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ABSTRACT 

 

ADAPTIVE METHODS FOR POINT CLOUD AND MESH PROCESSING  

 

Zinat Afrose 

Old Dominion University, 2018 

Director: Dr. Yuzhong Shen 

Point clouds and 3D meshes are widely used in numerous applications ranging from 

games to virtual reality to autonomous vehicles.  This dissertation proposes several approaches 

for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. 

Order statistic filters have been proven to be very successful in image processing and other 

domains as well. Different variations of order statistics filters originally proposed for image 

processing are extended to point cloud filtering in this dissertation.  A brand-new adaptive vector 

median is proposed in this dissertation for removing noise and outliers from noisy point cloud 

data. 

The major contributions of this research lie in four aspects: 1) Four order statistic 

algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud 

with improved results such as preserving significant features. These methods are applied to 

standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the 

proposed method using Microsoft parallel pattern library for filtering point clouds is 

implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is 

proposed. The objective is to develop a method to enable automatic extraction of ground points 

from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh 

color sharpening using the discrete Laplace-Beltrami operator is proposed. 

Median and order statistics-based filters are widely used in signal processing and image 

processing because they can easily remove outlier noise and preserve important features.  This 



   

 

dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy 

vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point 

cloud data. The experiments show that large-scale noise is removed while preserving important 

features of the point cloud with reasonable computation time. Quantitative criteria (e.g., 

complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative 

criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess 

the performance of the filters in various cases corrupted by different noisy models.  The adaptive 

vector median is further optimized for denoising or ground filtering aerial LIDAR data point 

cloud.  The adaptive vector median is also accelerated on multi-core CPUs using Microsoft 

Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color 

sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second 

order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the 

Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami 

operator of the vertex color weighted by a factor to its original value. Different discretizations of 

the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. 

This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D 

mesh colors and compares their performance. Experimental results demonstrated the 

effectiveness of the proposed algorithms. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter briefly defines the motivation behind the work of this dissertation. It then 

discusses the objectives of this dissertation and concludes with the dissertation structure1. 

 

1.1 Motivation 

Three-dimensional (3D) models are widely used in a variety of applications, such as 

game development, computer animation, movies, preservation of historical heritage and 

mechanical devices, and virtual reality walkthroughs. Most of these applications demand an 

accurate and usable computer model of an object which best suits the underlying application, be 

it to render improved and noise free presentation of the object from arbitrary viewpoints under 

different lighting conditions, or for accurate computations and simulations. There are two 

common approaches to create 3D models: either the model is designed from scratch using 

interactive modeling software, or the model is digitized from a physical object using acquisition 

hardware and algorithms to reconstruct a 3D model from the acquired 3D data. For the latter 

approach, point clouds are a natural way to represent 3D sensor output, and no available 

connectivity information can be assumed from the underlying topology in point clouds.  Working 

directly with raw point clouds in the input 3D space offers several advantages, such as better 

suited for applications requiring data addition and deformation.  Although point clouds can be 

rendered directly using points or textures, more common use of point cloud data is to generate 

3D surface meshes for graphics rendering and other purposes such as modeling and simulation,  

1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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as 3D meshes possess topological information for easy handling of the neighborhood.  Point 

clouds are used in a wide range of applications.  Fig. 1 [1] shows the point cloud generated by 

scanning an industrial facility and the corresponding 3D mesh generated from the point cloud.  

Fig. 2 shows the point clouds generated by using LIDAR (Light Detection and And Ranging) 

laser scanners to scan terrain, and the final digital elevation model (DEM) generated after 

processing the point cloud data. LIDAR scanning can cover large areas uniformly and rapidly, 

and DEM data are widely used in forest planning and management, environmental assessment, 

defense, and gaming, to mention just a few.   

 

 

Fig. 1. Point Cloud Data in CAD Model Generation [1]. 

 

 

 

Fig. 2. LIDAR data in DEM generation. 
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In addition to scanning large-scale figures (plant and terrain) as discussed above, point 

clouds are heavily used individual objects as well.  Fig. 3 shows the point cloud by scanning a 

small statue and the corresponding 3D mesh generated from the point cloud.  More and more 

such point clouds are used in medical modeling and simulation, manufacturing, architecture, 3D 

printing, gaming, and various virtual reality (VR) applications. 

 

 

Fig. 3.  Point cloud to 3D mesh model generation. 

 

While 3D data acquisition hardware has advanced tremendously, various types of noise 

are still introduced in the acquisition process, caused by the limitation of device precision, 

influence, and reflection of light, shadows, low contrast, etc.  The noise present in the point 

clouds cause distortion of the 3D surfaces reconstructed from the point clouds.  Also, a 3D scan 

of the environment includes all objects in the environment, some of which might not be the data 

or information needed. For example, the initial LIDAR scan of the terrain includes vegetation 

and other objects, while the purpose of the scan is the terrain elevation.  In this case, vegetation 

and other undesired objects should be removed to extract the true and accurate terrain 

information.  This dissertation will focus on how to improve the quality of the noisy data models 

with structural and visual improvement. Various filtering for point clouds will be proposed and 

developed, as well as a method for improving the quality of 3D color meshes.  
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1.2 Objectives 

There are four objectives to be achieved by the research in this dissertation. The first 

objective is to develop and implement point cloud filtering algorithms to automatically reduce 

the amount of noise and outliers in small-scale point cloud datasets. Outliers are undesired noise 

that introduces errors in applications using point cloud data. Hence, trimming them out of the 

point cloud will produce point clouds of better quality that facilitate further usage of point 

clouds. Several filtering methods originally developed for image processing are extended to 

point cloud filtering, including vector median, fuzzy vector median, adaptive mean, and adaptive 

vector median filters. A completely new method, namely adaptive vector median (AVM) filter, is 

proposed in this dissertation and utilized for point cloud filtering. The AVM is able to preserve 

detail while eliminating or reducing the impulse noise and outliers in the point cloud. The second 

objective is to implement parallel processing of the AVM filter to accelerate processing of huge 

datasets. Despite the efficiency of the AVM filter, additional efforts are required that increase the 

computational time. Furthermore, the availability of desktop multicore and multithreaded 

processors offers new opportunities to speed up point cloud filtering. The proposed solution 

achieves a computational time gain close to the number of physical cores. The third objective is 

to optimize the AVM filter for processing of aerial LIDAR data. The non-ground objects are 

eliminated by applying a threshold value based on elevation differences and terrain slope, and 

the remaining noisy points are removed by using the AVM filter. The fourth and final objective 

of this dissertation is to develop and implement color mesh sharpening method to improve the 

quality of the 3D mesh. This method extended traditional image sharpening techniques for 2D 

regular images to irregular 3D meshes. In particular, this method utilized several discretizations 
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of the Laplace-Beltrami operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 

discretizations and was applied to various kinds of 3D models for color mesh sharpening. 

 

1.3 Dissertation Structure 

The dissertation is organized in four parts: noisy point cloud filtering, parallel 

implementation of point cloud filtering, ground filtering of aerial LIDAR data, and 3D color 

mesh sharpening. Chapter 1 presents the motivation and objectives for the work in this 

dissertation and the overall dissertation structure.  Chapter 2 gives a literature review on point 

cloud processing, parallel processing, LIDAR data filtering, and 3D meshes. The first 

contribution of this dissertation is introduced in Chapter 3, including five different filtering 

methods for the noisy point cloud, namely vector median filter, fuzzy vector median filter, 

adaptive mean, adaptive median, and adaptive vector median filter. Parallel implementation of 

the adaptive vector median filter is presented in Chapter 4. Chapter 5 describes the method for 

aerial LIDAR data ground filtering. Chapter 6 presents the algorithm for color mesh sharpening. 

Chapter 7 concludes the dissertation and discusses directions for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a review of the literature that is relevant to the work in this 

dissertation, including point cloud processing, multi-core and GPU-based parallel computing, 

aerial LIDAR data processing, and mesh processing.  

 

2.1 Point Cloud Processing 

Point clouds are a natural way to represent 3D sensor outputs with no assumption of 

connectivity information or underlying topology. In early efforts of digitization of several 

cultural heritage sites and statues, processing a huge amount of noisy 3D data in a reasonable 

time presented a big challenge [2], [3], [4]. Many techniques have been introduced to remove 

noise and outliers from the scanned point cloud using smoothing filters [5], [6], [7], [8], [9], [10]. 

However, this approach could not preserve sharp features, which were undesirable for some 

cases. Wang et al. [11] combined fuzzy c-means and bilateral filtering and produced good results 

but also partly smoothed the sharp features while clustering. Data clustering is robust for 

removing noise [12], [13] though it requires prior knowledge about the input objects. Mederos et 

al. [14] introduced a smoothing operator that could preserve the significant edges of the surface, 

which was inspired by the moving least square method and robust statistics theory. However, this 

approach only removed a small range of noise, but the elimination of outliers remained mostly a 

manual procedure. Lea [15] presented a GPU-based implementation of moving least squares and 

Liu and Zayer [16] proposed Bundle Adjustment for the multiview point cloud. 
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Both approaches [15], [16] were intended for smoothing the point cloud data. However, 

both smoothing and sharp feature preservation become a challenge and computationally 

expensive for huge datasets. Majority voting method [17], an improved approach to k-means 

clustering [18], [19], cluster analysis and segmentation [20], and K-NN algorithm with clustering 

[21] all required high computational cost for large datasets. A new approach of SVM was 

introduced for noise reduction in the point cloud based on density and distance [22] for a small-

scale data. Several studies [17], [18], [23], [24], [25] were intended for small data sets and 

consumed much execution time for large datasets. An image processing technique namely 

Wiener filter was used with patch collaborative spectral analysis [26]. This image-based 

technique was also computationally demanding. Deschaud and Goulette [27] presented an 

approach to handle large datasets by filtering normal and voxel growing for plane detection in 

the presence of noise, but this approach failed in the border with small variation. In a different 

paper [28], they identified and removed outliers by utilizing a dissimilarity measure based on 

point positions and normal, but the quality decreases if the voxel size is large. Digne [29] 

introduced low/high-frequency decomposition by comparing the neighborhoods of the points. 

This method, however, required reasonable point cloud density. Estimation of threshold in the 

high-density point cloud was also considered [30], [31]. However, this may lead to holes in the 

regions where noise and outliers are concentrated. These methods tend to eliminate critical 

features such as sharp edges or corners. Various approaches were attempted for extracting sharp 

features in point clouds. Delaunay tetrahedralization ([32], [33]) produced surface meshes from 

noisy point cloud while preserving important features. Zheng et al. [34] discoursed this issue 

with multiple normals according to the feature type. In this case, large datasets were not taken 
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into account. A wide range of comparisons on point cloud denoising algorithms and evaluation 

of the subjective performance of the well-known quality metrics were presented in [35] and [36]. 

 

2.2 Multi-core and GPU-based Parallel Computing 

With advances in hardware design and VLSI technologies, a single processor VLSI chip 

now contains multiple cores, called multi-core or many-core processors. For example, an Intel 

Xeon processor can have as many as 24 cores on a single chip. Therefore, computations can be 

partitioned into multiple subtasks and then allocated to multiple cores on the same CPU chip for 

parallel processing.  Multi-core processor architecture contains several execution cores within a 

single processor package. Multi-core processors now are a standard configuration on desktop and 

laptop computers and even smartphones. Graphics Processing Units (GPUs) are another category 

of computing hardware that is now widely used for parallel computing on personal computers, 

workstations, and clusters.  GPU contains multiple Streaming Multiprocessors (SMs), and each 

SM consists of many CUDA cores (also called Stream Processors, or SPs).  The latest NVidia 

GPUs contain thousands of CUDA cores and thus can execute thousands of threads concurrently.   

GPUs are optimized for computations used by computer graphics, such as affine transformations, 

lighting, and texture mapping.  In recent years, GPUs have been utilized for general purpose 

computing (GPGPU) such as image processing, computational fluid dynamics, and machine 

learning.  Yang et al. [37] calculated integral images on GPU to accelerate the whole cost-

volume filtering process whereas Aitali et al. [38] proposed a SIMD architecture for bias field 

estimation and image segmentation. Three different GPUs have been utilized to accelerate 

compute-intensive portions of the original sequential code. The speedup depends on the model of 

the GPU, image size, and number of clusters. Galliani et al. [39] presented a multiview variant of 
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Patchmatch Stereo with a new, highly parallel proliferation scheme that delivered dense 

multiview correspondence over ten 1.9-Megapixel images in 3 seconds on a consumer-grade 

GPU. It achieved an accurate and complete reconstruction with the low runtime. Based on 

NVIDIA CUDA, Anderson et al. [40] and Li et al. [41] proposed an improved classic Fuzzy C-

Means clustering algorithm which adaptively updated membership values and the update 

criterion of cluster centers. Their methods produced better visual effects and segmentation 

efficiency. A 2-level parallel computing framework to accelerate the SVM was proposed in [42] 

by utilizing CUDA and OpenMP. Wu et al. [43] presented a computationally efficient parallel 

implementation of a spectral-spatial classification method based on adaptive Markov random 

fields. It was more accurate and 70 times faster than the original sequential code. El-Nashar [44] 

discussed the issue of speedup gained from parallelization using MPI and proposed a way to 

predict the speedup of MPI application. Parallelization was also utilized in 3D point cloud 

matching and filtering [45], [29]. Jorge et al.’s approach [45] attained computational gain, which 

was close to the number of cores. Digne et al. [29] analyzed a parallel implementation of the 

bilateral filter for the point cloud. The registration problem for 3D scans was addressed with 

GPGPU [46], and the nearest neighbor search algorithm was used for 3D point cloud 

registration. The registration of a large dataset is computationally expensive. Their method was 

able to achieve a speedup of 88 over the sequential algorithm. Kun et al. [16] presented a parallel 

surface reconstruction algorithm that ran entirely on GPU. This approach produced high-quality 

surfaces through global optimization. GPU was also used to speed up the process of filtering 

LIDAR data significantly [47]. 
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2.3 Aerial LIDAR Data Processing  

Aerial Light detection and ranging (LIDAR) integrates the Global Navigation Satellite 

System and Inertial Navigation System with laser scanning and ranging technologies. It enables 

direct measurement of the 3-D coordinates of points on ground objects for the efficient creation 

of digital surface models (DSMs). The large volume of scanned data that are manipulated when 

processing a LIDAR point cloud has been one of the major challenges in data processing. For 

example, one strip of a scanned area can easily produce tens of millions of points. Efficient 

algorithms are, therefore, important in practical applications. For some critical fields, such as 

emergency response, very short data processing time is required. For example, after an 

earthquake, terrain maps are required urgently for damage estimation and rescue plans. The 

filtering of the LIDAR point cloud is an important step in LIDAR data processing. It classifies 

the LIDAR points into ground points and nonground points, which are objects such as buildings, 

trees, and low vegetation. Filtering is one of the most important steps in producing the digital 

elevation model (DEM) and terrain information. 

The diversity of the terrain, the complexity of features, and the irregular distribution of 

the points bring significant difficulties to the filtering process [48]. For many years, researchers 

showed filtering LIDAR data is an extremely problematic task and is still currently actively 

under investigation [49], [50], [51], [52], [53], [54], [55]. Researchers have proposed different 

types of filtering methods. These methods can be grouped into several categories based on the 

filter strategies, such as iterative interpolation, morphology, slope, segmentation or clustering, 

region, machine learning, statistical analysis, as discussed below.  
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Interpolation based filtering: For interpolation-based methods, the initial ground points 

are selected and then densified iteratively to create a provisional surface that gradually 

approaches the final ground surface [49], [50], [56], [57], [58]. 

Morphology-based filtering: This algorithm originated in mathematical morphology 

theory, which uses morphological operations, such as opening operation [59], to approximate 

terrain surface or building detection [60, 61]. Kilian et al. [62] proposed a progressive 

morphological filter based on a series of opening operations applied to a gridded surface model 

to remove the objects with different size. The progressive morphological filtering method 

proposed by Keqi et al. [59] used the increased radius of the structuring element to remove non-

ground points. However, these methods generally assume the terrain has a constant slope. Chen 

proposed a morphological algorithm with varying slope [63]. The biggest challenge for these 

methods was how to maintain the terrain features when the size of the filter window changes. 

Silva et al. [64] evaluated four ground filtering algorithm and showed progressive morphological 

filters achieved less accuracy than the other three algorithms. 

Slope-based filtering: The common assumption of slope-based algorithms is that the 

change in the slope of terrain is usually gradual in a neighborhood, while the change in slope 

between buildings or trees and the ground is very large. Based on this assumption, Vosselman 

[65] developed a slope-based filtering algorithm by comparing slopes between a LIDAR point 

and its neighbors. To improve the calculation efficiency, Shan and Sampath [66] calculated the 

slopes between neighbor points along a scan line in a specified direction, which was extended to 

multidirectional scan lines by Meng et al. [61]. Acquiring an optimal slope threshold that can be 

applied to terrain with different topographic features is difficult with these methods.  
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Segmentation/ Clustering based filtering: The motivation behind such procedures is 

that any points that cluster must belong to an object if their cluster is above its neighborhood. For 

such a concept to work the clusters/segments must delineate objects and not facets of objects. 

There are various ways in which cluster boundaries or segments can be obtained. Clustering 

methods have been proposed by Filin [67] and Roggero [68]. These clustering methods work by 

projecting and separating the data into a feature space. Segmentation algorithms have been 

proposed by Lee and Schenk [69], Hosseini [70], Liu et al. [71] and Sithole [72]. Another way of 

obtaining cluster boundaries is to contour the point-cloud. An object is then suspected to exist 

where the length (or internal area) of a contour does not grow significantly from a lower contour. 

This idea is employed by Zhan et al. [73] and Elmqvist [74, 75]. 

Machine learning based filtering: Machine learning has been used in pattern 

recognition, classification, regression, and clustering for a long time. The deep convolutional 

neural networks (CNN) are inspired by biological vision systems; these networks have recently 

shown their ability to extract high-level representations through compositions of low-level 

features. Hu and Yuan [47] proposed ground filtering based on CNN. Classification of individual 

trees [76] and above ground object classification [77], [78] utilized deep learning. 

Backpropagation neural network [79], Support Vector Machine [80], [81], [82], [83] and random 

forest [84] are widely used in classification technique for LIDAR data. The key benefit of using 

this type of methodology is the simplicity and clarity of the resulting model. On the contrary, 

they also have some drawbacks: they provide a set of highly correlated predictors with little 

physical justification and require long times to train the model.    

Many experiments and projects have been applied various filtering algorithms to range 

images [85], [86], [87], [88], [89], [90], [12]. Several papers [60], [64], [91], [92], evaluated and 
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analyzed different ground filtering approach and concluded that not all of the algorithms were 

capable of producing reliable results but adaptive filtering algorithms have more promising 

results.   

  

2.4 Mesh Processing 

Various methods have been proposed to recover the quality of the meshes generated by 

3D scanners, such as surface smoothing [93], which removes geometrical noise in the mesh 

using Laplacian smoothing. However, local Laplacian smoothing leads to a variety of artifacts 

such as geometric distortion and shrinkage due to the irregular connectivity of the mesh. Several 

techniques were proposed to eliminate this shrinkage problem and topological effects of 

smoothing [94], [95], [96]. Wang [97] proposed a sharpening method using bilateral filtering 

followed by iteratively modifying the mesh's connectivity to form single wide, sharp edges that 

were detected by their dihedral angles. A distance measure was defined based on normal tensor 

analysis [98]. This algorithm consisted of two stages that require much computation time and 

worked only around the edge features of the model. Particular focus was also on edge 

sharpening. Attene et al. [99] applied a filtering approach that required subdivision of Chamfer 

triangles. Ohtake et al. [100] proposed polyhedral surface smoothing that was a combination of 

Laplacian smoothing flow and discrete mean curvature flow. Another approach for smoothing 

surfaces was introduced in [101] using fuzzy vector median filters for surface normal filtering in 

a two-step procedure. Anisotropic geometric diffusion was proposed for surface fairing in [102]. 

The multiscale method combined the image processing methodology based on nonlinear 

diffusion equations and the theory of geometric evolution problems for surface processing. This 

method smoothed the surface by enhancing the edges and corners of the surface. Surface fairing 



14 

 

 

or removing rough features was also conducted by [103] and [104]. Hildebrandt and Polthier 

[103] proposed an algorithm based on a constraint that controls the spatial deviation of the 

surface. Shen et al. [105] applied normal filtering to improve the quality of the mesh surface and 

remove the noise. This geometric approach consumed much computational cost because of its 

feature detection stage. Since Laplacian cannot be applied to the irregular meshes due to the 

irregular topology of meshes, Laplace-Beltrami operator was introduced in different applications, 

such as computational fluid dynamics [106], [107] and shape segmentation [108]. Petronetto et 

al. [108] introduced a mesh-free discrete Laplace-Beltrami operator that is defined on point-

based surfaces for filtering and shape segmentation. Belkin et al. [109] proposed an algorithm to 

approximate the Laplace operator of a surface with point-wise convergence that is applicable to 

arbitrary meshed surfaces. Scale-dependent Laplacian operator was utilized in [110] to improve 

the smoothness of surface with volume preservation. Gu et al. [111] applied discrete Laplace-

Beltrami operator to determine the discrete Riemannian metric. To solve the convergence 

problem for numerical simulations over the surfaces, Wu et al. [112] and Xu [113] introduced a 

convergent algorithm of Laplace-Beltrami operator. Xiong et al. utilized this convergent property 

of Laplace-Beltrami operator for mesh surface smoothing in [114]. Wetzler et al. [115] applied 

the Laplace-Beltrami operator as a diffusion filter and an invariant metric to obtain geometric 

shape matching. All of these methods used different approaches for geometric processing. The 

Laplace-Beltrami operator has been used only for geometrical processing, not for color 

processing. 
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CHAPTER 3 

POINT CLOUD PROCESSING 

 

This chapter starts with an introduction to point clouds and various types of noise present 

in point clouds.  It then describes the details of five filtering methods for point clouds, including 

vector median, fuzzy vector median, adaptive mean, adaptive median, and adaptive vector 

median, and their experimental results.  The chapter ends with an implementation of a variant of 

the adaptive vector median. 

 

3.1 What is Point Cloud 

A point cloud (Fig. 4) is a data structure used to denote a group of multi-dimensional 

points and is commonly used to represent three-dimensional data [116]. In a three-dimensional 

coordinate system, these points are usually defined by X, Y, and Z coordinates, and often are 

intended to represent the peripheral surface of an entity. 

 

 

    

 Fig. 4.  Examples of point clouds. 
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3.2 Categories of Point Clouds 

Unorganized point clouds are captured from varied inputs like RGB-D cameras, stereo 

cameras, 3D laser scanners, time-of-flight cameras (Fig. 5), photogrammetric image 

measurements, motion sensors, or synthetically from software. They pose a tough problem of 

reconstruction, especially challenging in case of incomplete, noisy, and sparse data. Despite the 

fact that in practice the sample points produced by a 3D scanner are measured with some 

regularity, the points in a point cloud are typically not assumed to have any particular structure. 

The reason for this is to make the algorithms operating on point clouds as general as possible, not 

depending on the scanner or the way the object was scanned. Obviously, efficient processing of 

such unorganized point clouds is a central issue in all 3D scanning applications. Depending on 

the size of the object, its geometry, and the required precision of the scan, different approaches 

are used. Many technologies exist today to acquire 3D point clouds from various environments. 

Range-based technologies include 3D laser scanners (also known as terrestrial laser scanners) 

and time-of-flight (ToF) cameras. Accuracies of laser scanners at the present time are generally 

within 1 to 5 millimeters. The accuracy of Leica HDS2500 laser scanner is 5mm at 100m [117], 

and for Leica TC2003 Total Station the accuracy is 1 mm over the range of 2.5 to 3.5 km [118]. 

3D laser scanning has become a relatively matured technology, and many commercialized 

systems are available such as Faro, Leica, Riegel, Topcon, Trimble, Zoller & Frohlich, and 

others. Laser triangulation-based 3D scanners are less accurate, but significantly faster, which 

project a laser beam on the object and use the triangulation principle to derive the distance to the 

object. Structured light scanners project an entire 2D pattern onto the object and calculate the 3D 

surface points by analyzing the deformation of the pattern. The advantage of structured light 

scanners is their fast speed so that they can be used to scan moving and deforming objects. 
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A time-of-flight camera has several benefits; for example, it can measure 3D depth maps 

at video rate, and as a result, it can be employed as a fast object scanner. The travel time of 

infrared light is one of the measurement technique of ToF cameras and thus it does not interfere 

with the visual field. A passive stereo technique is another alternative to point sample an object 

or scene. However, stereo processing algorithms depend on the presence of the texture in the 

image, and they have a few parameters that can be altered to generate a better result such as 

disparity range or correlation window size.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 5. Point cloud capture devices (a) Kinect, (b) Creative Senz3D scanner, (c) Trimble scanner, 

(d) NextEngine 3D. 
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   The use of different sensor types (e.g., digital cameras, thermal cameras, multispectral 

cameras, range cameras, laser scanners, etc.) typically results in data in the form of 2D imagery 

or 3D point cloud data. Some examples [119] are shown in Fig. 6. 

 

 
 

(a) (b) 

 

 

(c) (d) 

Fig. 6. Example of point cloud generation (a) using 2D laser sensor, (b) using Time-of-flight 

camera, (c) using Stereo camera [120], (d) Synthetically. 

   

3.3 Applications of 3D Scanning 

Three-Dimensional point clouds are widely used in various applications such as 

modeling, rendering, and CAD model generation. These point clouds are mainly generated using 
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3D scanners. Other applications include inspection and quality control, where a manufactured 

part is compared with its intended design CAD model. Numerical simulation using finite 

elements can be performed on the scanned models, e.g., the simulation of the aerodynamic flows 

inside and outside of an object. Also, scanned models are used in computer graphics to render 

realistic scenes and in the film animation industry. 

However, although the scanning technology has improved and offered better features, it 

still has some problems such as distortion, reflections, shadows, low contrast, etc. Limitation of 

device precision, the influence of light, and reflection may cause the addition of noise in the 

original data, which damages the original representation of the model and also hampers the 

accuracy of the surface reconstruction. 

 

3.4 Types of Noise in Point Clouds 

Point clouds generated from the scanners are not clean. Most of the data are incomplete, 

unclean, or contaminated by noise and missing important features. Several factors can cause 

noise to the original point cloud such as sensor noise, depth quantization, distance in relation to 

the scanner, etc. The noise can be of different types such as Gaussian, outlier, and shot (Fig. 7). 

Gaussian noise: This type of noise is generated due to sensor imperfections during 

procurement. Generally, when the same scene is taken from different viewpoints or more than 

one camera is used in image acquisition, Gaussian noise is presumably added to the original 

point cloud. This noise affects the position of all points of the point cloud, and the level can be 

modeled by a standard deviation. 

Outlier: This type of noise is generated due to structural artifacts in the acquisition 

process. Mostly, it happens during multiview stereo acquisition where view dependent 
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reflectivity of a surface can result in false correspondence. Sometimes, outliers are randomly 

distributed in the volume, and the density is much less than the sample density of the overall 

points.  

Shot noise: This type of noise is produced because of the misjudgment of the scanner 

when it is scanning the boundary of the object. The scanner cannot locate the depth boundary of 

the model, and thus it generates some tail along the depth of the object. In most of the cases, the 

density is high and can’t be separated from the original shape of the object using density 

estimation. Some individual points have extreme values. 

 

   

(a) (b) (c) 

Fig. 7. Types of noise in point cloud. (a) Gaussian noise, (b) outlier, (c) shot noise. 

 

A point cloud has to be processed before generating a 3D mesh surface. A well-prepared 

point cloud leads to strong time saving in the further surface editing or modeling processes. The 

importance of noise removal in point cloud data is to generate a cleaner and smoother exterior of 

the original data with minimum topological error. For this reason, both noise removal and 

structural improvement are the objectives of this dissertation research. 
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3.5 Proposed Methods 

In this section, five different filtering methods are proposed for point cloud processing. 

Among these five filtering methods, vector median, fuzzy vector median, adaptive mean, and 

adaptive median filter have been effectively used in image processing and mesh processing. 

These filters are extended and implemented for point cloud processing in this dissertation. The 

adaptive vector median filter is a new filtering method that is first proposed in this dissertation 

for the point cloud processing. 

 

3.5.1 Vector Median Filter 

The vector median filter is the extension of median filter [121]. Given an input point 

cloud P = {pi ϵ R3}, and an observation window Ω = {p1, p2,….., pN ϵ Rm}, the output of the 

vector median filter is defined as [101]: 

                                 𝑃𝑉𝑀 = 𝑎𝑟𝑔 min
𝑝∈Ω

∑ ‖𝑝 − 𝑝𝑖‖
𝑁
𝑖=1 𝐿𝑝

,                       (1)               

where, p1, p2..., pN are input points, N is the window size and ‖. ‖𝐿𝑝
 denotes the Lp norm. The sum 

of Lp is the total distance from each point to all other points. The vector median is a suboptimal 

estimate, in the maximum likelihood sense, of the location parameter of a multivariate Laplacian 

distribution. To find the vector median, the sum of Lp distances from each sample to all other 

samples is computed, 𝑑(𝑝𝑗) =  ∑ ‖𝑥𝑝𝑗 − 𝑥𝑝𝑖‖𝐿𝑝
, 𝑗 = 1,2, … … . . 𝑁𝑁

𝑖=1 , then, the vector median is 

set as 𝑃𝑉𝑀 = arg 𝑚𝑖𝑛𝑝𝑗
(𝑑𝑝𝑗). Although this computation has a complexity of O(N2), it performs 

well in practice and is not generally computationally prohibitive as the window size N is usually 

a small number. In addition, fast vector median methods are available [122].  
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3.5.2 Fuzzy Vector Median Filter 

The concepts of fuzzy relations and fuzzy median filters to the vector data case are 

extended in this method [101]. The FVM filter is applied to the smoothing of surface normals 

and yields results that minimize the effect of noise while simultaneously preserving the fine 

structure, edges, and other visually important cues. Following the FVM-based smoothing of 

surface normals, the point positions are updated based on a system of linear equations structured 

on the smoothed normals using the least square error (LSE) method. 

To utilize fuzzy membership functions on vector-valued data, an appropriate distance 

metric D ∈ ℝ𝑚 for vectors u and v ∈ ℝ𝑚 must be established. This metric must satisfy the 

following conditions: 

1. D(u,v) ≥ 0, and D(u,v) = 0 iff u = v, 

2. D(u,v) = D(v,u), 

3. D(u,v) + D(v,w) ≥ D(u,w). 

The distance metric D (·, ·) may be application dependent. For example, if the directions 

that vectors u and v represent are the main features of concern, then the angle between u and v is 

a good distance metric. Conversely, if the physical distance between u and v defines a feature, 

then the Lp norm is the appropriate metric. Although other metrics can be adopted, we restrict 

our focus to the commonly used angle and Lp norm metrics. The specific metric utilized will be 

clear from the context. The angle metric and Lp norm metric can be written as: 

𝐷(𝑢, 𝑣) = {
𝐴(𝑢, 𝑣) =  ∠(𝑢, 𝑣),

𝐿𝑝(𝑢, 𝑣) = ‖𝑢 − 𝑣‖𝑝.
                                                                   (2) 

Given a vector distance metric, we now define a vector-based fuzzy membership 

function, denoted 𝜇𝑅̃(𝑢, 𝑣): ℝ𝑚 × ℝ𝑚 ↦ [0,1], where the constraints are: 

1. 𝑙𝑖𝑚𝐷(𝑢,𝑣)→0𝜇𝑅̃(𝑢, 𝑣) = 1, 
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2. 𝑙𝑖𝑚𝐷(𝑢,𝑣)→𝑀𝜇𝑅̃(𝑢, 𝑣) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑀 = sup 𝐷(𝑢, 𝑣), 

3. 𝐷(𝑢1, 𝑣1) ≤ 𝐷(𝑢2, 𝑣2) ⇒ 𝜇𝑅̃(𝑢1, 𝑣1) ≥ 𝜇𝑅̃(𝑢2, 𝑣2). . 

The metric D (·, ·) can also be used to extend the Gaussian membership function to 

vector-valued data: 

                                                        𝜇𝐺(𝑢, 𝑣) = 𝑒−𝐷(𝑢,𝑣)2/2𝜎2
,                                                 (3) 

where σ is the spread parameter. 

The vector median is based on the vector distance metric. The vector median, represented 

by 𝑝(𝛿), is the sample that minimizes the distance metric D (. , .) between itself and all other 

samples: 

           𝑃(𝛿) = arg min
𝑝∈Ω

∑ 𝐷(𝑃, 𝑃𝑖
𝑁
𝑖=1 ).                           (4)        

If more than 
𝑁+1

2
 samples have the same value pm, then the vector median filter selects pm as its 

output.  

The fuzzy vector median filter is implemented in the following way: given an input point 

cloud P = {pi ϵ R3}, a K-d tree is formed to represent the neighborhood information. A K-d tree, 

or K-dimensional tree, is a data structure used for organizing some number of points in a space 

with k dimensions [120]. Since point cloud is three-dimensional, K-d trees used here are also 

three-dimensional. K-d tree uses partition method to organize the number of points in a space. 

The final outcome is the weighted sum of input point sets, where the weights are determined by 

the fuzzy relation between each input vector and the vector median. The vector median is 

determined based on a distance metric. The output of the FVM is defined as [101]: 

                                                            𝑃𝐹𝑉𝑀 =
∑ 𝑃𝑖𝑅̃𝑖,(𝛿)

𝑁
𝑖=1

∑ 𝑅̃𝑖,(𝛿)
𝑁
𝑖=1

,                     (5) 

where 𝑅̃𝑖,(𝛿) = 𝜇𝑅̃(𝑃𝑖, 𝑃(𝛿)) is the fuzzy relation between Pi and P(δ). Pi is the input point data set 
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and P(δ), is the median. The relation function can be any shape that reflects the most relevant 

information between samples. Two identical samples should have relation 1, while the relation of 

two infinitely distant samples should be 0. Moreover, the relation between samples should 

increase as the distance between them decreases. 

 

3.5.3 Adaptive Filters 

Adaptive filters are widely used in the image-processing domain for their capability to 

enhance the eminence of the images and remove the unwanted pixels that cause the degradation 

of the image. The most important characteristic of these filters is that the filter can self-adjust 

some of its property during the filtering process based on some criteria. Adaptive filters perform 

better than mean and median filters. The adaptive filters exhibit significant improved 

performance in image processing if the image contains outliers, shot, or Gaussian noise. Since 

the filtering operation is performed based on the local characteristics of the image, it can keep 

the small details and enhance the edges of the image. 

 

3.5.3.1 Adaptive Mean Filter 

The adaptive mean filter changes its behavior according to the statistical characteristics of 

the point cloud inside the filter window Sxyz with a specified radius [123]. Given an input point 

cloud P = {pi ϵ R3}, a K-d tree is formed to represent the neighborhood information. For this 

filtering approach, the algorithm is applied to the neighborhood of a point. The neighborhood is 

defined by the window Sxyz = {pij ϵ P}. Four parameters are considered here: the depth value of 

the noisy point pi, the variance of the noise σ2
n corrupting the original points, the local mean of 

the points mL in the region Sxyz and local variance of the points σ2
L in the region. The behavior of 
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the filter is as follows: 

First, in a specific window compute the local mean, local variance of the depth values of 

that region and the variance of overall noise.  

i) If σ2
n = 0, the filter should return the value of the centered point. This happens when 

there is no noise present. 

ii) If σ2
L is high relative to σ2

n, the filter should return values close to the point under 

consideration. A high local variance means it is related to the edges, and these should be 

preserved. 

iii) If σ2
L = σ2

n, the filter should return the arithmetic mean value of the points in the 

region Sxyz. The local noise is reduced by simple average. 

According to the preceding assumptions the filter response can be modeled as: 

𝑃𝐴𝑀 = 𝑍𝑖 −
𝜎𝜂

2

𝜎𝐿
2 [𝑍𝑖 − 𝑚𝐿] 

If σ2
η > σ2

L then the ratio is set to one. Here, 𝑍𝑖represents the depth value of a point, 𝜎𝜂
2 

represents the variance of overall noise, σ2
L represents the local variance of the local region and 

mL represents the local mean. 

 

3.5.3.2 Adaptive Median Filter 

As an adaptive filter, adaptive median filter also changes its behavior based on the 

statistical characteristics of the point cloud inside. Given an input point cloud P = {pi ϵ R3}, a K-

d tree is formed to represent the neighborhood information. The neighborhood is defined by the 

window Sxyz = {pij ϵ P}. However, it changes the size of Sxyz during filter operation, depending on 

the following conditions. The filter works in two stages, denoted stage S1 and stage S2: 

Stage S1:    S11 = Zmed - Zmin  

(6) 
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       S12 = Zmed - Zmax 

       if S11 > 0 and S12 < 0, go to stage S2 

       else increase the window size 

       if window size ≤ Smax repeat stage S1 

       else output Zmed 

Stage S2:   S21 = Zi - Zmin  

       S22 = Zi - Zmax 

       If S21 > 0 and S22 < 0, output Zi        

       else output Zmed 

Here, Zmed = median of depth value in Sxyz, Zmin = minimum depth value in Sxyz, Zmax = maximum 

depth value in Sxyz, Zi = depth value of point Pi, Smax= maximum allowed size of  Sxyz. 

 

3.5.4 Adaptive Vector Median Filter 

The resulting 3D point cloud of a real object often contains noise-induced artifacts, which 

are typically located around the ends and border of the model. These noise-induced artifacts are 

unwanted and feature in the point cloud as clusters of neighboring points, which are not actually 

part of the original model surface. In other words, the outliers are the product of the sensor's 

inaccuracy, which registers measurements where there should not be any. The adaptive median 

filter attempts to preserve detail while smoothing the impulse noise and outliers in point cloud. 

The adaptive vector median filter is based on the spatial processing of the point cloud. The first 

step is to find a neighborhood for each point. An adaptive structure of the filter ensures that most 

noisy points are detected even at a high noise level.  
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Given an input point cloud P = {pi ϵ R3}, a local neighborhood Sxyz = {pij ϵ P} for each 

point pi is determined by the KNN (K-Nearest Neighbor) where pij is the jth neighbors around pi 

and a 3D kd-tree representation is constructed for Pc. The point containing the vector median 

(vector median is calculated based on distance) in Sxyz is defined as pj. This filter detects the 

noisy candidate pi and replaces the noisy candidate with the vector median of the points in a local 

window. However, it changes the size of Sxyz during filter operation, depending on the following 

conditions.  

 The algorithm checks both the point of interest and the point containing the vector 

median. Four different situations may arise in detecting noise in the point cloud.  

1. The point of interest pi is noisy, 

2. The point containing the vector median pj is noisy, 

3. Both the pi and pj is noisy, 

4. None of them are noisy. 

Given a noisy point cloud and an initial window size, the adaptive vector median filter 

performs several steps.  

Stage 1: First, for each specified window, it calculates the vector median. Next, it checks 

if the point containing the vector median value pj is noisy based on the depth value (z 

component) using the following formula: 

  𝑍𝑚𝑖𝑛 ≤ 𝑍𝑚𝑒𝑑 ≤ 𝑍𝑚𝑎𝑥                              (7) 

where Zmin is the minimum of depth value in Sxyz, Zmed is median of depth value in Sxyz and Zmax is 

the maximum of depth value in Sxyz. If pj is not noisy (eq. 7 is satisfied), then it continues to stage 

2. Otherwise it expands the window size and repeats stage 1. 

Stage 2: Check if the center point pi is noisy by the following formula: 
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                                       𝑍𝑖 − 𝑍𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑍𝑖 − 𝑍𝑚𝑎𝑥 < 0                            (8) 

 

where Zi is the depth value of pi, Zmin is the minimum of depth value in Sxyz and Zmax is the 

maximum of depth value in Sxyz. If the condition satisfies then pi is not noisy, the filter output is 

the original center point, and it continues to the next point, otherwise pi is replaced by the vector 

median pj; If both the vector median pj and the center point pi are noisy, the filter window is 

expanded, and the above process is repeated.  

A flowchart of the proposed filtering method is illustrated in Fig. 8. 

Fig. 9(a) shows a noisy model with several outliers and Gaussian noise with σ = 0.001 

(m) and Fig. 9(b) illustrates the result of the filtering. If the noise candidates are detected, the 

denoising performance is expected to be improved. The adaptive vector median filter is 

considered to remove the difficulties faced by the standard vector median filter. The basic 

difference between vector median and adaptive vector median filter is that, in the adaptive vector 

median filter, the size of the window adjacent to each point is adjustable. This change of window 

size depends on the vector median of the points in the present window. If the vector median 

value is between the max and min value, then the size of the window is extended. Otherwise, 

further processing is ended on the part of the data within the current window specifications. So 

far, we only used a fixed maximum radius to compute the local neighborhoods for detecting the 

window size. Fig. 9 shows a 3D point cloud of a sphere with artificially added Gaussian noise 

and outlier. This point cloud has some non-isolated outliers that are not separable using simple 

distance criterion. 

The AVM filters out the outlier based on the window-based technique and successfully 

retrieve the original shape of the sphere. Fig. 10 represents an artificial iron model in 3D where 

Fig. 10(a) shows a noisy point cloud with Gaussian noise with σ = 0.001 (m) and several outliers 
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and Fig. 10(b) illustrates the result of our filtering. The result shows the proposed method 

maintains the better quality of the original model with precise features. We represent this 

comparison to illustrate the effectiveness of the proposed method for removing outliers and noisy 

points and improving the prominent features of this complex dataset. The vector attribute of the 

point cloud and the adaptive nature of the window size handles the noise efficiently. The points 

in the point cloud are not removed permanently; rather the positions are updated according to the 

algorithm. 

 

  

Fig. 8. Flowchart of Adaptive vector median filter. 
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Fig. 9. Point cloud processing. (a) Point cloud of an artificial sphere with a high density of noise 

(b) Result after noise removal using AVM. 

 

 

Fig. 10. Denoising point cloud (a) Input noisy model, (b) Filtered result using AVM. 
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3.6 Software Implementation and Experimental Results  

This section presents the implementation of the various filtering methods for point cloud 

processing as well as their results for different data sets. 

 

3.6.1 Software Implementation  

The Point Cloud Library (PCL) is an open-source software library [124] for 2D/3D image 

and point cloud processing, developed by contributors from many different academic and 

commercial organizations.  It contains a large collection of software library modules for various 

tasks in point cloud processing, such as filters, features, registration, kdtree, octree, 

segmentation, recognition, and visualization.  PCL is open source software written in C++ and 

released under BSD license; it is free for commercial and research use.  PCL is utilized as a basic 

framework to implement the proposed filtering methods for point cloud processing in this 

dissertation.   

In addition, an application with a graphical user interface (GUI) was developed for the 

selection of filters, setting filter parameters, file input/output, and visualization of point clouds.  

The GUI was developed using the QT library, which is a cross-platform application framework 

and widget toolkit for generating graphical user interfaces. Fig. 11 shows the available 

functionality of the application and its GUI.  MATLAB was used to add Speckle noises to the 

models. Kinect, Kinect 1.0, NextEngine 3D scanner, LIDAR data and other sources of scanned 

data were used to generate the models for results. A Dell Precision M6600 of Intel Core i7 

processor with 16GB RAM has been used to execute the methods. 
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Fig. 11. Graphical User Interface for point cloud visualization. 

 

A close view of the menu buttons of the interface is shown in Fig. 12. The menu has 

several options such as new workspace, open a file, save a file, print, cut, paste, zoom in, zoom 

out, denoising filter options (median, vector median, fvm, adaptive mean, adaptive median, avm, 

sor, ror), different view mode, and exit. Also, the size of the point cloud can be adjusted using 

the sliding bar. The available size is from 1 to 5. 1 represents the smallest, while 5 presents the 

largest in point size. Two viewports are provided to compare the input and output point clouds. 

The pan, rotation or move can be done by the mouse. The background color can be changed 

black, white, pink and cyan. 
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Fig. 12. Menu Items in the interface. 

 

We have tested our approaches with several models generated from different sources. 

Several artificial models were generated using PCL such as Sphere, Cube, etc. Also, some 

existing point cloud models of known objects are used here. Different types of noises such as 

Gaussian, Shot and Salt and Pepper noise are added to the synthetic models for the evaluation.  

 

3.6.4 Experimental Results 

The various point cloud-processing methods developed in this dissertation have been 

applied to a variety of real-world and synthetic data sets. The real-world data sets have been 

captured as multiple depth maps with Microsoft Kinect (Fig. 5(b)), created with 

photogrammetric reconstruction from multiple images, or acquired with a laser scanner (Fig. 

5(c)). Several artificial models were generated using PCL such as Sphere, Cube, etc. Also, some 

existing point cloud models of known objects are used here. Different types of noises, such as 
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Gaussian, Shot, and Salt and Pepper noise are added to the Synthetic models for the evaluation.  

Two categories of models are evaluated and included in this dissertation, namely, synthetic 

models and real scenes model captured by Kinect or Cyberware 3030 MS scanner. For the real 

scene model, several well-known high-density point sets from the literature, such as the Stanford 

Bunny and Happy Buddha [125] are included. To validate that the proposed algorithms can 

perform well even in the presence of high density of noise, we have added additional noise to the 

real scene models. 

 

Category 1: Synthetic Models 

Fig. 13 shows an artificial sphere with added outlier and Gaussian noise with standard 

deviation σ of 0.003 (m). The median filter removes most of the noise except few outliers. 

Vector median and FVM performs almost the same. On the other hand, adaptive mean, adaptive 

median and adaptive vector median shows a similar result for this model. Most of the noise is 

eliminated perfectly with these methods. It is worth noting that the outlier is detected first by the 

KNN (distance-based/nearest neighbor/radius-based approach). For the distance-based approach, 

the points that are significantly far away from the center of the dataset are considered outlier and 

removed from the dataset. In the nearest neighbor-based approach, points that don’t meet the 

criteria of having specific numbers of neighbors are removed. Finally, for the radius-based 

approach, the user specifies the radius and the points that don’t belong to the radius are not 

considered as the dataset. The proposed methods are applied after this step. This step is effective 

whenever outlier is present. 
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(a) (b) (c) (d) 

   

 

(e) (f) (g)  

 

Fig. 13. Artificial model (Sphere). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 

 

 

A representation of a synthetic gear model is shown in Fig. 14. Gaussian noise with 0.003 

(m) standard deviation was added to the original model. All of the methods except vector median 

improved the noisy model to some extent. For the vector median filter, the structure of the gear 

model is distorted, and the handle lost its proper shape. However, median filter, FVM, adaptive 

mean, adaptive median, and adaptive vector median removed the noise and kept the structure 

intact.  
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 14. Standard model (Gear). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM, 

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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The third example is an iron structure (Fig. 15) with a hole in it. The original model was 

contaminated with Gaussian noise with standard deviation σ = 0.002 (m) in this figure. For this 

example, median, vector median, adaptive mean, adaptive median, and adaptive vector median 

performs almost similar. The noise is removed, the points look sharper, and the edges look 

prominent. The median filter produced results worse than other filters. 

Another artificial model of a modified torus was used (Fig. 16). As can be seen, vector 

median distorted the model a little bit while median and adaptive median filter worked better but 

smoothed the sharp edge of the model. On the other hand, FVM, adaptive mean and adaptive 

vector median removed the noise and also kept the important feature (edge) intact. 

An artificial model Sharp Sphere is illustrated in Fig. 17. The structure of the model has a 

complex construction. Some point inside the model has a lower density than the outer portion of 

the model. Additionally, a number of outliers are added to the model to demonstrate the 

effectiveness of the methods. Due to the outlier, the overall orientation of the model was 

distorted. Median filter and vector median filter could not denoise the noisy points properly. 

FVM, adaptive mean and AVM showed almost similar results. Adaptive median could not 

denoise the model properly but showed a better result than median or vector median filter.    
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 15. Standard model (Iron). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM, 

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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(a) (b) (c) (d) 

    

   

 

(e) (f) (g)  

   

 

Fig. 16. Artificial model (Torus). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM, 

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 17. Artificial model (Sharp Sphere). Results of (a) Noisy, (b) Median, (c) Vector Median, 

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 

 

Some 3D models are very widely used in the computer graphics community, such as the 

teapot, fandisk, and bunny. Gaussian noise with σ = 0.001(m) was added in the following 
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examples. From Fig. 18 it is easily seen that the noise was not properly removed by the median 

filter. Also, the position of the upper part of the teapot was slightly distorted. The middle portion 

and the handle of the teapot lost some of the points after applying the vector median filter. 

However, FVM, adaptive mean, adaptive median, and adaptive vector median removed most of 

the noise and kept the structure of the teapot unchanged. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 18. Standard model (Teapot). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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Another model included here is a fandisk (Fig. 19). For this model, median filter removed 

the noise but additionally removed some of the points from the original model also. On the other 

hand, vector median. FVM, adaptive mean, adaptive median and adaptive vector median 

performs well. Here, the noise level is Gaussian with standard deviation σ = 0.003 m. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 19. Standard model (Fandisk). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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Category 2: Real Scene Models 

The first example is the famous Stanford bunny (Fig. 20), which might be the most 

widely used model in the computer graphics community.  The median filter distorted some of the 

points and removed a portion of the back of the bunny. Also, some outliers on the edge of the 

bunny were not removed properly.  The vector median removed most of the outlier and Gaussian 

noise, but few noises remain at the border of the edge of the ear and feet. FVM, adaptive mean, 

adaptive median, and adaptive vector median performed pretty well. These methods removed 

noise as well as kept the important features of the bunny. Here, the noise level is Gaussian with 

standard deviation σ = 0.003 (m) and contaminated by thousands of outliers. 

Fig. 21 is a scanned version of an angel. As can be seen, all of the methods perform well 

to some extent. The noise is removed and the sharp features especially the edges of the model are 

well preserved. 

Fig. 22 is a scanned model of a happy Buddha. Gaussian noise with standard deviation σ 

= 0.001(m) was added to the original model. Median filter removed most of the noise but could 

not preserve details of the model. Vector median, adaptive mean and adaptive median performed 

almost similar in removing noise. Adaptive vector median filter removed the noise and preserved 

the small details to some extent. The edges are more prominent in this filtering approach.   
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 20. Standard model (Bunny). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM, 

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 21. Real Scene model (Angel). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Fig. 22. Real Scene model (Happy Buddha). Results of (a) Noisy, (b) Median, (c) Vector 

Median, (d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 

 

The next example is a compressor head. The scanned version is very noisy itself. There 

are lots of unwanted points in the data, and it is difficult to generate a 3D mesh from the point 

cloud. The six methods were applied to the point cloud, and the results can be seen in Fig. 23. 
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Median filter removes a portion of the original parts of the model. Vector median, FVM, and 

adaptive mean removed some prominent noise with some noise still visible. On the other hand, 

adaptive median and adaptive vector median performed almost similarly in removing noise. 

Most of the unwanted points were removed, and the bolts of the compressor looked sharper. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 23. Real Scene model (Compressor). Results of (a) Noisy, (b) Median, (c) Vector Median, 

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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 A scanned model of a chair is shown in Fig. 24. The results are almost similar for all of 

the methods in this research. The difference is barely visible among all the methods. 

   

(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 24. Real Scene model (Chair). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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Fig. 25 illustrates an example of a real scene, which is a point cloud representation of 

milk cartons. The scanned point cloud is really noisy with some outlier noise, and the original 

structure of the cartons is distorted due to scanning error. The noise and the areas of 

improvements after filtering are highlighted with circles. Some areas are recovered by the 

median filter, but most of the noises are kept unchanged while the vector median removed much 

of the noises with some visible outliers. Fuzzy vector median adjusted the uneven point clouds 

and also removed the outliers from the point cloud. Adaptive mean, adaptive median, and 

adaptive vector median performed almost similarly. Most of the noise is removed, and the edges 

of the bottles look sharper, and the edges are prominent with these methods. 

Fig. 26 is a laser scan of a table scene. The original model has a lot of noise and outliers 

by the edge of the table. Median, vector median, and adaptive mean filters removed some of the 

outliers but also removed some points from the edge, mistaken as outliers. On the other hand, 

FVM, adaptive median, and adaptive vector median performed well. These methods removed the 

outlier perfectly and kept the edges of the table intact and made it sharper. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 25. Real Scene model (Milk Bottle). Results of (a) Noisy, (b) Median, (c) Vector Median, 

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 26. Real Scene model (Table). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) 

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM. 

 

Fig. 27 shows the RMSE (Root Mean Square Error) of the models (teapot, sphere, 

Buddha, gear) for the methods with various noise densities. The larger the RMSE is, the poorer 

the denoising effect is. Large RMSE values indicate that the denoised point cloud data were 
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seriously deviated from the original point could data. The plot shows the larger noise density 

tends to result in higher RMSE values. For computing RMSE, three options are available such as 

(1) if the compared clouds have same number of points, compute using equal indices 

correspondence heuristic, (2) if the compared clouds do not have same number of points, either 

compute using the nearest neighbor correspondence heuristic or (3) compute using the nearest 

neighbor plane projection heuristic. For the plane projection option, the target cloud needs to 

contain normals. 

The equation to derive the RMSE is as follows: 

 RMSE (X, Y) = √
1

𝑛
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑦𝑖)2                                (9) 

where X and Y are two point clouds, x and y are subsets of X and Y respectively.  It has an 

identical unit of measurement as the original quantity. 

Also, Hausdorff distance is shown in Fig. 28. Hausdorff distance measures the distance of 

two subsets of a metric space. In other words, two sets are close in the Hausdorff distance if 

every point of either set is close to nearly some point of the other set. It is defined as follows: 

         𝐻(𝑋, 𝑌) =  max
𝑥∈𝑋

{min
𝑦∈𝑌

{𝑑(𝑥, 𝑦)}}        (10)  

where x and y are points of sets X and Y respectively, and d(x,y) is the Euclidean distance 

between x and y. For each point x on X it searches the closest point y on the other point cloud Y. 

Here, we have compared with the original data with the filtered data. The lower the distance 

value, the best is the filtered data. The filtered data is matched with the original data before 

applying noise. 
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(a) (b) 

  

(c) (d) 

Fig. 27. RMSE of (a) Teapot, (b) Sphere, (c) Gear, (d) Fandisk. 
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(a) (b) 

  

(c) (d) 

Fig. 28.  Hausdorff Distance of (a) Fandisk, (b) Buddha, (c) Gear, (d) Sphere. 

 

 

Comparison 

In this dissertation, we also implemented other widely used point cloud filtering and 

processing methods, which were Statistical Outlier (SO), Conditional Removal (CR), Radius 

Removal (RR) and Bilateral Filter (BF). Different point cloud models with corrupted Gaussian 

noise were used to evaluate the corresponding performance of the algorithms.  

Fig. 29 shows the filtering results of these five methods applied to a table scene model. It 

can be seen that the model is still noisy after filtering by CR and RR, while SOR, BF, and AVM 

produced better visual results. Overall AVM yielded the best result compared to other in terms of 
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denoising and feature preserving. TABLE I represents the computation time of the proposed 

methods, and TABLE III illustrates different methods on different point cloud data with different 

numbers of points. CR and SOR performed similarly, but BF was relatively time-consuming. 

The performance of the RR depends on the radius. Larger radius tends to take a longer time to 

process. Since the number of points affects the computational time, several point cloud data sets 

were used to evaluate the computational time of the methods. 

 

 

 

Fig. 29. Comparisons of different filtering methods. (a) Noisy Table model; filtering result with 

(b) Conditional removal, (c) Radius removal, (d) Statistical outlier removal, (e) Bilateral filter, 

and (f) Adaptive vector median filter. 
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TABLE I  

COMPUTATIONAL TIME  

 

Dataset (No. 

of Points) 

MED (in 

sec) 

VM (in 

sec) 
FVM (in sec) 

AMEAN 

(in sec) 

AMED 

(in sec) 

AVMED 

(in sec) 

Teapot 

(41784) 
2.113 2.571 4.320 3.108 3.672 3.675 

Mechanical 

structure 

(361043) 

10.572 11.489 16.744 15.497 16.133 16.241 

Gear (6268) 0.425 0.512 0.647 0.568 0.599 0.610 

 

 

The time complexity of the algorithms (median, vector median, FVM, adaptive mean, 

adaptive median, and adaptive vector median) are O(N), O(N2), O(MN2), O(MN), O(MN) and 

O(MN), respectively, where M is the number of points in the cloud, and N is the window size of 

the methods. Although the methods could extract most of the expected outliers in the models, 

there are still some noisy points that are not detected due to the similarity of the point density. 

These methods are expected to behave well when dealing with reasonable point densities. 

 

3.7 Normal based point cloud processing 

The AVM method can also be applied to the normal. The application of AVM filters to 

the normal of each point yields improved results but requires an extensive amount of time. The 

proposed method works as follows: 

1. Given an input point cloud Pc = {pi ϵ R3}, a local neighborhood Sxyz = {pij ϵ Pc} for 

each point pi is determined by the KNN (K-Nearest Neighbor) where pij is the jth neighbors 

around pi and a 3D kd-tree representation is constructed for Pc. Not all point cloud has the 

normal information. In that case, we estimate the initial normal vector using Principal 
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Component Analysis (PCA)[126]. The eigenvalues and the eigenvectors of a covariance matrix 

are created from the nearest neighboring points of the centered point. For each point pi, the 

covariance matrix C is defined as: 

𝐶 =
1

𝐾
∑ 𝜉𝑖 ∙ (𝑝𝑖 − 𝑝̅) ⋅ (𝑝𝑖 − 𝑝̅)𝑇𝐾

𝑖=1 , 𝐶 ⋅ 𝑣⃗𝑗 = 𝜆𝑗 ∙ 𝑣⃗𝑗 , 𝑗 ∈ {0,1,2}           (11) 

where K is the number of neighborhoods of pi, 𝜉𝑖 is a possible weight for pi. 𝑝̅ is the 3D centroid 

of the nearest neighbors, 𝜆𝑗  is the j-th eigen value, 𝑣⃗𝑗  is the j-th eigenvector of the covariance 

matrix. For each pi ϵ C the normal is denoted as ni.  

2. For each specified window, it calculates the vector median based on a direction metric. 

The point pj is the vector median whose angular distance is minimum than all other points in a 

specific neighborhood. Next, it checks if pj is noisy based on depth value (z component) (as 

described in section 3.5.4). If it is not noisy, and the center point pi is noisy, then replace pi with 

pj (both position and normal information). If the center point pi is also not noisy, the filter 

window is expanded, and the above process is repeated. The main idea behind this approach is 

that two data points pi and pj belong to the same surface and none of the points is noisy, they 

need to have their normal closely oriented, and they should be geometrically close, i.e., 𝑛⃗⃗𝑖 ∙ 𝑛⃗⃗𝑗 ≈

1.  

We test the effectiveness of our method on synthetic datasets containing both sharp and 

soft features, using the well-known Stanford bunny (Fig. 30), a cylinder (Fig. 31), and a fandisk 

(Fig. 32). Each dimension of the vertex positions in the bunny model is corrupted by independent 

zero-mean additive Gaussian noise with a standard deviation of 0.005 and several outliers.  
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Fig. 30. Normal based AVM filtering of bunny (a) Noisy (0.005), (b) Filtered. 

 

Fig. 31 illustrates a simple cylinder where several outliers have been added to the original 

model and Fig. 31(b) shows the filtered result of the cylinder. We use the fandisk model (Fig. 32) 

to demonstrate the capability of normal-based AVM to handle noisy input data with sharp 

features. The result shows that AVM not only smooths out noise in point positions but also 

effectively preserves the edges and important features of the fandisk. TABLE II shows the 

computation time using the distance-based AVM and the normal based AVM. Normal based 

AVM produced slower computation time as we performed both the depth and normal based 

computation. However, for models with fewer points, this approach is acceptable. Since this 

approach keeps both the positional and normal information of the points, it can properly handle 

the sharp features of the point cloud.  
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Fig. 31. Normal based AVM filtering of cylinder (a) Noisy, (b) Filtered. 

 

 

  

Fig. 32. Normal based AVM filtering of fandisk (a) Noisy (0.002), (b) Filtered. 
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TABLE II  

COMPUTATIONAL TIME  

 

Dataset  
AVM 

(in sec) 

NormalBasedAVM 

(in sec) 

Bunny  0.128 0.399 

Cylinder  0.101 0.286 

Fandisk 0.439 1.537 

 

 

The next chapter describes another research goal of this dissertation: Parallel 

implementation of the proposed algorithm adaptive vector median filter using Microsoft’s 

Parallel Pattern Library. 
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CHAPTER 4 

PARALLEL IMPLEMENTATION OF ADAPTIVE VECTOR MEDIAN FILTER 

 

In this dissertation, we use Microsoft’s Parallel Pattern Library (PPL) to accelerate the 

AVM (Adaptive Vector Median) algorithm. This section describes the parallel technologies 

briefly and the efficiency of our algorithm utilizing this approach. 

 

4.1 Multi-core Architecture 

With advances in hardware design and VLSI technologies, a single processor VLSI chip 

now contains multiple cores, called multi-core or many-core processors. A multicore processor is 

a single computing module that contains multiple independent core processing units. For 

example, an Intel Xeon processor can have as many as 24 cores on a single chip. Therefore, 

computations can be divided into several subtasks, and these subtasks can be allocated to 

multiple cores on the same CPU chip for parallel processing.  The single processor can execute 

multiple instructions (add, move, branch, etc.) on separate cores at the same time, thus increasing 

overall speed for the programs. Since the multicore processor can run multiple applications 

concurrently; it can increase CPU performance. However, the rate of the performance increase 

depends on the number of cores, the use of shared resources, and the level of real concurrency in 

the actual software. Traditional, single-core processors are being replaced by the multicore 

processors so that less single-core processors are being produced and maintained. Therefore 

single-core processors are becoming technologically outdated. Multi-core processors now are a 

standard configuration on desktop and laptop computers and even smartphones.  
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Fig. 33 shows the execution mechanism of single core and multi-core processors. 

Multiple threads will end up sharing single core (left side of the figure). Two threads are sharing 

the single core. Switching back and forth to a single thread generate overhead. On the other 

hand, in the multicore scenario, multiple tasks can run simultaneously in parallel.  

   

 

 

Fig. 33. Execution model of parallel processing. 
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4.2 Microsoft Parallel Patterns Library 

The Microsoft Parallel Patterns Library (PPL) [127] offers a programming model that 

promotes scalability. This model also provides easy to use platform to develop concurrent 

applications. The scheduling and resource management components of the Concurrency Runtime 

are enhanced in PPL. It increases the level of abstraction between the application code and the 

fundamental threading mechanism. PPL provides generic, type-safe algorithms and containers 

that act on data in parallel. 

The following features are provided by PPL [127]: 

• Task Parallelism/Concurrency runtime: a mechanism that works on top of the Windows 

ThreadPool. It works to execute several work items (tasks) in parallel. In the 

Concurrency Runtime, a task is a unit of work that accomplishes a specific job and 

typically executes in parallel with other tasks. A task can be broken down into extra, and 

more fine-grained tasks that are ordered into a task group. Tasks can be used during an 

asynchronous code, and some operation needs to occur after the asynchronous operation 

completes. On the other hand,  tasks groups can be used to decompose parallel work into 

reduced pieces. 

• Parallel algorithms: generic algorithms that work on top of the Concurrency Runtime. It 

acts on collections of data in parallel. The parallel algorithms are collected from present 

functionality in the Concurrency Runtime. Parallel pattern library provides loop 

parallelization with a parallel for loop. Several things were considered in parallel for 

implementation such as load balancing, nested parallelism, cancellation, exception 

handling, cooperative blocking, and arbitrary types. The parallel_for algorithm divides 

tasks in an optimal way for parallel execution, and also it supports nested parallelism. 
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The parallel_for algorithm has two possible loaded versions. The first version inputs a 

start value, an end value, and a work function. The second version has a start value, an 

end value, a value by which to step, and a work function. PPL also provides a parallelized 

version of for_each. The parallel_for_each algorithm performs the tasks simultaneously 

and performs better with random access iterators, though it works on both forward 

iterators and random-access iterators. The parallel_for_each is also designed with similar 

considerations like parallel_for algorithm such as effective load balancing, nested 

parallelism, cancellation, exception handling, and cooperative blocking. PPL provides 

another algorithm (parallel_invoke) which is suitable when several independent tasks are 

needed to execute at the same time. The parallel_invoke algorithm takes a series of work 

functions (lambda functions, function objects, or function pointers) as its parameters. 

Two more parallel algorithms are available in PPL namely parallel_reduce and 

parallel_transform. These algorithms can be used when the code uses a large set, and the 

performance and scalabilities are benefited if it is converted to parallel version. 

• Parallel containers and objects: generic container types that offer safe concurrent access 

to their elements. A concurrent container offers concurrency-safe access to the most 

significant processes. The concurrency::concurrent_vector class is similar to the 

std::vector class, except that the concurrent_vector class appends elements in parallel. If 

the parallel code requires both read and write access to the same container, then 

concurrent containers can be utilized. A concurrent object is shared synchronously 

between components. A procedure that computes the state of a concurrent object in 

parallel produces the same outcome as another process that calculates the same state 

serially. The concurrency::combinable class is one instance of a concurrent object type. 
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The combinable class allows to perform computations in parallel, and then associate 

those computations into a final result.  

 

4.3 Implementation 

Microsoft’s Parallel Patterns Library (PPL) provides features for multicore programming. 

Multicore programming is becoming popular for the applications to speed up executions. Point 

cloud datasets can contain millions or even billions of points, which can lead to a huge amount of 

time for processing.  

In this dissertation work, PPL is utilized in AVM for several reasons: 

• PPL allows to write parallel code without having to manage the formation and 

break down of the threads by the developer. 

• PPL allows serial algorithms to be spread across several cores without having to 

re-design the algorithm significantly. 

The overall method of AVM in parallel implementation can be summarized as below: 

1) Read the point coordinates in a single pass and arrange. 

2) For a specified window, calculate vector median. For the vector median 

calculation, the algorithm needs to calculate Euclidean distance between the 

center point and the neighboring points in a specific window. Then sort the values 

based on their distances and find the minimum distance among them. PPL’s 

parallel radix sort improved the computation time: 

parallel_radixsort(begin(distances), end(distances), 

[center] (const Point& p)-> size_t { 

return euclidean_distance (p, center); 

}); 
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//After sorting the distances 

Parallel_for_each(begin(distances), end(distances), 

[center](const Point& p){ 

euclidean_distance(p,center) 

} 

//Find the minimum distance 

compare the distances and update minimum_distance; 

3) Again in that specific window, check the depth values of the center point and the 

neighboring points. Find the minimum, maximum and the median in depth value 

in that window. 

parallel_for( 0, depth, 1, [&](int y) { 

compute_minimum(); 

compute_maximum (); 

store the minimum and maximum depth values in array; 

//use parallel_sort for finding the median 

parallel_sort(begin(values), end(values)); 

store the median value in array; 

} 

4) To find if the vector median point is noisy, a condition must satisfied. Use 

parallel_for to compare minimum, maximum and median value in that speific 

window. 

parallel_for( 0, depth, 1, [&](int y) { 

 check the condition 

} 
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If the vector median is not noisy, it goes to next stage otherwise increases widow 

size and repeat the previous steps. 

5) To find if the center point is noisy, a condition must be satisfied. Use parallel_for 

to compare minimum, maximum and the depth value in that specific window. 

parallel_for( 0, depth, 1, [&](int y) { 

compute_minimum(); 

compute_maximum (); 

store the minimum and maximum depth values in array; 

parallel_for( 0, depth, 1, [&](int y) { 

 check the condition; 

} 

6) If the condition satisfies the center point is not noisy, the filter outputs the original 

value otherwise it is replaced by the vector median value. 

To estimate the efficiency of the proposed method, we extensively experiment with both 

serial and parallel version of the algorithm and presented speed up performance analysis and 

execution time. Speed up results were carried out on 2 devices: Intel(R) Xeon(R) CPU E5-

2687Wv3 10 cores, 3.10 GHz and Intel(R) Core (TM) i7-2760QM CPU 4 cores, 2.39GHz. The 

operating system for both of the devices was 64 bits Windows 7. In this experiment, the 

execution time and speed up ratio was collected using the adaptive vector median filter with 

different sets of point cloud data. Fig. 34 shows the speedup ratio of the proposed algorithm 

using 4 physical cores and 10 physical cores respectively. The red line indicates the estimated 

curve line for speedup using Amdahl's law [128] and the blue line indicates the resulted speedup 

using the proposed method. Amdahl's law can be defined in simple form as below: 

     Ψ(𝑁) =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
≤

𝑇

(1−𝛼)𝑇+𝛼
𝑇

𝑁

=
1

(1−𝛼)+
𝛼

𝑁

,          (12) 
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Here, T is the time needed for a program to perform on a single CPU, α is the part of the 

computation that can be done in parallel so that 1- α is the section that must be carried out on a 

single CPU and N is the number of cores. α is determined based on measuring the elapsed 

execution time of the program. In this application, about 83% of the total code can be 

parallelized. So, theoretically, the parallel version of the program can run 2.6 times faster (in a 4-

core processor) than the serial execution time. However, some intrinsic sequential part of the 

algorithm, communication cost, load balancing, etc. can limit the achievable speedup.  

 

4.3 Results 

Experimental results show the behavior is linear for two different processors. The 

speedup performance clearly depends on the configurations of the processors. TABLE III shows 

the computation time both in serial and parallel for different point cloud data in a 4 cores device. 

The next chapter describes the background, methodology and several results on aerial 

LIDAR data filtering using AVM. 
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(a) 

 

. 

(b) 

Fig. 34. Experimental speedup for a dataset using AVM (a) with 4 logical processors and 

(b) with 10 logical processors. 
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TABLE III  

COMPUTATION TIME (IN SEC) 

 

Model 
No. of 

points 
BF SO CO RO 

Serial 

time 

(AVM) 

Parallel 

time 

(AVM) 

Bunny 15726 5.428 0.467 0.556 74.69 0.128 0.041 

Compressor 361043 12.468 3.887 11.953 34.518 3.117 0.989 

Gear 6268 0.2478 0.098 0.227 1.658 0.056 0.017 

Milk_carton 307200 34.018 15.102 9.04 65.147 11.872 3.829 

Table_scene 460400 13.851 4.012 6.35 87.214 3.694 1.055 

Happy_buddha 79087 8.574 0.889 2.703 97.245 0.631 0.208 

Thai_statue 4999996 122.045 52.148 98.37 852.145 40.733 13.577 

Armadillo 172974 20.225 1.125 3.59 703.03 0.904 0.262 

Julius 36201 11.516 0.457 1.19 374.35 0.297 0.086 

Iron 85574 24.144 0.789 2.914 98.21 0.676 0.191 
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CHAPTER 5 

AERIAL LIDAR DATA PROCESSING 

 

 Aerial LIDAR is a special type of LIDAR that is important for many applications.  In 

this chapter, the adaptive vector median is further optimized for effective processing of aerial 

LIDAR data. 

 

5.1 Aerial LIDAR  

Aerial LIDAR is a special type of LIDAR that is mounted to an aircraft equipped with a 

Global Positioning System (GPS) sensor and Inertial Measurement Unit (IMU) sensor.  The 

point cloud captured by aerial LIDAR is geo-referenced, with x, y usually representing latitude 

and longitude positions and z representing the elevation of the ground or features on the ground, 

such as vegetations and buildings. Such georeferenced data are utilized for the purpose of 

mapping, recognition, and classification. Aerial LIDAR is usually mounted on an airplane or 

helicopter, called airborne laser scanning (ALS) systems.  Recently, Unmanned Aerial Vehicle 

(UAV), an airplane without a humanoid pilot onboard, is becoming the most promising platform 

for a laser scanner for economic reasons. However, the data processing techniques needed to 

produce a point cloud from raw data acquired by the UAV system are not fully established. The 

UAV system requires more calibration and computation to produce a point cloud completely on 

geometric quality because the UAV is more delicate to the platform fluctuation and vibration 

than the ALS. Thus, the ALS system has more benefits in data quality, collection speed, and 

scanning coverage compared with other LIDAR systems. Hence, we have used the ALS system-

based data in this dissertation research. 
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Fig. 35. Aerial LIDAR technique. 

 

The generation of Digital Terrain Model (DTM) or bare earth surface elevation has been 

one of the most elementary applications of aerial LIDAR technology in recent years. The DTM 

generation needs filtering out the ground (or terrain) from raw LIDAR data so that the bare earth 

surface elevation can be computed. Researchers have been working on this research field for 

several years. Some of the research areas have been discussed elaborately in the literature review 

in chapter 2. A few more examples are presented here to highlight the trends in this area. One of 

the widely used methods is simple filtering, which allocates a point with the lowest elevation in a 

local area to ground; morphological filtering extends ground points if they are within a distance 

threshold  to a seeded ground point [65]; recursive filtering recursively updates a reference 

terrain surface by adding ground points obtained from topological analysis [129]; surface-based 

filtering removes above ground points from a surface model that is primarily created using all the 
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points [130], [57]; segment-based filtering identifies ground segments (points with a similarity 

are grouped as a segment) by comparing surface normal between ground-assigned segments and 

others [67] and [57], [48]. Mostly, these classified ground points are converted into one of the 

formats, TIN (Triangulated Irregular Network), grid, mesh, and quad-tree to generate DTM.  

 

5.2 Basic Definitions 

The following basic definitions were presented by Sithole and Vosselman [48]. The 

associated illustrations are also taken from [48]. 

Landscape: The geography. A scene consisting of the earth and any other features (buildings, 

trees, power lines, etc.,) residing on it. 

 

 

 

Bare Earth: Earth or any thin layering (asphalt, pavement, etc.) covering it. Haugerud and 

Harding [131] defined bare earth as “the continuous and smooth surface that has nothing visible 

below it.”  

 

Object: Vegetation and other non-natural features that have been constructed by a human. 
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Detached object: Objects that rise vertically (on all sides) above the bare earth or other Objects. 

 

 

Attached object: Objects that rise vertically above the bare earth only on some sides but not all 

(e.g., bridges, gangways, ramps, etc.,). 

 

 

 

 

Filtering: Generalization of the bare earth from point clouds. 

 

 

 

Outlier: Point(s) in a point-cloud that are not from the landscape (e.g., birds, gross errors from 

the ALS system, etc.) and resides far away from the ground points. 
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5.3 Ground Characteristics Used for LIDAR Ground Filtering 

LIDAR point measurements are influenced by three components: bare ground, above-

ground objects, and noise [132].  

  Ms = Hg + Hnon-g + Mn          (13) 

where Ms is the measurements from the LIDAR sensor, Hg is the elevation of the ground,                        

Hnon-g is the elevation of the non-ground, and Mn is the undesired measurements (the noise from 

sensors, airplanes, or birds).  

Generally, the ground points are the bare earth points that represent the low-level surface 

of an area. Trees (tall or small), buildings, bridges, electric poles, shrubs, etc. are the non-ground 

points that exist above the bare earth. 

However, sometimes non-ground points can be confusing to identify and appear to be 

ground points. So, some specific characteristics should be taken into account to understand and 

identify or recognize ground points that differentiate them from non-ground points. 

Four categories of characteristics can be defined of the ground or bare earth surface based 

on their physical features:  

1. Category 1- Lowest elevation: Ground surface or the bare earth usually has the lowest 

height in a local neighborhood. Several existing methods use this feature to adjust the ground 

filtering process [61], [133], [134], [135]. 

2. Category 2 – Steepness: The slope of the surface is considered here. Generally, two 

neighboring bare earth points have lower slope than that between bare earth and a non-ground 

object [134]. Several ground filtering approaches [136],[75] define a point with slope larger than 

the maximum ground slope as the non-ground points. However, this steepness of slope may 

differ for erratic surface types. An even urban area may have a lower slope value than a 
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mountain area. So, complex surfaces such as uneven mountain area or high-density forest canopy 

may have steeper slopes and may require a larger threshold to effectively recognize ground from 

non- ground objects. 

3. Category 3 - Elevation difference: This category is also based on height. Since most 

ground areas have inadequate sharp changes in height, the elevation difference from bare earth to 

surrounding bare earth is usually less than the difference between ground and neighboring non-

ground points. Hence, trees (tall or small), buildings, electric poles, etc. are indeed non-ground 

points as they have a higher elevation than a location-specific threshold [65]. 

4. Category 4 - Similarity in features: In most of the cases, bare earth is discreetly 

continuous and smooth; on the other hand, non-ground objects have different heights and 

textures. Trees and buildings have different features. Trees and shrubs generally are less smooth 

than bare earth and buildings So, they can be removed based on morphological characteristics 

[137]. 

These four categories are frequently used for filtering aerial LIDAR data. However, in 

some cases, the bare earth may not have these common characteristics, and the assumptions may 

fail and misinterpret ground points as non-ground points or vice versa. For example, cliffs have 

higher elevation difference, and many filtering methods misclassified them as non-ground points. 

 

 

5.4 Methodology 

The aerial LIDAR data filtering presented in this chapter is mainly based on the adaptive 

vector median filter proposed for point cloud mentioned in Chapter 3. The concept of point cloud 

filtering is extended and modified for the aerial LIDAR data ground filtering purpose. Several 

reasons are considered for the LIDAR data filtering. The size of the LIDAR data is tremendously 
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enormous. Abrupt changes in terrain heights such as cliffs, mountain ridges, and peaks can be 

likely to be removed. However, LIDAR data may have varied landscapes with complex objects 

or abrupt changes in terrain heights. These difficult situations can make the filtering task 

challenging. This method of ground filtering also faces several challenges. Firstly, the raw 

LIDAR data are in las format that is converted to pcd file format for our filtering purpose. 

Secondly, huge datasets require large computation time and effort.   

For the ground detection, the filtering process works in two steps. The first step removes 

the outliers and the objects that are far from the ground such as large buildings, tall trees, electric 

poles, etc. based on the threshold value. The second step filters out the noise that is left behind 

during the first step and the non-ground points that are close to the ground using adaptive vector 

median filter. The steps are discussed briefly: 

Step 1:  A Kd tree is constructed for the nearest neighbor search for the point cloud. This 

step of the algorithm needs a few more parameters in addition to x, y, and z coordinates of the 

points in the original LIDAR data. For the given point cloud this method identifies the non-

ground points in a local window.   

Within a specific window radius, one height threshold (minimum elevation) for each 

window is defined. Another filtering parameter is the height difference threshold, which is the 

minimum of the height of the object in each window.  

Then, all points with elevations greater than a threshold above the minimum are 

discarded. A point Pij in a specific region is removed if: 

 

  𝑍𝑖,𝑗 − 𝑍𝑖,𝑚𝑖𝑛 > 𝐻𝑖,𝑇                       (14) 
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where Zi,j is the elevation of Pij, Zi,min is the minimum elevation inside the window, Hi,T is the 

height difference threshold. 

Step 2: The method is applied to the rest of the points that remain after Step 1 filtering. 

For each specified window Sxyz, it calculates the vector median based on distance. The point 

containing the vector median in Sxyz is defined as pj. This filter detects the noisy candidate pi and 

replaces the noisy candidate with the vector median of the points in a local window. However, it 

changes the size of Sxyz during filter operation, depending on the following conditions.  

 The algorithm checks both the point of interest and the point containing the vector 

median. Four different situations may arise in detecting noise in the point cloud.  

1. The point of interest pi is noisy, 

2. The point containing the vector median pj is noisy, 

3. Both the pi and pj is noisy, and 

4. None of them are noisy. 

Given a noisy point cloud and an initial window size, the adaptive vector median filter 

performs several steps.  

Stage 1: First, for each specified window, it calculates the vector median. Next, it checks 

if the point containing the vector median value pj is noisy based on the elevation (z component) 

using the following formula: 

  𝑍𝑚𝑖𝑛 ≤ 𝑍𝑚𝑒𝑑 ≤ 𝑍𝑚𝑎𝑥                              (15) 

where Zmin is the minimum of elevation in Sxyz, Zmed is median of elevation in Sxyz and Zmax is the 

maximum of elevation in Sxyz. If pj is not noisy (Eq. 7 is satisfied) , then go to Stage 2; otherwise, 

expand the window and repeat Stage 1.  

Stage 2: Check if the center point pi is noisy by the following formula: 
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                                       𝑍𝑗 − 𝑍𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑍𝑗 − 𝑍𝑚𝑎𝑥 < 0                              (16) 

where Zi is the elevation of pi. Zmin is the minimum of elevation in Sxyz and Zmax is the maximum 

of elevation in Sxyz. If the condition satisfies, then pi is not noisy, the filter output is the original 

center point, and the algorithm continues to the next point; otherwise, pi is replaced by the vector 

median pj; If both the vector median pj and the center point pi are noisy, the filter window is 

expanded, and the above process is repeated.  

 

5.5 Experimental Results 

 

The AVM filter was tested on two types of datasets. One is publicly available LIDAR 

data points of the Washington DC area, and the other one is reference data provided by the 

ISPRS that is widely used to validate the efficiency of the LIDAR filtering methods.  

 

5.5.1 Washington DC area 

The study area (Fig. 36) is located in the District of Columbia, Arlington County, in 

Washington DC covering 80 square miles. The single “LAS” file (LASer file) contains 

approximately 2,000,000~50,000,000 points. The ground sampling distance is greater than 0.35 

meter. It is worth mentioning that the LAS dataset contains point cloud with no filtering applied. 
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(a) (b) 

  

(c) (d) 

Fig. 36. Original Study area (Washington DC). (a), (b), (c) Map view, (d) Street view. 

 

The LIDAR data of Washington DC area was delivered in RAW flight line and created 

Classified LAS 1.2 Files with individual 1500m x 1500m tiles. The  LIDAR data was collected 

in winter season in the year 2014. The ground contained no snow and rivers were at or below 

normal levels.  

To see the efficiency of AVM on LIDAR data, we presented three sample areas below. 

Fig. 37(a) shows the original point cloud of the District of Columbia, Arlington County, in 

Washington DC. The data consists of lots of noise, an outlier, electric wires and polls, trees, house, 
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and buildings, etc. Fig. 37(b) demonstrates the filtered result using the AVM. The proposed method 

successfully removed the noise and other non- ground objects.  

 

 
(a) 

 
(b) 

 

Fig. 37. Study area-I. (a) Original (b) Filtered. 

 

A side view of another part of the previous location is shown in Fig. 38. AVM 

successfully removed most of the non-ground objects. Some non-ground points that are close to 

the ground can be misclassified as ground points. The original data of this location is in LAS 

format. For processing purpose, we convert it to PCD file format. Fig. 39(a) illustrates another 

area where small buildings, trees, shrubs, and electric poles and wires exist in the original data. 

AVM successfully removes the non-ground points, and the final result is shown in Fig. 39(b). 
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(a) 

 
(b) 

 

Fig. 38. Study area-II. (a) Original (b) Filtered. 

 

 
(a) 

 
(b) 

 

Fig. 39. Study area-III. (a) Original (b) Filtered. 
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5.5.2 Reference Data 

The following are 15 reference datasets that are widely used for comparing aerial LIDAR 

filtering results generated for their efficiency and accuracy. These areas were chosen mainly 

because of their feature content in an assorted way (open fields, vegetation, buildings, roads, 

railroads, rivers, bridges, power lines, water surfaces, etc.,). However, the areas can be divided 

into two groupings, urban and rural. The sites denote four regions with urban characteristics and 

another three with rural characteristics. Some characteristics of the test-sites are provided in 

TABLE IV. 

 

TABLE IV  

CHARACTERISTICS OF THE REFERENCE DATA  

 

Environment 
Point 

spacing 
Site Sample Features 

Urban 
1.0-1.5 

m 

1 
11 

Mixture of vegetation and buildings on 

hillside 

12 Buildings on hillside 

2 

21 Large buildings and bridge 

22 Irregularly shaped buildings 

23 Large, irregularly shaped buildings 

24 Steep slopes 

3 31 Complex buildings 

4 
41 Data gaps 

42 Railway station with trains 

Rural 2.0-3.5m 

5 

51 
Mixture of vegetation and buildings on 

hillside 

52 Buildings on hillside 

53 Large buildings and bridge 

54 Irregularly shaped buildings 

6 61 Large, irregularly shaped buildings 

7 71 Steep slopes 
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A total of seven test sites (four urban and three rural) were chosen because they contained 

a variety of features that were anticipated to be challenging for automatic filtering. The datasets 

comprise terrain with steep slopes, dense vegetation, densely packed buildings with vegetation in 

between, large buildings (a railway station), multi-level buildings with courtyards, ramps, 

tunnels, tunnel entrances, bridges, a mine, and data gaps. The urban sites were recorded with a 

point spacing of 1–1.5 m, and the rural sites had a point spacing of 2–3.5 m.  

The reference data were produced by filtering the datasets manually. All points in the 

datasets were labeled either ‘‘ground’’ or ‘‘non-ground’’. For the purpose of this test, ground or 

the bare-earth was defined using the definition presented in the previous section (earth or any 

thin layering (asphalt, pavement, etc.) covering it). According to this definition bridges, 

gangways, etc., were treated as objects. Ramps leading towards bridges, however, were classified 

as bare earth. 

Furthermore, the bare-earth was treated as a continuous surface. From the seven datasets, 

15 samples were abstracted. These 15 samples were representative of different backgrounds.  

 

Samp11 

Samp 11 (Fig. 40) is a LIDAR scan of an area with a combination of trees and buildings. 

Steep slopes and complex scenes are present in sample 11. In the lower portion of the slopes of 

sample 11, there are many buildings, and several difficult objects or resources are present with 

which the filters may have difficulties to identify them properly. However, the filtering result 

effectively identified the ground. Several non-ground points are identified as ground points in 

this sample area due to the close features to the ground points. 
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Fig. 40. Sample 11 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Samp12 

Sample 12 (Fig. 41) has buildings on the hillside. The proposed filter can effectively 

remove diverse buildings of different sizes and complex shapes. Small objects such as cars and 

shrubs are mostly eliminated.  

Samp 21 

This region (Fig. 42) contains rooftops, houses, several scattered non-ground objects, etc. 

The filtering method successfully identified most of the ground and the non-ground objects. 
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Fig. 41. Sample 12. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Fig. 42. Sample 21 (a) Original data, (b) Filtered data,(c) Side view (original), (d) Side view 

(filtered). 

 

 

 

 

(a) (b) 

(c) 

(d) 
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Samp 22 

Sample 22 (Fig. 43) has a gap in the ground surface with several houses and buildings. 

Since the proposed method utilizes the height difference and the neighborhood information, 

these types of problems are easily solved. 

 

Samp 23 

Sample 23 (Fig. 44) presents the most difficult challenge. The scene has a plaza and 

several blocks of buildings. There is a lower walkway in the center of the plaza also. In this test, 

the plaza and walkway were presumed to be the ground point since it is possible to walk without 

any hindrance from the plaza to the roads. The difficult part of this scene was well maintained 

and filtered by the proposed method. 

 

Samp 24 

This sample (Fig. 45) also has quite a lot of vegetation and hillside buildings. These are 

effectively filtered by the proposed method. Since vegetation has abrupt height differences, the 

proposed method can easily perform the filtering process. 
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Fig. 43. Sample 22 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

 

  

(a) (b) 

(c) 

(d) 
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(c) 

 

(d) 

Fig. 44. Sample 23 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 
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Fig. 45. Sample 24 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Samp 31 

The outliers present here (both high and low) (Fig. 46) are relatively insignificant and 

therefore their contribution to Type I and Type II errors are minor. However, they can show an 

important part in filtering the ground and non-ground objects. The proposed method could 

successfully identify most of the non-ground objects for this area. 

 

Samp 41 

In this particular scene 41 (Fig. 47), there are many low outliers (apparently caused by a 

skylight in one of the roofs). The proposed method performed moderately for this scene. There 

are several points exist in a group which was treated as ground objects. 

 

Samp 42 

In sample 42 (Fig. 48), twelve railway stations can be observed. Since there are few 

extended and low objects with sparse ground points, some of the points are not removed and 

considered ground points. This is one of the challenging sample data of this reference group.  
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Fig. 46. Sample 31 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Fig. 47. Sample 41. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

 

(a) (b) 

(c) 

(d) 
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Fig. 48. Sample 42. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

Samp 51 

This sample (Fig. 49) has a data gap and low vegetation on a slope. Most of the non-

ground objects are identified. Few close to the ground object may be misclassified as a bare earth 

due to the data gap. 

(a) (b) 

(c) 

(d) 
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Fig. 49.  Sample 51. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Samp 52 

Numerous terrain structures and extreme elevation changes and discontinuity are present 

in this area (Fig. 50). Most of the ground and non-ground objects are classified accordingly. 

Some points near the border are clustered which are misclassified as bare earth surface. 

 

 

 

 

 

 

 

Fig. 50.  Sample 52. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

(a) (b) 

(c) 

(d) 
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Samp 53 

Samp 53 (Fig. 51) consists of numerous slopes in the region. Since this is a scene taken 

from a mine which features steep and highly stepped slopes, most algorithms tested against this 

sample performed poorly. The AVM identified most of the ground points, but still, some of the 

non-ground objects are misclassified as ground in this sample. The large discontinuities in the 

surface due to the terrace are most likely responsible for these misclassifications. 

 

Samp 54 

The overall point cloud density in this region is low (Fig. 52). So, the elevation of the low 

objects is barely identifiable. The method misclassified some non-ground points as ground in this 

sample region. 

 

Samp 61 

Samp 61 is another challenging scene where most of the points are ground, and few 

outliers and low earth outliers are present there (Fig. 53). The method based on AVM 

successfully identifies the ground and the non-ground object except some points that are 

considered to be ground but essentially they are non-ground points. 
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Fig. 51.  Sample 53. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

 

 

(a) (b) 

(c) 

(d) 
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Fig. 52. Sample 54. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

(a) (b) 

(c) 

(d) 
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Fig. 53. Sample 61. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

 

 

 

 

(a) (b) 

(c) 

(d) 
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Samp 71 

Samp 71 (Fig. 54) has some difficult objects to identify such as a bridge. The bridge is 

identified as an object in the ISPRS reference datasets, but the adjacent road is treated as ground 

or bare earth. The algorithm successfully handles the situation and identifies the bridge as an 

object and the road adjacent to the bridge as ground. The bridge and the river underneath the 

bridge have significant elevation differences than the surrounding.   

 

 

 

 

 

 

 

 

Fig. 54. Sample 71. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view 

(filtered). 

  

 

 

 

 

(a) (b) 

(c) 

(d) 
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TABLE V  

PARAMETERS FOR AVM AGAINST ISPRS REFERENCE DATASET 
 

 

Sample Maximum Window Size (m) Height Difference threshold(m) 

11 17 0.44 

12 14 0.30 

21 20 0.58 

22 20 0.36 

23 14 0.5 

24 10 0.21 

31 15 0.24 

41 15 1.12 

42 20 1.04 

51 20 0.35 

52 15 0.25 

53 10 0.11 

54 10 0.15 

61 15 0.5 

71 15 0.75 

 

 

TABLE V shows the parameter values (maximum window size, height difference 

threshold) for each of the fifteen samples. 



106 

 

 

5.5.3 Error Analysis 

There are several difficult scenarios in these presented sample data. These situations 

relate to outliers in the data, object complexity, objects that are attached to the terrain, 

vegetation, and discontinuities in the bare-earth surface. The points that do not belong to the 

original surface area and are generated from multi-path errors by laser are called low outliers. 

Other objects like birds, low-flying aircraft, etc. are called high outliers. In some cases, the size 

of the objects is not consistent (very large, very small, very low, complex shape, disconnected 

terrain, etc.). Other difficult situations arise where there is a building on the slope, bridges, 

ramps, low vegetations, sharp ridges, etc. Fig. 55 illustrates some of these filtering difficulties. 

 

 
 

 

 

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig. 55. Filtering difficulties [48]. (a) Erosion caused by low outlier, (b) complex configuration, 

(c) steep slope, (d) vegetation on slope, (e) bridge, (f) complex urban scene, (g) railway station, 

(h) steep slope with buildings and dense vegetation. 
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Quantitative assessment 

Cross-matrices and visual representations are two main factors for the quantitative 

assessment for the 15 subsets of the dataset. The cross matrices were then used to evaluate Type 

I (or false positive, rejection of bare-earth points) and Type II (or false negative, acceptance of 

object points as bare-earth) errors, and visual representations were then used to define the 

association between Type I and Type II errors to features in the site. For each of the samples a 

cross-matrix is presented graphically given below (Fig. 56): 

 

 

Fig. 56. Cross matrix. 

 

 

where 

• a is the count of bare earth points that have been properly identified as bare earth or 

ground points. 

• b is the count of bare earth points that have been falsely identified as object or non-

ground points (contribute to Type I errors). 

• c is the count of object points that have been falsely identified as bare earth (contribute to 

Type II errors). 

• d is the count of object points that have been properly identified as object. 
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Type I, Type II and Total error is computed using equations 17, 18 and 19. 

     Type I error = 
𝑏

𝑎+𝑏
× 100                (17) 

       Type II error = 
𝑐

𝑐+𝑑
× 100                           (18) 

            Total error = 
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
× 100         (19) 

The proposed method was compared with several algorithms for ground data filtering 

(Chen et al. [59], Mongus et al. [49], Pingel et al. [55], Zhang et al. [53]). The comparison shows 

(Fig. 57) that the proposed method tends to suppress the omission error (Type I error) and 

achieve a relatively lower average total error. However, the commission error (Type II error) is 

reasonable compared to the other methods. Thus, our method classifies more non-ground as 

ground points than the other four methods, while fewer ground points are removed from the 

dataset as they are classified as non-ground points. 

Fig. 58 shows the performance of AVM compared with Chen et al., Mongus et al., Pingel 

et al. and Zhang et al. in terms of all error types. For Type I error comparison, AVM has five 

lowest error rates and one highest error rate. AVM generates the lowest error rate for Samp 12, 

23, 51, 53 and 54. For Type II error, the position of AVM is third to generate the lowest rate. 

Samps 21, 24 and 31 got the lowest Type II error with the AVM method. For the total error type, 

AVM obtains a relatively lower rate. More specifically, AVM generates 2.35%, 2.75%, 4.32%, 

0.9%, 1.41%, 2.18% for samp 12, 22, 23, 31, 51 and 53 respectively. 

Three error measures (Type I, Type II, Total) have been used to assess the quality of the 

filter results. To some extent, there should be a choice to be made between minimizing Type I 

and Type II errors. The problem is which error to minimize depends on the cost of the error for 

the application that will use the filtered data. However, it will also depend very much on the time 

and cost of fixing the errors manually, which is often done during quality control. Experience 
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with manual filtering of the data showed that it is far easier to fix Type II errors than Type I 

errors. Firstly, there will generally be fewer Type II than Type I errors. Secondly, Type II errors 

are noticeable since they stand out in their neighborhoods. According to the report of Sithole and 

Vosselman [48], filtering should be biased in favor of minimizing Type I errors, because Type II 

errors are easier to correct manually during quality control. 
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(a) 

 

(b) 

 

(c) 

Fig. 57. Comparisons of error types (a) Type I, (b) Type II, (c) Total errors (%) compared with 

Chen et al., Mongus et al., Pingel et al. and Zhang et al. for filtering the International Society for 

Photogrammetry and Remote Sensing (ISPRS) datasets. 
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Fig. 58. The ranking order of AVM (type I, type II, total error). 

 

Besides the error rate comparison, we compared the kappa coefficients [138] with some 

existing top algorithms. 

Fig. 59 shows the calculation of the kappa coefficient and TABLE VI shows the 

interpretation of the kappa coefficient values.  

TABLE VII illustrates the performance of several algorithms in terms of the Kappa 

coefficient along with AVM. The highest among all for all the samples is highlighted.  
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Observed accuracy = (A+D)/Total 

Expected accuracy = (((A+B)*(A+C)/Total) + ((C*D)\Total))/Total 

Kappa = (Observed accuracy) – (Expected accuracy)) / (1 – (Expected accuracy)) 

 

Fig. 59. Kappa Coefficient Calculation. 
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The interpretation of Kappa can be listed as below: 

 

TABLE VI  

INTERPRETATION OF KAPPA  

 

Kappa Agreement 

<0 Poor agreement 

0.01-0.20 Slight agreement 

0.21-0.40 Fair agreement 

0.41-0.60 Moderate agreement 

0.61-0.80 Considerable agreement 

0.81-0.99 Almost perfect agreement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 

 

 

TABLE VII  

COMPARISON OF KAPPA COEFFICIENT  

 

 
Chen et 

al 

Smrf

(Ping

el) 

CSF AVM Axelsson 

Elmqvi

st Pfeifer Hui 

Samp11 74.12 83.12 75.17 74.68 78.48 56.68 66.09 72.92 

Samp12 93.23 94.15 94.04 94.26 93.51 83.66 91 93 

Samp21 96.1 96.77 90.47 95.49 86.34 77.4 92.51 93.35 

Samp22 89.03 92.21 77.72 93.03 91.33 80.3 84.68 87.58 

Samp23 89.49 90.73 90.38 92.00 91.97 75.59 83.59 89.74 

Samp24 84.53 91.13 92.68 83.12 88.5 54.13 78.43 81.93 

Samp31 97.76 98.17 96.75 98.67 90.43 89.31 96.37 97.33 

Samp41 88.83 88.18 89.73 88.63 72.21 82.46 78.51 78.78 

Samp42 95.81 96.48 96.18 95.91 96.15 90.86 93.67 95.38 

Samp51 95.17 95.76 91.13 95.64 91.68 52.74 89.61 85.06 

Samp52 78.91 81.04 77.05 75.23 83.63 9.36 41.02 69.51 

Samp53 46.69 68.12 46.86 69.14 39.13 7.05 30.83 41.84 

Samp54 93.9 95.44 93.61 92.01 93.52 55.88 88.93 91.63 

Samp61 77.36 87.22 78.1 73.49 74.52 10.31 47.09 67.82 

Samp71 93.19 91.81 68.03 71.28 91.44 26.26 75.27 79.86 

         

Avg 86.2746 90.022 83.86 86.238 84.18933 56.7993 75.84 81.71533 

Median 89.49 91.81 90.38 92 90.43 56.68 83.59 85.06 

Min 46.69 68.12 46.86 69.14 39.13 7.05 30.83 41.84 

Max 97.76 98.17 96.75 98.67 96.15 90.86 96.37 97.33 

Std 13.1712 7.84638 13.57596 10.5820 14.39149 30.2024 20.56417 14.44962 
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Overall, the accuracy of the proposed method is close to some top filtering algorithms. 

The results show that AVM has the relatively good performance for Samp 12, Samp 22, Samp 

23, Samp 31, Samp 51, and Samp 53. For the reference dataset, AVM performs well for both 

rural and urban areas. Specifically, AVM shows better performance where the data consists of 

building on a hillside, large, irregularly shaped buildings, a mixture of vegetation and buildings, 

large buildings, bridges. However, with the scene of a steep slope, railway station with trains, 

AVM could not show significant performance regarding error rate and Kappa coefficient.   

The next chapter describes the color mesh sharpening method based on Laplace-Beltrami 

discretizations. Several discretizations are utilized, and results are illustrated in this chapter. 
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CHAPTER 6 

COLOR MESH SHARPENING 

 

In this chapter, the methodology for mesh color sharpening using discrete Laplace-

Beltrami operator and the results are described. 

 

 

6.1 Introduction 

Three-dimensional (3D) meshes are widely used in many fields and applications, such as 

computer graphics, games, animation films, and virtual reality. 3D meshes are usually generated 

using one of two methods: 1) artists create the meshes from scratch with 3D modeling software, 

such as Autodesk Maya and Google SketchUp; or 2) the meshes are created by scanning real 3D 

objects. The second method is becoming more popular because of the increasing precision and 

processing power of 3D scanners with the reduced cost at the same time. 3D scanners collect 

data from the shape and color appearance of a real object or environment. The collected data are 

later processed to generate a 3D model of the real object. A wide range of commercial 3D 

scanners has been developed offering varied capabilities in terms of scanning range, precision, 

and speed. Among them, Microsoft Kinect is a motion-sensing device used by Microsoft Xbox 

360 and Xbox One game consoles and Windows PCs and is becoming very popular for scanning 

objects for various applications. One major advantage of Kinect is its low cost with a price of 

$150, compared with scanners with typical prices of thousands or tens of thousands of dollars. 

One of the best available 3D scanning applications that utilize Kinect is ReconstructMe [139]. 

ReconstructMe creates color meshes with each vertex of the mesh containing position, normal, 

and color information. To improve the quality of color meshes, two approaches can be utilized: 
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geometrical processing and color (appearance) processing. Geometrical processing changes each 

vertex's position while keeping its color information intact; on the other hand, color processing 

changes each vertex's color while keeping its position (or the object shape) intact. Existing mesh 

processing methods have been focused on improving the geometrical properties of the meshes. 

 

6.2 Motivation 

Image sharpening is an important tool to improve the image quality. Image sharpening 

emphasizes texture and enhances the contrast of the image. Sharpening filters make the edges of 

an image appear more defined by darkening the low-intensity pixels and brightening the high-

intensity pixels. This creates a crisp edge between bright and dark portions of the image, 

producing more contrast. With advances in 3D scanning hardware, more and more colored 

meshes are being generated. Especially with the increasing availability of low-cost 3D scanners 

such as Microsoft Kinect, colored 3D meshes become more accessible. To the best of our 

knowledge, no image processing techniques, such as sharpening and Laplace-Beltrami operator, 

have been combined to improve the visual appearance of 3D colored meshes. This dissertation 

extends traditional image sharpening techniques for 2D regular images to 3D color meshes with 

irregular topologies. In particular, this work [140] utilizes several discretizations of the Laplace-

Beltrami operator for mesh color sharpening. Several definitions and implementations of the 

Laplacian-Beltrami operator were investigated for their efficiency and effectiveness for mesh 

color sharpening. Different ways to discretize the Laplace-Beltrami have been developed by 

defining the discrete operator polygon-wise on a triangle mesh, with the most prominent one 

being the cotan-operator, defined by Pinkall et al. [141]. Meyer et al. [142] used Voronoi area, 

Mayer et al. [143] used the sum of areas of triangles over vertices, and Desbrun et al. [144] used 
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two different approaches. One approach of the Desbrun et al. paper used the gradient of the 

normalized area, and the other used the sum of the cotan operator over the edges. These 

discretizations of the Laplace-Beltrami operator that were previously defined for computational 

fluid dynamics and mesh geometric processing are extended in this paper for color sharpening, 

thus providing several new tools for improving the quality of 3D meshes. The color of each 

vertex in the polygonal mesh is updated using various implementations of the Laplace-Beltrami 

operator. The performance of various implementations is compared and analyzed for the best 

approach of mesh color sharpening. 

 

6.3 Image Sharpening 

Sharpening is commonly used in image processing to highlight transitions (or edges) in 

intensity. The main goal of image sharpening is to enhance the image and make the image to 

appear clearer and brighter. Various image-sharpening filters have been proposed using the first-

order and second-order derivatives. The Laplacian, which is a second-order derivative, is 

commonly used for image sharpening. The Laplacian operator can be defined as a function f(x,y) 

as follows: 

                                                    

2 2
2

2 2
,

f f
f

x y

 
 = +

 
           (20) 

        

where f is image intensity and x, y are pixel positions.  Since the Laplacian is a derivative 

operator, it uses intensity discontinuity in an image and minimizes regions with slowly varying 

intensity levels. One discrete implementation of the Laplacian operator defined in eq. 20 be 

written as 

).,(4)1,()1,(),1(),1(),(2 yxfyxfyxfyxfyxfyxf −−+++−++=                                    (21) 

Eq. 21 is used to apply to the image as a filter mask. This filter mask can be represented as a grid 
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which is shown in Fig. 60(a). Fig. 60(b) shows an alternate implementation of the discrete 

Laplacian operator where each diagonal term contains additional -2f (x, y) term for which -8f (x, 

y) would be subtracted from the difference terms. Fig. 60(c) and Fig. 60(d) are the negatives of 

the previous implementations. 

 

 

Fig. 60. Filter mask grid. (a) Filter mask to implement Eq. (16), (b) An alternate implementation 

of Eq. (2), (c) and (d) Two other implementations using negative terms. 

 

The Laplacian is used for image sharpening using the following formula [123]: 

                                )],([),(),( 2 yxfcyxfyxg +=                       (22)                         

where f (x, y) and g (x, y) are the input and sharpened images, respectively. The constant c = -1 if 

the Laplacian filters in Fig. 60(a) and (b) are used, and c = 1 if Fig. 60(c) and (d) are used. Fig. 

61 shows the application of this mask for both a grey scale image and a color image. The Moon 
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image and the color of the pear image appear brighter and sharper. The final results are images 

with enhanced details and significant improvement in sharpness. The Laplacian is a second order 

derivative and because the pixels in an image are arranged in a rectangular grid; the 

discretization of the Laplacian is straightforward [123] and is computed as the second order 

differences along horizontal and vertical (or diagonal) directions. For most 3D meshes, no such 

rectangular grids exist, so imaging sharpening methods cannot be directly applied to mesh color 

sharpening. No such directions (horizontal, vertical, and diagonal) are defined for polygonal or 

triangular meshes, and Equation 16 cannot be extended directly to 3D meshes. The Laplace-

Beltrami operator was proposed as the second order derivative on 3D meshes, which is to be 

discussed next. 
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(a) (b) 

  

(c) (d) 

Fig. 61. Image Sharpening. (a) Original Image- Moon, (b) Sharpened Image- Moon, (c) Original 

Image- Pear, (d) Sharpened Image- Pear. 
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6.4 Laplace-Beltrami Operator and Discretizations 

The Laplace-Beltrami Operator is mostly utilized in the field of differential geometry to 

operate on the surfaces in Euclidean spaces. It is a generalization of the second-order derivative 

operator Laplacian to non-at Riemannian manifolds. Let f be a real-valued function defined on a 

differentiable manifold M with Riemannian metric. The Laplace-Beltrami operator is defined as 

[145] 

 ∆𝑓 ∶= 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓)                                (23) 

where grad and div are the gradient and divergence on the manifold M [145]. For discrete 

meshes, the function f on a triangular mesh T is defined by linearly interpolating the values of 

f(vi) at the vertices of T. This is done by choosing a base of piecewise linear hat-functions φi, 

with value 1 at vertex vi and 0 at all the other vertices [146]. Then f is given as 

        𝑓 = ∑ 𝑓(𝑣𝑖)𝜑𝑖.
𝑛
𝑖=1         (24) 

Discrete Laplace-Beltrami operators are usually represented as [142]  

                             ∆𝑓(𝑣𝑖) =
1

𝑑𝑖
∑ 𝑤𝑖𝑗𝑗∈𝑁(𝑖) [𝑓(𝑣𝑖) − 𝑓(𝑣𝑗)].         (25) 

where N(i) denotes the index set of the 1-ring neighborhood of the vertex vi, i.e., the indices of 

all neighbors connected to vi by an edge. The mass di is associated to the vertex i and the wij are 

symmetric edge weights. In the following subsections, several discretizations of Laplace-

Beltrami operator will be discussed in detail. 

 

6.4.1 Pinkall Discretization 

Pinkall and Polthier used a constant mass in the discretization of the Laplace-Beltrami 

operator to compute discrete minimal surfaces [141]. The author defined the weight as follows, 

                                             𝑤𝑖𝑗 =
cot(𝛼𝑖𝑗)+𝑐𝑜𝑡(𝛽𝑖𝑗)

2
,                                                         (26) 
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where αij and βij denote the two angles opposite to the edge (i, j) as shown in the Fig. 62. 

 

 

Fig. 62. The angles αij and βij. 

 

6.4.2 Meyer Discretization 

A different geometric discretization was suggested by Meyer et al. [142], for triangular 

meshes. Their approach utilized the voronoi area. If P, Q, and R with circumcenter O is a non-

obtuse triangle, as shown in Fig. 63, a+b+c=π/2 can be obtained from the properties of 

perpendicular bisectors. So, we can write, a= π/2 -∠ Q and c= π/2 -∠ R. The Voronoi area for 

point P can be computed as below: 

                                            
1

 8
(|𝑃𝑅|2𝑐𝑜𝑡∠𝑄 + |𝑃𝑄|2𝑐𝑜𝑡∠𝑅).                                        (27) 

Meyer et al. used the areas for the whole 1-ring neighborhood to compute the Voronoi 

area of the vertex vi as follows: 

                          𝐴𝑉𝑜𝑟𝑜𝑛𝑜𝑖 =
1

8
∑ (cot 𝛼𝑖𝑗𝑗𝜖𝑁(𝑖) + cot 𝛽𝑖𝑗)‖𝑣𝑖 − 𝑣𝑗‖

2
.                              (28) 

After computing the area of the 1-ring neighborhood, the weight is updated as follows: 

                             𝑤𝑖𝑗 =
1

2𝐴𝑖
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗), 𝑖 ≠ 𝑗, 𝑗 ∈ 𝑁(𝑖),                                    (29) 
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where N(i) is the 1-ring neighborhood of vi, and Ai is the Voronoi area of the vertex vi. The 

author cautioned that this expression for the Voronoi finite volume area does not hold in the 

presence of obtuse angles [142]. 

 

 

Fig. 63. 1-ring neighborhood and angles opposite to an edge. 

 

Experiments showed that the numerical quality of this operator is equivalent to the finite 

difference operators for regular sampling [142]. The Voronoi regions of each sample point 

minimize the bound on the error (created by local averaging of the mean curvature normal) due 

to spatial averaging since they contain the closest points to each sample [144]. That is why the 

numerical estimates acquired through this is optimized and require few extra computations. This 

approach degrades gracefully if irregularity in the mesh is increased. This process is 

implemented in two steps. First, the Voronoi area of each vertex is calculated. This Voronoi area 

is summed up for the whole 1-ring neighborhood of the vertex. Second, the weight is updated 

using this Voronoi area and the cotangent of two opposite angles of an edge. 
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6.4.3 Mayer Discretization 

Mayer et al. developed a method to compute the Laplacian of a function defined on a 

triangulated surface [143]. The spatial discretization triangulates the surface and approximates 

any function, which is defined on the surface by its values of the vertex. For a function f on 

surface S, Green's formula can be written as, 

                                          ∫ ∆𝑓(𝑥)𝑑𝑥 = ∫ 𝜕𝑛𝑓(𝑠)𝑑𝑠,
𝜕𝐷∈(𝑧)𝐷∈(𝑧)

                                     (30) 

where 𝐷∈(𝑧) is a small disk at a point z on the surface S and n is the intrinsic outer normal of the 

boundary of the small disk and it is tangential to the surface. Mayer [143] discretized and 

replaced the disk of the triangulated surface by the 1-ring neighborhood of the vertex vi and 

provided the following approximation: 

                           ∆𝑓(𝑣𝑖) =
1

𝐴(𝑣𝑖)
∑

𝑑𝑖𝑗+𝑑𝑖,𝑗+1

2𝑗∈𝑁(𝑖) ∙
𝑓(𝑣𝑗)−𝑓(𝑣𝑖)

‖𝑣𝑖−𝑣𝑗‖
,                                        (31) 

 

where A(vi) is the sum of areas of triangles around the vertex vi, and for two consecutive vertices, 

vj and v(j+1) on the 1-ring neighborhood of vi, dij and di,j+1 are the distances between them 

respectively. We can write this approximation in the following way: 

                         ∆𝑓(𝑣𝑖) =
1

𝐴(𝑣𝑖)
∑

‖𝑣𝑎−𝑣𝑗‖+‖𝑣𝑏−𝑣𝑗‖

2‖𝑣𝑖−𝑣𝑗‖𝑗∈𝑁(𝑖) (𝑓(𝑣𝑗) − 𝑓(𝑣𝑖)),                       (32) 

where A(vi) is the sum of areas of triangles around vertex vi, and a,b ∈ Ni ∩Nj . 

Equation (27) is derived from equation (26) by approximating∫ ∆𝑓(𝑥)𝑑𝑥
𝐷∈(𝑧)

, 𝜕𝑛𝑓(𝑠) and ds 

with ∆𝑓(𝑣𝑖)𝐴(𝑣𝑖), 
𝑓(𝑣𝑗)−𝑓(𝑣𝑖)

‖𝑣𝑖−𝑣𝑗‖
 and 

‖𝑣𝑎−𝑣𝑗‖+‖𝑣𝑏−𝑣𝑗‖

2
, respectively. This algorithm is used to 

calculate the area of triangles around each vertex and discretized Green's formula of Riemannian 

manifold. Here, the distance between a vertex and its neighbor vertex is also taken into account. 
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6.4.4 Desbrun Discretization 

Desbrun et al. [144] found the (area normalized) cotangent Laplacian by computing the 

area gradient explicitly in the discrete setting. They used two approaches for the Laplace-

Beltrami Operator. The first approach uses the cotangent formula of each opposite angles and the 

sum of the cotangent of every angle and the second approach computes the gradient of 1-ring 

neighborhood area and use the sum of the areas of each triangle. Eq28 is the normalized version 

of the computed weight. Desbrun defined the weight as: 

                                                  𝑤𝑖 =
cot 𝛼𝑖+𝑐𝑜𝑡 𝛽𝑖

∑ (𝑗𝜖𝑁(𝑖) 𝑐𝑜𝑡 𝛼𝑗+𝑐𝑜𝑡 𝛽𝑗)
.                                              (33) 

This algorithm is based on very basic, uniform approximations of the Laplacian. The 

second approach of Desbrun et al. used the gradient of the 1-ring area with respect to its center 

vertex. For a non-obtuse triangle, Desbrun also considered 1-ring neighboring vertices of the 

vertex vi as shown in Fig. 64. Area A is computed for a small region of a point p. Then the sum 

of the small areas of the triangles around vi is computed and denoted as A(vi). The overall 

approximation can be computed by as follows: 

                             ∆𝑓(𝑣𝑖) =
3

𝐴(𝑣𝑖)
∑

cot 𝛼𝑗+𝑐𝑜𝑡 𝛽𝑗

2𝑗∈𝑁(𝑖) |𝑓(𝑣𝑗) − 𝑓(𝑣𝑖)|,                          (34) 

where N(i) is the index set of the 1-ring neighboring vertices of vertex vi. αj and βj are the angles 

opposite to an edge as shown in the Fig. 63. This discretization achieves a good sharpening effect 

with respect to the shape of the geometry, as no drift happens, and only geometric properties are 

used. 

 

6.5 Mesh Color Sharpening using the Laplace-Beltrami Operator 

The previous sections discussed several discretizations of the Laplace-Beltrami operator, 

including Pinkall, Meyer, Mayer, and two methods proposed by Desbrun. Developed for other 
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types of applications, none of these discretizations has been utilized for color sharpening on 

irregular surface meshes. The color of each vertex of a 3D mesh contains three components: red, 

green, and blue, and each component can be considered as a function defined on the mesh 

surface. In this work, each color component is treated and processed separately. The Laplace-

Beltrami operator is calculated for each color component of a vertex, and then that color 

component is updated by adding its Laplace-Beltrami operator weighted by a factor to its 

original value. This operation is repeated for all color components of all vertices. 

 

 

Fig. 64.  A vertex and its 1-ring neighborhood in a mesh. 

 

The 1-ring neighborhood of a vertex is used to calculate the Laplace-Beltrami operator in 

all discretizations. Fig. 64 shows the 1-ring neighborhood of a vertex. If vertex v0 has a different 

color than its surrounding vertices, the method searches for the 1-ring neighborhood of each 

vertex and computes its associated weights and updates each color component of the vertex using 

the Laplace-Beltrami operator. These weights vary with different discretizations, thus having a 

different impact on the meshes. As discussed above, Pinkall and Desbrun discretizations 

compute cotangent of angles, Mayer discretization utilizes the sum of areas of the triangles 

around vertices, whereas Meyer discretization uses the Voronoi area to calculate weight factors. 
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The overall system structure of the proposed mesh color sharpening method is illustrated 

in Fig. 65. The 3D object is first scanned using a 3D scanner such as Microsoft Kinect. The input 

raw data are usually in the form of a point cloud from which a 3D mesh is then generated that 

typically consists of triangles. The 1-ring neighborhood is built for all vertices to facilitate fast 

processing and computing. These two steps establish the topology of the mesh. The mesh color-

sharpening phase processes all vertices in the 1-ring neighborhood of the center vertex. First, the 

Laplace-Beltrami Operator (LBO) of a neighboring vertex is computed. Then the change caused 

by that neighboring vertex is computed. Finally, the center vertex color is updated. This process 

is repeated for all three color components (RGB) of all vertices of the 3D mesh. 

 

 

Fig. 65. System architecture of the proposed mesh color sharpening methods. 
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The various mesh color sharpening methods were implemented in MeshLab [147], an 

open source 3D mesh processing software package. MeshLab is connected by a central skeleton 

framework and a large set of independent plugins. This plug-in-based architecture can be used to 

implement new functionalities. Meshlab also has some components that use the core data 

structure and basic algorithms provided by the VCG Library. VCG Library is a portable C++ 

template library to implement algorithms for simplical complexes. All proposed mesh color 

sharpening methods were implemented as a plug-in C++ based on these data structures and 

template library. Several experiments were conducted to assess the performance of different 

implementations of the Laplace-Beltrami operator for mesh color sharpening using a wide range 

of 3D models. The Coca-Cola can shown in Fig. 66 is a textured model. Fig. 66(b) is the result of 

conversion from texture to vertex color. After the conversion, the color is distorted. The model in 

Fig. 66(b) was used as an input to the mesh color sharpening. After applying the Laplace-

Beltrami operator for mesh color sharpening, Pinkall, Meyer, Mayer, and Desbrun-1 have similar 

performances. Meyer discretization performed better than Pinkall, Mayer, and Desbrun-1, as it 

recovered the Coca-Cola label better than these methods. Desbrun-2 achieved the best 

performance, and it produced a result that looks even better than the original model (Fig. 66(a)). 
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Fig. 66. An artificial textured model (a) Original, (b) Color converted from textured to vertex, (c) 

Pinkall, (d) Meyer, (e) Mayer, (f) Desbrun-1, (g) Desbrun-2. 

 

 

Fig. 67. An artificial 3D model generated using Maya (a) Original, (b) Blurred, (c) Pinkall, (d) 

Meyer, (e) Mayer, (f) Desbrun-1, (g) Desbrun-2. 

 

To further demonstrate the performance of the proposed mesh color sharpening 

algorithms, an artificial model cube (Fig. 67(a)) was generated with the 3D modeling software 

Maya. Each face of the cube has a checkered pattern of red and blue squares. The cube was then 

blurred in MeshLab to generate the artificial input model shown in Fig. 67(b), which was then 

processed by different mesh color sharpening algorithms. Fig. 67(b) was generated by replacing 

the color of each vertex by the average of its neighbors' colors. The Laplace- Beltrami operator 

using five different discretizations was then applied to the fuzzy mesh, Fig. 67(b), to improve the 

visual appearance of the mesh color and the results are shown in Fig. 67(c), (d), (e), (f), and (g) 
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respectively. It is clear that all five discretizations improved the sharpness of the mesh color to 

different extents. The edges in the cube model become blurry and thicker after the smoothing 

operation as shown in Fig. 67(b). All of the color-sharpening methods sharpen the cube, but 

Meyer (Fig. 67(d)) and Desbrun-2 (Fig. 67(g)) performed better than other three discretizations.  

 

 

Fig. 68. Mesh color sharpening with different implementations of the Laplace-Beltrami operator. 

The 1st column shows the input models to mesh color sharpening, and remaining columns show 

the mesh color sharpening results with Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 

discretizations (in this order). 

 

Fig. 68 shows more results using different models, including a cube with butterfly 

texture, a reindeer, and a doll. The first row is a cube with a butterfly texture generated using 

Google SketchUp. The second row is a scanned model of a reindeer toy in a low light 
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environment using Microsoft Kinect. The last row is a toy generated using the scanner under 

natural lighting condition. The original cube with the butterfly texture is dark and lacks details. 

After applying mesh color sharpening with different discretizations of the Laplace-Beltrami 

operator, the quality of the cube is improved significantly. 

In particular, mesh color sharpening using the Desbrun-1 discretization of the Laplace-

Beltrami operator produced stunning results (Fig. 68, 1st row, 5th column). It appears more vivid 

with visible veins on the leaf and crisp patterns on the butterfly wing. The background appears to 

have more depth as well. The reindeer model was captured under the low light condition, and it 

appears very dark, fuzzy, and dull. All mesh color processing methods improved the visual 

appearance of the reindeer model significantly with more sharpness. The wrinkles of the cloth on 

the reindeer are clearly visible, as are the eyes of the reindeer and the scarf it wears. 

The color variations around the reindeer's nose are more prominent. The face and bottom 

of the girl doll model are severely contaminated with undesired red and black spots and patches. 

All mesh color sharpening method using different discretizations of the Laplace-Beltrami 

operator improve the quality of mesh to varied extents. The result produced by the Meyer 

discretization (Fig. 68, 3rd row, 3rd column) is almost perfect. It removed completely the 

undesired red contamination on the face and black contamination on the bottom while enhancing 

details overall. The Pinkall discretization (Fig. 68, 3rd row, 2nd column) also produced good 

results with minor red color contamination on the face remaining. Other discretizations were not 

able to remove the color contaminations completely, but still produced results better than the 

contaminated input model. It is worth to emphasize that all the mesh color sharpening methods 

proposed in the paper have been applied to the 3D meshes, not 2D images. 
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Fig. 69 shows some of the objects and their corresponding mesh structures. Based on the 

experimental results presented in the paper, mesh color sharpening using different discretizations 

of the Laplace-Beltrami operator had varied performances on different 3D objects, while overall 

Desbrun-2 discretization achieved good performance on all models. All the mesh color-

sharpening methods have been implemented and incorporated into the open source software 

Meshlab. It should be kept in mind that the computational cost is also critical for practical 

applications. TABLE VIII shows the computation time of mesh color sharpening using different 

discretizations of the Laplace-Beltrami operator on different 3D models. The butterfly, reindeer, 

and doll have 24, 30338, 29103 vertices and 12, 44850, 56554 faces, respectively. 

 

 

Fig. 69. 3D objects and their corresponding meshes. (a) and (d): Coca-Cola can. (b) and (e): Girl 

doll. (c) and (f): Reindeer. 
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TABLE VIII  

COMPUTATION TIME  

 

Methods 
Coca-Cola 

Can 
Cube Butterfly Reindeer Doll  

Pinkall 125 2463 55 2621 2902  

Meyer 171 4341 46 4151 5070  

Mayer 156 4136 62 3947 4806  

Desbrun-1 156 4141 63 3588 4383  

Desbrun-2 171 4056 47 3963 4851  

 

This work proposed a novel method for sharpening mesh colors using different 

discretizations of the Laplace-Beltrami operator and applied it to color 3D meshes. The Laplace-

Beltrami operator is a second-order derivative operator defined for functions on surfaces. This 

work implemented mesh color sharpening using different discretizations of the Laplace-Beltrami 

operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 discretizations and applied 

to various kinds of 3D models. All mesh color sharpening methods improved the visual 

appearance of the 3D models. Different discretizations of the Laplace-Beltrami operator had 

varied performances of mesh color sharpening on different meshes, while the Desbrun-2 

discretization achieved good performance on all 3D models in the experiments. Future research 

is needed to investigate the relationship between the mesh color sharpening performance and 

mesh structures, such as triangle density and shape. It is also worth noting that mesh color 

sharpening methods discussed in this part of the dissertation only changed the visual appearance 

(vertex colors) of the meshes, not the geometrical shapes. 

The next chapter gives a conclusive remark of this dissertation. 
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CHAPTER 7 

CONCLUSIONS  

 

The summary and future work of the dissertation are presented in this chapter. 

 

 

 

7.1 Summary 

This dissertation made several contributions towards point cloud filtering and 3D mesh 

processing. The first contribution of this dissertation was to develop methods for point cloud 

processing based on order statistic and adaptive filters, including vector median, fuzzy vector 

median, adaptive mean, and adaptive median, which were originally developed for image 

processing. A new filter, namely adaptive vector median, was proposed for point cloud filtering.  

In the second contribution, a parallel processing method has been implemented using Microsoft 

Parallel Pattern Library to reduce the computational time of the adaptive vector median filter. 

This method has been extended in the third contribution for the Aerial LIDAR data filtering, and 

the fourth contribution proposed a novel method for sharpening mesh colors using different 

discretizations of the Laplace–Beltrami operator.  

Removing noises while improving and sharpening the important features of the data is a 

challenging task. In most of the cases, the sharp features of the point cloud are occluded or 

hampered by the outliers and noisy points presented in the point cloud.  

The proposed filters not only effectively remove most noise, but also preserve critical 

features such as edges and corners in a reasonable time. For some cases, the median filter and 

vector median filter cannot distinguish between fine details and noise and will likely enhance the 

noise pattern. The noise reduction capabilities of the proposed methods have been compared with 

several other filtering methods. Experimental results demonstrated a significant amount of 
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improvement in terms of performance both quantitatively and qualitatively. Although the 

algorithm could extract most of the outliers in the scene, there were still some that were not 

detected due to the similarity between the pattern of the data and noise. Another variation was 

also proposed where normal of the points were taken into account. However, it requires a large 

amount of time to process the point cloud with moderate performance improvement. 

To mitigate this problem, a parallel approach has been adopted using Microsoft Parallel 

Pattern Library. This technique utilizes the multicore functionality that is now common on 

desktop and mobile computing devices. The presented results using the Parallel Pattern Library 

showed a significant gain in computational time. The work demonstrated that the algorithm using 

PPL scaled very well and achieved significant speed-ups.  

A ground-filtering algorithm was proposed for aerial LIDAR data for both rural and 

urban areas with the differentiated terrain. The method based on AVM was successful in both 

visual and quantitative ways, achieved comparatively better Kappa and highest in ranking 

according to the total error rate using the fifteen-reference data from ISPRS compared to five 

other renowned methods. AVM demonstrated five lowest error rates and one highest error rates 

for Type I error whereas for Type II error AVM ranked third among five top, well-known 

methods. AVM generated 2.35%, 2.75%, 4.32%, 0.9%, 1.41%, 2.18% total error type for 

different areas of the reference data. The average Kappa coefficient is 81.71 which is close to 

some top filtering algorithm. 

A novel method was presented for sharpening mesh colors using different discretizations 

of the Laplace–Beltrami operator and applied it to color 3D meshes. The Laplace–Beltrami 

operator is a second-order derivative operator defined for functions on surfaces. This work 

implemented mesh color sharpening using different discretizations of the Laplace–Beltrami 
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operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 discretizations and applied 

to various kinds of 3D models. All mesh color sharpening methods improved the visual 

appearance of the 3D models. Different discretizations of the Laplace–Beltrami operator had 

varied performances of mesh color sharpening on different meshes, while the Desbrun-2 

discretization achieved good performance on all 3D models in the experiments. It is also worth 

noting that mesh color sharpening methods discussed in this dissertation only changed the visual 

appearance (vertex colors) of the meshes, not the geometrical shapes. A variety of experimental 

results on synthetic and raw point scans demonstrated that the proposed methods were capable of 

producing quality results, where sharp features and fine details are recovered well, in the 

presence of a reasonably high level of noise, outliers, and sparsity. 

 

7.2 Future Work 

As future work, the plan is to extend the concept of AVM to other features as well such 

as using magnitude instead of depth value or normal, different channels of color for point cloud 

with color information, etc. For the parallel processing, GPU implementation is supposed to 

speed up the filtering process significantly. Implementation of different deep learning models 

such as Convolutional Neural Network and Deep Belief Networks for the LIDAR ground 

filtering would also be of great interest.  
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