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Abstract: With the progression of LiDAR (Light Detection and Ranging) towards a 

mainstream resource management tool, it has become necessary to understand how best to 

process and analyze the data. While most ground surface identification algorithms remain 

proprietary and have high purchase costs; a few are openly available, free to use, and are 

supported by published results. Two of the latter are the multiscale curvature classification 

and the Boise Center Aerospace Laboratory LiDAR (BCAL) algorithms. This study 

investigated the accuracy of these two algorithms (and a combination of the two) to create 

a digital terrain model from a raw LiDAR point cloud in a semi-arid landscape. Accuracy 
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of each algorithm was assessed via comparison with >7,000 high precision survey points 

stratified across six different cover types. The overall performance of both algorithms 

differed by only 2%; however, within specific cover types significant differences were 

observed in accuracy. The results highlight the accuracy of both algorithms across a variety 

of vegetation types, and ultimately suggest specific scenarios where one approach may 

outperform the other. Each algorithm produced similar results except in the ceanothus and 

conifer cover types where BCAL produced lower errors. 

Keywords: LiDAR; algorithm; filtering; DTM; MCC; BCAL 

 

1. Introduction 

Developing accurate Digital Terrain Models (DTM) has been a long stated goal of both researchers 

and resource managers interested in quantifying land surface elevations. The potential applications of a 

reliable DTM include habitat assessment, forest succession, snowmelt simulation, hydrologic 

modeling, carbon sequestration, glacial monitoring, and floodplain assessments [1-6]. Prior to the 

introduction of Light Detection and Ranging (LiDAR), traditional methods such as photogrammetry 

and field surveys were conducted to produce DTMs. While these methods can generate DTMs with 

acceptable levels of accuracy for certain applications, both methods are time and labor intensive. 

Furthermore, in the presence of steep slopes or high biomass, traditional DTM generation methods are 

difficult to implement, often leading to reduced levels of accuracy [7-9]. Research has demonstrated 

that LiDAR DTM generation is more efficient and accurate as compared to traditional methods [10]. 

The creation of accurate DTMs is vital to understand the reliability of other LiDAR-derived metrics, 

such as canopy cover, tree heights, and leaf area index [11]. 

In recent years investigations have focused on the influence of environmental conditions 

(e.g., slope, elevation, cover type) and sensor characteristics (e.g., flight height, point density, and scan 

angles) on the accuracy of LiDAR-derived DTMs [2,12-19], ultimately demonstrating the reliability of 

LiDAR-derived DTMs across a range of terrain and cover types with varying acquisition parameters. 

Other studies investigated the impact that different point interpolators have on the accuracy of 

LiDAR-derived DTMs [20,21]. Most suggest that when the LiDAR acquisition has an adequate pulse 

density, usually equal to, or denser than the desired DTM resolution (cell size), there are only 

negligible differences in accuracy due to interpolation methods. These past studies provided insight 

into the reliability of LiDAR to create accurate DTMs in various landscape types and have developed 

guidelines for working with LiDAR in different ecosystems [22].  

Raw LiDAR point clouds contain returns from both ground and non-ground objects. Classification 

of these points as ground or non-ground returns is the first step in generating a DTM from LiDAR 

data. Although the influence of different variables like pulse density, terrain slope, and vegetation on 

the vertical accuracy of LiDAR-derived DTMs has been assessed, little attention has been paid to the 

accuracies of the different point classification algorithms commonly being applied. Point classification 

algorithms that are commonly applied by LiDAR vendors are considered proprietary knowledge, are 

often grey- or black-box approaches, and thus are not readily available for independent validation and 
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comparison. For landowners that will only every acquire LiDAR once or twice, the use of these 

proprietary methodologies is limited by the high cost of purchasing the software ($5,000–$20,000). 

However, in recent years open source point classification algorithms have been developed. Since they 

are open source, such algorithms can be independently tested, evaluated, and compared against the 

products commonly produced by vendors. Two such algorithms are the Multiscale Curvature 

Classification LiDAR algorithm (MCC, http://sourceforge.net/project/mccLiDAR) and the Boise 

Center Aerospace Laboratory LiDAR algorithm (BCAL). 

The MCC algorithm was developed at the Moscow Forestry Sciences Laboratory of the USFS 

Rocky Mountain Research Station [23] and the BCAL algorithm was developed by the Boise Center 

Aerospace Laboratory of Idaho State University [24]. The two algorithms were developed for different 

objectives; MCC was intended for classifying LiDAR returns in high biomass forest  

ecosystems [2,25-28], while the BCAL algorithm was developed specifically for optimal performance 

in shrub-steppe ecosystems [19,24,29,30]. The primary difference between the way the methods 

iteratively interpolate surfaces to the point cloud during processing is that MCC works from the top 

down while BCAL works from the bottom up. The MCC algorithm operates by discarding returns that 

exceed a threshold curvature calculated from a surface interpolated using a thin plated spline. Through 

three successively larger scale domains that define the processing window size, the algorithm iterates 

until the number of remaining returns changes by <1%, <0.1% and finally <0.01% for the three scale 

domains, respectively [23]. BCAL is a grid based classification algorithm, first identifying the lowest 

elevation point in a search area determined by the user, and then creating a surface by interpolating 

these lowest points [24]. In subsequent iterations, any point that lies on or below the previous 

iteration’s surface are classified as ground points and are included in subsequent iterations. The 

iterations continue until there are no unclassified returns below the interpolated surface in which case 

all unclassified returns above the surface are classified as vegetation returns. 

The objective of this study is to cross compare and evaluated the ability of the two algorithms to 

filter a raw LiDAR point cloud and produce an accurate DTM in a semi-arid watershed with mixed 

vegetation types. The performance of each algorithm is tested for overall accuracy, in a variety of 

cover types and at different spatial resolutions. 

2. Methods 

2.1. Study Area 

The study area is the 38 ha Reynolds Mountain East (RME) catchment, which is part of the larger 

Reynolds Creek Experimental Watershed (Figure 1). Located in southwestern Idaho, USA, the 

watershed is owned by the Bureau of Land Management and research infrastructure in the watershed is 

managed by the USDA ARS Northwest Watershed Research Center. The catchment is in a semi-arid 

mountainous area ranging from 2,023 to 2,139 m in elevation with slopes reaching 35°. The landscape 

is a patchwork of shrub-steppe, meadow, and bare ground with large stands of coniferous and 

deciduous forests that occur in topographically sheltered zones. The shrub-steppe in RME is 

dominated by mountain big sagebrush (Artimesia tridentate Nutt. ssp. vaseyana) and mountain 

snowberry (Symphoricarpos oreophilus Gray) with patches of prostrate ceanothus (Ceanothus 

prostratus Benth.). The meadow is a mixture of forbs and graminoids with Lupinus ssp. and Carex ssp. 
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dominating the forbs and Poa ssp. dominating the graminoids. The conifer tree stand is solely 

comprised of Douglas-fir (Pseudotsuga menziesii), while quaking aspen (Populus tremuloides) 

dominates the deciduous stand.  

Figure 1. Cover type map of Reynolds Creek Mountain East, defined by seven classes 

(Willow, Ceanothus, Shrub, Bare Ground, Conifer, Meadow, and Aspen). The shrub cover 

type represents all areas not outlined by other cover types and the willow cover type was 

excluded from surveying due to the impracticality of operating equipment in saturated 

areas. Each set of yellow points represents the location of a 4 m by 4 m plot with survey 

points systematically gridded every 0.5 m (81 points/plot; 9 points/m
2
; see inset). 

 

2.2. LiDAR Data and Acquisition 

Airborne LiDAR data were acquired in mid-November 2007 with a Leica ALS50 Phase II Laser, 

which operated at a wavelength of 1,064 nm and records up to four returns per pulse. The data were 

acquired with a nominal pulse density of 6 pulses/m
2
 and an off nadir scan angle of ±15°. The mean 

return rate and range of return rates across the study area were 5.7 returns/m
2
 and 0–70 returns/m

2
, 

respectively. According to vendor provided measurements, the absolute vertical accuracy in terms of 

root mean square error (RMSE) was 3.3 cm based on 1,002 real time kinematic (RTK) global 

positioning system (GPS) points surveyed on asphalt road surfaces throughout the watershed. The 

flight lines were calibrated and the raw LiDAR data were tiled using the TerraScan and TerraMatch 
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software respectively (Terrasolid Ltd., Jyväskylä, Finland), the delivered raw bins were projected in 

NAD83 UTM Zone 11 North. Along with the xyz coordinates, GPS time, intensity, and scan angle 

were also recorded for each return. A study using the same LiDAR dataset, from another area of the 

watershed, found a vertical accuracy of approximately 10 cm and horizontal accuracy within 30 cm [29]. 

2.3. Point Classification with MCC and BCAL 

The raw LiDAR point cloud was classified into ground and non-ground returns with both of the 

previously described algorithms (MCC and BCAL). Ranges for initial parameters were selected for 

both methods by consulting with the algorithm developers, for MCC the scale and curvature ranged 

from 0.8 to 1.5 and 0.01–0.10, respectively, and for BCAL the window and threshold ranged from 5 to 

7 m and 0.00–0.10 m, respectively. These initial parameters were used to produce DTMs for an 

optimization process in order to determine which parameter settings produce the lowest root mean 

square error (RMSE) for the study area. We acknowledge that a similar optimization process will be 

necessary for other study areas, especially with different vegetation types such as forests. The MCC 

parameters found to operate the best were a scale value of 1.0 and curvature value of 0.05. Both the 

original BCAL algorithm and a modified version were applied to the raw LiDAR data set. In the 

modified BCAL algorithm, a threshold level is applied, which instead of classifying LiDAR returns 

using the absolute interpolated surface, the interpolated surface plus a threshold value of 0.05–0.10 m 

was used at each iteration for classifying LiDAR data into ground and non-ground returns. The 

threshold was applied to allow for an increase in the proportion of returns being classified as ground 

returns. Through the parameterization process the modified BCAL algorithm was found to outperform 

the original at all tested resolution levels. The modified algorithm produced the lowest RMSE when 

the window size was set to 7 m and the threshold value was 0.10 m. Then combinations of the MCC 

and the modified BCAL algorithms were also applied for filtering the raw point cloud, it was found 

that using the BCAL window size of 7 m and threshold of 0.10 m with the MCC scale value of 1.0 and 

a curvature value of 0.05, produced the lowest RMSE of the combined filtering results. This new point 

classification method will be referred to as Combo through the rest of the paper. The algorithm 

parameters that are utilized in the analysis are summarized in Table 1. 

Table 1. Finalized algorithm parameters for analysis. 

Algorithm 
BCAL Parameters MCC Parameters 

Window Threshold Scale Curvature 

BCAL 7 m 0.10 m – – 

MCC – – 1.0 0.05 

Combo 7 m 0.10 m 1.0 0.05 

2.4. Ground Reference Data 

In summer 2010, 71 plot locations were proportionally allocated by area, within six vegetation 

cover type strata (shrub, ceanothus, meadow, bare ground, deciduous, and conifer; Figure 1). The 

sampling protocol ensured that the selected plots covered the range of terrain and vegetation variability 

within the study area (Table 2). Each plot consisted of a 4 × 4 m square within which survey points 
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were systematically distributed on a 0.5 m grid spacing (81 survey points per plot). Each survey point 

was located and measured (x, y, z position) using a Topcon GTS-236w laser total station that had been 

georeferenced using a Topcon Hyper-Pro real-time kinematic (RTK) global positioning system 

(Topcon Corp., Livermore, CA, USA) and the system of USGS monuments (Figure 1). The Topcon 

Hyper-Pro RTK has a static reading standard of ±15 mm vertical and ±10 mm horizontal. At each of 

the 81 survey points within the grid a presence/absence of vegetative cover was recorded for 

calculating the average vegetation cover of the plot (Table 2). In addition to the 81 survey points, 

additional survey measurements were taken at the center of each shrub (center of crown area) and on 

the northern side of each tree bole in those plots with trees. This provided a total of 7,285 points for 

assessing the accuracies of the DTMs. 

Table 2. Distribution of plots within different cover and terrain conditions. 

Cover Type N Mean Slope Max. Slope Min. Slope Mean Cover Max. Cover Min. Cover 

Meadow 19 8.2 16.9 4.2 82% 100% 14% 

Shrub 20 7.9 15.3 3.5 96% 100% 84% 

Bare Ground 10 6.8 11.8 2.6 24% 100% 0% 

Ceanothus 3 8.9 12.5 6.1 96% 100% 91% 

Aspen 9 6.5 9.5 3.9 66% 84% 39% 

Conifer 10 12.4 17.9 7.4 79% 100% 48% 

*all slopes are given in degrees. 

Once the LiDAR point cloud had been classified into ground and non-ground returns with the 

different combinations of the algorithms and parameters, DTMs were generated from the ground 

returns via a natural neighbors interpolator. DTMs were generated at 1.0 and 0.5 m cell size 

resolutions for each of the three algorithms (MCC, BCAL, Combo). It is believed that with the density 

of returns in this LiDAR data set that error introduced through interpolation is negligible no matter 

what interpolator is being used [20,21]. The survey point locations were used to extract the 

corresponding DTM elevations for comparison. The corresponding surveyed elevations were then 

subtracted from the DTM elevations and these values were analyzed using the Kruskal-Wallis one-way 

ANOVA. Utilizing the ANOVA, all 7,285 survey points were used to assess the overall performance 

of the DTM in terms of RMSE across the catchment. Furthermore, the DTMs were analyzed to 

evaluate which method performed the best within each of the cover types. All results are reported at a 

significance level of p < 0.05. 

3. Analysis and Results 

3.1. 1.0 m Resolution 

When assessing the overall performance of the algorithms, BCAL, MCC and the Combo returned 

RMSEs of 27.33, 27.98, and 30.41 cm, respectively. The ANOVA indicated that there was no 

significant difference between BCAL and MCC, but that each outperformed the Combo algorithm. We 
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further compared the performance of the algorithms within each of the cover types (Figure 2) and 

observed that BCAL was either comparable to (or significantly better than) the other two methods in 

each of the cover types. At 1 m resolution, BCAL provided the most consistent performance between 

the cover types; however, the difference in RMSE between BCAL and MCC overall was only 0.65 cm, 

an increase of 2.4%. The ceanothus class was the only one where a substantial deviation (~40 cm) 

occurs between the BCAL and MCC DTMs, it appeared that MCC misclassified several vegetation 

returns. In other areas, however, it was evident that BCAL removed ground returns from rock 

outcroppings that MCC had done a better job of retaining, this misclassification caused BCAL’s DTM 

surface to be nearly 2 m below actual.  

Figure 2. The three Digital Terrain Models (DTMs) at 1.0 m (a) and 0.5 m (b) were tested 

to identify the best overall performance in each of the cover types. At 1.0 m resolution 

there were no significant differences reported in the shrub, forb and bare ground cover 

types, nor were there significant differences within the shrub and bare ground cover types 

at 0.5 m resolution. Significance was tested at the p = 0.05 level. 

 

3.2. 0.5 m Resolution 

At 0.5 m resolution, BCAL, MCC and the Combo returned overall RMSE levels of 27.18, 27.65, 

and 28.90 cm, respectively. Again the ANOVA indicated no significant difference between BCAL and 

MCC, and that both slightly outperformed the Combo algorithm. When testing the algorithms within 

the different cover types, BCAL outperformed both MCC and the Combo in all of the cover types 

except the bare ground and shrub classes (Figure 2). At 0.5 m resolution, BCAL provided only 

marginally better accuracy, with a 0.47 cm or 1.75% increase in RMSE between BCAL and MCC.  

These two algorithms were further investigated by comparing the MCC and BCAL DTMs, at the 

0.5 m cell size, with a surface created from the grid of plot points, to show the differences between 

specific scenarios (Figure 3). Image (a) of Figure 3 indicates the challenge of filtering rock outcrops. 

In this case, when subtracting the survey produced surface from the algorithm surfaces, BCAL had a 

mean and standard deviation of −92 and 74 cm, while MCC had a mean and standard deviation of −61 

and 46 cm. BCAL removed returns that fell on rock outcrops, causing the DTM surface to be more 
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than 2 m below the ‘Truth Surface’. Image (b) demonstrates how the methods perform in the dense 

vegetation of the ceanothus. In this case, BCAL had a mean and standard deviation of −17 and 5 cm, 

while MCC had a mean and standard deviation of 20 and 13 cm. Within the ceanothus class it appears 

that MCC failed to filter much of the vegetation returns from the ground returns. Overall the 

performance of BCAL and MCC produce comparable DTMs, although they differ in ways that reflect 

their contrasting processing approaches. MCC caused commission errors with its misclassification of 

some vegetation returns as ground, while BCAL produced omission errors by omitting some actual 

terrain features. 

Figure 3. Surface comparison of the Boise Center Aerospace Laboratory LiDAR algorithm 

(BCAL), Multiscale Curvature Classification LiDAR algorithm (MCC) and ‘Truth 

Surface’, created from the 81 survey locations within the plot, for the bare ground (a) and 

ceanothus (b) cover types. All surfaces are at 0.5 m resolution and elevations are given in 

meters. 

 

4. Conclusions 

This study assessed the potential of the BCAL and MCC algorithms to perform in a mixed cover 

type landscape with a variety of terrain features. Ideally, multiple algorithms could be applied to 

different cover types if a highly accurate DTM is required. Table 3 summarizes the performance of 
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each algorithm within the different cover types, these results should be used in deciding which 

processing method will work the best within a LiDAR acquisition. It can be seen that both BCAL and 

MCC performed well overall, but BCAL performed better within the ceanothus and conifer cover 

types. It should be noted that both algorithms tended to produce surfaces with negative elevation biases 

when compared with the survey points, meaning that predicted elevations were less than those 

observed. This trend was consistent for all cover types except the ceanothus as predicted by MCC, here 

there is a large positive bias due to MCC’s failure to classify points within this dense mat of 

vegetation. The points returned by vegetation like ceanothus (Figure 3(b)) create a plainer feature that 

MCC is unable to filter, while the block minimum approach that BCAL utilizes is able to remove most 

of these features.  

Separate assessments at both the 1.0 m and 0.5 m resolution level revealed no significant difference 

between the BCAL and MCC accuracy levels, while both algorithms outperformed the Combo 

algorithm. The DTM results were also compared between the 1.0 m and 0.5 m resolutions; again this 

showed no significant difference in accuracy for any of the algorithms/methods. However, it was 

observed in the DTMs that Combo did experience the greatest improvement in accuracy in each of the 

cover types and overall, when going from 1.0 m to 0.5 m resolution. The improvement is attributed to 

the higher percentage of points that MCC retains during classification. 

Table 3. Comparison of algorithm performance overall and within different cover types. 

Cover Type 

BCAL MCC 

Mean 

Error 
Std. Dev. Error Rank 

Mean 

Error 
Std. Dev. Error Rank 

Aspen −0.151 0.116 1 −0.149 0.122 1 

Ceonothus −0.012 0.125 1 0.342 0.229 2 

Conifer −0.160 0.190 1 −0.085 0.280 2 

Forb −0.058 0.116 1 −0.061 0.116 1 

Rock −0.270 0.429 1 −0.248 0.395 1 

Shrub −0.052 0.263 1 −0.046 0.265 1 

Overall −0.106 0.252 1 −0.079 0.268 1 

*all accuracies are reported in meters  

Both algorithms have potential to be applied to most cover types but one may outperform the other 

in specific scenarios. The results indicate that BCAL is able to create a more reliable surface in very 

dense, continuous vegetation like that which occurs in the ceanothus and willow cover types. This is 

most likely due to the block minimum approach that BCAL uses, allowing it to create a surface from 

fewer points than MCC. In areas where steep or sudden changes in slope, such as with the rock 

outcroppings, MCC is expected to outperform BCAL because it retains more ground returns during the 

filtering process. Although the ANOVA indicates that BCAL and MCC will provide similar overall 

accuracies when optimally parameterized, a prior knowledge of the terrain and vegetation within a 

LiDAR acquisition area, and the particular project objective(s), should be considered when deciding 

which algorithm to employ. Further analysis will be necessary to fully understand how versatile these 

algorithms are or if they can truly be applied to all landscapes. 
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