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“A man who calls his kinsmen to a feast does not do so to save them from 

starving. They all have food in their own homes. When we gather together 

in the moonlit village ground it is not because of the moon. Every man can 

see it in his own compound. We come together because it is good for 

kinsmen to do so.” 

 

― Chinua Achebe, Things Fall Apart (1994) 

 

 

 

 

 

 

 

 

 

 

 

 

Next page (photos): 

The Lowveld savanna in Skukuza around the Eddy Covariance Flux Tower (a - f). The 

continuous grass cover with scattered trees; Tree variable inventory in the field in March 

2015; Bush encroachment in some sections of the biome; Bare ground patches in the sodic 

lowlands, with mainly medium tree coverage; Effects of mega herbivore in modification of 

savanna vegetation structure as can be seen in large trees fell by elephants. Photos 

courtesy of Victor Odipo (Skukuza- South Africa, March 2015). 
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Deutsche Kurzfassung der Arbeit 

 

Wissenschaftlicher Hintergrund:  

Parameter zur Beschreibung der Struktur der Savannenvegetation sind bei der Beurteilung der 

Fähigkeit des Bioms, Ökosystemleistungen unter verschiedenen Störungsszenarien zu 

erbringen, von besonderer Bedeutung. Studien, die auf eine Strukturkartierung auf der Skale 

einzelner Bäume abzielen, eröffnen die Möglichkeit, geringfügige Änderungen zu detektieren. 

Zur Durchführung solcher Studien werden räumlich und zeitlich mittel- bis hochauflösende 

Daten benötigt, die eine Operationalisierung von Initiativen zur Vegetationsüberwachung 

ermöglichen. Trotz des über viele Anbieter kostenfreien und somit einfachen Zugangs zu 

optischen Fernerkundungsdaten hat die auf diesen Daten basierende Kartierung der 

Vegetationsstruktur von Savannen den Nachteil, dass die spärliche und heterogene Verteilung 

der Vegetation zu ähnlichen spektralen Signaturen für verschiedene Lebensformen sowohl 

innerhalb als auch zwischen den Jahreszeiten führt. Darüber hinaus führen Beeinträchtigungen 

der Fernerkundungsdaten durch Wolken und Aerosolverunreinigungen zu Lücken in den 

Datenzeitreihen, die für eine kontinuierliche Überwachung der Vegetation, insbesondere in den 

Tropen, notwendig sind. Lang- und mittelwellige Mikrowellendaten wie sie durch das Radar 

mit synthetischer Apertur (SAR) erhoben werden, bieten aufgrund ihrer geringen Sensitivität 

gegenüber Wolken und ihrer hohen zeitlichen und räumlichen Auflösung Lösungsansätze zu 

einigen dieser Probleme an. Dennoch sind viele der Studien, die satellitengestützt erhobenen 

Fernerkundungsdaten zur Überwachung der Vegetation nutzen, durch die geringe Qualität der 

verfügbaren Referenzdaten von Strukturparametern, limitiert. Mittels terrestrischem 

Laserscanning (TLS) abgeleitete vertikale und horizontale biophysikalische Parameter, wie die 

auf Plot-Skale erhobenen Maßzahlen des Bedeckungsgrads (CC) und der Höhe des 

Kronendaches (CH); und die auf der Skale einzelner Bäume erhobener Parameter, wie der 

Basisdurchmesser und die Baumhöhe, können zur Verbesserung der SAR-basierten 

Schätzungen zur Vegetationsstruktur sowohl auf der Plot- als auch der Landschafts-Skale und 

der Separation von Lebensformen in der Savanne beitragen. Vor diesem Hintergrund ist es für 

diese Arbeit von zentraler Bedeutung, das Potenzial multi-temporaler C- und L-Band-SAR-

Datensätze auf verschiedenen räumlichen und zeitlichen Skalen zur Überwachung der Struktur 

der Savannenvegetation zu untersuchen, wobei die als Referenz für die Lowveld-Savanne um 

Skukuza, Südafrika, eingesetzten Felddaten durch hochauflösende TLS-Daten ergänzt werden. 
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Forschungsziele  

Das übergeordnete Ziel dieser Arbeit ist es, das Potenzial hochaufgelöster, aus TLS-Daten 

abgeleiteter Strukturvariablen der Vegetation als Referenz für SAR-Datensätze zur 

Überwachung der Savannenvegetation innerhalb eines typischen Savannenökosystems zu 

untersuchen. Die bei der Untersuchung eingesetzten SAR-Datensätze wurden von 

unterschiedlichen Sensoren akquiriert und sind durch unterschiedliche temporale und räumliche 

Auflösungen gekennzeichnet. Das Gesamtziel dieser Arbeit umfasst daher folgende 

Forschungsziele:  

1. Evaluierung des Potenzials von hochauflösenden TLS-Daten zur Extraktion von 

Strukturvariablen der Savannenvegetation;  

2. Schätzung der AGB für das Untersuchungsgebiet und Bestimmung der Veränderungen 

in der AGB auf der Basis multi-temporaler L-Band-SAR-Daten für einen Zeitraum von 

vier Jahren in einem Areal der Lowveld-Savanne im Krüger-Nationalpark;  

3.  Betrachtungen zu Wechselwirkungen zwischen C-Band-SAR und verschiedenen 

Strukturvariablen der Savannenvegetation. 

Methoden 

Bisher wurden in wenigen Studien die Stärken von TLS zur Kartierung von 

Vegetationsstrukturen in Savannen untersucht. Im Rahmen dieser Arbeit wird das Potential des 

Bedeckungsgrades sowie von Höhenmetriken und baumbezogenen biophysikalischen 

Parametern, die aus hochauflösenden TLS-Daten abgeleitet wurden, evaluiert, um die 

oberirdische Biomasse auf der Plot-Skale zu schätzen und um diese für eine 

Biomasseabschätzung der Savannenvegetation mittels multi-temporalem Radar mit SAR im L-

Band innerhalb des 9 km² großen Untersuchungsgebiets im Krüger Nationalpark (KNP) zu 

extrapolieren. Darüber hinaus werden in dieser Arbeit multi-temporale C-Band-SAR-Daten 

verwertet, um die TLS abgeleiteten Metriken zu kartieren, zusätzlich zur Separation der mittels 

TLS abgeleiteten pflanzlichen Savannenlebensformen. In der Regenzeit 2015 wurde der 

Baumbestand auf 42 Plots inventarisiert und zur Berechnung der AGB auf der Skale einzelner 

Bäume herangezogen. Dabei fanden standortspezifische allometrische Gleichungen 

Verwendung. Darauf aufbauend wurden mittlere AGB-Werte für jeden Plot berechnet. Das aus 

TLS-Daten abgeleitete Vegetationshöhenmodell (CHM) wurde zur Berechnung von CC, CH 

sowie den daraus generierten Produkten verwendet. Für den Bereich des TLS-Footprints 
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wurden die Parameter mittels Regression mit der plotweise gemittelten AGB in Beziehung 

gesetzt. Im Untersuchungsgebiet wurde indes für die Jahre 2007, 2008, 2009 und 2010 die L-

Band-SAR-Rückstreuung zur Modellierung der jährlich in der Trockenzeit anfallenden 

Biomasse innerhalb der 30 m-Plots verwendet. Darüber hinaus wurden TLS-Punktwolken 

verwendet, um die Höhe einzelner Bäume und deren Durchmesser 1 m oberhalb des Bodens 

für die TLS-basierte Baumbiomasseabschätzung über C-Band-SAR-Pixel mit einer räumlichen 

Auflösung von 20 m zu extrahieren. Letztlich wurde das CHM verwendet, um die fünf 

Hauptvegetationsklassen in der Savanne bezüglich ihrer Wuchshöhe zu kategorisieren. 

Innerhalb des Untersuchungsgebietes wurde dabei zwischen Hintergrund, Sträuchern, kleinen, 

mittleren und großen Bäumen unterschieden. Um die Varianz in der untersuchten 

Vegetationsstruktur zu reduzieren, wurden die Pixel in Häufigkeitsklassen eingeteilt: hoch, 

mittel und niedrig für AGB und CC und große Bäume, mittlere Bäume und kleine Bäume für 

Vegetationslebensklassen. Die Auswirkungen der hochauflösenden hyper-temporalen 

Sentinel-1-Polarisation im C-Band und der Saisonalität, sowie die Auswirkungen der 

Fenstergröße des Specklefilters auf die Nachweisbarkeit der vertikalen (AGB, H) und 

horizontalen (CC und Klassen der Lebensformen) Strukturparameter der Savannenvegetation 

wurden auf Pixelebene über die Dauer des Untersuchungszeitraums, der die Regenzeit 

2015/2016 und die Trockenzeit 2016 umfasst, untersucht.  

Hauptergebnisse 

Die Ergebnisse der Validierung der AGB-Modellierung zeigen einen signifikanten linearen 

Zusammenhang (p < 0,05) zwischen den aus TLS-Daten abgeleiteten Prädiktoren und der 

Feldbiomasse und das korrigierte R² umfasst Werte zwischen 0,56 für den aus SAR-Daten 

abgeleiteten und 0,93 für den aus TLS-Daten abgeleiteten Bedeckungsgrad beziehungsweise 

die Höhe. Die Ableitung der logarithmisch transformierten AGB aus den TLS-Metriken ergab 

im Vergleich zur Ableitung der nicht transformierten AGB geringere Fehler. Die Untersuchung 

der Rückstreuung mit Hilfe des RMSE ergab eine höhere Vorhersagegenauigkeit für die aus 

kreuzpolarisierten Daten abgeleitete AGB (RMSE = 6,1 t/ha) gegenüber der aus co-

polarisierten Daten abgeleiteten AGB (RMSE = 6,7 t/ha), was auf die Volumenstreuung der 

verholzten Vegetation entlang von Flusstälern und Wasserläufen zurückzuführen ist. Die 

Veränderungsanalyse bezüglich der AGB ergab, dass auf 32 ha der untersuchten Fläche von 

900 ha (entspricht 3,5%) eine Reduktion der AGB von durchschnittlich >5 t/ha pro Jahr 

stattfindet, was im Wesentlichen auf das Fällen von Bäumen durch Megaherbivoren wie 

Elefanten zurückzuführen ist. Die VH-Polarisation berücksichtigt die volumetrische Streuung, 
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die von der Struktur der Baumkronen in der Savanne ausgeht und die in der Regenzeit aufgrund 

der höheren Verfügbarkeit von Feuchtigkeit, durch die für die Regenzeit typischen 

Niederschlagsepisoden, stärker ausgeprägt ist. Klassen, die mit geringer Häufigkeit auftreten, 

sind im Gegensatz zu Klassen, die mit großer Häufigkeit auftreten, durch geringe 

Rückstreuintensitäten des SAR im C-Band gekennzeichnet, obgleich in beiden Fällen nur 

geringe Anteile an strukturellen Vegetationskomponenten vorhanden sind, die mit dem 

eingehenden Signal interagieren. Zusätzlich wird die Rückstreuintensität der Pixel, die zu den 

Klassen gehören, die mit einer geringen Häufigkeit auftreten, durch die Phasendifferenz, die 

aufgrund von Mehrfachstreuungen entsteht (beispielsweise an Sträuchern bzw. in der 

Krautschicht), beeinflusst, was zu einem hohen Speckle-Rauschen beiträgt. Die Auswirkungen 

von Speckle bezüglich der Reduzierung von Varianz und Standardabweichung spiegeln sich in 

der Reduktion der Rückstreuintensität der Vegetationsklassen mit geringer Wuchshöhe, wie 

etwa Sträuchern, wieder. Gleichzeitig führt eine Vergrößerung der Fenstergröße des Speckle-

Filters proportional zu einem Verlust an Sensitivität gegenüber nicht-dominanten 

Strukturklassen. 

Wichtigste Schlussfolgerungen  

Hochauflösende TLS-Daten eignen sich nicht nur als Referenzdaten, sondern können auch zur 

Extraktion biophysikalischer Parameter mit Genauigkeiten genutzt werden, wie sie durch 

herkömmliche Feldkampagnen aufgrund des benötigten Zeitaufwandes, der Kosten und der 

räumlichen Abdeckung, nicht zu erheben wären. Lang- und mittelwellige SAR-Daten des 

C- bzw. L-Bands, können zur Detektion geringfügiger Veränderungen in der 

Vegetationsstruktur und zur Trennung von verschiedenen Klassen von Lebensformen innerhalb 

eines Savannenökosystems verwendet werden, wenn diese für diverse Aufnahmezeitpunkte im 

Jahr vorliegen.  

Diese Arbeit zeigt das Potenzial von lang- als auch mittelwelligen SAR-Datensätzen zur 

Überwachung von Veränderungen bezüglich des Baumniveaus auf und trägt zu einer 

Aufwertung des Potenzials von C-Band-SAR-Daten im Bereich der Vegetationsüberwachung 

bei, ohne die räumliche Auflösung zu verschlechtern. Die Methodik ist daher für die 

Überwachung der Entwaldung und Waldschädigung von entscheidender Bedeutung und 

eröffnet vielversprechende Perspektiven auf ein operationell einsetzbares Monitoring bei 

mittlerer bis hoher räumlicher Auflösung. Großes Potenzial zur kontinuierlichen Überwachung 

der Vegetation und damit zur Erfassung der möglichen Veränderungen innerhalb und zwischen 
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den Jahreszeiten bergen aufgrund ihrer hohen zeitlichen und räumlichen Auflösung die frei 

zugänglichen Daten die von Sentinel-1 im C-Band aufgenommen werden. 
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Executive summary 

 

Scientific background 

Savanna vegetation structure parameters are important for assessing the biome’s ability to 

provide ecosystem services under various disturbance scenarios. Studies aimed at tree-level 

structure mapping provide a way to detect forest changes due to degradation and assists in 

vegetation monitoring initiatives that would otherwise be impossible at coarse spatial and 

temporal resolutions. Despite availability and open-access of remote sensing data because of 

de-commercialisation, the use of optical remote sensing data for savanna vegetation structure 

mapping is limited by sparse and heterogeneous distribution of vegetation canopy, leading to 

near-similar spectral signatures among cover classes both within and between seasons. Cloud 

and aerosol contamination lead to inconsistency in the availability of time series data necessary 

for continuous vegetation monitoring, especially in the tropics. Long- and medium wavelength 

microwave data such as synthetic aperture radar (SAR), with their low sensitivity to clouds and 

atmospheric aerosols, high temporal and spatial resolution addresses some of these problems. 

However, many such studies utilising space-borne remote sensing data for vegetation 

monitoring lack quality structural reference data. Conventional sources of validation data 

through field inventory are expensive in terms of both time and labour. Terrestrial laser 

scanning (TLS) derived vertical and horizontal vegetation biophysical parameters, both plot-

level such as canopy cover (CC) and canopy height (CH) metrics; and tree-level parameters 

like tree height and basal diameter can improve remote sensing-based vegetation structure 

modelling at both plot and landscape level scales. It is against this background that this study 

finds it of critical importance to assess the potential of multi-temporal C- and L-band SAR 

datasets at different spatial and temporal scales in savanna vegetation structure monitoring by 

complementing field data with high resolution TLS data as a reference within a Lowveld 

savanna in Skukuza, South Africa. 

Research Objectives 

The general objective of this study is to explore the potential of high-resolution TLS-derived 

vegetation structure variables as a reference to multi-temporal, -spatial and -sensor SAR 

datasets in savanna vegetation monitoring within a typical savanna ecosystem. The overall 

objective of this study therefore comprises the following research objectives:  
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1. To evaluate the potential of high-resolution TLS-data in extraction of savanna 

vegetation structure variables;  

2. To estimate landscape-wide AGB and assess AGB changes over four years using 

multi-temporal L-band SAR within a Lowveld savanna in Kruger National Park;  

3. To assess interactions between C-band SAR with various savanna vegetation 

structure variables.  

Methods 

To date, few studies have explored the strength of TLS for vegetation structural mapping, with 

few focusing on savannas. In this study, the potential of high-resolution TLS-derived canopy 

cover - height metrics and tree biophysical parameters are evaluated to estimate plot- level 

aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-

temporal L-band SAR within a 9 km2 area savanna in Kruger National Park (KNP) in South 

Africa. Further, the study exploits multi-temporal C-band SAR data in mapping these TLS-

derived metrics besides separation of TLS-derived savanna vegetation cover classes. Trees were 

inventoried within 42 field plots in the wet season in March 2015 and used to compute tree-

level aboveground biomass (AGB) using site-specific allometry and later averaged for each plot 

biomass estimates. TLS-derived canopy height model (CHM) is used to compute CC, CH and 

their product (CC x CH) which were then regressed with plot-level AGB over the TLS-

footprint. The L-band SAR backscatter was used to model inter-annual dry season biomass 

within 30 m plots for the years 2007, 2008, 2009, and 2010 over the study area. The study 

further used TLS point clouds to extract individual tree height and basal diameter at 1 m tree 

height for TLS-based tree biomass estimation over 20 m C-band SAR pixels. Finally, height 

thresholding of CHM enabled classification of background and four major savanna vegetation 

cover classes within the study area: shrubs, small trees, medium trees and large trees. To reduce 

variance in the sampled vegetation structure, this study classified pixels into three abundance 

classes; high, moderate and low for AGB and CC and large trees, medium trees and small trees 

classes for vegetation cover classes. The effects of high resolution hyper-temporal C-band 

Sentinel-1 polarisation, seasonality and the effects of application of multi-temporal speckle 

filter with varying window sizes on detectability of vertical savanna vegetation structure 

parameters are investigated at pixel-level, over the length of the study period spanning wet 

season of 2015/2016 and dry season of 2016.  

 



XVI 

 

Main results 

The results from AGB model validation showed a significant linear relationship between TLS- 

derived predictors with field biomass, p<0.05 and adjusted R2 ranging between 0.56 for SAR 

to 0.93 for the TLS -derived canopy cover and height. Log-transformed AGB yielded lower 

errors with TLS metrics compared with non-transformed AGB. An assessment of the 

backscatter based on RMSE showed better AGB prediction with cross-polarised (RMSE = 6.1 

t/ha) as opposed to co-polarised data (RMSE = 6.7 t/ha), attributed to volume scattering of the 

woody vegetation canopy along river valleys and streams. The AGB change analysis showed 

32 ha (3.5%) of the 900-ha experienced AGB loses above an average of 5 t/ha per annum, which 

can mainly be attributed to falling of trees by mega herbivores such as elephants. VH 

polarisation’s account for volumetric scattering emanating from SAR interactions with the 

savanna canopy structure (leaves and branches) in the wet season resulting from elevated 

moisture availability from rainfall events typical of the wet season. Low abundance classes 

showed a low response to C-band SAR backscatter compared to high abundance classes since 

in the former case there is less in proportion of the structure components exposed to interact 

with the incoming signal. SAR backscatter response is high for both polarisations and seasons, 

since soil - low vegetation interactions attenuates backscatter response from vegetation, 

attributed to open canopy allowing SAR signals to penetrate to the ground. The effect is more 

pronounced after rainfall events, leading to elevated soil moisture. The study sees the effects of 

speckle filter window in reducing the backscatter response in lower vegetation cover classes 

like shrub; increasing speckle window size led to a proportionate loss of sensitivity to non-

dominant structure classes. 

Main conclusions  

This study uses high resolution TLS data not only as reference data in most remote sensing 

studies but also useful in extraction of vegetation biophysical parameters with accuracies that 

would otherwise be infeasible through field inventories because of time, labour and 

geographical coverage constraints. Long and medium wavelength SAR data, particularly L- 

and C-band respectively, can be used in detection of small vegetation structural changes and 

separation of vegetation classes within a savanna ecosystem. This study points to the potential 

of both L- and C-band SAR datasets in monitoring tree level changes and puts more premium 

on the potential of C-band SAR in vegetation monitoring without degrading the spatial 

resolution. The method adopted is therefore critical in deforestation and forest degradation 

monitoring, with a promise of operational monitoring from medium to high resolution. There 
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is a high potential in the freely available C-band Sentinel-1 A data because of high temporal 

and spatial resolution, in continuous monitoring of vegetation capturing the changes within and 

between seasons. 
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CHAPTER 1 
 

1. Literature Review 

 

1.1. Background to savanna ecosystem  

 

Savanna landscapes make up one of the largest natural resource bases in the world (van Wilgen, 

2009), covering about twenty percent of the earth’s land surface (Campbell, 2013). On a global 

scale, the African continent records the highest number of the total land area characterised by 

savanna ecosystems as sixty-five percent of land surface is typically comprised of spatially 

heterogeneous savanna ecologies (Shirima et al., 2011) mainly characterised by codominance 

of expansive unbroken herbaceous layer of perennial grassland and varying densities of 

discontinuous tree canopies (Figure 1-1, Charles-Dominique et al., 2015; Mermoz et al., 2014). 

East Africa maintains the largest savanna in the world; the Miombo woodlands in Tanzania, 

which supports over 100 million livelihoods (Carreiras et al., 2012). Among other African 

countries with expansive savanna biomes is Botswana, whose most land area is characterised 

by semi-arid savanna ecosystems that act as habitats for the largest populations of world’s 

remaining wildlife (Mishra et al., 2015). 

 

 

Figure 1-1. A typical savanna's vertical and horizontal structure showing continuous C4 grasses layer 

and a discontinuous shrub and tree cover. (Source: Charles-Dominique et al., 2015). 

 

Savannas are prominently common in tropical and subtropical regions with highly contrasting 

dry and wet seasons. Savanna ecosystem is only second to tropical forests in terms of global 

net primary productivity (NPP), apart from being a substantive terrestrial carbon pool (Figure 
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1-2, Olson et al., 2001; Scholes & Walker, 1993). Savanna ecosystem covers some two-thirds 

of sub-Saharan Africa and is a source of livelihood to some eight percent of African rural 

livelihoods since they form a profound resource to a larger fraction of rural communities as 

they derive their livelihood from them. These ecosystems are also substantive components to 

the world’s carbon balance and hence a climate modifier.  

 

Figure 1-2. Carbon storage by biome. Savannas and grasslands are the second largest terrestrial sinks. 

(Source: Olson et al. 2001). 

 

Sub-Saharan Africa alone accounts for twenty-five percent of the global 193 Gigaton carbon 

stock (Saatchi et al., 2011), with uncertainty in quantification within the tropics (Baccini et al., 

2008) because of direct threats by constant direct disturbances, in the form of woody biomass 

harvesting, herbivory, changes in land use in the form of agricultural expansion, settlements, 

urbanization, wild fires; and indirect disturbances from climate change caused by rising 

concentrations of atmospheric carbon dioxide (CO2) in the atmosphere (Kutsch et al., 2012; 

Asner et al., 2010). With rising concerns in global climate change primarily emanating from 

observable modifications of the structure and functioning of the disturbance-driven ecosystems, 

there is an equal growing initiative in estimating forest parameters such as above and 

belowground biomass in these ecosystems to gauge the extent to which these disturbances 

scenarios have compromised the global roles of these ecosystems as carbon sinks. This, and 

woody cover, helps in understanding the vegetation community assemblages and the 

distributions, frequencies and characteristics of their driver variables. Information about forest 

carbon stock estimates and the spatial extent of vegetation classes are key to intergovernmental 

stakeholders, research communities, conservationists and scientists. The information helps to 

monitor and re-evaluate the management policy options and adaptive strategies aimed at 
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addressing international framework conventions on climate change mitigation policies 

(Carreiras et al., 2012; Saatchi et al., 2011) and to implement the United Nation’s Reducing 

Emissions from Deforestation and Degradation (UN-REDD+) programme (Cutler, 2012). 

 

1.2. Savanna heterogeneity and heterogeneity drivers 

 

Savannas make up the largest natural resource base, particularly in the sub-Saharan Africa 

(Gosling, 2014). The classical description of savannas broadly identifies them as disturbance-

driven (disequilibrium) systems (Sankaran et al., 2004), exhibiting enormous disparities in their 

structural complexities, functioning and life-form compositions at both ecosystem and global 

scales (Levick & Rogers, 2006). The structural type, disparity and balance of especially the 

woody vegetation cover play an integral role in determining savanna heterogeneity and 

functional dynamism (Kiker et al., 2014). 

 

Studies to monitor savanna ecosystems have affirmed analogy that most savannas of the world 

appear to have transformed from their ‘natural states’ since their establishments (Sankaran & 

Anderson, 2009). The spatiotemporal dynamism in savannas is a function of the changing 

regimes in the general factors that shape all vegetation kinds, the drives of an ecosystem 

(Sankaran & Anderson, 2009). These change variables typically alter resource availability 

within an ecosystem (Scholtz et al., 2014). The transition could be a product of competition-

based or anthropogenic processes or an interplay of most of these parameters. In this context, 

studies mainly consider water and nutrients as the primary determinants, while fire and 

herbivory are the modifiers (Sankaran et al., 2004). Diversity is an enormous and long term 

when the level of competition lies between the extremes of availability or lack of disturbance 

(Carlsson, 2005). 

 

The system responses to these drivers are either structural - changes in vegetation type, 

coverage and community composition; or functional - changes in hydrological processes, 

nutrient cycling, and primary productivity (van Wilgen, 2009; Winnie et al., 2008). The change 

variables can significantly maintain or devastate the ecosystem integrity (Scholes & Archer, 

1997), and have become a global phenomenon and hence potential centres of many studies 

(Scholtz et al., 2014).  
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The classical perception of savanna heterogeneity also explains these dynamisms in the context 

of equilibrium and non-equilibrium states. Equilibrium represents a scenario whereby an 

ecosystem maintains tree – grass ratio (implying less competition for resources) coexistence for 

a very long time without expressing no remarkable fluctuations in their tree population 

structures, spatial patterns, and species composition, irrespective of the active driver variables 

(Sankaran et al., 2004). This concept has essentially been used to explain the long-term 

existence of pure grasslands or woodlands in other parts of the world. Non-equilibria perception 

contravenes this model and brings dynamism in the tree - grass ratio coexistence and 

emphasises that the varying ratios are a function of prevailing driver variables. Generally, at 

low rainfall levels, savannas with low woody cover dominate, grasses produce a high fuel that 

enhances the probability of fire episodes and/or herbivory, leading to juvenile woody 

vegetation. High rainfall on the other hand leads to closed woody canopy, shading off light 

from grass understory, leading to fire suppression. With moderate rainfall, if fire/herbivore 

disturbances are suppressed, the tree canopy will eventually be closed enough as to suppress 

the herbaceous layer and therefore fire. Heavy fire and herbivory triggers lead to an open 

environment, resulting from continuously preventing tree saplings from escaping the fire or 

herbivore. The presence of these two positive feedbacks acting in different directions results in 

a tendency for relatively abrupt changes in the tree and grass cover (Figure 1-3, Oliveras & 

Malhi, 2016).  

 

 

 

Figure 1-3. The various triggers of savanna heterogeneity and shifts between stable to unstable 

conditions. (Source: Oliveras & Malhi, 2016). 

 

Regime shifts and system variability in savannas are direct feedback from complex interactions 

of different variables operating at varied spatial and temporal scales (Sankaran & Anderson, 

2009). These variables could be the climatic conditions and geological substrates properties 

(Scholes & Walker, 1993) of an area, or disturbances such as prevalent wildfire outbreaks, 
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human manipulations and effects of wildlife inhabiting an ecosystem. Climate and soil are 

distinctively considered as exogenous drivers and unaffected by internal dynamics, whereas 

fires and herbivory are regarded as endogenous factors and are influenced by external forces. 

However, the variability and interdependence of these components, and challenges in 

quantifying the intensities of their impacts sometimes make it uneasy to determine the main 

mechanism that defines the state of an ecosystem (Scholes & Archer, 1997).  

 

The rate and scale of savanna succession depend on the sequence, the frequency and magnitude 

of the disturbance variables and this also varies between regions and within ecosystems 

(Scholes & Archer, 1997). In some parts of Africa, climatic changes (mainly drought and high 

seasonal rainfall variability) have been identified as the core regulator of the balance between 

woody and herbaceous vegetation covers (Sankaran et al., 2008), while interruptions such as 

those resulting from severe fires and anthropogenic factors (Levick & Rogers, 2006) have 

formed the basis of change (Sankaran & Anderson, 2009). Within the KNP in South Africa for 

instance, the natural variables such as rainfall and geology were found to have more effects on 

woody structural diversity and composition than the disturbance from fire and wildlife (Scholtz 

et al., 2014).  

 

The response pattern of savanna vegetation parameters depicts varied reactions to different or 

similar predictive variables (Scholtz et al., 2014). For instance, terrestrial fires are known to 

influence woody vegetation structure and have less effect on woody vegetation composition 

and species. A review of previous studies conducted in Kenyan savannas also established that 

rainfall mainly influences woody canopy cover whereas drainage mainly influences tree height 

only at certain elevations (Colgan et al., 2012). Soil properties mainly regulate species 

composition. The following is a highlight of the major drivers of savanna heterogeneity and 

details about the triggers influencing these drivers.  

 

Biomass Burning 

 

Forest fires have been traced from prehistoric human activities spanning several decades back 

and have been cited as one of the major perturbations of savanna biomes especially in the 

African continent (Walker, 1985). Savanna ecosystems are the most susceptible to fires, 

especially in the tropical regions (Andersen et al., 2012). Depending on the type, frequency, 

seasonal occurrence, and their intensity, fires can lead to detrimental loss of large proportions 
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of tree and grass species at various spatial scales such as the scenarios in KNP which has had a 

long fire history of fire occurrence studies (Table 1-1, Govender et al., 2006). This is because 

they can indiscriminately consume nearly all materials of any structural type hence destroying 

soil biota and damaging exposed living tissues (Govender, 2003). From Table 1-1, it is evident 

that fire intensities > 2000 kW m-1 are experienced in seasons with high fuel loads of > 2000 

kg ha-1 typical of autumn, winter and spring seasons. 

 

Table 0-1. Mean seasonal fire intensity classification in Kruger National Park. (Source: Govender et al., 

2006). 

    Fuel loads (kg ha-1) 

Season of burn Descriptor <1000 1000-

2000 

2000-

4000 

4000-

6000 

>6000 

Summer                                         

(1 December-31 

March) 

Fire intensity class                         

Mean fire intensity (kW m-1)                             

Number of fires 

Very low       

287                   

1 

Low          

578                  

17 

Moderate      

1031                   

95 

Moderate      

1432                   

83 

Moderate      

1650                   

31 

Autumn                                          

(1 April-30 

May) 

Fire intensity class                         

Mean fire intensity (kW m-1)                             

Number of fires 

Very low       

No data                   

0 

Low          

7328                  

19 

Moderate      

1455                   

62 

High        

2106                   

79 

High        

1900                   

23 

Winter                                            

(1 June-31 

August) 

Fire intensity class                         

Mean fire intensity (kW m-1)                             

Number of fires 

Very low       

194                   

4 

Low          

835                  

65 

High      

2082                   

187 

High        

3625                   

83 

Very high      

4385                  

19 

Spring                                             

(1 September-30 

November) 

Fire intensity class                         

Mean fire intensity (kW m-1)                             

Number of fires 

Very low       

No data                   

0 

Low          

712                  

15 

Moderate      

1570                   

103 

High        

3066                   

55 

Very high      

5253                  

16 

 

 

Plants have different tolerance levels to fire. Some plants can recover after a fire incidence 

while others completely die. Persistent fires can therefore lead to complete extinction of fire-

intolerant species (Carlsson, 2005) and sometimes lead to invasion of alien species (Kontoes et 

al., 2013). In fire-prone areas, the landscapes are dominated by homogenous savanna tree 

species (van Wilgen et al., 2000) which can resist effects of severe burning (Kontoes et al., 

2013). Such vegetation owes their existence from developing mechanisms such as extreme 

heights and enough bark thickness (Furley et al., 2008). Hoffmann et al., (2012) coined this 

state of an ecosystem as having reached a fire-resistance threshold. This however depends on 

the interval between disturbance occurrences; long intervals allow enough time for saplings to 

undergo this process. In most cases, however, this time is interrupted by other factors such as 

levels of resource availability (Hoffmann et al., 2012). A shift in the savanna regime is typical 

if this threshold has been crossed.  
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Biomass burning modifies the spatial distribution of savanna ecosystems by affecting the 

structural elements and species composition (Reis et al., 2015) through complex interactions 

involving climate, resources and species traits (Govender et al., 2006; Hoffmann et al., 2012). 

The magnitude of the impact of biomass burning also depends on the time interval between the 

disaster and the occurrence of subsequent agents such as precipitation and herbivory (Walker, 

1985). Terrestrial fires also change the energy and soil mineralisation- nitrogen, carbon and 

sulphur, and phosphorus and potassium to a lesser extent (Sankaran & Anderson, 2009). They 

also have effects on the hydrological cycle (water fluxes), the soil chemistry and other physical 

characteristics (Thonicke et al., 2001) hence affecting the atmospheric, morphological and 

physiological characteristics of savanna ecosystems (Walker, 1985). Some of these mineral 

elements are volatile and hence easily lost to the atmosphere. Higher soil temperatures reduce 

the reflection coefficient (albedo) of the soil surface, and this allows for higher absorption of 

solar radiation which directly devastates belowground biomass (Walker, 1985). Fires also 

reduces the soil surface stability, hence exposing it to harsh environmental conditions, making 

them susceptible to extensive erosion and reduced water holding capacity. 

 

Severe recurrent fire regimes also lead to destruction of grass-loads and shrubs. This eventually 

leads to woody dominance in an ecosystem (Sankaran & Anderson, 2009). However, with 

relative minimum resources such as precipitation, savannas can experience high growth rates 

and a rapid increase in the total biomass. This rapid growth is accelerated by increased levels 

of nutrients in the soils (mainly Nitrogen and Phosphorous) resulting from biomass burning and 

decomposition of inorganic matter (Gosling, 2014). Destruction of woody vegetation and tall 

grass also enhances plants’ (especially understory) exposure to sunlight hence favouring fast 

growth of grass. Like trees, grasses come in various species classes, and some grass varieties 

have also developed mechanisms that can support their existence by responding quickly after 

an event of fire. Most previously disturbed patches within savanna ecosystems are now 

colonised by stoloniferous grass forms like the lawns and coppices (bunch grasses), which can 

resist fires and replenish their root reserves relatively faster (Gosling, 2014).  

 

Repeated and large scale burning in the tropics has been cited as one of the major causal agents 

for greenhouse gas concentrations (Figure 1-4, Houghton & Nassikas, 2017; Maraseni et al., 

2016; Andersen et al., 2012), hence exacerbating the process of climate change (Thonicke et 

al., 2001). In northern Australia, fires account for an average of 3% of Australia’s greenhouse 

gas emissions (Andersen et al., 2012). Fires can also burst open the vulnerable woody fruits 
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hence help in dispersing tree seeds for germination (Sodhi & Ehrlich, 2010). Fires commonly 

occur over two seasons, the dry season (Walker, 1985) and at the onset of a rainy season 

(Sankaran et al., 2008). Because of low densities of highly flammable biomass load 

characteristic of long droughts, arid savannas experience longer fire return periods than the 

frequencies observed in wet savanna regions (van Wilgen et al., 2000). Contrary, rains in mesic 

savannas facilitate high production and accumulation of grass, which form fuel environment 

that supports fires of higher intensities (Sankaran et al., 2008). Dry season fires are mainly 

induced by man to pave way for land use activities. Analysis of fires that occurred between 

1980 and 1993 in the Kruger National Park showed that 90 percent of fire was caused by man 

(van Wilgen et al., 2000). Lightening only accounted for 10 percent. Fires occurring at the 

beginning of a rainy season are mainly caused by frequent lightning, which characterise most 

tropical rains. 

 

 

Figure 1-4. Greenhouse gas emission in Gt CO2 per source from 1990 to 2016. Fires constitute the 

highest emission source. (Source: Houghton & Nassikas, 2017). 

 

The role of fire as a change agent in savanna ecosystems depends mainly on the mean fire return 

period. Despite their tremendous effect on savanna landscapes, fires have also been perceived 

as maintainers of species balance and coexistence. Fire regimes are a significant variable that 

needs to be incorporated in the models designed to evaluate the changing regimes in savanna 

ecosystems. Interestingly, most forest fires experienced today are ignited by man to derive their 

livelihoods from these ecosystems. Such human manipulations can be regulated. Recent global 
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concerns and approaches on fire management have had a marked impact on the recurrence 

patterns (Sankaran & Anderson, 2009). Fire management goals have saved savanna vegetation 

from the adverse effects of massive burning and constant pressures. Prescribed periodic burning 

has been implemented in various savanna regions and this has helped stabilise savannas.  

 

Herbivory 

 

Savanna ecosystems are ideal habitats for the largest proportion of animal communities 

(Gosling, 2014). Unlike other continents that experienced massive herbivore extinction during 

Pleistocene, African continent has the largest and diverse extant mega fauna like elephants, 

buffalos and white rhinos, and browsers such as antelopes and other mixed feeders. These 

animals depend on savanna growth forms for foraging (Gosling, 2014; Bond & Archibald, 

2003). 

 

Elephants are the leading drivers for the extinction of woody plants and modification of woody 

community composition (Wigley et al., 2014). Structural variation is the primary ecological 

response to the effects of ungulate wildlife such as elephants and buffalos (Landman et al., 

2014). Enormous-bodied herbivores reduce biomass concentrations, and this maintains 

vegetation at a low standing, hence reducing competition for light among plants. This further 

influences the coexistence of different plant forms. Asner et al., (2008) establish the impact of 

elephants in Kruger National Park and found huge differences in tree heights and herbaceous 

biomass densities between areas where herbivory was excluded and areas open to herbivore 

communities. 

 

Wildlife distribution pattern is determined by the system variability in terms of the availability, 

quality, quantity and the structure of the plant communities that characterise an ecosystem. 

Grazers, browsers, and mixed feeders have different nutritional needs and hence different 

feeding behaviour. This creates feedback cycles within an ecosystem (Gosling, 2014). Many 

herbivores opt for annual over perennial vegetation. Short and stoloniferous herbaceous plants 

are also vulnerable (suitable for herbivores) compared to tall plants or plants with tussock 

design (Wigley et al., 2014). Native ungulate browsers are associated with shrub dynamics in 

east African savannas (Wigley et al., 2014). Increase in the number of large mega fauna is also 

responsible for the high rates of tree falls at ecosystem scales (Asner et al., 2016; Odipo et al., 

2016). Selective feeding creates heterogeneity by modifying the balance between cover classes 
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in an ecosystem (Hoffmann et al., 2012). Increased pressures beyond the site’s carrying 

capacity could explain disparities within savannas ecosystems (Sankaran et al., 2008).  

 

Other factors affecting wildlife distribution and population levels include predation. Herbivores 

are risk-sensitive and therefore avoid the zones they perceive to be dangerous such as the dense 

vegetation patches. They mostly occupy and forage in higher visibility surroundings like the 

hill crests or short grass patches (Gosling, 2014) where they can easily detect the threat. 

Predation also increases the survival opportunity of plant varieties and creates bare patches at 

an ecosystem scale (Carlsson, 2005). 

 

Through foraging, herbivores influence the occurrence probability and frequency of fires at 

various spatial scales (Winnie et al., 2008) by either reducing or increasing grass dominance 

and resource competition in an ecosystem (Gosling, 2014). Herbivory influences plant-to-plant 

interaction which plays an essential role in sustaining species functional diversity and richness. 

In his study to assess the interaction between herbivory and fire occurrences, Carlsson (2005) 

pointed out that browsers and grazers influence fires differently by potentially shifting 

competition among species (Figure 1-5, van Langevelde et al., 2003). He found that grazers 

exacerbates woody biomass production and growth while browsing decreases it. This is because 

grazing reduces herbaceous heterogeneity and the probabilities of fire occurrences thus 

enhancing the survival of woody growth forms. This coincides with other models which add 

that removal of grass declines intra-life form competition and enhances availability of moisture 

suitable for woody plants (Scholes & Archer 1997). 

 

Browsing modifies the existence of shrubs and woody vegetation because most of their species 

are more nutritious and palatable than grass species. This provides a niche for grasses, which 

attracts fires that eventually damage trees (Carlsson 2005). Through urine and dung deposition, 

wildlife also influences the rates of nutrient cycling and hence helps in regulating nutrient status 

in tissues (Sankaran & Anderson, 2009). Like fires, wildlife also promotes the establishment of 

woody vegetation through seed dispersal and long-term grazing pressures. Herbivory and fires 

are interdependent; herbivores alone have less effect on vegetation in the absence of fire, but a 

combination of these two creates higher species diversity in an ecosystem (Carlsson, 2005). 
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Figure 1-5. Effects of grazing and browsing on grass biomass (fuel load). Low grass biomass leads to 

low fuel load, meaning less fire intensity with low damage to trees resulting in woody vegetation 

increase. (Source: van Langevelde et al., 2003). 

 

Much as herbivory leads to ecosystem destruction, their exclusion can also cause ecosystem 

stress. Reduced wildlife activity in savannas is also associated with coppice encroachments and 

woody dominance (Sankaran & Anderson, 2009), as in the vast tracts of unused ranches which 

were once economically viable in South Africa. However, bush encroachment has also been 

attributed to large-scale environmental factors such as climate change which causes a gradual 

and continuous drift as opposed to regime shifts resulting from other triggers. Herbivore 

exclusion induces growth of poor grazing lawns characterised by grass heights that are of low 

quality and inefficient for both small and large-bodied wildlife. Herbivory can be used to 

explain the biomass states that have transformed from high to low grass dominances in 

Ngorongoro crater in Tanzania (Sankaran & Anderson, 2009). 
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Herbivory is one of the key drivers of vegetation dynamics in most savanna ecosystems. Even 

though they disturb their habitats, forest fires mostly work in favour of wildlife since, given 

suitable rainfall conditions, lead to sprouting of young and succulent vegetation. 

 

Pests and Insects: Termites 

 

Apart from the mammalian herbivores, invertebrate herbivores such as termites, ants, 

grasshoppers, and tsetse flies play a key role in establishing habitat diversity within an 

ecosystem (Sileshi et al., 2010). Pests and insects are mainly seasonal and may be a great 

competitor to the mega mammalian herbivore especially during the dry seasons when the 

ecosystem is experiencing low rates of vegetation production (Gosling, 2014). Termites are 

highly abundant (diverse genera) and mobile social insects living mostly in colonies (Gosling, 

2014), and can modify the geological makeup of an ecosystem through their activities such as 

tunnelling, mound formation, nesting and foraging (Sileshi et al., 2010). Their interaction with 

plant life starts at a very tender age of the plant and they also consume on dry woody trees. 

Termites are active across all savanna ranges - the wet, semi-arid and in the arid ecosystems 

(Davies et al., 2016). Their interactions with the soil induce spatial dynamism in terms of water 

and plant diversity within the ecosystem (Sileshi et al., 2010). 

 

Unlike other microbial organisms, termites are greater decomposers because they work at a 

range of environmental gradients and non-selectively feed on both live and dead wood and other 

litter. This speeds up humus accumulation in the soil, leading to rapid nutrient cycling, 

especially through nitrogen fixation and other mineral elements such as calcium, potassium, 

magnesium and sodium. Some termite species that consume dung and soil deposits also help in 

nutrient recycling. Decomposition of the dead termite remains also adds nutritional value to the 

soils. Africa’s tropical ecosystems are the most prone to termite colonies. In Kenyan savannas, 

90 percent of annual dead and fallen wood biomass is consumed by termites (Sileshi et al., 

2010). Such cases are also prominent in West Africa, where it is estimated at 60 percent. In 

Namibia and Serengeti National Park, termites were established to be responsible for the varied 

vegetation types. The mineralisation and decomposition processes help in subsidising the soil’s 

organic matter and improving soil moisture retention capacity, hence improving its fertility 

(Gosling, 2014).  

 



13 

 

Through direct foraging and nesting, some termite species can lead to denudation of massive 

quantities of grass, seedling and more vulnerable plant materials hence creating bare patches 

within an ecosystem (Sileshi et al., 2010). This could lead to the discriminate invasion of only 

alien species that can resist termite attack. Loss of biodiversity gradually modifies the 

coexistence of animal and plant forms. Vegetation suppression and mound formation are also 

known to play a role in the reduction of fire regimes and fire intensity in savannas. Mounds 

influence the vegetation structural type that grows around them (Gosling, 2014). Davies et al., 

(2016), in his review of the impact of termites in KNP, observed resemblances between 

vegetation formed near termite mounds with lowland vegetation. Tree assemblages differed 

from those found in the surrounding more than approximately 10 metres away from the mounds. 

The same study also revealed a reduction in tree densities within a 10 metre distance range from 

the mounds. Tree species resistant to termite attacks however, increased in densities around 

mound centres. More tree destruction occurred in wetter parts of the park while drier parts of 

the park suffered landscape deformation due to higher mound densities. 

 

Termites also create bands that form long and high ridges (up to 2 metres above the ground) 

that act as grounds for coexistence of contrasting vegetation species. The vegetated bands serve 

as natural bench structures that reduce soil erosion within an ecosystem. The plants on the bands 

are normally very nutritious and therefore form foraging sites for many herbivores. Alternating 

ridges lead to creation of troughs which form drainage channels during rainy seasons. The entire 

process creates heterogeneity and dynamism in an ecosystem. This scenario is commonly found 

in South Africa.  

 

Through tunnelling, termites deposit rich red clay subsoil to the surface of the earth. The clay 

content in the soil alters the soil texture and other physical properties of the substrate, such as 

porosity, hence improving water percolation (Sileshi et al., 2010). Erosion of the Above-ground 

nests also speeds up the mobilisation of huge densities of thick fine clay sediments over the 

surface. Clayey soils favour growth of grass. The downslope transportation of water also leads 

to deposition of mineral elements at the foot slope, hence supporting vegetation growth. 

Sometimes, this movement can lead to seasonal waterlogging hence creating an environment 

that can sustain only plants that are adapted for such conditions. On the other hand, fine clay 

particles tend to tightly bind during dry seasons (Colgan et al., 2012). This renders them 

impervious, hence reducing water infiltration to soil depths during light downpour (Sankaran 

et al., 2008). Porous soils however, allow downslope flow and vertical penetration of water 
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during rainy seasons, which forms good reservoirs of moisture across different soil profiles 

especially suitable for deep-rooted savanna vegetation during drought seasons. 

 

Climate  

 

Climate is a primary determinant of savanna ecosystems (van Wilgen, 2009) and a key predictor 

of savanna heterogeneity and ecosystem productivity (Carlsson, 2005; Gosling, 2014). Other 

forces like fire, which also help in the structuring of savanna woody cover, vary across various 

precipitation gradients (Sankaran et al., 2008). Climate change has a direct influence on global 

savanna distribution and dynamics (Scholtz et al., 2014). Savannas are classified based on 

different climatic zones characterised by inter-annual variations in total rainfall; the arid (0 - 

450 mm), semi-arid (450 - 700 mm) and the mesic savannas (700+ mm) - (Brown, 2002). Mean 

annual precipitation beyond 800 mm may lead to the formation of canopy covers enough to 

suppress grass coexistence.  

 

Mean annual precipitation (MAP) is a driving factor for potential tree cover (structure) and 

canopy photosynthetic capacity (Figure 1-6; Sankaran et al., 2005; Merbold et al., 2009; 

Higgins et al., 2010). There is a clear gradient in the woody plant biomass in KNP from south 

to north direction, attributed to changes in precipitation amounts. Above the minimum level of 

200 mm MAP, the woody basal area increases at a rate of about 2.5 m2ha-1 per 100 mm MAP. 

Mean maximum tree height also increases along the gradient, reaching 20 m at about 800 mm 

MAP (Scholes et al., 2002). In the same view, different vegetation is supported at different 

MAP, with members of Acacia dominating the tree layer up to 400 mm MAP. Between 400 

and 600 mm MAP, the Acacia are replaced by Cambretum or Terminalia (or Colophospermum 

mopane), and above 600 mm MAP, the representatives of Caesalpinaceae dominate. The 

vegetation between 600 to 1000 mm MAP is deciduous. 

 

file:///D:/TOPIC%200%20-%20Dissertation/Dissertation%20Write%20up/Literature%20Review_April_2014.docx
file:///D:/TOPIC%200%20-%20Dissertation/Dissertation%20Write%20up/Literature%20Review_April_2014.docx
file:///D:/TOPIC%200%20-%20Dissertation/Dissertation%20Write%20up/Literature%20Review_April_2014.docx
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Figure 1-6. Current defined limits of maximum tree cover (Sankaran et al. 2005) shown by the blues 

line across a rainfall gradient. Maximum tree cover in low-rainfall savannahs (MAP < 650 mm) is 

constrained by water availability. The red arrow: CO2 fertilization is expected to lead to an increase in 

tree cover. 

 

While the internal drivers such as fire and herbivory modify the state of biomes (Winnie et al., 

2008), spatial-temporal variability of mean annual rainfall plays a pivotal role in modulating 

the population structure, distribution and functioning of those savanna biomes. Regardless of 

the nutrient content levels within the soils, savanna vegetation in regions experiencing reliable 

annual precipitation thrive very well compared to regions characterised by higher nutrient 

concentrations with erratic rainfall patterns (Colgan et al., 2012). This could be used to explain 

the higher wood biomass on KNP’s granitic sandy soils than in areas covered by basaltic 

substrates. However, low woody coverage could also be attributed to frequent fires eminent in 

areas covered with basaltic soils (Asner et al., 2008) supporting heavy grass fuel loads (Colgan 

et al., 2012; Scholes & Walker, 1993). 

 

Savanna growth forms are continuously competing for scanty resources from germination stage 

all the way until stress-tolerant colonies escape to maturity classes (Sankaran et al., 2004). Trees 

and shrubs have different inter-seasonal variations (Carlsson, 2005) and they are defined by 
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intra-annual and intra-seasonal rainfall fluctuations. Even at a very tender age, grasses and 

shrubs portray spatial root niche partitioning. In extreme arid environments experiencing sharp 

precipitation gradients, grasses compete for water more efficiently than deep-rooted trees. This 

is because their rooting system allows them to draw the limited water from the upper layers of 

the soil profile (Sankaran et al., 2004). However, if there is variation in water distribution across 

the soil profile, coexistence is possible even if the rooting systems overlap or where plants have 

relatively different water use efficiencies. This hypothesis can be used to explain cover classes’ 

coexistence in tropical savannas. Deep-rooted trees can, however, meet their water demands 

below grass rooting profiles during dry seasons. At this stage, grasses dry up quickly because 

the top soils are dried up by excessive evapotranspiration. Competitive displacement occurs at 

the established stage, since different plants show different response patterns to soil water 

availability (Carlsson, 2005). Savanna woody vegetation shows dependence on precipitation up 

to certain thresholds, normally between 200 mm and 700 mm. There is normally little or no 

dependence beyond this threshold (Sankaran et al., 2008). 

 

Different plant forms are also simulated to thrive under wider temperature ranges; C3 grasses 

can flourish in areas with minimum temperatures less than 15o C whereas C4 grasses can only 

flourish at minimum temperatures that exceed 20o C (Woodward et al., 2004). Unlike tropical 

savannas characterised by long dry spells, regions receiving a mean annual rainfall greater than 

650 mm (unstable savannas) are likely to be dominated by closed canopy woody cover 

(Sankaran et al., 2005), unless constrained to reach these heights by other internal drivers (van 

Wilgen, 2009). The coexistence of grass in this case would highly depend on woody 

disturbances such as fire (Furley, 2007). Woody dominance leads to a rapid build-up of heavy 

fuel loads enough for massive fires that cause detrimental damages when they occur during 

drought seasons (Sodhi & Ehrlich, 2010).  

 

Rainfall also influences the fire return intervals. In KNP for example, fire recurrence in areas 

that received higher MAP is minimal (3.5 years interval period) compared to areas that receive 

low mean annual rainfall (about 5.2 years interval period) - (van Wilgen et al., 2000).  
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Geology 

 

The heterogeneous nature of savannas makes them resilient to geological properties. Soil 

texture (moisture and nutrient retention capabilities) and fertility are important components of 

savanna dynamism (Sankaran & Anderson, 2009). The geological substrate and its relationship 

to vegetation can help explain variations in tree-grass codominance because vegetation 

responds differently to soil mineralisation. Grasses, for instance, respond positively to high 

Nitrogen depositions in the soil, while the same has little effect on woody cover (Sankaran et 

al., 2008). Therefore, Nitrogen enrichment in soils may alter the tree-grass balance by shifting 

the ecosystem towards a grassy vegetative state. Again, this can explain the differences in 

vegetation dominance between the less fertile granitic soils (sandy) with lower nutrient 

turnover, and the fertile basalt soils (clay) with high nitrogen levels in KNP. This is also 

consistent with the findings of Sankaran et al., (2008) on a swift decline of woody cover with 

increasing soil Nitrogen mineralisation in Miombo of Zimbabwe.  

 

The through-flows and overland-flows determine water availability in the soils and this varies 

between geologic substrate types. Hydrologically, sandy soils can sustain vegetation under 

prolonged dry conditions and lower rainfall range than fine-particle clayey soil (Colgan et al., 

2012). This is because sandy soils are more permeable and allow maximum infiltration. The 

topographic position and geologic substrate make up some factors that determine the scale of 

herbivore impact on biodiversity (Asner et al., 2008). Vegetation flourishes under soils rich in 

nutrients, therefore attracting herbivory. Lowlands form better grazing grounds because of 

overhead flows that enhance nutrient and moisture availability, forming better conditions for 

forage growth. This is useful in understanding varied height distributions and rapid introduction 

of bare patches across various ecological zones (Asner et al., 2008). 

 

Land-use changes due to human activities  

 

The nature and dynamism of savannas has been defined by prehistoric, historic and recent 

human activities. Savannas are of great importance to human economies and have formed the 

primary sources of rural livelihood in most parts of the world (Sankaran et al., 2004). Expanding 

human population rates has created an equal demand and extensive use of land to keep pace 

with the emerging pressures. Among the land use practices include agriculture, logging, and 

human settlements (Gosling, 2014). Human practices manipulate the natural state of an 
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ecosystem (Sankaran et al., 2004), and can shift its ecological and socio-economic functioning 

over time (Cai et al., 2012). 

 

Savanna ecosystems are mainly defined by woody cover dominance. However, wood is the 

major source of energy among the world’s rural and semirural populations, even in relatively 

developed nations which have alternative sources of energy (von Maltitz & Scholes, 1995). In 

South Africa, about 93 percent of the rural population relies on fresh wood harvesting for 

firewood and charcoal production in the Lowveld savanna (Mograbi et al., 2015), and this has 

been outlined as one of the major causes of forest degradation and fragmentation (Duadze, 

2004) and species depletion (Naidoo et al., 2015).  

 

Wood harvesting reduces biodiversity complexities and modifies the vertical stratification of 

vegetation, which reduces biomass productivity leading to structural heterogeneity (Mograbi et 

al., 2015). Logging also reduces canopy cover; trees become easily desiccated, and this allows 

for undergrowth which exposes an ecosystem to fire susceptibility (Sodhi & Ehrlich, 2010). 

Continuous tree harvesting can change the species composition to multi-stemmed thickets 

(Campbell, 2013). Vegetation exploitation also exposes land to some natural phenomena like 

soil erosion and the potential of flooding. All these ecological processes, such as hydrology, 

nutrient cycling and primary production, have adverse effects on the habitat (Duadze, 2004; 

Scholes & Walker, 1993). 

 

Tree harvesting turns a vegetative ecosystem to bare patches, hence speeding up runoff and 

lessening capillary movement. Erosion loses soil’s nutrients and modifies the vegetation cover. 

Logging also reduces plant biomass, leading to desertification. All these processes have global 

climatic implications; they modify the temperature and precipitation, which are core drivers of 

a savanna ecosystem (Sankaran & Anderson, 2009). 

 

Biomass burning has been a common phenomenon, especially in sub – Saharan Africa (Walker, 

1985). Man has intentionally ignited fires to pave way for extensive crop production on one 

hand, and to allow for regrowth of fresh and succulent grass suitable for their livestock 

(Govender, 2003). Constant fire disturbances modify the structural composition of an 

ecosystem (Sodhi & Ehrlich, 2010). Grazing pressures can also surpass threshold levels 

required to support vegetation regrowth under constrained resources, especially in the rangeland 

(Sankaran et al., 2008; Sankaran & Anderson, 2009). Extensive farming can form a gradual 
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transitional process in an ecosystem through suppression of woody dominance and allowing 

grounds for emergence of bushes and more open grasslands (Sankaran & Anderson, 2009). 

 

Conclusion: 

 

The drivers of savanna ecosystem cannot be perceived in isolation (Sankaran et al., 2004). In 

changing regimes, the changes should be viewed as a response to stress and disturbance 

resulting from interactive effects of multiple competitive and demographic processes embedded 

across environmental gradients (Woodward et al., 2004). For instance, invoking climate as the 

dominant determinant would have tropical environments supporting ecosystem productivity 

much more than temperate environments (Carlsson, 2005), because woody vegetation shows 

subtle changes to inter-annual variations in total rainfall. Regime shifts resulting from climatic 

changes can only be observed after long-term rainfall regimes. Assessing the manipulative 

effects of change variables needs a clear understanding of ecological niche of the various 

organisms under study (Fidelis, 2008), and a comprehensive model that can incorporate all 

parameters that regulate recruitment of various growth forms within a savanna landscape. 

 

1.3. Remote sensing in Savanna vegetation structure mapping 

 

1.3.1. Basis for savanna vegetation structure mapping  

 

Vegetation structure components such as above- and below-ground biomass, woody cover, tree 

height, and basal volume, among others help with carbon stock estimation. According to the 

International Panel on Climate Change (IPCC), aboveground biomass (AGB) makes up “all 

living biomass above the soil including the stem, stump, branches, bark, seeds and foliage” 

(IPCC, 2003; Chave et al., 2005). Valuation of these structural variables assists with the 

assessment of an ecosystem’s capacity in terms of carbon storage, fuelwood consumption relied 

upon by some 80% of sub-Saharan Africa, besides other ecological roles. Anthropogenic 

induced deforestation and natural forest degradation has led to the release of some 1-2 billion 

tons of carbon into the atmosphere, accounting for approximately 15-20% of the global 

greenhouse gas (GHG) emissions (Gibbs et al., 2007).  

By quantifying AGB through forest inventories, it is possible to understand the changes in the 

carbon pool and productivity of tropical forests (Roy & Ravan, 1996; Esser, 1984). Reliable 
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AGB reporting depends on accurate field inventory, with regular updates, which is usually 

unavailable in most developing countries. Reliable allometric equations for AGB estimation in 

this region are few or poorly documented. This is partly attributed to the tedious work involved 

in harvesting and weighing tree species within an ecosystem, with large financial and time costs 

(Chave et al., 2004; Nickless et al., 2011). Hence, most allometric equations do not take into 

consideration the differences in tree species associated with variations in ecological regions. 

Allometric models are developed based on relationships between biomass and tree 

characteristics such as height and basal diameter (Clark et al., 2001). Such relationships are 

therefore prone to errors associated with models used in their development (Chave et al., 2004; 

2005). Forest impenetrability, time and financial constraints, have led to localised field 

inventories with few tree species (Jenkins et al., 2003), which are not representative over large 

areas (Roy & Ravan, 1996; Brown, 2002). Remotely sensed data are more suitable for biomass 

assessments over wider spatial coverages. However, the associated errors, mainly emanating 

from sampling procedures and errors associated with the allometric models, need to be taken 

into consideration. Until 2005, most allometries considered only the relationship between 

biomass, plant diameter and wood specific density (Chave et al., 2004; 2005; Nickless et al., 

2011), leaving out the height variable. Examples of such allometries are presented in Nickless 

et al., (2011) where a linear relationship between AGB and log-transformed trees with D above 

33 cm in KNP was derived, with 16% and 12% errors for woody and leaf biomass, respectively.  

Many studies have developed empirical models to assess vegetation spectral response to 

biomass, with results showing significant relationships between the two. Studies by Roy & 

Ravan (1996) attributed these relationships to seasonal variations in phenological conditions, 

seen in visible and infrared bands of optical remote sensing datasets. Airborne laser scanners 

(ALS), Lidar – (Saatchi et al., 2011; Baccini et al., 2008) and TLS can solve not only the 

problems associated with cloud contamination in imagery but also provide the best alternative 

reference data for forest inventory. Combining spectral reflectance with 3-dimensional (3-D) 

capability facilitates canopy height estimations such as shown in the works of Lefsky et al., 

(2005), where Geosciences Laser Altimeter (GLAS) Lidar onboard Ice, Cloud and land 

Elevation Satellite (ICESat) was combined with Shuttle Radar Topographic Mission (SRTM) 

to estimate forest heights in Brazil. Similar studies by Nickless et al., (2011) and Colgan et al., 

(2012) found a linear relationship between Lidar derived canopy cover and height metrics with 

AGB. Error identification and correction in AGB estimation is a major problem, and averaging 

canopy metrics at plot scale is a major source of error in Lidar to field data correlation (Colgan 

et al., 2013). The potential of TLS in vegetation structural mapping are covered in the works 
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by Korpella (2004); Abraham & Adolt (2006); Browning et al., (2009); Raumonen et al., (2015) 

and Odipo et al., (2016). Despite being a relatively new field, TLS allows a rapid acquisition 

of 3-D data with various applications (Tilly, 2015; Stanley, 2013; Resop & Hession, 2010; 

Kandrot, 2008). Unlike Lidar which cover large areas, TLS data capture is restricted to few 

meters, and non-destructive method of obtaining biomass estimates (Calders et al., 2015; 

Hackenberg et al., 2015). Given its ability to acquire data on the ground, TLS data can be used 

for validation of other remote sensing datasets (Abraham & Adolt, 2006; Browning et al., 2009; 

Raumonen et al., 2015). However, large number of point clouds (PCs) are generated which 

require sophisticated hardware and software for processing the data (Li et al., 2016; Liu et al., 

2016; Warmink, 2012). New methodological workflows like those adopted by Raumonen et 

al., (2015) can extract individual trees from TLS point clouds by splitting trees into individual 

cylinders. 
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1.4. Study motivation 

 

Savanna biomes cover 20% of the earth’s land surface (Campbell, 2013), mainly in tropical and 

subtropical regions, which typically experience contrasting wet and dry seasons. In sub-Saharan 

Africa (SSA), 65% of land surface displays characteristic heterogeneity in terms of both vertical 

and spatial vegetation composition (Figure 1.7, Hansen, 2000; Shirima et al., 2011). The 

savanna biomes are only second to tropical forests in terms of Net Primary Productivity 

(Hansen, 2000), very important as carbon pools, with the African sub-continent acting as a sink 

to 25% of the global C-stock. Savannas are a source of livelihood to some 80% of rural 

population in SSA who rely on the biome as a source of timber for fuelwood and construction, 

hunting and gathering for food and fibre, pasture for animals, clearing for settlement and 

agriculture. Ecologically, savannas are important habitat for vast species of flora and fauna 

(Mishra et al., 2015). Apart for Carbon, the biome is important in Nitrogen cycling through 

frequent forest fires. 

 

 

 

 

 

 

 

 

 

 

 

Despite such importance, savanna biome can be described as a disturbance-driven, emanating 

directly from deriving livelihood in terms of extraction of woody products and changes in land 

use, and indirectly from high GHG emissions in the form of rising atmospheric carbon dioxide 

Figure 1-7. Global distribution of grass, shrub and savanna vegetation (Hansen, 2000). 
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(CO2). These disturbance scenarios lead to shifts in resource availability resulting in 

heterogeneity both in space and time (Sankrana et al., 2005; Oliveras & Malhi, 2016). In KNP 

within which this study is conducted, mean annual precipitation (MAP) and nutrient availability 

are the main heterogeneity determinants, while herbivory and fire episodes are heterogeneity 

modifiers (Sankaran et al., 2005; Levick et al., 2006). Figure 1-8 below evidences the effects 

of fire episodes, herbivory in the form of browsers and tree fall by mega-herbivores like 

elephants within Skukuza study site. Low MAP leads to low woody cover dominance which 

allows light penetration to the understory which promotes dominance of herbaceous vegetation. 

The result is a high fuel load which leads to frequent fire episodes and increased herbivory. On 

the contrary, high MAP promotes closed canopy growth which shields sunlight penetration to 

the understory leading to suppression of herbaceous layer. With low herbaceous layer, there is 

a corresponding decrease in fuel load, fire is suppressed, and herbivory minimised.  

Most of the disturbance scenarios compromises the biome’s ability to provide its roles 

optimally, leading to forest degradation and deforestation, which results in increased 

atmospheric carbon emission (Simula & Mansur, 2011). Forest degradation and deforestation 

ranks second to fossil fuel burning in terms of atmospheric C-emission (Pistorious, 2012). To 

conserve the forest biomes, developing countries under United Nations Framework Convention 

on Climate Change (UNFCCC) enacted an incentive-based initiative aimed at adoption of 

sustainable forest management strategies aimed at enhancing C-stock through Reduced 

Emission from Deforestation and forest Degradation (REDD). Under REDD, signatories are 

required to detect, map and verify changes in C-stock resulting from the various disturbance 

scenarios, and the extent to which the adopted conservation initiatives are reducing atmospheric 

greenhouse gas (GHG) emissions. Changes in C-stock can be estimated through mapping 

changes in CC and quantification of gains and losses in AGB. 
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Figure 1-8. Evidence of disturbance in Skukuza, Kruger National Park (KNP) by (a) fire, (b) browsers, 

(c) tree fall by elephants (Photos courtesy Victor Odipo, Nov. 2016) 

 

Using remote sensing in mapping vegetation structure changes provide the basis for detection 

and verification of forest degradation and deforestation. Many studies have shown a 

relationship between remote sensing data, both optical and microwave, and vegetation structure 

especially CC and AGB (Colgan et al., 2013, Treuhaft et al., 2009; Mitchard et al., 2009; 

Carreiras et al., 2012; Wijawa et al., 2011). Most vegetation products from these studies are 

coarse resolution and limited in monitoring tree-level forest degradation initiatives. Despite free 

access and non-commercialisation of many remote sensing datasets by providers, the use of 

optical remote sensing data for vegetation mapping is met with a lot of challenges, especially 
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in the tropics. There is an inconsistency in optical data availability resulting from  cloud and 

atmospheric aerosol contamination. The International Satellite Cloud Climatology Project 

(ISCCP) in Figure 1-9 estimates that at least 40% of the tropics is covered in cloud at any one 

given time (Wylie, 2005). This limit operationalisation of vegetation monitoring initiatives 

which requires consistency in time series data availability. In heterogeneous biomes like 

savannas, the tree-grass coexistence gives a near-similar spectral reflectance between the 

various life forms within and between seasons (Hansen, 2000). 

Remote sensing in savanna vegetation mapping requires a reliable reference data which can be 

used in modelling and validation of remote sensing vegetation structure products. 

Conventionally used field inventory data is costly in terms of both time and labour. Such field 

inventories are non-representative due to their localised geographic coverage apart from 

differences in sampling procedures which making integration for large scale structural 

modelling a problem. Field inventories are error prone either resulting from instrument fault or 

unintentional inventor introduced biases. Most studies undertaken in KNP to map vegetation 

structure variables and especially around Skukuza have used Carnegie Airborne Observatory 

(CAO) Lidar data (Smit et al., 2010; Myburgh et al., 2011; Cho et al., 2012; Colgan et al., 

2012, Colgan et al., 2013; Naidoo et al., 2015; Mograbi et al., 2015; Urbazaev et al., 2015). 

The costs involved in acquiring airborne Lidar data is expensive, and the acquired data has no 

free-access policy making its use for research a problem. 
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Figure 1-9. Global cloud cover frequency between 1994-2001 (International Satellite Cloud 

Climatology Project-ISCCP; Wylie, 2015). 

 

The current study, based on the aforementioned problems encountered in mapping savanna 

vegetation structure, aims to provide a solution thus;  

 Use microwave remote sensing data, especially L- and C-band SAR data with the ability 

to acquire data in all-weather day-and-night at regular intervals thereby eliminating the 

problems of inconsistency in data availability experienced with optical data due to cloud 

and atmospheric aerosol contamination. C-band data is freely availed by ESA under 

Copernicus program, making it easy for developing countries who are interested in a 

regular update on the status of carbon stock; 

 Use high resolution TLS data as reference data in validation of remote sensing (SAR) 

modelled savanna vegetation products, especially canopy cover, aboveground biomass 

and savanna vegetation cover classes. 
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1.5.Research objectives and questions 

 

The general objective of this thesis is to add into our understanding of the spatial distribution 

of vegetation structure components and their dynamics within a protected Lowveld savanna 

biome using innovative remote sensing data sources which solves the problems encountered in 

using optical data in monitoring this ecosystem. To address research gaps especially touching 

on reliable reference data and ability to acquire multi-temporal data for continuous monitoring 

of savanna ecosystem, these objectives can be divided into the following research objectives: 

 

I. To evaluate the potential of high-resolution terrestrial laser scanner (TLS) in extraction 

of savanna vegetation structure variables;  

Technological advancements in remote sensing data acquisition has seen an emergence of free 

to low cost medium to high spatial and temporal resolution space-borne datasets. However, 

studies aimed at vegetation monitoring are still limited by low quality to unavailability of 

reference data. Most such studies rely on sparse and patchy field inventory exercises, which are 

in most cases costly in terms of time, labour and with limited non-representative spatial 

coverage. More so, apart from foreseen commission and emission errors during such exercises, 

field inventories for carbon stock estimations are reliant on destructive sampling for allometric 

development. TLS data, with its accuracy and ability to capture both 2- and 3-D vegetation 

information, provides the best alternative to field-based forest inventories especially where 

continuous monitoring is necessary. To date, few studies have explored the strength of TLS for 

vegetation structural mapping, with few focusing on savannas. This study aims at assessing the 

potential of TLS point clouds in tree variables mapping, especially tree height and diameter at 

breast height (DBH) and how these can be used to compute AGB within a Lowveld savanna in 

South Africa. Further, TLS canopy height model (CHM) is computed and from which canopy 

cover, canopy height and savanna vegetation cover classes are derived through CHM height 

thresholding. These methodologies and the resultant variables can improve vegetation 

monitoring and forest inventory updates for developing countries where this information would 

otherwise be costly in the long run.  

 

 



28 

 

II. To estimate landscape-wide AGB and assess AGB changes over four years using multi-

temporal L-band SAR within a Lowveld savanna in Kruger National Park  

Information on forest biomass is important in assessing a biome’s ability in sequestering 

atmospheric carbon dioxide, stored within the trees as carbon stock. Most developing nations 

are signatories to United Nations’ Reduced emissions from deforestation and forest degradation 

(REDD), requiring them to carry out regular inventories of their carbon stocks through updating 

their forest biomass status. It is therefore important that methodologies are developed which 

can assist with monitoring at regular intervals. This study based on the results from objective I 

above, evaluates the potential of high-resolution TLS-derived canopy cover and height metrics 

to estimate plot- level aboveground biomass, to extrapolate to a landscape-wide biomass 

estimation using multi-temporal L-band SAR within a 9 km2 area savanna in KNP. For this, 42 

field plots were inventoried in the wet season and AGB computed for each plot using site-

specific allometry. Canopy cover, canopy height and their product will be regressed with plot-

level AGB over the TLS-footprint, while SAR backscatter used to model dry season biomass 

for the four years under investigation; 2007, 2008, 2009 and 2010 for the study area.  

 

III. To assess interactions between C-band synthetic aperture radar with various savanna 

vegetation structure variables  

Savanna vegetation structure parameters are important for assessment of the biome’s ability to 

provide ecosystem services under various disturbance scenarios. Studies aimed at tree-level 

structure mapping provides the best way to monitor intrinsic changes when performed at local 

scales to enable forest degradation monitoring. ESA’s contribution to Copernicus has seen free 

availability of high-resolution C-band Sentinel-1 A at high temporal resolution which when 

used without pixel degradation, has the potential of capturing tree-level dynamics within mixed 

vegetation biomes typical of savannas. This study aims at assessing the response of hyper-

temporal C-band SAR with changes in savanna vegetation structural parameters over two 

seasons. TLS data will be used to extract individual tree height and basal diameter for tree 

biomass estimation, and further TLS CHM generation for computing of vegetation CC. The 

effects of SAR polarisation, speckle filter and seasonality on detectability of savanna structure 

parameters are investigated. This study will further attempt to investigate the potential of 

medium wave SAR datasets in monitoring tree level changes with original resolution. It is 

envisaged that this methodology will form a basis for deforestation and forest degradation 

monitoring, with a promise of operational monitoring at high resolution. 



29 

 

The methodological concept aimed at achieving the objectives of this thesis as outlined above, 

is visualised in Figure 1-9. These formulated objectives aim at answering the central research 

questions of this dissertation, including; 

1) Does high resolution TLS provide a supplementary accurate data that can be used as a 

reference for savanna vegetation structure monitoring? 

2) What is the potential of SAR data, especially ALOS L-band SAR in monitoring changes 

in savanna vegetation structure? 

3) Does freely available high resolution and multi-temporal Sentinel 1-A C-band SAR data 

show promise in mapping both vertical and horizontal structural variables within a 

Lowveld savanna? 

 

The questions are investigated within the following three chapters. Chapter 5 looks at the 

implications of the results so obtained from Chapters 2 to 4 in the context of the reviewed 

literature, the results and discussions thereafter, with an outlook for future improvements 

on the methodologies adopted in this study given in Chapter 5. Chapter 6 looks at the major 

results from the foregoing study, to answer the three questions above. 
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CHAPTER 2 
 

2. Theoretical background and techniques 

 

2.1.Basic principles of SAR systems  

 

2.1.1. Electromagnetic radiation 

 

Remote sensing is the art and science of acquisition of information about the earth’s surface 

without being in physical contact with the features under investigation (Rees, 2011, 

Woodhouse, 2006). Sensors on-board remote sensing platforms record energy transmitted as 

electromagnetic radiation with wavelengths ranging between radio waves (λ > 1 m) to gamma 

rays (λ < 10-12 m). The most important sections of the electromagnetic spectrum for remote 

sensing are the passive sensors (optical) in the visible light range (λ = 400 – 700 nm) and active 

sensor combining Near Infrared region (λ = 0.7 – 1.5 µm) and microwave (λ = 1 mm – 1m) 

wavelengths (Chuvieco & Heute, 2010; Liew, 2001; Figure 2-1).  

 

Figure 2-1. Electromagnetic spectrum showing location of the various electromagnetic radiation 

wavelengths (Source: Liew, 2001) 

 

Unlike passive sensors which rely on solar radiation to image earth’s surface features and hence 

limited by daytime solar insolation, active sensors emit their own electromagnetic energy to 

illuminate surface features which enables them to acquire information during both day and night 
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(Tempfli et al., 2009; Campbell, 2007). Examples of active sensors are ranging systems like 

Lidar and radio detection and ranging (Radar). 

SAR is a microwave imaging radar which acquires information on the earth’s surface by 

estimating the time delay in the backscattered signal to the sensor. A SAR sensor consists of a 

transmitter which generates short pulses as the platform moves, a receiver which detects the 

return signal from the illuminated ground features in the azimuth (parallel to flight direction) 

and range directions (orthogonal to flight direction), an antenna and an electronic system to 

process and store the acquired data (Moreira, 2013). Table 2-1 shows the most commonly used 

SAR frequencies in remote sensing literature with accompanying wavelength ranges for P-, L-

, S-, C- and X- bands.  

Table 0-1. Commonly used SAR frequency bands with corresponding wavelengths 

Frequency band X C S L P 

Frequency (GHz) 12-7.5 7.5-3.75 3.75-2 2-1 0.5-0.25 

Wavelength, λ (cm) 2.5-4 4-8 8-15 15-30 60-120 

 

2.1.2. SAR geometry and resolution 

 

Figure 2-2 below shows a typical radar slant geometry (CCRS, 2019), with the platform flight 

direction shown by A and nadir at B. The radar beam is transmitted orthogonally to the direction 

of flight, illuminating a swath C determined by an incident angle (θ). θ is the angle between the 

horizontal plane and the radar line of sight (Ackermann, 2015). The range D is the cross-track 

direction perpendicular to the flight direction, also known as the range direction or slant range 

geometry (Woodhouse, 2006), while azimuth is the along-track direction parallel to the flight 

direction denoted by E (Moreira et al., 2013, Elachi & van Zyl, 2006).  
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Figure 2-2. Radar geometry showing the flight direction A, Nadir point directly below the radar platform 

B, the swath of the radar beam C, and both range – and azimuth directions as D and E respectively 

(Source: CCRS, 2019). 

 

The portion of the swath closer the nadir track is called near range while that furthest to the 

nadir is called the far range and are determined by the θ. The radial line-of-sight distance 

between the radar platform and the earth surface features is called the slant range distance while 

the true horizontal distance along the ground corresponding to each point measured in slant 

range is the ground range distance. The ground resolution of the acquired image depends on the 

size of the microwave beam emitted by the antenna, with narrow beams giving finer details of 

the earth’s surface features. Consequently, longer antennas result in a narrower beam footprint, 

meaning that the beam width is inversely proportional to the length of the antenna (Brown & 

Porcelo, 1969; Tomiyasu, 1978; Mätzler, 2008; Rees, 2006). Since the spacecraft cannot carry 

longer antennas required to attain a higher resolution, the platform motion is used to simulate 

larger antenna (synthetic aperture) with a continued view of a single location (Moreira et al., 

2013). Synthesised antenna length is used to increase the azimuth resolution, as shown in Figure 

2-3. The SAR processor stores signals from the surface object A for the entire time the object 

is within the beam, t. The length of the synthesised antenna B can therefore be expressed as 2-

1; 

B = t.v  (2-1) 

where v is the speed of the platform in the azimuth direction. 
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Figure 2-3. Aperture synthesis by radar platform, with the virtual aperture length (B) after complete 

illumination of ground target (A) (Source: CCRS, 2019) 

 

The ground range resolution describes the ability to discriminate objects that are situated on the 

ground and is calculated from R via the local incidence angle θ. Based on the radar geometry 

therefore, Massonnet & Souyris (2008) derived the ground range resolution using relationship 

in 2-2; 

R = 
𝑐𝜏

2 sin(𝜃)
    (2-2) 

 

where c is the speed of light (c = 3×108 ms−1), τ is the pulse duration (μs) and θ is the incidence 

angle. The factor 2 shows the length of the pulse since it travels from the antenna to the object 

and back to the antenna. The sine of the incidence angle is used to project the slant-range 

resolution onto the ground-range resolution (Ackermann, 2015). It is worth noting that the 

ground range resolution is proportional to the length of the pulses with the possibility of 

achieving finer range resolution with a shorter pulse rate. The azimuth resolution is 

approximately one-half length of the actual (real) aperture (antenna) describes the ability of an 

imaging radar system to separate two closely spaced scatterers in the direction parallel to the 

motion vector of the sensor (Woodhouse 2005). The azimuth resolution is independent of the 

platform altitude (distance from target), but rather dependent on (i) a stable, full-coherent 

transmitter, (ii) an efficient and powerful SAR processor, and (iii) the exact knowledge of the 

exact flight path and velocity of the platform (Wolff, 2009). SAR azimuth resolution can be 

calculated using Equation 2-3 by Massonnet & Souyris (2008) thus: 

 

A = 
𝐿

2
      (2-3)  

Where L is the antenna length. 
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2.1.3. SAR signal processing 

 

 Received signal from the scatterer by the antenna makes up a two-dimensional data matrix of 

complex samples with a real and imaginary parts representing amplitude (magnitude) and phase 

value respectively (Moreira et al., 2013; Ackermann, 2015). The image plane is defined by the 

radar platform velocity vector and the radar antenna beam axis. The two orthogonal axes of the 

processed image are range and cross-range (azimuth). The position along the range axis is 

determined by a time delay in the received pulse, and the position along the cross-range axis is 

determined by range rate of the target distance or the Doppler frequency of the return signal 

from the target (Tomiyasu, 1978). Phase is denoted by a two-way distance between the sensor 

and the target, expressed as in Equation 2-4 (Ackermann, 2015): 

 

P = − (
4𝜋

𝜆
) 𝑅 + 𝜑𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑟 + 𝜑𝑑𝑒𝑙𝑎𝑦  (2-4) 

Where R is the slant-range distance, 𝜑𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑟  is the scattering effects introduced by the target 

and 𝜑𝑑𝑒𝑙𝑎𝑦  refers to atmospheric or ionospheric effects on the signal. The proportion of energy 

backscattered by the target to the sensor is expressed as the backscatter coefficient, σ0 for 

distribute targets (2-5); 

    σ0 = 
𝜎

𝐴𝜎
. (2-5)  

where σ is the radar cross-section. The σ0 is inversely proportional to the effective area of the 

antenna, A and normal expressed in decibel (dB) units with a range between -30 dB to 5 dB. 

 

Figure 2-4 is a graphical representation of SAR data processing flow (ESA, 2019). Scene 

information from a raw SAR data (Level-0) is meaningless and signal processing is needed to 

get an image (Moreira et al., 2013). The conversion of Level-0 raw data to Level-1 image 

include pre-processing, Doppler centroid estimation, a single look complex image focusing and 

post-processing. To achieve this, two filter operations are performed along the range and 

azimuth dimensions: 

 

a)  Rage compression - the transmitted chirp signals are first compressed to a short pulse 

using range reference function (amplitude, range). The process involves multiplication 

in the frequency domain, where each range line is multiplied in the frequency domain 

by the complex conjugate of the spectrum of the transmitted chirp. The result is a range 
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compressed image, which reveals only information about the relative distance between 

the radar and any point on the ground.  

 

Figure 2-4. SAR data processing workflow: raw data pre-processing, Doppler centroid estimation, SAR 

focusing and decompression, and post-processing (Credit: ESA, 2019) 

 

b) Azimuth compression - the signal is convolved where azimuth reference function 

(azimuth, amplitude) is used to convert the range compressed data into an image data, 

which is the complex conjugate of the response expected from a point target on the 

ground. 

 

2.1.4. Speckle in SAR images 

 

The presence of many elemental scatterers with a random distribution within a resolution cell 

leads to formation of speckle within SAR images (Moreira et al., 2013) and produces a “salt 

and pepper” effect on a SAR image. Speckle is a signal dependent granular noise inherent in 

all active coherent imaging systems that visually degrades the appearance of images. The effects 

of speckle can be seen in a diminished performance of automated scene analysis and 

information extraction techniques, besides problems in applications requiring multiple SAR 

observations, like automatic multi-temporal change detection (Argenti et al., 2013). The 

coherent sum of amplitudes and phases of different scatterers results in strong fluctuations of 

the backscattering from a resolution cell to another. The intensity and the phase in the final 

image are no longer deterministic but follow an exponential and uniform distribution, 

respectively (Oliver & Quegan, 2004). The effects of speckle on an image can be constructive 

or destructive. Constructive interference results in high-intensity return signals, while 

destructive interference yields weak return signals (Ackermann, 2015). A signal-to-noise ratio 
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(SNR) is used to quantify speckle noise within a SAR image using the equation by Kim (2009) 

thus;  

SNR = 
𝑆

𝑁
 = 

𝜎0

𝛿0
   (2-6) 

Where 𝜎0 is the backscatter coefficient (dB) and 𝛿0 is the noise equivalent sigma 

zero, a system’s sensitivity to areas of low backscatter and is given by 2-7; 

 

𝛿0 = 
(4𝜋)3.  𝑅3.  𝑘 .  𝑇0 .  𝑁𝐹 .  𝑊 . 𝐿𝑡𝑜𝑡 .  4 . 𝑉𝑠 .  sin (𝜃−𝛼)

𝑃𝑡 .  𝐺𝑡 . 𝐺𝑟 . 𝜆
3 .  𝑐 .  𝜏 .  𝑃𝑅𝐹

  (2-7) 

 

where; 

𝑘 = Boltzmann constant, 𝑇0 = the equivalent noise temperature, 𝑁𝐹 = system noise figure, 

𝑊 = bandwidth,  𝐿𝑡𝑜𝑡 = total loss, 𝑉𝑠 = velocity of the SAR platform,  𝐺𝑟 = antenna gain at 

the receiver, and PRF = pulse repetitive frequency. 

The conceptual framework of an ideal speckle filter is based on its ability to substantially reduce 

the speckle contamination in SAR imagery while effectively preserving the structural properties 

of the scene backscatter like the radiometric level and spatial resolution; the values of 

backscattering coefficient, spatial signal variability, and the edges between different geographic 

feature boundaries (Gagnon & Jouan, 1997), and its adaptability to the use of local rather than 

derived speckle and scene statistics in determining speckle noise (Qiu et al., 2004). In most 

cases however, speckle suppression leads to loss of subtle feature details (Sarker et al., 2013), 

leading to resolution degradation and indiscriminately smears homogeneous low-variance areas 

(Gagnon & Jouan, 1997) because it is performed within moving windows. For this case, 

Walker, 2000 and Sarker et al., 2013 suggests performing texture measurements before 

applying the filtering model during forest biomass estimation. 

 

The level of speckle noise regarding the signal intensity and noise reduction is estimated by 

determining similarities between independent intensity values used in pixels (Gagnon & Jouan, 

1997), and the number of radar image azimuth spectral bandwidth (signal-to-noise) segment of 

the same point of scene (multiple-look processing). When the equivalent number of looks 

(ENL) across the pixels is higher, it implies a stronger speckle reduction and further shows that 

an appropriate filter model should be used (Amini & Sumantyo, 2009). Other statistical filtering 

criteria that can be employed to evaluate a filter performance include Speckle Suppression 

Index (ratio of the variance between the speckled and the original image), Speckle Image 
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Statistical Analysis (Qiu et al., 2004), Edge-Enhancing Index (EEI), Feature-Preserving Index 

(especially linear features and other subtle structures) and Speckle Suppression and Mean 

Preservation Index (Wang et al., 2012).  

 

SAR speckle suppression 

 

Despite the documented advantages of microwave over optical remote sensing data, signal 

dependent granular noise and the associated visual degradation of image appearance remains a 

problem limiting its use in scene analysis and information extraction (Qiu et al., 2004). It is 

therefore important to reduce this noise to permit better scene target discrimination and further 

automated image segmentation in radar images. Erroneous variations in backscatter from 

inhomogeneous cells increase SAR image variances (Mansourpour et al., 2006), obscure image 

clarity, and act as a barrier for texture-based analysis. To reduce speckle, spatial, frequency, 

and temporal filters can be used Argenti et al., 2013; Dasari et al., 2015). One common way of 

reducing noise and improving the estimates of backscatter intensity is to incoherently evaluate 

the average intensity of a collection of L pixels through multi-looking (ML) (Ackermann, 

2015). During SAR image pre-processing, ML incoherently averages the independent number 

of looks (ENL), resulting in an L-look intensity image. The ENL is used in testing the 

performance of ML and application of a speckle filter on a SAR image, and is statistically 

expressed by equation 2-8 (Oliver & Quegan, 2004);  

 

ENL =  
𝑀𝑒𝑎𝑛2

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
   (2-8) 

 

The level of speckle noise regarding the signal intensity and noise reduction can be estimated 

by determining similarities between independent intensity values used in the pixels (Gagnon & 

Jouan, 1997), and the number of radar image azimuth spectral bandwidth (signal-to-noise) 

segment of the same point of scene (multiple-look processing). When the ENL across the pixels 

is higher, it implies a stronger speckle reduction and further shows that an appropriate filter 

model should be used (Jaybhay & Shastri, 2015). Speckle filtering significantly optimises the 

ability to exploit the texture variance between neighbouring pixels in SAR imagery, and to 

discern spatial information of the ground scene target and land use types in forested areas, and 

thus enhance data interpretability and efficient image classification (Amini & Sumantyo, 2009). 

Speckle filters are applied on moving windows to average the noises from adjacent pixels, and 
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Kupidura, (2016) notes that there is a steady improvement in the performance and efficiency of 

a filter with increasing window size, when the same is applied for a homogeneous study area. 

Conversely, besides much computational performance needed for larger window sizes (for 

example 11 × 11), there is too much smoothing of the textural variation leading to distortion of 

texture information (Sarker et al., 2013). A very small widow, such as 3 × 3 exaggerates 

variations within the moving windows, hence creating more noise on the SAR texture image 

(Amini & Sumantyo, 2009).  

Spatial filters are principally grouped into adaptive and non-adaptive filters. Over the last 

decade, several studies have concentrated in developing appropriate speckle filters, each 

concentrating in addressing a difficulty in SAR image interpretation attributed to speckle (e.g. 

Bruniquel & Lopes 1997; Ferretti et al. 2011, Huang et al., 2009; Lee et al., 1991; Lee et al., 

1994; Lopez-Martinez & Pottier, 2007; Novak & Burl, 1990; Sveinsson & Benediktsson, 2003). 

Quegan & Yu, (2001) developed a change-preserving multi-temporal filter which can filter 

multi-temporal SAR image stacks with the ability to reduce speckle while preserving changes 

inherent in a time series. This is necessary for forest degradation and deforestation monitoring 

initiatives that require observation of backscatter changes within an area over an extended 

period. Lee Filter (Lee, 1980) is a standard deviation-based (sigma) speckle filter that 

suppresses noise while preserving image sharpness and detail. By placing each SAR pixel into 

three surface target types – homogeneous, heterogeneous and point target, Lopez et al., (1990) 

adopted the Lee filter thereby creating Enhanced Lee Filter. For homogeneous targets, the pixel 

values are replaced with the average of the filter window, while for heterogeneous targets the 

pixel values are replaced with a weighted average. To resolve speckle for point targets, the pixel 

values are not changed. The Frost filter is an exponentially damped circularly symmetric filter 

that uses local statistics (Frost et al., 1982). The Enhanced Frost filter is an adaptation of the 

Frost filter which classifies and filters pixels according to the three target types as in Enhanced 

Le Filter (Lopez et al., 1990). Another spatial filter, a non-local means filter, provides an 

estimate of the clean image via a proper averaging of similar pixels or patches, found in the 

image. Essentially, the algorithm searches for image patches that resemble the area around the 

pixel to be filtered. Using some similarity criterion, these patches are found and averaged 

together to de-noise the image without losing resolution (Buades et al., 2005; Chen et al., 2014; 

Di Martino et al., 2016; Martino et al., 2015).  

 

An ideal speckle filter is characterised by its distinctive ability to reduce the speckle 

contamination in SAR imagery while effectively preserving the intrinsic structural properties 
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of the scene backscatter like the radiometric level and spatial resolution; the values of 

backscattering coefficient, spatial signal variability, and the edges between different geographic 

feature boundaries (Gagnon & Jouan, 1997), and its adaptability to the use of local rather than 

derived speckle and scene statistics in determining speckle noise (Qiu et al., 2004). In most 

cases however, speckle suppression leads to loss of subtle feature details (Sarker et al., 2013), 

leading to resolution degradation and indiscriminately smears homogeneous low-variance areas 

(Gagnon & Jouan, 1997) because it is performed within moving windows. For this case, 

Walker, (2000) and Sarker et al., (2013) suggests performing texture measurements if any, 

before applying the filtering model during forest biomass estimation. 

 

2.1.5. SAR Polarimetry 

 

SAR polarisation points to the orientation of the field of electromagnetic energy emitted and 

received by the antenna (Campbell & Wynne, 2011), in a plane perpendicular to the direction 

of wave propagation. Most of today’s SAR sensors are linearly polarised and transmit 

horizontally and/or vertically polarised wave forms, denoted by H and V respectively (Flores-

Anderson et al., 2019). SAR polarimetric system works in the linear H-V basis, where the 

antenna transmits a H-polarised wave and receiving H wave measured in Shh and Shv elements. 

For the Svv and Svh elements, a V-polarised wave is transmitted by the sensor and receiving in H 

and V (Moreira et al., 2013). Like polarisation occurs when the antenna receives similar wave 

orientation as it emits, e.g. HH or VV for transmit H receive H, and transmit V receive V 

respectively. Cross-polarisation occurs when the antenna receives a different polarisation to the 

one emitted, e.g. VH or HV. These HH or VV or VH or HV examples above are single 

polarisations. Radar systems can also possess dual polarisations, where an antenna emits and 

receives two different combinations, e.g. HH and HV, VV and VH or HH and VV. Such systems 

produce two images of the same landscape (Campbell & Wynne, 2011). A quadrature (quad-

pol) radar uses four polarisations, and measures phase difference between the channels and the 

magnitudes (CCRS, 2019). These takes the four possible polarisations, HH, VV, HV and VH. 

In some radar systems, the antenna can transmit and receive waves at more than one 

polarisation. The polarisation information in backscattered waves gives more information about 

the target on the earth’s surface, and is related to the target’s geometric structure, reflectivity, 

shape and orientation and its geophysical properties such as humidity, roughness, among others. 

Areas and features on the landscape that depolarise the SAR signal can be identified by 

comparing two images, i.e. the co- and cross-pol images. Such scatterers change the orientation 
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of the incident microwave energy since they reflect the incident H signal back to the antenna as 

a V polarised energy. A visual comparison between the HV and HH shows that bright regions 

in the former as depolarizing scatterers, and dark or dark grey regions in the latter - the 

polarisation of the energy that would have contributed to the brightness of the HH image has 

been changed, so it creates instead a bright area on the HV image (Campbell & Wynne, 2011). 

Polarimetric radar can be used to measure the scattering properties of surface features. As the 

radar system illuminates the target at an incident angle, the target scatters the wave in all directs. 

The system only records part of the waves that are redirected back to the antenna, known as 

backscatter, σ0. 

 

2.1.6. Effects of target dielectric constant on SAR backscatter 

 

Dielectric constant is a measure of the electric properties of surface features and comprise two 

parts – permittivity and conductivity. Material permittivity and conductivity are affected by the 

moisture content of the surface target under investigation. A change in moisture content of 

surface material therefore leads to a significant change in the dielectric properties of the material 

(ESA, 2019; Picard et al., 2003). Moisture content or availability of it dictates how much of the 

incoming SAR signal scatters at the surface, how much signal penetrates the medium, and how 

much of the energy gets lost to the medium through absorption. The magnitude of these 

processes on the incoming and outgoing signal is however dictated by the SAR sensor 

wavelength. The wavelength results in differences in the appearance of image datasets acquired 

by different SAR sensors. 

 

SAR signal penetration into vegetation depth depends on moisture, canopy density and 

geometric properties of the vegetation in the form of leaves, branch and trunk orientation. Wang 

et al., 1993 assessed variations in soil moisture on observed ERS C-band backscatter for 

loblolly pine in North Carolina. The study attributed a rise in biomass backscatter intensity 

(from 2 to 3 dB) to a corresponding increase in surface soil moisture and leaf moisture. The 

availability of moisture in the soil in turn affects moisture availability to the plants since this 

water is availed to the plant through absorption by the plant roots, hence greening. Moisture 

availability increases with rainfall availability and reduced with onset of prolonged dry 

conditions. Whenever such moisture is not available to the plants, then it means the dominant 

backscatter intensity is attributed to surface scattering, and not canopy volume scattering (Wang 

et al., 1993).  
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Vegetation canopy density affects the backscatter response. Backscatter intensity from a closed 

canopy differs from that in an open canopy because the former only allows signal penetration 

from long-wave SAR to penetrate deeper. Open canopy allows signal penetration between 

canopy gaps and in the case of short to medium wavelength SAR, the signal not only interact 

with the sub-canopy, but can penetrate to the surface through the gaps within the canopy. Wang 

et al., (1994 b) observed that surface scattering was important for stands with low standing 

biomass. Dobson et al., (1992) observed that where the canopy is sparse and moisture increases, 

surface backscatter becomes the major contributor. Temporal changes in moisture availability 

through alternating dry and wet conditions not only affect vegetation canopy but also canopy 

moisture availability. During rainfall, water remains on the canopy through interception by 

leaves and branches. Besides water that reaches the soil surface, wet seasons are characterised 

with high moisture availability, while dry seasons experience low moisture availability both on 

plant canopy and in the soil. However, volumetric soil moisture has a high overall effect on the 

backscattered signal than leaf moisture through interception. A study by Griffiths & Wooding 

(1996) on the effects of temporal dynamics of soil moisture on C-band ERS-1 SAR data found 

a high positive correlation between volumetric soil moistures for bare soil fields with a much 

weaker positive relationship for grassland fields. 

 

2.2. Vegetation structure mapping using SAR data 

 

As earlier noted in section 2.1 above, the microwave portion of the electromagnetic spectrum 

(EMS) covers the range from approximately 1cm to 1m in wavelength (Woodhouse, 2006; 

Oliver & Quegan, 2004). Because of their long wavelengths compared to the visible and 

infrared range, microwaves have special properties important for remote sensing. Active 

microwave sensors such SAR provide their own source of microwave radiation to illuminate 

the target under investigation. SAR is an active all-weather sensor operating by sending a 

microwave radiation to targets and detecting the intensity of radiation scattered back to the 

sensor by the target, backscatter (σ0). The σ0 is a function of the incident angle θ, frequency and 

polarisation and is affected by the dielectric properties of the target and the surface geometry 

(Rees, 2001). The wavelength (λ), relative to the size of the scatterer affects interactions 

between the two. Longer wavelengths such as P-, L- and S- bands are more relevant for 

detection of vegetation geometry because of their penetrative effects, resulting in volume 

scattering (Mitchard et al., 2009; Woodhouse, 2006). The wavelength interaction with canopy 

elements results in diffuse scattering, hence more energy returning to the sensor (Ryan et al., 
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2012). Longer wavelength SAR systems like L-band sensors penetrate the canopy (Figure 2-5, 

Evans et al., 2013; Rees, 2001; Mitchard et al., 2009; Woodhouse, 2006; Ryan et al., 2012; Le 

Toan et al., 1992).  

 

 

Figure 2-5. SAR backscatter interactions with vegetation components at different wavelengths, a) L-

band and b) C-band SAR. (Source: Evans et al., 2013). 

 

Cross-polarised measurements (HV, VH) works better than co-polarised (HH or VV) in 

correlating σ0 to AGB since the former accounts for canopy as opposed to ground components. 

By using dualpol SAR (both HH, HV), Mitchard et al., (2009) found a relationship between 

AGB and σ0. Additional studies by Antonarakis et al., (2011) and Treuhaft et al., (2009) 

combined SAR and Lidar to improve AGB models by eliminating bias from too many large 

trees. By using different polarisations of SAR with Landsat Enhanced Thematic Mapper (ETM) 

data, Wijaya et al., (2011) developed empirical models to estimate how forest parameters 

responded to σ0 in Sumatra, while Carreiras et al., (2012) assessed the relationship between 

dualpol σ0 and AGB using models after Adler & Synnott (1992). Relevant studies by Urbazaev 

et al., (2015) and Hamdan et al., (2014) both used multi-temporal and dual-pol SAR in 

assessing vegetation structure components, AGB and woody cover respectively. The capability 

of L-band SAR backscatter intensity in quantifying small-scale forest degradation in the 
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Miombo woodlands of Mozambique over a three-year period was demonstrated in Ryan et al., 

(2012). 

2.2.1. Rationale for microwave over optical data 

 

Characterisation of vegetation seasonal dynamics is a very important process in understanding 

both endogenous and exogenous processes responsible for the state of a biome. Using remote 

sensing in vegetation assessment has been dominated by optical remote sensing data for surface 

phenology analysis (Verbesselt et al., 2010). Despite ease of access because of non-

commercialisation by most providers to leverage on the potential of this technology in 

developing nations towards achieving the REDD objectives, the use of optical remote sensing 

data for savanna vegetation structure mapping is limited by sparse and heterogeneous 

distribution of vegetation canopy, leading to near-similar spectral signatures among vegetation 

cover classes. Cloud and aerosol contamination leads to inconsistence in availability of time 

series data necessary for continuous vegetation monitoring, especially in the tropics. Wang et 

al., (1999) and Wang et al., (2009) estimates that two-thirds of the earth’s surface is covered 

by clouds throughout the year, while Esche, (2002) states that fifty percent of the earth is 

covered with clouds at any given time. However, recent technological advancements in remote 

sensing data acquisition and processing has seen an emergence of high temporal resolution 

SAR, with several studies gaining interest in its applications in time-series analysis of 

vegetation (Schlaffer et al., 2016; Nguyen et al., 2016; Martini & Rieke, 2015; Torbick et al., 

2017), with some focussing on its synergy with optical data (Saatchi, 1996; White et al., 2015; 

Joshi et al., 2016). Long- and medium wavelength microwave SAR, with their low sensitivity 

to clouds, high temporal and spatial resolution addresses optical remote sensing challenges. 

SAR, also referred simply as Radar sensors, detects backscattered energy by emitting their 

energy on surface features, making them able to illuminate the earth under a wide range of 

atmospheric conditions regardless of light availability (Brown, 1991), thereby reducing the 

previous limitations and challenges faced in using optical sensors (Amini & Sumantyo, 2009). 

The backscattered energy, which is the response from the ground target, is dependent on 

different parameters including polarisation, frequency, sensor resolution and the incidence 

angle. These parameters influence the information content of the SAR imagery (Walker, 2016), 

while the properties of the elements that comprise the ground target such as size of the surface 

target (McNeill & Belliss, 2002), its orientation, density and distribution pattern of scatterer, 

target surface texture relative to wavelength and the dielectric constant, are also important 

determinants of the strength and characteristics of the backscattered signal (Sandberg et al., 
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2014). SAR remote sensing has been used in mapping different vegetation parameters including 

aboveground biomass (Odipo et al., 2016), woody cover (Urbazaev et al., 2015; Naido et al., 

2015; Main et al., 2016), and therefore suitable for monitoring vegetation changes in relation 

to disturbance regimes and seasonal photosynthetic processes of many forest types (Viergever 

et al., 2007). 

Studies have pointed ways of enhancing vegetation mapping based on the prevailing influences 

of incoming SAR signal orientation – polarisation, and forest features. Sarkar et al., (2013) 

looked at how biomass estimation can be improved using dual-polarimetric C-band SAR 

backscatter data, by combining high resolution SAR texture parameters with intensity and 

texture parameter ratios. Consistent to previous research findings, texture parameters of the raw 

HH polarisation data gave poor relationships to biomass estimation.  

 

2.2.2. SAR backscatter and vegetation phenology 

 

The temporal variations of backscattered intensity within vegetated areas is a function of the 

dielectric properties and structure of vegetation, the conditions of sub-canopy surface and the 

size and orientation of the target feature in relation to the SAR system (Salas et al., 2002). 

Seasonal variations in SAR backscatter are also influenced by the climatic characteristics 

typical of an area. In wetter and waterlogged areas, there is little variance in vegetation 

structural properties, with the amount of water in the ground target and the soil determining the 

backscattering characteristics. Moisture content of the scatterer reduces penetration of the 

emitted energy and thus increases the backscattered energy while in contrast, backscatter 

reduces during the dry season when vegetation’s absorption rate increases. The dielectric 

constant changes with the amount of water contained in vegetation parameters such as leaves, 

stems, and branches. Studies by Salas et al., (2002) and Magagi et al., (2002) in their assessment 

of variations in plants’ ability to absorb and propagate SAR signals in both wet and dry climatic 

conditions, notes that SAR backscatter coefficient from canopy and ground potentially changes 

with changes in seasons. Wang et al., (2012) studied the relationship between Normalised 

Difference Vegetation index (NDVI) time series with corresponding C-band “Environmental 

Satellite” (ENVISAT) SAR and Advanced Land Observation Satellite Phased-array L-band 

SAR (ALOS PALSAR) datasets, with respect to pasture biomass. The findings revealed a more 

significant correlation between NDVI with the SAR backscatter sensitivity coefficients 

(HV+HH and VV+VH) at HH and VV polarisations in L-band particularly during the growing 

season, with wet season NDVI showing no significant relationship to L-band backscatter. The 
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findings resonate with those of Salas et al., (2002) and Sano et al., (2005) who also studied the 

spatial-temporal variability of HH polarisation using Japanese Earth Resources Satellite-1 

(JERS-1) SAR data for secondary vegetation succession stands and soil resulting from land-use 

changes in Rondonia. By assessing the scattering properties of plant regrowth at various stages 

of their growing phase, the studies found a stable increase in soil and vegetation backscatter 

during the late dry season/early wet season, with the trend growing steadily with an increases 

in soil moisture content thereby posing difficulties in discriminating pasture and forests because 

of decreased image contrast across the landscape. Longer wavelength SAR such as P- and L-

band with cross polarisation (HV or VH) are more sensitive to different vegetation parameters 

and hence suitable for discerning different vegetation types (Sarker et al., 2013). Greater 

sensitivity is attributed to the vertical structure of the ground target in a vegetated environment 

and requires greater stand height variations to delineate roughness. 

 

2.3.  Reference data for validation of remote sensing vegetation products 

 

Regional and global periodic forest biomass estimation is paramount, especially in tropical 

regions experiencing adverse ecological destabilisations. This information provides a platform 

for evaluating, modelling and quantifying the structural and functional dimensions and the 

productivity of the forest ecosystem (Sawadogo et al., 2010). Vegetation structure attributes, 

such as AGB estimates helps in understanding the spatiotemporal variation in the atmospheric 

carbon emission factors (Colgan et al., 2014), and tracking any changes that occur in an 

ecosystem. Studies have identified two principal approaches for estimating forest biomass: the 

direct and the indirect methods. Direct methods entail felling trees and taking measurements of 

the predictor variables. Over 80 percent of the total forest biomass is found in the aboveground 

constituent of a tree, mainly the stem and the branches that meet the 10-cm perimeter cut-off, 

with the remaining 20 percent of the tree biomass in the underground, and the deviation is very 

minimal between species (Malimbwi et al., 1994). 

 

2.3.1. Field Surveys 

 

The exercise of AGB estimation involves placing a systematic or strictly random sampling 

method to the study area using predetermined coordinates. Depending on the size, density and 

structure variations of the sample region under study, a robust scientific methodology is used 

to place the plots for both vegetative and non-forested areas. The approach could involve the 
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use of random placement or stratified random sampling (Condit, 2008). The site is sub-divided 

into standard and corresponding fixed-area plots scaled mainly for 1 hectare (for heavily 

vegetated portions), and 0.04 hectares for sparsely vegetative forest portions, tree plantations 

and forests remnants (Condit, 2008). According to the sampling protocol (Woodward et al., 

2009), a minimum of six plots each measuring at least 0.25 hectares (Maniatis, 2010) is required 

for any study. The sampling unit can assume a square (mostly used), rectangular, circular or 

triangular shapes, and can also be dimensionless like with point sampling. Researchers however 

reinforce the use of plots for sampling and further show that the accuracy of AGB estimates is 

improved by large plot size and an appropriate plot design (Malimbwi et al., 1994; Maniatis, 

2010).  

 

The tree variable measurements are taken, and the trees are felled for further statistical 

processes. The tree stumps are then tagged numerically according to the sequence of the work 

for easier relocation during data re-evaluation. Using precise published correlation formulae, 

the measured attributes are then used to compute AGB. Dead wood biomass is obtained from 

counting and taking measurements of both fallen and standing dry wood following the same 

procedure. This is duly important because it has been proved that fallen and dead trees can also 

store enormous volumes of carbon in some parts of the world, and even more than living trees 

in other parts. In tropical forests, a percentage of 10 - 15 is normally assigned to this vegetation 

category since these regions experience less existing fallen wood because of accelerated 

decaying processes. In other regions like the North America, sampling of dry trunks is 

substantial since their contribution to the forest biomass is tremendously more than the 

stipulated 15 percent (Condit, 2008). For bare land, ground cover is weighed. The direct method 

of predicting forest biomass is suitable for relatively smaller tree covers with fewer species 

counts. For enormous and spatially heterogeneous forest covers, the indirect methods of 

biomass estimation are used to estimate biomass. This involves the use of disparate generic 

allometric regression equations, combined with a non-destructive measure of tree attributes to 

estimate the overall forest biomass. 

 

Nearly all developed countries have a scheduled system of executing their forest inventories on 

both private and public lands, and to conduct project-scale exercises that form the basis of 

biomass estimations across all forest types. For over seventy years for instance, the United 

States (US) has maintained an immense network of sample plots that act as a source of plot-

level information such as the standard measurements of individual tree diameter, forest species 
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composition and forest health and the aggregate population of trees that make up a forest 

location (Brown, 2002). This information can be analysed and routinely used to generate annual 

data for general forest monitoring programs (Jenkins et al., 2003). There are well established 

and proven methods for developing a statistical sampling design, and it involves estimating the 

number of field plots, field plot size, and distribution of permanent plots for varied precision 

levels (Brown, 2002). The methods also involve substantiating and analysing information about 

the forest parameters such as tree volume, which is transformed to forest biomass by applying 

a Biomass Expansion Factor (BEF) and significant tree allometric regression models (Baccini, 

2004) such as the power function model with multiplicative error, a power function model with 

additive error, a polynomial model, combined variable model, and a square root transformed 

model (Samalca, 2007). 

 

Using SAR data in vegetation mapping requires updated ground validation data to assess the 

results obtained from using backscatter intensities in modelling vegetation structure. 

Traditionally, tree inventory for ground verification has involved the physical measurement of 

various vegetation parameter variables, such as tree height and DBH using specialised tools. 

This method has proved expensive in terms of logistics and geographical coverage and is prone 

to instrument and introduced inventor errors which in most cases involve destructive sampling 

where trees must be felled and both wet and dry weight measured for allometric development 

(Yu et al., 2010; van Laar & Akca, 2007). However, the last two decades have seen a rise in 

using Lidar in forest parameter retrieval because of its ability to capture both 2- and 3-D 

vegetation attributes (Streutker & Glenn, 2006; Yang & Lin, 2009; Ehinger, 2010; Glenn et al., 

2010; Spaete et al., 2010; Berni et al., 2011; Tinkham et al., 2011; Holopainen et al., 2011; 

Bright et al., 2012; Magarick, 2012; Colgan et al., 2012; Colgan et al., 2013; Heritage & Large, 

2009). However, the high costs of airborne Lidar acquisitions and technological advancements 

in remote sensing has seen development in ground-based TLS with the ability of 3-D data 

acquisition with diverse applications in seafloor, coastal and geomorphology (Fairly et al., 

2016, Williams et al., 2011, Reinwarth et al., 2017), vegetation (Richardson et al., 2014; Pirotti 

et al., 2013), and cadastral applications (Moskal & Zheng, 2012). Studies on application of TLS 

data in forest inventory are documented in the works of Simonse et al., (2003) and Bienert et 

al., (2006). The former determined tree stamp coordinates using fitted circles to the digital 

terrain model (DTM) derived tree DBH (at 1.3 m). Thies et al., (2004) accurately modelled tree 

stems by fitting cylinders to TLS-derived PCs, with the results showing a slight deviation with 

field reference DBH of -1.3 cm and 0.6 cm for beech and cherry trees respectively, and an 
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RMSE of 1.7 in fitting cylinders to the PCs. Hackenberg et al., (2015) used TLS to predict AGB 

for three tree species - evergreen coniferous, evergreen broadleaved and a leafless deciduous, 

and concluded that tree diameters larger than 10 cm can be modelled more accurately than 

smaller ones, which are overestimated. 

 

2.3.2. Terrestrial Laser Scanning 

 

Terrestrial Laser Scanning (TLS) technology is a ground-based data capture method using  light 

detection and ranging (LiDAR), introduced towards the end of the 20th century (Calders et al., 

2015; Puttonen et al., 2013; Xiao et al., 2007). TLS is an active sensor and emits its own source 

of target illumination to capture information about a target (Hudak et al., 2009). The sensor 

continuously emits coherent and monochromatic laser beam towards the objects under 

investigation, and receives the returned beam by the object to the sensor which it uses to 

estimate the distance to an object (Lefsky et al., 2002). The beam is directed by rotating or 

oscillating mirrors (Lemmens, 2011; Kankare, 2015). The object information is collected in the 

form of dense point-clouds, which after processing is each assigned with X, Y, Z coordinates, 

colour for intensity and reflectance values. These characteristics make it possible to create 3D 

models of objects of a wide range of sizes and shapes (Colombo & Marana, 2010; Doneus et 

al., 2009; Lemens, 2010). 

Data acquisition principles 

There are two main laser principles of terrestrial laser sensor scanning that guide distance 

measurements regarding forestry and other outdoor applications: the time-of-flight ranging 

principle and, second, the phase-shift based ranging principle (Calders et al., 2015; Kankare, 

2015). Time-of-flight instruments determines the range based on the precise travel time that the 

scanner pulses take to travel back and forth between the sensor and the object (Kankare, 2015; 

Liang et al., 2016) and the speed of the energy. For the phase-shift based ranging instruments, 

the distance measurements are calculated by determining the difference in the phase of the 

reflected energy and that of the emitted energy based on the time when a pulse with a specific 

phase was emitted. Unlike single scans in time-of-flight instruments, phase-shift based ranging 

take continuous modulated pulses or waves - modulated in width and frequency - and the phase 

of the returning pulse is measured to determine the range. This principle is effectively used in 

both TLS and ALS.  
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TLS laser beams are configured to take regular scans over a pre-defined angle between the scan 

and the object (Holopainen et al., 2011). The density of the point clouds produced depends on 

the number of returns, with multiple returns producing dense point clouds. The point clouds are 

a mass of three-dimensional points recorded by the laser scanner, and are a 3D reconstruction 

of an object geometry (Xiao et al., 2007). Current TLS systems are capable of capturing up to 

millions of points per second. Figure 2-6 shows a graphic representation of a TLS system with 

the resultant tree objects reconstructed from point clouds. During data capture, the TLS 

instrument is mounted on a static tripod. The scanner in the TLS instrument scans the 

surrounding using a vertical rotating mirror while the TLS instrument makes slow horizontal 

rotation. TLS scans objects from different positions to enable true 3-D modelling of objects of 

interest (Tempfli et al., 2009) 

 

 

Figure 2-6. SAR backscatter interactions with vegetation components at different wavelengths, a) L-

band and b) C-band SAR. (Source: Evans et al., 2013). 

 

To obtain the point cloud of 3D coordinates, the range or distance between the scanner and the 

object, the time of flight of the laser beam, the scanner position and sampling interval, and the 

angle at which laser signal hits the target object, are the measurement components that guide 
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the process. The TLS system has three times of ranges: the short range is up to 25m, the 

midrange is up to 250m and the long range is more than 250m. The range determines the 

application based on the scan rate, beam width, and spatial resolution (Lemmens, 2011; 

Kankare et al., 2013; Holopainen et al., 2011). TLS instruments with a shorter maximum range 

(e.g. phase-shift-based ranging instruments) have higher precision because of a higher point 

density recording. Laser scanners are optimized for automatic extreme high speed and precise 

scene scanning at over 1,000 point clouds per second (Xiao et al., 2007; Lemmens, 2011; 

Kankare et al., 2013), giving datasets with a high point density, high coordinate precision (± 

6mm) and an overall improved accuracy of 2-5mm. Slight variations in accuracy result from 

differences in the accuracy of each scanned point and the structure of the surface object. 

Besides, TLS provides dense point-cloud object surface measurements at varying resolutions. 

The information captured can be integrated with digital imagery during image reconstruction, 

coloring and texturing of objects surveyed. Terrestrial scanners measure range, the geometric 

information and the intensity value of terrain points recorded by the laser beams (Kankare, 

2015), which is also stored as x, y, z coordinate together with intensity information.  

Point clouds are represented as color-coded features based on the intensity value as recorded 

on the freely selectable point grid. Trees are represented as hierarchical collections of preferably 

circular cylinders or other building blocks, thus forming discontinuous models. TLS is versatile 

in that it provides surface measurement at independently varying standoff distance (BÖHM & 

Stuttgart, 2005) thus recording data about a specific object from multiple stations. Using data 

from multiple scan locations significantly reduces the effects of occlusion, common in a single 

scan mode. It achieves this through a process called co-registration or point cloud registrations 

of the scans using suitable overlap areas, identifying the tie-points of dissimilar scan stations 

(Kankare et al., 2013) or through a transformation during post processing. As a result, co-

registration increases the capability of a detailed reconstruction of tree parameters that would 

otherwise be lower with single scans. 

TLS in forest inventories 

Direct field inventory has been used for decades to obtain tree variable data for the validation 

of remote sensing products (FAO, 1981). These methods have, however proved to be inefficient 

both in time and space; non-representative geographical coverage and a high possibility of 

omission and commission errors in such data acquisition. Where such data is to be used in 

developing allometries for carbon stock estimation, destructive sampling harms the biome in 

the long run. However, by assessing the dependence between such field inventories and TLS 
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metrics, it is possible to predict forest structure (Niemi et al., 2015; Calders et al., 2015). TLS 

has also been used to validate individual tree variables like height (Holopainen et al., 2011). 

TLS technology provides a high precision of up to millimeter-level details of the objects being 

mapped (Kankare et al., 2013), and the ability to measure and create 3D models for single-tree 

attributes.  The structure models developed can then periodically update the existing allometric 

model. 

Since its introduction, there has been a progressive development and widespread use of the TLS 

(Calders et al., 2015). The 3D point cloud has been used to examine and reconstruct ecosystem 

structural properties of a plot at increasingly high spatial and temporal scales for both 

structurally continuous and fragmented surfaces (Orwig et al., 2018). There has also been 

potential advancement in the validation of TLS techniques to support its application in forest 

inventory (Calders et al., 2015). TLS has been exploited to offer robust survey and mapping 

solutions in diverse fields including but not limited to archaeology, architecture, engineering, 

geology, mineral and petrochemical exploration, seafloor, geomorphology (Fairly et al., 2016, 

Williams et al., 2011, Reinwarth et al., 2017), vegetation (Richardson et al., 2014; Pirotti et al., 

2013; Gruszczynski et al., 2017), cadastral applications  (Moskal & Zheng, 2012), forest 

inventory (Simonse et al., 2003; Bienert et al., 2006)  and forest ecology applications (Puttonen 

et al., 2013; Calders et al., 2015).   

TLS offers three different techniques of field data capturing based on the scanner position: in a 

case where the TLS sensors are mounted on a tripod fixed at a specific location on the ground 

to record static measurements obtained from single scans of the surface of the objects, the 

technology is called TLS (Calders et al., 2015; Lemmens, 2011). Here, reference targets within 

the study are divided into constant size plots in a way that allows visibility from the center scan. 

Fixed-position laser scanners offer a high potential for 3D mapping of smaller areas with a 

greater aspect. The data captured can be integrated with existing datasets through geo-

referencing using 3D control points. When laser scanning instruments are mounted on any 

flying platform like an aircraft or helicopter, the technology is referred to as Airborne Laser 

Scanning (ALS). ALS is costly and is partly the reason for the development of TLS (Holopainen 

et al., 2011). Sometimes however, the laser scanners can be mounted on such moving platform 

as cars, vans, vessels or boats and is referred to as Mobile Laser Scanning (MLS) or Terrestrial 

Mobile Mapping (Lemmens, 2011; Kankare et al., 2013). MLS is popularly used in mapping 

features that exhibit relatively large expanses such as roads and highways to avoid road closures 
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and disruptions during survey, and also for high acquisition of trajectory measurements 

(Lemmens, 2011).  

In forest inventories, TLS can be used in sample plot measurements, Stand-level forest 

inventories and in the development of tree allometric models. The technology can quantify 

individual and plot-level attributes through 3D mapping of vegetation structural metrics such 

as tree population (Kankare et al.,2013), diameter of stem form, curve or inclination angle of 

the stem, branch segments, tree species, class and height, tree location and canopy layer and 

understory related elements such as canopy size (Saarinen et al., 2017; Liang et al., 2016; Liang 

et al., 2017; Kankare et al., 2013; Kankare, 2015; Holopainen et al., 2011; Calders et al., 2015). 

Such measurements are used to establish models like the stem volume models and to conduct 

gap probability estimates and overall forest biomass estimates. Thus, TLS is, and has been a 

viable alternative or additional data acquisition technique to other survey technologies such as 

geodetic or photogrammetry, and allometric biomass estimation novel algorithms (Sternberg et 

al., 2004). 

TLS technology has potentially revolutionized the process of forest inventory. It is possible to 

use a TLS point cloud-based approach to rapidly and accurately measure forest biomass at 

greater details without cutting down the trees (Xiao et al., 2007; Liang et al., 2016; Kankare, 

2015). 

TLS data processing 

Processing of TLS data can be divided into two steps: pre-processing and post-processing (Xiao 

et al., 2007). Pre-processing includes data re-sampling, camera calibration, image rectification, 

coloring the point clouds (RGB band), registration and merging of different multiple single 

scans to produce a single, unified point cloud from each study object. Using a geodetic reference 

system, each point cloud from the reference targets (raw data of the scans) is converted into a 

position by transforming the local scanner coordinate system into a common coordinate system, 

giving it 3D dimensional point clouds. Further manipulation can then be done on the data 

including filtering, visualization, classification, and analysis (Liang et al., 2016; Lemmens, 

2011). The post processing involves triangulation and interpolation of the measured points to 

permit registration and the 2D- and 3D data evaluation. It also involves use of models that can 

control the scanning parameters for the duration of data acquisition (Sternberg et al., 2004), 

reconstruction, visualization of objects and production of ortho-images for documentation of 

2D view of surface objects necessary for mapping (Xiao et al., 2007). 
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2.3.3. Allometries in biomass estimation 

 

Tree allometric models have profound relevance in the development of information on the 

approaches to sustainable AGB estimation. They can also be extrapolated to other spatially 

extensive ecosystems of similar disposition. The equations are of importance in very large and 

multi-species biomes where initial methods of inventorying the forest to get raw field data could 

lead to expansive destruction of sample trees and would also involve massive resources in terms 

of time and finances.  

 

In the tropical regions and North American forests, studies have been conducted to develop and 

document different statistical generic equations - linear, logarithmic, exponential and power, to 

represent the circumstances characterising the entire forest range and across different 

landscapes (Sawadogo et al., 2010). In Africa, there has been tremendous effort to develop 

allometric models for some regions (Malimbwi et al., 1994; Sawadogo et al., 2010; Mate et al., 

2014) which have been useful in estimating forest biomass in other regions where such a 

database is lacking. Tropical vegetation is majorly multi-species in nature (Hunter, 2013) and 

is also diverse in their form and growth characteristics across forest categories of a similar 

nature. Because of intensiveness in terms of resources needed to develop biomass estimation 

models for diverse species ecosystems at extensively varying spatial scales, there is a consistent 

lack of ecosystem-specific equations in most parts of Africa. Only a few such studies have been 

conducted in regions like West Africa for the Sudanian savanna woodlands (Sawadogo et al., 

2010). Most tropical regions rely on forest inventories taken some decades back, with few 

developing countries having recurrent field measurement inventories of their existing forest 

covers that can reliably be used for regional biomass and carbon predictions. By the year 2005 

for example, there was no published theoretical models and field data on ground measurements 

in the central Africa’s Congo Forest Basin, which covers more than half of Africa’s flora and 

fauna (Maniatis, 2010).  

 

2.3.4. Sources of errors and uncertainties in aboveground biomass assessment 

 

An error is a statistical uncertainty insinuated at each phase in creating and applying a model, 

such as an allometry. Errors are potentially inherent regardless of the method or the spatial scale 

of the sampled area (Henry et al., 2011). These errors are propagated in the ultimate results of 

the forest inventory (Condit, 2008), leading to misleading sets of estimates and other predictions 
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that rely on such data, like the carbon emission inventories (Cifuentes-Jara et al., 2013). The 

variance can be even higher when inferring published dimensional equations developed for a 

different region to synthesise forest biomass of another landscape. It is stipulated that most of 

the existing biomass allometries were developed by foresters and ecologists. Regression errors 

are associated with generic or species-specific empirical models used during the conversion of 

tree parameters to derive the biomass (Brown, 2002). The error resulting from most of the 

allometric equations is an accumulation of errors incurred during field sampling, variable 

measurement, and the discrepancy along the allometric regression models used. These errors 

can contribute to about 31 percent (10 cm or more trunk diameter) and 55 percent (less than 10 

cm trunk diameter) uncertainty to the AGB estimation (Maniatis, 2010). 

 

Sampling errors emanate from deviations in sampling units such as the number and the size of 

plots within the study area. The size of the sampling error depends on the sampling strategy, 

sample size, estimation process and the underlying variables being used in the biomass 

calculations. Another form of sampling error is a function of improper presentation of the 

ecological variations of stand structure and composition as determined by the environmental 

gradient. The sample used in biomass estimation may not be a complete reflection of the entire 

site and hence there is a high possibility of obtaining different parameter estimates in the 

subsequent studies over the same area (Samalca, 2007). 

 

There has also been varying debates on the need to include smaller diameter trees in the sample 

and their contribution to the final estimate results. According to Sawadogo et al., (2010), 

generating species-specific equations should involve the inclusion of large tree components 

such as the tree trunk because these components provide concise estimates than smaller 

elements such as tree branches and twigs. Studies give premium to stem diameter as the main 

biomass indicator, especially for mixed forests whose trees grow close together with 

overlapping or interlocking crowns (Chave, 2005). However, studies especially in heterogenous 

ecosystems like savannas, small diameter trees especially shrub vegetation, contribute high to 

the woody vegetation component because they by large comprise the woody vegetation 

component. This is also true with temperate regions where their contribution highly depends on 

the chronological phase of the forest and ignoring small trees has been identified as a source of 

error leading to underestimation in AGB calculations (Brown, 2002). Difference in forest wood 

densities may yield different AGB stocks across different ecological stratifications (Maniatis, 

2010), making it crucial to choose an appropriate model for a forest type. Regression error is 
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another main source of error (Colgan et al., 2013) because it does not reduce with changing 

variables. 

 

Measurement errors may be realised while taking the dimensions of tree attributes such as base 

diameter, diameter at breast height, during species identification and counting, measuring shoot 

height and establishing the dry weights. The erroneous estimates can be caused by poor and 

wrong recording (duplicated and/or mismatched field) which calls for proper screening of data 

after plotting (Condit 2008). Errors can also result from the error in the measuring instrument 

(Samalca, 2007), and nature of the object being measured, for example, presence of buttress, or 

irregular girth shape, and multi-stemmed trees like those in the Lowveld savanna (Scholes et 

al., 2001). 

 

Uncertainties and statistical variations in biomass estimate results also stem from differences in 

the sample size (limited samples for some cases), and the input variable measurements (e.g. 

trunk measurements, wood specific gravity, forest type and height measurements) that are 

incorporated during the development of linear functions (Sawadogo et al., 2010). Some 

allometries may have been constructed using the trunk diameter only to predict biomass 

(Colgan et al., 2013) or from trees whose measurements do not correspond to tree diameters of 

the region whose biomass is to be estimated. Previous works have proved that inclusion of 

height in biomass allometries improves accuracy (Hunter et al., 2013). The use of diverse 

variables on a significantly large sample-range reduces biasness. Chave (2005) emphasises the 

inclusion of the stem diameter, wood specific gravity, total height, and forest type as the most 

important variables in AGB estimation. Working with a range of tree variables improves the 

accuracy of the model and its reliability for broad-scale extrapolations. Besides, wood density 

has also been considered as the second most crucial factor in AGB estimates (Maniatis, 2010), 

with Colgan et al., (2014) pointing out that wood density as the key driver of variations in 

biomass between dominant species of the same size. 

 

Another source of error and uncertainties is the poor choice of the allometric model. Point 

studies may reflect variations in terrain gradient and vegetation types, and drainage status of a 

forest cover. The structural parameters of the tree such as the stem measurements, the height 

and density of the sub-sampled trees also vary with different climatic zones (Samalca, 2007). 

Inference of the regression models requires a comprehensive review of various existing models 

based on the zone under study. Maniatis, (2010) provides an empirical evidence to this 
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hypothesis by using different allometric models from the sub-Saharan database to review the 

errors propagated by the choice of the model across three different ecological zones in Ghana 

and Cameroon. In his study, he found out that there is a considerable variation of AGB estimates 

and hence the carbon stocks between different allometric equations. His findings correspond to 

Jenkins (2003) who showed inconsistent results unsuitable for broad-scale applications by 

validating US models. Ngomanda et al. (2013) also reinforced this in their study to validate the 

applicability of six wet forest regression models developed for Madagascar to the Zadié, with 

results pointing to a systematic overestimation of AGB up to 47 percent.  

 

2.3.5. Error and uncertainty reduction in aboveground biomass estimation 

 

Most studies that have encountered errors and uncertainties have come up with different 

suggestions aimed at providing a framework for reducing errors in AGB and carbon stock 

estimations. According to Brown, (2002), forests are constantly experiencing changing regimes 

as a function of changing climatic conditions and other driver variables, hence a considerable 

change in tree allometric relationships. Repeated inference of unrevised allometric datasets 

produces skewed estimates at varying degrees. Apparently, there is a need to develop new 

standard models through fresh measurements of large diameter trees and a thorough revision of 

datasets especially in highly heterogeneous ecosystems where only a few trees species are 

represented in the generalised existing commercial forest inventory data (Brown, 2002).  

 

The allometric relationships specific for a taxonomic category are also deficient in the tropical 

regions. For forest types with fewer tree species, there is a need to develop species-specific 

biomass regression equations to ensure complete forest representation and data agreement 

aimed at improving the quality and reliability of point regression models (Malimbwi et al., 

1994; Brown, 2002). Previous studies have revealed that species-specific models can be 

deduced for other sites if these forest types fall within homogenous environmental conditions 

within which the model was built (Sawadogo et al., 2010). Original data from which the models 

are derived need to be published and made completely and freely accessible by other scientists 

or any other body which wishes to conduct periodic biomass estimates. The respective dataset 

should also include reports on methods and definitions. Data on global dead wood densities for 

different forest types (dry, moist, wet) must be accumulated by decomposition class and 

archived for easier access and use.  
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Some researchers have proposed a comprehensive review and reanalysis of the tree mensuration 

data and the methodologies used. This involves direct destruction of sample tree species from 

the respective sampling units and performing different variable measurement procedures. Most 

studies have had to employ efforts to test the credibility of the available equations by carrying 

out actual field inventory measurements (Nickless et al., 2011; Henry et al., 2011; Colgan et 

al., 2012; Odipo et al., 2016). An ideal approach for developing allometric equations that can 

produce consistent regional biomass estimates would require sampling different sizes of all tree 

populations from a representative sample of species for all ecosystems characterising the entire 

region (Brown, 2002). This is evidently impracticable since most countries have well-

established laws governing their protected forest reserves. 
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CHAPTER 3 
 

3. Methodology 

 

3.1. Summary on methodology 

 

Figures 3-1 and 3-2 visualises the methodological concept adopted in achieving the objectives 

of this study – AGB modelling and change analysis using L-band SAR, and C-band SAR 

interactions with savanna vegetation structure, respectively. The present study, combining field 

inventory, high resolution TLS data, and L- and C-band SAR data each with varying spatial 

and temporal resolutions, assesses (i) the potential of high resolution TLS in extraction of 

savanna vegetation structure variables, both at individual tree-level (height, DBH and 

vegetation classes) and plot-level (AGB and CC); (ii) the use of sub-canopy data to estimate 

biomass at plot-level and the use of remote sensing datasets to upscale to the landscape level; 

(iii) the potential of L-band SAR in biomass change detection within a Lowveld savanna 

ecosystem, and (iv) assess the interactions between C-band SAR and TLS-derived vegetation 

structure variables in (i) above. 42 field plots were established within the study area, each 

measuring 30 m from which tree height and basal diameter were inventoried. The inventoried 

variables were later used to compute both tree- and plot-level aboveground biomass based on 

an allometric model specific to the Lowveld savanna. A TLS survey was carried out in the same 

area and provided point clouds which were used to inventory individual tree heights and 

reconstruct individual tree trunks. The same was used to generate CHM for estimation of 

vegetation canopy variables—canopy height and cover. These variables were regressed with 

plot-derived AGB to generate a reference biomass for subsequent SAR biomass estimation over 

the study area. With multi-temporal L-band SAR, an assessment of biomass changes within the 

study area over a four-year period between 2007 and 2010 was possible. The study assessed the 

errors and accuracies associated with the various biomass models (TLS and SAR metrics) used. 

Finally, the TLS-derived vegetation variables provided a basis on which this study assessed the 

interactions and C-band SAR backscatter response to the vegetation cover classes, AGB and 

CC within the TLS footprint. 
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Figure 3-1. Methodology adopted in AGB modelling and change analysis using L-band ALOS PALSAR 

with field inventory and TLS as reference datasets (Odipo et al., 2016; TLS data by Dr. J. Baade) 

 

 

 

 

 

Figure 3-2. Methodology adopted in assessment of C-band Sentinel 1A SAR interactions with TLS-

derived savanna vegetation structure. 
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3.2. Study Area 

 

3.2.1. Southern Africa Savanna Biome Distribution 

 

Statistically, over 40 percent of the African population lives in arid and semi-arid environments 

and derives their livelihoods from the surrounding ecosystems (Ciais et al., 2011). In addition, 

Sub-Saharan Africa experiences a rapid population growth rate than any other part of the word. 

The distribution of these populations across the outsides of savannas has seen extreme direct 

negative effects in areas initially under natural forest cover, reducing carbon sink while 

elevating the amount of terrestrial carbon emission in the atmosphere resulting from 

degradation and deforestation. The human population - environment interaction in the African 

savannas has rendered them vulnerable to change through different land use practices such as 

the expansion in cropland and human settlements.  

In South Africa, savannas constitute between 35 to 46 percent of the terrestrial land area (Figure 

3-3, Mucina & Rutherford, 2006; Steenkamp et al., 2015), with KNP alone occupying almost 2.5 

percent of the total land surface area (van Wilgen, 2009; Scholes & Walker, 1993). On the 

extraneous parts of the park, land use practices include farming, cattle ranching, private game 

reserves and human dwellings (Scholes et al., 2001). 
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Figure 3-3. Map showing the biomes of South Africa, with savanna biome divided into bioregions A to 

F (source: Mucina & Rutherford, 2006) 

 

3.2.2. Skukuza Site 

 

Choice and location 

The study was conducted near the Skukuza Flux Tower in the southern part of KNP (Figure 3-

4) about 13 km southwest of Skukuza town in the N’waswitshaka catchment. The current study 

is carried out under the framework of the Adaptive Resilience of Southern African Ecosystems 

(ARS AfricaE) project. ARS AfricaE is implemented around Skukuza eddy covariance (EC) 

flux tower to assess biogeochemical interactions and their significance to the resilience of the 

savanna biome to climate change (Kutsch et al., 2012), a factor which dictated the site apart 

from the fact that Skukuza area provides a typical Lowveld savanna features in terms of 

vegetation structure. The study area is restricted to nine square kilometres around Skukuza Flux 

tower site. The EC flux tower (25.0197° S, 31.4969° E) was established in early 2000 to study 
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carbon, water, and energy dynamics of semi-arid African savannas, as part of the South African 

Regional Science Initiative (SAFARI 2000) experiment to understand the interactions between 

the atmosphere and the land surface in southern Africa (Scholes et al., 2001). The site is situated 

within a broad- and fine-leafed savanna biome, an ecosystem covering 32% of South Africa. 

The dominant tree species here are Combretum sp. and Acacia sp. and the soil type is sandy 

clay loam Arenosol (Kutsch et al., 2008).  

 

 

Figure 3-4. Imagery showing location of the study site in Skukuza, showing the terrestrial laser scanner 

(TLS) footprint. The study is centred on the Skukuza eddy covariance tower (EC Tower) as shown in 

the map. (Imagery source: Google Earth/Digital Globe). 

 

Climate 

The climate around Skukuza is typically semi-arid subtropical with hot rainy summers and 

warm dry winters (Scholes et al., 2001). The Skukuza EC tower site receives a mean annual 

precipitation (MAP) of 547 mm, while an analysis of the weather station data from 1912 shows 

that the area receives an annual rainfall of 500 – 700 mm per year, with maximum rainfall 

received in January (Kruger et al., 2002). The seasonal rainfall analysis defines summer as 

running between the months of December to February, autumn from March to May, winter 

from June to August and spring from September to November. Figure 3-5 shows long-term 

average monthly rainfall statistics from an analysis of rainfall data within Skukuza between 

1912 and 2001. Figure 3-6 shows decadal rainfall statistics for the year 2015, covering the 
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timeline of most of this study. The plots show rainfall amounts for the selected year (dark blue) 

and for the long-term average (20 years, 1994-2013) in light blue. 

 

 

Figure 3-5. Average monthly rainfall (mm) for the period 1912 to 2001 (Kruger et al., 2002). 

 

The highest rainfall values are received between November and March, making these two 

months the wet season boundary, with April as a transition month, while dry season is 

experienced between May and September, with October as the transition month between dry 

and wet seasons. 

 

 

Figure 3-6. Decadal rainfall statistics for Skukuza region for the year 2015. Dark blue bars are rainfall 

values for 2015 while light blue shows 20-year averages (1994-2013). Source: FAO VAM. 
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Historical climate statistics of Skukuza between 1960 and 1999 gives a mean annual 

temperature range of 14.3 to 29.5 °C (Scholes et al., 2001; Gartenbach, 1980). The area is 

underlain with granite and gneiss and characterised by very distinctive catena sequence of soils 

from the crest to the valley bottom (Colgan et al., 2012), with reddish or yellowish-brown sand, 

grey hydromorphic sand, and clay (seasonal waterlogged band of soils). 

 

The characteristic biome is subtropical savanna, where the cover is not discrete but 

characterised by a mixture of growth forms, primarily grasses, with shrub, and tree patches. 

Small patches and gradual transition between open and closed vegetation cover are typical 

features of these landscapes (Mistry, 2000; Scholes et al., 2001; Scanlon & Albertson, 2004; 

Woodward et al., 2004; Sankaran et al., 2005; Merbold et al., 2009; Hüttich et al., 2011; Moses 

et al., 2012; Gesner et al., 2013). Such a characterisation has caused problems in not only 

differentiating between the grass, shrub, and tree vegetation cover, but also in making the use 

of spectral information from passive remote sensing a challenge given the inherent complexities 

in its structure. There is high pressure exerted by population growth and the need for people to 

derive their livelihoods from this ecosystem. There has been a spike in the amount of poaching 

in KNP, particularly in recent years, and this makes up one example of anthropogenic impacts 

on this supposed “closed” environment. The significance of poaching influences the savanna 

ecosystem stability, particularly the poaching of macro-herbivores, which is finally manifested 

in vegetation structure dynamics. 

 

Geology 

According to Barton et al., (1986), the Skukuza area is underlain by Archaean granite and 

gneiss. The area is characterised by very distinctive catena sequence of soils from the crest to 

valley bottom (Colgan et al., 2013), with reddish or yellowish brown sand, grey hydromorphic 

sand and clay (seasonal waterlogged band of soils along the contour of the slopes called seep 

line), greyish brown sodic duplex soils (sand or loam abruptly overlying dispersed clay affected 

by the presence of the sodium), and mixed alluvial soils (Scholes et al., 2001). The landscape 

around the flux tower is typically undulating at an altitude ranging between 355 and 378 m 

above sea level (a.s.l.) (Odipo et al., 2016; Scholes et al., 2001; Kutsch et al., 2008; 2012), with 

the Sabie River forming the major drainage system. Venter et al., (2003) describes the 

topography of the area as a slightly undulating plain and classifies the geology into two 

categories: uplands characterised with sandy soils and bottomlands with duplex sodic clays. 

file:///D:/TOPIC%200%20-%20Dissertation/Dissertation%20Write%20up/Literature%20Review_April_2014.docx
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Vegetation 

Gertenbach (1983) describes the vegetation around Skukuza as the “Thickets of Sabie and 

Crocodile Rivers”, Low & Robelo (1996) describe it as “Mixed lowveld bushveld”, while 

Venter (1990) described the dominant woody vegetation within the area as moderately dense 

C. apiculatum/ G. bichor bush savanna with A. exuvialis and A. nigrescens. The vegetation of 

Skukuza results from the geological catena sequence; sandy uplands, the mid-slopes with a 

wetter clay seep line and the foot slopes with duplex soils. The sandy (granite) uplands 

characterised by dense deciduous broad-leaved bushveld occurring in relatively dry infertile 

situations (Coetzee & Werger 1978). This area is mainly dominated by Combretum spp such as 

the red bushwillow (C. apiculatum), large fruited bushwillow (C. zeyheri), variable bushwillow 

(C. collinum subspecies suluense), and silver cluster-leaf Terminalia sericea. The mid slopes 

are wetter because the impervious layer created by the clay illuviation from the sandy uplands. 

This region is characterised by water tolerant grasses such as the gum grass (Eragrotis 

gummiflua) and sedge grass (Cyperaceae) (Venter et al., 2003; Scholes et al., 2001). The foot 

slopes with duplex soils are dominated by open fine-leaved bushveld with thorny woody plants, 

mainly red thorn (A. gerrardi), knob thorn (A. nigrescens), common false-thorn (Albizia 

harveyi), sickle bush (Dichrostachys cinerea) and magic guarri (Euclea divinorum) among 

others. 

 

3.3. Data Acquisition and Processing 

 

3.3.1. Field Inventory Data 

 

Field sampling strategy 

First, different satellite imagery sources, including Google Earth and Landsat imageries were 

used to study the vegetation distribution within the study site around the Skukuza EC flux tower 

before the field inventory. This was purposively chosen to fit the overall objectives of the ARS 

AfricaE, project (Kutsch et al., 2012), under which this study was based. For convenience, and 

a possibility of later using the results from SAR-based vegetation structure modelling to widely 

available optical data, the study opted to use 30 m plots, with Landsat pixels as the sampling 

plots. OBIA within eCognition (Trimble, 2017) was therefore used with chessboard 

segmentation at a scale of 1, for each 30 m pixel of Landsat TM data for the year 2015, covering 

file:///D:/TOPIC%200%20-%20Dissertation/Dissertation%20Write%20up/Literature%20Review_April_2014.docx
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the study area. A detailed field inventory around the flux tower was carried out in March 2015. 

42 field-sampling plots, each measuring 30 m × 30 m were established around the tower. The 

location coordinates of the centre of each plot was recorded using Trimble eTrex handheld 

Global Positioning System (GPS). Figure 3-7 shows the plot layout and sampling strategy used 

in individual tree identification and measurement.  

 

 

Figure 3-7. Plot layout, tree identification and measurement adopted in plot sampling for individual tree 

mensuration. 

 

Tree inventory 

Within each 30 m plot, tree heights and basal stem diameter from stems greater than 5 cm thick 

were measured at 1 m height from the ground and recorded. For tree heights, Nikon Forestry 

Pro laser rangefinder hypsometer was used to measure heights of trees taller than 1 m within 

the plots. The hypsometer uses a three-point height measurement function (trigonometry) by 

first calculating the horizontal distance between the enumerator and the tree, then capturing two 

other points (location of the enumerator and tree top) to create an angle which it uses to calculate 

vertical height. For basal diameter, a DBH tape was used to measure the basal diameter at 1 m 

height. In this study, a tree and a stem are loosely defined as single- or multi-stemmed 
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individuals from the same rootstock and all branches from a point on the ground, respectively 

(Colgan et al., 2012; 2013; Mograbi et al., 2015). Where a tree had multiple stems, individual 

stems were measured, summed up and assigned to a single tree. In total 237 trees were 

inventoried during the field campaign. 

 

3.3.2. Terrestrial Laser Scanner (TLS) data 

 

TLS data was acquired for the study area over a 51.8 ha footprint around the flux tower in 

September 2015 using a RIEGL VZ-1000. The instrument uses a near infrared laser beam and 

is suitable for forestry research. The system provides a measurement range of up to 1400 m 

with 5 mm repeatability (RIEGL, 2015) (Table 3-1). Thirty scans were acquired around the flux 

tower at 300 kHz (limiting the range to 450 m) with an angular resolution of 0.015 degrees. 

Reference points determined by Real-Time Kinematic Global Navigation Satellite System 

(RTK-GNSS) measurements (Baade & Schmullius, 2016) were used to georeference the scans 

to the WGS84 ellipsoid. RiSCAN PRO software (provided by RIEGL) was used for the co-

registration of the scans and point cloud generation. The point clouds were an octree data 

structure with a mean point density and a spacing of 286.27 points/m2 and 0.05 m, respectively. 

To produce the pit-free CHM, the point clouds were processed using LAStools rapidlasso 

GmbH (Isenburg, 2016), following the method used in Khosravipour et al., (2014) and 

substituting the platform from airborne to non-airborne to adapt the process to TLS data. 

 

 Table 0-1. Riegl VZ-1000 specification (RIEGL, 2015)1. 

Laser Wavelength Near Infrared 

  

Scanning method Rotating multi-facet mirror (V); rotating head (H) 

Field of view 100° vertical, 360° horizontal 

Laser beam divergence 0.3 mrad 

Laser beam footprint 13.5 cm at 450 m, 70 cm at 1,400 m * 

Laser pulse repetition rate 70–300 kHz 

Measurement rate 29,000–122,000/s 

Scan speed 3–120 lines/s (V); 0–60°/s (H) 

                                                           
1 The entire laser beam footprint is 0.7 m at 1400 m but for this study it was restricted the 

footprint to 0.134 m at 450 m 
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For ease of manageability, the point clouds were divided into 250 Mb large tiles with a 25 m 

buffer. ‘lasground.exe’ was used to extract bare-earth by classifying ground and non-ground 

points. All z-values above 0.1 m were dropped. ‘lasthin.exe’ was further used to simulate the 

diameter of the laser beam at 135 mm in 450 m distance from the scan position (Lim et al., 

2003). To replicate each point eight times in a discrete circle, a radius of 0.075 m around every 

input point was used, and the spatial resolution of the point clouds was then increased two-fold 

to 0.03 m. Noise and unclassified points were filtered from ground points.  

3.3.3. Individual tree measurement from TLS point clouds 

TLS tree measurement was carried out as visualised in Figure 3-8 and was aimed at computing 

TLS-based AGB values around the TLS footprint. To derive individual trees from TLS point 

clouds (PC), QuickTerrain Reader, QTR (Applied Imagery, 2017) was used to identify and 

mark all visible trees from classification view using locational markers. The locational markers 

(with coordinates) were then exported to the Environmental Systems Research Institute’s 

(ESRI) shapefile format. Trimble’s RealWorks Viewer (Trimble, 2016) was further used in 

manual tree height and DBH measurement. Derivation of a tree DBH relied on the sufficiency 

in the number of point clouds required in reconstructing the circular tree trunk (circumference) 

at 1 m height, a decision made based on the standard deviation of the surrounding points to 

those used in reconstructing the circumference. Trees whose point clouds were insufficient to 

reconstruct the circumference at 1 m height were left out, while those with a standard deviation 

less than 0.03 m were inventoried. Tree heights were measured as the distance between the 

lowest and the highest point from the normalised point clouds. For multiple stems, both H and 

DBH were measured, summed-up and assigned to one tree. From the PCs, it was only possible 

to reconstruct tree trunks, with most shrub vegetation giving high errors and so were not used 

in the subsequent biomass computation. 
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Figure 3-8. Individual tree parameter measurement from TLS point clouds: a) noise-reduced point 

clouds showing individual trees within the study area, b) tree DBH measurement at 1 m height, c) tree 

height measurement as the distance between the lowest surface-level. 

 

3.3.4. TLS Canopy Height Model (CHM) 

 

Whereas pits would be expected within TLS data just like in Lidar data, there still existed height 

variations within forest stands and so these were accounted for by computing CHM at different 

height thresholds as recommended in studies by Ben-Arie et al., (2009) and Khosravipour et 

al., (2014). The American Society of Photogrammetry and Remote Sensing (ASPRS) 

classification of Lidar point clouds were therefore adopted by computing CHM for every class 

(ASPRS, 2011) as <0.5 m (bare + understory), 0.5–<2 m (low vegetation), 2–<5 m (medium 

vegetation), and ≥5 m (high vegetation). Following this sequence, six CHMs were derived. The 

consecutive 5 m interval heights help in improving the original morphological structure of tree 

crowns. According to Scholes et al., (2001), the average tree height within the study area is 9.1 

m, weighed by tree basal area and so, apart from the flux tower and riverine vegetation which 

stand at about 24 m and above 21 m, respectively, this study confirms that most trees are below 

20 m in height (Figure 3-9 (c)). 
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The final step involved triangulating the four CHM height thresholds (bare + understory, low 

vegetation, medium vegetation, and high vegetation) using ‘blast2dem.exe’ to create a pit-free 

CHM as a GeoTiff by merging all the tiles. A kill size of 0.18 was used in triangulating 

Triangulated Irregular Networks (TINs), a value that is three times the step size (point 

resolution = 0.06 m). This would ensure that only triangles three times larger than the resolution 

were used for CHM generation. Figure 3-9 (a, b, c) shows the resultant digital surface model 

(DSM), a digital terrain model (DTM), and a CHM respectively from the outlined methods. 

 

Figure 3-9. TLS-derived (a) digital surface model; (b) digital terrain model; and (c) canopy height 

model. (Data acquired by J. Baade). 

 

3.3.5. ALOS PALSAR L-Band Data 

 

The Japan Aerospace Agency (JAXA) launched Phased Array L-band Synthetic Aperture 

Radar (PALSAR), on board Advanced Land Observation Satellite (ALOS) in 2006. PALSAR 

is a day and night, all-weather land observation satellite and is an active microwave sensor 

using L-band technology to achieve this capability. ALOS acquires data in both fine beam 

single (FBS) and fine beam dual (FBD) polarimetric modes with a range resolution of between 

0 and 60 degrees. This study used four scenes with dual (HH, HV) polarisations for the dry 

season, since TLS data was acquired during the dry season. Backscatter works well in the dry 

season because of low canopy and soil moisture (Naidoo et al., 2015; Urbazaev et al., 2015). 

Table 3-2 shows the specifications of L-band SAR datasets used in this study.  
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Table 0-2. Characteristics of the L-band Advanced Land Observation Satellite (ALOS) Phased Array L-

band Synthetic Aperture Radar (PALSAR) and C-band Sentinel-1 A datasets used in the study area. 

(Source: JAXA). 

Mode Date Polarisation Incident 

Angle (°) 

T F Season 

FBD 29 September 2010 HH-HV 34.3 586 6680 DRY 

FBD 11 August 2009 HH-HV 34.3 586 6680 DRY 

FBD 23 September 2008 HH-HV 34.3 586 6680 DRY 

FBD 6 August 2007 HH-HV 34.3 586 6680 DRY 

 

3.3.6. Sentinel-1A C-Band Data 

 

Level-1 Ground Range Detected (GRD) Sentinel-1A C-band (frequency = 5.405, wavelength 

= 3.8 - 7.5 cm) data was acquired in Interferometric Wide Swath (IW) mode with an Ascending 

pass. 29 dual-polarimetric (VV, VH) Sentinel-1 A images used in this study were acquired for 

the period between 3.11.2015 and 28.10.2016. Figure 3-10 shows mean backscatter values for 

the dates of dual polarisation C-band SAR acquisition, with soil moisture and precipitation. 

 

Figure 3-10. C-band Sentinel-1A time series data showing the dates of acquisition used in this study, as 

a response to precipitation and soil moisture content. Soil moisture data was derived from flux data in 

Skukuza. 
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3.3.7. SAR data processing  

 

Both L-band ALOS PALSAR and C-band Sentinel-1A datasets were processed following 

methodologies adopted in Carreiras et al., (2012). GAMMA Remote Sensing and Consulting 

AG Modular SAR Processor (MSP) was used in SAR data pre-processing (GAMMA, 2008) 

according to the simplified workflow in Figure 3-11. The L-band SAR datasets were acquired 

as level 1.1 single look complexes (SLC) with original radar geometry (range, Rg × azimuth, 

Az) of 9.37 m × 3.2, respectively, hence the first processing procedure was to apply multi-

looking (ML) to derive backscatter intensity values. Since the C-band Sentinel-1A data was 

acquired in GRD, the images are already radiometrically corrected and re-sampled. The 

processing steps involved multi-looking (ML) to reduce speckle by averaging range and 

azimuth resolutions, reducing the image dimension and speeding up SAR image processing. 

Image calibration was performed on the ML image to convert the digital numbers (DN) to 

physical quantities in sigma naught (σ0) backscatter. A conversion from linear to logarithmic 

units in decibels (dB) enhanced image visualisations. Terrain correction was then performed to 

project the C-band images onto map system and correct for distortions because of terrain. For 

L-band SAR, a sensor specific calibration factor of −115 dB was used to radiometrically 

calibrate the ML images. 

 

 

 

 

Figure 3-11. L- and C-band SAR processing workflow in GAMMA as used in this study. The blue boxes 

are more relevant for GRD C-band data which does not require multi-looking. 

 

The backscatter images were then geo-coded using a 20 m digital elevation model (DEM) by 

first generating the positional look-up table for each pixel in the SAR Range-Doppler and DEM 

geometry (Carreiras et al., 2012). This was followed by simulation of SAR intensity from DEM 

to map geometry and a further transformation to SAR geometry. The final geo-coding 
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procedure involved the co-registration of real and simulated SAR in SAR geometry, and the 

transformation of SAR Range-Doppler to map geometry.  

 

To investigate speckle noise in the SAR datasets, the equivalent number of looks (ENL) was 

calculated by dividing the mean square backscatter intensity by variance (e.g., ENL = 

mean2/variance) after studies by Oliver & Quegan (2004). The ENL was derived using a 

theoretical approach based on the nominal number of looks and the signal-to-noise ratio (SNR) 

according to Equation (3-1) because of heterogeneity of the study area. 

 

ENL =
𝑁𝑟∗ 𝑁𝑎𝑧

(1+ 
1

SNR
)

2                                                         (3-1)  

 

where Nr and Naz are the number of range and azimuth looks, respectively. An increase in the 

ENL significantly reduces speckle noise in the multi-looked SAR data (Urbazaev et al., 2015). 

Argenti et al., (2013) suggested that no filtering should be attempted on heterogeneous (point 

targets) areas. This applies to the current study area, and so no speckle noise filtering was 

performed on the L-band ALOS PALSAR data. However, to investigate the effects of speckle 

filter window size for C-band SAR backscatter on savanna vegetation structure variables (AGB, 

CC and cover classes), multi-temporal speckle filter was applied on C- band SAR dataset. This 

was achieved by using Quegan multi-temporal filter (Quegan & Yu, 2001) with two different 

filter window sizes; 3 x 3 and 5 x 5. Topographic normalisation was then applied to the 

backscatter intensity images (Stussi et al., 1995; Castel et al., 2001). The final resultant 

geocoded, and terrain corrected backscatter SAR images had a ground resolution of 12.5 m and 

20 m for L-band ALOS PALSAR and C-band Sentinel-1 A, respectively.  

 

3.3.8. Ancillary datasets 

 

In this study climate data was used, mainly soil moisture and precipitation datasets obtained 

from Skukuza Flux tower, operated by South Africa’s Council for Scientific and Industrial 

Research (CSIR). The soil moisture was measured using a CS-616 Soil Moisture Probe 

(Campbell Scientific Inc., Logan, UT, USA). This ground station comprises two soil moisture 

probes, which are acquiring volumetric moisture content (m³/m³) at 6 cm, 13 cm, 26 cm and 

59 cm depths. For this study, only moisture information from 6 cm and 13 cm probes were used. 

The values from both probes were averaged for each time step to one soil moisture 
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measurement. The 30-minute interval datasets were summarised to daily averages and matched 

with the dates of C-band Sentinel-1 data acquisition for the study area. Long-term precipitation 

records from the rain gauge mounted on the Skukuza EC flux tower were used (Figure 3-10). 

 

3.4. Aboveground Biomass (AGB) Modelling 

 

3.4.1. Field Derived Biomass 

 

Field-based AGB was computed with height and DBH datasets from field inventory in three 

steps. First, height and basal diameter of each tree was used to compute AGB at tree level in 

kilogram (kg) using Colgan allometry (Colgan et al., 2013), as per Equation (3-2). This 

allometric equation was preferred because there is no species specific allometry derived for this 

region of KNP, or for many of the individual species found in the site. The Colgan allometry 

used in this study was derived from destructive tree samples located outside of the park, within 

a Colophosperum mopane dominated savanna north of the study site. Many of the tree species 

sampled are commonly found in KNP and so is within this Lowveld savanna, with a 

recommendation on a mean wood specific gravity (ρ) of 0.9 (Colgan et al., 2013). 

 

AGB = 1.09D(1.39 + 0.14In(D))H0.73ρ0.80                                (3-2)  

 

Where AGB is the aboveground biomass (kg/tree), D is the basal diameter (cm), H is tree height 

(m) and ρ is a unit less wood specific density (-). Second, all individual tree biomass within 

each plot (30 m) was summed up, resulting in AGB in kg per plot. Biomass is usually expressed 

per unit area and so the final biomass was reported in metric tons per hectare (t/ha) after 

conversion based on the plot size of 0.09 ha for 30 m plots. Table 3-3 summarises the results 

from inventoried tree variables from field inventory measurements, while Figure 3-12 (a) shows 

field plot biomass distribution within the study area, in t/ha. 
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Table 0-3. Summary statistics of the field inventoried and TL-measured trees. DBH = diameter at breast 

height (basal diameter); H= tree height; AGB = aboveground biomass. 

 
Field tree inventory TLS tree measurement  
DBH 
(cm) 

H 
(m) 

AGB 
(kg/tree) 

DBH 
(cm) 

H 
(m) 

AGB 
(kg/tree) 

Min. 6.4 1.5 2.9 11 5.3 27.4 

Median 35 6.2 267.1 30 10.7 666.9 

Mean 35.2 6.2 508.1 39.6 10.7 779.3 

Max. 105 12 5825.6 70 16.1 3528.5 

 

 

3.4.2. TLS Derived reference Biomass 

 

A total of 757 trees were identified in the normalised TLS point clouds, of which some 565 

trees had both their height and basal diameter measured because of sufficiency of PCs to 

reconstruct the tree circumference at 1 m height. These constituted the trees used in AGB 

estimation. For biomass estimation, the allometry in Equation (2-2) was used (Colgan et al, 

2012). All measured individual tree biomass within each 0.04 Ha (20 m Sentinel-1A pixel) plot 

was summed up into kg per 0.04 Ha plot. These were then converted to tons per hectare using 

a plot conversion factor of 0.04 Ha. The results from TLS individual tree measurements are 

summarised in Table 2-3, while plot level averages are visualised in a histogram in Figure 3-12 

(b). 
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Figure 3-12. Plot-level aboveground woody biomass distribution from a) field inventory and b) TLS 

tree measured datasets. 

 

To assess the effects of multi-temporal C-band SAR on AGB per SAR pixel, AGB was 

classified into three classes based on abundance: low biomass, as plots with AGB below 10 t/ha 

(n = 57 plots), moderate biomass as plots with AGB between 30 – 40 t/ha in the study area (n 

= 67 plots), and high biomass as plots with AGB values above 80 t/ha (n = 61 plots) in the study 

area (Figure 3-13-a). These class values were plotted separately against SAR in a temporal 

graph. The means of each class was computed and plotted against the various multi-temporal 

SAR metrics – backscatter and SAR speckle filter windows 3 by 3 and 5 by 5. 
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Figure 3-13. Sampled 20 m plots for assessment of C-band SAR backscatter metrics response to a) AGB 

plots and b) CC plots. 

 

3.4.3. TLS CHM-Modelled Biomass 

 

In this study, field inventory data were used to model AGB based on TLS CHM metrics. The 

0.06 m TLS-derived CHM was used in Trimble’s eCognition 8.9 (Trimble, 2016) to delineate 

individual tree canopy cover and height. Pixel-based chessboard segmentation at a scale of 1 

(0.06 m resolution) was performed on the CHM, with the 30 m field plots as a thematic layer 

to restrict cover proportions to the 30m grids. Out of the 42 field inventoried plots, only 33 full 

plots fell within the TLS footprint, and so these were used as reference data in deriving AGB 

from TLS canopy metrics. A height threshold of 1 m was used to delineate pixels for canopy 

cover and canopy height based on field inventory, where only trees with heights >1 m were 

inventoried. 

 

The >1 m height ensured only woody vegetation contributed to biomass for the study area. CC, 

defined as the area of tree crowns projected onto the horizontal plane ignoring small gaps within 

the crown and allowing tree crown overlap (Scholes et al., 2001), was computed as the area of 
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the 30 m grid with pixels having a height > 1 m, as a proportion of the area of the entire grid, 

expressed in percentage. Canopy height on the other hand, is defined as the mean height of 

pixels with a > 1 m height per 30 m grid. Equations 3-3 and 3-4 show simplified formulas used 

to derive these two metrics, as modified from Colgan et al., (2012). An additional CHM metric 

was computed as the product of CC and CH (Figure 3-14), forming the third biomass predictor 

variable, CC × CH.  

 

CC =
∑ pixels with H > 1 m/plot

Total pixels/plot
                                     (3-3) 

  

 

 

CH = ∑mean pixels H > 1 m per plot                 (3-4) 
 

 

Figure 3-14. TLS-derived (a) Percentage canopy cover (CC) and (b) canopy height (CH) for 30 m plots 

around Skukuza flux tower site. 

 

For assessment of multi-temporal C-band SAR response to CC, a second set of CC was 

computed for the 20 m SAR pixel grids within the study area. This was implemented within 

eCognition, using the same procedure in section 2.4.3. First, chessboard segmentation was used 
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to segment the 0.06 m TLS-derived CHM at a scale of 1 (each resultant pixel’s grid has a 

dimension of the resolution similar to the CHM). All CHM pixels with height above 1 m were 

classified as “vegetation” and were further used in computing CC. CC was computed as the 

proportion of CHM pixels with height above 1 m (“vegetation”) within each 20 m SAR grid, to 

the total number of CHM pixels within each 20 m SAR pixel grid. To assess the multi-temporal 

SAR response to CC, just like in the case with AGB, CC was classified into three abundance 

classes: low CC with those plots having CC below 10% (n = 151), moderate CC with CC 

between 30% and 50% (n = 135) and high CC with CC more than 60% (n = 27) per pixel/plot, 

totalling a sample of 313 sample plots (see Figure 3-12-b above). For class separability 

assessment, the means of each of the three CC classes were computed and plotted against multi-

temporal C-band SAR metrics between November 2015 and October 2016 to assess the effects 

of SAR polarisation, speckle filter window and seasonality to these mean CC classes. 

The study assessed the predictive performance of each CHM predictor (CC, CH and CC x CH) 

on the field AGB to select the best amongst the three metrics. A linear regression model was 

used to predict biomass over the TLS footprint, using field computed AGB. 60% of the field 

AGB dataset was used for the regression model calibration, and the remaining 40% for 

validation of the resulting predictions. To assess the linearity, the study looked at the model 

performance in terms of the resultant root mean square error (RMSE) and bias (Equations 3-5 

and 3-6) from correlating the TLS metrics with both log-transformed AGB (AGBlog) and normal 

AGB values (Chai & Draxler, 2014). To assess error distribution with AGB, residuals were 

computed (Equation 3-7) as the difference between observed and predicted AGB for every TLS 

metric. 

 

 

RMSE = √
𝑖

𝑛
∑ 𝑒𝑖

2𝑛

𝑖=1
                                                  (3-5) 

 

 

Bias =
𝑖

𝑛
∑ У𝑖 − Ў𝑖

𝑛

𝑖=1
                                               (3-6) 

 

Residuals = У𝑖 − Ў𝑖                                                    (3-7)  
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The predictors were also fitted against the log-transformed AGB (AGBlog) and the resultant 

residuals from both the field biomass and log-normal biomass used to select the model for 

deriving AGB from TLS data, based on variance. Studies by Nickless et al., (2011) and Colgan 

et al., (2013) both propose modelling the logarithm of field AGB because DBH has a stronger 

linear relationship with AGBlog. 

A comparison was carried out between the field measured height and the TLS-derived CH to 

assess the level of accuracy. Figure 3-15 shows the relationship between field-measured height 

and the TLS-derived CH2. The results show accuracy in field height measurement reducing 

with increasing height, with higher heights showing overestimation by the laser rangefinder. 

This is because CH is plot averaged 0.06 m pixels with > 1 m height. 

 

Figure 3-15. Validation results of field measured height and TLS canopy height 

 

3.4.4. Estimating Aboveground Biomass from SAR 

 

To compute AGB from L-band SAR, a weighted average of TLS AGB (AGBtls) was used, 

because of the difference in resolution between the reference TLS-derived AGB (30 m) and the 

                                                           
2 CH is plot averaged pixels with mean height above 1 m, and is not absolute height 



81 

 

L-band SAR backscatter intensity (12.5 m) datasets. The contribution of field biomass to the 

intersecting 12.5 m SAR σ0 pixels were assessed by computing the area of pixels within each 

30 m by 30 m field plots to get a weighted area, Wa. The AGB per intersecting object (AGBnew) 

was computed as the product of AGBtls and Wa. Chessboard segmentation was performed on 

the L-band SAR images in eCognition with a scale of 1 (12.5 m), and the resultant pixels were 

intersected with AGBtls. An assessed SAR σ0 AGB based on polarisations (HH and HV) was 

performed, the years under investigation (2007–2010), and a combination of both using random 

forest and linear regression algorithms for polarimetric and yearly AGB estimations, 

respectively. Breiman et al., (1984) and Breiman (2001) proposed random forest, RF as 

ensemble learning for regression and classification trees, with successive trees not dependent 

on earlier trees (bootstrapping). In bagging, the best predictors are randomly chosen to split the 

tree, making RF a robust classifier against over-fitting (Liaw & Wiener, 2002). A script for this 

analysis was written in R statistical package. The analysis involved identification of the raster 

pixels within each reference AGB polygon. This was run on all the pixels within all four SAR 

backscatter raster grids. 

 

3.4.5. Aboveground Biomass Change Analysis 

 

Three image difference analyses were performed in ENVI, ArcGIS, and R statistical packages. 

Relative AGB changes per pixel for each of the three change combinations was investigated: 

2007 to 2008, 2008 to 2009, and 2009 to 2010 for the study area. To decide whether a change 

was significant, R statistical package was used to reclassify both SAR backscatter predicted 

AGB and AGB change rasters at 5 t/ha intervals because the resultant SAR predictions had 

standard deviations less than 5 t/ha. The predicted biomass was then overlaid with a 2014 land 

cover map of the study area (Odipo et al., 2016). This allowed us to assess the effects of such 

a change on land cover. 

 

3.5. Savanna vegetation cover classes and canopy cover 

 

The coexistence of trees, shrubs and herbaceous vegetation within a savanna biome complicates 

monitoring initiatives at both localised and regional spatial scales. Separating the savanna 

vegetation cover classes allows an understanding of factors responsible for the typical 

heterogeneity within these ecosystems. Grass and herbaceous vegetation are critical for 
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monitoring fuel loads and how these affect fire regimes and spatial distribution of grazers. 

Shrub and tree vegetation are important in assessing the carbon stock and distribution of 

browsers and mega herbivores. In this study, TLS-derived CHM is used in the separation and 

classification of savanna vegetation cover classes after methodologies proposed in the works of 

Vaughn et al., (2015) and Naidoo et al., (2012). OBIA was implemented in eCognition 

(Trimble, 2017) to classify the 0.06 m resolution CHM into five savanna vegetation cover 

classes through a height thresholding, with background (< 0.5 m), shrubs (0.5 – 2.5 m), small 

trees (2.5 – 5 m), medium trees (5 – 10 m) and large trees (> 10 m). Figure 3-16 is a photo taken 

in March 2015 of Skukuza study area, a typical Lowveld savanna showing vertical vegetation 

stratification upon which height thresholding was based.  

 

 

Figure 3-16. A photo showing savanna vegetation cover classes in Skukuza, Kruger National Park in 

March 2015. (Photo courtesy: Victor Odipo). 

 

Chessboard segmentation was applied on the CHM, and each class was assigned based on the 

pixel values. The pixels with EC tower were first classified and removed based on user 

knowledge, visualisation and height. 20 m SAR pixel grids were created over the study area 

and was used to compute not only pixel-level savanna vegetation classes but also AGB and CC 

for the study area. The OBIA-derived classes were exported as ESRI shapefiles where these 

classes were intersected with 20 m SAR grids, then further dissolved based on grid/pixel IDs 
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to separate the classes within grids/pixels. For pixel-level analysis, proportion of each of the 5 

classes was computed to allow selection of dominant classes (pure or near pure pixels) per 

grid/pixel. For each cover class based on proportion of cover (dominant class) per grid, 12 

samples with higher proportion of cover per class were selected, making the total samples used, 

n = 60. Figure 3-17 below shows the proportion of class distribution within each of the 60 

sampled 20 m grids, while Table 3-4 shows the range of sampled grids with pure or near pure 

(dominant) cover classes. First, the 12 samples per class were plotted against multi-temporal 

C-band backscatter values, then a mean from the 12 samples were computed per class and 

plotted for comparison on their separability (Chapter 4). Further, to assess the magnitude of 

separability in terms of backscatter intensity (dB), the difference between classes were 

computed, giving rise to 5 separability classes: large and medium, large and small, large and 

shrubs, medium and small, and medium and shrubs. 

 

 

Figure 3-17. Cumulative bar graphs showing proportion of class distribution within each of the 60 

sampled 20 m grids. 
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Table 0-4. Summary statistics of the sampled vegetation cover classes based on dominant class (%) per 

grid. 

  COVER CLASS 

  Grass & 

background 

Shrubs Small 

trees 

Medium 

trees 

Large 

trees 

MAXIMUM 100 48 35 57 87.8 

MINIMUM 11 0 0 0 0 

 

29 C-band SAR scenes with dual polarisations (VV, VH) were used, from which the four SAR 

metrics were derived, with an aim of assessing their sensitivity to the vegetation structure 

variables within a 20 m SAR pixel. For each polarisation, multi-temporal data was subdivided 

into two seasons, dry (May to September) and wet (November to March) according to climate 

information in section 2.2.1 shown in Figures 2-1 and 2-2, leaving out transitional months 

(April as a transition between wet to dry season, and October as a transition between dry to wet 

season). Multi-temporal speckle filter was applied on the SAR backscatter datasets according 

to Quegan & Yu (2001) within two moving windows, 3 by 3 and 5 by 5, to assess the effects of 

speckle filter window size on SAR sensitivity to savanna vegetation. Savanna vegetation 

variables as the dependent variables were therefore computed from TLS datasets (CHM and 

point clouds) for each of the 20 m SAR pixels within the study area. Besides the AGB and CC 

abundance classes, the mean of each of the two variables was also computed. This is because 

the classification into abundance classes left out some data points. By computing the mean for 

all AGB plots and CC plots, all the range of datasets are captured in the plots.  

 

3.6. Conclusion on methodology 

 

This section gave a description of the methods adopted in answering the research questions of 

this study and ultimately achieving the study objectives outlined in Section 1.5. An in-depth 

description of the study area has been made in Section 3.2, giving emphasis to the factors that 

affect vegetation dynamics within the area including but not limited to climatic conditions, soil 

and topography and vegetation characteristics. An overview of the microwave datasets used in 

modelling savanna vegetation structure within the study area, mainly L- and C-band SAR, has 

been presented in sections 3.3.5 and 3.3.6 respectively. For validation of SAR modelled 

structure variables, two reference datasets have been used, field inventory data which was 
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acquired in the wet season and TLS data which was acquired in the dry season. For both the 

SAR and reference datasets, an in-depth description of their acquisition and processing has been 

presented. The results from the methods adopted in this section and summarized in Section 3.1 

form the basis of the next chapters. 
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CHAPTER 4 

4. Results 

 

4.1. Field and TLS Biomass 

 

Figure 3-12 (a) shows the distribution of field biomass per tree as computed from field 

inventory data, while Figure 4-1 is a map showing the spatial distribution of field inventoried 

plots within the study area. The mean AGB within the inventoried 30 m plots was 31.9 ± 21.3 

t/ha, with a range between 3.1 t/ha for the plot with the lowest biomass and 94.3 t/ha for the 

plot with the maximum biomass, consistent with estimates from similar studies carried out 

around KNP by Nickless et al., (2011); Colgan et al., (2013) and Mograbi et al., (2015). The 

trees within the inventoried plots had basal diameter ranging between 6.4 and 105 cm, and 

height of between 1.5 (inventory targeted trees with H > 1 m) and 12 m, with mean of 35 cm 

and 6.2 m for basal diameter and height, respectively. From the plot in Figure 4-2, it is evident 

that basal diameter has a larger impact on the estimation of AGB than does tree height. Most 

inventoried trees contributed biomass (modal biomass) ranging between 20 and 30 t/ha, as can 

be seen from the field biomass distribution in Figure 2-11 (a).  

 

Figure 4-1. Distribution of 30 m field inventoried plots around Skukuza eddy covariance (EC) flux 

tower, and the extent of TLS data footprint (Background imagery source: Google Earth). 
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Figure 4-2. Tree height, diameter, and the resultant AGB per inventoried tree within the study area. 

 

Figure 4-3 is a map showing spatial distribution of plot-level AGB computed from TLS data. 

On average, there were at least one tree or shrub within the 20 m plots, with some plots 

recording up to three trees, mostly multi-stemmed shrubs. Of the 674 identified trees from TLS 

data, only 565 had enough point clouds at 1 m height to reconstruct their circumference 

necessary for DBH measurement. The measured basal diameter ranges between 11 and 70 cm, 

with a mean of 39.6 ± 12.9 cm. The individual tree heights ranged between 5.3 to 16.1 m, with 

a mean of 10.7 ± 1.7 m. The 565 trees fell within 445 Sentinel-1 pixels around the TLS footprint, 

here referred to as AGB plots. The mean plot AGB from TLS measured trees is 35.6 ± 32.7 

t/ha, with a range of 1.2 t/ha and 145.9 t/ha within the 445 sampled plots (Figure 4-3).  
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Figure 4-3. Map showing biomass distribution within 445 reference plots derived from TLS point cloud 

tree measurement within the study area. (Background imagery source: Google Earth). 

 

Results from the 237 field inventoried trees show variability with regards to AGB across the 

plots (Figure 4-4), with a total woody biomass of 120,414 kg. The mean AGB for all field 

inventoried trees in the entire study site was 508.1 kg. The observed mean (± error margin) 

from all the 42 plots was estimated at 535.9 ± 95.1 t/ha (at 95% confidence interval, CI: 441 to 

631) as shown in the plot in Figure 4-4. Two plots (Id No. 322 and 716) recorded higher biomass 

values, with a total of three plots at 95% CI falling outside the overall mean plot biomass (31.9 

t/ha) of the inventoried trees.  
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Figure 4-4. Biomass estimates for each of the 42 sampled plots in kg. The red line shows the mean AGB 

in kg while the bars are 95% confidence intervals for AGB. Each plot is 0.09 ha in size. 

 

4.2. SAR-TLS Biomass Prediction Models 

 

L-band ALOS PALSAR data was used to model AGB for the study using TLS-derived CHM 

metrics, CC and CH. Table 4-1 summarizes field AGB performance to TLS-derived metrics 

and L-band SAR backscatter intensity performance to TLS-derived AGB, with correlation plots 

in Figure 4-5. As expected, biomass values showed correlation with all the TLS metrics and L-

band SAR backscatter. Of the three TLS metrics, a product of canopy cover and canopy height 

(CC x CH) outperformed the individual metrics, CC or CH, with the latter two resulting in 

RMSE of 4.77 t/ha and 2.13 t/ha, respectively. This is in congruence with observations made 

by Colgan et al., (2012). From these results, it is evident that variance increases with increasing 

AGB as evidenced by the large deviation of plot value from mean AGB value in the study area. 
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Table 0-1. TLS and microwave AGB predictor variables and associated error and coefficient of 

determination (R2). 

Predictors RMSE (t/ha) Mean AGB± σ 

(t/ha) 

Bias R2 

CC 4.77 32.2± 26.73 1.27 0.91 

CH 2.13 34.2 ± 24.43 −0.57 0.47 

CC x CH 2.32 34.2 ± 30.78 −0.62 0.99 

SAR-HH 6.7 32.2 ± 14.54 −0.21 0.63 

SAR-HV 6.1 32.2 ± 14.29 −0.26 0.74 

SAR-2007 9.3 19.92 ± 2.6 0.19 0.47 

SAR-2008 3.9 20.07 ± 3.0 0.4 0.5 

SAR-2009 4.6 20.24 ± 4.8 −0.6 0.61 

SAR-2010 12.7 19.72 ± 5.2 −0.3 0.48 

     

Studies by Nickless et al., (2011) proposes log transformation of biomass to stabilize variance 

to achieve homoscedasticity. TLS metrics were therefore correlated with both non-transformed 

and log-transformed plot biomass values (Figure 4-5) and further an assessment of the resultant 

errors from SAR backscatter prediction using product of the two TLS metrics as reference. 

From these results, it is evident that variance increases with increasing AGB as evidenced by 

the large deviation of plot value from mean AGB value in the study area. Studies by Nickless 

et al., (2011) proposes log transformation of biomass to stabilize variance to achieve 

homoscedasticity. TLS metrics were therefore correlated with both non-transformed and log-

transformed plot biomass values as shown in Figure 4-5 and further an assessment of the 

resultant errors from SAR backscatter prediction using product of the two TLS metrics as 

reference. 
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Figure 4-5. Correlation between TLS canopy cover height metrics and AGB and log (AGB). 

 

The error distribution in L-band SAR AGB prediction by the various TLS predictor variables 

is shown Figure 4-6. The figure shows the regression plots for L-band SAR predicted AGB 

against the reference TLS-derived AGB. For the individual metrics, CC and CH, there is 

randomness in AGB distribution along the 0-horizontal line, while for the product of CC.CH, 

this is not the case, with most positive residual values. This further explains the log-

transformation applied on the AGB to reduce the heteroscedasticity and variance. The residuals 

further show the level to which L-band SAR is sensitive to AGB within this area, beyond which 

there is error propagation in such prediction, here between 60 and 100 t/ha. TLS-derived 

biomass has RMSE lower than 5 t/ha. The error (RMSE) obtained from predicting AGB using 

TLS metrics as reference is higher (6.7–6.6 t/ha for HH and HV, respectively) than that derived 

from field inventoried biomass values (2.1–4.8 t/ha). This is due to additional error which 

results from step-wise prediction, where the field reference AGB was used to model TLS 

reference AGB for use in modelling AGB for the entire study area, and so it is assumed errors 

are propagated at every modelling stage.  
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Figure 4-6. Regression and residual plots between TLS metrics derived AGB and field. CC denotes 

canopy cover, CH denotes canopy height, and RMSE denotes root mean square error 

 

This is the case because the field data points derived from 33 field plots were few, and so the 

TLS-predicted or modelled AGB provided more reference data points necessary for landscape-

wide AGB estimation. There is biomass underestimation by the SAR modelling, as can be seen 

in both low mean biomass and the negative bias estimates. SAR modelled AGB had a mean of 

32.2 t/ha, which is lower than those from TLS metrics. All AGB predictors yielded mean 

biomass ranging between 19.7 ± 5.2 t/ha for the 2010 SAR backscatter-based prediction, and 

34.2 ± 30.78 t/ha for the product of the TLS cover and height prediction. All these values are 

within the range of typical of biomass estimates within the Lowveld savanna as presented by 

previous studies within this ecosystem.  

 

4.3. Radar Sensitivity to Biomass 

 

This study evaluated the sensitivity of SAR backscatter to AGB in two ways. First, individual 

backscatter intensity was assessed, and then the SAR modelled biomass were assessed. Biomass 
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per plot was computed by weighting σ0 (dB) values based on area proportion intersecting the 

TLS-AGB pixels. A weighted biomass per intersection was then computed. A regression 

analysis between the σ0 and AGB showed that these two metrics were strongly correlated. An 

assessment on the response of σ0 to AGB was performed in three ways: first, the dual-pol multi-

temporal SAR response was assessed; second, polarimetric response (HH and HV) was 

assessed as visualized in Figure 4-7. Lastly, yearly AGB was estimated to assess the multi-

temporal, inter-annual SAR backscatter response to AGB for the four years, between 2007 and 

2010.  

 

 

Figure 4-7. Correlation between L-band SAR-derived biomass and reference TLS-metrics derived 

biomass. The graphs show co- and cross polarised L-band ALOS derived AGB responses 

 

Generally, L-band SAR underestimated AGB, with a mean AGB ± σ of 32.2 ± 14.54 and 32.2 

± 14.29 for SAR co-polarised HH and cross-polarised HV, respectively, in comparison to TLS-

metrics derived AGB. Lower AGB estimates were recorded when the polarisations for 

individual years combined, with 2007 and 2010 recording the lowest AGB of 19.9 ± 2.6 t/ha 

and 19.7 ± 5.2 t/ha, respectively. Figure 3-9 shows the biomass maps derived from combined 

datasets, different polarimetry, and individual years, using RF and linear regression models. 

 

 



94 

 

4.4. Biomass Change Detection 

 

Figure 4-8 shows L-band SAR modelled AGB for the study area over the four-year period, 

covering dry seasons for the years 2007, 2008, 2009 and 2010. Since all the four SAR datasets 

were acquired during the dry season, sensor and incident angle from an ascending pass, a 

comparison of AGB between these years was possible with three band differencing 

combinations (t2-t1); 2008 – 2007, 2009-2008 and 2010-2009. The temporal SAR AGB 

estimation for the three years yielded mean AGB ranging between the lowest in 2007 at 19.9 ± 

2.6 t/ha and the highest in 2009 at 20.2 ± 4.8 t/ha. The study assessed the relative change in 

AGB within the study area over the four years of study. Generally, there was an observed slight 

increase in mean AGB between the years 2007 and 2009, but the overlap in the confidence 

intervals of the estimated AGB over this period makes the increase nonsignificant. Therefore, 

a relative change analysis over the four years covered by the SAR data was performed. First, 

biomass was reclassified with 5 t/ha interval AGB classes, followed with an assessment of the 

areas within the study area which experienced changes in the AGB with an increase or decrease 

above and below 5 t/ha AGB respectively, between the years was carried out.  
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Figure 4-8. Predicted woody biomass from L-band SAR backscatter intensity (HH and HV) for the years 

2007, 2008, 2009, and 2010 

 

The results in Table 4-2 show an overall decrease in AGB, with 3.5% of the study area 

experiencing a decrease in AGB of more than 5 t/ha over the four-year period. Only 3% (27.3 

ha) of the 900-ha study area showed an increase in AGB of more than 5 t/ha. Generally, biomass 

decreased consistently between 2007 and 2009, from 3.3% of the area with an increase >5 t/ha 

in 2008–2007, to 3.2% in 2009–2008, and finally, a lower 2.6% between 2010 and 2009. 

Conversely, the study area experienced high biomass reduction with areas experiencing >5 t/ha 

reduction steadily increasing from 3.2% to 3.3% and finally 4.1% for 2008–2007, 2009–2008, 

and 2010–2009 combinations, respectively. Over the four-year period, more than 90% of the 

area experienced a change in biomass of less than 5 t/ha. This constitutes areas which 

experienced a nonsignificant increase or decrease below the 5 t/ha threshold. 
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Table 0-2. Relative change in AGB in Skukuza between 2007 and 2010. 

 

Increase (>5 t/ha) Decrease (>5 t/ha) <5 t/ha 

Area (ha) % Area (ha) % Area (ha) % 

2007–2008 29.9 3.3 28.8 3.2 841.3 93.5 

2008–2009 28.9 3.2 29.9 3.3 841.2 93.5 

2009–2010 23.1 2.6 37.3 4.1 839.6 93.3 

Average 27.3 3.0 32.0 3.5 840.7 93.4 

 

The cumulative change in area with >5 t/ha AGB over the four years, when summed yields a 

cumulative decrease in AGB within 81.9 ha (9.1%) of the study area where a cumulative 

increase in AGB occurred within 96 ha (10.6%) of the study area. This shows that, overall, the 

area with AGB above 5 t/ha was reduced for 32 ha (3.5% of the study area). From the biomass 

change maps in Figure 4-9, it is evident that most changes were restricted to areas around the 

rivers, streamlines and valleys. These areas are predominated by woody vegetation as visualized 

in the background land cover map in Figure 4-9. These areas are most likely to have biomass 

values more than 5 t/ha and changes detectable. 
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(a) 

 



98 

 

(b) 

 

(c) 

Figure 4-9. Biomass change results over the study period 2007–2010, with six change combinations 

with (a) 2007–2008; (b) 2008–2009; and (c) 2009–2010 

 

4.5. C-band SAR interactions with savanna vegetation structure components 

 

4.5.1. Interactions of C-band SAR with savanna vegetation cover 

 

The interactions between multi-temporal C-band Sentinel-1A SAR metrics (backscatter 

intensity, speckle filter and seasonality) on savanna vegetation structure variables, including 

AGB (t/ha), CC (%) and vegetation cover classes as tree height proxy were investigated. To 

assess the SAR σ0 response to the various savanna vegetation cover classes, an intersection of 

every class with the 20 m SAR pixel grids made it possible to assign a dominant class for each 

grid. An assumption is made to the effect that despite a pixel composing multiple vegetation 

cover classes, the class with a higher proportion within such a pixel will contribute the most to 

the σ0 signal than the minority classes. The class with the highest proportion per pixel is referred 

to as the dominant class in this study. Figure 4-10 is the resultant classification from height 
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thresholding the TLS CHM after methods adopted in Vaughn et a., (2015) and Naidoo et al., 

(2012), and further class partitioning to compute the dominant class per SAR pixel (for 

example, 20 and 23 with blue borders). From Figure 4-10, the inset map and accompanying 

table for grid 20, background occupies some 30.6 %, small trees 1 %, medium trees 0 %, large 

trees 63.9 % and the shrubs 4.5 %, thus making large trees the dominant class for grid 20. Grid 

23 is assigned the background class because background is the dominant class with 55.1 %, 

followed with medium trees at 33.3 %, and finally shrubs while small and large trees are not 

available in this grid. This methodology was adopted in assigning a dominant vegetation cover 

class to each of the pixels within the TLS footprint. 

 

 

Figure 4-10. Five vegetation cover classes obtained from OBIA height thresholding the TLS CHM. Inset 

is the grid partition and dominant class selection. 

 

For seasonal SAR σ0 response to the various structure variables, the two seasons, wet and dry 

are separated, with former running between November 2015 to March 2016, while the latter 

between May 2016 to September 2016. April and October are transition months between wet-

dry and dry-wet seasons respectively and is deduced from the area’s climate data analysis by 

Kruger et al., (2002), and therefore SAR backscatter response to vegetation structure during 
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this period is not clear. To assess pixel-level SAR interactions with the various vegetation cover 

classes, the C-band SAR metrics were plotted against background over the 29 Sentinel-1 C-

band SAR acquisition dates between 3.11.2015 and 28.10.2016. This period allowed 

assessment of seasonal response for the two polarisations (VV, VH) since it covered both dry 

and wet seasons. The C-band SAR metrics investigated include SAR σ0 and speckle filtered 

backscatter intensities within 3 x 3 and 5 x 5 moving windows and SAR polarisations (VV and 

VH).  

Figure 4-11 shows the response of C-band SAR backscatter intensity (in dB) to the various 

vegetation classes. From the plots, VV backscatter response to all vegetation classes is higher 

(Figure 4-11 a) than in the VH (Figure 4-11 b) as can be seen in the backscatter coefficient (σ0) 

value ranges in the plots. Backscatter is higher in the VV polarization than does the VH due to 

depolarization of the incoming V to emitted H signal. The geometry and haphazard orientation 

of vegetation canopy features such as branches, twigs and trunks attenuate the signals as they 

bounce back and forth within the canopy “volume” and this lowers the strength/intensity of the 

backscattered or reflected energy back to the sensor. On the other hand, the VV does not suffer 

this attenuation with the signal received in the same magnitude as emitted by the sensor. 

However, the magnitude within which C-band backscatter is sensitive to inter-class variation is 

higher in the VH than in the VV. This is seen in the gap or separation between plots (inter-class 

dynamic ranges) in the multitemporal plots between large and small trees, high and low CC and 

AGB abundance classes. This inter-class separation tends to be wider/higher in the VH than it 

is in the VV polarization.  

 The σ0 ranges between -16 dB for small trees in the dry season (on 10.9.2016) and -10 dB for 

large trees in dry season (on 9.12.2015) in the VV polarisation. For the VH however, the σ0 

range is -22 dB for small trees in both wet season (on 14.1.2016), dry season (0n 10.9.2016) 

and -16.7 dB for large trees in the wet season on 9.12.2015. The σ0 response from large and 

medium trees is higher than from small trees in both VV and VH polarisations. The backscatter 

response to shrub, medium trees and background is not clear, though their response is higher 

than small trees but lower than large trees. These three classes seem to overlap in backscatter 

response because the plots cross each other at various dates, making it impossible to explain 

their responses individually. The difference in σ0 response for small and large trees is visible in 

both VV and VH polarisation, but more pronounced in the VH polarisation in terms of the 

dynamic range between the two classes. For example, after the high σ0 experienced on 

9.12.2015, the response to large trees for the entire study period (from 21.12.2015 to 
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28.10.2016) ranges between -19.8 dB and -18 dB while for small trees it is from -22 dB to -20 

dB (see Figure 4-11 b). VV displays two high peaked backscatter response to all cover classes 

on 15.11.2015 and 9.12.2015 at -10.8 dB and -10 dB respectively, while the VH response is 

only elevated on 9.12.2015 at -16.7 dB. On these dates, all the vegetation cover classes are 

displaying the same high-level backscatter response for both polarisations.  

 

C-band SAR σ0 response to vegetation cover classes varies within seasons, with the plots 

showing high σ0 response in the wet season and a proportionate high dynamic range within and 

between classes compared to dry season for both polarisations. A closer look at the rainfall and 

moisture data plots for the study area during the study period in Figure 3-10 (section 3.3.6) 

shows that the days that experienced high backscatter response followed days of rainfall events. 

On 14.11.15 the area received a rainfall of 6.86 mm and on the same date the soil moisture 

probe had a reading of 4.77 m3m-3. The soil moisture however rose to 7.56 m3m-3 on 15.11.2015. 

Correspondingly, this day gave a high backscatter response of ~ -10.8 dB for VV. The high 

backscatter coefficient on 9.12.2015 for both VV and VH follows a rainfall of 20.32 mm 

received the previous day on 8.12.2015. The effect of this rainfall event is seen in high soil 

moisture of 13.38 m3m-3 on 8.12.2015. On three dates of 9.3.2016 and 11.3.2016, the study area 

experienced rainfall events amounting to 7.59 mm and 10.16 mm respectively with an effect of 

rising soil moisture from 14.03 on 11.3.2016 to 15.42 on 12.3.2016. From Figure 4-11, it is 

worth noting that two days after, there is a corresponding increase in backscatter response on 

the plots on 14.3.2016.  There is an interestingly high C-band SAR backscatter response to 

background class, which is basically soil, rocks and herbaceous layer with less than 1 m height., 

than small trees. Shrub and medium vegetation show an almost similar response to background 

class even though the high interclass dynamic range leads to overlap in backscatter response 

between the three classes. 
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Figure 4-11. Temporal changes in C-band SAR backscatter response to the various vegetation cover classes for (a) VV - and (b) VH polarisation. 
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Figures 4-12 and 4-13 shows the results from application of Quegan multi-temporal speckle 

filter on the backscatter images used in Figure 4-11, on a 3 by 3 and 5 by 5 filter windows 

respectively. In each case the effects of SAR response to the vegetation cover classes was 

investigated for both VV and VH polarisations. The high backscatter response of the VV signal 

is still visible in the speckle filtered σ0. From the plots, it is evident that the inter-class overlap 

noticed in Figure 4-11 is reduced with application of speckle filters on backscatter intensity and 

the gap between plots increases with an increase in filter window size from 3 b 3 to 5 by 5. 

Unlike the unfiltered σ0 images, the speckle filtered images shows a possibility of distinguishing 

SAR response to various cover classes even in the wet season, especially the small and large 

trees. Inter-class overlap between plots is reduced by lowering the within-class σ0 dynamic 

range, more so in the dry season. The extreme effects of rainfall events on backscatter causing 

overlap in classes is also reduced, giving a possibility to assess SAR backscatter response to 

individual large and small tree classes. However, same as in the non-filtered C-band SAR 

images, there remains overlap in SAR response to background, shrubs and medium trees for 

both VV and VH polarisations. The VH still displays the highest between-class σ0 response for 

small and large trees in both VV and VH, and this gap widens with an increase in speckle filter 

window from 3 by 3 to 5 by 5 and a move from wet to dry conditions (Figures 4-12 and 4-13).   

 

As a summary, it can be stated that the σ0 response on background is more pronounced in the 

speckle filtered plots than in the non-filtered. As in Figure 4-11, both Figures 4-12 and 4-13 

show higher backscatter response in the background than in the small trees. For speckle filtered 

data, backscatter response from background is higher than shrubs and small vegetation for both 

VV and VH signals and in some cases, both seasons. 
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Figure 4-12. Effects of Quegan multi-temporal speckle filter on a 3 by 3 window, on the seasonal changes in C-band SAR backscatter response to the various 

vegetation cover classes for (a) VV - and (b) VH polarisation. 
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Figure 4-13. Effects of Quegan multi-temporal speckle filter on a 5 by 5 window, on the seasonal changes in C-band SAR backscatter response to the various 

vegetation cover classes for (a) VV - and (b) VH polarisation. 
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4.5.2. Interactions of C-band SAR with TLS-derived CC and AGB 

 

Figure 4-14 shows a map of TLS CHM-derived CC for 1206 grids within the TLS footprint. 

TLS CHM-derived CC within the study area ranges from 0.13 to 88.94 %, with a mean (± σ) 

CC of 26.34 ± 14.55 % (Table 4-3). 

 

Figure 4-14. Map showing canopy cover (CC) distribution within 1206 reference plots derived from 

TLS CHM within the study area. 

 

 

Table 0-3. Summary statistics of the TLS CHM derived canopy cover within 20 m plots in Skukuza. 

TLS CHM-derived CC (%) 

No. of plots 1206 

Minimum 0.128572 

Maximum 88.9427 

Mean 26.34342 

Standard Deviation 14.55336 
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Both TLS-derived AGB and CC were classified into three abundance classes - low, moderate 

and. To assess the SAR σ0 response to a dominant class, the mean of the sampled classes was 

computed and plotted over the 29 SAR acquisition dates, covering the period of investigation. 

Since abundant class partition leaves out some data points (CC and AGB values) outside the 

class thresholds, the mean of all CC and AGB plots was computed and included in the plots to 

explain the overall response and capture the behaviour of the data points outside the abundance 

classes. Just like in the case of vegetation cover classes, the effects of SAR polarisation (VV or 

VH), seasonality (wet and dry seasons) and speckle filter window (3 by 3 or 5 by 5) on multi-

temporal SAR σ0 response to the two AGB and CC were investigated.  

Figure 4-15 a and b shows σ0 response to CC in both VV and VH polarisations respectively. 

The response of the abundance classes is assessed and compared with the mean of all CC plots 

(black plot, n = 1206). From the plots, it is evident that like vegetation cover classes, σ0 directly 

proportional to CC abundance classes, with the high CC abundance class giving high σ0 

response and low CC abundance classes showing low σ0 response. This is typically visible for 

both polarisations and seasons. The moderate CC abundance class has a SAR response like the 

mean backscatter response of all the CC pixels.  

The plots showing backscatter response to the three CC abundance classes in shown in Figure 

4-15. As observed in vegetation cover class interactions with σ0, the VV signal response is 

higher than the VH. For VV, the overall backscatter range for high CC abundance class is 

between -14 dB and -10.2 dB, which reduces to -14 dB to -12.8 dB in the dry season. The 

highest backscatter response is experienced in the wet season on 15.11.2015 and 9.12.2015 at -

10.5 dB and -10 dB respectively. The VH shows the widest gap between plots for the three CC 

classes (Figure 4-15 b). 
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Figure 4-15. Seasonal changes in C-band SAR backscatter response to CC abundance classes for (a) VV - and (b) VH polarisation. 
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Like the vegetation cover classes, Quegan multi-temporal speckle filters were applied on the 

multi-temporal SAR backscatter values at two different moving windows, 3 by 3 and 5 by 5. 

The results were used to assess the effects of changes in SAR speckle filter windows on C-band 

SAR response to various TLS modelled CC abundance classes. Figures 4-16 and 4-17 show the 

plots of multi-temporal plots with changes in SAR with low, medium and high CC abundant 

classes.  

The effects of speckle filter with 3 by 3 window in Figure 4-16 below is not so significant as 

the response looks like the non-filtered SAR response in Figure 4-15 above. It is however seen 

that in the wet season, the dates following rainfall events have different backscatter response to 

different CC abundant classes and not same values as in the non-filtered SAR backscatter. There 

is still the typical high backscatter response to high CC abundance values and low backscatter 

response to low CC abundance values, with the moderate CC abundance and mean CC values 

showing a similar SAR response. The moderate CC abundance class and mean of all CC plots 

are showing similar SAR σ0. Also noticeable is difference in SAR polarimetric response to the 

abundance classes, also with speckle filtered datasets. There is high SAR sensitivity to high CC 

classes, followed with moderate classes (like mean CC for the study area) and the low Cc 

abundance class having low SAR sensitivity. The overlap in SAR response to CC abundance 

classes seen in the VV of Figure 4-15 (a) is no longer seen when a 3 by 3 speckle filter window 

is applied on the SAR backscatter images (see Figure 4-16 a). 

 

To summarize, by increasing the speckle filter window to 5 by 5, the difference in SAR 

backscatter sensitivity to different CC abundant classes is clearer, for both VV and VH 

polarisations (Figure 4-17). In the VV, the difference between SAR sensitivity to high and low 

CC abundance is lower (Figure 4-17 a) compared to the VH (Figure 4-17 b). The multi-temporal 

plots also tend to almost flatten up in the dry season of the VH than it does in the VV 

polarisation. The days after rainfall events in the wet season shows high SAR σ0  response to 

all CC classes at varying degrees based on the abundance category, much higher than on the 

dry seasons. 
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Figure 4-16. Effects of Quegan multi-temporal filter on a 3 by 3 window on the seasonal changes in C-band SAR backscatter response to CC abundance classes for 

(a) VV - and (b) VH polarisation. 
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Figure 4-17. Effects of Quegan multi-temporal filter on a 5 by 5 window on the seasonal changes in C-band SAR backscatter response to CC abundance classes. 
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For AGB, trees with height above 5 m height were inventoried due to insufficient point clouds 

to reconstruct the basal diameter or trunk of tree with heights lower than 5 meter and DBH 

lower than 10 cm. Like CC, the AGB was also classified into abundance classes with low, 

medium and high. Additionally, to compensate for the AGB values outside the abundant 

classis’s thresholds, the mean AGB for the entire study area was computed and plotted 

alongside the abundance classes. The SAR σ0 response was therefore investigated against these 

four variables. Figure 4-18 a and b shows multi-temporal plot of C-band SAR σ0 response to 

AGB abundance classes, and the mean biomass within the study area, both for VV and VH 

polarisations respectively. 

Typical to both vegetation cover class and CC abundance plots, the σ0 response to AGB 

abundance classes is high in the VV than the VH. For VV, the σ0 ranges from -14.6 dB to -9 

dB, while in the case of VH, it is between -20.3 dB and -16 dB. Similar to the other vegetation 

structure variables, σ0 response is high for both VV and VH in the wet season than in the dry 

season. In the wet season, the σ0 dynamic range is high from -14.6 dB to -9 dB for VV (~ 5.6 

dB difference) and from -20.3 dB to -16 dB in the VH (~ 4.3 dB). This is high compared to dry 

season which has a dynamic range of between -14.6 dB and -13.8 dB for VV (~ 0.8 dB), and 

from -20.3 dB to -19 dB for VH (~ 1.3 dB). This means there is a lot of changes in σ0 in the wet 

season than in the dry season. However, the inter-class σ0 response to AGB abundance classes 

is very low, with overlapping plots for both polarisations and seasons. 

In summary, application of multi-temporal speckle filter does not improve the C-band σ0 

response to different biomass classes as seen in Figures 4-19 and 4-20. 
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Figure 4-18. Seasonal changes in C-band SAR backscatter response to AGB abundance classes. 
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Figure 4-19. Effects of Quegan multi-temporal filter on a 3 by 3 window on the seasonal changes in C-band SAR backscatter response to AGB abundance classes. 
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Figure 4-20. Effects of Quegan multi-temporal filter on a 5 by 5 window on the seasonal changes in C-band SAR backscatter response to AGB abundance classes. 
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4.5.3. Summary on SAR interactions with savanna vegetation variables 

Table xx below shows a summary on the interactions of Sentinel-1A SAR σ0 response to the 

various savanna vegetation structure variables, as outlined in the sections 4.5.1 and 4.5.2. 

Table 0-4. Summary of interactions between SAR backscatter intensity and savanna vegetation structure 

variables. 

 

SAR parameter Interaction with the savanna vegetation variables 

σ0 Vegetation classes:  

 High σ0 for large trees than other vegetation classes, with 

lowest σ0 for small trees. 

 Background class (soil and herbaceous layer) shows high σ0 

response than small trees. 

 Inter-class difference in σ0 response between large and small 

trees more pronounced in the VH than VV. 

 High σ0 response in the wet season and an almost similar σ0 

for all classes in the wet season, especially days following 

rainfall episodes 

Canopy cover: 

 High CC abundance classes give proportionate high σ0, low 

CC gave low σ0 while moderate CC class gave comparable 

σ0 to the mean CC. 

 Wet season CC gave a higher σ0 response than in dry season, 

for all CC classes. 

 High inter-class σ0 response between the 3 classes achieved 

in the VH polarization  

AGB: 

 Wet season σ0 response to AGB is higher than in the dry 

season. 

 There is high inter- and intra-class overlap in SAR σ0 

response to AGB of different abundant classes. 
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Multitemporal 

filter  

Vegetation classes: 

 Reduced inter-class overlap in the multitemporal plots, even 

in the wet season. 

 Low within-class dynamic range for vegetation classes, 

making it possible to independently assess seasonal class 

response. 

 σ0 response on background is more pronounced than in non-

filtered, with improvements achieved in increasing filter 

window size from 3 by 3 to 5 by 5. 

Canopy cover: 

 At 3 by 3 filter window, there is not much difference in The 

SAR σ0 response from unfiltered SAR data. 

 Improved inter-class σ0 response between the three CC 

classes is only attained at the highest filter window of 5 by 

5. 

 Wet season σ0 response is comparatively higher than in the 

dry season. 

AGB: 

 Speckle filter application does not improve inter-class SAR 

σ0 response to all AGB abundance classes. 

 

 

4.6.Uncertainty and Error Analysis 

 

In this study, there are several definite sources of uncertainty whose consideration is important 

towards achieving the objectives of this study. These include, among others, (i) uncertainty in 

plot mensuration during fieldwork, especially height measurement, (ii) uncertainties in using 

the field data for TLS-derived AGB for the allometric model, (iii) uncertainties in using TLS-

derived AGB as reference data for AGB estimation and change detection from SAR backscatter 

intensity data over a small area, and (iv) uncertainties in TLS point cloud tree mensuration 

especially heights of fallen and multiple stems. Studies by Mitchard et al., (2011) have pointed 
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to errors associated with field height measurement, as seen in Figure 3-15. Here, despite using 

TLS canopy height instead of absolute tree heights from TLS data, an underestimation of tree 

heights is seen, with lower field inventoried heights correlating better to the TLS canopy height 

than higher measured heights. This is partly because the accuracy in height measurement using 

a Laser rangefinder depends on the distance, and the further one moves from the tree to be 

inventoried, the more difficult it becomes to pinpoint the highest point of a canopy from which 

the measurement should be taken. There is a wide disparity in the statistics from tree inventory 

using the two methods. The field heights ranged between 1.5 and 12 m, while the TLS tree 

measurement gave a height range of 5.3 and 16.1 m. A possible solution can be achieved 

through repeated measurement of the same trees and by averaging the captured tree variables. 

Diameter measurements are usually accurately measured and hence their accuracies are not 

compromised during field inventories (Adler & Synnott, 1992). Biomass model uncertainty in 

the study emanates from the difference in timing between acquisitions of field and TLS datasets. 

The former was acquired in the wet season while the latter in the dry season of the same year. 

There is error propagation from field-TLS biomass prediction and using the same as a reference 

in predicting biomass from SAR. This is visible in the results from Table 3-1 where the 

predictions with TLS AGB as reference yields higher RMSE values than the RMSE obtained 

in its prediction from field-derived biomass. Field inventoried datasets were few and therefore 

not representative enough as a reference in SAR based AGB model training and validation, 

which further motivated the use of TLS-derived AGB as the reference dataset when modelling 

AGB from SAR backscatter intensities.  

For error analysis, the residuals (Residual = (У − Ў)) from the fitted regression models were 

assessed—the difference between the reference and predicted or derived aboveground biomass. 

To assess the assumption of heteroscedasticity in the model residuals which should result in the 

model residuals being randomly distributed around zero for a range of predicted AGB, the 

residuals were plotted against the predicted AGB values for TLS and SAR backscatter 

predictors. This is also a check for systematic bias from the regression models used in predicting 

AGB. The residuals allowed for estimating SAR sensitivity to biomass quantity within the 

Lowveld savanna, because there are uncertainties in modelling AGB beyond 40 t/ha. 

 

In TLS tree mensuration for individual tree height and DBH for AGB estimation, only those 

trees with height above 5 m height was measured, while the field inventory could only measure 

trees with heights not higher than 12 m as opposed to the highest height of 16.1 m from TLS 
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tree measurement (see Table 3-3). The insufficiency in point clouds to reconstruct a perfect 

cylindrical trunk at 1 m height for most of the trees whose heights were measured meant that 

these were left out in computing reference AGB from TLS-derive trees (see Figure 4-21 below). 

About 100 trees with heights as low as 3.4 m were left out of AGB estimation. This height 

threshold constitutes the shrub vegetation which contributes the bulk of woody vegetation 

within this biome and having left them out means that the TLS-derived AGB is overestimates 

and only reflects high tree biomass. 

 

 

Figure 4-21. Trunk diameter measurement from TLS PCs. Reconstruction of the DBH is dependent on 

availability of enough points. 

 

TLS individual tree height measurement entails estimating the distance between the lowest and 

the highest point cloud for every identified tree. Whereas this is more accurate compared to the 

use of an inclinometer in tree height measurement, sometimes these two PCs can be missed, 

leading to height underestimation. Savanna vegetation is made up of multiple stemmed shrubs 

and trees. Mensuration of these requires measuring the two stems where there are multi-

stemmed trees (Figure 4-22). The ambiguity in the multi-stemmed trees within this typical 

savanna calls for trunk diameter measurement at heights below breast-height, with most studies 

recommending 1 m height (Nickless et al., 2011; Mograbi et al., 2015, Colgan et al., 2012), 

while other like Colgan et al., 2013 using 10 cm above the ground. Where such multiple stems 

branch below 1 m height, all the stems and heights are measured and averaged and assigned to 
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the tree. However, when branching takes place above 1 m, then one trunk is measured below 

the branching and assigned to the tree. In the same breadth, at 10 cm height proposed in the 

studies by Nickless et al., (2011); Colgan et al., (2012) and (2013), it is difficult to separate tree 

trunk point clouds from other herbaceous and other low vegetation cover classes. 

 

 

Figure 4-22. Multi-stem tree within the study area. Depending the height at which the trunks split, all 

must be measured, averaged and assigned to the common tree. 

 

Dead and fallen trees make up a very high proportion of AGB and about 10% within the tropics 

(Condit, 2008). The latter where possible and can be identified during field inventory should be 

inventoried and included in the overall biomass estimation of an area. However, height 

measurement is not possible when the dead tree is lying vertically on the ground. For fallen 

trees, the height at which the tree broke, whether below or above 1 m height, further complicates 

such measurements. These complexities in structure and the methods deployed in measuring 

such fallen trees affect the final accuracy of AGB estimation within an area. 
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CHAPTER 5 
 

5. Discussion of results 

 

5.1. Spatial distribution of savanna vegetation structure within Skukuza 

 

5.1.1. Aboveground Biomass 

 

The allometric computed mean AGB around Skukuza study site from 42 inventoried field plots 

was 31.86 t/ha with mean plot values range between 3.1 t/ha for the lowest plot value and 94.3 

t/ha for the highest, which are within the range reported by earlier AGB studies within and 

around KNP (Nickless et al., 2011; Colgan et al., 2013; Mograbi et al., 2015), and typical of 

the Lowveld savanna AGB estimates. From the 237 field inventoried trees, a high correlation 

between tree basal diameter or DBH and AGB was observed, making this tree variable the 

greatest determinant of woody biomass at both tree- and plot levels as visualised by plots in 

Figure 4-2. Conversely, field measured height showed little correlation with the AGB. Tress 

with larger DBH gave a correspondingly high biomass values irrespective of the height, while 

on the contrary, those with higher heights and low DBH values gave proportionately low AGB 

values. At plot level, high AGB values were associated with high mean DBH within a plot. This 

was not only observed in the field inventoried trees but also with individual tree data derived 

from TLS point clouds. Studies by Binot et al., (1995); Luoma et al., (2017); Wang et al., 

(2019) shows that field DBH measurements suffer from fewer introduced errors as opposed to 

height measurement. Around 674 trees had both height and DBH measured from TLS point 

clouds, from which tree-level AGB was computed in kg/tree with a result showing a trend of 

an increase in AGB with an increase in DBH while the tree height shows clustering at lower 

AGB values. Figure 5-1 shows the relationship between tree-level biomass and the two 

variables, DBH and tree height, as computed from TLS data. As observed in the field measured 

data in Figure 4-2, AGB increases with an increase in tree DBH size while tree height shows 

little relationship with the resultant TLS modelled AGB. However, the basal diameter at plot-

level does linearly correlate to the log-transformed AGB, as displayed by the residual plots in 

Figure 4-6. L-band SAR data was used to model AGB for the entire study area over four years 

using TLS modelled biomass as reference data.  
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Figure 5-1. Tree-level height, diameter, and the computed AGB derived from TLS point clouds within 

the study area. 

 

Despite the underestimation of woody biomass within the study area, SAR backscatter 

predicted spatial variations in AGB within the study area with a range from 2.9 t/ha in low 

vegetation areas (typically open patches with grass/shrub and bare areas), to 101.6 t/ha in areas 

where trees are clumped with closed canopies around rivers and stream valleys. These values 

are within typical biomass ranges reported previously by Nickless et al., (2011) of 11.9–92.3 

t/ha. Previous studies within KNP and around the study area have obtained mean AGB ranging 

between 20 and 35 t/ha, with some values from these studies shown in Table 5-1. 

 

Table 0-1. Mean biomass values from various studies within and around Skukuza. *TLS ref= TLS 

reference tree dataset over 20 m plots; **Published and part of this dissertation. 

Plot size (Ha) Mean AGB (t/ha) Source (study) 

0.25 22.93 Nickless et al., 2011 

0.07 27 Colgan et al., 2013 

0.07 28.3 Colgan et al., 2012 

0.063 32.52 Mograbi et al., 20153 

0.09 31.86 Odipo et al., 2016** 

0.04 35.6 This study (TLS ref*) 

                                                           
3 This value is based on the results from low extraction areas of Bushbuckridge, typical 

Lowveld with human settlement. 
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The spatial distribution of woody biomass around Skukuza is highly variable, and this study 

showed higher biomass values occurring more frequently in low-lying areas around seasonal 

rivers and stream valleys (Figure 4-8). From the TLS derived CHM in Figure 3-9 (c), the tallest 

trees around the footprint measure around 21 m height and make up mostly the riverine 

vegetation. These are mostly broad-leaved vegetation with large tree trunks and closed canopies 

thus contribute to the high AGB values typical of plots within these areas. These lowland areas 

have good soil foundation for larger trees because receive rich soils swept from the up-slope 

areas either by runoff or erosion agents are deposited downslope through colluviation. Biomass 

change maps and land cover overlay maps also show the likely concentration of high biomass 

values in these areas within the study area. It is also worth noting that these are the same areas 

displaying significant biomass changes of above 5 t/ha. Temporally, the areas with high 

biomass values within the study area also display extended vegetation greenness periods 

slightly beyond the start of the dry season because of moisture and water availability (Scholes 

et al., 2001; 2002) either through their deep tap-roots which can access water under the soil 

layers after the onset of dry periods or through proximity to the seasonal rivers. Studies by 

Scholes & Walker, (1993); Levick et al., (2010); Colgan et al., (2012) and Baldeck et al., (2014) 

have cited soil catena formations and associated soil and hydrological characteristics as major 

influences on landscape-scale vegetation structure and compositional variability. The open mid-

slopes are prone to fire and herbivory especially by browsers who prefer open areas increasing 

their views to predators (Banks et al., 1996; Sankaran et al., 2005; 2014). The combination of 

fire and herbivory apart from low nutrient and thin soil layer because of runoff, therefore 

reduces woody cover development resulting to low biomass values in these regions of the study 

area. 

 

TLS plot-level AGB at 20 m showed significantly higher values and large dynamic ranges 

compared to field inventoried and subsequently L-band SAR modelled plots (at 30 m) within 

the study area. This is because of two factors: (i) averaging AGB (kg/ha) from many trees within 

small plots and few trees over bigger plots, since the TLS could capture many large trees within 

each 20 m plots than was inventoried in the field over the 30 m plots, and (ii) TLS tree inventory 

only captured larger trees with height above 5 m and basal diameter larger than 10 cm. The 

resultant biomass is therefore characteristic of medium and large tree components with less low 

shrub components. To derive TLS canopy cover and height metrics, plot averaging was used 

(Colgan et al., 2013), thereby degrading the spatial resolution of the TLS data from a full 

resolution of 0.06 m to the 20 m and 30 m plot sizes for C- and L-band SAR backscatter 
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responses, respectively. This method, though convenient for estimating each plot’s average 

biomass contribution and area-wide spatial distribution, leads to errors as observed in studies 

by Colgan et al., (2013), because intrinsic variability among individual trees within the plot are 

left out. Within this typical Lowveld savanna exists both multi-stemmed and single-stemmed 

trees, contributing biomass differently based on these tree TLS metrics, which are affected by 

non-linearly related biophysical variables (for example, height and basal diameter). The use of 

different plot sizes by different studies leads to varying mean AGB for the study area. From an 

analysis of a few such studies to estimate AGB in this typical biome, it is evident that inventory 

plot size to some extent affects mean AGB (see Table 5-1 above).  

 

The inter-annual L-band SAR data was able to detect changes, both increases and decreases in 

AGB of > 5 t/ha, and the spatial extent of these changes in terms of the proportion of the study 

area which experienced the reported decrease or increase in biomass of this magnitude between 

2007 and 2010. Previous studies on structural changes in the Lowveld savanna have showed 

similar decreases, with Banks et al., (1996); Wessels et al., (2013) and Mograbi et al., (2015) 

associating the decreases to fuelwood and timber extractions in settlement areas close to the 

park. Whereas precipitation is a major limiting factor to savanna structural dynamics, biomass 

inclusive, studies within protected areas without anthropogenic wood extraction identify fire 

and herbivory as the major factors behind vegetation dynamics with similar magnitudes at local 

scales (Colgan et al., 2012; Banks et al., 1996). The former affects mainly low shrubs and 

herbaceous vegetation layer (grass), while the latter, especially browsers, affects mainly woody 

vegetation components. Given the localised scale of this study, and that mostly wooded areas 

have been affected by the AGB changes, it suffices to conclude that herbivory, especially by 

mega-herbivores like elephants, is responsible for changes in woody biomass because they push 

down big trees, and modify the horizontal and vertical savanna vegetation structure as would 

be visible in both canopy cover and height, respectively.  

 

5.2. Temporal dynamics in savanna vegetation structure 

 

5.2.1. TLS data in vegetation structure mapping 

 

Direct field inventory has been used for decades to obtain tree variable data for the validation 

of remote sensing products (FAO, 1981). These methods have however proved to be inefficient 

both in time and space – non-representative geographical coverage with a high possibility of 
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omission and commission errors during data collection process. Where data is required for 

allometric development for carbon stock estimation, destructive sampling for wet and dry 

weight measurement is preferred. However, by assessing the relationships between tree 

variables acquired during field inventories with TLS metrics, it is possible to predict forest 

structure (Niemi et al., 2015; Calders et al., 2015). TLS has been used in the validation of 

individual tree variables like height and DBH. In the current study, AGB is computed from 

individual tree measured height and DBH from TLS point clouds and further used in an 

allometry to estimate AGB with 0.04 ha plots. Individual tree DBH was manually measured 

from TLS point clouds by reconstructing the circumference at 1 m height, to ensure the multi-

stemmed and coppicing trees are also captured since they form the bulk of woody biomass in 

most parts of the study site, as supported in studies by Colgan et al., (2012); Naidoo et al., 

(2015) and Main et al., (2016). The DBH measurement relied upon availability of sufficient 

point clouds to reconstruct a complete cylindrical trunk at 1 m height. Several studies have 

utilised the 3-D capabilities of TLS data to reconstruct tree stem volume and DBH as seen in 

Wang et al., (2016) who fitted point clouds at 1.3 m height to derive DBH for low vegetation 

for detection of shallow landslides. Herrero-Huerta et al., (2017) used TLS point clouds in 

urban tree mapping, while Cabo et al., (2018) compared tree variables derived from TLS and 

wearable laser scanning instruments. Most studies aimed at automating tree diameter 

reconstruction from TLS point clouds have adopted a similar approach. For the current study, 

the standard deviation (SD) for all points used in reconstructing a perfect cylindrical trunk was 

limited to 0.03 m, above which the trunk could not be used for subsequent allometry. The results 

show that most low-height vegetation comprising shrubs, could not be reconstructed with 

accuracy. Therefore, the lowest measured tree height and DBH were 11 cm and 5.3 m 

respectively (Table 3-3). This is in line with the observation made by Raumonen et al., (2015) 

who observed that TLS point clouds could not accurately reconstruct DBH for lower trees. For 

the current study therefore, the TLS point clouds could not detect tree parameters from trees 

with height below 5 m and basal diameter below 10 cm, the majority being herbaceous and 

shrub vegetation. In this savanna biome, shrub vegetation makes up a higher percentage of 

woody vegetation, with an implication on the overall aboveground biomass (Scholes et al., 

2001; Colgan et al., 2012; 2013). Whereas most of the field inventoried trees could not be 

matched with those identified in the TLS point clouds because field inventory captured more 

of lower vegetation than TLS, a correlation was only possible between mean plot height from 

field inventory and TLS canopy height. Both products are plot-averaged. According to Baronti 

et al., (1993), biomass retrieval can be satisfactorily achieved only after a correct classification 
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of vegetation fields since different plant geometries produce different biomass sensitivities. For 

this study, AGB was derived from individual tree height and basal diameter directly from the 

point cloud reconstruction, while CC (%) and the five vegetation cover classes were computed 

from TLS-derived CHM. This also informed the classification of AGB and CC into abundant 

classes for further investigation with C-band SAR backscatter. 

 

5.2.2. L-band SAR sensitivity to inter-annual changes in Aboveground Biomass 

 

The multi-temporal L-band SAR backscatter intensity values vary within the same pixel 

locations within the study area. This, despite using dry season data ranging between the months 

of September and October over the four years of study. Using datasets from the same season is 

helpful in explaining the changes in biomass attributed to different change agents working in 

the study area concurrently at different spatial scales. These include eco-climatic variables, 

topography and soil (topo-edaphic), frequency of fire occurrences, and herbivory impacts 

within the study area. Whereas the current study never investigated the role of all these factors, 

their magnitude of contribution to the AGB dynamics depicted by the current change results 

cannot be ruled out. A study by Ryan et al., (2012) suggested correction of effects of moisture 

to L-band SAR backscatter through recalibration of backscatter to ground data at each time 

step. To account for this, the L-band SAR datasets were acquired over dry season, to eliminate 

the effects of moisture on SAR backscatter intensity. Studies by Naidoo et al., (2015) and 

Urbazaev et al., (2015) proposed that dry season L-band SAR datasets are best suited for woody 

vegetation mapping for most biomes. From the inter-annual AGB maps in Figure 4-8 (a to d), 

there are noticeable high biomass values in the lowlands along river valleys for all years because 

of the presence of riverine vegetation with tree canopies. These areas apart from moisture 

availability during peak stream-flow in the rainy season, also store water long after the on-set 

of dry seasons that can be used by the trees in the absence of rainfall typical of dry seasons. The 

spatial distribution of trees in the study area is therefore partly attributed to fertile soil deposits 

from upland areas into lowland areas (Scholes et al., 2001; Smit et al., 2013). This corresponds 

to observations by Baldeck et al., (2014) and Scholtz et al., (2014) who cited that soil catena 

formations and associated soil and hydrological characteristics as major influences on 

landscape-scale vegetation structure and compositional variability. These topo-edaphic factors 

do not change much over short periods of time like four years of under the current study, as can 

be seen in occurrence of high AGB values in same locations within the study area. 
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By using multi-temporal L-band SAR data, this study detected biomass changes, both decreases 

and increases within the study area, by estimating the proportional area which experienced a 

biomass change over 5 t/ha (Table 4-2). The results from the biomass change analysis show a 

general reduction in biomass over the four years between 2007 and 2010. This is clearly seen 

in the cumulative reduction in the area that experienced a biomass increase above 5 t/ha. The 

areas which saw a reduction in biomass above 5 t/ha increased over the years from 28.8 ha 

between 2007 and 2008 to 37.3 ha between 2009 and 2010. The biomass change-maps in Figure 

4-9 also shows these changes are restricted to areas with woody vegetation as opposed to mid-

slopes with shrub/grassy areas. The areas with nonsignificant biomass changes (<5 t/ha) were 

mainly within the open areas with shrub, grass, and bare land cover classes. Without human 

interference in terms of woody vegetation extraction within KNP, low AGB from reduced high 

tree canopy is caused by mega-herbivores like elephants which when browsing top canopy 

knock down big trees. Studies by Asner et al., (2016) investigated the effects of megafauna 

(African elephant) on woody vegetation between 2008 and 2014 in KNP and reported a mean 

biennial tree-fall rate of 12% per hectare. This destruction of the tree vertical structure can not 

only lead to AGB reduction of proportional magnitude but also lead to a change in land cover, 

with a shift from trees to either shrubs, grass or bare patches. Changes in shrub and grass classes 

are attributed to grazers and frequent fire episodes from high biomass, and the resultant 

regeneration after fire regimes and saplings from fallen trees (van Wilgen et al., 2003). A 

reduction in woody biomass is mainly attributed to woody extraction, which in unprotected 

areas near settlements are caused by logging, clearance to create room for agricultural 

expansion and settlements among others. Mograbi et al., (2015) observed a loss in woody 

biomass around Bushbuckridge settlement adjacent to KNP and concluded that unsustainable 

fuelwood extraction by settlers are the main cause of losses in tall tree height classes. Over three 

years, Ryan et al., (2012) assessed a reduction in AGB by between 2.3 and 11.5% attributed to 

clearance for small-scale farming in Central Mozambique. Colgan et al., (2012) assessed the 

effects of topography and soil on biomass distribution within South African savannas and 

observed that topography and precipitation had a greater influence on woody biomass 

distribution. The current study was carried within KNP, which has enjoyed protection from 

human induced woody extraction for over eight decades (Sankaran et al., 2008; Scholtz et al., 

2014). The losses in AGB herein are therefore not attributed to anthropogenic factors such as 

woody products extraction.   
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5.2.3. C-band SAR sensitivity to seasonal changes in savanna vegetation structure 

 

The C-band SAR backscatter and its interactions to savanna vegetation structure variables was 

investigated over one year, between November 2015 and October 2016, covering wet season 

between November 2015 and March 2016 and, dry season running between May 2016 and 

September 2016. April and October were left out as transition months between these two 

seasons, because it is assumed they could not give a clear backscatter signal response to 

different vegetation structure variables. To assess the response of SAR backscatter to various 

savanna vegetation structures, three vegetation structure components were computed within 20 

m Sentinel-1 C-band SAR pixels, namely AGB (t/ha), CC (%) and vegetation cover classes. 

Multi-temporal SAR data was acquired over 29 dates between 2015 and 2016 and were stacked 

with acquisition dates as bands. From the multi-temporal stack, the predictor variables were 

derived including backscatter intensity and speckle filtered backscatter intensities within 3 by 

3 and 5 by 5 moving windows using Quegan multi-temporal filter and the two SAR 

polarisations (VV and VH) against which savanna structure variables were investigated.  

 

CC and AGB were classified into abundance classes from class sample means to ensure the 

variance between individual samples is reduced. The abundance classes better explain the 

responses given the complexity in the heterogeneous nature of the study area, where individual 

pixels comprise multiple scatterers with different characteristics. Savannas are mixed ecologies 

comprising grass, shrubs, and trees and therefore adopting an abundance classification better 

explains the SAR backscatter response associated with these three vegetation ecologies in the 

study area. This study therefore assumes that the SAR response to low abundance classes are 

typical of herbaceous vegetation, moderate abundance classes represent shrub vegetation 

response and the high abundance class is associated with a response typical of large trees within 

this biome. Apart from the abundance classes, the mean of all CC and AGB plots within the 

TLS footprint were computed, and the associated SAR backscatter response plotted alongside 

the abundance classes. Whereas the tree structure parameters used for TLS AGB modelling was 

limited by height above 5 m and basal diameter above 10 cm, the CC as a vertical vegetation 

above 1 m height captured all vegetation classes except herbaceous layer below 1 m height 

within the study area. Trunk reconstruction of trees with heights below 5 m was not possible 

from TLS point clouds, because this vegetation class had insufficient point clouds which could 

not form a perfect tree trunk at 1 m height. This observation is also made in studies by 

Raumonen et al., (2015) who noted that low vegetation could not be reconstructed by TLS data. 
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Table 3-3 shows the summary statistics of inventoried tree variables and AGB distribution 

within Skukuza computed from field inventoried and TLS identified trees. The field survey 

captured trees as short as 1.5 m high with the lowest DBH of 6.4 cm. From TLS point clouds, 

it was only possible to identify and model trees with heights above 5.3 m with the lowest DBH 

being 11 cm. The difference makes up the lower vegetation classes within the study area. In 

this study, σ0 response is assessed based on the inter-class dynamic range- how far apart the 

temporal plots for the various (abundance) classes are separated from each other. In this way, a 

response can be associated with a savanna ecology. The SAR backscatter sensitivity and 

response is therefore how individual multi-temporal plots are far apart and hence the possibility 

of independent or separate assessment. The assessment was made for both the dry and wet 

seasons for VV and VH backscatter signal responses, respectively. These polarisations dictate 

which vegetation components contribute to total energy backscattered by surface targets 

(McNairn & Brisco, 2004). 

 

Temporal dynamics in σ0 as a function of savanna vegetation structure were investigated by 

plotting these responses over the SAR acquisition dates, covering both dry and wet seasons. 

Changes in the SAR backscatter response to vegetation structure within this study area is a 

function of seasonal variability in moisture availability in the vegetation canopies and soil 

layers in the the wet season and lack of it in the dry season. The two cycles are caused by rainfall 

events and drought occurrence cycles, respectively (Urban et al., 2018). The amount and 

variability of antecedent precipitation, evaporation rate from solar insolation and availability of 

vegetation cover affects moisture availability not only to plants but also in the soil (Reynolds, 

1970). Mattia et al., (2009) found a correlation between soil moisture index and antecedent 

precipitation index, meaning rainfall events lead to increased moisture while lack of rainfall 

events reduces moisture availability. Generally, vegetation structure and its water content vary 

in both space and time, with wet seasons exhibiting the availability of moisture on the 

vegetation components at all heights. In the dry season, when there is minimum water or low 

moisture in the plant leaves, the backscatter is low, an observation made by Costa (2002). For 

SAR σ0 interactions with vegetation components, plant water contents and the geometry of the 

vegetation components such as orientation of branches, stems and leaves are very important 

determinants (Paulo et al., 2014). These orientations are responsible for the depolarisation of 

the incoming SAR signal in the form of VH backscatter response. 
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Figures 3-5 and 3-6 shows average monthly rainfall data between 1912 and 2001, and the 

decadal rainfall statistics with a long-term average from 1994 to 2013 respectively, for Skukuza 

study area (Kruger et al., 2002; FAO, 2018). The two plots show the peak rainy season to be 

between the months of November and March and the dry season between May and September. 

Prior to the current study period, between October 2015 and February 2016, most parts of 

Southern Africa experienced drought leading to below-average rainfall caused by El Nino 

warming (Baudoin et al., 2017; WFP, 2017; Monyela, 2017). From daily rainfall and soil 

moisture data obtained from the EC flux tower site for the current study period in Figure 3-10, 

the first rainfall event after two weeks was experienced in the study site on 14.11.2015 at 6.86 

mm. On 15.11.2015 there was no rainfall event recorded but the rise in soil moisture from 4.77 

m3m-3 the previous day to 7.56 m3m-3 on this date is associated with the rainfall event 

experienced the previous day. The rainfall event and the accompanied rise in soil moisture 

explains the high σ0 experienced around these dates as shown in Figure 3-10, especially on 

15.11.2015 because the availability of moisture in both soil and vegetation canopy increased 

SAR signal reflectivity.  

 

From the plots of SAR σ0 response to savanna vegetation structure, the VV signal response is 

higher than VH for all investigated variables - CC, AGB and vegetation cover classes. Both VV 

and VH backscatter are sensitive to savanna vegetation abundance, with the sensitivity 

increasing with the abundance class and the size of cover class (from small to large trees). Low 

abundance CC, AGB and small trees classes gave lower σ0 values while the high abundance 

classes gave proportionally high σ0. The wet season shows high σ0 values with high between-

class overlap, especially in the days within rainfall events. The overlap in SAR σ0 response to 

the various vegetation structure components makes it difficult to explain such responses because 

all seem to display high σ0 values in the wet season.  

 

Vegetation cover classes 

 

The vegetation cover classes according to Food and Agriculture Organization’s Land Cover 

Classification (FAO-LCC) system (Di Gregorio, 2005) comprises three natural vegetation 

based on height: herbaceous and graminoids (height of 0 - 3 m), shrubs (height of 3 – 5 m) and 

trees (height > 5 m). However, with the vertical structural complexity of the Lowveld savanna, 

Naidoo et al., (2012) and Vaughn et al., (2015) proposes, based on height thresholding, a further 

subdivision of these three major classes into background class (< 0.5 m) and four natural 
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vegetation classes: shrubs (0.5 - 2.5 m), small trees (2.5 – 5 m), medium trees (5 – 10 m) and 

large trees (> 10 m).  With both vertical and horizontal structural complexities within a savanna 

ecosystem, there is a localised spatial discontinuity in vegetation classes, sometimes within a 

few meters. In optical remote sensing, pixels with similar digital numbers and reflectance values 

are clustered to represent a homogenous feature on the earth’s surface (Wężyk et al., 2016), 

with an assumption that each pixel depicts one homogenous cover type (Adam et al., 2016) and 

the comparison between pixel data is independent of their neighbourhood. However, the 

backscattered signal by a SAR sensor is a results from the phase difference between the various 

features comprising a single pixel. In pixel-based classification, proximity and intensity 

measures of spatially adjacent objects are calculated only in the spectral space and do not 

consider the feature space relationship regarding their shape and spatial coordinates (location).  

From the plots in Figure 4-11, the σ0 response to shrub, medium trees and background is within 

an almost similar dB range. C-band SAR σ0 response to vegetation cover classes varies within 

seasons, with the plots showing high σ0 response in the wet season and a proportionate high σ0 

dynamic range within classes compared to dry season for both polarisations. The rainfall and 

moisture data in Figure 3-10 show that the dates with high σ0 response followed days of rainfall 

events. On 14.11.15 the area received a rainfall of 6.86 mm and on the same date the soil 

moisture probe had a reading of 4.77 m3m-3. The rise in soil moisture from 4.77 m3m-3 on 

14.11.2015 to 7.56 m3m-3 the following day on 15.11.2015 and an accompanied observed high 

σ0 response in both the background and other cover classes points to the effects of moisture 

availability to SAR signal reflectivity. Correspondingly, this day gave a high backscatter 

response of ~ -10.8 dB for VV. The same is seen on 9.12.2015 for both VV and VH following 

a rainfall event of 20.32 mm on 8.12.2015 with the soil moisture rising to 13.38 m3m-3 on this 

date.  

 

The volumetric scattering response to background and savanna vegetation cover classes is 

visualised in the VH plot in Figure 4-11 b. For both seasons, the VH polarisation shows the 

largest σ0 dynamic range between large and small trees; between large trees and background, 

shrub and medium trees; and between small trees and background, shrub and medium trees, 

compared to the VV polarisation. The between- and within-class dynamic range changes with 

seasons. In the wet season, there is high within-class dynamism and low between-class dynamic 

range causing a lot of overlap between various cover classes for both VV and VH signals. In 

the dry season however, there is low σ0 within-class dynamic range as the plots seem to flatten 

out while the between-class dynamic range increases as the plots seem to be separated from 
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each other. In Figure 4-11 a, the inter-class σ0 dynamic range between large and small trees is 

negligible on days with rainfall events in the wet season. In the wet season and especially 

between 3.11.2015 to 26.3.2016, there are several peaks and troughs in σ0 response to the 

various cover classes on days following rainfall events and days without rainfall, respectively. 

This is more pronounced on 15.11.2015 and 9.12.2015 for VV and on 9.12.2015 for the VH 

signals. On these dates, the σ0 values are high and almost the same for all classes. In the wet 

season, the large trees recorded σ0 in the VV of -10 dB following the rainfall event on 

14.11.2015, and this reduces to -14.2 dB on 26.1.2016 (the lowest for large trees in the wet 

season). This is an equivalent of 4.2 dB difference. In the dry season for the same VV 

polarisation however, the highest σ0 response to large trees is at -13 dB on 22.9.2016 and the 

lowest on 5.8.2016 and 17.8.2016 at -14.4 dB, translating to 1.4 dB difference. This trend in 

dynamism is also visible in VH polarisation and can be attributed to differences in moisture 

availability.  

 

Canopy cover 

 

Seasonality is also captured by the σ0 response in the wet and the dry seasons. In the wet season, 

the high σ0 response peaks coincide with rainfall events in Figure 3-10 (section 3.3.6). The 

rainfall of 6.86 mm on 14.11.2015 can be associated with a corresponding high backscatter 

intensity from CC on 15.11.2015 in Figure 4-15 a. This is followed by another elevated σ0 value 

on 9.12.2015 following an observed rainfall even of 20.32 mm on 8.12.2015. There is high σ0 

response for high CC at -12.8 dB (VV) and -16.5 dB (VH) following rainfall events experienced 

in the study area on 9.3.2016 and 11.3.2016 of 7.59 mm and 10.6 mm respectively. The wet 

season for both polarisations shows high dynamism in SAR σ0 especially on the dates following 

rainfall events. In these rainy days, the σ0 has the same elevated value, a phenomenon seen in 

both VV and VH polarisations. This is however not visible in the dry season where within-class 

σ0 dynamism is so low. The VH σ0 displays a high dynamic range between the various 

abundance classes than does the VV polarisation, with the σ0 range between the high CC and 

low CC abundance classes being the highest, followed with the range between moderate and 

high CC abundance classes.  

 

The interaction between SAR σ0 and CC is visualised in Figure 4-15. C-band σ0 shows 

proportionality to CC abundance classes, with high CC abundance class giving a characteristic 

high SAR σ0 response, followed with moderate CC abundance class and finally low CC 
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abundance class with low σ0 response, for both VV and VH polarisations. When the mean of 

all CC plots is plotted (black plot), the σ0 response is almost equivalent to the moderate CC 

abundance class (blue plot). There is a difference in seasonal response to CC as seen in σ0 

values, with the wet season showing a higher σ0 response than does the dry season. In the wet 

season, the SAR σ0 response to different canopy abundance classes are identical and within an 

almost similar σ0 range. This is more visible in the wet season of VV polarisation (Figure 4-15 

a), where some acquisition dates show overlap in σ0 response to the various CC abundance 

classes. In the wet season, there is increased greenness accompanying development of leaves 

within the top canopy. This means a large canopy surface is exposed to not only the incoming 

C-band SAR signal but also an interception to rain-water. The accompanying increase in 

moisture-induced dielectric constant amplifies the σ0 in the wet season.  

Whereas VV has high σ0 resulting from equal magnitude of sent and received signal intensity 

as opposed to VH polarisation, seasonal σ0 response to savanna vegetation structure is different 

between the two polarisations.  In Figure 4-15 the σ0 for low abundance CC associated with 

shrubs and low vegetation classes can be separated from the σ0 for high abundance CC. Studies 

by Baghdadi et al., (2001) to examine the potential of C-band SAR radar imagery for 

monitoring different wetland vegetation found out that it was in deed possible to not only detect 

but also separate wetland areas and other surface cover types (forests and clearing) using multi-

temporal C-band SAR. This potential of C-band SAR has also been utilised by Ferrazzoli et al., 

(1997) in discriminating herbaceous crops types even in moderate growth. For seasonal SAR 

σ0 response, and in the absence of moisture, typical of dry seasons, it should be easier to assess 

the SAR σ0 response from various abundance classes because the plots seem to flatten out with 

high between-class σ0 dynamic range causing no overlap. From the analysis of multi-temporal 

C-band SAR, it has been shown that the highest correlation of σ0 to different classes is more 

visible in cross polarisation, particularly VH, which is very low for low CC abundance, 

gradually increases with moderate CC class and increases in high CC abundance classes.  

 

Baghdadi et al., (2006) and Dubois et al., (1995) have both used bare soil to develop soil 

moisture retrieval models. There is a high sensitivity of C-band σ0 to background in the current 

study because the SAR signal attenuation effect by vegetation components is minimised 

especially in the dry season. The SAR signal correlation to soil moisture availability in terms 

of σ0 signal is higher in the VV than in the VH polarisation. However, there is more inter-class 

sensitivity in the VH polarisation than does in the VV, as seen in the differences in backscatter 

values between the various cover classes – the large trees in the VH for example are distinctly 
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displaying high backscatter values than the small trees (Figure 4-11). There is, however, an 

overlap between backscatter values in the VV polarisation, making it impossible to associate 

σ0 range to a cover class. This is also visible in the VH, but for medium trees, shrubs, and 

background classes. 

El Hajji et al., (2018) assessed the penetrative ability of C- and L-band to various crop types 

and noted that C-band in VV polarisation can penetrate the maize canopy even when the canopy 

is well developed (NDVI > 0.7) due to high-order scattering along the soil-vegetation pathway 

that contains a soil contribution. The high σ0 from soil is a sum of soil moisture and surface 

roughness contributions (Ulaby et al., 1986), and background backscattering increases as soil 

roughness increases (El Hajj et al., 2018). During low greenness as commonly experienced in 

the dry season when most leaves have fallen, the σ0 is dominated by direct scattering from soil. 

The open canopy created by deciduous trees which shed leaves allow SAR signals to reach the 

ground surface. For the cover classes, the σ0 response is low for small trees, while the 

background has a similar response to medium trees due to the attenuation of the direct ground 

scattering. A similar observation is also seen in El Hajji et al., (2018) and the decrease is 

attributed to vertical stems and leaves that produce high absorption of the incident SAR wave 

associated with weak direct scattering (Mattia et al., 2003; Del Frate et al., 2004).  

 

Well-developed vegetation cover classes attenuate C-band SAR signal leading to low 

sensitivity for high greenness values. Baghdadi et al., (2015) noticed this phenomenon at peak 

growth season with moderate to high greenness values (NDVI > 0.7). At the beginning of the 

wet season, the backscatter intensity values rise resulting from the increase in direct scattering 

from the vegetation canopy, an observation also made by Brown et al., (2003). In this wet 

period, the scattering from the upper canopy elements is seen (Brown et al., 2003). In the dry 

season however, between 1.5.2016 to 29.8.2016, there is reduced moisture resulting from lack 

of rainfall events and the canopy cover is reduced due to shedding of leaves typical of dry 

season. Here, the σ0 is more sensitive in the medium trees, larger trees and background (soil) 

due to the decrease in canopy attenuation (El Hajji et al., 2018) and possibly tree trunk 

scattering. Sparse vegetation cover and dry season vegetation cover does not attenuate the SAR 

signal as observed by Moran et al., (2000). 
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Aboveground biomass 

 

The low abundance AGB class shows exceptionally high temporal dynamics both within and 

between seasons. In the early wet season, the rainfall episodes following a long dry season in 

2015 caused an abrupt increase in backscatter response. Since only trees with height above 5 m 

were inventoried from the TLS point clouds, the study assumes that shrub and small vegetation 

forming part of the low AGB class were left out. Therefore, the low AGB abundance class in 

this study falls in the lower boundary of moderate AGB abundance class. This explains the 

inconsistently high σ0 response, and the accompanying class overlap between the two for both 

seasons and polarisations. 

Moderate AGB class constitute plots with AGB ranging between 30 and 50 t/ha. This study, 

and several prior studies by Colgan et al., (2013); Mograbi et al., (2015) and Odipo et al., (2016) 

have cited that the mean biome AGB for this area also falls within this range. This can partly 

explain the high SAR σ0 response on the moderate AGB class than the low and high abundance 

classes. The results from this study further shows that SAR sensitivity to AGB increases up to 

about 40 t/ha and 60 t/ha in the case of C- and L-band SAR, respectively. The high AGB 

abundance class shows plots with AGB above 60 t/ha and the low σ0 response can be explained 

by low sensitivity of C-band SAR backscatter to AGB above 40 t/ha. 

 

5.2.4. Effects of speckle filter on C-band SAR response to savanna vegetation 

 

SAR resolution cells comprise many scatterers (trees, grass, shrubs) with different phases 

(Walker, 2000) and intensity. These elements create a random and multiplicative granular 

noise-like effect in a radar image, hence posing difficulties in estimating radar backscatter at 

the pixel level (Qiu et al., 2004). The radar signal is coherent, meaning the signals are 

transmitted at narrow wavelength ranges (Rees, 2012; Campbell & Wynne, 2011), and the small 

adjacent features are pronounced or suppressed. For homogeneous ground features, the 

resolution contains scatterers yielding signals of the same magnitude, typical of distributed 

targets. Heterogeneous ground features result in different phases of each signal path as seen 

with point targets, leading to destructive or constructive backscattered energy with the 

amplitude of received signal varying randomly (Argenti et al., 2013). Erroneous variations in 

backscatter from inhomogeneous cells increase SAR image variances (Mansourpour et al., 

1997), obscure image clarity, and act as a barrier for texture-based analysis. Pre-processing of 

the SAR data to reduce or eliminate the effects of speckle is a very crucial step before image 
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utilisation through multi-looking (ML). ML reduces the effects of speckle by averaging the 

number of independent intensity values related to the same pixel, thereby improving radar cross 

sectional variance (Argenti et al., 2013; Moreira et al., 2013). Speckle filtering significantly 

optimizes the ability to exploit the texture variance between neighbouring pixels in SAR 

imagery, and to discern spatial information of the ground scene target and land use types in 

forested areas, and thus enhance data interpretability and efficient image classification (Amini 

& Sumantyo, 2009).  

Spatial speckle filters aim at estimating the noise-free radar reflectivity from the observed noisy 

SAR image (Argenti et al., 2013; Touzi, 2002). They are executed within moving windows by 

averaging features in surrounding pixels, with the window size affecting effect and the larger 

the window, the more the effects of smaller features within a pixel are diminished, moving 

towards the characteristics of the dominant class within a pixel. In this study, Quegan multi-

temporal filter (Quegan & Yu, 2001) was used for filtering the multi-temporal C-band SAR 

datasets. This filter is best suited for multi-temporal image stacks because it preserved the 

changes within multi-temporal data making it appropriate for forest degradation monitoring 

(Flores-Anderson et al., 2019). 

 

Figures 4-13 and 4-14, 4-17 and 4-18, and 4-20 and 4-21 shows the speckle filter at both 3 by 

3 and 5 by 5 speckle window sizes, for vegetation cover classes, CC and AGB respectively. 

Validation of speckle reduction in SAR image is not an easy task because the noise-free 

reflectivity estimated is unknown making it difficult to compare the despeckled image and the 

original ground truth (Argenti et al., 2013). In this study, an assessment of the effects of applied 

Quegan multispectral filter was done using visual inspection of the behaviour of multi-temporal 

backscatter plots and comparing with the original plots as suggested by Argenti et al., (2013). 

The application of speckle filter lowered the between-class σ0 variations for different abundance 

and cover classes. Figure 4-12 and 4-14 shows that unlike the original plot in Figure 4-11, the 

cover class plots are more distinct and shows less variability in terms of point distribution. By 

averaging adjacent pixels, filtering reduces variance between SAR pixels leading to a reduced 

inter-class overlap.  

 

SAR is a coherent imaging sensor and the speckle in the SAR image is caused by interference 

between the coherent returns from various scatterers on the surface (Goodman, 1976; Argenti 

et al., 2013). Without speckle filtering in the wet season, the shrub vegetation responds to an 

increase in soil moisture following a rainfall event on 14.11.2015. This is the only instance 
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moisture availability after the rainfall event is seen to have affected σ0 response to the vegetation 

structure class on this date in the VV. However, with application of speckle filter within a 3 by 

3 window, this backscatter response to shrub vegetation is reduced (Figure 4-12 (a)). A further 

enlargement of the filter window to 5 by 5 completely removes sensitivity to shrub vegetation 

(Figure 4-13 (a)). This is because filtering averages scatterers in the surrounding pixels and 

such low classes like shrubs are overshadowed by the dominant classes. For dry season, most 

low trees have lower response due to desiccation of the soil making shallow-rooted trees 

inaccessible to water, unlike medium and large trees whose roots are long and can access water 

deeper in the soil. 

 

For all seasons, between-class σ0 dynamic range for AGB abundance classes is low, especially 

moderate and low AGB abundance classes. This is because the low AGB classes do not 

incorporate the shrub layer, hence the low classes might be the lower boundary of the moderate 

AGB classes. Shrub vegetation comprise the low tree class for AGB estimation and make up 

the bulk of savanna woody component. Therefore, leaving this component out means the lowest 

AGB class is left out. It is difficult to notice the effects of speckle filter for AGB classes, except 

the low within-class dynamic range for the abundance classes resulting from a reduction in 

variance; this is more visible in the VH response than VV. Having left out the lower tree trunks 

from the allometry AGB calculation, the speckle filter only average moderate and high 

vegetation classes. With an increase in speckle size from a 3 by 3 to a 5 by 5 moving window 

for VH, the SAR response for both high and moderate AGB is almost similar, and it becomes 

difficult to differentiate these two classes in both the wet and dry seasons. Conversely, in the 

dry season, there are some dates where the inter-classes dynamic range is high eliminating plot 

overlap. Low AGB classes gave the lowest SAR σ0 responses compared to moderate and high 

AGB classes.  

 

5.3.Uncertainties in savanna structure mapping 

 

5.3.1. Tree mensuration from field and TLS 

 

Field data collection is time consuming, requires a lot of resources and does not cover larger 

areas. This limits the representativeness of the field inventoried reference tree data, which might 

lead to misrepresentation of the entire study area under investigation. More so, such inventories 

are prone to non-intentional human errors that might be introduced during data collection, apart 
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from a fault in the instrument used. Tree height measurement instruments such as clinometers 

rely on the ability of the enumerator to view the top of the canopy to triangulate the required 

distances for computing tree height. In most cases, and where the tree canopy is large or 

enumerator short, capturing the highest point of the canopy is difficult, which might lead to 

wrong tree height measurements. For savanna structural mapping and biomass estimation 

within the Lowveld savanna, studies by Scholes et al., (2001); Nickless et al., (2011); Colgan 

et al., (2013) and Mograbi et al., (2015) recommends tree basal diameter measurements from 1 

m above the ground to capture the shrub vegetation layer which forms the bulk of the woody 

component and multi-stemmed trees within this typical Lowveld savanna sub-biome. 

 

5.3.2. Biomass Prediction 

 

The error in biomass prediction varies with the method used. SAR-AGB modelling used TLS-

modelled AGB as reference because the field inventory yielded fewer non-representative 

reference plots.  The error produced in modelling AGB from TLS using field inventory data is 

lower than those obtained in the subsequent SAR-AGB modelling. The allometric validation 

error (RMSE) from TLS-CHM predictor variables are 4.77 t/ha, 2.13 t/ha and 2.32 t/ha for CC, 

CH, and the product of the two (CC × CH), respectively, making up 12.5%, 6.3%, and 6.8% of 

the respective predicted biomass means. The error values are reasonably small even though 

using the CC × CH biomass with 7% error would lead to error propagation in subsequent 

predictions as highlighted in this study. The high error values reported in predicting biomass 

from both C- and L-band SAR backscatter are not higher than those obtained within the same 

area using Nickless allometry (Lefsky et al., 2005; Nickless et al., 2011; Colgan et al., 2012) 

because the current study used some trees with basal diameters > 33 cm. Nickless et al., (2011) 

allometry and the resultant AGB estimates were derived from trees with basal diameters less 

than 33 cm. Still, predicted higher biomass values are associated with trees with larger 

diameters than those used in the study. As Sankaran et al., (2004) notes, most allometric models 

lack large diameter classes and these errors associated with higher values can be explained from 

the deficiencies in allometries used. This explains the non-linear relationships shown in the 

residual errors where the prediction gets worse as the biomass gets larger above 50 t/ha in the 

TLS-derived AGB and 40 t/ha in the L-band SAR modelled AGB. The TLS canopy height 

model, when calibrated and validated by field data, produces low errors. 

 

In this study random forest regression was used to model AGB from L-band SAR data using 

TLS CHM metrics (CC, CH and CC.CH). A review of many studies on the performance of RF 
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against other ensemble algorithms and other machine learning methods has proposed RF to 

outperform most of other classifiers such as the support vector machines (Akar & Güngör, 

2012). With RF, it is very easy to set parameters. The algorithm is an easy to learn and use 

because, there is no need to prune trees and the technique uses randomization in variable (used 

to split the node) selection (bootstrap aggregation with sample replacement) to control diversity 

between tree variables in the ensemble, thereby reducing the biasness (Poona et al., 2016). The 

information about accuracy and variable importance is also automatically generated (Horning, 

2010).  

 

Whereas RF classifiers are not prone to over-fitting (Poona et al., 2016), other findings have 

revealed that for regression analysis, RF classifiers cannot go beyond the training data range 

and, the extreme values of the variables used are not accurately predicted - higher values may 

be underestimated while low values overestimated (Chen & Cheng, 2016; Horning, 2010). 

Poona et al., (2016) also argues that tree building in RF is based on one feature which is selected 

for splitting the node and this may render the algorithm inefficient due to feature dependencies 

inherent in multidimensional data. 

 

From the residual plots, the randomness in the points at lower biomass values is evidence of 

linearity in relationship between the TLS metrics and the field-derived biomass - shown by the 

scattering of residuals around the zero line. However, this linearity is visible with low biomass 

values up to 40 t/ha, after which the residual errors increase and become positive with canopy 

height (CH), and negative with both canopy cover and the product of canopy cover and height 

(CC and CC × CH). Log-transformation on the field AGB improved the randomness in the 

distribution of the residuals, and therefore an improvement in the linearity between log-

transformed AGB and the predictors can be seen. 

 

From the multi-temporal plots, AGB and CC abundance explain the temporal variability in the 

SAR backscatter response. The wet season showed high SAR backscatter intensity responses 

for both AGB and CC, which reduced to stable values in the dry season. From Figure 4-11, the 

background which comprises the herbaceous layer and bare patches display high backscatter 

intensity compared to shrubs and small trees. This behaviour is seen in both wet and dry 

seasons, though more pronounced in the dry season. Most studies have attributed this to more 

backscatter response from soil-lower vegetation interactions and is affected by moisture 

availability in the soil. Separation of backscatter response from these two layers were not 
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captured in this study, and so it is assumed the backscatter coefficients from the plots are 

cumulative for both soil and canopy interactions. 
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CHAPTER 6 
 

6. Summary, conclusions and outlook  

 

6.1. Summary 

 

The foregoing study achieved the following objectives:  

 

a) To evaluate the potential of high-resolution terrestrial laser scanner (TLS) in extraction 

of savanna vegetation structure variables;  

This study developed methods through which the potential of TLS technology can be utilized 

as reference data necessary for mapping both vertical and horizontal savanna vegetation 

structure (Niemi et al., 2015; Calders et al., 2015) in the form of AGB, CC and vegetation cover 

classes within a Lowveld savanna. The TLS point clouds were processed into vegetation CHM 

(Khosravipour et al., 2014) with the ability to model not only the terrain characteristics of the 

study area but also the extraction of savanna vegetation cover classes (Wang et al., 2016; Huerta 

et al., 2017; Cabo et al., 2018). The proportion of CHM pixels with above 1 m height within 

both 20 m and 30 m SAR-pixel grids, here referred to as plots, provided the basis from which 

canopy height was computed, and together with CC were used to model AGB from both L-

band ALOS PALSAR and C-band Sentinel-1A microwave datasets for the study area. TLS 

point clouds were used to reconstruct the tree variables necessary for biomass estimation; tree 

height and basal diameter at 1 m height. This provided a better alternative to field-based tree 

inventory, with the ability to measure 565 trees averaged within 445 field plots over the study 

area. In comparison, the field-based inventory yielded fewer trees (237) within 42 plots. The 

field inventory data was used for allometry-based AGB estimations within 30-m plots, and 

further used for TLS-based canopy height validation (Cabo et al., 2018). OBIA enabled pixel-

based height thresholding of TLS CHM necessary for classification of Lowveld savanna 

vegetation, resulting in five vegetation cover classes; background (at less than 0.5 m height), 

shrubs (at 0.5 – 2.5 m height), small trees (at 2.5 – 5 m height), medium trees (at 5 – 10 m 

height) and large trees (at over 10 m height) classes, after methodologies by FAO LUCC (Di 

Gregorio, 2015), Naidoo et al., (2012) and Vaughn et al., (2015).  
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b) To estimate landscape-wide AGB and assess AGB changes over a period of four years 

using multi-temporal L-band SAR within a Lowveld savanna in Kruger National Park  

Field inventory was carried out during the dry season in March 2015 within the study area. The 

height and basal diameter variables from the inventoried trees enabled tree-level aboveground 

biomass calculation using Lowveld savanna biome-specific allometry. TLS CHM metrics, CC 

(%) and CH (m) were used to model plot level biomass over 42 inventoried plots in Skukuza, 

forming reference datasets for biomass estimation within the study area using L-band ALOS 

PALSAR backscatter intensity. Biomass regression models (CC, CH, CC.CH) enabled 

assessment of the potential and performance of respective TLS CHM-derived structure 

variables, CC & CH (Colgan et al., 2012; 2013) in predicting landscape-wide AGB using the 

multi-temporal L-band SAR data. TLS CHM metrics increased the reference sample plots from 

42 to 513 within the TLS footprint, making it representative reference for a large area AGB 

estimation. A product of CC x CH performed the best of the three TLS metrics, and so formed 

the basis for landscape-wide AGB analysis. This was performed for the years 2007, 2008, 2009 

and 2010 under investigation, using L-band data acquired during the dry season (September-

October). The results from model validation showed a significant linear relationship between 

TLS - derived predictors with field biomass, p<0.05 and adjusted R2 ranging between 0.56 for 

SAR to 0.93 for the TLS - derived canopy cover and height (same as in studies by Baghdadi et 

al., 2001). The AGB change analysis between the four years under investigation showed 32 ha 

(3.5%) of the 900-ha experienced AGB loses above an average of 5 t/ha per annum, which can 

mainly be attributed to the falling of trees by mega herbivores such as elephants (Asner et al., 

2016). The spatial distribution of AGB within the study area is a function of topographic and 

soil characteristics of the area, with low AGB occurring on the high elevation areas while high 

AGB occurs in the lowlands, especially around river and stream valleys (Scholes et al., 2001; 

Smit et al., 2013; Baldeck et al., 2014; Scholtz et al., 2014). The study concludes that SAR 

data, especially L-band ALOS PALSAR, can be used in the detection of small changes in 

savanna vegetation. 
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c) To assess interactions between C-band synthetic aperture radar with various savanna 

vegetation structure variables  

The coexistence of grass-shrub-tree within Lowveld savanna and the associated heterogeneity 

makes it difficult to separate the different cover patches created by these cover classes (Charles-

Dominique et al., 2015; Mermoz et al., 2014). At pixel level, there is no single definite surface 

feature, rather a mixture of several features that render a single pixel impossible to interpret 

(Shirima et al., 2011). TLS-derived vegetation structure variables like AGB (t/ha), CC (%) and 

vegetation cover classes produced in objective (a) above were used to assess the response of 

SAR metrics at pixel-level within a Lowveld savanna. Multi-temporal C-band Sentinel-1 A 

SAR data at 20 m resolution, enabled investigation into SAR σ0 response to savanna vegetation 

abundance and cover classes over 29 acquisition dates, covering both wet and dry seasons 

between November 2015 and October 2016. This study investigated the proportion of 

vegetation cover class and assigned a class with the highest proportion to a SAR pixel as the 

dominant class with an assumption that, despite a pixel comprising multiple scatterers, the 

dominant feature contributed the most to the σ0 signal. By classifying AGB and CC into low, 

moderate and high abundance classes through averaging the different class samples, this study 

assessed the σ0 response to these classes as proxies to the various savanna ecologies: 

herbaceous, shrub and tree components. The mean class values reduced inter-class variability 

and ensured an independent assessment of σ0 response to each of the abundance classes. The 

effects of SAR polarisation, speckle filter window, and seasonality on savanna structure 

parameters were investigated. The VV signal showed high sensitivity to vegetation cover 

classes, CC and AGB than VH, with VH showing more promise in between-class s σ0 response. 

An assessment of multi-temporal C-band SAR σ0 response to the various vegetation structure 

variables within this Lowveld savanna revealed that several factors affect σ0 interactions with 

savanna vegetation: seasonality and moisture dynamics, vegetation class, soil-low vegetation 

interactions and SAR polarisation. Wet season has low between-class dynamic range leading 

to an almost similar σ0 response between different classes, especially on the days following 

rainfall events. Elevated moisture levels following rainfall events increase dielectric constant 

of vegetation components and soil, increasing radar reflectivity which results in high σ0. The 

open canopy within heterogeneous savanna allows for SAR signal penetration to the ground 

surface, resulting in cumulative backscatter response not only from the vegetation canopy but 

also from soil and herbaceous layer (Ulaby et al., 1986; Dubois et al., 1985). High σ0 were 

observed for high CC and AGB abundance classes and large trees, while low abundance classes 

and small trees displayed a proportionately low σ0 (Mattia et al., 2003; Del Frate et al., 2004). 
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6.2. Conclusions 

 

Savanna vegetation structure mapping provides a basis for monitoring and assessing present 

and future trends of global carbon stocks within this biome. Monitoring dynamics caused by 

disturbances in the savannas pose a challenge because of the coexistence of grass-shrub with 

tree patches and the resulting heterogeneity over localized spatial scales. Remote sensing 

provides the best techniques for large-scale carbon stock assessment, critical for adoption of 

sustainable forest resources management and reporting by developing countries who are 

signatories to the REDD framework. Validity of remote sensing derived forest monitoring 

parameters such as carbon stock estimates through changes in CC and quantifying AGB 

dynamics are reliant on availability of high-quality calibration and validation datasets. 

Conventionally used field-based forest inventories are limited in the provision of validation 

datasets for savanna structure mapping, given the limited spatial coverage, accessibility issues, 

time and cost constraints and data integration problems caused by differences in sampling 

procedures. Assessment of intrinsic heterogeneity drivers are often left out in large-area or 

biome-scale studies, hence the need for a more detailed and localized assessment as adopted in 

the foregoing study.  

This study, appreciating the importance of field inventory as a source of validation data, 

examined the potential of up-scaling the field inventory data with TLS data to estimate 

landscape-wide AGB using L-band SAR data. Despite free availability of remote sensing data 

for vegetation mapping, optical remote sensing data suffers from atmospheric aerosol and cloud 

contamination especially in the tropics resulting in inconsistency in data availability necessary 

for continuous vegetation monitoring initiatives. This study therefore explored the potential of 

freely available Sentinel-1 A SAR data by ESA under Copernicus Program. Further, C-band 

SAR data made it possible for assessment of savanna vegetation structure variables at pixel 

level. The complementarities of each of these datasets have been discussed. The field inventory 

and TLS datasets were used to estimate AGB at both tree and plot level, while TLS-CHM data 

improving the representativeness of reference data from few field inventory plots to TLS-

footprint for extrapolation with L-band SAR backscatter over a wider area through regression 

models over the four years under investigation. The possibility of computing tree and plot 

biomass was explored through reconstruction of tree trunks for DBH and height measurement 

from TLS point clouds. The potential of TLS in AGB estimation as well as the extraction of 

savanna vegetation structural components like canopy cover and vegetation cover classes has 
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been assessed. This study has shown that it is possible to use L-band SAR data to detect biomass 

changes above 5 t/ha within a Lowveld savanna biome.  

The availability of a small TLS footprint coupled with a few field inventoried plots over the 

study area should be a limiting factor in savanna vegetation structure modelling over a wider 

spatial coverage. This, coupled with the multi-resolution datasets used in the study, leads to a 

compromise in using the full potential of TLS data at high resolution. There is a possibility of 

exploring field biomass inventory at a tree level instead of a plot level. This, when combined 

with TLS data at full resolution, should go a long way in estimating canopy-level cover and 

height structure parameters at the tree level as opposed to the plot level. 

 

The vegetation structure abundance in this typical Lowveld savanna explains the temporal 

variability in SAR backscatter response, with high abundance classes and large tree classes 

typical in the wet season giving higher backscatter response because of increased canopy 

structure parameters like leaves and branches upon which the incoming signals can interact, 

besides moisture effects on backscatter. Classifying savanna vegetation structure components 

into abundance classes reduces both between- and within-class temporal variance, making it 

possible for class-based analysis within a pixel and extending to the typical response from 

savanna heterogeneity components like herbaceous layer, shrub and trees. Moisture content not 

only affects the seasonal backscatter variability, but the effects are also high in the background 

classes (soil and herbaceous layers). This is because following a rainfall event, the soil water 

input through infiltration increases the soil moisture content besides other vegetation layers. 

This study also explored the effects of speckle suppression through the application of Quegan 

multi-temporal filter because of its ability to retain changes within a time series data. Whereas 

the savanna is composed of heterogeneous ecologies, the speckle filtering improved the inter-

class SAR response to the various classes, at least to some extent. 
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6.3. Outlook 

 

Whereas AGB change detections were possible with SAR data under outlined accuracy 

conditions and within the same seasons in different years, the study did not, however, look at 

the precise quantities of AGB loses and gains over the study duration, rather the proportion of 

the area that experienced a change above the threshold values of 5 t/ha. Future studies should 

therefore look at quantitative estimation of these changes within a typical Lowveld savanna — 

this should be possible under similar radar geometries (for example incident angle and pass) 

and seasons over multiple years. This study concentrated on the estimation of aboveground 

woody biomass from both C- and L-band SAR. It would be important to investigate 

methodologies that would capture the herbaceous biomass because this controls the 

heterogeneity of savannas. The high fuel load triggers frequent fires that control bush 

encroachment, while grass abundance controls spatial distribution of grazers within this 

ecosystem. The biotic and abiotic interactions within this biome and how this affects woody 

structure dynamics, especially climate, topography, soil, fire and herbivory are critical in 

altering the biome structure and so studies should be directed towards investigating the extent 

to which these alterations affect SAR backscatter at a case-to-case basis. 

Most reviewed previous work on C-band SAR interactions with vegetation within various 

biomes point to the fact that co-polarised (VV and HH) parameters perform the best with AGB 

and CC modelling (e.g. in Wang et al., 1994; Picard et al., 2003). This is because of the high 

backscatter-vegetation parameter correlation, mainly attributed to the reception of most of the 

emitted V-orientation signal unlike the cross-polarised signals which are attenuated by the 

depolarisation effects of the ground targets. The findings of this study also tally with these 

previous findings. However, the between-class response to C-band SAR backscatter is best 

visualized in the cross-pol combination, VH. In this study, the VV despite high backscatter 

response for high and low abundance classes respectively, gives a minimal dynamic range 

between different abundance classes with the response in some dates showing overlap in 

backscatter signals. This makes it difficult to assess the different savanna ecologies based on 

vertical stratification such as height and DBH. It is known that large trees store more carbon 

stock than shrubs and small trees. By reclassifying the vegetation structural variables, it is 

possible to at least associate backscatter coefficient response to a savanna ecology, e.g. 

herbaceous vegetation, shrub vegetation and tree vegetation. This is only seen in the VH signal 

where the plots between the small tree and low abundance CC classes display plots with lower 
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backscatter coefficients than does large trees and high CC abundance classes, hence high 

backscatter dynamic ranges between classes. 

Sano et al., (2005) adopted a SAR-optical synergy in compensating for soil background effects 

on backscatter response to cerrado vegetation types in Brazil. In this study, the backscatter 

coefficient did not show any temporal changes between dry and wet seasons as a response to 

vegetation structures. By fusing optical vegetation greenness indices with backscatter variables, 

an improvement in cerrado classification was achieved. In studies by Gallant et al., (2014) to 

detect wetland vegetation phenology, fusion of Landsat optical data with L-band Radarsat-2 

SAR data helped in discerning wetland features from grasslands. The current study only used 

L- and C-band SAR backscatter parameters. It would be interesting to assess how the 

highlighted temporal (inter-annual and seasonal) changes in backscatter would relate to optical 

variables such as greenness indices. Vreugdenhil et al., (2018) also showed a possibility of 

assessing backscatter sensitivity to vegetation through a ration between C-band VV and VH, a 

method that should be tested further. This way, it should be possible to associate such changes 

to phenology cycles within savanna biome. There is a correlation between structural abundance 

and seasons. Seasonal changes affect vegetation phenology and hence the greening and 

browning episodes typical of wet and dry seasons, respectively. Optical derived spectral 

greenness indices can help explain the temporal dynamics cited in this study, a phenomenon 

that can be explored in vegetation phenology analysis. Of great interest should be to correlate 

the multi-temporal backscatter and other SAR metrics with temporal greenness indices over the 

study period. 

There are gaps in studies to separate the effects of soil moisture on vegetation parameter 

interactions to SAR signals. Various studies have pointed to the need to quantify the extent to 

which presence of vegetation attenuates soil moisture estimations, and vice versa. Whereas 

these studies have assessed these effects on sparse vegetation biomes such as grasslands and 

farmlands with grass-like crops such as wheat and corn (Griffiths & Wooding, 1996; Picard et 

al., 20013; McNairn & Brisco, 2004), few of them have investigated how the various savanna 

vegetation ecologies independently attenuate C-band SAR signal based on various moisture 

regimes.  

Picard et al., 2003 noted that VV-backscatter attenuation by the vegetation canopy increased 

with an increase in SAR incident angle. The current study area is relatively flat, with a slope at 

approximately 3 %. In this study, SAR datasets used were acquired with the same incident 

angles in the ascending pass for both L- and C-band. It would be of interest to assess the effects 
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of different SAR geometries on mapping savanna vegetation. Different vegetation species 

within a biome contribute differently to its carbon stock. This study did not capture species 

diversity and how such affects AGB values within the study area. However, there is no species-

specific allometry for KNP. Based on the potential of TLS in capturing tree-level biophysical 

parameters non-destructively, attempts should aim at coming up with TLS-derived allometries.  
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