.
The attribution of forest structure forms an integral part of international 
monitoring and reporting obligations with regard to sustainable forest 
management.  Furthermore, detailed information about forest structure 
allows land managers and forest scientists to determine a forests ability to 
provide ecosystems services.  Currently, forest attribution is achieved using 
a network of forest inventory plots that are revisited periodically.  This 
approach comprises a sparse sample, both temporally and spatially, that 
may not capture variance in forest structure.  This is particularly true in 
dynamic native forests where variability in forest structure can be high.  In 
recent years the capability of remote sensing techniques has been realised 
for sustainable forest management applications.  Advantages of a remote 
sensing approach include synoptic and high temporal coverage as well as 
reduced costs to the end-user.  Furthermore, recent advancement in active 
sensors, such as Light Detection and Ranging Instruments (LiDAR) have 
allowed for detailed three-dimensional forest measurement of structure 
across large areas.  

This thesis presents new metrics, techniques and acquisition specifications 
for the attribution of forest canopy over large areas (e.g. comprising two or 
more forest types where forest structure maybe unknown a priori) using 
active and passive remote sensing.  In particular, the focus is on attributes 
that quantify the vertical structure of forests; canopy height and canopy 
vertical structure.  Canopy height is a commonly measured multipurpose 
attribute that is utilised, for example, to estimate biomass.  Attribution of 
the canopy height profile, although less common, is important for mapping 
habitat suitability, biomass and fire susceptibility.  Current techniques to 
attribute forests tend to be tailored to a particular forest type or location 
and therefore application of these models across large areas is unreliable.  
Here the aim is to develop metrics and techniques that are transferable 
between different forest types and applicable to forests where there is no 
prior knowledge of forest structure.   

Here a multi-scale remote sensing approach was taken, where plot scale 
measurements were upscaled to attribute large areas.  Initially, existing 
LiDAR derived metrics applicable at the plot scale were tested at three 5 
km x 5 km study areas in Victoria, Australia where forests cover a broad 
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range of structural types.  Results indicate existing metrics of canopy height 
were applicable across the range of forest types, for example the 95th 
percentile of LiDAR derived height estimated inventory measured canopy 
height with a RMSE of 12% (~5 m).  An existing mixture modelling 
technique to attribute the canopy height profile was found unsuitable when 
applied across heterogeneously forested landscape.  This was due to the 
inability to parameterise the model correctly without a priori knowledge of 
forest structure e.g. presence or absence of shade tolerant layers.  For this 
reason a new technique was developed utilising a nonparametric 
regression of LiDAR derived gap probability that generalised the canopy 
profile.  Taking the second derivative of the regression curve identified 
locations within the canopy that correspond with canopy strata, this 
therefore allowed a dynamic attribution of canopy vertical structure.  
Model output was validated with a crown volume modelling approach at 24 
plots, where crown models were parameterised with inventory data and 
allometry.  Results indicate this technique can estimate the number of 
canopy strata with a RMSE of 0.41 strata.  Furthermore, the new technique 
met the transferability criteria, as a universal regression coefficient was 
transferable between forest types with different structural attributes.   

As LiDAR acquisition that cover large areas will inevitably encounter a 
range of forest types, parameters for attributing canopy structure that 
were transferable between forest types were investigated; in particular 
sampling frequency.  To effectively assess a range of pulse densities would 
require repeat capture over a study area at a range of flying heights, which 
would be prohibitively expensive.  For this reason a new technique was 
developed that systematically thinned point clouds.  This technique differs 
from previous approaches by allowing simulation of multi-return 
instruments as well as repeat capture of the same plot.  Six sites from 
around Australia were utilised which covered a broad range of forest types, 
from open savanna to tropical rainforest.  For a suite of metrics, the ability 
of progressively less dense point clouds (4  – 0.05 pl m-2) to estimate 
canopy structure was estimated by comparison with higher density data 
(10 pl m-2).  Results indicate that canopy structure can be adequately 
attributed with data captured at 0.5 pl m-2.  When pulse densities are <0.5 
pl m-2, the inability to adequately identify ground resulted in poor metric 
estimation, this was particularly evident in high biomass forest.  Conversely 
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at lower pulse densities in savanna  systems, the inability to characterise 
sparse vegetation resulted in poor attribution of the canopy profile.  

Techniques derived at the plot scale were then applied to estimate canopy 
height across 2.9 million hectares of heterogeneous forest.  Canopy height 
in the study area ranged from 0 – 70 m and comprised forest types from 
open woodland to tall closed canopy rainforest.  LiDAR derived canopy 
height was used to train ensemble regression trees (random forest), where 
predictor datasets included synoptic passive optical imagery and other 
ancillary spatial datasets, such as Landsat TM and MODIS.  Results suggest 
canopy height can be estimated with a RMSE of 30% (5.5 m) when 
validated with an independent inventory dataset.  This is a similar error to 
that reported in previous studies for less complex forests and is within the 
European Space Agency target for canopy height estimation.  However, 
model output did show a systematic error, where the height of short and 
tall forests were over and underestimated respectively.  This was corrected 
by subtracting a modelled estimate of error from the random forest output.  
Production of a canopy height map over a large area allowed for a 
consistent product that covered a broad range of forest types, derivation at 
a 30 m resolution allowed the identification of landscape features such as 
logging coupes.  The presented technique utilised an open source 
computing framework as well as freely available predictor datasets to 
facilitate uptake of by land management agencies and forest scientists. 
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 Samenvatting 9.
De toekenning van een bosstructuur vormt een integraal onderdeel van de 
internationale controle en rapportage verplichtingen met betrekking tot 
duurzaam bosbeheer. Bovendien geeft meer gedetailleerde informatie over 
bosstructuur  landbeheerders en wetenschappers  de mogelijkheid meer 
inzicht te krijgen in ecosystemen. Momenteel wordt het predikaat bos 
toegekend door inventarisatie van een netwerk van percelen die periodiek 
worden herzien. Deze werkwijze vertegenwoordigt slechts een klein 
gebied, zowel in tijd en ruimte, en bestrijkt zo misschien minder de 
variëteit in de bosstructuur.. Dit is zeker het geval voor dynamische 
inheemse bossen waar variabiliteit in bosstructuur juist hoog kan zijn. In 
de afgelopen jaren heeft men zich de mogelijkheden van het gebruik van 
Remote Sensing technieken gerealiseerd voor duurzame toepassingen in 
bosbeheer. Voordelen van Remote Sensing zijn deoverzichtelijkheid en de 
hoge temporele dekkingsgraad, alsmede de lagere kosten voor de 
eindgebruiker. De recente ontwikkelingen in de actieve sensoren, zoals 
bijvoorbeeld Light Detection and Ranging Instruments (LiDAR),  hebben 
het mogelijk gemaakt gedetailleerde en gestructureerde driedimensionale 
metingen te verrichten in grote bosgebieden. 

Dit proefschrift presenteert nieuwe methodieken en technieken, en 
wervings specificaties voor het benoemen van bos over grote gebieden 
(bijvoorbeeld waar de bosstructuur wellicht onbekend is) met behulp van 
actieve en passieve Remote Sensing. Hierbij wordt de nadruk gelegd op 
attributen die de verticale structuur van de bossen kwantificeren, te weten 
de verticale structuur van de kruinhoogte en -structuur. De kruinhoogte 
wordt gewoonlijk gemeten vanwege zijn multifunctionele eigenschappen, 
bijvoorbeeld om biomassa te kunnen inschatten.  De toewijzing van het 
kruinhoogteprofiel, hoewel minder vaak voorkomend, is belangrijk voor 
het in kaart brengen van een geschikt leefgebied, biomassa en brand-
gevoeligheid. Huidige technieken  die gebruikt worden voor bossen worden 
vaak aangepast aan een bepaalde bos-omgeving en zijn derhalve voor  
toepassing in grotere bosgebiedenonbetrouwbaar. Het doel is daarom om 
gegevens en technieken te ontwikkelen die overgedragen kunnen worden 
tussen verschillende types bos en die kunnen worden toegepast zonder 
voorkennis over de bosstructuur.  
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In het onderzoek werd remote sensing op verschillende niveaus gebruikt, 
waarbij metingen van proefvlakken werden opgeschaald  voor gebruik in 
grote gebieden. Aanvankelijk zijn bestaande, van LiDAR afgeleide, metingen 
van proefgebieden  getest op drie percelen van 5 x 5 km in Victoria, 
Australië, waar bossen een breed scala aan structuren vertegenwoordigen. 
De resultaten geven aan dat de bestaande statistieken van de kruinhoogte 
toepasbaar zijn inde verschillende bostypen; bijvoorbeeld het  95e 
percentiel van LiDAR afgeleide, geschatte hoogte mat de kruinhoogte met 
een RMSE van 12% (~ 5 m). Een bestaande combinatie van  modelleer 
technieken die werd gebruikt om de kruinhoogte te meten, werd 
ongeschikt bevonden wanneer toegepast in een heterogeen type bos 
landschap. Dit was te wijten aan het onvermogen van het model om 
correcte parameters te geven wanneer er geen kennis vooraf was op het 
gebied van bosstructuur, zoals bijvoorbeeld de aan- of afwezigheid van 
schaduw tolerante lagen. Om deze reden werd een nieuwe techniek 
ontwikkeld die gebruik maakte van een non-parametrische regressie van 
van LiDAR afgeleide waarschijnlijkheid om een algemeen kruinprofiel te 
genereren. De tweede afgeleide nemend van met de regressiecurve 
geïdentificeerde locaties in de kruin die overeenkomen met de bovenlagen, 
maakte een dynamische toewijzing van de verticale structuur mogelijk. 
Modeluitkomsten werden  gevalideerd via modellering van het 
kruinvolume in 24 percelen, met behulp van de inventarisatie van de 
gegevens en allometry. De resultaten geven aan dat deze techniek een 
schatting kan maken van het aantal vegetatielagen met een RMSE van 0,41. 
Verder voldeed de nieuwe techniek aan de overdraagbaarheid van de 
criteria, omdat de universele regressiecoëfficiënt overdraagbaar was 
tussen de soorten bos met verschillende structurele kenmerken. 

LiDAR houdt er rekening mee dat het in het geval van grote gebieden,  
geconfronteerd wordt met een scala van verschillende soorten bos,  en dus 
werden de parameters voor de toekenning van de kruinstructuur die 
overdraagbaar zijn tussen de verschillende soorten bos onderzocht; met 
name de frequenties. Om de reeks van dichtheden effectief te kunnen 
beoordelen is het nodig om frequente beelden te hebben van een 
studiegebied vanaf wisselende vlieghoogtes, wat onbetaalbaar zou zijn. Om 
deze reden werd een nieuwe techniek ontwikkeld, die systematisch wolken 
punten uitdunde.  Deze techniek verschilt van de vorige benaderingen door 
de simulatie van multi-reeks instrumenten als ook de herhaling  van het in 



Samenvatting 

161 

beeld brengen van hetzelfde perceel op frequente tijden. Zes locaties rond 
Australië werden gebruikt met een breed scala aan soorten bos, van open 
savanne tot tropisch regenwoud. Voor een reeks, werd het vermogen van 
steeds minder dichte puntenwolken (4-0,05 pl m-2) om kruinstructuur in 
te schatten vergeleken met gegevens over een hogere dichtheid (10 pl m-
2). De resultaten geven weer dat de kruinstructuur voldoende kan worden 
weergegeven wanneer gegevens worden vastgelegd op 0,5 pl m-2. 
Wanneer de dichtheden <0,5 pl m-2 bereiken, wordt het onmogelijk de 
grond te identificeren, wat resulteerde in een slechte schatting, vooral in 
bossen met een hoge biomassa. Omgekeerd was het bij lagere dichtheden 
in savanne systemen, onmogelijk om schaarse vegetatie te karakteriseren, 
wat resulteerde in een slechte herkenning van het profiel. 

Technieken die afgeleid zijn van de plot reeks werden vervolgens toegepast 
om de kruinhoogte van 2,9 miljoen hectare heterogeen bos te schatten. De 
vegetatiehoogte in het studiegebied variëerde tussen 0-70 m en bestond uit 
verschillende soorten bos: van zeer open bos tot dicht regenwoud. De 
LiDAR metingen voor de kruinhoogte werden gebruikt voor ensemble 
regressie bomen (in een gemengd bos), gebaseerd op synoptische passieve 
optische beeldvorming en soortgelijke ondersteunende datasets zoals 
Landsat TM en MODIS. De resultaten suggereren dat de kruinhoogte kan 
worden geschat met een RMSE van 30% (5,5 m) wanneer de resultaten 
gevalideerd worden met een onafhankelijke inventarisatie dataset. Deze 
uitkomst is gelijkwaardig aan die uit eerdere studies van minder complexe 
bossen, en wordt gebruikt door de Europese ruimtevaartorganisatie ESA 
om de kruinhoogte te schatten. De modeluitkomsten toonden echter een 
systematische fout, waarbij de hoogte van de lage en hoge bomen 
respectievelijk over- en onderschat werden. Dit werd gecorrigeerd door de 
aftrek van een standaard inschatting van deze fout. Productie van een kaart 
met de boomhoogte over een groter gebied leverde een goed product dat 
een breed scala aan boomsoorten behelsde. De 30m resolutie zorgde 
ervoor dat veel landschapselementen geïdentificeerd konden worden, zoals 
houtkap percelen. De gepresenteerde techniek maakte gebruik van een 
open source computing framework alsmede vrij verkrijgbare datasets, om 
de toepasbaarheid voor landbeheerders en ook wetenschappers te 
vergroten. 
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