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Abstract

Detailed hydrographic feature extraction from high-resolution light detection and ranging 

(LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such 

extractions are presented, including the use of sinuosity and longitudinal root-mean-

square-error (LRMSE). These metrics are then used to quantitatively compare stream 

networks in two studies. The first study examines the effect of raster cell size on 

watershed boundaries and stream networks delineated from LiDAR-derived digital 

elevation models (DEMs). The study confirmed that, with the greatly increased resolution 

of LiDAR data, smaller cell sizes generally yielded better stream network delineations, 

based on sinuosity and LRMSE. The second study demonstrates a new method of 

delineating a stream directly from LiDAR point clouds, without the intermediate step of 

deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and 

accuracy of hydrographic feature extractions. The direct delineation method developed 

herein and termed “mDn”, is an extension of the D8 method that has been used for 

several decades with gridded raster data. The method divides the region around a starting 

point into sectors, using the LiDAR data points within each sector to determine an 

average slope, and selecting the sector with the greatest downward slope to determine the 

direction of flow. An mDn delineation was compared with a traditional grid-based 

delineation, using TauDEM, and other readily available, common stream data sets. 

Although, the TauDEM delineation yielded a sinuosity that more closely matches the 

reference, the mDn delineation yielded a sinuosity that was higher than either the 

TauDEM method or the existing published stream delineations. Furthermore, stream 

delineation using the mDn method yielded the smallest LRMSE. 
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These raster or gridded terrain models can then be used to perform numerous topographic 

analyses, such as calculations of slope, slope-aspect, and topographic roughness and 

curvature. An extension of such topographic analyses is hydrographic feature extraction, 

including derivation of stream profiles and watersheds, and delineation of streams or 

networks of streams that provide drainage of the watersheds (Colson, 2006; Garcia, 2004; 

James et al., 2006; Lashermes et al, 2007; Passalacqua et al, 2010; Vianello et al, 2009). 

Resolution in remote sensing is typically defined as the size of the smallest identifiable 

feature in an image (Jensen, 2000); however, in this thesis, spatial resolution in the X and 

Y directions refers to the cell size or the width and height of a single cell. The general 

idea is that the size of a cell or pixel determines how small of an object can be adequately 

distinguished from background or other objects as its size decreases. An object that is 

smaller than a single cell or pixel would either be represented by the whole cell or pixel, 

or not at all, depending on how much smaller and what the contrast against the 

background is. Although, in practice, this concept is more complex as spectral 

characteristics of the feature, shape of feature, the instrument’s radiometric resolution, 

and other factors play a role. 

With the advent of remote sensing technology, such as airborne or earth-orbiting 

synthetic aperture radar (SAR) and or airborne light detection and ranging (LiDAR), a 

significantly higher resolution and accuracy for digital terrain models are possible. In 

2000, The National Aeronautics and Space Administration’s Shuttle Radar Topography 

Mission (SRTM) collected elevation data using C-band and X-band interferometric 

synthetic aperture radar (IFSAR). SRTM-derived DEMs are available for much of the 
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LiDAR involves illuminating an object (e.g., terrain) with a narrow collimated beam of 

light (i.e., active laser, usually either near infrared wavelengths, at around 1.064��m, or 

green wavelengths, at around 0.532 �m), and measuring the time for a returned reflection 

(Campbell, 2007). The round-trip travel time of the transmitted and reflected beam is 

halved to determine the one-way travel time, and this time determines the distance to 

ground, based on the speed of light (Baltsavias, 1999b; Jensen, 2007). This distance, 

when combined with aircraft altitude and attitude (roll, yaw, and pitch) and beam 

pointing (angular elevation and azimuth), is used to calculate the elevation of the feature 

that reflected the beam. LiDAR reflections are returned from features that reflect energy 

at the laser’s wavelength. Depending upon the wavelength, features may include the 

ground surface, vegetation, and man-made structures (see Figure 3). Non-ground returns 

are filtered from the point cloud to yield only the ground returns used for a bare-earth 

model (Streutker and Glenn, 2006; Tinkham et al., 2011). 

The area that the laser illuminates is referred to as the system’s footprint. LiDAR systems 

can have a footprint as small as 0.15 to 0.61 m in diameter (Baltsavias, 1999b; Campbell, 

2007). The footprint and the point density determine the resolution of the system. The 

resolution of LiDAR systems are defined for the point cloud and are not the same as the 

resolution or cell-size of a DEM. 

The density of the points is determined by the pulse repetition frequency or pulse rate at 

which the narrow laser beam transmits. LiDAR have at extremely high pulse rates. The 

Leica ALS50 Phase II LiDAR instrument, used to collect some of data for this research, 

is capable of a pulse rate of at least 83,000 pulses per second (Watershed Sciences, 2006). 
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The newest instrument from Optech, the ALTM Orion M/C 200, is capable of 

transmitting up to 200,000 pulses per second (Optech, 2012). 

 
Figure 3. Airborne LiDAR reflections or returns from vegetation and ground using a 

2-return LiDAR system. 

As the LiDAR transmits, the laser beam is scanned laterally (i.e., back and forth 

perpendicular to the flight path) and the return data are recorded, resulting in the 

collection of high volumes of data. These data consist of irregularly spaced point records 

or elevation samples known as postings (Campbell, 2007), which comprise a very dense 

point cloud (Tinkham et al., 2011). These points are characterized by, as a minimum, X, 

Y, and Z coordinates, which correspond to an easting (e.g., latitude), a northing (e.g., 

longitude), and elevation, respectively. Scan angle, intensity, and Global Positioning 

System (GPS) time stamp are also typically included for each point. 

The coordinates obtained from LiDAR are highly accurate. Absolute horizontal accuracy 

(X and Y) ranges between 20 and 30 cm; vertical accuracy (Z) ranges between 15 and 

Range = c · ½Time
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20 cm (Baltsavias, 1999a; Campbell, 2007; Cho et al., 2007). The vertical accuracy is 

typically described by comparing ground-control points collected by a survey-grade GPS 

to LiDAR elevation points. The horizontal accuracy is described as a function of the 

flying height and published calibration of the sensor, typically ~ 1/3000th flight altitude, 

above ground level (Airborne 1, 2005; Watershed Sciences, 2006; Watershed Sciences, 

2008a; Watershed Sciences, 2008b). 

1.1 Terminology

Three-dimensional terrain models, based on a matrix of elevation data, are known by 

several names, depending on the contents of the model. A digital elevation model (DEM) 

is defined as a file or database containing elevation points over a continuous area (Jensen, 

2007). DEMs may include digital surface models (DSMs) and digital terrain models 

(DTMs) (Jensen, 2007). DSMs contain elevation information about all features in the 

landscape, such as vegetation, buildings, and other structures. A DSM is also referred to 

as a surface elevation model (SEM) (Campbell, 2007). DTMs, also referred to as bare-

earth DEMs, contain elevation information about the bare-earth surface without the 

influence of vegetation or man-made structures (Campbell, 2007; FEMA, 2010). For the 

purposes of this research, the term DEM will be used as described above and in Jensen 

(2007).  

1.2 LiDAR Point Cloud Data Quality Summary 

Four watersheds and one stream segment were used for case studies in this research. 

These areas include the Reynolds Creek Experimental Watershed, or RCEW (Watershed 

Sciences, 2008b), Dry Creek Experimental Watershed, or DCEW (Watershed Sciences, 
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2008a), Slate Creek Watershed, or SCW (Watershed Sciences, 2006), and Fishhook 

Creek at Redfish Lake (Airborne 1, 2005). All of these study areas are located in Idaho, 

USA. 

Watershed Sciences used a Leica ALS50 Phase II instrument to collect data for RCEW, 

DCEW, and SCW (Watershed Sciences, 2008a; Watershed Sciences, 2008b; Watershed 

Sciences, 2006). Airborne 1 used an Optech ALTM 2025 instrument to collect data for 

Redfish Lake (Airborne 1, 2005). 

Quality parameters for the LiDAR point cloud datasets are summarized in Table 1. Note 

that, for RCEW, DCEW, and SCW, point densities are reported. For RCEW, though, the 

point density is labeled as resolution. For Redfish Lake, on the other hand, a nominal 

point spacing is reported. This point spacing (0.5 m) corresponds to the resolution 

calculated and reported later, in Table 2. Also, the Redfish Lake vertical accuracy is 

reported as 15 cm at a 90% confidence level, whereas vertical accuracies for the three 

watersheds are reported as RMSE and 1-� values. These vertical accuracies are 

determined by comparing the data against real-time kinematic (RTK) surveys, collected 

by GPS. All of these datasets have a vertical accuracy for the point returns that is 

considerably higher than the NED dataset’s vertical accuracy of 2.44 m. García-Quijano, 

et al. (2008) investigated the effects of point densities on vertical accuracy, and report 

that higher point densities do not significantly improve the vertical accuracy of LiDAR-

derived DEMs. It is assumed that, once the point clouds are interpolated into a spatial 

grid or DEM, the vertical accuracy is not significantly reduced. 
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Table 1. Data quality parameters for case study LiDAR datasets. 

Dataset
Date

Collected
Vertical 

Accuracy
Horizontal 
Accuracy

Point Density 
or Resolution 

RCEW Nov 10–18, 
2007 

RMSE = 3.3 cm;
1 � = 3.4 cm 

~ 30 cm 5.6 points/m2 

DCEW Nov 10–18, 
2007 

RMSE = 2.6 cm;
1 � = 2.5 cm 

~ 30 cm � 4 points/m2 

SCW Sep 29 – Oct 3,
2006 

RMSE = 8.8 cm;
1 � = 7.8 cm 

~ 30 cm � 4 points/m2 

Redfish Lake Oct 1–5, 
2005 

15 cm at 
90% Confidence 

~ 30 cm ~ 0.5 m nominal 
spacing 

 

1.3 Research Basis 

The higher resolution and the enhanced vertical and horizontal accuracy of LiDAR data 

have spurred a rising interest in the use of LiDAR elevation data for geospatial and 

hydrographic applications. Webster et al. (2006) studied formation and evolution of 

landscapes by applying high-resolution LiDAR to geological problems such as bedrock 

and surficial mapping. Clarke and Archer (2009) explored the problem of DEM cell-size 

resolution and its effect on extracted hydrographic features including stream networks 

and watershed boundaries. Their key conclusion was that smaller cell sizes (higher 

resolution DEMs) result in a measureable increase in the terrain parameters under 

investigation and, hence, these parameters exhibit scale dependency. It is this type of 

scale dependency that the present research seeks to explore further in Chapter 3 as it 

pertains to watershed area and sinuosity. Colson (2006) evaluated the horizontal accuracy 

and completeness of currently available stream maps compared to stream networks 

derived from DEMs obtained from the USGS, the North Carolina Floodplain Mapping 

Program, and interpolated from LiDAR bare-earth elevation points. He showed that 

stream networks delineated using DEMs interpolated from LiDAR are more accurately 
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positioned than those on previously published maps or stream networks delineated from 

currently available DEMs. Garcia (2004) studied extraction of headwaters stream 

networks using LiDAR data and found that LiDAR produced more accurate elevation 

maps (elevation accuracy within 0.37 m) than currently available maps, such as the 

USGS 7.5 minute DEMs (elevation accuracy within 15 m). Miller et al. (2004) studied 

the extraction of channel depth, width, and cross-sectional area using two high resolution 

models: 1 m LiDAR model and a 2.5 m IFSAR model. They report that channel width 

and cross-sectional area were comparable, but that the LiDAR data performed 

significantly better than the IFSAR data in extracting channel depth. When both were 

compared with field data, linear regressions resulted in an R2 value equal to 0.72 for 

LiDAR and 0.45 for IFSAR. Mitishita et al. (2008) proposed a method of orienting 

photogrammetric models using centroids of building roofs that are derived from high-

accuracy LIDAR datasets. 

To illustrate the potential benefits of the enhanced resolution of LiDAR data, an area on 

the northern banks of Redfish Lake, in Custer County, Idaho, is used. (This same area is 

used for the case study in Chapter 4 and discussed further, there.) Shaded reliefs of the 

30 m SRTM DEM, for Redfish Lake, are shown in Figure 4. Shaded reliefs of the 10 m 

NED, for Redfish Lake, are shown in Figure 5. Clearly, the 3-fold improvement in 

resolution in the LiDAR data results in enhanced detail. The characteristics of the LiDAR 

data available for this area are summarized in Table 2 and Figure 6. 
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Detail in the 0.5 m ground-return shaded relief is significantly greater than in the 10 m 

NED shaded relief. Roads, ridges, streambeds, and bridges are easily discerned. In the 

all-return shaded relief, vegetation, and buildings are clearly discernible. By inference, 

hydrographic feature extraction should be greatly enhanced by using LiDAR data rather 

than using traditional DEMs or the NED. All of the preceding shaded relief images and 

the draped aerial photography were generated using Global Mapper (2011). 

1.4 Research Focus 

This dissertation investigates detailed hydrographic feature extraction from high-

resolution LiDAR data. Two techniques for exploring relative horizontal accuracy and 

performing quantitative comparisons of such complex linear spatial features are 

presented. The first technique, relative sinuosity, is presented as a measure of the 

complexity or detail of a polyline network in comparison to a reference network (Leopold 

and Wolman, 1957; Friedkin, 1945; Schumm, 1963; Leopold et al., 1964; Müller, 1968; 

Chorley et al., 1984; Begin, 1985). 

The second technique, designated as longitudinal root-mean-square-error (LRMSE), 

presents a means for quantitatively assessing the horizontal variance between two 

polyline data sets representing reference and derived stream networks (FGDC, 1998; 

Hengl et al., 2009; Vaze and Teng, 2007a; Zhang and Goodchild, 2002). Both relative 

sinuosity and LRMSE are shown to be suitable measures of horizontal stream network 

accuracy for assessing quality and variation in linear features. Both techniques have been 

used in two recent investigations involving extraction of hydrographic features from 

LiDAR elevation data, which are the topics of subsequent chapters in this dissertation. 
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For the purposes of this research, I consider two ways that LiDAR data can be used to 

perform hydrographic feature extraction. First, the point cloud may be used as sample 

points to perform interpolations to derive a DEM. There have been numerous 

investigations involving the derivation of DEMs from LiDAR data (Bandara et al., 2011; 

Clarke and Archer, 2009; García-Quijano et al., 2008; Hans et al., 2003; Kienzle, 2004); 

Vaze and Teng, 2007a; Vaze and Teng, 2007b). Second, the point cloud may be used 

directly to perform discrete hydrographic feature extractions, without first creating an 

interpolated DEM. There have been fewer investigations involving hydrographic feature 

extraction from LiDAR-derived DEMs (Braud, 2009; Colson, 2006; Garcia, 2004; James 

et al., 2006; Lashermes et al, 2007; Leopold and Wolman, 1975; Mark 1983; Passalacqua 

et al, 2010; Vianello et al, 2009). 

The first investigation examines the effect of raster cell size on watershed boundaries and 

stream networks delineated from LiDAR-derived DEMs. Existing LiDAR datasets for 

three experimental watersheds, in Idaho (Dry Creek, Reynolds Creek, and Slate Creek), 

were converted to DEMs at  1, 5, 10, 30, and 50 or 60 m cell sizes. Watershed boundaries 

and stream network centerlines were delineated from each DEM using Geographic 

Information Systems (GIS) and were compared to reference vector data. Derived stream 

networks were compared in terms of both watershed and stream network characteristics. 

The study confirmed that, with the greatly increased resolution of LiDAR data, smaller 

cell sizes generally yielded better stream network delineations, based on sinuosity and 

LRMSE, however the smallest cell size is not necessarily optimal. Scale of the reference 

data, relative to the scale of the derived data, will influence the optimal cell size. 

Similarly, optimal cell size depends on the scale or size of the stream. 
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The second investigation demonstrated a new method of delineating streams directly 

from LiDAR point clouds, without the intermediate step of deriving a DEM. Traditional 

methods of delineating stream networks use gridded raster elevation data. Direct use of 

LiDAR point clouds, without first creating a raster or grid, could improve efficiency and 

accuracy. This new direct delineation method, termed “mDn”, is an extension of the D8 

method that has been used for several decades with gridded raster data (O'Callaghan and 

Mark, 1984). The method divides the region around a starting point into sectors, using the 

LiDAR data points within each sector to determine an average slope, and selecting the 

sector with the greatest downward slope to determine the direction of flow. An algorithm 

was developed and implemented in ArcView’s Avenue scripting language (ESRI, Inc., 

Redlands, California). Three adjustable parameters allow fine tuning of the algorithm for 

increased accuracy and control over the level of detail in the delineation: radial 

resolution, angular resolution, and maximum course change. A case study area was 

selected just north of Redfish Lake, Idaho, at the Fishhook Creek inlet. High resolution 

aerial photography was used to trace the creek for a reference stream. An mDn 

delineation using TauDEM (Tarboton, 1997; Tarboton and Ames, 2001) and other 

common stream delineations were compared with the reference stream, by calculating 

sinuosity and LRMSE. Although, the TauDEM delineation yielded a sinuosity that more 

closely matches the reference, the mDn delineation yielded a sinuosity that was higher 

than either the TauDEM method or the existing published stream delineations. Stream 

delineation using the mDn method yielded the smallest LRMSE. 

The remainder of the dissertation includes a discussion of quantitative methods for 

comparing different stream networks (Chapter 2); an assessment of the impact of 
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resolution on hydrographic feature extraction from LiDAR-derived DEMs (Chapter 3); a 

new method for delineating streams from LiDAR point cloud data (Chapter 4); and 

general summary and conclusions (Chapter 5), including a discussion of the 

disadvantages of using LiDAR data for hydrographic feature extraction. Because 

Chapters 2 through 4 present material that was prepared for and submitted to peer-

reviewed journals, these chapters each follow the style of a standalone paper, with the 

exception that the abstracts have been removed and all references are provided at the end 

of the full dissertation. Literature reviews are generally retained in each chapter. 
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Chapter 2

Quantitative Methods for Comparing Polyline Stream Network Models 

2.1 Introduction 

All spatial data contain errors (Goodchild, 1991). However, if we assume one dataset to 

be the best available representation of a particular feature, then we can estimate the error 

contained within other features by comparing them to the reference data. In some cases, it 

may not be critical that the modeled or derived dataset perfectly matches the reference 

dataset, as long as it is a better match than is another dataset. 

According to Zhang and Goodchild (2002, p. 198), when considering the acquisition of 

discrete objects by visual interpretation and manual delineation, 

… an extracted (measured) object is different from the corresponding 

truth due to inaccuracy in object identification and positioning.... In most 

discrete representations, real-world line objects are sampled by polylines 

that link up ordered vertices with straight line segments. If the real lines 

are truly curved, ... a polyline representation will be an approximation, 

and such differences between polylines and the original curves form part 

of the uncertainty in modeling objects. 

While it is trivial to compare a set of scalar values (with a single magnitude) or a set of 

vectors (with a magnitude and direction), it is more challenging to compare and assess 

the degree of similarity of sets of polylines. More difficult, still, is the comparison of 

networks of numerous sets of polylines. For example, in Figure 10, red polylines 

represent a derived stream network and the blue polylines represent the reference stream 

network. While the two networks are not identical, how do we quantify the differences to 

compare the quality or similarity of the two networks, or to compare multiple derived 
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otherwise automatically generating spatial data from computational algorithms or 

methods (e.g. in the case of the derived stream networks in this study). Such an 

assessment of accuracy allows one the ability to quantitatively compare methods and 

results, explore methods for improving techniques and algorithms, and be more confident 

in the use of spatial data analysis results in decision-making processes (Congalton, 2001). 

Hydrological modeling and watershed resource management require accurate stream 

networks and watershed boundaries for better understanding the flow of water on the land 

surface. Methods for deriving detailed hydrographic features such as stream networks 

have been greatly improved in moving from conventional DEMs (Jenson and Domingue, 

1988; Tarboton et al., 1991; Olivera, 2001) to LiDAR-derived DEMs (Yang et al., 2010). 

Quantitative assessment methods can be used to compare and analyze the differences 

between stream networks and watersheds derived from elevation data using such 

methods. 

Gallego et al. (2010) analyzed the uncertainty related to the extraction of drainage 

networks from DEMs. They point out that the inherent relationship between hydraulics 

and geomorphology make it possible to extract drainage networks automatically from 

DEMs. They performed their comparative evaluations by calculating several 

geomorphologic parameters for each drainage network extracted. These parameters are 

listed in Table 3. 
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Table 3. Geomorphologic parameters used by Gallego et al. (2010). 

Basin area

Horton/Strahler's order

Number of channel heads

Total Channel Length

Principle Channel Length

Drainage density

Highest elevation in basin

Elevation at basin's pour point

Average slope for basin

Basin perimeter.
 

Gallego et al. (2010) found that DEM resolution did not have a great influence on most 

basin parameters, except for average slope of the basin. On the other hand, for distance 

values, like channel length, resolution had a very significant effect on the accuracy of, or 

uncertainty in, the automatically delineated drainage networks. They also observed that 

there is a certain scale at which it is not necessary to work with higher resolutions 

because this only produces delays in DEM processing and the results did not justify the 

time. 

The parameters listed in Table 3 are useful metrics for assessing watershed delineations. 

But, aside from the channel lengths, most of these parameters are not as useful for 

assessing stream network delineations. Although such networks can be assessed 

qualitatively, based on visual inspection, quantitative methods could improve the ease, 

accuracy, and repeatability of comparative analyses. 

Stream channel sinuosity is defined as the degree to which a river channel departs from a 

straight line. A variety of sinuosity indices have been proposed in connection with river 
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channel assessments and comparisons (Leopold and Wolman, 1957; Friedkin, 1945; 

Schumm, 1963; Leopold et al., 1964; Müller, 1968; Chorley et al., 1984; Begin, 1985). 

Sinuosity was employed to improve understanding of the nature and dynamics of river 

channel patterns for the river Elemi in southwestern Nigeria, in which the length of a 

reach was measured along the channel and divided by the airline distance between the 

two end points of the reach (Ebisemiju, 1994). Factors influencing sinuosity were 

identified for the Pannagon River, India (Aswathy et al., 2008). Downward et al. (1995) 

presented a methodology for quantifying river channel planform change using GIS 

variability in stream erosion and sediment transport. Heo et al. (2009) studied the 

meandering channel migration of the Sabine River in the USA, which proved least 

squares estimation is beneficial for characterization and prediction of meandering channel 

migration. 

These precedents for using sinuosity to assess and compare river channels, suggest the 

possibility of developing an algorithm to use sinuosity to automatically assess and 

compare entire networks of derived streams, in terms of their meandering. Use of such an 

algorithm could be based on an assumption that higher sinuosity might represent greater 

feature detail, and that similar sinuosity might represent comparable levels of feature 

detail. 

Vaze and Teng (2007a), used root-mean-square-error (RMSE), along with percentile 

values, to show that a 1 m LiDAR-derived DEM is a reasonably good representation of 

the ground elevations for any detailed hydraulic and hydrological modeling exercise. 
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Hengl et al. (2009) used RMSE to assess the accuracy of generated elevations against the 

most accurate DEM available (LiDAR-based DEMs). To assess the spatial accuracy of 

the derived stream networks, they used the mean distance from the point line sets that can 

be derived by overlaying the predicted stream network over the buffer map generated 

using the actual stream network. 

Work has been done on stream network assessment using RMSE, both in horizontal and 

vertical measurements, which have been adopted as standard methods by the Federal 

Geographic Data Committee (FGDC), in its National Standard for Spatial Data Accuracy 

(FGDC, 1998). Zhang and Goodchild (2002) also discuss using RMSE as a measure of 

errors in continuous variables associated with spatial data. 

Both of these assessment criteria, sinuosity and RMSE, are further explored in this paper 

as candidates for quantitatively assessing the quality of LiDAR-derived stream networks. 

Algorithms to implement these methods have been developed and scripts or program 

codes have been written and used to support two reported investigations (Yang et al., 

2010; Anderson and Ames, 2011), which are described in Chapter 3 and Chapter 4. 

2.3 Methods

The accuracy assessment of a stream network such as the one shown in Figure 10, 

involves the repeated calculations of the distance between two points. There are 33 

polyline segments in the network shown. Each polyline segment is composed of 

numerous straight-line segments. Each straight-line segment is defined by two points (or 

vertices), and each point (or vertex) is defined by two coordinates (an ordered pair). The 

complexity of performing data quality assessments on this network is evident. 
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Additionally, the coordinates (vertices) could exist in any of a large number of coordinate 

systems, based on map projections. GIS and associated programming languages are 

suitable for dealing with all of the coordinate systems and for converting coordinates 

between the systems, allowing for assessment of stream networks accuracy in any 

projected (e.g., Universal Transverse Mercator) or geographic (latitude and longitude) 

coordinate system. 

Both sinuosity and LRMSE methods described below require the computation of 

distances between two points on the map. Such a computation is trivial in the case of 

projections that are essentially Cartesian coordinate system (X, Y), where X is the Easting, 

and Y is the Northing. Here, distance between two points can be calculated using the 

common distance equation that is based on Pythagorean’s Theorem: 

 � � ���� � �	
� � ��� � �	
�
	�� (1) 

In the case of computation of distances between points represented in geographic 

coordinate systems, one must work with spherical coordinates (r, �, �), where r is the 

radius of the earth Re at a particular latitude � and longitude �. On very small scales and 

for comparison purposes, one can compute distances in terms of decimal degrees by 

applying the common distance equation (Equation 1) to the geographic coordinate 

system. However, a more accurate calculation of distance between two points in 

geographic coordinates is the Great Circle Arc equation, which, assuming an 

approximately constant earth radius Re, is (Hewlett-Packard, 1976): 

 � � �� � ����	���� �	 � ��� �� � ��� �	 � ��� �� � ������ � �	

 (2) 
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Optimally, these and related equations are used within a GIS and its associated 

programming language to perform distance calculations using embedded native 

functions, wherever possible. Such computational environments also offer inherent 

ability to treat polyline constructions as objects in code and to rapidly and easily perform 

mathematical operations, such as distance calculations, on multiple polyline features or 

objects, in multiple data layers, representing large complex networks of streams, in any of 

a number of projections or coordinate systems. Pseudo codes for the algorithms we have 

developed and implemented in GIS are provided in the following sections. While our 

complete application of the algorithms was done within the ArcView 3.2 Avenue 

scripting environment, our pseudo code representations are software-agnostic, though we 

do assume the existence of specific and common GIS functions for performing complex 

calculations on geographic features. The algorithms presented here can be implemented 

in any GIS programming environment or any other suitable tool or programming 

language, as long as special routines exist or are developed to handle the point and 

polyline objects that constitute the stream network representations. 

2.3.1 Sinuosity

Sinuosity is used to describe the condition of being winding or curving in shape and is 

used here as a quantitative index of stream meandering and as a distinctive property of 

channel pattern. Stream sinuosity is often used in the study of the geometry, dynamics, 

and dimensions of alluvial channels (Chorley et al., 1984). 

Sinuosity (S) is the ratio of stream length to valley length (USACE, 1993) or, in other 

words, the ratio of stream length to the straight-line distance between end-points. This is 
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also known as the degree of meandering (McCuen, 1998), or the ratio of the meandering 

length (Lm) to the straight-line distance (Ls). 

 S = Lm / Ls (3) 

Calculating the straight-line distance between two points is simple enough in any 

computer code using the common distance equation, given as Equation 1 above. But, to 

calculate the curvilinear distance or length, this equation must be used repeatedly, once 

for each line segment in the polyline. This is where GIS programming languages have an 

advantage over non-GIS programming languages. The ability to treat a point or a polyline 

as an object and operate on it using pre-defined methods created specifically for dealing 

with geospatial features makes the calculation of the curvilinear distance or length a 

trivial matter. Also, GIS programming languages simplify repeating the process for 

multiple polylines all in the same data layer and eliminate the need for complicated 

input/output (I/O) routines to read and write results. The algorithm presented here 

assumes that a polyline data layer is selected. The algorithm cycles through each polyline 

in the data layer and calculates the curvilinear or meandering length, Lm, as the variable 

CalfPath, using an appropriate GIS polyline Length function (e.g., the Avenue 

ReturnLength method). Then, it calculates the direct-line distance, Ls, between the two 

endpoints, as the variable CrowFlies, using an appropriate GIS Distance function (e.g., 

the Avenue Distance method). Sinuosity is then calculated by dividing CalfPath by 

CrowFlies. These three values are added to the data layer’s attribute table in three new 

fields. The algorithm also maintains a running sum of the lengths of all features, 

calculates the average polyline length and the average sinuosity, and reports these values 
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when the algorithm is finished. The algorithm is summarized as pseudo code in Table 4. 

The Avenue script for calculating sinuosity is included in the appendix as Code List 1. 

Table 4. Pseudo code for calculating sinuosity. 

Initialization: 
Function: Environment 

Ensure the map view has data layers 
Retrieve the view, the projection, the data layer, and the attribute table 
Ensure only a single theme is active 
Ensure the active data layer is a polyline data layer (not point or polygon) 
Ensure the active data layer is editable 

Function: Map Units 
Exit if there are no Map Units 
Retrieve Map Units 
If Distance Units are set, then convert to Map Units 

Main Algorithm 
Function: Update Working Data Layer 

Retrieve the number of shapes or features (i.e., polylines) in the data layer, nFeatures 
Check for existence of fields CrowFlies, CalfPath, and Sinuosity in the attribute table; 
If they don't exist, create them. 
Function: Compute Sinuosity 

Loop through the attribute table and, for each polyline shape, do the following: 
Calculate the projected curvilinear length, CalfPath 

[ Example Avenue syntax: CalfPath = theShape.ReturnLength) ] 
Set the CalfPath field value in the attribute table 
Add CalfPath for the current shape to running total: 

Sum_CalfPath = Sum_CalfPath + CalfPath 
Retrieve coordinates of endpoints 
Create point objects for endpoints (Point1 and Point2) 
Calculate the straight-line distance between the endpoints 

[ Example Avenue syntax: CrowFlies = Point1.Distance(Point2) ] 
Set the CrowFlies field value in the attribute table 
Calculate Sinuosity = CalfPath/CrowFlies 
Set the Sinuosity field value in the attribute table 
Add Sinuosity for current shape to running total: 

Sum_Sinuosity = Sum_Sinuosity + Sinuosity 
Function: Finalization and Display 

Calculate the average CalfPath: Avg_CalfPath = Sum_CalfPath / nFeatures 
Calculate the average Sinuosity: Avg_Sinuosity = Sum_Sinuosity / nFeatures 
Display the following: 

Total Feature Length (Sum_CalfPath) 
Average Feature Length (Avg_CalfPath) 
Average Sinuosity (Avg_Sinuosity) 
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The basis for using sinuosity is an assumption that, in general, higher sinuosity implies 

greater detail and, therefore, greater accuracy (see Figure 11). However, it is critical to 

first determine if the goal is to maximize sinuosity or to obtain the closest possible match 

of sinuosity between the derived stream network and the reference stream network. If the 

sinuosity of the derived data is lower than that of the reference data, then less detail and, 

hence, less accuracy can be inferred. However, if the sinuosity of the derived data is 

higher than that of the reference data, we can infer greater detail, but not necessarily 

greater accuracy. Indeed, higher sinuosity in the derived data could just mean that the 

derivation process, in this case stream delineation, failed. 

 
Figure 11. Sinuosity (straight-line distance vs. meandering length) as one measure of 

detail and closeness of fit between derived and reference stream networks. 

Ls

Lm1

Lm2

S1 = Lm1 / Ls
S2 = Lm2 / Ls
Srel = S1 / S2

In this case,
Ls1 = Ls2 = Ls
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Absolute sinuosity for two polylines can be directly compared, or relative sinuosities can 

be calculated. Relative sinuosity could be a delta or difference, such as 

 �S = Sd – Sr (4) 

where Sd is the derived sinuosity and Sr is the reference. Or relative sinuosity can be 

calculated as a ratio (derived sinuosity/reference sinuosity or vice versa), such as, 

 Srel = Sd / Sr (5) 

Higher absolute sinuosity can be assumed to mean greater detail and, therefore, higher 

potential accuracy. However, a derived or delineated stream may have extremely high 

sinuosity, yet be wrong. The real stream may not be as sinuous as the model. 

Another possible pitfall in using sinuosity to compare streams or networks of streams is 

the result of using ratios (S = Lm / Ls and Srel = Sd / Sr). Although the sinuosity of both the 

derived streams and the reference streams may closely match, it is possible to have 

closely matched sinuosities and yet have the derived stream be half the length of the 

reference stream. The ratio of Lm to Ls may be the same for both derived and reference 

streams, because both Lm to Ls are shortened proportional to the sinuosities. One must 

also examine and compare straight-line stream lengths; the distance between the 

endpoints should be similar. The derived stream will likely have a shorter straight-line 

length, but it should not be significantly shorter. Matching sinuosities does not 

necessarily imply that the polylines match; only that they have similar amounts of 

meandering. Some subjective interpretation of the objective data would help determine if 

the higher sinuosity truly implies higher accuracy. 
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2.3.2 Longitudinal Root-Mean-Square-Error 

The second metric for comparing stream networks is LRMSE. The FGDC (1998) uses 

RMSE to estimate positional accuracy. RMSE is the square root of the average of the set 

of squared differences between dataset coordinate values and coordinate values from an 

independent source of higher accuracy for identical points. Positional errors, also known 

as displacements or distortions, are understood as the differences between the measured 

and the assumed true coordinates (Zhang and Goodchild, 2002). 

Zhang and Goodchild (2002) suggest that RMSE is a useful index of errors in continuous 

variables. For n points with errors 	i (i = 1, 2, …, n), observed as the differences in 

coordinates between the data sets to be tested and the more accurate reference data, the 

RMSE is 

 ���� � ��	�  !"���
#$	 %

	��
 (6) 

where the error 	i is the distance between a test or modeled data point (Xi, Yi) and a 

corresponding reference data point (Xoi, Yoi). In other words, for Cartesian coordinates, 

 !# � ��# �� � ���&# � �#
� � ��&# � �#
�
	�� (7) 

The FGDC (1998) refers to a horizontal RMSE. We have chosen to define LRMSE as the 

horizontal RMSE computed between a number of paired sets of points located along both 

derived and reference stream network polylines. Thus, 

 '���� � ��	�  ��
#$	 ���&# � �#
� � ��&# � �#
�
%

	��
 (8) 
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The LRMSE values are stored in a new attribute table. If a stream branch in the reference 

network is missing in the derived network, then the LRMSE is reported as -9999.99. The 

algorithm is summarized as pseudo code in Table 5. Avenue script for calculating 

LRMSE is included in the appendix as Code List 2. 

LRMSE is used as a measure of how accurately the derived stream networks match the 

reference networks. The smaller the LRMSE, the closer the fit between derived and 

reference data. Unlike relative sinuosity, where the goal is to closely match the calculated 

value for the derived network with the calculated value for the reference network, rather 

than maximizing the value, the goal with LRMSE is to minimize the value, since the 

comparison with the reference is built into the calculation. 

Like the sinuosity technique, however, the LRMSE technique also has a possible pitfall. 

Two polylines may match up perfectly up to a point, but one polyline may be shorter, 

indicating perhaps that there was a failure to delineate the full reach of a stream. Ideally, 

because the LRMSE technique compares nearest points on the polylines, the LRMSE 

would be a low value indicating a close match for the common reach. But it would give 

no indication that one polyline is longer than the other. The reference polyline is 

segmented for comparison against the derived polyline. Therefore, as implemented, if the 

reference polyline is much longer than the derived polyline, all points on the reference 

polyline that are beyond the end of the derived polyline will be compared with the 

derived polyline’s endpoint. This will result in increasing separation distances and an 

increasing LRMSE. 
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Table 5. Pseudo code for calculating LRMSE. 

Initialization: 
Function: Environment 

Set the number of line segments to n 100 (number of points, m = n + 1) 
Ensure the map view has data layers 
Retrieve the view and the number of data layers 
Ensure exactly two data layers are active 

Function: Map Units 
Exit if there are no Map Units 
Retrieve Map Units 
If Distance Units are set, then convert to Map Units 
Retrieve the projection 
Retrieve two themes, their associated attribute tables, and the number of features 
Ensure both data layers are polyline data layers (not point or polygon) 

Main Algorithm 
Function: Set Up Attribute Tables 

Find and define field names in both existing attribute tables (theFTab1 and theFTab2) 
Create a new attribute table for SegmentID and RMSE 
Define field names in the new attribute table 
Predefine shapes (theShape1 and theShape2) 

Function: Compute RMSE 
Iterate through each line segment in the reference theme and do the following: 

Retrieve SegmentID in the reference theme and create a record in the new attribute 
table 
Find the feature/record with same SegmentID in the sample theme 
If a matching segment is found, then calculate RMSE and add it to the new attribute 
table, as follows: 

Iterate to get n segments and n + 1 points on the reference polyline and determine 
distance to the other polyline: 

For each Percent in 0 to 100 in steps of 100/n [from end of polyline to start] 
Get X, Y for a point on polyline 1 that is Percent from the polyline’s start: 

[ Example Avenue syntax: X1 = theShape1.Along(Percent).GetX ] 
[ Example Avenue syntax: Y1 = theShape1.Along(Percent).GetY ] 

Create a new point using the Make method 
Avenue syntax: aPoint = Point.Make(X1,Y1) 
Get the distance (d) to the nearest point on the other polyline: 

[ Example Avenue syntax: 
theFTab2.QueryShape(rec2,theProjection,theShape2) ] 
[ Example Avenue syntax: theShape2.QueryPointDistance(aPoint, d) ] 

Calculate the sum of the square of the distances: 
SumOfSqrs = SumOfSqrs + d^2 [changed units/scale to prevent "infinity"] 

Calculate the Root-Mean-Square-Error: RMSE = (SumOfSqrs/(n+1))^0.5 
Set the RMSE field value in the new attribute table 

If a matching segment is not found, then: 
Put a null value (-9999.99) in the RMSE field value in the attribute table 
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Considering this, it may be better to determine which polyline has the shorter curvilinear 

length and segment that polyline, comparing it with the longer polyline. In this case, the 

extension of the longer polyline would be ignored and LRMSE would truly indicate a 

good match, with the exception of extension. Such a change to the code is recommended, 

but has not yet been implemented and tested. Another solution, which has been used 

(Anderson and Ames, 2011), is to manually truncate the longer polyline so that only the 

common reach is used for comparing the two polylines. Like sinuosity, when using 

LRMSE, some subjective interpretation of the objective data is still needed. 

2.3.3 Special Considerations 

There are several considerations that must be made in using these methods with polylines 

particularly when implemented in the ArcView environment using polyline (typically 

shapefile) formatted data. First, the polylines need to flow in the same direction. This 

means that two polylines, in different stream networks that are being compared, must be 

constructed in the same order, upstream end to downstream end. The flow direction of the 

polylines can be checked and, if necessary, reversed, using the Line Direction Tool, 

developed by Jennesse Enterprises (2005). 

If the flow direction must be changed, the second consideration becomes relevant. If the 

stream network polyline data contain ArcZ lines, then they need to be converted to 

standard polylines, because ArcZ lines are generally not editable. This can be easily 

accomplished using an Avenue script called PolyShape.Coverter, developed by 

Deshpande (2000). 



34 

Finally, the third consideration is that the polylines need a visual quality check to ensure 

that there is a one-to-one correspondence between polyline segments. This does not mean 

that there has to be a polyline in the derived stream network for every polyline in the 

reference file. If the derived polyline is missing a polyline segment, then the reference 

segment is ignored. However, corresponding segments in the reference and derived 

polyline networks must have the same identification number (ID). 

For example, in two of the three stream network geographic areas studied by Yang et al. 

(2010), discussed in the next section, the number of polylines in the reference network 

equaled the number of polylines in the derived network, regardless of the coarseness of 

the delineation, and corresponding polyline segments were assigned matching IDs. 

However, for coarser delineations in the third geographic area, the number of polylines 

differed between the reference and derived networks. One or two branches were not 

created in the delineation process. Where the branches were missing, the delineation 

process failed to create separate polylines on either side of the branch, resulting in a 

single long polyline in the derived network that was represented by two shorter polylines 

in the reference network. This longer derived polyline was then automatically compared 

with either of the two shorter reference polylines or to the missing branch in the reference 

network, depending on which of the three reference ID numbers was assigned to the 

derived polyline, which skewed the analyses. To resolve this, the longer derived polylines 

were manually broken at about the location of the missing branches, and the IDs for the 

polylines in the derived dataset were changed to ensure matches between corresponding 

reference and derived polylines, so that derived polylines were correctly compared with 

the corresponding reference polylines (see Figure 13). 
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Figure 13. Manually breaking polylines to ensure one-to-one correspondence. 

2.4 Results

The relative sinuosity and LRMSE algorithms presented here were used to compare and 

assess the quality of a number of LiDAR-derived streams and stream networks. Yang et 

al. (2010) used the techniques to compare stream networks delineated from LiDAR-

derived DEMs for the Dry Creek, Slate Creek, and Reynolds Creek watersheds, in Idaho, 

USA. Figure 14 shows the average sinuosity for the three study areas. Figure 15 shows 

the ratios of derived (or sample) sinuosity to reference sinuosity for the three study areas. 

A value of 1.0 indicates a perfect match in sinuosity, although not necessarily a perfect 

overlying match of polylines. Note that, for Reynolds Creek, the 30 m cell size yields a 

sinuosity that most closely matches the reference; for Dry Creek, the 10 m cell size yields 
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2007; Ames et al., 2008); (2) two standard stream datasets, one from the Topologically 

Integrated Geographic Encoding and Referencing (TIGER) system data from the U.S. 

Census Bureau’s 2000 Census (ESRI, 2006) and the other from the Pacific Northwest 

River Reach or PNWRR project (StreamNet, 2009); and (3) a highly detailed reference 

stream traced from 1 m resolution National Agricultural Imaging Project or NAIP aerial 

photography (see Table 6). Zhang and Goodchild (2002) claim that no reference source 

can have perfect accuracy. However, they suggest that the independent source of higher 

accuracy may be obtained through land surveying or derived from aerial photography. 

This implies that aerial photography could be considered nearly as accurate as land 

surveying. The NAIP provides 1 m ground sample distance orthoimagery rectified within 


6 m to true ground (USDA, 2004). 

Table 6. Example of sinuosity and LRMSE results (Fishhook Creek). 

Dataset Type Sinuosity Relative
Sinuosity*

LRMSE*
(m)

NAIP  Reference 1.67   

TIGER2K  Standard 1.14 0.68 12.96 

PNWRR  Standard 1.13 0.68 13.36 

TauDEM  DEM-based delineation 1.73 1.04 5.21 

avFlowPath LiDAR point cloud delineation 1.83 1.10 2.06 

* Relative to the NAIP Reference 
 

Note that, while LRMSE indicates that the LiDAR point cloud delineation yielded a 

much better match to the reference, the DEM-based delineation yielded a relative 

sinuosity that most closely matched that of the reference. This supports the caution, 

offered in Section 2.3.1, that matching sinuosities do not necessarily mean that the 

polylines match; only that the amount of meandering is similar. LRMSE is the better of 
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the two metrics for determining match. Although the reference and derived polylines 

differed in length, the longer polylines were manually truncated for fair comparison of 

the common reach. 

2.5 Conclusions

Networks of polylines can be compared for relative accuracy in terms of sinuosity and 

LRMSE, to provide quantitative assessment of the quality of the data. Neither sinuosity 

nor LRMSE should be used blindly; both require some subjective interpretation to ensure 

that they are used properly and that there are no data anomalies, such as greatly disparate 

polyline lengths. Nevertheless, using these techniques for comparing polylines or 

networks of polyline, one can explore detailed comparisons of stream network 

delineations that differ, for example, in the assumptions applied or the derivation 

processes employed. While LRMSE appears to be a more generally suitable technique, 

both provide valuable insights when properly used and reviewed. Both techniques have 

been used in two recent investigations involving extracting of hydrographic features from 

LiDAR elevation data. Yang et al. (2010) confirmed that, with the greatly increased 

resolution of LiDAR data, smaller cell sizes yielded better stream network delineations, 

based on sinuosity and LRMSE, when using LiDAR-derived DEMs. Anderson and Ames 

(2011) demonstrated a new method of delineating a stream directly from LiDAR point 

clouds, without the intermediate step of deriving a DEM. It was shown that the direct 

delineation from LiDAR point clouds yielded an excellent and much better match, as 

indicated by the LRMSE. 
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A cautionary note is in order here. The derived data may very closely match the reference 

data, but the reference data may not be perfectly accurate. Using the sinuosity or the 

LRMSE to compare a derived data set with a reference data set will only allow one to 

conclude that the derived data closely match the reference data, not that the derived data 

closely match the reference data, which, in the absence of field data, has been presumed 

to be reality. “Reality” implies perfect reference data. If the reference data are not perfect, 

then the scale (or accuracy) of the reference data will cause the reference data to compare 

most favorably with derived data of the same scale. Thus, the accuracy of the reference 

data must be considered. 
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Chapter 3

Impact of Resolution on Hydrographic Feature Extraction 

from LiDAR-Derived DEMs 

3.1 Introduction 

Hydrologic simulation models and water resources planning tools often use hydrographic 

datasets (stream network polylines, watershed boundaries, etc.) which can be derived 

from gridded (raster) DEMs using well established terrain analysis techniques (Jenson 

and Domingue, 1988; Tarboton et al., 1991). DEMs are, in turn, derived from a number 

of sources including for example, manually surveyed topographic maps, interpolated 

global positioning system (GPS) points, and the SRTM (Farr and Kobrick, 2000). In 

recent years, a new source of data from which DEMs can be derived has emerged in the 

form of LiDAR. 

LiDAR technology offers a relatively efficient way to produce DEMs for a variety of 

large-scale, high accuracy mapping applications. LiDAR sensors are capable of receiving 

multiple laser pulse “returns” which, when combined with precision GPS location data 

can provide highly accurate and dense point sample measurements of terrain height. In 

this way, LiDAR can be used to define a detailed representation of the earth’s surface 

horizontally as well as vertically, making the LiDAR data source increasingly important 

for surface structure derivation and giving particular appeal to its use in hydrographic 

feature extraction. Indeed, channels extracted from a LiDAR-derived DEM have been 

shown to have a more complex morphology and correspond better with field-mapped 

networks than those derived from a conventionally produced DEM (Barber and 

Shortridge, 2005). 
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Murphy et al. (2007) suggests that when considering hydrologic modeling, DEM cell size 

has a greater impact on results than does the method by which the DEM was produced. 

Chow and Hodgson (2009) demonstrated that DEM resolution progressively affects the 

mean and deviation of slope within the range of 2 to 10 m. 

These observations contribute to the primary question motivating the work presented 

here: What is the relationship between hydrographic derivatives (specifically watershed 

boundaries and stream network centerlines) and the cell size of the LiDAR-derived 

DEM? This question is important because of the extensive usage of such vector data 

features in both mapping and hydrologic modeling applications. 

To address this question, we derived several DEMs at different cell size resolutions from 

three specific LiDAR data sets and delineated stream network centerlines and watershed 

boundary polygons for each. These vector data were then compared to best available 

reference datasets for each watershed. An assessment of the “correctness” of each 

extracted stream network is made through the use of LRMSE, sinuosity deviation and 

selected hydrographic parameters. 

3.2 Background

Existing literature on the effect of spatial scale on topographic modeling focuses on 

DEMs created by means other than LiDAR (Jenson, 1991; Moore, 1991; Tarboton et al., 

1991; DeVantier and Feldman, 1993; Olivera, 2001). Studies have also been conducted 

on the effect of DEM resolution on hydrology-related parameters (Kienzle, 2004; 

Sørensen and Seibert, 2007). Vaze and Teng (2007b) present results from an 

investigation in which they re-sampled a 1 m LiDAR-derived DEM in steps (2, 5, 10, and 
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25 m) and compared the different spatial indices derived from these different resolution 

DEMs against the ones derived from the 1 m LiDAR-derived DEM. They reported that 

re-sampling to coarser grid cell sizes, which is equivalent to averaging across 

increasingly larger domains, results in an increasing loss of detail in the topography. 

Tarboton et al. (1991) explore the length scale or drainage density for network derivation 

from traditional digital elevation data, and suggests criteria for determining the 

appropriate drainage density at which to extract networks from DEMs. Zhang and 

Montgomery (1994) found that increasing the grid size resulted in an increased mean 

topographic index because of increased contributing area and decreased slopes. Wolock 

and Price (1994) found that increasing grid size resulted in higher minimum, mean, 

variance, and skew of the topographic index distribution. 

Gyasi-Aagyei et al. (1995) proposed that the vertical resolution for the DEM of a 

catchment should be satisfactory for extraction of the drainage network if the ratio of 

average elevation change per pixel (pixel drop) to elevation error is greater than unity. Qi 

et al. (2009) modeled the inundation extent and flood frequency of Poyang Lake, China 

based on Landsat images and DEMs, which indicated that a 30 m contour-based DEM 

was not accurate for medium and low lake levels. 

Techniques for generating DEM data from LiDAR have been greatly improved by 

Agarwal et al. (2006). Wallis et al. (2009) demonstrated techniques for using parallel 

computing based hydrologic terrain processing on DEM data. With respect to the use of 

the LiDAR-derived DEMs for hydrologic modeling, Murphy et al. (2007) compared 

stream network modeling results using LiDAR and photogrammetric derived digital 
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elevation which reveals that a flow network modeled from the LiDAR-derived DEM was 

most accurate. 

Barber and Shortridge (2005) compared results using conventional 30 m DEMs and 6 m 

LiDAR DEMs for both a high and low relief study area and suggest that cell size is a 

more important factor than the data production method in hydrologic modeling. Kienzle 

(2004) investigated the effect of DEM raster resolution on first order, second order and 

compound terrain derivatives and identified an optimum grid cell size between 5 and 20 

m, related to terrain complexity. Sørensen and Seibert (2007) explore the effects of DEM 

resolution on the calculation of topographical indices and show that the resolution and 

information content of a DEM has great influence on the computed topographic indices. 

LiDAR-derived DEM cell size has also been shown to have an impact on landslide 

analysis (Glenn et al. 2006), where a cell size no larger than 10 m is suggested. 

Spatially distributed hydrological models have been shown to be sensitive to DEM 

resolution (Zhang and Montgomery, 1994; Wolock and Price, 1994) both in horizontal 

and vertical measurement (Kenward et al., 2000). Chauby et al. (2005) indicate that finer 

resolution DEM cell sizes may result in improved output from the Soil and Water 

Assessment Tool (SWAT). The effect of DEM resolution on water quality modeling and 

calibration, specifically due to changes in delineated watersheds, was reported by 

Teegavarapu et al. (2006) using a Hydrologic Simulation Program Fortran (HSPF) 

model. Zhang et al. (2008) used DEMs with different resolutions to explore erosion 

modeling using the Water Erosion Prediction Project (WEPP) model and found that the 

10 m LiDAR DEM produced watershed discharge and sediment yield that were closest to 

field observations. 
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Our research adds to this body of literature by addressing the question of the effect of 

LiDAR-derived DEM resolution on extracted hydrographic features used for hydrologic 

modeling, mapping and other purposes. We are also interested in such effects as they are 

exhibited within watersheds of distinct topographical characteristics. 

3.3 Methods

3.3.1 Case Study Areas 

Three watersheds used for this research include: Dry Creek Experimental Watershed 

(DCEW), Reynolds Creek Experimental Watershed (RCEW) and Slate Creek Watershed 

(SCW), as shown in Figure 17. Each of these watersheds is located in the State of Idaho, 

USA, and was chosen because of: 1) the availability of large high-density airborne 

LiDAR datasets; 2) the availability of 1 m aerial images and existing stream feature data 

used for creating reference stream networks in each watershed; and 3) areas with distinct 

topographical (and hence hydrographical) characteristics. A brief description of each 

watershed follows. 

Dry Creek Experimental Watershed (DCEW) 

DCEW is located within the Boise Mountains in Southwestern Idaho (about 43° latitude, 

-116° longitude). DCEW includes the 28 km2 northeastward trending Dry Creek drainage 

extending from 1000 to 2100 m in the granitic region of the Boise Front. A series of 

LiDAR-derived DEMs for DCEW, based on a bare-earth LiDAR model with all 

vegetation removed, are shown in Figure 18. 
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Reynolds Creek Experimental Watershed (RCEW) 

RCEW, typical of much of the intermountain region of the western United States, 

exhibits considerable spatial heterogeneity. RCEW may be thought of as a spatial mosaic 

of local environments in which the relative impact of different hydrologic processes 

varies spatially and temporally (Seyfried and Wilcox, 1995). The 239 km2 drainage is a 

rangeland located in the Owyhee Mountains of southwestern Idaho, approximately 80 km 

southwest of Boise, Idaho, USA. Reynolds Creek, in this watershed, is a third-order 

perennial stream that drains north to the Snake River. 

Slate Creek Watershed (SCW) 

SCW lies within the Salmon Basin in the southern part Idaho’s panhandle and covers a 

total area of 320 km2. Elevation within SCW ranges from 219 to 3843 m. Slate Creek 

originates high in the Boulder-White Cloud Mountains and descends northward to the 

Salmon River, falling nearly 2000 m. Other tributaries to Slate Creek are generally 

greater than 4% gradient. Slate Creek has sediment debris torrents periodically 

throughout recorded history. A complex terrain in SCW includes canyons, mountains and 

rangelands. 

3.3.2 Source Data Collection and Accuracy 

LiDAR data for RCEW and DCEW (Watershed Sciences, 2008b; Watershed Sciences, 

2008a) were acquired as part of a larger project to use LiDAR for studying ecohydrology 

and snow modeling, and data for SCW (Watershed Sciences, 2006) was acquired on 

behalf of the U.S. Department of Agriculture’s (USDA) Forest Service. The LiDAR 

survey was conducted by vendor Watershed Sciences, Corvallis, Oregon. A Leica ALS50 

Phase II LiDAR instrument was flown in a Cessna Caravan 208B aircraft over the period 
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of September 29 to October 3, 2006 for SCW and November 10 to November 18, 2007 

for RCEW and DCEW. The data were delivered in the LAS 1.1 file format with 

information on pulse return number, easting, northing, elevation, scan angle, and intensity 

for each return. The absolute accuracy, presented as LRMSE (Zandbergen, 2010) in 

vertical dimension, are 0.026 m and 0.033 m for DCEW and RCEW, respectively and 

0.088 m for SCW. 

3.3.3 LiDAR DEM Derivation 

3.3.3.1 Data Preparation 

A single LAS file (raw LiDAR data) typically contains millions of points. This can often 

be the cause of hardware and software memory limitations. Therefore, the first step in 

processing LiDAR data is usually to create a set of LAS tiles that break up the data into 

numerous smaller files for more efficient processing. An index map representing the 

boundaries of each tile can then be generated to support visualization and processing 

across the full dataset. To achieve a seamless DEM, all LAS files are buffered to create 

areas of overlap between files. Buffering essentially increases the area of a single tile by 

including points from adjacent tiles based on the buffer distance. Buffer distance is 

usually set to several times the value of the canopy spacing to ensure all file edges 

overlap. LiDAR data processing followed the steps shown in Figure 19-A. The LiDAR 

data were processed using Idaho State University’s Boise Center Aerospace Laboratory 

(BCAL) LiDAR Tools (BCAL, 2010; Streutker and Glenn, 2006; Tinkham et al. 2011), 

which works with the free Interactive Data Language virtual machine and as a plug-in for 

the image analysis software ENVI 4.7 (Exelis Visual Information Solutions, Boulder, 

Colorado, USA). 
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3.3.3.3 DEM Generation 

LiDAR points are not evenly spaced, therefore, it is necessary to interpolate (where there 

are no existing points in the target raster cell) or to generalize (where there are many 

points in the target raster cell) to obtain a single value to be applied to each cell in the 

output raster DEM. After height-filtering the raw LiDAR data, DEMs were generated 

from ground returns using a hybrid natural neighbor interpolator. During the height-

filtering process, the height of all vegetation returns above the bare-earth surface 

(interpolated using natural neighbors) was recorded. A bare-earth DEM was computed as 

mean elevation of all the ground returns and elevation minus vegetation height of non-

ground returns. For cells with no LiDAR returns, returns from neighboring pixels were 

used to compute the bare-earth elevation. DEMs were generated for RCEW and DCEW 

using cell sizes of 1, 5, 10, 30, and 50 m. For SCW, DEMs were generated with the same 

cell sizes, except that 60 m was used instead of 50 m. Resulting DEMs were then used in 

the watershed and stream network delineation steps outlined below. 

3.3.4 Watershed Delineation 

Techniques for extracting watershed boundaries and stream network hydrography from 

DEM data are well established (Beven and Kirkby, 1979; Jenson, 1991; Tarboton et al., 

1991). We used a set of geoprocessing tools within ArcGIS 9.3 (ESRI, Inc., Redlands, 

California), assembled in the ArcGIS Model Builder tool, to extract stream networks and 

watershed areas from each of the LiDAR-derived DEMs, as shown in Figure 19-B. 

Hydrologic terrain analysis typically requires that the input DEM be projected into a local 

or regional geographic projection system that preserves distance and area measurements. 
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For the purposes of this study, the North American Datum 1983 Universal Transverse 

Mercator (Zone 11 North) projection was used for all DEMs. We used a simple pit filling 

technique where areas of low elevation are raised to the neighboring values, such that 

every DEM cell can effectively “flow out” of the grid. 

Flow direction was computed using an 8-direction pour point model. Flow accumulation 

was computed at every cell such that an area threshold could be set whereby any cells 

with an accumulation area higher than the threshold are defined as streams. The same 

area threshold was used for all data to ensure a similar number of stream segments 

regardless of DEM resolution. Using map algebra to identify cells exceeding the 

accumulation threshold, stream networks were delineated from the DEM. Stream outlet 

points were used to identify drainage outlets of watershed areas. Raster to polyline and 

raster to polygon conversions were used to convert stream networks and watershed areas 

into a vector data format for comparison to reference data. 

Table 7 shows the number of polyline segments produced by the delineations and the 

number of polyline segments used in the reference. Note that the number of polyline 

segments in the derived network did not vary with cell size for RCEW and SCW. On the 

other hand, the number of polyline segments did vary with cell size for DCEW, which is 

a much more complex network. 

3.3.5 Comparison to Reference Data 

All spatial data contain errors (Goodchild, 1991). However, assuming one dataset is the 

best available representation of a particular feature, we can estimate the error contained 

within other features by comparing them to the reference data (relative accuracy). 
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Table 7. Number of polyline segments comprising the networks. 

DEM RCEW DCEW SCW 

Reference 13 33 15 

Sample 1 (1 m) 13 33 15 

Sample 2 (5 m) 13 32 15 

Sample 3 (10 m) 13 33 15 

Sample 4 (30 m) 13 32 15 

Sample 5 (50 or 60 m) 13 31 15 
 

Figure 20 shows an example of multiple stream networks delineated from DEM data 

within a watershed and compared to reference data. To create reference data, field-

derived stream networks and watershed boundary feature data were obtained for DCEW 

(Aishlin, 2007) and RCEW (Seyfried et al., 2001). A stream network feature dataset for 

SCW was retrieved from the National Hydrology Dataset (NHD) (http://nhd.usgs.gov/). 

NHD has been shown to be useful by Sheng et al. (2007) for regional watershed 

assessments. Stream centerline data for all three watershed areas were manually updated 

based on 1 m digital orthoimagery of Idaho from the 2009 NAIP to create the reference 

streams used in the study. 

3.4 Results

Several tests were conducted to assess the differences between modeled and reference 

hydrography, including: slope, length and catchment areas, sinuosity, and variation along 

the stream networks (using a particular application of RMSE). The results for each test 

are described below. 
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standard deviation, and maximum slope generally grew in RCEW and DCEW, while the 

standard deviation in SCW decreased slightly with higher DEM resolution. However, 

there was no evident improvement in the topographic parameters between the LiDAR-

derived 10 and 5 m, nor the 5 and 1 m DEMs. 

Table 8. Slope statistics for the Reynolds Creek Experimental Watershed. 

Cell Size 
(m)

Average
Slope

Standard
Deviation 

Minimum
Slope

Maximum
Slope

Sample 1 (1 m) 13.14 7.87 0.00 89.94 

Sample 2 (5 m) 12.87 7.62 0.00 89.71 

Sample 3 (10 m) 12.61 7.44 0.16 89.42 

Sample 4 (30 m) 11.70 6.99 0.22 88.31 
 

Table 9. Slope statistics for Dry Creek Experimental Watershed. 

Cell Size 
(m)

Average
Slope

Standard
Deviation 

Minimum
Slope

Maximum
Slope

Sample 1 (1 m) 26.28 7.91 0.00 89.95 

Sample 2 (5 m) 25.77 7.55 0.00 89.76 

Sample 3 (10 m) 25.03 7.47 0.00 89.52 

Sample 4 (30 m) 22.60 6.95 0.09 88.47 
 

Table 10. Slope statistics for Slate Creek Watershed. 

Cell Size 
(m)

Average
Slope

Standard
Deviation 

Minimum
Slope

Maximum
Slope

Sample 1 (1 m) 21.35 11.06 0.00 89.96 

Sample 2 (5 m) 21.17 11.05 0.00 89.79 

Sample 3 (10 m) 20.95 11.22 0.01 89.59 

Sample 4 (30 m) 20.28 12.90 0.03 88.78 
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DEM cell size, total stream length, watershed area and data file size computed for the 

three study watersheds at each DEM resolution are shown in Table 11, Table 12, and 

Table 13. 

Table 11. Reynolds Creek Experimental Watershed hydrographic feature characteristics. 

Cell Size 
(m)

Data Volume
(kilobytes) 

Total Stream Length 
(m)

Total Watershed Area
(m2)

1 1,605,430 62,014 258,438,120 
5  66,047  56,900 256,222,336 

10  16,509 55,796 254,272,636 

30  1,836 52,657 253,364,133 

50  460 51,647 253,295,789 
 

Table 12. Dry Creek Experimental Watershed hydrographic feature characteristics. 

Cell Size 
(m)

Data Volume
(kilobytes) 

Total Stream Length 
(m)

Total Watershed Area
m2)

1  267,637 39,798 31,036,026 
5  10,710 35,521 30,447,821 

10  2,681 35,413 29,639,535 

30  299 33,412 29,321,880 

60  75 32,398 26,892,651 
 

Table 13. Slate Creek Watershed hydrographic feature characteristics. 

Cell Size 
(m)

Data Volume
(kilobytes) 

Total Stream Length 
(m)

Total Watershed Area
(m2)

1 676,671 121,039 318,656,969 
5  101,882 119,104 317,746,123 

10  25,471 117,580 317,215,781 

30  2,832 112,311 314,469,868 

60  709 100,550 307,522,683 
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The area loss displayed in Figure 22 and Figure 23 reveals interesting results, specifically 

with respect to DCEW when considering 60 m versus 1 m cell size. In this case, DCEW 

exhibits the least total loss in watershed area (4.14 km2). This result highlights the 

sensitivity of smaller watersheds to different cell sizes. Even SCW, the largest watershed 

in our study area exhibits a 3.5% loss in land area when extracting watershed boundaries 

using a 60 m cell size (in comparison to the 1 m cell size area). Such variation in 

computed land area can have unanticipated results on later watershed modeling or data 

analysis efforts. 

3.4.3 Sinuosity

Sinuosity is used to describe the condition of being winding or curving in shape and is 

used here as a quantitative index of stream meandering and a distinctive property of 

channel pattern (see Section 2.3.1). Stream sinuosity, is computed as the ratio of channel 

length to direct distance between the beginning and end of the stream and is often used in 

the study of the geometry, dynamics, and dimensions of alluvial channels (Chorley et al., 

1984). In this study, sinuosity was computed for all segments of both the reference stream 

network and the modeled stream networks at each DEM resolution for each study 

watershed. Absolute sinuosity for the reference and the delineation for each network are 

shown in Table 14 and in Figure 24. Relative sinuosity for the reference and the 

delineation for each network are shown in Table 15 and in Figure 25. It can be assumed 

that higher absolute sinuosity implies greater detail and, therefore, potentially higher 

accuracy. However, in terms of comparing with a reference, the more important 

comparison for relative sinuosity is how close it is to unity, since this implies the closest 

match. In comparing sinuosity of stream networks, it must be determined whether the 



g

n

an

fo

w

m

b

T

D

R

S

S

S

S

S
 

oal is to max

etwork, the c

nd Slate Cre

or the Reyno

with the smal

maximum sin

etween the 5

Table 14. Ave

DEM 

Reference 

Sample 1 (1 

Sample 2 (5 

Sample 3 (1

Sample 4 (3

Sample 5 (5

ximize the si

closest matc

eek networks

olds Creek an

llest cell size

nuosity corre

5 and 1 m sin

erage sinuos

m) 

m) 

0 m) 

0 m) 

0 or 60 m) 

F

inuosity or m

ch in sinuosit

s, a 30 m cel

nd Slate Cre

e or highest r

esponds to th

nuosity is sm

sity by cell s

R

Figure 24. Av

59 

match the ref

ty is for the 

ll size yields 

eek networks

resolution (1

he next smal

mall (0.01). 

ize. 

Reynolds
Creek

1.12 

1.27 

1.18 

1.16 

1.12 

1.11 

verage sinuo

ference sinu

10 m cell siz

 the closest m

s, the maxim

1 m). For the

llest cell size

Dry
Creek

1.09 

1.18 

1.12 

1.10 

1.08 

1.05 

osity by cell 

uosity. For th

ze. For the R

match to the

mum sinuosit

e Dry Creek 

e (5 m), thou

Slate
Creek

1.29 

1.39 

1.40 

1.37 

1.32 

1.28 

size. 

he Dry Creek

Reynolds Cre

e reference. B

ty correspon

network, the

ugh the differ

k 

eek 

But, 

nds 

e 

rence 

 



T

D

S

S

S

S

S
 

3

W

p

L

th

re

n

Table 15. Rel

DEM 

Sample 1 (1 

Sample 2 (5 

Sample 3 (1

Sample 4 (3

Sample 5 (5

.4.4 Longi

We define LR

oints located

LRMSE is us

he reference 

eference data

etworks and

lative sinuos

m) 

m) 

0 m) 

0 m) 

0 or 60 m) 

Figure 25. 

itudinal Roo

RMSE as the

d along both

sed here as a

networks. T

a. Resulting 

d reference st

sity by cell si

R

Relative sin

ot-Mean-Sq

e horizontal 

h the modeled

a measure of 

The smaller t

LRMSE val

tream) are sh

60 

ize. 

Reynolds
Creek

1.13 

1.05 

1.04 

1.00
0.99 

nuosity (deriv

quare-Error

RMSE comp

d and referen

f how accurat

the LRMSE,

lues (as com

hown in grap

Dry
Creek

1.08 

1.03 

1.01 

0.99
0.96 

ved/referenc

r (LRMSE)

puted betwe

nce stream n

tely the mod

, the closer th

mputed betwe

phical form 

Slate
Creek

1.08 

1.09 

1.06 

1.02 

0.99

ce) by cell si

een a number

networks (se

deled stream

he fit betwee

een modeled

in Figure 26

ze. 

r of paired se

ee Section 2.

m networks m

en modeled 

d stream 

6 and in tabu

 

ets of 

3.2). 

match 

and 

ular 



fo

d

th

th

T

D

S

S

S

S

S
 

orm in Table

ecreases (ap

he lowest/be

he lowest/be

Figu

Table 16. LR

DEM 

Sample 1 (1 

Sample 2 (5 

Sample 3 (1

Sample 4 (3

Sample 5 (5

e 16. For the

pparently exp

st LRMSE. 

st LRMSE. 

ure 26. LRM

RMSE by cell

m) 

m) 

0 m) 

0 m) 

0 or 60 m) 

e Reynolds C

ponentially) 

For the Slate

MSE as a fun

l size (m). 

R

61 

Creek and Dr

as cell size d

e Creek netw

nction of DE

Reynolds
Creek

6.74
8.46 

9.40 

19.06 

40.34 

ry Creek net

decreases, w

work, howev

EM cell size f

Dry
Creek

11.98
22.69 

22.83 

47.94 

70.82 

tworks, the L

with the 1 m 

ver, the 10 m

for each wat

Slate
Creek

20.35 

16.26 

15.43
23.21 

228.32 

LRMSE 

cell size yiel

m cell size yie

tershed. 

lding 

elds 

 



62 

3.5 Conclusions

From the results of all experiments in the three experimental watersheds, the effect of 

LiDAR-derived DEM resolution on hydrographic feature derivation is clearly evident. 

Among all the DEM samples from 1 to 60 m cell size, the total watershed area and total 

stream length had highest measurement values at the cell size of 1 m, and there was a 

descending tendency with increasing cell size. The results show that higher resolution 

LiDAR-derived DEMs produce more detailed hydrographic features. 

We observed that smaller DEM cell sizes result in greater stream network and watershed 

boundary detail and complexity with notable variations in key parameters such as 

watershed area and slope. We also found that the best fit between the modeled stream 

networks and reference data occurred not at the finest resolution but rather with a cell 

size in the range of 5 to 10 m. 

We observed that LRMSE increased with cell size. The difference between derived 

streams and reference streams increased as DEM resolution decreased. The results 

showed that the difference in the spatial distance between the reference and modeled 

streams tended to be smaller with a finer resolution. We also observed that the relative 

sinuosity of sample streams and reference data generally increased with decreasing cell 

size. The best match (value of 1) for DCEW came from the 10 m cell size. The best 

match for RCEW and SCW came from the 30 m cells size. 

We initially concluded that our results are consistent with Zhang and Montgomery (1994) 

who proposed that a 10 m grid cell size represents a rational compromise between 

increasing resolution and data volume for simulating geomorphic and hydrological 
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processes. This is also consistent with Zhang et al. (2008) who showed that 10 m LiDAR 

DEM modeled watershed discharge and sediment yield were closest to field observations. 

Indeed, although extremely high-resolution data are becoming more readily available, 

and may prove more advantageous for certain applications, the use of such data may not 

necessarily result in better DEMs for hydrologic applications (Sørensen and Seibert, 

2007; Charrier and Li, 2012). 

This conclusion must be treated with caution, however. Prodobnikar (2009) reports that, 

when performing optimal path comparisons on DEMs, similar results “signify (but do not 

prove)” a higher quality. From the data, it appears that higher resolution input does not 

always equate to greater accuracy with respect to stream network and watershed 

boundary delineation and hydrologic parameter assessment. But, the closest fit to the 

“best cell size” is likely caused by the reference data being accurate to within a similar 

scale. As was pointed out in Section 2.5, the accuracy of the reference data must be 

considered. The derived data may very closely match the reference data, but the reference 

data may not be perfectly accurate. More accurate reference data, if available, may more 

closely match data derived using the smaller or smallest cell sizes. 

In further support of this caution, Hans, et al. (2003) investigated the differences of using 

high resolution LiDAR and standard USGS elevation data for watershed and drainage 

pattern delineation. They report that small-scale (i.e., low resolution) elevation models 

may not provide the accuracy and detail necessary to accurately delineate small 

watersheds. They also report that such small-scale models may not accurately reflect the 

impact of roads and their ditches on these small watersheds, particularly in flat areas. 
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Chow and Hodgson (2009) examined the effects of scale (based on spatial sampling) in 

modeling mean slope from LiDAR data. They used two representations of scale: LiDAR 

point density (i.e., post(spacing) and DEM resolution (i.e., cell size). The results of their 

sensitivity analyses showed that the deviation between mean slope and modeled mean 

slope decreases with higher point densities and DEM resolution. The relationship of 

mean slope to cell size and to point densities suggested a linear and a logarithmic 

function, respectively. They also reported that cell size had a greater effect on mean slope 

than LiDAR point density.  

Murphy et al. (2008) compared stream networks derived from hydrologically corrected 

and uncorrected DEMs. They derived a 10 m DEM from aerial photography, using 

photogrammetric techniques, and a 1 m DEM from LiDAR. The field-mapped network 

was used for verification. They report that the network from the LiDAR-derived DEM 

was the most accurate representation of the field-mapped network, being more accurate 

even than the photo-derived network. Their study suggests that this was likely due to the 

greater initial point density, accuracy, and resolution of the LiDAR-derived DEM 

compared with the conventional DEM. 
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Chapter 4

A Method for Extracting Stream Channel Flow Paths 

from LiDAR Point Cloud Data 

4.1 Introduction 

Development of three-dimensional terrain models typically requires sampling and spatial 

interpolation of elevation data collected by any number of means. Elevation samples can 

be directly collected through surveying techniques or through digitization of printed maps 

created from earlier surveying collections. In either case, elevation samples are generally 

sparse. With the advent of remote sensing techniques, such as airborne or earth-orbiting 

radar and LiDAR, the density of samples can be greatly increased, resulting in 

significantly higher resolution and accuracy for such models. 

LiDAR involves illuminating an object (e.g. terrain) with a narrow collimated beam of 

light (i.e., laser, usually near infrared or green wavelengths), and measuring the time for a 

returned reflection. The round-trip travel time of the transmitted and reflected beam is 

halved to determine the one-way travel time, and this time determines the distance to 

ground, based on the speed of light. This distance, when combined with aircraft altitude 

and attitude (roll, yaw, and pitch) and beam pointing (elevation and azimuth), is used to 

calculate the elevation of the terrain point that reflected the beam. The narrow beam is 

scanned laterally (i.e., back and forth perpendicular to the flight path) at high speeds and 

the return data are recorded at high rates, resulting in the collection of high volumes of 

data. These data consist of point records or elevation samples characterized by, as a 

minimum, X, Y, and Z coordinates. 
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Once such elevation samples are spatially interpolated, a 2.5-dimensional model of the 

terrain surface can be created and stored as a grid in which two dimensions represent the 

X and Y coordinates on the ground, determined by the number of pixels and their 

width/length, and the other 1/2-dimension, the pixel value, represents the Z coordinate or 

elevation. These raster or gridded DEMs can then be used to perform numerous 

topographic analyses, such as calculations of slope, slope-aspect, stream profiles, 

catchment areas, and topographic roughness and curvature. 

4.2 Background

Several studies have been undertaken to use LiDAR data to improve the accuracy of 

topographical analyses; however, most still go through the intermediary step of 

interpolating the LiDAR point cloud to generate a DEM. Garcia (2004) mapped 

headwaters stream networks. Hickey (2000) calculated slope angle and slope length. 

James et al. (2006) mapped gullies and headwater streams under forest canopy. 

Lashermes et al. (2007) extracted channel network using wavelets. Luo and Stepinski 

(2007) identified geologic contrasts from landscape dissection patterns. Mark (1983) 

demonstrated automated detection of drainage networks. Passalacqua et al. (2010) 

developed a geometric framework for channel network extraction using nonlinear 

diffusion and geodesic paths. In all the works cited above, LiDAR data were first 

interpolated to generate DEMs. At least one study has been performed that addresses 

directly using LiDAR point cloud data for detection of single trees in a forest (Gupta, 

2010). Direct use of LiDAR point cloud data for stream delineation has not been reported 

prior to the work reported in this paper. 
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Kienzle (2004) suggests that terrain raster derivatives improve in quality as raster cell 

size is reduced. It could be inferred, then, that using high-density LiDAR point clouds, 

with extremely small distances between adjacent points, or “cell spacing”, should yield 

even better results. On the other hand, Yang et al. (2010) examined the effect of DEM 

resolution (represented as cell size) on the extraction of hydrographic features from 

LiDAR point cloud data. They found that, although total stream length increased 

inversely with DEM resolution, the shape difference between derived samples and the 

references approach a minimum at a range of cell sizes from 5 to 10 m. This suggests that 

there may be an optimum cell resolution beyond which there is little improvement in the 

accuracy. Still, 5 to 10 m is a much higher resolution than is generally offered by existing 

DEMs. 

One early and simple method for specifying water flow directions, using gridded raster 

data, is the D8 method (8 flow directions) introduced by O'Callaghan and Mark (1984), 

in which flow is assigned from each pixel in a grid to one of its eight neighbors, either 

adjacent or diagonally, in the direction with steepest downward slope. 

Arrowsmith et al. (2008) have suggested, however, that there is a need within the remote 

sensing and geosciences community to develop algorithms for conducting topographic 

analyses directly on the scattered LiDAR point cloud data, with the following potential 

benefits: 

� There would be no need to preprocess the data to convert the point cloud data into 
a DEM or other gridded format. 

� Accuracy should be improved because calculations are performed directly on the 
measured data, rather than a model of the surface. 
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� It would eliminate the need to discard or interpolate data in areas of high or low 
measurement density, respectively. 

This research investigates the potential to perform stream delineation directly from 

LiDAR point cloud data without first interpolating to a raster or grid. This was 

accomplished by extending O'Callaghan’s and Mark’s (1984) D8 method to make direct 

use of LiDAR point clouds, rather than a processed raster or grid, and considering many 

more than just 8 possible flow directions with numerous data points in each possible 

direction. The scope of investigation is not to develop an algorithm that will 

automatically delineate an entire network of streams for an extended area, but to 

accurately delineate a single stream from a specified upstream starting point. An 

alternative algorithm has been developed and tested by qualitatively comparing results 

with existing digital stream data and with actual streams (as determined from high 

resolution imagery). This algorithm will be subjected to further future investigation and 

evaluation, but the feasibility has been demonstrated and preliminary qualitative 

assessments indicate good performance and, thus, bear a promising potential. 

4.3 Methods

4.3.1  Rapid Prototyping with Large-Volume Geospatial Data 

ESRI’s ArcView 3.2 and its associated programming environment, Avenue, were used 

for rapid prototyping of the developed algorithm because of its inherent ability to 

promptly process large volumes of geospatial data, including its ability to rapidly and 

easily collect and select all points in a defined neighborhood and perform operations on 

the selection. The algorithm presented here can be ported to and implemented in any 

suitable tool or programming language. A stand-alone software tool was first developed, 
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using Borland’s Delphi (), to pre-process the LAS-formatted data (ASPRS, 2009), 

converting it to a text file that could be imported into ArcView. Once imported, an ESRI 

shapefile was created. Although other software tools exist, that will be discussed later, 

which could have performed the conversion, this development process provided needed 

insight into the LiDAR LAS format and allowed specific customized control over the 

data parameters exported and converted. The pre-processing tool could eventually be 

combined with the actual processing algorithm into a single tool. 

4.3.2  Algorithm Development and Qualitative Experimentation 

The direct delineation method proposed is an extension of the D8 method, originally 

introduced by O'Callaghan and Mark (1984). However, rather than looking at single 

adjacent or diagonal pixels in a raster to determine the steepest downward slope, a 

neighborhood of LiDAR points are considered, collectively (see Figure 27). The Avenue 

script, written to implement the proposed mDn method, was called avFlowPath. The 

algorithm is summarized in Table 17. Avenue script for avFlowPath is included in the 

appendix as Code List 3. 

The user specifies a starting point and a neighborhood radius. This neighborhood radius 

determines the number of LiDAR points to process and the distance to the next 

processing point. Thus, in effect, it defines a linear resolution for the delineation, or how 

short the polyline segments will be. The smaller the neighborhood radius, the higher the 

linear resolution, and the shorter the polyline segments will be, resulting in greater detail. 
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Figure 27. Graphical representation of the proposed method using the lowest mean 

elevation within 8 sectors or triangles, one in each cardinal direction, and a new flow path 
point at the midpoint of the sector base. 

About the starting point, the neighborhood circle is sectioned into eight sectors or 

triangles. In the first implementation of the algorithm, the neighborhood was sectioned 

into only eight sectors, covering each cardinal direction (N, NE, E, SE, S, SW, W, and 

NW) and forming an octagon. Within each cardinal sector, the mean elevation is 

Linear Resolution 
(Neighborhood Radius)

New Point

Previous Point

Sector w/
Lowest Average

Elevation

Flow Path

Angular Resolution
(Sector Width or # Sectors)
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calculated for all contained LiDAR points. The cardinal sector with the lowest mean 

elevation determines the direction of the flow for the next segment of the flow path. 

Table 17. General algorithm steps for delineating a flow path in a LiDAR point cloud. 

Select a starting point 
Define a neighborhood radius (linear resolution) 
Identify and select all points within the neighborhood 
Set the number of sectors (angular resolution) 
Divide the circle into the number of sectors 
For each sector: 

Identify and select all points within the sector 
Find the average elevation for all points within the sector and radius 

Select the sector with the lowest average elevation 
(represents the steepest downward gradient from the previous point) 

Select or define a point to represent that sector; options: 
The midpoint of the sector’s far side 
The point on the neighborhood radius circle that intersects 

with the bisector of the selected sector, or 
The centroid of the selected sector 

Use this point as the new starting point 
Connect the previous starting point and the new starting point 
Repeat until no points can be found with a downward gradient (inescapable "Pit") 
 
 
There are 3 methods for establishing the next starting point as defined below; 

(1) Selecting the midpoint of the sector’s far side, 

(2) Selecting the point on the neighborhood radius circle that intersects with the 
bisector of the selected sector, and 

(3) Selecting the centroid of the selected sector. 

For each of these methods, there are 2 options: 

(1) Create a new virtual point (i.e., not one of the existing LiDAR points), and 

(2) Use an existing LiDAR point that is nearest to the new virtual point. 

Selection of the method and option is accomplished via user parameters in the algorithm 

code. 
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Once a new starting point is identified, the process is repeated using this new processing 

point as the center of the next LiDAR point neighborhood. In essence, each of the eight 

sectors of the neighborhood circle is analogous to an adjacent or diagonal pixel in the 

raster method. The outputs of the avFlowPath script are a point shapefile and a polyline 

shapefile, where the points correspond to the joints of the polyline segments. 

Subsequently, this LiDAR point cloud method was further extended by dividing the 

neighborhood into more than eight sectors to improve the angular resolution in 

determining flow path directional changes. In fact, the method can use any number of 

sectors (any n-sided polygon) and calculates the mean elevation and resulting slope or 

gradient from the previous point, for each of n possible flow directions. Using the D8 

nomenclature as a pattern, this proposed method has been dubbed “mDn” (short for 

“Mean-in-n-Directions”). The number of sectors, in effect, defines an angular resolution 

for the delineation, or how finely the delineation can turn or bend at segment joints. The 

more sectors used, the higher the angular resolution, allowing finer turn control. 

Because the method deals with means, essentially a gross filtering process, there are four 

potential sources of traps. The first is reaching a point where the surrounding mean 

elevations are all greater than the current point, in which case flow stops, perhaps 

prematurely. The second is reaching a point where the lowest of the surrounding 

elevations is exactly equal to the current point, in which case flow may bounce back and 

forth between the two points, preventing further progress, but also failing to stop the 

calculations. The third is making too sharp of a turn and doubling back, though not to the 

same point. And the fourth is slowly arcing back and even crossing the flow path. 
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Three methods were used simultaneously to prevent falling into any of the above 

scenarios and to keep the delineation moving forward as far as possible. They included: 

(1) Ensuring that no existing LiDAR point is used more than once. After using a 
point, it was flagged in the shapefile’s database; before using a point, the database 
was checked for the flag. 

(2) Limiting movement to a generally forward direction by defining a maximum 
course change. In other words, an exclusion cone, defined by the maximum 
course change in either direction (left or right), was created in the reverse 
direction. 

(3) Preventing the flow path from crossing itself, by mathematically checking each 
new line segment for an intersection with all existing line segments in the flow 
path. The following equations, based on Goodchild and Kemp (1990), were used, 
where two line segments are designated by endpoint coordinates of (x1, y1) to (x2, 
y2) for the first line and (u1, v1) to (u2, v2) for the second line. 

b1 = (y2 – y1) / (x2 – x1) (11) 
b2 = (v2 – v1) / (u2 – u1) 
a1 = y1 – (b1 · x1) 
a2 = v1 – (b2 · u1) 
xi = – (a1 – a2) / (b1 – b2) 
yi = a1 + (b1 · xi) 
if (((x1 – xi) · (xi – x2) >= 0) AND ((u1 – xi) · (xi – u2) � 0) AND 
  ((y1 – yi) · (yi – y2) >= 0) AND ((v1 – yi) · (yi – v2) � 0)) then … 
 [flow path crossed itself] 

4.3.3 Case Study Area 

The small-footprint airborne LiDAR data used for the case study area of interest (AOI) 

were in LAS v1.0 format and represent an area on the northern banks of Redfish Lake, in 

Custer County, Idaho. Of particular use and interest is the lower portion of Fishhook 

Creek (at the inlet to Redfish Lake), located in the upper central portion of the data. The 

data are projected in Universal Transverse Mercator Zone 11 and cover a rectangular area 

from N 665712.41, W 4889286.68 to N 666712.4, W 4890286.67. Figure 28 shows the 
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First, although the hill-shaded TIN for ground-only returns (Figure 29) shows a hint of 

the Fishhook Creek stream channel, it is very faint. NAIP high-resolution aerial imagery 

was used to manually delineate or draw the stream channel, which fully aligned to the 

faint traces of stream channel morphology in the hill-shade TIN. Next to field collections 

with a GPS receiver, this probably represents the best approximation. Zhang and 

Goodchild (2002) claim that no reference source can have perfect accuracy. However, 

they suggest that the independent source of higher accuracy may be obtained through 

land surveying or derived from aerial photography. This implies that aerial photography 

could be considered nearly as accurate as land surveying. The NAIP provides 1 m ground 

sample distance orthoimagery rectified within 
6 m to true ground (USDA, 2004).  

 Second, the Pacific Northwest River Reach or PNWRR project (StreamNet, 2009) 

provides an approximate representation of Fishhook Creek that is correctly located, but 

lacks the sinuosity to provide detailed accuracy. Third, a popular, commonly used 

dataset, provided by ESRI with their version of the Census 2000 TIGER/Line data (ESRI, 

2006), was found to be similar, though not identical, to the PNWRR data. Finally, to 

compare against traditional grid-based delineations from interpolated DEMs, the LiDAR 

data were first converted to an ESRI-formatted grid, using ArcView 3.2, with 0.5 m cells. 

This cell size was chosen because, based on the density of ground return points within the 

LiDAR point cloud (3.5 points/m2), the average point spacing is about 0.5 m. 

Third, TauDEM was used to delineate the stream channel. The cell threshold was set to 

5000 points. Lower thresholds (higher numbers of points) were tested, up to the default 

value of 40,000 points. Increasing the threshold (lowering the number of points) did not 

alter the sinuosity or the existing paths; it merely extended the paths, resulting in longer 
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reaches. Attempts to use the minimum allowable threshold (2000 points) to extend the 

reach to the upper boundary of the AOI failed, probably due to computer limitations. As 

demonstrated in Figure 30, the stream delineated in TauDEM favorably compares with 

the actual stream in the upper portion, but then departs or digresses, making a large 

westward off-track bend, before returning to nearly the correct terminal location. The 

terminus, however, is in Redfish Lake. It should be noted that TauDEM is intended to 

process large geographical areas for full stream networks. TauDEM identified numerous 

“hypothetical” non-existing streams that were discarded for this evaluation; only the 

Fishhook Creek line was retained for comparison. 

4.3.5 Test Case Parameters 

Controllable parameters for avFlowPath were manually adjusted through multiple trials 

to seek a set that would yield a reasonable match to the NAIP Reference. Table 18 shows 

a set of parameters that yielded an excellent match to the NAIP Reference. The graphical 

results of this test case are shown in Figure 31. The circle at the top end of the 

avFlowPath delineation defines both the 10 m neighborhood and the starting point. The 

off-path loop at the bottom end of the delineation is caused by a road passing over the 

stream (the stream passes either under a bridge or through a culvert). The road, included 

in the bare earth or ground return LiDAR classification, has a much higher elevation than 

the stream and confused the delineation algorithm. The trap-prevention routines, such as 

the Goodchild and Kemp (1990) code to detect a path crossover, are engaged to halt the 

delineation algorithm. Otherwise, the delineated path wanders aimlessly in what would 

be a floodplain, if the stream were truly dammed at point where the road crosses the 

stream. 
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4.4 Results

In order to compare the coarse published standard stream representations and the new 

delineations with the NAIP “real” baseline, the stream segments were cropped to begin 

and end near the same place (Figure 32). This was more difficult for the TauDEM 

delineation, due to its large digression from the other stream paths addressed below. 

4.4.1 General Performance 

Sinuosity was calculated for the NAIP baseline and for each stream representation. As 

can be seen both visually (see Figure 32) and numerically (see Table 19), the TIGER 

2000 and the PNWRR stream paths have a lower sinuosity than the NAIP baseline. On 

the other hand, both the TauDEM and avFlowPath delineations yielded streams that were 

slightly more sinuous than the NAIP baseline. Calculated LRMSE results are shown in 

Table 19. The TauDEM delineation, performed poorly due to its large digression towards 

the end the NAIP baseline. The avFlowPath delineation performed best, with an LRMSE 

of only about 2 m. 

The stream representations were further cropped, at the point where the TauDEM path 

digressed, in order to assess its performance just in the upper portion of the area of 

interest, as shown in Figure 28. Sinuosity was recalculated for each stream 

representation. Again, as can be seen both visually (see Figure 33) and numerically (see 

Table 20), the TIGER 2000 and the PNWRR stream paths have a lower sinuosity than the 

NAIP “real” baseline, while both the TauDEM and avFlowPath delineations yielded 

streams that were slightly more sinuous. LRMSE was also recalculated and results are 

shown in Table 20. The TauDEM delineation performed considerably better than either 
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The TauDEM grid delineation resulted in a smooth and downward sloping vertical profile 

with a few small, gentle upward slopes and only one radical, unexplainable upward spike 

(see Figure 36). Also, note the drastic drop in elevation of nearly 1.5 m between 850 and 

900 m distance. If real, this drop could indicate the presence of small falls or aggressive 

rapids. However, this artifact is in the lower region of the stream delineation, where the 

delineated stream path digressed significantly from the real stream path. 

The avFlowPath LiDAR delineation, on the other hand, did not yield a smooth vertical 

profile and, in fact, manifests several radical upward spikes. This is because an averaging 

filter is used to pick a sector/direction and a hypothetical point. Then the nearest real 

LiDAR point to that hypothetical point is selected, which may be slightly higher in 

elevation than the average elevation for the selected sector. 

Also, forward progression is forced for as long as possible by limiting the “Maximum 

Allowable Course Change” and selecting the lowest average elevation within the course 

change limits. Again, this lowest average elevation may be slightly higher than the center 

point for the neighborhood radius. 

Finally, the spikes could represent real elevation rises in the streambed, if the streambed 

is returning reflections. Water, with enough depth and pressure, will flow over localized 

elevation rises in the streambed. If the stream was empty, then these local rises would be 

detected. If, on the other hand, the stream was full, then LiDAR returns would be 

unlikely with near infrared laser (absorbed by water), which would explain the data gaps 

discussed in Section 4.4.4.3 and shown in Figure 38. It is not known whether the stream 

was dry at the time of collection. The LiDAR data were collected in October and many 



86 

mountain streams are dry by this time of the year. In NAIP aerial photography (USDA, 

2004) collected in September 2006, the stream appears dry; but, in NAIP aerial 

photography collected in September 2011, the presence or lack of water is less 

discernible. Regardless, the data, as shown in Figure 38, suggest the presence of water 

absorbing the near infrared wavelength, causing gaps in the point cloud. 

 It may be possible to improve the vertical performance by simply using hypothetical 

point for the flow channel (a new point created within or at the far end of the sector with 

the lowest average elevation, with an elevation set equal to the average), rather than 

trying to select an appropriate real LiDAR point. Each method, however, has its pros and 

cons, and, in the future, a comparison should be made. 

4.4.3 Accuracy Issues and Assumptions 

Accuracy is measured relative to some reference. Zhang and Goodchild (2002) state that 

no reference source can have perfect accuracy. Nevertheless, a relative reference which 

can be assumed to be accurate is needed and the goal is to match the reference as nearly 

as possible. Although the method and algorithm used will inherently influence the 

accuracy, there are other factors that also play a role, including: 

� Accuracy of the LiDAR elevations, 

� Accuracy of the geo-referencing, and 

� Accuracy of the classification of the points. 

The coordinates obtained from LiDAR are highly accurate. This particular dataset is 

reported to have a horizontal accuracy of about 30 cm and a vertical accuracy of 15 cm 
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(Airborne 1, 2005). Thus, the classification of the points is more likely to influence 

accuracy in this study. The data used to develop and test the algorithm in this study were 

classified as ground returns. Because stream flow will be only along the ground, any 

vegetation or building returns could corrupt or divert the stream delineation. It has been 

assumed that the classification of the Redfish Lake LAS data is correct, so that the only 

remaining real source for error or inaccuracy is the algorithm itself. In reality, however, if 

the resulting stream channel does not correspond to “truth”, it would be extremely 

difficult to determine if classification errors played a significant role. Close inspection of 

the right-hand image in Figure 29 suggests that the vegetation may not have been fully 

filtered by the vendor, as evidenced by the residual roughness in texture. As an 

alternative to accepting the vendor’s classification, other height filtering algorithms, such 

as Idaho State University’s Boise Center Aerospace Laboratory (BCAL) LiDAR Tools

(BCAL, 2010; Streutker and Glenn, 2006; Tinkham et al. 2011), could be used to filter 

the LAS data and more accurately identify the ground elevations. 

4.4.4 Challenges 

4.4.4.1 Pits or Sinks 

As was stated earlier, one major challenge faced was handling traps (“pits” or “sinks”) 

that might prematurely prevent the flow path progression, so that delineation continues. A 

smoothing, filtering algorithm (averaging) was used to get and to keep the delineation 

moving, i.e., to prevent falling into a trap. Other trap-handling measures were 

implemented to keep the delineation moving in the right direction, following the stream 

bed, rather than wandering off course and meandering aimlessly through non-existent 

stream beds. 
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4.4.4.2 Forcing Termination 

With trap-handling measures implemented, though, a second major challenge was 

circumventing those measures, at some point, to force an acceptable termination of the 

delineation. 

An example of the wandering/meandering that required a forced termination is the loop at 

the end of the delineation path caused by the road that passes over the stream bed. When 

the delineation reaches the road, the algorithm has no clue on how to move beyond the 

road. The delineation cannot continue in the true streambed, but the trap-handling 

procedures try to keep the delineation moving in some direction. 

That the road would act as an impassable barrier is not surprising; this same challenge 

would apply to grid-based methods as well. Still, until the road interferes with the flow 

path progression, there is a strong match between the delineated flow path and the real 

stream, suggesting real potential for this algorithm. 

Campbell (2007) suggests one possible way to manually force termination at a desired 

point, due to known or anticipated obstacles, is the use of breaklines, which are 

interconnected points that define abrupt changes in terrain, such as edges of roads, 

drainage ditches, and ridgelines. He points out that LiDAR data may not accurately 

represent shorelines, stream channels, and ridges. He also suggests that it is common for 

the analyst to insert breaklines, usually by manual inspection, to separate the data into 

discrete units that can be treated individually. Ideally, however, termination would be 

forced automatically, with as little manual intervention or preparation as possible. 
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4.4.5 Scale

Scale of the reference data, relative to scale of the derived data, will influence what 

would appear to be optimal matches or correlations between datasets. Similarly, when 

dealing with gridded rasters, optimal cell size depends on the scale or size of the real 

stream. So, scale is clearly a factor in performing comparisons. But, it also plays a major 

role in the response of the algorithm to the data. Figure 38 shows the random bouncing 

back-and-forth between stream banks, rather than following the center-line of the stream 

bed, for a relatively narrow stream. Imagine using this algorithm on a wide river. For a 

narrow stream, the lateral amplitude of the bank-to-bank bouncing would appear small 

and unnoticeable in a large-scale map. But, for a wide stream, the bouncing would be 

very noticeable on the same map. This algorithm and method are expected to work best 

for narrow streams or in steep valleys, such as mountain headwater regions. As the 

stream widens or the terrain flattens, the accuracy of the method diminishes. One possible 

solution (or enhancement) would be to collect the LiDAR data with a green wavelength 

laser, so that the beam is transmitted through the water and reflected off the stream or 

river bed. If the bed of the stream has enough lateral slope from the banks to the channel 

center, due to erosion, then the algorithm may still work well on wider streams on flatter 

terrain. 

Scale issues are not unique, though, to the direct delineation methods. Even when 

working with LiDAR-derived DEMs, scale is a critical factor. Vianello et al. (2009) 

compared different methods for computing channel slope using LiDAR-derived DTMs 

with varying resolutions. They focused on a headwater basin containing steep mountain 

streams, namely, cascades and step pools. They report that a reliable channel slope can 
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only be derived from a DEM, with an appropriate resolution, if channel width is taken 

into account. In other words, scale is a critical factor. 

Vaze and Teng (2007a, p. 693) report that most DEMs have generalizations of the land 

surface built into them. They assert that, if these generalizations are within the spatial 

range of the processes that are operating in the landscape of interest, “there is no 

problem.” On the other hand, if the generalizations are greater than the resolution of 

landscape processes, they claim that “any results or indices derived from DEMs must be 

treated with caution.” They show that, while in some flat areas and for some processes, a 

grid cell resolution of 25 m or higher is adequate to capture the scale of surface 

processes, in other areas, the resolutions as small as 1 m may be required. In other words, 

landscape process scale is the key driver in determining useful grid cell resolution. 

Vaze and Teng (2007a) also report that vertical accuracy of the elevation data is just a 

critical as cell size, since a small error in the elevation can result in totally different and 

incorrect model predictions. They state that this is because grid cell size, or resolution, 

and the vertical accuracy are critical drivers for most of the hydraulic and hydrological 

processes (Vaze and Teng, 2007a). 

4.5 Conclusions

A method of delineating streams directly from LiDAR point cloud data has been 

developed, demonstrated, and qualitatively assessed. The method divides the region 

around a starting point into n sectors, using the LiDAR data points within each sector to 

determine an average slope, and selecting the sector with the greatest downward slope to 

determine the direction of flow. An algorithm was developed and implemented in 
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ArcVew’s Avenue scripting language. Three adjustable parameters allow fine tuning: 

radial resolution, angular resolution, and maximum course change. Through iterative 

experimentation, selection of appropriate values for these parameters has led to an 

excellent match with a known streambed trace. 

A case study area was selected just north of Redfish Lake, Idaho, at the Fishhook Creek 

inlet. These data were already classified to permit extraction of bare earth or ground 

return data points. High resolution aerial photography was used to trace the creek for a 

reference stream. An mDn delineation, a TauDEM delineation, and other common stream 

delineations were compared with the reference stream, by calculating sinuosity and 

LRMSE. Although, the TauDEM delineation yielded a sinuosity that more closely match 

the reference, the mDn delineation yielded a sinuosity that was higher than either the 

TauDEM method or the existing published stream delineations. Stream delineation using 

the mDn method yielded the smallest LRMSE. 

These initial results indicate that the mDn method has significant promise for accurately 

delineating stream networks directly from LiDAR data without first rasterizing it. This 

approach has the potential to yield the benefits suggested by Arrowsmith et al. (2008), 

when they proposed that: (a) there would be no need to preprocess the data to convert the 

point cloud data into a DEM or other gridded format; (b) accuracy should be improved 

because calculations are performed directly on the measured data, rather than a model of 

the surface; and (c) there would be no need to discard or interpolate data in areas of high 

or low measurement density, respectively. In short, more streamlined and accurate stream 

delineation would be possible, using LiDAR point cloud data, which, in the future, is 

expected to become more readily and more abundantly available. 
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Three major challenges were encountered and addressed: (1) traps or sinks, in which the 

stream flow delineation prematurely halted because the algorithm couldn’t find an 

appropriate direction to proceed (no downward slope); (2) forcing termination when the 

algorithm tried to backtrack or wander because of the traps or sinks or due to ambiguity 

(two or more sectors with the same maximum downward slope); and (3) data gaps, where 

the LiDAR data just did not exist, usually right in the streambed of interest. 

Future improvements of the algorithm might include improving the handling of these 

challenges, as well as extending the algorithm by automating it to cover larger land areas 

and developing techniques for delineating entire networks of streams, rather than a single 

stream, without any intermediate user intervention. The analyses should also be extended 

to additional case study areas. There are several other LiDAR datasets available in Idaho 

(BCAL, 2011; Idaho LiDAR Consortium, 2012). But, other regions and landscape types 

should be considered. 
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Chapter 5

Summary and Conclusions 

Detailed hydrographic feature extraction from high-resolution LiDAR data was 

investigated. Methods for quantitatively evaluating and comparing such extractions have 

been presented, including the use of sinuosity and LRMSE. These metrics were used for 

quantitatively comparing stream networks in two studies. The first study examined the 

effect of raster cell size on watershed boundaries and stream networks delineated from 

LiDAR-derived DEMs. The study confirmed that, with the increased resolution of 

LiDAR data, smaller cell sizes generally yielded better stream network delineations, 

based on sinuosity and LRMSE, however the smallest cell size was not necessarily 

optimal. The second study demonstrated a new method of delineating a stream directly 

from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of 

LiDAR point clouds could improve efficiency and accuracy. This new direct delineation 

method, termed “mDn”, is an extension of the D8 method that has been used for several 

decades with gridded raster data. The method divides the region around a starting point 

into sectors, using the LiDAR data points within each sector to determine an average 

slope, and selecting the sector with the greatest downward slope to determine the 

direction of flow. An mDn delineation was compared with a traditional grid-based 

delineation, using TauDEM, and other readily available, common stream data sets. 

Although, the TauDEM delineation yielded a sinuosity that more closely matched the 

reference, the mDn delineation yielded a higher sinuosity than either the TauDEM 

method or the existing published stream delineations. Stream delineation using the mDn 

method yielded the smallest LRMSE. 
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This research demonstrates: (1) the narrow width of the laser’s collimated beam and the 

high volume and density of data points in LiDAR point cloud data result in very high 

“resolutions,” which provide significant levels of detail and accuracy when performing 

hydrographic feature extractions; and (2) it is possible to accurately delineate a stream 

directly from LiDAR point cloud data without the intermediary step of interpolating a 

DEM. 

However, working directly with the point cloud data, rather than a LiDAR-derived DEM, 

poses at least one disadvantage. If a high-resolution LiDAR point cloud (e.g., 1 m 

ground-return point spacing) is used to create a DEM with 1 m cell size, the grid-based 

delineation process is able to change directions, or bend the stream, at every cell (or 

every 1 m). Conversely, if the same LiDAR point cloud is used to perform a direct 

delineation from the points, then the bends can only be made at every neighborhood 

radius (the linear resolution), which must be large enough to contain sufficient points to 

determine average elevations in each sector or direction. 

In order to select a flow direction, enough returns in each sector are needed to obtain an 

average elevation that can filter outliers or anomalies and discriminate against other 

sectors. In order to have sufficient returns, the number of sectors can be decreased, to 

widen them and encapsulate more; but, this reduces the angular resolution (directional 

accuracy). Nevertheless, only eight sectors are needed to at least have the same angular 

resolution as a traditional D8 grid-based extraction technique. 

Another way to ensure sufficient returns in each sector is to increase the neighborhood 

radius; but, this would result in longer line segments and, therefore, reduced meandering 
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detail. For example, in the case study for Chapter 4, a neighborhood radius of 10 m was 

used, resulting in 10 m line segments such that the direction of flow can only change 

every 10 m. With a 0.5 m cell size DEM, flow direction can change every 0.5 to 0.7 m 

(the width or diagonal length of an adjacent cell). 

In spite of this disadvantage, the evidence presented in Chapter 4 suggests potential 

benefits from developing and improving direct delineation techniques. The next logical 

step in furthering this research is to upgrade the avFlowPath algorithm to support 

automated delineation of full stream networks, rather than a single stream. This probably 

could and should be done in a more current programming tool than ArcView Avenue, 

since it is no longer supported by ESRI. Programming languages such as C++ or Python 

are widely recognized and supported. Another recommendation for furthering this 

research would be to investigate whether using all returns, rather than just ground returns, 

would improve the accuracy of the delineation. Using vegetation elevations, to increase 

surrounding elevations, may make it easier for delineation procedures, such as 

avFlowPath, to identify the local elevation minima in the streambed or at the banks, to 

find the steepest-gradient flow paths. Finally, it may be that another technique could be 

identified and developed that would eliminate or reduce the need to use so many returns 

in each direction, as in the mDn technique, to establish the steepest gradient direction. 

Thus delineated stream segments could be shorter in length and exhibit greater detail. 

Another advantage of the traditional grid-based extraction techniques is that they are 

“here and now” and ready to use. Direct delineation techniques are in their infancy. Until 

techniques for delineating a stream directly from LiDAR point clouds can be refined and 

further developed, traditional extraction methods using DEMs will probably continue to 
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prevail. Still, until direct delineation techniques are ready, if those DEMs are derived 

from high-resolution LiDAR data, then, as this research has demonstrated, they will 

provide significantly higher levels of detail than if lower resolution DEMs (e.g., the 30 m 

SRTM DEMs or the 10 m NED) are used as the extraction source. Consequently, LiDAR 

offers significant enhancements to current endeavors and tremendous promise for the 

future, in performing detailed and accurate hydrographic feature extractions. 
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Appendix

Code Lists 

Code List 1. Avenue code for calculating sinuosity. 
'Name: Sinuosity 
'Author: Danny L. Anderson, May 2010 
'Description: Calculates curvilinear length (calfpath), straight-line distance (crowflies), and sinuosity 
(crowfiles/calfpath) for each feature in an active polyline theme. The values are added to the theme's table 
in new fields. The total line lengths (all features), the average line length, and the average sinuosity are 
reported in dialog box. 
'Topics: Hydrology 
'Inputs: One active polyline theme 
'Returns: Amended feature table; sinuosity is new column 
 
'Make sure the view has themes 
 if (av.GetActiveDoc.GetThemes.Count = 0) then 
    MsgBox.Error("View contains no themes!".AsString,"Error") 
    return(nil) 
 end ' if 
 
'Setup  
 theView = av.GetActiveDoc 
 theView.Select 
 theProjection = theView.GetProjection 
 theTheme = theView.GetActiveThemes.Get(0) 
 theFTab = theTheme.GetFTab 
 
'Make sure a single theme is active 
 if ((theView.GetActiveThemes.Count<>1) or (theView.GetActiveThemes.Get(0).Is(ITheme))) then 
    msgbox.error("An Active Feature Theme is Required. Operation aborted!","Exiting") 
    return(nil) 
 end 
 
'Make sure active theme is a polyline theme  
'Note: "Arc" means polyline 
 if (theTheme.GetSrcName.GetSubName <> "Arc") then 
    MsgBox.Error("Active theme is not a polyline theme. Operation aborted!","Error") 
    Exit 
 end ' if 
  
'Alternate method: 
'Make sure active theme is a polyline theme  
' theType = theFTab.FindField("shape").GetType 
' if (theType <> #FIELD_SHAPELINE) then 
'    MsgBox.Error("Active theme is not a polyline theme. Operation aborted!","Error") 
'    Exit 
' end ' if  
  
'Make sure the active theme is editable 
 if (theFTab.CanEdit.Not) then 
    MsgBox.Info("Cannot edit table for theme " + theTheme.AsString + ". Operation aborted!", "Error")  
    Exit 
 end ' if 
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'Exit if no Map Units 
 theMapUnits = theView.GetDisplay.GetUnits 
 if (theMapUnits = #UNITS_LINEAR_UNKNOWN) then 
    Msgbox.Error("Map units unknown. Set the View's map units."+NL+NL+ 
     "To specify the radius in units other than map units (for example, in miles), also set the View's distance 
units.","Program Aborted!") 
    return NIL 
 end 'if 
'Get Units 
 if (theMapUnits = #UNITS_LINEAR_METERS) then 
    MyUnits = " m" 
 else 
    MyUnits = "" 
 end ' if     
 
'If Distance Units are set, then convert to Map Units    
 convert = TRUE 
 theDistUnits = theView.GetDisplay.GetDistanceUnits 
 if (theDistUnits = #UNITS_LINEAR_UNKNOWN) then 
    theDistUnits = theMapUnits 
    convert = FALSE 
 end ' if 
 
'********************** BEGIN MAIN CODE ************************** 
' (Calculations of curvilinear length ("CalfPath"), straight-line distance ("CrowFlies"), and sinuosity) 
 
 theFTab.SetEditable(TRUE) 
 nFeatures = theFTab.GetNumRecords 
 Sum_CalfPath = 0 
 Sum_Sinuosity = 0 
  
'Check for the existence of the fields "CrowFlies", "CalfPath", and "Sinuosity". If they don't exist, create 
them. 
 if (theFTab.FindField("CrowFlies") = nil) then 
    theStraightLineLengthField = Field.Make("CrowFlies",#FIELD_DOUBLE,16,3) 
    theFTab.AddFields({theStraightLineLengthField}) 
 end ' if 
 if (theFTab.FindField("CalfPath") = nil) then 
    theCurvilinearLengthField = Field.Make("CalfPath",#FIELD_DOUBLE,16,3) 
    theFTab.AddFields({theCurvilinearLengthField}) 
 end ' if 
 if (theFTab.FindField("Sinuosity") = nil) then 
    theSinuosityField = Field.Make("Sinuosity",#FIELD_DOUBLE,16,3) 
    theFTab.AddFields({theSinuosityField}) 
 end ' if 
 theStraightLineLengthField = theFTab.FindField("CrowFlies") 
 theCurvilinearLengthField = theFTab.FindField("CalfPath") 
 theSinuosityField = theFTab.FindField("Sinuosity") 
 
'Loop through the FTAB and find the projected curvilinear length of each polyline and set the field values. 
 theShape = theFTab.ReturnValue(theFTab.FindField("Shape"),0) 
 For Each rec in theFTab 
     theFTab.QueryShape(rec,theProjection,theShape) 
     CalfPath = theShape.ReturnLength 
     theFTab.SetValue(theCurvilinearLengthField,rec,CalfPath) 
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     Sum_CalfPath = Sum_CalfPath + CalfPath 
    'Get straight-line distance ("CrowFlies") 
     X1 = theShape.AsLine.ReturnStart.GetX 
     Y1 = theShape.AsLine.ReturnStart.GetY 
     X2 = theShape.AsLine.ReturnEnd.GetX 
     Y2 = theShape.AsLine.ReturnEnd.GetY 
    'CrowFlies = (((X2 - X1)^2) + ((Y2 - Y1)^2)).Sqrt ' for cartesian coordinates only; see next lines for 
generic 
     Point1 = Point.Make (X1, Y1) 
     Point2 = Point.Make (X2, Y2) 
     CrowFlies = Point1.Distance(Point2) 
     theFTab.SetValue(theStraightLineLengthField,rec,CrowFlies) 
     Sinuosity = CalfPath/CrowFlies 
     theFTab.SetValue(theSinuosityField,rec,Sinuosity) 
     Sum_Sinuosity = Sum_Sinuosity + Sinuosity 
 end ' for 
 theFTab.SetEditable(FALSE) 
  
 Avg_CalfPath = Sum_CalfPath / nFeatures 
 Avg_Sinuosity = Sum_Sinuosity / nFeatures 
 MyResults = "Number of Features: " + nFeatures.SetFormat("d").AsString + NL + 
             "Total Feature(s) Length: " + Sum_CalfPath.SetFormat("d.d").AsString + MyUnits + NL + 
             "Average Feature Length: " + Avg_CalfPath.SetFormat("d.d").AsString + MyUnits + NL + 
             "Average Sinuosity: " + Avg_Sinuosity.SetFormat("d.dd").AsString 
 MsgBox.Info(MyResults,"Stats") 
 
Code List 2. Avenue code for calculating LRMSE. 
'Name: RMSE_2Networks 
'Author: Danny L. Anderson, July 2010 
'Description: Calculates the Root-Mean-Square-Errors for two networks, where the reference network 
segment is divided into exactly n line segments and n + 1 pts and compared with the nearest point on the 
other network's corresponding segment. 
'Topics: Hydrology 
'Inputs: Two active polyline themes with one or more features 
'Returns: X,Y coordinates for each line (in a new table) and the RMSE (in a MsgBox) 
 
'Settings 
 n = 100 ' number of line segments (number of points = n + 1) 
 
'Make sure the view has themes 
 if (av.GetActiveDoc.GetThemes.Count = 0) then 
    MsgBox.Error("View contains no themes!".AsString,"Error") 
    return(nil) 
 end ' if 
 
'Setup 
 theView = av.GetActiveDoc 
 theView.Select 
 nThemes = theView.GetActiveThemes.Count 
 
'Make sure exactly two themes are active 
 if (nThemes <> 2) then 
    msgbox.error("Exactly two themes must be active. Operation aborted!","Exiting") 
    return(nil) 
 end 'if 
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'Exit if no Map Units 
 theMapUnits = theView.GetDisplay.GetUnits 
 if (theMapUnits = #UNITS_LINEAR_UNKNOWN) then 
    Msgbox.Error("Map units unknown. Set the View's map units."+NL+NL+ 
     "To specify the radius in units other than map units (for example, in miles), also set the View's distance 
units.","Program Aborted!") 
    return NIL 
 end 'if 
'Get Units 
 if (theMapUnits = #UNITS_LINEAR_METERS) then 
    MyUnits = " m" 
 else 
    MyUnits = "" 
 end ' if 
 
'If Distance Units are set, then convert to Map Units 
 convert = TRUE 
 theDistUnits = theView.GetDisplay.GetDistanceUnits 
 if (theDistUnits = #UNITS_LINEAR_UNKNOWN) then 
    theDistUnits = theMapUnits 
    convert = FALSE 
 end ' if 
 
 theProjection = theView.GetProjection 
 theTheme1 = theView.GetActiveThemes.Get(0) 
 theFTab1 = theTheme1.GetFTab 
 nFeatures1 = theFTab1.GetSelection.Count 
 theTheme2 = theView.GetActiveThemes.Get(1) 
 theFTab2 = theTheme2.GetFTab 
 nFeatures2 = theFTab2.GetSelection.Count 
 
'Make sure both themes are polylines 
'Note: "Arc" means polyline 
 if ((theTheme1.GetSrcName.GetSubName <> "Arc") and (theTheme2.GetSrcName.GetSubName <> 
"Arc")) then 
    MsgBox.Error("Active theme is not a polyline theme. Operation aborted!","Error") 
    Exit 
 end ' if 
 
'********************** BEGIN MAIN CODE ************************** 
' (Get X,Y for each polyline at exactly n + 1 evenly spaced pts, load in table, and calculate RMSE) 
' (Note: Don't know why, but have to capture rec1 and rec2 and strings and then convert to numbers) 
 
'Find and define fieldnames in both existing tables 
 fldSegmentID1 = theFTab1.FindField("ID") 
 fldSegmentID2 = theFTab2.FindField("ID") 
 
'Set theFileName for new table 
 theFileName = "RMSE " + theTheme1.GetName + " " + theTheme2.GetName 
'Make and set up new table for SegmentID and RMSE 
 RMSE_2Networks = VTab.MakeNew(theFileName.AsFileName, dBASE) 
 RMSE_2Networks.AddFields({Field.Make("SegmentID", #FIELD_SHORT, 3, 0), 
                           Field.Make("RMSE", #FIELD_DOUBLE, 10, 2)}) 
 
'Find and define fieldnames in new table 
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 fldSegmentID  = RMSE_2Networks.FindField("SegmentID") 
 fldRMSE       = RMSE_2Networks.FindField("RMSE") 
 
'Need to predefine theShape 
 theShape1 = theFTab1.ReturnValue(theFTab1.FindField("Shape"),0) 
 theShape2 = theFTab2.ReturnValue(theFTab2.FindField("Shape"),0) 
 
'Iterate through each line segment in reference theme 
 
 RMSE_2Networks.SetEditable(true) 
 for each rec1 in theFTab1 
     SumOfSqrs = 0 
     rec1 = rec1.AsString.AsNumber 
    'Get SegmentID in reference theme and create a record in new table 
     SegmentID1 = theFTab1.ReturnValue(fldSegmentID1,rec1) 
     nRecNew = RMSE_2Networks.AddRecord 
     RMSE_2Networks.SetValue(fldSegmentID,nRecNew,SegmentID1) 
 
    'Find feature/record with same Segment ID in sample theme 
     rec2 = 0 
     SegmentID2 = -9999 
     for each rec in theFTab2 
         SegmentID = theFTab2.ReturnValue(fldSegmentID2,rec) 
         if (SegmentID = SegmentID1) then 
            rec2 = rec.AsString.AsNumber 
            SegmentID2 = SegmentID 
         end ' if 
     end 'for 
 
     'MsgBox.Info(rec1.AsString + " vs " + rec2.AsString,"Info") 
     'MsgBox.Info(SegmentID1.AsString + " vs " + SegmentID2.AsString,"Info") 
 
    'If a matching segment is found, calculate RMSE and add to new table 
     if (SegmentID2 <> -9999) then 
        d = 0 
       'Iterate to get n segments and n + 1 points on reference line (prcnt = %) and determine distance to other 
line, calculate RMSE, and store in new table 
        for each prcnt in 0..100 by (100/n) ' runs from end of line to start??? 
           'Get X,Y for point on line 1 
            theFTab1.QueryShape(rec1,theProjection,theShape1) 
            X1 = theShape1.Along(prcnt).GetX 
            Y1 = theShape1.Along(prcnt).GetY 
            aPoint = Point.Make(X1,Y1) 
           'Get the distance to the other line (nearest point?) 
            theFTab2.QueryShape(rec2,theProjection,theShape2) 
            theShape2.QueryPointDistance(aPoint, d) 
            SumOfSqrs = SumOfSqrs + (d^2) ' changed units/scale to prevent "infinity" 
        end ' for 
        RMSE = ((SumOfSqrs/(n+1))).Sqrt 
        RMSE_2Networks.SetValue(fldRMSE,nRecNew,RMSE.SetFormat("d.dd")) 
     else 
       'Put a null value for RMSE because a matching segment wasn't found 
        RMSE_2Networks.SetValue(fldRMSE,nRecNew,"-9999.99") 
     end 'if 
 
 end ' for 
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 RMSE_2Networks.SetEditable(false) 
 
 MyResults = "Done!" 
 MsgBox.Info(MyResults,"RMSE comparison of two stream networks") 
 
Code List 3. Avenue code for FlowPath. 
'Name: FlowPath 
'Author: Danny L. Anderson, November 2009, (revised December 2009) 
'Description: Finds the "FlowPath" by determining the direction with the lowest average elevation cardinal 
sub-circle and then finds a "suitable" representative LiDAR point 
'Topics: Spatial, 3D, Lidar 
'Inputs: One active point theme (presumably a LiDAR point cloud) 
'Returns: One point shapefile 
 
'Setup: Adjustable parameters 
 nSectors = 36 ' defines angular resolution as a number of triangles/sectors 
 MaxCourseChg = 135 ' maximum allowable course change (degs), to prevent backtracking: 45 to 180 deg 
 
'Setup: Options 
 UseDebug = False ' keep a log for debugging 
 UseStopper = True ' stop if same point is used twice in flowpath, to prevent backtracking 
 pntLocation = "radius" ' select the approximate location of the point in the triangle/sector: centroid, base 
(triangle base), radius (neighborhood circle) 
 pntMethod = "nearest" ' select method of flow point creation: average (new), nearest (real), sparsest 
(density) 
'Note: "sparsest" pntMethod is intended to exploit the observed artifact of no or few LiDAR points in the 
streambed (probably due to absorbtion of red wavelengths by water) 
'Warning! "base" pntLocation, "centroid" pntLocation and "sparsest" pntMethod are not working right! 
 
'Create shapefile filenames 
 nVal = nSectors.AsString 
 cVal = MaxCourseChg.AsString 
 aVal = pntLocation.Left(1).UCase 
 mVal = pntMethod.Left(1).UCase 
 MyFilename = "n" + nVal + "c" + cVal + aVal + mVal 
 pointsThemeName = MyFilename + " (pnts)" 
 polylineThemeName = MyFilename + " (line)" 
 
'Initialize variables 
 KeepGoing = True 
 PrevAo = 1 
 PathID = 1 
 dA = 0 
 Zavg = 0 
  
 theView = av.GetActiveDoc 
 theTheme = theView.GetActiveThemes.Get(0) 
 theFTab = theTheme.GetFTab 
 
'Make sure MaxCourseChng is acceptable 
 if ((MaxCourseChg > 180) or (MaxCourseChg < 45)) then 

 MsgBox.Error("Unacceptable value for MaxCourseChg (45 <= mcc <= 180 deg)","Error") 
 Exit 

end ' if 
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'Make sure theme is a point theme 
 if (theTheme.GetSrcName.GetSubName <> "Point") then 

 MsgBox.Error("Active theme is not a point theme. Operation aborted!","Error") 
 Exit 

 end ' if 
 
'DEBUG: Get name from theme name to create Debug file 
 if (UseDebug = True) then 

 DebugFileName = theTheme.GetSrcName.GetDataSource 
'Remove extension, if present 
 n = DebugFileName.IndexOf(".") 
 if (n <> -1) then 

 DebugFileName1 = DebugFileName.Left(n)  + " (debug1).csv" 
 DebugFileName2 = DebugFileName.Left(n)  + " (debug2).csv" 

    end ' if 
 lf1 = LineFile.Make( DebugFileName1.AsFileName, #FILE_PERM_WRITE ) 
 lf2 = LineFile.Make( DebugFileName2.AsFileName, #FILE_PERM_WRITE ) 
'From this point, all lines beginning with "lf#." are for the debugging output file 
 lf1.WriteElt("Action,ID") 
 lf2.WriteElt("Action,ID,X,Y,Z,Alpha,dAlpha") 

 end ' if 
 
'Status: First, kill residual Status field, if present. Then, add Status field. 
 if (UseStopper) then 

 theFTab.StartEditingWithRecovery 
 if (theFTab.FindField("Status") <> nil) then theFTab.RemoveFields( {"Status"} ) end 
 theFTab.AddFields( {Field.Make("Status", #FIELD_LONG, 12, 0)} ) 

 end ' if 
 
'Find and define fieldnames in LAS FTab 
 featureShape  = theFTab.FindField("Shape") 
 IDField = theFTab.FindField("ID")  
 xField = theFTab.FindField("X") 
 yField = theFTab.FindField("Y") 
 zField = theFTab.FindField("Z") 
 'psIDField = theFTab.FindField("psID") 
 'RtnField =  theFTab.FindField("Return") 
 'ClassField =  theFTab.FindField("Class") 
 if (UseStopper) then StatusField = theFTab.FindField("Status") end 
  
'Exit if no Map Units 
 theMapUnits = theView.GetDisplay.GetUnits 
 if (theMapUnits = #UNITS_LINEAR_UNKNOWN) then 

 Msgbox.Error("Map units unknown. Set the View's map units."+NL+NL+ 
  "To specify the radius in units other than map units (for example, in miles), also set the View's distance 
units.","Program Aborted!") 
 return NIL 

 end 'if 
 
'If Distance Units are set, then convert to Map Units 
 convert = TRUE 
 theDistUnits = theView.GetDisplay.GetDistanceUnits 
 if (theDistUnits = #UNITS_LINEAR_UNKNOWN) then 

 theDistUnits = theMapUnits 
 convert = FALSE 

 end ' if 
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'Get center point & radius  
 aGraphicList = theView.GetGraphics 
 n = aGraphicList.Count 
 if (n = 1) then  

'Use existing resolution circle, if one and only one exists  
 for each g in aGraphicList 

 aCircle = g.GetShape 
 pntCenter = aCircle.ReturnCenter 
 Xc = pntCenter.GetX 
 Yc = pntCenter.GetY 
 resolution = aCircle.GetRadius 

 end ' for 
 else 

'Create a new resolution circle 
 theView.GetGraphics.Empty 
 av.ShowMsg("Starting point defined. Stretch circle to define a resolution radius.") 
 aCircle = theView.GetDisplay.ReturnUserCircle 
 pntCenter = aCircle.ReturnCenter 
 resolution = aCircle.GetRadius 
 
 if ((pntCenter.IsNull) or (resolution = 0)) then 

 pntCenter = theView.GetDisplay.ReturnUserPoint.ReturnCenter 
 theUnit = theDistUnits.AsString.AsTokens("_").Get(2).lcase 
 theMsg = "Enter circle radius in"++theUnit+"." 
 theTitle = "Neighborhood radius" 
 theRadius = MsgBox.Input(theMsg,theTitle,0.AsString) 
 if ((theRadius = NIL) OR (theRadius.AsNumber = 0) OR (theRadius.IsNumber.Not))then 

 Msgbox.Error("Radius must be a number (not zero).","Program Aborted!") 
 return NIL 

 else 
 resolution = theRadius.AsNumber.Abs 
 aCircle = Circle.Make(pntCenter,resolution) 

 end ' if 
 end ' if 

 
 Xc = pntCenter.GetX 
 Yc = pntCenter.GetY 
 myClear = Color.Make 
 myClear.SetTransparent(True) 
 aGraphicCircle = GraphicShape.Make(aCircle) 
 aGraphicCircle.GetSymbol.SetOLWidth(2) 
 aGraphicCircle.GetSymbol.SetOLColor(Color.GetRed) 
 aGraphicCircle.GetSymbol.SetColor(myClear) 
 aGraphicCircle.GetSymbol.SetBgColor(myClear) 
 aGraphicCircle.Invalidate 
 aGraphicList.Add(aGraphicCircle) 

 end ' if    
 av.ShowMsg("") 
 
'Get neighborhood points 
 aCircle = circle.make(pntCenter,resolution) 
 pCircle = aCircle.asPolygon 
 theTheme.SelectByPolygon(pCircle, #VTAB_SELTYPE_NEW) 
 minDist = 999999999999 
 n = theFTab.GetNumSelRecords 
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 Z = 0 
 for each rec in theFTab.GetSelection 

 IDi = theFTab.ReturnValue(IDField,rec) 
 Xi = theFTab.ReturnValue(xField,rec) 
 Yi = theFTab.ReturnValue(yField,rec) 
 Zi = theFTab.ReturnValue(zField,rec) 
 Z = Z + theFTab.ReturnValue(zField,rec) 
 Distance = (((Xi-Xc)^2) + ((Yi-Yc)^2)).Sqrt 
 if (Distance < minDist) then 

 minDist = Distance 
 IDo = IDi 
 Xo = Xi 
 Yo = Yi 
 Zo = Zi 

 end ' if 
 end ' for 
 Zc = Z/n ' average elevation 
 
'Find nearest LiDAR point 
 if (pntMethod = "nearest") then 

 Xc = Xo 
 Yc = Yo 
 Zc = Zo 
 pntCenter = Point.Make(Xc, Yc) 

'else use new point with average elevation (not used) 
 end ' if 
 
'Set shapefile names 
 pointsFileName = pointsThemeName.AsFileName 
 polylineFileName = polylineThemeName.AsFileName 
 
'Make a point list to store the flow points for conversion to polyline 
 pointList = List.Make  
 
'Make the new FTab for a point theme 
 pointsFTab = FTab.MakeNew( pointsFileName, POINT ) 
 
 pointsFTab.AddFields({Field.Make("PathID", #FIELD_LONG, 8, 0), 

 Field.Make("ID", #FIELD_LONG, 8, 0), 
 Field.Make("X", #FIELD_DOUBLE, 10, 2), 
 Field.Make("Y", #FIELD_DOUBLE, 10, 2), 
 Field.Make("Z", #FIELD_DOUBLE, 10, 2), 
 Field.Make("Direction", #FIELD_SHORT, 4, 0)}) 

 
'Find and define fieldnames in new point theme FTab 
 fldShapeOut  = pointsFTab.FindField("Shape") 
 fldPathIDOut = pointsFTab.FindField("PathID") 
 fldIDOut     = pointsFTab.FindField("ID") 
 fldXOut      = pointsFTab.FindField("X")   
 fldYOut      = pointsFTab.FindField("Y")   
 fldZOut      = pointsFTab.FindField("Z") 
 fldDirOut    = pointsFTab.FindField("Direction") 
 
'Add initial point feature to FlowPath theme 
 newID = 1 
 nRecNew = pointsFTab.AddRecord 
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 pointsFTab.SetValue(fldShapeOut,nRecNew,pntCenter) 
 pointsFTab.SetValue(fldPathIDOut,nRecNew,PathID.SetFormat("d")) 
 pointsFTab.SetValue(fldIDOut,nRecNew,newID.SetFormat("d")) 
 pointsFTab.SetValue(fldXOut,nRecNew,Xc.SetFormat("d.dd")) 
 pointsFTab.SetValue(fldYOut,nRecNew,Yc.SetFormat("d.dd")) 
 pointsFTab.SetValue(fldZOut,nRecNew,Zc.SetFormat("d.dd")) 
 pointsFTab.SetValue(fldDirOut,nRecNew,-999) 
 av.ShowMsg("Delineating FlowPath: 1 point") 
 
'Add point to flow point list for conversion to polyline 
 pointList.Add(pntCenter) 
 
 if (UseDebug = True) then 

 lf1.WriteElt("Start," + IDo.SetFormat("d").AsString) 
 lf2.WriteElt("Start," + newID.SetFormat("d").AsString + "," +  

 Xc.SetFormat("d.dd").AsString + "," + 
 Yc.SetFormat("d.dd").AsString + "," + 
 Zc.SetFormat("d.dd").AsString + ",,") 

 end ' if 
 
'**** Begin Flowpath delineation loop **** 
 
 av.UseWaitCursor 
 av.ShowStopButton 
 While (KeepGoing = True) 

 newID = newID + 1 
 more = av.SetWorkingStatus 
 if (not more) then 

 break 
 end ' if 

 
'Calculate average elevation for each sector direction 
 Theta = 360/nSectors 
 minElevation = 999999999999 
 minDensity = 999999999999 ' for "sparsest" method 
 for each i in 1..nSectors 
 

'Determine backtrack direction(s) to ignore 
 dA = (((i - 1) * (Theta)) - PrevAo).Abs 
 if (dA > 180) then dA = 360 - dA end 
 if (dA <= MaxCourseChg) then 
 

 CardinalAngle = ((i - 1) * (Theta)).AsRadians ' 0 deg is East 
 DeltaAngle = (Theta/2).AsRadians 
 p1 = pntCenter 
   X2 = Xc + (resolution * (CardinalAngle + DeltaAngle).Cos) 
   Y2 = Yc + (resolution * (CardinalAngle + DeltaAngle).Sin) 
 p2 = point.make(X2,Y2) 
   X3 = Xc + (resolution * (CardinalAngle - DeltaAngle).Cos) 
   Y3 = Yc + (resolution * (CardinalAngle - DeltaAngle).Sin) 
 p3 = point.make(X3,Y3) 
 triangle = Polygon.Make({{p1,p2,p3,p1}}) 
 theTheme.SelectByPolygon(triangle, #VTAB_SELTYPE_NEW) 
 n = theFTab.GetNumSelRecords 
 if (n >= 1) then 

 Z = 0 
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 for each rec in theFTab.GetSelection 
 Z = Z + theFTab.ReturnValue(zField,rec) 

 end ' for 
 Zavg = Z/n 

 end ' if 
 
 if (UseDebug = True) then 

 lf2.WriteElt("Check," + newID.SetFormat("d").AsString + ",,," + 
 Zavg.SetFormat("d.dd").AsString + "," + 
 ((i - 1) * (Theta)).SetFormat("d").AsString + ",,") 

 end ' if 
'Get FlowDirection from CardinalAngle and new Z based on pntMethod ("sparsest" or other)  
 if (pntMethod = "sparsest") then 

 if (n < minDensity) then 
 minDensity = n 
 FlowDirection = CardinalAngle 
 Zo = Zavg 
 Ao = ((i - 1) * (Theta)) 

 end ' if 
 else 

 if (Zavg < minElevation) then 
 minElevation = Zavg 
 FlowDirection = CardinalAngle 
 Zo = Zavg 
 Ao = ((i - 1) * (Theta)) 

 end ' if 
 end ' if 
'Get new X,Y based on pntLocation and FlowDirection 
 if (pntLocation = "radius") then 

 Xo = Xc + (resolution * FlowDirection.Cos) 
 Yo = Yc + (resolution * FlowDirection.Sin) 

 end ' if 
 if (pntLocation = "base") then 

 Xo = Xc + ((resolution * Theta.Cos) * FlowDirection.Cos) 
 Yo = Yc + ((resolution * Theta.Sin) * FlowDirection.Sin) 

 end ' if 
 if (pntLocation = "centroid") then 

 Xo = Xc + ((((2/3) * resolution) * Theta.Cos) * FlowDirection.Cos) 
 Yo = Yc + ((((2/3) * resolution) * Theta.Sin) * FlowDirection.Sin) 

 end ' if 
 end ' if     

 end ' for 
 Xfp = Xo 
 Yfp = Yo 
 Zfp = Zo 
 PrevAo = Ao 
 
'Get neighbors and cycle thru selected points to find a "suitable" LiDAR point for flow path (nearest) 
 if (pntMethod = "nearest") then 

 pntCenter = Point.Make(Xo, Yo) 
 Circ = circle.make(pntCenter,resolution) 
 pCirc = Circ.asPolygon 
 theTheme.SelectByPolygon(pCirc, #VTAB_SELTYPE_NEW) 
 minDist = 999999999999 
 for each rec in theFTab.GetSelection 

 Xi = theFTab.ReturnValue(xField,rec) 



 

A-12 

 Yi = theFTab.ReturnValue(yField,rec) 
 Zi = theFTab.ReturnValue(zField,rec) 
 if (UseDebug = True) then 

 lf1.WriteElt("Checked," + theFTab.ReturnValue(IDField,rec).SetFormat("d").AsString) 
 end ' if 
'Distance = (((Xi-Xo)^2) + ((Yi-Yo)^2) + ((Zi-Zo)^2)).Sqrt 
 Distance = (((Xi-Xo)^2) + ((Yi-Yo)^2)).Sqrt 
 if (Distance < minDist) then 

 minDist = Distance 
 Xfp = Xi 
 Yfp = Yi 
 Zfp = Zi 
 theRec = rec 

 end ' if 
 end ' for 
'Check and set bit (point has been used) 

 if (UseStopper) then 
 if (theFTab.ReturnValue(StatusField,theRec) = "Used") then 

 KeepGoing = False 
 if (UseDebug = True) then 

 lf1.WriteElt("Stopped," + theFTab.ReturnValue(IDField,theRec).SetFormat("d").AsString) 
 end ' if 

 else 
 theFTab.SetValue(StatusField,theRec,"Used") 
 if (UseDebug = True) then 

 lf1.WriteElt("Used," + theFTab.ReturnValue(IDField,theRec).SetFormat("d").AsString) 
 end ' if 

 end ' if 
 end ' if 

'else use new point (centroid, base, or radius) and average elevation (not used) 
 end ' if 
 
 if (UseDebug = True) then 

 lf2.WriteElt("Pick," + newID.SetFormat("d").AsString + "," +  
 Xfp.SetFormat("d.dd").AsString + "," + 
 Yfp.SetFormat("d.dd").AsString + "," + 
 Zfp.SetFormat("d.dd").AsString + "," + 
 Ao.SetFormat("d").AsString + "," + 
 dA.SetFormat("d").AsString) 

 end ' if 
 
'Flow direction (Ao rotated so North is now 0 deg) 
 if (Ao <= 90) then 

 fDirection = 90 - Ao 
 else 

 fDirection = 450 - Ao 
 end 
 
'Add new point feature to FlowPath theme 
 pntAdd2Flow = Point.Make(Xfp,Yfp) 
 nRecNew = pointsFTab.AddRecord 
 pointsFTab.SetValue(fldShapeOut,nRecNew,pntAdd2Flow) 
 pointsFTab.SetValue(fldPathIDOut,nRecNew,PathID.SetFormat("d")) 
 pointsFTab.SetValue(fldIDOut,nRecNew,newID.SetFormat("d")) 
 pointsFTab.SetValue(fldXOut,nRecNew,Xfp.SetFormat("d.dd")) 
 pointsFTab.SetValue(fldYOut,nRecNew,Yfp.SetFormat("d.dd")) 
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 pointsFTab.SetValue(fldZOut,nRecNew,Zfp.SetFormat("d.dd")) 
 pointsFTab.SetValue(fldDirOut,nRecNew,fDirection) 
 av.ShowMsg("Delineating FlowPath: " + newID.SetFormat("d").AsString + " points") 
 
'Add point to flow point list for conversion to polyline 
 pointList.Add(pntAdd2Flow) 
 
'Set up for next cycle by defining new center point 
 Xc = Xfp 
 Yc = Yfp 
 pntCenter = Point.Make(Xc, Yc) 
 
'Make sure flow path hasn't crossed itself by looking for segment intersections 
 if (UseStopper) then 

 n = pointsFTab.GetNumRecords ' number of flow points 
 if (n > 4) then 

 for each i in 2..(n-2) 
 x1 = pointsFTab.ReturnValue(fldXOut,n-1) 
 y1 = pointsFTab.ReturnValue(fldYOut,n-1) 
 x2 = pointsFTab.ReturnValue(fldXOut,n-2) 
 y2 = pointsFTab.ReturnValue(fldYOut,n-2) 
 u1 = pointsFTab.ReturnValue(fldXOut,n-i-1) 
 v1 = pointsFTab.ReturnValue(fldYOut,n-i-1) 
 u2 = pointsFTab.ReturnValue(fldXOut,n-i-2) 
 v2 = pointsFTab.ReturnValue(fldYOut,n-i-2) 
 b1 = (y2-y1) / (x2-x1) 
 b2 = (v2-v1) / (u2-u1) 
 a1 = y1 - (b1*x1) 
 a2 = v1 - (b2*u1)  
 xi = -(a1-a2) / (b1-b2) 
 yi = a1 + (b1*xi) 

 if (((x1-xi)*(xi-x2)>=0) AND ((u1-xi)*(xi-u2)>=0) AND 
    ((y1-yi)*(yi-y2)>=0) AND ((v1-yi)*(yi-v2)>=0)) then 

'MsgBox.Info("Flow path crossed itself.","Info") 
 KeepGoing = False 

    end ' if 
 end ' for 

 end ' if 
 end ' if 
 

 end ' While 
 theTheme.ClearSelection 
 
'**** End Flowpath delineation loop **** 
 
'Create polyline theme from flow points theme 
 polylineFTab = FTab.MakeNew(polylineFileName, Polyline) 
 fields = List.Make 
 fields.Add(Field.Make("PathID", #FIELD_Short, 4, 0)) 
 polylineFTab.AddFields(fields) 
 shpField = polylineFTab.FindField("Shape") 
 idField  = polylineFTab.FindField("PathID") 
 rec = polylineFTab.AddRecord 
 polylineFTab.SetValueNumber( idField, rec, PathID ) 
 pl = Polyline.Make( {pointList} ) 
 polylineFTab.SetValue( shpField, rec, pl ) 
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'Add FlowPath shapefile(s) to view 
 if (MsgBox.YesNo("Add flow path shapefiles as themes to the view?", "Shapefile Conversion", true)) then 

'theMsg = "Enter a name for the themes." 
'theTitle = "Themes Base Name" 
'theThemeName = MsgBox.Input(theMsg,theTitle,0.AsString) 
 thmPoints = FTheme.Make( pointsFTab ) 
 theView.AddTheme( thmPoints ) 
 thmPoints.SetName(pointsThemeName) 
 thmPolyline = FTheme.Make( polylineFTab ) 
 theView.AddTheme( thmPolyline ) 
 thmPolyline.SetName(polylineThemeName) 
 theView.GetWin.Activate 
 thmPolyline.SetActive(True) 
 thmPoints.SetActive(False) 
 theTheme.SetActive(False) 

 else 
 pointsFTab.DeActivate 
 pointsFTab = nil 
 File.Delete((pointsFileName + ".shp").AsFileName) 
 File.Delete((pointsFileName + ".shx").AsFileName) 
 File.Delete((pointsFileName + ".dbf").AsFileName) 
 polylineFTab.DeActivate 
 polylineFTab = nil 
 File.Delete((polylineFileName + ".shp").AsFileName) 
 File.Delete((polylineFileName + ".shx").AsFileName) 
 File.Delete((polylineFileName + ".dbf").AsFileName) 

 end ' if 
 
'Remove Status field 
 if (UseStopper) then theFTab.StopEditingWithRecovery(False) end 
 
'Close Debug file (.txt) 
 if (UseDebug = True) then 

 lf1.Close 
 lf2.Close 

 end 
 
'Clean up by deleting temporary files 
 theFTab.DeActivate 
 theFTab = nil 
 
 av.ShowMsg("") 
 av.ClearStatus 
 av.PurgeObjects 
 av.GetProject.SetModified(true) 
 


