
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling & Simulation
Engineering Theses & Dissertations

Computational Modeling & Simulation
Engineering

Winter 2018

Adaptive Methods for Point Cloud and Mesh Processing Adaptive Methods for Point Cloud and Mesh Processing

Zinat Afrose
Old Dominion University, zinatafrose@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Applied Mathematics Commons, Engineering Commons, and the Statistics and Probability

Commons

Recommended Citation Recommended Citation
Afrose, Zinat. "Adaptive Methods for Point Cloud and Mesh Processing" (2018). Doctor of Philosophy
(PhD), Dissertation, Computational Modeling & Simulation Engineering, Old Dominion University, DOI:
10.25777/ttaf-b623
https://digitalcommons.odu.edu/msve_etds/15

This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation
Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/15?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ADAPTIVE METHODS FOR POINT CLOUD AND MESH PROCESSING

by

Zinat Afrose

B.S. May 2009, Jahangirnagar University, Bangladesh

M.S. January 2012, Jahangirnagar University, Bangladesh

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY

December 2018

Approved by:

 Dr. Yuzhong Shen (Director)

 Dr. Rick Mckenzie (Member)

 Dr. Jiang Li (Member)

 Dr. Ahmed K. Noor (Member)

ABSTRACT

ADAPTIVE METHODS FOR POINT CLOUD AND MESH PROCESSING

Zinat Afrose

Old Dominion University, 2018

Director: Dr. Yuzhong Shen

Point clouds and 3D meshes are widely used in numerous applications ranging from

games to virtual reality to autonomous vehicles. This dissertation proposes several approaches

for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods.

Order statistic filters have been proven to be very successful in image processing and other

domains as well. Different variations of order statistics filters originally proposed for image

processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector

median is proposed in this dissertation for removing noise and outliers from noisy point cloud

data.

The major contributions of this research lie in four aspects: 1) Four order statistic

algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud

with improved results such as preserving significant features. These methods are applied to

standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the

proposed method using Microsoft parallel pattern library for filtering point clouds is

implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is

proposed. The objective is to develop a method to enable automatic extraction of ground points

from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh

color sharpening using the discrete Laplace-Beltrami operator is proposed.

Median and order statistics-based filters are widely used in signal processing and image

processing because they can easily remove outlier noise and preserve important features. This

dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy

vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point

cloud data. The experiments show that large-scale noise is removed while preserving important

features of the point cloud with reasonable computation time. Quantitative criteria (e.g.,

complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative

criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess

the performance of the filters in various cases corrupted by different noisy models. The adaptive

vector median is further optimized for denoising or ground filtering aerial LIDAR data point

cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft

Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color

sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second

order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the

Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami

operator of the vertex color weighted by a factor to its original value. Different discretizations of

the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes.

This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D

mesh colors and compares their performance. Experimental results demonstrated the

effectiveness of the proposed algorithms.

iv

Copyright, 2018, by Zinat Afrose, All Rights Reserved.

v

This dissertation is dedicated to my family for their endless support and encouragement.

vi

ACKNOWLEDGMENTS

This dissertation is the culmination of my journey of Ph.D. research which was just like

climbing a high peak step by step accompanied by encouragement, hardship, trust, and

frustration. This dissertation would not be possible to finish without the invaluable contribution

of a great number of people to whom I would like to convey my gratitude in this

acknowledgment.

First, I would like to express my sincere gratitude to my advisor Dr. Yuzhong Shen for

his enormous support, insightful guidance, and inspiring attitude. Under his guidance, I

successfully overcame many difficulties and learned a lot. His zeal for perfection, passion,

unflinching courage, and conviction has always inspired me to do more. He has supported me

not only academically but also emotionally through the rough road to finish this dissertation. For

all these reasons, I sincerely thank him from the bottom of my heart and will be truly indebted to

him throughout my lifetime.

Besides my advisor, I would like to thank the rest of my dissertation committee members:

Dr. Rick Mckenzie, Dr. Jiang Li, and Dr. Ahmed K. Noor for their great support and invaluable

advice.

Importantly, my spiritual leader, through whom I get inspiration to go beyond the known

and know the unknown, I am so humble and grateful to him.

Where would I be without my family? My parents and my in-laws deserve special thanks

for their devoted support and prayers. I am deeply grateful to my dear mother who worked with

undying support for me throughout my whole study life. Moreover, my father...I know he is

watching me from heaven and feels proud to see his child fulfilling his dream.

vii

Thanks to my siblings for their continued patience, and endless support. Also, thanks to

my friend Hasib for his countless endurance and help during this journey.

I would like to express my deepest appreciation to my husband, Mahbubul Alam, for his

continued and constant support and understanding during my pursuit of Ph.D. degree that made

the completion of this dissertation possible. He was always by my side when I thought that it was

impossible to continue and encouraged me to work harder. Finally, I would like to mention my

baby, my little bundle of joy Zaaib, who is an integral part of this journey. I am grateful to both

of them for bringing pure joy and blessings to my life.

Lastly, thanks to the Almighty Allah for giving me the strength to take challenges and for

His countless blessings in my life.

viii

TABLE OF CONTENTS

 Page

LIST OF TABLES ...x

LIST OF FIGURES ... xi

Chapter

1. INTRODUCTION ..1
1.1 Motivation ..1

1.2 Objectives ..4

1.3 Dissertation Structure ...5

2. LITERATURE REVIEW ...6

2.1 Point Cloud Processing ..6
2.2 Multi-core and GPU-based Parallel Computing ..8
2.3 Aerial LIDAR Data Processing ...10

2.4 Mesh Processing ..13

3. POINT CLOUD PROCESSING...15
3.1 What is Point Cloud ...15
3.2 Categories of Point Clouds ..16

3.3 Applications of 3D Scanning ...18

3.4 Types of Noise in Point Clouds ...19
3.5 Proposed Methods ..21
3.6 Software Implementation and Experimental Results ...31

3.7 Normal Based point cloud processing ...57

4. PARALLEL IMPLEMENTATION OF ADAPTIVE VECTOR MEDIAN FILTER62
4.1 Multi-core Architecture ..62
4.2 Microsoft Parallel Patterns Library ...64

4.3 Implementation ..66
4.3 Results ..69

5. AERIAL LIDAR DATA PROCESSING ...72

5.1 Aerial LIDAR ..72

5.2 Basic Definitions ..74
5.3 Ground Characteristics Used for LIDAR Ground Filtering ..76
5.4 Methodology ..77
5.5 Experimental Results ...79

6. COLOR MESH SHARPENING...116
6.1 Introduction ..116
6.2 Motivation ..117

ix

6.3 Image Sharpening ..118

6.4 Laplace-Beltrami Operator and Discretizations...122

6.5 Mesh Color Sharpening using the Laplace-Beltrami Operator..................................126

7. CONCLUSIONS...135
7.1 Summary ..135
7.2 Future Work ...137

REFERENCES ..138

VITA ..150

x

LIST OF TABLES

Table Page

1. Computational Time .. 57

2. Computational Time .. 61

3. Computational Time .. 71

4. Characteristics of the reference data ... 84

5. Parameters for AVM against ISPRS reference dataset ... 105

6. Interpretation of Kappa .. 113

7. Comparison of Kappa cofficient .. 114

8. Computational Time .. 134

xi

LIST OF FIGURES

Figure Page

1. Point Cloud Data in CAD Model Generation [1]. .. 2

2. Lidar data in DEM generation. ... 2

3. Point cloud to 3D mesh model generation. ... 3

4. Examples of point clouds. ... 15

5. Point cloud capture devices .. 17

6. Example of point cloud generation ... 18

7. Types of noise in point cloud.. .. 20

8. Flowchart of Adaptive vector median filter. ... 29

9. Point cloud processing.. .. 30

10. Denoising point cloud. .. 30

11. Graphical User Interface for point cloud visualization. .. 32

12. Menu Items in the interface. ... 33

13. Artificial model (Sphere).. .. 35

14. Standard model (Gear). ... 36

15. Standard model (Iron). .. 38

16. Artificial model (Torus).. .. 39

17. Artificial model (Sharp Sphere). ... 40

18. Standard model (Teapot)... 41

19. Standard model (Fandisk).. ... 43

20. Standard model (Bunny).. ... 45

xii

21. Real Scene model (Angel). ... 46

22. Real Scene model (Happy Buddha). ... 47

23. Real Scene model (Compressor). .. 48

24. Real Scene model (Chair) ... 49

25. Real Scene model (Milk Bottle). .. 51

26. Real Scene model (Table).. ... 52

27. RMSE of (a) Teapot, (b) Sphere, (c) Gear, (d) Fandisk. .. 54

28. Hausdorff Distance of (a) Fandisk, (b) Buddha, (c) Gear, (d) Sphere. 55

29. Comparisons of different filtering methods. ... 56

30. Normal based AVM filtering of bunny. .. 59

31. Normal based AVM filtering of cylinder.. 60

32. Normal based AVM filtering of fandisk ... 60

33. Execution model of parallel processing. ... 63

34. Experimental speedup for a dataset using AVM .. 70

35. Aerial LiDAR technique. .. 73

36. Original Study area (Washington DC). ... 81

37. Study area-I.. ... 82

38. Study area-II.. 83

39. Study area-III. ... 83

40. Sample 11.. 86

41. Sample 12.. 88

42. Sample 21.. 89

43. Sample 22.. 91

xiii

44. Sample 23.. 92

45. Sample 24.. 93

46. Sample 31.. 95

47. Sample 41.. 96

48. Sample 42.. 97

49. Sample 51.. 98

50. Sample 52.. 99

51. Sample 53.. 101

52. Sample 54.. 102

53. Sample 61.. 103

54. Sample 71.. 104

55. Filtering difficulties [48]. .. 106

56. Cross matrix. ... 107

57. Comparisons of error types. .. 110

58. The ranking order of AVM (type I, type II, total error). ... 111

59. Kappa Coefficient Calculation. ... 112

60. Filter mask grid. .. 119

61. Image Sharpening.. ... 121

62. The angles αij and βij. ... 123

63. 1-ring neighborhood and angles opposite to an edge.. 124

64. A vertex and its 1-ring neighborhood in a mesh. .. 127

65. System architecture of the proposed mesh color sharpening methods. 128

66. An artificial textured model. ... 130

xiv

67. An artificial 3D model generated using Maya .. 130

68. Mesh color sharpening with different implementations of the Laplace-Beltrami operator. . 131

69. 3D objects and their corresponding meshes.. 133

1

CHAPTER 1

INTRODUCTION

This chapter briefly defines the motivation behind the work of this dissertation. It then

discusses the objectives of this dissertation and concludes with the dissertation structure1.

1.1 Motivation

Three-dimensional (3D) models are widely used in a variety of applications, such as

game development, computer animation, movies, preservation of historical heritage and

mechanical devices, and virtual reality walkthroughs. Most of these applications demand an

accurate and usable computer model of an object which best suits the underlying application, be

it to render improved and noise free presentation of the object from arbitrary viewpoints under

different lighting conditions, or for accurate computations and simulations. There are two

common approaches to create 3D models: either the model is designed from scratch using

interactive modeling software, or the model is digitized from a physical object using acquisition

hardware and algorithms to reconstruct a 3D model from the acquired 3D data. For the latter

approach, point clouds are a natural way to represent 3D sensor output, and no available

connectivity information can be assumed from the underlying topology in point clouds. Working

directly with raw point clouds in the input 3D space offers several advantages, such as better

suited for applications requiring data addition and deformation. Although point clouds can be

rendered directly using points or textures, more common use of point cloud data is to generate

3D surface meshes for graphics rendering and other purposes such as modeling and simulation,

1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references.

2

as 3D meshes possess topological information for easy handling of the neighborhood. Point

clouds are used in a wide range of applications. Fig. 1 [1] shows the point cloud generated by

scanning an industrial facility and the corresponding 3D mesh generated from the point cloud.

Fig. 2 shows the point clouds generated by using LIDAR (Light Detection and And Ranging)

laser scanners to scan terrain, and the final digital elevation model (DEM) generated after

processing the point cloud data. LIDAR scanning can cover large areas uniformly and rapidly,

and DEM data are widely used in forest planning and management, environmental assessment,

defense, and gaming, to mention just a few.

Fig. 1. Point Cloud Data in CAD Model Generation [1].

Fig. 2. LIDAR data in DEM generation.

3

In addition to scanning large-scale figures (plant and terrain) as discussed above, point

clouds are heavily used individual objects as well. Fig. 3 shows the point cloud by scanning a

small statue and the corresponding 3D mesh generated from the point cloud. More and more

such point clouds are used in medical modeling and simulation, manufacturing, architecture, 3D

printing, gaming, and various virtual reality (VR) applications.

Fig. 3. Point cloud to 3D mesh model generation.

While 3D data acquisition hardware has advanced tremendously, various types of noise

are still introduced in the acquisition process, caused by the limitation of device precision,

influence, and reflection of light, shadows, low contrast, etc. The noise present in the point

clouds cause distortion of the 3D surfaces reconstructed from the point clouds. Also, a 3D scan

of the environment includes all objects in the environment, some of which might not be the data

or information needed. For example, the initial LIDAR scan of the terrain includes vegetation

and other objects, while the purpose of the scan is the terrain elevation. In this case, vegetation

and other undesired objects should be removed to extract the true and accurate terrain

information. This dissertation will focus on how to improve the quality of the noisy data models

with structural and visual improvement. Various filtering for point clouds will be proposed and

developed, as well as a method for improving the quality of 3D color meshes.

4

1.2 Objectives

There are four objectives to be achieved by the research in this dissertation. The first

objective is to develop and implement point cloud filtering algorithms to automatically reduce

the amount of noise and outliers in small-scale point cloud datasets. Outliers are undesired noise

that introduces errors in applications using point cloud data. Hence, trimming them out of the

point cloud will produce point clouds of better quality that facilitate further usage of point

clouds. Several filtering methods originally developed for image processing are extended to

point cloud filtering, including vector median, fuzzy vector median, adaptive mean, and adaptive

vector median filters. A completely new method, namely adaptive vector median (AVM) filter, is

proposed in this dissertation and utilized for point cloud filtering. The AVM is able to preserve

detail while eliminating or reducing the impulse noise and outliers in the point cloud. The second

objective is to implement parallel processing of the AVM filter to accelerate processing of huge

datasets. Despite the efficiency of the AVM filter, additional efforts are required that increase the

computational time. Furthermore, the availability of desktop multicore and multithreaded

processors offers new opportunities to speed up point cloud filtering. The proposed solution

achieves a computational time gain close to the number of physical cores. The third objective is

to optimize the AVM filter for processing of aerial LIDAR data. The non-ground objects are

eliminated by applying a threshold value based on elevation differences and terrain slope, and

the remaining noisy points are removed by using the AVM filter. The fourth and final objective

of this dissertation is to develop and implement color mesh sharpening method to improve the

quality of the 3D mesh. This method extended traditional image sharpening techniques for 2D

regular images to irregular 3D meshes. In particular, this method utilized several discretizations

5

of the Laplace-Beltrami operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2

discretizations and was applied to various kinds of 3D models for color mesh sharpening.

1.3 Dissertation Structure

The dissertation is organized in four parts: noisy point cloud filtering, parallel

implementation of point cloud filtering, ground filtering of aerial LIDAR data, and 3D color

mesh sharpening. Chapter 1 presents the motivation and objectives for the work in this

dissertation and the overall dissertation structure. Chapter 2 gives a literature review on point

cloud processing, parallel processing, LIDAR data filtering, and 3D meshes. The first

contribution of this dissertation is introduced in Chapter 3, including five different filtering

methods for the noisy point cloud, namely vector median filter, fuzzy vector median filter,

adaptive mean, adaptive median, and adaptive vector median filter. Parallel implementation of

the adaptive vector median filter is presented in Chapter 4. Chapter 5 describes the method for

aerial LIDAR data ground filtering. Chapter 6 presents the algorithm for color mesh sharpening.

Chapter 7 concludes the dissertation and discusses directions for future research.

6

CHAPTER 2

LITERATURE REVIEW

This chapter presents a review of the literature that is relevant to the work in this

dissertation, including point cloud processing, multi-core and GPU-based parallel computing,

aerial LIDAR data processing, and mesh processing.

2.1 Point Cloud Processing

Point clouds are a natural way to represent 3D sensor outputs with no assumption of

connectivity information or underlying topology. In early efforts of digitization of several

cultural heritage sites and statues, processing a huge amount of noisy 3D data in a reasonable

time presented a big challenge [2], [3], [4]. Many techniques have been introduced to remove

noise and outliers from the scanned point cloud using smoothing filters [5], [6], [7], [8], [9], [10].

However, this approach could not preserve sharp features, which were undesirable for some

cases. Wang et al. [11] combined fuzzy c-means and bilateral filtering and produced good results

but also partly smoothed the sharp features while clustering. Data clustering is robust for

removing noise [12], [13] though it requires prior knowledge about the input objects. Mederos et

al. [14] introduced a smoothing operator that could preserve the significant edges of the surface,

which was inspired by the moving least square method and robust statistics theory. However, this

approach only removed a small range of noise, but the elimination of outliers remained mostly a

manual procedure. Lea [15] presented a GPU-based implementation of moving least squares and

Liu and Zayer [16] proposed Bundle Adjustment for the multiview point cloud.

7

Both approaches [15], [16] were intended for smoothing the point cloud data. However,

both smoothing and sharp feature preservation become a challenge and computationally

expensive for huge datasets. Majority voting method [17], an improved approach to k-means

clustering [18], [19], cluster analysis and segmentation [20], and K-NN algorithm with clustering

[21] all required high computational cost for large datasets. A new approach of SVM was

introduced for noise reduction in the point cloud based on density and distance [22] for a small-

scale data. Several studies [17], [18], [23], [24], [25] were intended for small data sets and

consumed much execution time for large datasets. An image processing technique namely

Wiener filter was used with patch collaborative spectral analysis [26]. This image-based

technique was also computationally demanding. Deschaud and Goulette [27] presented an

approach to handle large datasets by filtering normal and voxel growing for plane detection in

the presence of noise, but this approach failed in the border with small variation. In a different

paper [28], they identified and removed outliers by utilizing a dissimilarity measure based on

point positions and normal, but the quality decreases if the voxel size is large. Digne [29]

introduced low/high-frequency decomposition by comparing the neighborhoods of the points.

This method, however, required reasonable point cloud density. Estimation of threshold in the

high-density point cloud was also considered [30], [31]. However, this may lead to holes in the

regions where noise and outliers are concentrated. These methods tend to eliminate critical

features such as sharp edges or corners. Various approaches were attempted for extracting sharp

features in point clouds. Delaunay tetrahedralization ([32], [33]) produced surface meshes from

noisy point cloud while preserving important features. Zheng et al. [34] discoursed this issue

with multiple normals according to the feature type. In this case, large datasets were not taken

8

into account. A wide range of comparisons on point cloud denoising algorithms and evaluation

of the subjective performance of the well-known quality metrics were presented in [35] and [36].

2.2 Multi-core and GPU-based Parallel Computing

With advances in hardware design and VLSI technologies, a single processor VLSI chip

now contains multiple cores, called multi-core or many-core processors. For example, an Intel

Xeon processor can have as many as 24 cores on a single chip. Therefore, computations can be

partitioned into multiple subtasks and then allocated to multiple cores on the same CPU chip for

parallel processing. Multi-core processor architecture contains several execution cores within a

single processor package. Multi-core processors now are a standard configuration on desktop and

laptop computers and even smartphones. Graphics Processing Units (GPUs) are another category

of computing hardware that is now widely used for parallel computing on personal computers,

workstations, and clusters. GPU contains multiple Streaming Multiprocessors (SMs), and each

SM consists of many CUDA cores (also called Stream Processors, or SPs). The latest NVidia

GPUs contain thousands of CUDA cores and thus can execute thousands of threads concurrently.

GPUs are optimized for computations used by computer graphics, such as affine transformations,

lighting, and texture mapping. In recent years, GPUs have been utilized for general purpose

computing (GPGPU) such as image processing, computational fluid dynamics, and machine

learning. Yang et al. [37] calculated integral images on GPU to accelerate the whole cost-

volume filtering process whereas Aitali et al. [38] proposed a SIMD architecture for bias field

estimation and image segmentation. Three different GPUs have been utilized to accelerate

compute-intensive portions of the original sequential code. The speedup depends on the model of

the GPU, image size, and number of clusters. Galliani et al. [39] presented a multiview variant of

9

Patchmatch Stereo with a new, highly parallel proliferation scheme that delivered dense

multiview correspondence over ten 1.9-Megapixel images in 3 seconds on a consumer-grade

GPU. It achieved an accurate and complete reconstruction with the low runtime. Based on

NVIDIA CUDA, Anderson et al. [40] and Li et al. [41] proposed an improved classic Fuzzy C-

Means clustering algorithm which adaptively updated membership values and the update

criterion of cluster centers. Their methods produced better visual effects and segmentation

efficiency. A 2-level parallel computing framework to accelerate the SVM was proposed in [42]

by utilizing CUDA and OpenMP. Wu et al. [43] presented a computationally efficient parallel

implementation of a spectral-spatial classification method based on adaptive Markov random

fields. It was more accurate and 70 times faster than the original sequential code. El-Nashar [44]

discussed the issue of speedup gained from parallelization using MPI and proposed a way to

predict the speedup of MPI application. Parallelization was also utilized in 3D point cloud

matching and filtering [45], [29]. Jorge et al.’s approach [45] attained computational gain, which

was close to the number of cores. Digne et al. [29] analyzed a parallel implementation of the

bilateral filter for the point cloud. The registration problem for 3D scans was addressed with

GPGPU [46], and the nearest neighbor search algorithm was used for 3D point cloud

registration. The registration of a large dataset is computationally expensive. Their method was

able to achieve a speedup of 88 over the sequential algorithm. Kun et al. [16] presented a parallel

surface reconstruction algorithm that ran entirely on GPU. This approach produced high-quality

surfaces through global optimization. GPU was also used to speed up the process of filtering

LIDAR data significantly [47].

10

2.3 Aerial LIDAR Data Processing

Aerial Light detection and ranging (LIDAR) integrates the Global Navigation Satellite

System and Inertial Navigation System with laser scanning and ranging technologies. It enables

direct measurement of the 3-D coordinates of points on ground objects for the efficient creation

of digital surface models (DSMs). The large volume of scanned data that are manipulated when

processing a LIDAR point cloud has been one of the major challenges in data processing. For

example, one strip of a scanned area can easily produce tens of millions of points. Efficient

algorithms are, therefore, important in practical applications. For some critical fields, such as

emergency response, very short data processing time is required. For example, after an

earthquake, terrain maps are required urgently for damage estimation and rescue plans. The

filtering of the LIDAR point cloud is an important step in LIDAR data processing. It classifies

the LIDAR points into ground points and nonground points, which are objects such as buildings,

trees, and low vegetation. Filtering is one of the most important steps in producing the digital

elevation model (DEM) and terrain information.

The diversity of the terrain, the complexity of features, and the irregular distribution of

the points bring significant difficulties to the filtering process [48]. For many years, researchers

showed filtering LIDAR data is an extremely problematic task and is still currently actively

under investigation [49], [50], [51], [52], [53], [54], [55]. Researchers have proposed different

types of filtering methods. These methods can be grouped into several categories based on the

filter strategies, such as iterative interpolation, morphology, slope, segmentation or clustering,

region, machine learning, statistical analysis, as discussed below.

11

Interpolation based filtering: For interpolation-based methods, the initial ground points

are selected and then densified iteratively to create a provisional surface that gradually

approaches the final ground surface [49], [50], [56], [57], [58].

Morphology-based filtering: This algorithm originated in mathematical morphology

theory, which uses morphological operations, such as opening operation [59], to approximate

terrain surface or building detection [60, 61]. Kilian et al. [62] proposed a progressive

morphological filter based on a series of opening operations applied to a gridded surface model

to remove the objects with different size. The progressive morphological filtering method

proposed by Keqi et al. [59] used the increased radius of the structuring element to remove non-

ground points. However, these methods generally assume the terrain has a constant slope. Chen

proposed a morphological algorithm with varying slope [63]. The biggest challenge for these

methods was how to maintain the terrain features when the size of the filter window changes.

Silva et al. [64] evaluated four ground filtering algorithm and showed progressive morphological

filters achieved less accuracy than the other three algorithms.

Slope-based filtering: The common assumption of slope-based algorithms is that the

change in the slope of terrain is usually gradual in a neighborhood, while the change in slope

between buildings or trees and the ground is very large. Based on this assumption, Vosselman

[65] developed a slope-based filtering algorithm by comparing slopes between a LIDAR point

and its neighbors. To improve the calculation efficiency, Shan and Sampath [66] calculated the

slopes between neighbor points along a scan line in a specified direction, which was extended to

multidirectional scan lines by Meng et al. [61]. Acquiring an optimal slope threshold that can be

applied to terrain with different topographic features is difficult with these methods.

12

Segmentation/ Clustering based filtering: The motivation behind such procedures is

that any points that cluster must belong to an object if their cluster is above its neighborhood. For

such a concept to work the clusters/segments must delineate objects and not facets of objects.

There are various ways in which cluster boundaries or segments can be obtained. Clustering

methods have been proposed by Filin [67] and Roggero [68]. These clustering methods work by

projecting and separating the data into a feature space. Segmentation algorithms have been

proposed by Lee and Schenk [69], Hosseini [70], Liu et al. [71] and Sithole [72]. Another way of

obtaining cluster boundaries is to contour the point-cloud. An object is then suspected to exist

where the length (or internal area) of a contour does not grow significantly from a lower contour.

This idea is employed by Zhan et al. [73] and Elmqvist [74, 75].

Machine learning based filtering: Machine learning has been used in pattern

recognition, classification, regression, and clustering for a long time. The deep convolutional

neural networks (CNN) are inspired by biological vision systems; these networks have recently

shown their ability to extract high-level representations through compositions of low-level

features. Hu and Yuan [47] proposed ground filtering based on CNN. Classification of individual

trees [76] and above ground object classification [77], [78] utilized deep learning.

Backpropagation neural network [79], Support Vector Machine [80], [81], [82], [83] and random

forest [84] are widely used in classification technique for LIDAR data. The key benefit of using

this type of methodology is the simplicity and clarity of the resulting model. On the contrary,

they also have some drawbacks: they provide a set of highly correlated predictors with little

physical justification and require long times to train the model.

Many experiments and projects have been applied various filtering algorithms to range

images [85], [86], [87], [88], [89], [90], [12]. Several papers [60], [64], [91], [92], evaluated and

13

analyzed different ground filtering approach and concluded that not all of the algorithms were

capable of producing reliable results but adaptive filtering algorithms have more promising

results.

2.4 Mesh Processing

Various methods have been proposed to recover the quality of the meshes generated by

3D scanners, such as surface smoothing [93], which removes geometrical noise in the mesh

using Laplacian smoothing. However, local Laplacian smoothing leads to a variety of artifacts

such as geometric distortion and shrinkage due to the irregular connectivity of the mesh. Several

techniques were proposed to eliminate this shrinkage problem and topological effects of

smoothing [94], [95], [96]. Wang [97] proposed a sharpening method using bilateral filtering

followed by iteratively modifying the mesh's connectivity to form single wide, sharp edges that

were detected by their dihedral angles. A distance measure was defined based on normal tensor

analysis [98]. This algorithm consisted of two stages that require much computation time and

worked only around the edge features of the model. Particular focus was also on edge

sharpening. Attene et al. [99] applied a filtering approach that required subdivision of Chamfer

triangles. Ohtake et al. [100] proposed polyhedral surface smoothing that was a combination of

Laplacian smoothing flow and discrete mean curvature flow. Another approach for smoothing

surfaces was introduced in [101] using fuzzy vector median filters for surface normal filtering in

a two-step procedure. Anisotropic geometric diffusion was proposed for surface fairing in [102].

The multiscale method combined the image processing methodology based on nonlinear

diffusion equations and the theory of geometric evolution problems for surface processing. This

method smoothed the surface by enhancing the edges and corners of the surface. Surface fairing

14

or removing rough features was also conducted by [103] and [104]. Hildebrandt and Polthier

[103] proposed an algorithm based on a constraint that controls the spatial deviation of the

surface. Shen et al. [105] applied normal filtering to improve the quality of the mesh surface and

remove the noise. This geometric approach consumed much computational cost because of its

feature detection stage. Since Laplacian cannot be applied to the irregular meshes due to the

irregular topology of meshes, Laplace-Beltrami operator was introduced in different applications,

such as computational fluid dynamics [106], [107] and shape segmentation [108]. Petronetto et

al. [108] introduced a mesh-free discrete Laplace-Beltrami operator that is defined on point-

based surfaces for filtering and shape segmentation. Belkin et al. [109] proposed an algorithm to

approximate the Laplace operator of a surface with point-wise convergence that is applicable to

arbitrary meshed surfaces. Scale-dependent Laplacian operator was utilized in [110] to improve

the smoothness of surface with volume preservation. Gu et al. [111] applied discrete Laplace-

Beltrami operator to determine the discrete Riemannian metric. To solve the convergence

problem for numerical simulations over the surfaces, Wu et al. [112] and Xu [113] introduced a

convergent algorithm of Laplace-Beltrami operator. Xiong et al. utilized this convergent property

of Laplace-Beltrami operator for mesh surface smoothing in [114]. Wetzler et al. [115] applied

the Laplace-Beltrami operator as a diffusion filter and an invariant metric to obtain geometric

shape matching. All of these methods used different approaches for geometric processing. The

Laplace-Beltrami operator has been used only for geometrical processing, not for color

processing.

15

CHAPTER 3

POINT CLOUD PROCESSING

This chapter starts with an introduction to point clouds and various types of noise present

in point clouds. It then describes the details of five filtering methods for point clouds, including

vector median, fuzzy vector median, adaptive mean, adaptive median, and adaptive vector

median, and their experimental results. The chapter ends with an implementation of a variant of

the adaptive vector median.

3.1 What is Point Cloud

A point cloud (Fig. 4) is a data structure used to denote a group of multi-dimensional

points and is commonly used to represent three-dimensional data [116]. In a three-dimensional

coordinate system, these points are usually defined by X, Y, and Z coordinates, and often are

intended to represent the peripheral surface of an entity.

 Fig. 4. Examples of point clouds.

16

3.2 Categories of Point Clouds

Unorganized point clouds are captured from varied inputs like RGB-D cameras, stereo

cameras, 3D laser scanners, time-of-flight cameras (Fig. 5), photogrammetric image

measurements, motion sensors, or synthetically from software. They pose a tough problem of

reconstruction, especially challenging in case of incomplete, noisy, and sparse data. Despite the

fact that in practice the sample points produced by a 3D scanner are measured with some

regularity, the points in a point cloud are typically not assumed to have any particular structure.

The reason for this is to make the algorithms operating on point clouds as general as possible, not

depending on the scanner or the way the object was scanned. Obviously, efficient processing of

such unorganized point clouds is a central issue in all 3D scanning applications. Depending on

the size of the object, its geometry, and the required precision of the scan, different approaches

are used. Many technologies exist today to acquire 3D point clouds from various environments.

Range-based technologies include 3D laser scanners (also known as terrestrial laser scanners)

and time-of-flight (ToF) cameras. Accuracies of laser scanners at the present time are generally

within 1 to 5 millimeters. The accuracy of Leica HDS2500 laser scanner is 5mm at 100m [117],

and for Leica TC2003 Total Station the accuracy is 1 mm over the range of 2.5 to 3.5 km [118].

3D laser scanning has become a relatively matured technology, and many commercialized

systems are available such as Faro, Leica, Riegel, Topcon, Trimble, Zoller & Frohlich, and

others. Laser triangulation-based 3D scanners are less accurate, but significantly faster, which

project a laser beam on the object and use the triangulation principle to derive the distance to the

object. Structured light scanners project an entire 2D pattern onto the object and calculate the 3D

surface points by analyzing the deformation of the pattern. The advantage of structured light

scanners is their fast speed so that they can be used to scan moving and deforming objects.

17

A time-of-flight camera has several benefits; for example, it can measure 3D depth maps

at video rate, and as a result, it can be employed as a fast object scanner. The travel time of

infrared light is one of the measurement technique of ToF cameras and thus it does not interfere

with the visual field. A passive stereo technique is another alternative to point sample an object

or scene. However, stereo processing algorithms depend on the presence of the texture in the

image, and they have a few parameters that can be altered to generate a better result such as

disparity range or correlation window size.

(a) (b)

(c) (d)

Fig. 5. Point cloud capture devices (a) Kinect, (b) Creative Senz3D scanner, (c) Trimble scanner,

(d) NextEngine 3D.

18

 The use of different sensor types (e.g., digital cameras, thermal cameras, multispectral

cameras, range cameras, laser scanners, etc.) typically results in data in the form of 2D imagery

or 3D point cloud data. Some examples [119] are shown in Fig. 6.

(a) (b)

(c) (d)

Fig. 6. Example of point cloud generation (a) using 2D laser sensor, (b) using Time-of-flight

camera, (c) using Stereo camera [120], (d) Synthetically.

3.3 Applications of 3D Scanning

Three-Dimensional point clouds are widely used in various applications such as

modeling, rendering, and CAD model generation. These point clouds are mainly generated using

19

3D scanners. Other applications include inspection and quality control, where a manufactured

part is compared with its intended design CAD model. Numerical simulation using finite

elements can be performed on the scanned models, e.g., the simulation of the aerodynamic flows

inside and outside of an object. Also, scanned models are used in computer graphics to render

realistic scenes and in the film animation industry.

However, although the scanning technology has improved and offered better features, it

still has some problems such as distortion, reflections, shadows, low contrast, etc. Limitation of

device precision, the influence of light, and reflection may cause the addition of noise in the

original data, which damages the original representation of the model and also hampers the

accuracy of the surface reconstruction.

3.4 Types of Noise in Point Clouds

Point clouds generated from the scanners are not clean. Most of the data are incomplete,

unclean, or contaminated by noise and missing important features. Several factors can cause

noise to the original point cloud such as sensor noise, depth quantization, distance in relation to

the scanner, etc. The noise can be of different types such as Gaussian, outlier, and shot (Fig. 7).

Gaussian noise: This type of noise is generated due to sensor imperfections during

procurement. Generally, when the same scene is taken from different viewpoints or more than

one camera is used in image acquisition, Gaussian noise is presumably added to the original

point cloud. This noise affects the position of all points of the point cloud, and the level can be

modeled by a standard deviation.

Outlier: This type of noise is generated due to structural artifacts in the acquisition

process. Mostly, it happens during multiview stereo acquisition where view dependent

20

reflectivity of a surface can result in false correspondence. Sometimes, outliers are randomly

distributed in the volume, and the density is much less than the sample density of the overall

points.

Shot noise: This type of noise is produced because of the misjudgment of the scanner

when it is scanning the boundary of the object. The scanner cannot locate the depth boundary of

the model, and thus it generates some tail along the depth of the object. In most of the cases, the

density is high and can’t be separated from the original shape of the object using density

estimation. Some individual points have extreme values.

(a) (b) (c)

Fig. 7. Types of noise in point cloud. (a) Gaussian noise, (b) outlier, (c) shot noise.

A point cloud has to be processed before generating a 3D mesh surface. A well-prepared

point cloud leads to strong time saving in the further surface editing or modeling processes. The

importance of noise removal in point cloud data is to generate a cleaner and smoother exterior of

the original data with minimum topological error. For this reason, both noise removal and

structural improvement are the objectives of this dissertation research.

21

3.5 Proposed Methods

In this section, five different filtering methods are proposed for point cloud processing.

Among these five filtering methods, vector median, fuzzy vector median, adaptive mean, and

adaptive median filter have been effectively used in image processing and mesh processing.

These filters are extended and implemented for point cloud processing in this dissertation. The

adaptive vector median filter is a new filtering method that is first proposed in this dissertation

for the point cloud processing.

3.5.1 Vector Median Filter

The vector median filter is the extension of median filter [121]. Given an input point

cloud P = {pi ϵ R3}, and an observation window Ω = {p1, p2,….., pN ϵ Rm}, the output of the

vector median filter is defined as [101]:

 𝑃𝑉𝑀 = 𝑎𝑟𝑔 min
𝑝∈Ω

∑ ‖𝑝 − 𝑝𝑖‖
𝑁
𝑖=1 𝐿𝑝

, (1)

where, p1, p2..., pN are input points, N is the window size and ‖. ‖𝐿𝑝
 denotes the Lp norm. The sum

of Lp is the total distance from each point to all other points. The vector median is a suboptimal

estimate, in the maximum likelihood sense, of the location parameter of a multivariate Laplacian

distribution. To find the vector median, the sum of Lp distances from each sample to all other

samples is computed, 𝑑(𝑝𝑗) = ∑ ‖𝑥𝑝𝑗 − 𝑥𝑝𝑖‖𝐿𝑝
, 𝑗 = 1,2, … … . . 𝑁𝑁

𝑖=1 , then, the vector median is

set as 𝑃𝑉𝑀 = arg 𝑚𝑖𝑛𝑝𝑗
(𝑑𝑝𝑗). Although this computation has a complexity of O(N2), it performs

well in practice and is not generally computationally prohibitive as the window size N is usually

a small number. In addition, fast vector median methods are available [122].

22

3.5.2 Fuzzy Vector Median Filter

The concepts of fuzzy relations and fuzzy median filters to the vector data case are

extended in this method [101]. The FVM filter is applied to the smoothing of surface normals

and yields results that minimize the effect of noise while simultaneously preserving the fine

structure, edges, and other visually important cues. Following the FVM-based smoothing of

surface normals, the point positions are updated based on a system of linear equations structured

on the smoothed normals using the least square error (LSE) method.

To utilize fuzzy membership functions on vector-valued data, an appropriate distance

metric D ∈ ℝ𝑚 for vectors u and v ∈ ℝ𝑚 must be established. This metric must satisfy the

following conditions:

1. D(u,v) ≥ 0, and D(u,v) = 0 iff u = v,

2. D(u,v) = D(v,u),

3. D(u,v) + D(v,w) ≥ D(u,w).

The distance metric D (·, ·) may be application dependent. For example, if the directions

that vectors u and v represent are the main features of concern, then the angle between u and v is

a good distance metric. Conversely, if the physical distance between u and v defines a feature,

then the Lp norm is the appropriate metric. Although other metrics can be adopted, we restrict

our focus to the commonly used angle and Lp norm metrics. The specific metric utilized will be

clear from the context. The angle metric and Lp norm metric can be written as:

𝐷(𝑢, 𝑣) = {
𝐴(𝑢, 𝑣) = ∠(𝑢, 𝑣),

𝐿𝑝(𝑢, 𝑣) = ‖𝑢 − 𝑣‖𝑝.
 (2)

Given a vector distance metric, we now define a vector-based fuzzy membership

function, denoted 𝜇�̃�(𝑢, 𝑣): ℝ𝑚 × ℝ𝑚 ↦ [0,1], where the constraints are:

1. 𝑙𝑖𝑚𝐷(𝑢,𝑣)→0𝜇�̃�(𝑢, 𝑣) = 1,

23

2. 𝑙𝑖𝑚𝐷(𝑢,𝑣)→𝑀𝜇�̃�(𝑢, 𝑣) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑀 = sup 𝐷(𝑢, 𝑣),

3. 𝐷(𝑢1, 𝑣1) ≤ 𝐷(𝑢2, 𝑣2) ⇒ 𝜇�̃�(𝑢1, 𝑣1) ≥ 𝜇�̃�(𝑢2, 𝑣2). .

The metric D (·, ·) can also be used to extend the Gaussian membership function to

vector-valued data:

 𝜇𝐺(𝑢, 𝑣) = 𝑒−𝐷(𝑢,𝑣)2/2𝜎2
, (3)

where σ is the spread parameter.

The vector median is based on the vector distance metric. The vector median, represented

by 𝑝(𝛿), is the sample that minimizes the distance metric D (. , .) between itself and all other

samples:

 𝑃(𝛿) = arg min
𝑝∈Ω

∑ 𝐷(𝑃, 𝑃𝑖
𝑁
𝑖=1). (4)

If more than
𝑁+1

2
 samples have the same value pm, then the vector median filter selects pm as its

output.

The fuzzy vector median filter is implemented in the following way: given an input point

cloud P = {pi ϵ R3}, a K-d tree is formed to represent the neighborhood information. A K-d tree,

or K-dimensional tree, is a data structure used for organizing some number of points in a space

with k dimensions [120]. Since point cloud is three-dimensional, K-d trees used here are also

three-dimensional. K-d tree uses partition method to organize the number of points in a space.

The final outcome is the weighted sum of input point sets, where the weights are determined by

the fuzzy relation between each input vector and the vector median. The vector median is

determined based on a distance metric. The output of the FVM is defined as [101]:

 𝑃𝐹𝑉𝑀 =
∑ 𝑃𝑖�̃�𝑖,(𝛿)

𝑁
𝑖=1

∑ �̃�𝑖,(𝛿)
𝑁
𝑖=1

, (5)

where �̃�𝑖,(𝛿) = 𝜇�̃�(𝑃𝑖, 𝑃(𝛿)) is the fuzzy relation between Pi and P(δ). Pi is the input point data set

24

and P(δ), is the median. The relation function can be any shape that reflects the most relevant

information between samples. Two identical samples should have relation 1, while the relation of

two infinitely distant samples should be 0. Moreover, the relation between samples should

increase as the distance between them decreases.

3.5.3 Adaptive Filters

Adaptive filters are widely used in the image-processing domain for their capability to

enhance the eminence of the images and remove the unwanted pixels that cause the degradation

of the image. The most important characteristic of these filters is that the filter can self-adjust

some of its property during the filtering process based on some criteria. Adaptive filters perform

better than mean and median filters. The adaptive filters exhibit significant improved

performance in image processing if the image contains outliers, shot, or Gaussian noise. Since

the filtering operation is performed based on the local characteristics of the image, it can keep

the small details and enhance the edges of the image.

3.5.3.1 Adaptive Mean Filter

The adaptive mean filter changes its behavior according to the statistical characteristics of

the point cloud inside the filter window Sxyz with a specified radius [123]. Given an input point

cloud P = {pi ϵ R3}, a K-d tree is formed to represent the neighborhood information. For this

filtering approach, the algorithm is applied to the neighborhood of a point. The neighborhood is

defined by the window Sxyz = {pij ϵ P}. Four parameters are considered here: the depth value of

the noisy point pi, the variance of the noise σ2
n corrupting the original points, the local mean of

the points mL in the region Sxyz and local variance of the points σ2
L in the region. The behavior of

25

the filter is as follows:

First, in a specific window compute the local mean, local variance of the depth values of

that region and the variance of overall noise.

i) If σ2
n = 0, the filter should return the value of the centered point. This happens when

there is no noise present.

ii) If σ2
L is high relative to σ2

n, the filter should return values close to the point under

consideration. A high local variance means it is related to the edges, and these should be

preserved.

iii) If σ2
L = σ2

n, the filter should return the arithmetic mean value of the points in the

region Sxyz. The local noise is reduced by simple average.

According to the preceding assumptions the filter response can be modeled as:

𝑃𝐴𝑀 = 𝑍𝑖 −
𝜎𝜂

2

𝜎𝐿
2 [𝑍𝑖 − 𝑚𝐿]

If σ2
η > σ2

L then the ratio is set to one. Here, 𝑍𝑖represents the depth value of a point, 𝜎𝜂
2

represents the variance of overall noise, σ2
L represents the local variance of the local region and

mL represents the local mean.

3.5.3.2 Adaptive Median Filter

As an adaptive filter, adaptive median filter also changes its behavior based on the

statistical characteristics of the point cloud inside. Given an input point cloud P = {pi ϵ R3}, a K-

d tree is formed to represent the neighborhood information. The neighborhood is defined by the

window Sxyz = {pij ϵ P}. However, it changes the size of Sxyz during filter operation, depending on

the following conditions. The filter works in two stages, denoted stage S1 and stage S2:

Stage S1: S11 = Zmed - Zmin

(6)

26

 S12 = Zmed - Zmax

 if S11 > 0 and S12 < 0, go to stage S2

 else increase the window size

 if window size ≤ Smax repeat stage S1

 else output Zmed

Stage S2: S21 = Zi - Zmin

 S22 = Zi - Zmax

 If S21 > 0 and S22 < 0, output Zi

 else output Zmed

Here, Zmed = median of depth value in Sxyz, Zmin = minimum depth value in Sxyz, Zmax = maximum

depth value in Sxyz, Zi = depth value of point Pi, Smax= maximum allowed size of Sxyz.

3.5.4 Adaptive Vector Median Filter

The resulting 3D point cloud of a real object often contains noise-induced artifacts, which

are typically located around the ends and border of the model. These noise-induced artifacts are

unwanted and feature in the point cloud as clusters of neighboring points, which are not actually

part of the original model surface. In other words, the outliers are the product of the sensor's

inaccuracy, which registers measurements where there should not be any. The adaptive median

filter attempts to preserve detail while smoothing the impulse noise and outliers in point cloud.

The adaptive vector median filter is based on the spatial processing of the point cloud. The first

step is to find a neighborhood for each point. An adaptive structure of the filter ensures that most

noisy points are detected even at a high noise level.

27

Given an input point cloud P = {pi ϵ R3}, a local neighborhood Sxyz = {pij ϵ P} for each

point pi is determined by the KNN (K-Nearest Neighbor) where pij is the jth neighbors around pi

and a 3D kd-tree representation is constructed for Pc. The point containing the vector median

(vector median is calculated based on distance) in Sxyz is defined as pj. This filter detects the

noisy candidate pi and replaces the noisy candidate with the vector median of the points in a local

window. However, it changes the size of Sxyz during filter operation, depending on the following

conditions.

 The algorithm checks both the point of interest and the point containing the vector

median. Four different situations may arise in detecting noise in the point cloud.

1. The point of interest pi is noisy,

2. The point containing the vector median pj is noisy,

3. Both the pi and pj is noisy,

4. None of them are noisy.

Given a noisy point cloud and an initial window size, the adaptive vector median filter

performs several steps.

Stage 1: First, for each specified window, it calculates the vector median. Next, it checks

if the point containing the vector median value pj is noisy based on the depth value (z

component) using the following formula:

 𝑍𝑚𝑖𝑛 ≤ 𝑍𝑚𝑒𝑑 ≤ 𝑍𝑚𝑎𝑥 (7)

where Zmin is the minimum of depth value in Sxyz, Zmed is median of depth value in Sxyz and Zmax is

the maximum of depth value in Sxyz. If pj is not noisy (eq. 7 is satisfied), then it continues to stage

2. Otherwise it expands the window size and repeats stage 1.

Stage 2: Check if the center point pi is noisy by the following formula:

28

 𝑍𝑖 − 𝑍𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑍𝑖 − 𝑍𝑚𝑎𝑥 < 0 (8)

where Zi is the depth value of pi, Zmin is the minimum of depth value in Sxyz and Zmax is the

maximum of depth value in Sxyz. If the condition satisfies then pi is not noisy, the filter output is

the original center point, and it continues to the next point, otherwise pi is replaced by the vector

median pj; If both the vector median pj and the center point pi are noisy, the filter window is

expanded, and the above process is repeated.

A flowchart of the proposed filtering method is illustrated in Fig. 8.

Fig. 9(a) shows a noisy model with several outliers and Gaussian noise with σ = 0.001

(m) and Fig. 9(b) illustrates the result of the filtering. If the noise candidates are detected, the

denoising performance is expected to be improved. The adaptive vector median filter is

considered to remove the difficulties faced by the standard vector median filter. The basic

difference between vector median and adaptive vector median filter is that, in the adaptive vector

median filter, the size of the window adjacent to each point is adjustable. This change of window

size depends on the vector median of the points in the present window. If the vector median

value is between the max and min value, then the size of the window is extended. Otherwise,

further processing is ended on the part of the data within the current window specifications. So

far, we only used a fixed maximum radius to compute the local neighborhoods for detecting the

window size. Fig. 9 shows a 3D point cloud of a sphere with artificially added Gaussian noise

and outlier. This point cloud has some non-isolated outliers that are not separable using simple

distance criterion.

The AVM filters out the outlier based on the window-based technique and successfully

retrieve the original shape of the sphere. Fig. 10 represents an artificial iron model in 3D where

Fig. 10(a) shows a noisy point cloud with Gaussian noise with σ = 0.001 (m) and several outliers

29

and Fig. 10(b) illustrates the result of our filtering. The result shows the proposed method

maintains the better quality of the original model with precise features. We represent this

comparison to illustrate the effectiveness of the proposed method for removing outliers and noisy

points and improving the prominent features of this complex dataset. The vector attribute of the

point cloud and the adaptive nature of the window size handles the noise efficiently. The points

in the point cloud are not removed permanently; rather the positions are updated according to the

algorithm.

Fig. 8. Flowchart of Adaptive vector median filter.

30

Fig. 9. Point cloud processing. (a) Point cloud of an artificial sphere with a high density of noise

(b) Result after noise removal using AVM.

Fig. 10. Denoising point cloud (a) Input noisy model, (b) Filtered result using AVM.

31

3.6 Software Implementation and Experimental Results

This section presents the implementation of the various filtering methods for point cloud

processing as well as their results for different data sets.

3.6.1 Software Implementation

The Point Cloud Library (PCL) is an open-source software library [124] for 2D/3D image

and point cloud processing, developed by contributors from many different academic and

commercial organizations. It contains a large collection of software library modules for various

tasks in point cloud processing, such as filters, features, registration, kdtree, octree,

segmentation, recognition, and visualization. PCL is open source software written in C++ and

released under BSD license; it is free for commercial and research use. PCL is utilized as a basic

framework to implement the proposed filtering methods for point cloud processing in this

dissertation.

In addition, an application with a graphical user interface (GUI) was developed for the

selection of filters, setting filter parameters, file input/output, and visualization of point clouds.

The GUI was developed using the QT library, which is a cross-platform application framework

and widget toolkit for generating graphical user interfaces. Fig. 11 shows the available

functionality of the application and its GUI. MATLAB was used to add Speckle noises to the

models. Kinect, Kinect 1.0, NextEngine 3D scanner, LIDAR data and other sources of scanned

data were used to generate the models for results. A Dell Precision M6600 of Intel Core i7

processor with 16GB RAM has been used to execute the methods.

32

Fig. 11. Graphical User Interface for point cloud visualization.

A close view of the menu buttons of the interface is shown in Fig. 12. The menu has

several options such as new workspace, open a file, save a file, print, cut, paste, zoom in, zoom

out, denoising filter options (median, vector median, fvm, adaptive mean, adaptive median, avm,

sor, ror), different view mode, and exit. Also, the size of the point cloud can be adjusted using

the sliding bar. The available size is from 1 to 5. 1 represents the smallest, while 5 presents the

largest in point size. Two viewports are provided to compare the input and output point clouds.

The pan, rotation or move can be done by the mouse. The background color can be changed

black, white, pink and cyan.

33

Fig. 12. Menu Items in the interface.

We have tested our approaches with several models generated from different sources.

Several artificial models were generated using PCL such as Sphere, Cube, etc. Also, some

existing point cloud models of known objects are used here. Different types of noises such as

Gaussian, Shot and Salt and Pepper noise are added to the synthetic models for the evaluation.

3.6.4 Experimental Results

The various point cloud-processing methods developed in this dissertation have been

applied to a variety of real-world and synthetic data sets. The real-world data sets have been

captured as multiple depth maps with Microsoft Kinect (Fig. 5(b)), created with

photogrammetric reconstruction from multiple images, or acquired with a laser scanner (Fig.

5(c)). Several artificial models were generated using PCL such as Sphere, Cube, etc. Also, some

existing point cloud models of known objects are used here. Different types of noises, such as

34

Gaussian, Shot, and Salt and Pepper noise are added to the Synthetic models for the evaluation.

Two categories of models are evaluated and included in this dissertation, namely, synthetic

models and real scenes model captured by Kinect or Cyberware 3030 MS scanner. For the real

scene model, several well-known high-density point sets from the literature, such as the Stanford

Bunny and Happy Buddha [125] are included. To validate that the proposed algorithms can

perform well even in the presence of high density of noise, we have added additional noise to the

real scene models.

Category 1: Synthetic Models

Fig. 13 shows an artificial sphere with added outlier and Gaussian noise with standard

deviation σ of 0.003 (m). The median filter removes most of the noise except few outliers.

Vector median and FVM performs almost the same. On the other hand, adaptive mean, adaptive

median and adaptive vector median shows a similar result for this model. Most of the noise is

eliminated perfectly with these methods. It is worth noting that the outlier is detected first by the

KNN (distance-based/nearest neighbor/radius-based approach). For the distance-based approach,

the points that are significantly far away from the center of the dataset are considered outlier and

removed from the dataset. In the nearest neighbor-based approach, points that don’t meet the

criteria of having specific numbers of neighbors are removed. Finally, for the radius-based

approach, the user specifies the radius and the points that don’t belong to the radius are not

considered as the dataset. The proposed methods are applied after this step. This step is effective

whenever outlier is present.

35

(a) (b) (c) (d)

(e) (f) (g)

Fig. 13. Artificial model (Sphere). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

A representation of a synthetic gear model is shown in Fig. 14. Gaussian noise with 0.003

(m) standard deviation was added to the original model. All of the methods except vector median

improved the noisy model to some extent. For the vector median filter, the structure of the gear

model is distorted, and the handle lost its proper shape. However, median filter, FVM, adaptive

mean, adaptive median, and adaptive vector median removed the noise and kept the structure

intact.

36

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 14. Standard model (Gear). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM,

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

37

The third example is an iron structure (Fig. 15) with a hole in it. The original model was

contaminated with Gaussian noise with standard deviation σ = 0.002 (m) in this figure. For this

example, median, vector median, adaptive mean, adaptive median, and adaptive vector median

performs almost similar. The noise is removed, the points look sharper, and the edges look

prominent. The median filter produced results worse than other filters.

Another artificial model of a modified torus was used (Fig. 16). As can be seen, vector

median distorted the model a little bit while median and adaptive median filter worked better but

smoothed the sharp edge of the model. On the other hand, FVM, adaptive mean and adaptive

vector median removed the noise and also kept the important feature (edge) intact.

An artificial model Sharp Sphere is illustrated in Fig. 17. The structure of the model has a

complex construction. Some point inside the model has a lower density than the outer portion of

the model. Additionally, a number of outliers are added to the model to demonstrate the

effectiveness of the methods. Due to the outlier, the overall orientation of the model was

distorted. Median filter and vector median filter could not denoise the noisy points properly.

FVM, adaptive mean and AVM showed almost similar results. Adaptive median could not

denoise the model properly but showed a better result than median or vector median filter.

38

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 15. Standard model (Iron). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM,

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

39

(a) (b) (c) (d)

(e) (f) (g)

Fig. 16. Artificial model (Torus). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM,

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

40

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 17. Artificial model (Sharp Sphere). Results of (a) Noisy, (b) Median, (c) Vector Median,

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

Some 3D models are very widely used in the computer graphics community, such as the

teapot, fandisk, and bunny. Gaussian noise with σ = 0.001(m) was added in the following

41

examples. From Fig. 18 it is easily seen that the noise was not properly removed by the median

filter. Also, the position of the upper part of the teapot was slightly distorted. The middle portion

and the handle of the teapot lost some of the points after applying the vector median filter.

However, FVM, adaptive mean, adaptive median, and adaptive vector median removed most of

the noise and kept the structure of the teapot unchanged.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 18. Standard model (Teapot). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

42

Another model included here is a fandisk (Fig. 19). For this model, median filter removed

the noise but additionally removed some of the points from the original model also. On the other

hand, vector median. FVM, adaptive mean, adaptive median and adaptive vector median

performs well. Here, the noise level is Gaussian with standard deviation σ = 0.003 m.

43

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 19. Standard model (Fandisk). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

44

Category 2: Real Scene Models

The first example is the famous Stanford bunny (Fig. 20), which might be the most

widely used model in the computer graphics community. The median filter distorted some of the

points and removed a portion of the back of the bunny. Also, some outliers on the edge of the

bunny were not removed properly. The vector median removed most of the outlier and Gaussian

noise, but few noises remain at the border of the edge of the ear and feet. FVM, adaptive mean,

adaptive median, and adaptive vector median performed pretty well. These methods removed

noise as well as kept the important features of the bunny. Here, the noise level is Gaussian with

standard deviation σ = 0.003 (m) and contaminated by thousands of outliers.

Fig. 21 is a scanned version of an angel. As can be seen, all of the methods perform well

to some extent. The noise is removed and the sharp features especially the edges of the model are

well preserved.

Fig. 22 is a scanned model of a happy Buddha. Gaussian noise with standard deviation σ

= 0.001(m) was added to the original model. Median filter removed most of the noise but could

not preserve details of the model. Vector median, adaptive mean and adaptive median performed

almost similar in removing noise. Adaptive vector median filter removed the noise and preserved

the small details to some extent. The edges are more prominent in this filtering approach.

45

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 20. Standard model (Bunny). Results of (a) Noisy, (b) Median, (c) Vector Median, (d) FVM,

(e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

46

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 21. Real Scene model (Angel). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

47

(a) (b) (c) (d)

(e) (f) (g)

Fig. 22. Real Scene model (Happy Buddha). Results of (a) Noisy, (b) Median, (c) Vector

Median, (d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

The next example is a compressor head. The scanned version is very noisy itself. There

are lots of unwanted points in the data, and it is difficult to generate a 3D mesh from the point

cloud. The six methods were applied to the point cloud, and the results can be seen in Fig. 23.

48

Median filter removes a portion of the original parts of the model. Vector median, FVM, and

adaptive mean removed some prominent noise with some noise still visible. On the other hand,

adaptive median and adaptive vector median performed almost similarly in removing noise.

Most of the unwanted points were removed, and the bolts of the compressor looked sharper.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 23. Real Scene model (Compressor). Results of (a) Noisy, (b) Median, (c) Vector Median,

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

49

 A scanned model of a chair is shown in Fig. 24. The results are almost similar for all of

the methods in this research. The difference is barely visible among all the methods.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 24. Real Scene model (Chair). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

50

Fig. 25 illustrates an example of a real scene, which is a point cloud representation of

milk cartons. The scanned point cloud is really noisy with some outlier noise, and the original

structure of the cartons is distorted due to scanning error. The noise and the areas of

improvements after filtering are highlighted with circles. Some areas are recovered by the

median filter, but most of the noises are kept unchanged while the vector median removed much

of the noises with some visible outliers. Fuzzy vector median adjusted the uneven point clouds

and also removed the outliers from the point cloud. Adaptive mean, adaptive median, and

adaptive vector median performed almost similarly. Most of the noise is removed, and the edges

of the bottles look sharper, and the edges are prominent with these methods.

Fig. 26 is a laser scan of a table scene. The original model has a lot of noise and outliers

by the edge of the table. Median, vector median, and adaptive mean filters removed some of the

outliers but also removed some points from the edge, mistaken as outliers. On the other hand,

FVM, adaptive median, and adaptive vector median performed well. These methods removed the

outlier perfectly and kept the edges of the table intact and made it sharper.

51

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 25. Real Scene model (Milk Bottle). Results of (a) Noisy, (b) Median, (c) Vector Median,

(d) FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

52

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 26. Real Scene model (Table). Results of (a) Noisy, (b) Median, (c) Vector Median, (d)

FVM, (e) Adaptive Mean, (f) Adaptive Median, (g) AVM.

Fig. 27 shows the RMSE (Root Mean Square Error) of the models (teapot, sphere,

Buddha, gear) for the methods with various noise densities. The larger the RMSE is, the poorer

the denoising effect is. Large RMSE values indicate that the denoised point cloud data were

53

seriously deviated from the original point could data. The plot shows the larger noise density

tends to result in higher RMSE values. For computing RMSE, three options are available such as

(1) if the compared clouds have same number of points, compute using equal indices

correspondence heuristic, (2) if the compared clouds do not have same number of points, either

compute using the nearest neighbor correspondence heuristic or (3) compute using the nearest

neighbor plane projection heuristic. For the plane projection option, the target cloud needs to

contain normals.

The equation to derive the RMSE is as follows:

 RMSE (X, Y) = √
1

𝑛
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑦𝑖)2 (9)

where X and Y are two point clouds, x and y are subsets of X and Y respectively. It has an

identical unit of measurement as the original quantity.

Also, Hausdorff distance is shown in Fig. 28. Hausdorff distance measures the distance of

two subsets of a metric space. In other words, two sets are close in the Hausdorff distance if

every point of either set is close to nearly some point of the other set. It is defined as follows:

 𝐻(𝑋, 𝑌) = max
𝑥∈𝑋

{min
𝑦∈𝑌

{𝑑(𝑥, 𝑦)}} (10)

where x and y are points of sets X and Y respectively, and d(x,y) is the Euclidean distance

between x and y. For each point x on X it searches the closest point y on the other point cloud Y.

Here, we have compared with the original data with the filtered data. The lower the distance

value, the best is the filtered data. The filtered data is matched with the original data before

applying noise.

54

(a) (b)

(c) (d)

Fig. 27. RMSE of (a) Teapot, (b) Sphere, (c) Gear, (d) Fandisk.

55

(a) (b)

(c) (d)

Fig. 28. Hausdorff Distance of (a) Fandisk, (b) Buddha, (c) Gear, (d) Sphere.

Comparison

In this dissertation, we also implemented other widely used point cloud filtering and

processing methods, which were Statistical Outlier (SO), Conditional Removal (CR), Radius

Removal (RR) and Bilateral Filter (BF). Different point cloud models with corrupted Gaussian

noise were used to evaluate the corresponding performance of the algorithms.

Fig. 29 shows the filtering results of these five methods applied to a table scene model. It

can be seen that the model is still noisy after filtering by CR and RR, while SOR, BF, and AVM

produced better visual results. Overall AVM yielded the best result compared to other in terms of

56

denoising and feature preserving. TABLE I represents the computation time of the proposed

methods, and TABLE III illustrates different methods on different point cloud data with different

numbers of points. CR and SOR performed similarly, but BF was relatively time-consuming.

The performance of the RR depends on the radius. Larger radius tends to take a longer time to

process. Since the number of points affects the computational time, several point cloud data sets

were used to evaluate the computational time of the methods.

Fig. 29. Comparisons of different filtering methods. (a) Noisy Table model; filtering result with

(b) Conditional removal, (c) Radius removal, (d) Statistical outlier removal, (e) Bilateral filter,

and (f) Adaptive vector median filter.

57

TABLE I

COMPUTATIONAL TIME

Dataset (No.

of Points)

MED (in

sec)

VM (in

sec)
FVM (in sec)

AMEAN

(in sec)

AMED

(in sec)

AVMED

(in sec)

Teapot

(41784)
2.113 2.571 4.320 3.108 3.672 3.675

Mechanical

structure

(361043)

10.572 11.489 16.744 15.497 16.133 16.241

Gear (6268) 0.425 0.512 0.647 0.568 0.599 0.610

The time complexity of the algorithms (median, vector median, FVM, adaptive mean,

adaptive median, and adaptive vector median) are O(N), O(N2), O(MN2), O(MN), O(MN) and

O(MN), respectively, where M is the number of points in the cloud, and N is the window size of

the methods. Although the methods could extract most of the expected outliers in the models,

there are still some noisy points that are not detected due to the similarity of the point density.

These methods are expected to behave well when dealing with reasonable point densities.

3.7 Normal based point cloud processing

The AVM method can also be applied to the normal. The application of AVM filters to

the normal of each point yields improved results but requires an extensive amount of time. The

proposed method works as follows:

1. Given an input point cloud Pc = {pi ϵ R3}, a local neighborhood Sxyz = {pij ϵ Pc} for

each point pi is determined by the KNN (K-Nearest Neighbor) where pij is the jth neighbors

around pi and a 3D kd-tree representation is constructed for Pc. Not all point cloud has the

normal information. In that case, we estimate the initial normal vector using Principal

58

Component Analysis (PCA)[126]. The eigenvalues and the eigenvectors of a covariance matrix

are created from the nearest neighboring points of the centered point. For each point pi, the

covariance matrix C is defined as:

𝐶 =
1

𝐾
∑ 𝜉𝑖 ∙ (𝑝𝑖 − �̅�) ⋅ (𝑝𝑖 − �̅�)𝑇𝐾

𝑖=1 , 𝐶 ⋅ �⃗�𝑗 = 𝜆𝑗 ∙ �⃗�𝑗 , 𝑗 ∈ {0,1,2} (11)

where K is the number of neighborhoods of pi, 𝜉𝑖 is a possible weight for pi. �̅� is the 3D centroid

of the nearest neighbors, 𝜆𝑗 is the j-th eigen value, �⃗�𝑗 is the j-th eigenvector of the covariance

matrix. For each pi ϵ C the normal is denoted as ni.

2. For each specified window, it calculates the vector median based on a direction metric.

The point pj is the vector median whose angular distance is minimum than all other points in a

specific neighborhood. Next, it checks if pj is noisy based on depth value (z component) (as

described in section 3.5.4). If it is not noisy, and the center point pi is noisy, then replace pi with

pj (both position and normal information). If the center point pi is also not noisy, the filter

window is expanded, and the above process is repeated. The main idea behind this approach is

that two data points pi and pj belong to the same surface and none of the points is noisy, they

need to have their normal closely oriented, and they should be geometrically close, i.e., �⃗⃗�𝑖 ∙ �⃗⃗�𝑗 ≈

1.

We test the effectiveness of our method on synthetic datasets containing both sharp and

soft features, using the well-known Stanford bunny (Fig. 30), a cylinder (Fig. 31), and a fandisk

(Fig. 32). Each dimension of the vertex positions in the bunny model is corrupted by independent

zero-mean additive Gaussian noise with a standard deviation of 0.005 and several outliers.

59

Fig. 30. Normal based AVM filtering of bunny (a) Noisy (0.005), (b) Filtered.

Fig. 31 illustrates a simple cylinder where several outliers have been added to the original

model and Fig. 31(b) shows the filtered result of the cylinder. We use the fandisk model (Fig. 32)

to demonstrate the capability of normal-based AVM to handle noisy input data with sharp

features. The result shows that AVM not only smooths out noise in point positions but also

effectively preserves the edges and important features of the fandisk. TABLE II shows the

computation time using the distance-based AVM and the normal based AVM. Normal based

AVM produced slower computation time as we performed both the depth and normal based

computation. However, for models with fewer points, this approach is acceptable. Since this

approach keeps both the positional and normal information of the points, it can properly handle

the sharp features of the point cloud.

60

Fig. 31. Normal based AVM filtering of cylinder (a) Noisy, (b) Filtered.

Fig. 32. Normal based AVM filtering of fandisk (a) Noisy (0.002), (b) Filtered.

61

TABLE II

COMPUTATIONAL TIME

Dataset
AVM

(in sec)

NormalBasedAVM

(in sec)

Bunny 0.128 0.399

Cylinder 0.101 0.286

Fandisk 0.439 1.537

The next chapter describes another research goal of this dissertation: Parallel

implementation of the proposed algorithm adaptive vector median filter using Microsoft’s

Parallel Pattern Library.

62

CHAPTER 4

PARALLEL IMPLEMENTATION OF ADAPTIVE VECTOR MEDIAN FILTER

In this dissertation, we use Microsoft’s Parallel Pattern Library (PPL) to accelerate the

AVM (Adaptive Vector Median) algorithm. This section describes the parallel technologies

briefly and the efficiency of our algorithm utilizing this approach.

4.1 Multi-core Architecture

With advances in hardware design and VLSI technologies, a single processor VLSI chip

now contains multiple cores, called multi-core or many-core processors. A multicore processor is

a single computing module that contains multiple independent core processing units. For

example, an Intel Xeon processor can have as many as 24 cores on a single chip. Therefore,

computations can be divided into several subtasks, and these subtasks can be allocated to

multiple cores on the same CPU chip for parallel processing. The single processor can execute

multiple instructions (add, move, branch, etc.) on separate cores at the same time, thus increasing

overall speed for the programs. Since the multicore processor can run multiple applications

concurrently; it can increase CPU performance. However, the rate of the performance increase

depends on the number of cores, the use of shared resources, and the level of real concurrency in

the actual software. Traditional, single-core processors are being replaced by the multicore

processors so that less single-core processors are being produced and maintained. Therefore

single-core processors are becoming technologically outdated. Multi-core processors now are a

standard configuration on desktop and laptop computers and even smartphones.

63

Fig. 33 shows the execution mechanism of single core and multi-core processors.

Multiple threads will end up sharing single core (left side of the figure). Two threads are sharing

the single core. Switching back and forth to a single thread generate overhead. On the other

hand, in the multicore scenario, multiple tasks can run simultaneously in parallel.

Fig. 33. Execution model of parallel processing.

64

4.2 Microsoft Parallel Patterns Library

The Microsoft Parallel Patterns Library (PPL) [127] offers a programming model that

promotes scalability. This model also provides easy to use platform to develop concurrent

applications. The scheduling and resource management components of the Concurrency Runtime

are enhanced in PPL. It increases the level of abstraction between the application code and the

fundamental threading mechanism. PPL provides generic, type-safe algorithms and containers

that act on data in parallel.

The following features are provided by PPL [127]:

• Task Parallelism/Concurrency runtime: a mechanism that works on top of the Windows

ThreadPool. It works to execute several work items (tasks) in parallel. In the

Concurrency Runtime, a task is a unit of work that accomplishes a specific job and

typically executes in parallel with other tasks. A task can be broken down into extra, and

more fine-grained tasks that are ordered into a task group. Tasks can be used during an

asynchronous code, and some operation needs to occur after the asynchronous operation

completes. On the other hand, tasks groups can be used to decompose parallel work into

reduced pieces.

• Parallel algorithms: generic algorithms that work on top of the Concurrency Runtime. It

acts on collections of data in parallel. The parallel algorithms are collected from present

functionality in the Concurrency Runtime. Parallel pattern library provides loop

parallelization with a parallel for loop. Several things were considered in parallel for

implementation such as load balancing, nested parallelism, cancellation, exception

handling, cooperative blocking, and arbitrary types. The parallel_for algorithm divides

tasks in an optimal way for parallel execution, and also it supports nested parallelism.

65

The parallel_for algorithm has two possible loaded versions. The first version inputs a

start value, an end value, and a work function. The second version has a start value, an

end value, a value by which to step, and a work function. PPL also provides a parallelized

version of for_each. The parallel_for_each algorithm performs the tasks simultaneously

and performs better with random access iterators, though it works on both forward

iterators and random-access iterators. The parallel_for_each is also designed with similar

considerations like parallel_for algorithm such as effective load balancing, nested

parallelism, cancellation, exception handling, and cooperative blocking. PPL provides

another algorithm (parallel_invoke) which is suitable when several independent tasks are

needed to execute at the same time. The parallel_invoke algorithm takes a series of work

functions (lambda functions, function objects, or function pointers) as its parameters.

Two more parallel algorithms are available in PPL namely parallel_reduce and

parallel_transform. These algorithms can be used when the code uses a large set, and the

performance and scalabilities are benefited if it is converted to parallel version.

• Parallel containers and objects: generic container types that offer safe concurrent access

to their elements. A concurrent container offers concurrency-safe access to the most

significant processes. The concurrency::concurrent_vector class is similar to the

std::vector class, except that the concurrent_vector class appends elements in parallel. If

the parallel code requires both read and write access to the same container, then

concurrent containers can be utilized. A concurrent object is shared synchronously

between components. A procedure that computes the state of a concurrent object in

parallel produces the same outcome as another process that calculates the same state

serially. The concurrency::combinable class is one instance of a concurrent object type.

66

The combinable class allows to perform computations in parallel, and then associate

those computations into a final result.

4.3 Implementation

Microsoft’s Parallel Patterns Library (PPL) provides features for multicore programming.

Multicore programming is becoming popular for the applications to speed up executions. Point

cloud datasets can contain millions or even billions of points, which can lead to a huge amount of

time for processing.

In this dissertation work, PPL is utilized in AVM for several reasons:

• PPL allows to write parallel code without having to manage the formation and

break down of the threads by the developer.

• PPL allows serial algorithms to be spread across several cores without having to

re-design the algorithm significantly.

The overall method of AVM in parallel implementation can be summarized as below:

1) Read the point coordinates in a single pass and arrange.

2) For a specified window, calculate vector median. For the vector median

calculation, the algorithm needs to calculate Euclidean distance between the

center point and the neighboring points in a specific window. Then sort the values

based on their distances and find the minimum distance among them. PPL’s

parallel radix sort improved the computation time:

parallel_radixsort(begin(distances), end(distances),

[center] (const Point& p)-> size_t {

return euclidean_distance (p, center);

});

67

//After sorting the distances

Parallel_for_each(begin(distances), end(distances),

[center](const Point& p){

euclidean_distance(p,center)

}

//Find the minimum distance

compare the distances and update minimum_distance;

3) Again in that specific window, check the depth values of the center point and the

neighboring points. Find the minimum, maximum and the median in depth value

in that window.

parallel_for(0, depth, 1, [&](int y) {

compute_minimum();

compute_maximum ();

store the minimum and maximum depth values in array;

//use parallel_sort for finding the median

parallel_sort(begin(values), end(values));

store the median value in array;

}

4) To find if the vector median point is noisy, a condition must satisfied. Use

parallel_for to compare minimum, maximum and median value in that speific

window.

parallel_for(0, depth, 1, [&](int y) {

 check the condition

}

68

If the vector median is not noisy, it goes to next stage otherwise increases widow

size and repeat the previous steps.

5) To find if the center point is noisy, a condition must be satisfied. Use parallel_for

to compare minimum, maximum and the depth value in that specific window.

parallel_for(0, depth, 1, [&](int y) {

compute_minimum();

compute_maximum ();

store the minimum and maximum depth values in array;

parallel_for(0, depth, 1, [&](int y) {

 check the condition;

}

6) If the condition satisfies the center point is not noisy, the filter outputs the original

value otherwise it is replaced by the vector median value.

To estimate the efficiency of the proposed method, we extensively experiment with both

serial and parallel version of the algorithm and presented speed up performance analysis and

execution time. Speed up results were carried out on 2 devices: Intel(R) Xeon(R) CPU E5-

2687Wv3 10 cores, 3.10 GHz and Intel(R) Core (TM) i7-2760QM CPU 4 cores, 2.39GHz. The

operating system for both of the devices was 64 bits Windows 7. In this experiment, the

execution time and speed up ratio was collected using the adaptive vector median filter with

different sets of point cloud data. Fig. 34 shows the speedup ratio of the proposed algorithm

using 4 physical cores and 10 physical cores respectively. The red line indicates the estimated

curve line for speedup using Amdahl's law [128] and the blue line indicates the resulted speedup

using the proposed method. Amdahl's law can be defined in simple form as below:

 Ψ(𝑁) =
𝑡𝑠𝑒𝑞

𝑡𝑝𝑎𝑟
≤

𝑇

(1−𝛼)𝑇+𝛼
𝑇

𝑁

=
1

(1−𝛼)+
𝛼

𝑁

, (12)

69

Here, T is the time needed for a program to perform on a single CPU, α is the part of the

computation that can be done in parallel so that 1- α is the section that must be carried out on a

single CPU and N is the number of cores. α is determined based on measuring the elapsed

execution time of the program. In this application, about 83% of the total code can be

parallelized. So, theoretically, the parallel version of the program can run 2.6 times faster (in a 4-

core processor) than the serial execution time. However, some intrinsic sequential part of the

algorithm, communication cost, load balancing, etc. can limit the achievable speedup.

4.3 Results

Experimental results show the behavior is linear for two different processors. The

speedup performance clearly depends on the configurations of the processors. TABLE III shows

the computation time both in serial and parallel for different point cloud data in a 4 cores device.

The next chapter describes the background, methodology and several results on aerial

LIDAR data filtering using AVM.

70

(a)

.

(b)

Fig. 34. Experimental speedup for a dataset using AVM (a) with 4 logical processors and

(b) with 10 logical processors.

71

TABLE III

COMPUTATION TIME (IN SEC)

Model
No. of

points
BF SO CO RO

Serial

time

(AVM)

Parallel

time

(AVM)

Bunny 15726 5.428 0.467 0.556 74.69 0.128 0.041

Compressor 361043 12.468 3.887 11.953 34.518 3.117 0.989

Gear 6268 0.2478 0.098 0.227 1.658 0.056 0.017

Milk_carton 307200 34.018 15.102 9.04 65.147 11.872 3.829

Table_scene 460400 13.851 4.012 6.35 87.214 3.694 1.055

Happy_buddha 79087 8.574 0.889 2.703 97.245 0.631 0.208

Thai_statue 4999996 122.045 52.148 98.37 852.145 40.733 13.577

Armadillo 172974 20.225 1.125 3.59 703.03 0.904 0.262

Julius 36201 11.516 0.457 1.19 374.35 0.297 0.086

Iron 85574 24.144 0.789 2.914 98.21 0.676 0.191

72

CHAPTER 5

AERIAL LIDAR DATA PROCESSING

 Aerial LIDAR is a special type of LIDAR that is important for many applications. In

this chapter, the adaptive vector median is further optimized for effective processing of aerial

LIDAR data.

5.1 Aerial LIDAR

Aerial LIDAR is a special type of LIDAR that is mounted to an aircraft equipped with a

Global Positioning System (GPS) sensor and Inertial Measurement Unit (IMU) sensor. The

point cloud captured by aerial LIDAR is geo-referenced, with x, y usually representing latitude

and longitude positions and z representing the elevation of the ground or features on the ground,

such as vegetations and buildings. Such georeferenced data are utilized for the purpose of

mapping, recognition, and classification. Aerial LIDAR is usually mounted on an airplane or

helicopter, called airborne laser scanning (ALS) systems. Recently, Unmanned Aerial Vehicle

(UAV), an airplane without a humanoid pilot onboard, is becoming the most promising platform

for a laser scanner for economic reasons. However, the data processing techniques needed to

produce a point cloud from raw data acquired by the UAV system are not fully established. The

UAV system requires more calibration and computation to produce a point cloud completely on

geometric quality because the UAV is more delicate to the platform fluctuation and vibration

than the ALS. Thus, the ALS system has more benefits in data quality, collection speed, and

scanning coverage compared with other LIDAR systems. Hence, we have used the ALS system-

based data in this dissertation research.

73

Fig. 35. Aerial LIDAR technique.

The generation of Digital Terrain Model (DTM) or bare earth surface elevation has been

one of the most elementary applications of aerial LIDAR technology in recent years. The DTM

generation needs filtering out the ground (or terrain) from raw LIDAR data so that the bare earth

surface elevation can be computed. Researchers have been working on this research field for

several years. Some of the research areas have been discussed elaborately in the literature review

in chapter 2. A few more examples are presented here to highlight the trends in this area. One of

the widely used methods is simple filtering, which allocates a point with the lowest elevation in a

local area to ground; morphological filtering extends ground points if they are within a distance

threshold to a seeded ground point [65]; recursive filtering recursively updates a reference

terrain surface by adding ground points obtained from topological analysis [129]; surface-based

filtering removes above ground points from a surface model that is primarily created using all the

74

points [130], [57]; segment-based filtering identifies ground segments (points with a similarity

are grouped as a segment) by comparing surface normal between ground-assigned segments and

others [67] and [57], [48]. Mostly, these classified ground points are converted into one of the

formats, TIN (Triangulated Irregular Network), grid, mesh, and quad-tree to generate DTM.

5.2 Basic Definitions

The following basic definitions were presented by Sithole and Vosselman [48]. The

associated illustrations are also taken from [48].

Landscape: The geography. A scene consisting of the earth and any other features (buildings,

trees, power lines, etc.,) residing on it.

Bare Earth: Earth or any thin layering (asphalt, pavement, etc.) covering it. Haugerud and

Harding [131] defined bare earth as “the continuous and smooth surface that has nothing visible

below it.”

Object: Vegetation and other non-natural features that have been constructed by a human.

75

Detached object: Objects that rise vertically (on all sides) above the bare earth or other Objects.

Attached object: Objects that rise vertically above the bare earth only on some sides but not all

(e.g., bridges, gangways, ramps, etc.,).

Filtering: Generalization of the bare earth from point clouds.

Outlier: Point(s) in a point-cloud that are not from the landscape (e.g., birds, gross errors from

the ALS system, etc.) and resides far away from the ground points.

76

5.3 Ground Characteristics Used for LIDAR Ground Filtering

LIDAR point measurements are influenced by three components: bare ground, above-

ground objects, and noise [132].

 Ms = Hg + Hnon-g + Mn (13)

where Ms is the measurements from the LIDAR sensor, Hg is the elevation of the ground,

Hnon-g is the elevation of the non-ground, and Mn is the undesired measurements (the noise from

sensors, airplanes, or birds).

Generally, the ground points are the bare earth points that represent the low-level surface

of an area. Trees (tall or small), buildings, bridges, electric poles, shrubs, etc. are the non-ground

points that exist above the bare earth.

However, sometimes non-ground points can be confusing to identify and appear to be

ground points. So, some specific characteristics should be taken into account to understand and

identify or recognize ground points that differentiate them from non-ground points.

Four categories of characteristics can be defined of the ground or bare earth surface based

on their physical features:

1. Category 1- Lowest elevation: Ground surface or the bare earth usually has the lowest

height in a local neighborhood. Several existing methods use this feature to adjust the ground

filtering process [61], [133], [134], [135].

2. Category 2 – Steepness: The slope of the surface is considered here. Generally, two

neighboring bare earth points have lower slope than that between bare earth and a non-ground

object [134]. Several ground filtering approaches [136],[75] define a point with slope larger than

the maximum ground slope as the non-ground points. However, this steepness of slope may

differ for erratic surface types. An even urban area may have a lower slope value than a

77

mountain area. So, complex surfaces such as uneven mountain area or high-density forest canopy

may have steeper slopes and may require a larger threshold to effectively recognize ground from

non- ground objects.

3. Category 3 - Elevation difference: This category is also based on height. Since most

ground areas have inadequate sharp changes in height, the elevation difference from bare earth to

surrounding bare earth is usually less than the difference between ground and neighboring non-

ground points. Hence, trees (tall or small), buildings, electric poles, etc. are indeed non-ground

points as they have a higher elevation than a location-specific threshold [65].

4. Category 4 - Similarity in features: In most of the cases, bare earth is discreetly

continuous and smooth; on the other hand, non-ground objects have different heights and

textures. Trees and buildings have different features. Trees and shrubs generally are less smooth

than bare earth and buildings So, they can be removed based on morphological characteristics

[137].

These four categories are frequently used for filtering aerial LIDAR data. However, in

some cases, the bare earth may not have these common characteristics, and the assumptions may

fail and misinterpret ground points as non-ground points or vice versa. For example, cliffs have

higher elevation difference, and many filtering methods misclassified them as non-ground points.

5.4 Methodology

The aerial LIDAR data filtering presented in this chapter is mainly based on the adaptive

vector median filter proposed for point cloud mentioned in Chapter 3. The concept of point cloud

filtering is extended and modified for the aerial LIDAR data ground filtering purpose. Several

reasons are considered for the LIDAR data filtering. The size of the LIDAR data is tremendously

78

enormous. Abrupt changes in terrain heights such as cliffs, mountain ridges, and peaks can be

likely to be removed. However, LIDAR data may have varied landscapes with complex objects

or abrupt changes in terrain heights. These difficult situations can make the filtering task

challenging. This method of ground filtering also faces several challenges. Firstly, the raw

LIDAR data are in las format that is converted to pcd file format for our filtering purpose.

Secondly, huge datasets require large computation time and effort.

For the ground detection, the filtering process works in two steps. The first step removes

the outliers and the objects that are far from the ground such as large buildings, tall trees, electric

poles, etc. based on the threshold value. The second step filters out the noise that is left behind

during the first step and the non-ground points that are close to the ground using adaptive vector

median filter. The steps are discussed briefly:

Step 1: A Kd tree is constructed for the nearest neighbor search for the point cloud. This

step of the algorithm needs a few more parameters in addition to x, y, and z coordinates of the

points in the original LIDAR data. For the given point cloud this method identifies the non-

ground points in a local window.

Within a specific window radius, one height threshold (minimum elevation) for each

window is defined. Another filtering parameter is the height difference threshold, which is the

minimum of the height of the object in each window.

Then, all points with elevations greater than a threshold above the minimum are

discarded. A point Pij in a specific region is removed if:

 𝑍𝑖,𝑗 − 𝑍𝑖,𝑚𝑖𝑛 > 𝐻𝑖,𝑇 (14)

79

where Zi,j is the elevation of Pij, Zi,min is the minimum elevation inside the window, Hi,T is the

height difference threshold.

Step 2: The method is applied to the rest of the points that remain after Step 1 filtering.

For each specified window Sxyz, it calculates the vector median based on distance. The point

containing the vector median in Sxyz is defined as pj. This filter detects the noisy candidate pi and

replaces the noisy candidate with the vector median of the points in a local window. However, it

changes the size of Sxyz during filter operation, depending on the following conditions.

 The algorithm checks both the point of interest and the point containing the vector

median. Four different situations may arise in detecting noise in the point cloud.

1. The point of interest pi is noisy,

2. The point containing the vector median pj is noisy,

3. Both the pi and pj is noisy, and

4. None of them are noisy.

Given a noisy point cloud and an initial window size, the adaptive vector median filter

performs several steps.

Stage 1: First, for each specified window, it calculates the vector median. Next, it checks

if the point containing the vector median value pj is noisy based on the elevation (z component)

using the following formula:

 𝑍𝑚𝑖𝑛 ≤ 𝑍𝑚𝑒𝑑 ≤ 𝑍𝑚𝑎𝑥 (15)

where Zmin is the minimum of elevation in Sxyz, Zmed is median of elevation in Sxyz and Zmax is the

maximum of elevation in Sxyz. If pj is not noisy (Eq. 7 is satisfied) , then go to Stage 2; otherwise,

expand the window and repeat Stage 1.

Stage 2: Check if the center point pi is noisy by the following formula:

80

 𝑍𝑗 − 𝑍𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑍𝑗 − 𝑍𝑚𝑎𝑥 < 0 (16)

where Zi is the elevation of pi. Zmin is the minimum of elevation in Sxyz and Zmax is the maximum

of elevation in Sxyz. If the condition satisfies, then pi is not noisy, the filter output is the original

center point, and the algorithm continues to the next point; otherwise, pi is replaced by the vector

median pj; If both the vector median pj and the center point pi are noisy, the filter window is

expanded, and the above process is repeated.

5.5 Experimental Results

The AVM filter was tested on two types of datasets. One is publicly available LIDAR

data points of the Washington DC area, and the other one is reference data provided by the

ISPRS that is widely used to validate the efficiency of the LIDAR filtering methods.

5.5.1 Washington DC area

The study area (Fig. 36) is located in the District of Columbia, Arlington County, in

Washington DC covering 80 square miles. The single “LAS” file (LASer file) contains

approximately 2,000,000~50,000,000 points. The ground sampling distance is greater than 0.35

meter. It is worth mentioning that the LAS dataset contains point cloud with no filtering applied.

81

(a) (b)

(c) (d)

Fig. 36. Original Study area (Washington DC). (a), (b), (c) Map view, (d) Street view.

The LIDAR data of Washington DC area was delivered in RAW flight line and created

Classified LAS 1.2 Files with individual 1500m x 1500m tiles. The LIDAR data was collected

in winter season in the year 2014. The ground contained no snow and rivers were at or below

normal levels.

To see the efficiency of AVM on LIDAR data, we presented three sample areas below.

Fig. 37(a) shows the original point cloud of the District of Columbia, Arlington County, in

Washington DC. The data consists of lots of noise, an outlier, electric wires and polls, trees, house,

82

and buildings, etc. Fig. 37(b) demonstrates the filtered result using the AVM. The proposed method

successfully removed the noise and other non- ground objects.

(a)

(b)

Fig. 37. Study area-I. (a) Original (b) Filtered.

A side view of another part of the previous location is shown in Fig. 38. AVM

successfully removed most of the non-ground objects. Some non-ground points that are close to

the ground can be misclassified as ground points. The original data of this location is in LAS

format. For processing purpose, we convert it to PCD file format. Fig. 39(a) illustrates another

area where small buildings, trees, shrubs, and electric poles and wires exist in the original data.

AVM successfully removes the non-ground points, and the final result is shown in Fig. 39(b).

83

(a)

(b)

Fig. 38. Study area-II. (a) Original (b) Filtered.

(a)

(b)

Fig. 39. Study area-III. (a) Original (b) Filtered.

84

5.5.2 Reference Data

The following are 15 reference datasets that are widely used for comparing aerial LIDAR

filtering results generated for their efficiency and accuracy. These areas were chosen mainly

because of their feature content in an assorted way (open fields, vegetation, buildings, roads,

railroads, rivers, bridges, power lines, water surfaces, etc.,). However, the areas can be divided

into two groupings, urban and rural. The sites denote four regions with urban characteristics and

another three with rural characteristics. Some characteristics of the test-sites are provided in

TABLE IV.

TABLE IV

CHARACTERISTICS OF THE REFERENCE DATA

Environment
Point

spacing
Site Sample Features

Urban
1.0-1.5

m

1
11

Mixture of vegetation and buildings on

hillside

12 Buildings on hillside

2

21 Large buildings and bridge

22 Irregularly shaped buildings

23 Large, irregularly shaped buildings

24 Steep slopes

3 31 Complex buildings

4
41 Data gaps

42 Railway station with trains

Rural 2.0-3.5m

5

51
Mixture of vegetation and buildings on

hillside

52 Buildings on hillside

53 Large buildings and bridge

54 Irregularly shaped buildings

6 61 Large, irregularly shaped buildings

7 71 Steep slopes

85

A total of seven test sites (four urban and three rural) were chosen because they contained

a variety of features that were anticipated to be challenging for automatic filtering. The datasets

comprise terrain with steep slopes, dense vegetation, densely packed buildings with vegetation in

between, large buildings (a railway station), multi-level buildings with courtyards, ramps,

tunnels, tunnel entrances, bridges, a mine, and data gaps. The urban sites were recorded with a

point spacing of 1–1.5 m, and the rural sites had a point spacing of 2–3.5 m.

The reference data were produced by filtering the datasets manually. All points in the

datasets were labeled either ‘‘ground’’ or ‘‘non-ground’’. For the purpose of this test, ground or

the bare-earth was defined using the definition presented in the previous section (earth or any

thin layering (asphalt, pavement, etc.) covering it). According to this definition bridges,

gangways, etc., were treated as objects. Ramps leading towards bridges, however, were classified

as bare earth.

Furthermore, the bare-earth was treated as a continuous surface. From the seven datasets,

15 samples were abstracted. These 15 samples were representative of different backgrounds.

Samp11

Samp 11 (Fig. 40) is a LIDAR scan of an area with a combination of trees and buildings.

Steep slopes and complex scenes are present in sample 11. In the lower portion of the slopes of

sample 11, there are many buildings, and several difficult objects or resources are present with

which the filters may have difficulties to identify them properly. However, the filtering result

effectively identified the ground. Several non-ground points are identified as ground points in

this sample area due to the close features to the ground points.

86

Fig. 40. Sample 11 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

87

Samp12

Sample 12 (Fig. 41) has buildings on the hillside. The proposed filter can effectively

remove diverse buildings of different sizes and complex shapes. Small objects such as cars and

shrubs are mostly eliminated.

Samp 21

This region (Fig. 42) contains rooftops, houses, several scattered non-ground objects, etc.

The filtering method successfully identified most of the ground and the non-ground objects.

88

Fig. 41. Sample 12. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

89

Fig. 42. Sample 21 (a) Original data, (b) Filtered data,(c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

90

Samp 22

Sample 22 (Fig. 43) has a gap in the ground surface with several houses and buildings.

Since the proposed method utilizes the height difference and the neighborhood information,

these types of problems are easily solved.

Samp 23

Sample 23 (Fig. 44) presents the most difficult challenge. The scene has a plaza and

several blocks of buildings. There is a lower walkway in the center of the plaza also. In this test,

the plaza and walkway were presumed to be the ground point since it is possible to walk without

any hindrance from the plaza to the roads. The difficult part of this scene was well maintained

and filtered by the proposed method.

Samp 24

This sample (Fig. 45) also has quite a lot of vegetation and hillside buildings. These are

effectively filtered by the proposed method. Since vegetation has abrupt height differences, the

proposed method can easily perform the filtering process.

91

Fig. 43. Sample 22 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

92

(c)

(d)

Fig. 44. Sample 23 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

93

Fig. 45. Sample 24 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

94

Samp 31

The outliers present here (both high and low) (Fig. 46) are relatively insignificant and

therefore their contribution to Type I and Type II errors are minor. However, they can show an

important part in filtering the ground and non-ground objects. The proposed method could

successfully identify most of the non-ground objects for this area.

Samp 41

In this particular scene 41 (Fig. 47), there are many low outliers (apparently caused by a

skylight in one of the roofs). The proposed method performed moderately for this scene. There

are several points exist in a group which was treated as ground objects.

Samp 42

In sample 42 (Fig. 48), twelve railway stations can be observed. Since there are few

extended and low objects with sparse ground points, some of the points are not removed and

considered ground points. This is one of the challenging sample data of this reference group.

95

Fig. 46. Sample 31 (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

96

Fig. 47. Sample 41. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

97

Fig. 48. Sample 42. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

Samp 51

This sample (Fig. 49) has a data gap and low vegetation on a slope. Most of the non-

ground objects are identified. Few close to the ground object may be misclassified as a bare earth

due to the data gap.

(a) (b)

(c)

(d)

98

Fig. 49. Sample 51. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

99

Samp 52

Numerous terrain structures and extreme elevation changes and discontinuity are present

in this area (Fig. 50). Most of the ground and non-ground objects are classified accordingly.

Some points near the border are clustered which are misclassified as bare earth surface.

Fig. 50. Sample 52. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

100

Samp 53

Samp 53 (Fig. 51) consists of numerous slopes in the region. Since this is a scene taken

from a mine which features steep and highly stepped slopes, most algorithms tested against this

sample performed poorly. The AVM identified most of the ground points, but still, some of the

non-ground objects are misclassified as ground in this sample. The large discontinuities in the

surface due to the terrace are most likely responsible for these misclassifications.

Samp 54

The overall point cloud density in this region is low (Fig. 52). So, the elevation of the low

objects is barely identifiable. The method misclassified some non-ground points as ground in this

sample region.

Samp 61

Samp 61 is another challenging scene where most of the points are ground, and few

outliers and low earth outliers are present there (Fig. 53). The method based on AVM

successfully identifies the ground and the non-ground object except some points that are

considered to be ground but essentially they are non-ground points.

101

Fig. 51. Sample 53. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

102

Fig. 52. Sample 54. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

103

Fig. 53. Sample 61. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

104

Samp 71

Samp 71 (Fig. 54) has some difficult objects to identify such as a bridge. The bridge is

identified as an object in the ISPRS reference datasets, but the adjacent road is treated as ground

or bare earth. The algorithm successfully handles the situation and identifies the bridge as an

object and the road adjacent to the bridge as ground. The bridge and the river underneath the

bridge have significant elevation differences than the surrounding.

Fig. 54. Sample 71. (a) Original data, (b) Filtered data, (c) Side view (original), (d) Side view

(filtered).

(a) (b)

(c)

(d)

105

TABLE V

PARAMETERS FOR AVM AGAINST ISPRS REFERENCE DATASET

Sample Maximum Window Size (m) Height Difference threshold(m)

11 17 0.44

12 14 0.30

21 20 0.58

22 20 0.36

23 14 0.5

24 10 0.21

31 15 0.24

41 15 1.12

42 20 1.04

51 20 0.35

52 15 0.25

53 10 0.11

54 10 0.15

61 15 0.5

71 15 0.75

TABLE V shows the parameter values (maximum window size, height difference

threshold) for each of the fifteen samples.

106

5.5.3 Error Analysis

There are several difficult scenarios in these presented sample data. These situations

relate to outliers in the data, object complexity, objects that are attached to the terrain,

vegetation, and discontinuities in the bare-earth surface. The points that do not belong to the

original surface area and are generated from multi-path errors by laser are called low outliers.

Other objects like birds, low-flying aircraft, etc. are called high outliers. In some cases, the size

of the objects is not consistent (very large, very small, very low, complex shape, disconnected

terrain, etc.). Other difficult situations arise where there is a building on the slope, bridges,

ramps, low vegetations, sharp ridges, etc. Fig. 55 illustrates some of these filtering difficulties.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 55. Filtering difficulties [48]. (a) Erosion caused by low outlier, (b) complex configuration,

(c) steep slope, (d) vegetation on slope, (e) bridge, (f) complex urban scene, (g) railway station,

(h) steep slope with buildings and dense vegetation.

107

Quantitative assessment

Cross-matrices and visual representations are two main factors for the quantitative

assessment for the 15 subsets of the dataset. The cross matrices were then used to evaluate Type

I (or false positive, rejection of bare-earth points) and Type II (or false negative, acceptance of

object points as bare-earth) errors, and visual representations were then used to define the

association between Type I and Type II errors to features in the site. For each of the samples a

cross-matrix is presented graphically given below (Fig. 56):

Fig. 56. Cross matrix.

where

• a is the count of bare earth points that have been properly identified as bare earth or

ground points.

• b is the count of bare earth points that have been falsely identified as object or non-

ground points (contribute to Type I errors).

• c is the count of object points that have been falsely identified as bare earth (contribute to

Type II errors).

• d is the count of object points that have been properly identified as object.

108

Type I, Type II and Total error is computed using equations 17, 18 and 19.

 Type I error =
𝑏

𝑎+𝑏
× 100 (17)

 Type II error =
𝑐

𝑐+𝑑
× 100 (18)

 Total error =
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
× 100 (19)

The proposed method was compared with several algorithms for ground data filtering

(Chen et al. [59], Mongus et al. [49], Pingel et al. [55], Zhang et al. [53]). The comparison shows

(Fig. 57) that the proposed method tends to suppress the omission error (Type I error) and

achieve a relatively lower average total error. However, the commission error (Type II error) is

reasonable compared to the other methods. Thus, our method classifies more non-ground as

ground points than the other four methods, while fewer ground points are removed from the

dataset as they are classified as non-ground points.

Fig. 58 shows the performance of AVM compared with Chen et al., Mongus et al., Pingel

et al. and Zhang et al. in terms of all error types. For Type I error comparison, AVM has five

lowest error rates and one highest error rate. AVM generates the lowest error rate for Samp 12,

23, 51, 53 and 54. For Type II error, the position of AVM is third to generate the lowest rate.

Samps 21, 24 and 31 got the lowest Type II error with the AVM method. For the total error type,

AVM obtains a relatively lower rate. More specifically, AVM generates 2.35%, 2.75%, 4.32%,

0.9%, 1.41%, 2.18% for samp 12, 22, 23, 31, 51 and 53 respectively.

Three error measures (Type I, Type II, Total) have been used to assess the quality of the

filter results. To some extent, there should be a choice to be made between minimizing Type I

and Type II errors. The problem is which error to minimize depends on the cost of the error for

the application that will use the filtered data. However, it will also depend very much on the time

and cost of fixing the errors manually, which is often done during quality control. Experience

109

with manual filtering of the data showed that it is far easier to fix Type II errors than Type I

errors. Firstly, there will generally be fewer Type II than Type I errors. Secondly, Type II errors

are noticeable since they stand out in their neighborhoods. According to the report of Sithole and

Vosselman [48], filtering should be biased in favor of minimizing Type I errors, because Type II

errors are easier to correct manually during quality control.

110

(a)

(b)

(c)

Fig. 57. Comparisons of error types (a) Type I, (b) Type II, (c) Total errors (%) compared with

Chen et al., Mongus et al., Pingel et al. and Zhang et al. for filtering the International Society for

Photogrammetry and Remote Sensing (ISPRS) datasets.

111

Fig. 58. The ranking order of AVM (type I, type II, total error).

Besides the error rate comparison, we compared the kappa coefficients [138] with some

existing top algorithms.

Fig. 59 shows the calculation of the kappa coefficient and TABLE VI shows the

interpretation of the kappa coefficient values.

TABLE VII illustrates the performance of several algorithms in terms of the Kappa

coefficient along with AVM. The highest among all for all the samples is highlighted.

112

Observed accuracy = (A+D)/Total

Expected accuracy = (((A+B)*(A+C)/Total) + ((C*D)\Total))/Total

Kappa = (Observed accuracy) – (Expected accuracy)) / (1 – (Expected accuracy))

Fig. 59. Kappa Coefficient Calculation.

113

The interpretation of Kappa can be listed as below:

TABLE VI

INTERPRETATION OF KAPPA

Kappa Agreement

<0 Poor agreement

0.01-0.20 Slight agreement

0.21-0.40 Fair agreement

0.41-0.60 Moderate agreement

0.61-0.80 Considerable agreement

0.81-0.99 Almost perfect agreement

114

TABLE VII

COMPARISON OF KAPPA COEFFICIENT

Chen et

al

Smrf

(Ping

el)

CSF AVM Axelsson

Elmqvi

st Pfeifer Hui

Samp11 74.12 83.12 75.17 74.68 78.48 56.68 66.09 72.92

Samp12 93.23 94.15 94.04 94.26 93.51 83.66 91 93

Samp21 96.1 96.77 90.47 95.49 86.34 77.4 92.51 93.35

Samp22 89.03 92.21 77.72 93.03 91.33 80.3 84.68 87.58

Samp23 89.49 90.73 90.38 92.00 91.97 75.59 83.59 89.74

Samp24 84.53 91.13 92.68 83.12 88.5 54.13 78.43 81.93

Samp31 97.76 98.17 96.75 98.67 90.43 89.31 96.37 97.33

Samp41 88.83 88.18 89.73 88.63 72.21 82.46 78.51 78.78

Samp42 95.81 96.48 96.18 95.91 96.15 90.86 93.67 95.38

Samp51 95.17 95.76 91.13 95.64 91.68 52.74 89.61 85.06

Samp52 78.91 81.04 77.05 75.23 83.63 9.36 41.02 69.51

Samp53 46.69 68.12 46.86 69.14 39.13 7.05 30.83 41.84

Samp54 93.9 95.44 93.61 92.01 93.52 55.88 88.93 91.63

Samp61 77.36 87.22 78.1 73.49 74.52 10.31 47.09 67.82

Samp71 93.19 91.81 68.03 71.28 91.44 26.26 75.27 79.86

Avg 86.2746 90.022 83.86 86.238 84.18933 56.7993 75.84 81.71533

Median 89.49 91.81 90.38 92 90.43 56.68 83.59 85.06

Min 46.69 68.12 46.86 69.14 39.13 7.05 30.83 41.84

Max 97.76 98.17 96.75 98.67 96.15 90.86 96.37 97.33

Std 13.1712 7.84638 13.57596 10.5820 14.39149 30.2024 20.56417 14.44962

115

Overall, the accuracy of the proposed method is close to some top filtering algorithms.

The results show that AVM has the relatively good performance for Samp 12, Samp 22, Samp

23, Samp 31, Samp 51, and Samp 53. For the reference dataset, AVM performs well for both

rural and urban areas. Specifically, AVM shows better performance where the data consists of

building on a hillside, large, irregularly shaped buildings, a mixture of vegetation and buildings,

large buildings, bridges. However, with the scene of a steep slope, railway station with trains,

AVM could not show significant performance regarding error rate and Kappa coefficient.

The next chapter describes the color mesh sharpening method based on Laplace-Beltrami

discretizations. Several discretizations are utilized, and results are illustrated in this chapter.

116

CHAPTER 6

COLOR MESH SHARPENING

In this chapter, the methodology for mesh color sharpening using discrete Laplace-

Beltrami operator and the results are described.

6.1 Introduction

Three-dimensional (3D) meshes are widely used in many fields and applications, such as

computer graphics, games, animation films, and virtual reality. 3D meshes are usually generated

using one of two methods: 1) artists create the meshes from scratch with 3D modeling software,

such as Autodesk Maya and Google SketchUp; or 2) the meshes are created by scanning real 3D

objects. The second method is becoming more popular because of the increasing precision and

processing power of 3D scanners with the reduced cost at the same time. 3D scanners collect

data from the shape and color appearance of a real object or environment. The collected data are

later processed to generate a 3D model of the real object. A wide range of commercial 3D

scanners has been developed offering varied capabilities in terms of scanning range, precision,

and speed. Among them, Microsoft Kinect is a motion-sensing device used by Microsoft Xbox

360 and Xbox One game consoles and Windows PCs and is becoming very popular for scanning

objects for various applications. One major advantage of Kinect is its low cost with a price of

$150, compared with scanners with typical prices of thousands or tens of thousands of dollars.

One of the best available 3D scanning applications that utilize Kinect is ReconstructMe [139].

ReconstructMe creates color meshes with each vertex of the mesh containing position, normal,

and color information. To improve the quality of color meshes, two approaches can be utilized:

117

geometrical processing and color (appearance) processing. Geometrical processing changes each

vertex's position while keeping its color information intact; on the other hand, color processing

changes each vertex's color while keeping its position (or the object shape) intact. Existing mesh

processing methods have been focused on improving the geometrical properties of the meshes.

6.2 Motivation

Image sharpening is an important tool to improve the image quality. Image sharpening

emphasizes texture and enhances the contrast of the image. Sharpening filters make the edges of

an image appear more defined by darkening the low-intensity pixels and brightening the high-

intensity pixels. This creates a crisp edge between bright and dark portions of the image,

producing more contrast. With advances in 3D scanning hardware, more and more colored

meshes are being generated. Especially with the increasing availability of low-cost 3D scanners

such as Microsoft Kinect, colored 3D meshes become more accessible. To the best of our

knowledge, no image processing techniques, such as sharpening and Laplace-Beltrami operator,

have been combined to improve the visual appearance of 3D colored meshes. This dissertation

extends traditional image sharpening techniques for 2D regular images to 3D color meshes with

irregular topologies. In particular, this work [140] utilizes several discretizations of the Laplace-

Beltrami operator for mesh color sharpening. Several definitions and implementations of the

Laplacian-Beltrami operator were investigated for their efficiency and effectiveness for mesh

color sharpening. Different ways to discretize the Laplace-Beltrami have been developed by

defining the discrete operator polygon-wise on a triangle mesh, with the most prominent one

being the cotan-operator, defined by Pinkall et al. [141]. Meyer et al. [142] used Voronoi area,

Mayer et al. [143] used the sum of areas of triangles over vertices, and Desbrun et al. [144] used

118

two different approaches. One approach of the Desbrun et al. paper used the gradient of the

normalized area, and the other used the sum of the cotan operator over the edges. These

discretizations of the Laplace-Beltrami operator that were previously defined for computational

fluid dynamics and mesh geometric processing are extended in this paper for color sharpening,

thus providing several new tools for improving the quality of 3D meshes. The color of each

vertex in the polygonal mesh is updated using various implementations of the Laplace-Beltrami

operator. The performance of various implementations is compared and analyzed for the best

approach of mesh color sharpening.

6.3 Image Sharpening

Sharpening is commonly used in image processing to highlight transitions (or edges) in

intensity. The main goal of image sharpening is to enhance the image and make the image to

appear clearer and brighter. Various image-sharpening filters have been proposed using the first-

order and second-order derivatives. The Laplacian, which is a second-order derivative, is

commonly used for image sharpening. The Laplacian operator can be defined as a function f(x,y)

as follows:

2 2
2

2 2
,

f f
f

x y

 = +

 (20)

where f is image intensity and x, y are pixel positions. Since the Laplacian is a derivative

operator, it uses intensity discontinuity in an image and minimizes regions with slowly varying

intensity levels. One discrete implementation of the Laplacian operator defined in eq. 20 be

written as

).,(4)1,()1,(),1(),1(),(2 yxfyxfyxfyxfyxfyxf −−+++−++= (21)

Eq. 21 is used to apply to the image as a filter mask. This filter mask can be represented as a grid

119

which is shown in Fig. 60(a). Fig. 60(b) shows an alternate implementation of the discrete

Laplacian operator where each diagonal term contains additional -2f (x, y) term for which -8f (x,

y) would be subtracted from the difference terms. Fig. 60(c) and Fig. 60(d) are the negatives of

the previous implementations.

Fig. 60. Filter mask grid. (a) Filter mask to implement Eq. (16), (b) An alternate implementation

of Eq. (2), (c) and (d) Two other implementations using negative terms.

The Laplacian is used for image sharpening using the following formula [123]:

)],([),(),(2 yxfcyxfyxg += (22)

where f (x, y) and g (x, y) are the input and sharpened images, respectively. The constant c = -1 if

the Laplacian filters in Fig. 60(a) and (b) are used, and c = 1 if Fig. 60(c) and (d) are used. Fig.

61 shows the application of this mask for both a grey scale image and a color image. The Moon

120

image and the color of the pear image appear brighter and sharper. The final results are images

with enhanced details and significant improvement in sharpness. The Laplacian is a second order

derivative and because the pixels in an image are arranged in a rectangular grid; the

discretization of the Laplacian is straightforward [123] and is computed as the second order

differences along horizontal and vertical (or diagonal) directions. For most 3D meshes, no such

rectangular grids exist, so imaging sharpening methods cannot be directly applied to mesh color

sharpening. No such directions (horizontal, vertical, and diagonal) are defined for polygonal or

triangular meshes, and Equation 16 cannot be extended directly to 3D meshes. The Laplace-

Beltrami operator was proposed as the second order derivative on 3D meshes, which is to be

discussed next.

121

(a) (b)

(c) (d)

Fig. 61. Image Sharpening. (a) Original Image- Moon, (b) Sharpened Image- Moon, (c) Original

Image- Pear, (d) Sharpened Image- Pear.

122

6.4 Laplace-Beltrami Operator and Discretizations

The Laplace-Beltrami Operator is mostly utilized in the field of differential geometry to

operate on the surfaces in Euclidean spaces. It is a generalization of the second-order derivative

operator Laplacian to non-at Riemannian manifolds. Let f be a real-valued function defined on a

differentiable manifold M with Riemannian metric. The Laplace-Beltrami operator is defined as

[145]

 ∆𝑓 ∶= 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓) (23)

where grad and div are the gradient and divergence on the manifold M [145]. For discrete

meshes, the function f on a triangular mesh T is defined by linearly interpolating the values of

f(vi) at the vertices of T. This is done by choosing a base of piecewise linear hat-functions φi,

with value 1 at vertex vi and 0 at all the other vertices [146]. Then f is given as

 𝑓 = ∑ 𝑓(𝑣𝑖)𝜑𝑖.
𝑛
𝑖=1 (24)

Discrete Laplace-Beltrami operators are usually represented as [142]

 ∆𝑓(𝑣𝑖) =
1

𝑑𝑖
∑ 𝑤𝑖𝑗𝑗∈𝑁(𝑖) [𝑓(𝑣𝑖) − 𝑓(𝑣𝑗)]. (25)

where N(i) denotes the index set of the 1-ring neighborhood of the vertex vi, i.e., the indices of

all neighbors connected to vi by an edge. The mass di is associated to the vertex i and the wij are

symmetric edge weights. In the following subsections, several discretizations of Laplace-

Beltrami operator will be discussed in detail.

6.4.1 Pinkall Discretization

Pinkall and Polthier used a constant mass in the discretization of the Laplace-Beltrami

operator to compute discrete minimal surfaces [141]. The author defined the weight as follows,

 𝑤𝑖𝑗 =
cot(𝛼𝑖𝑗)+𝑐𝑜𝑡(𝛽𝑖𝑗)

2
, (26)

123

where αij and βij denote the two angles opposite to the edge (i, j) as shown in the Fig. 62.

Fig. 62. The angles αij and βij.

6.4.2 Meyer Discretization

A different geometric discretization was suggested by Meyer et al. [142], for triangular

meshes. Their approach utilized the voronoi area. If P, Q, and R with circumcenter O is a non-

obtuse triangle, as shown in Fig. 63, a+b+c=π/2 can be obtained from the properties of

perpendicular bisectors. So, we can write, a= π/2 -∠ Q and c= π/2 -∠ R. The Voronoi area for

point P can be computed as below:

1

 8
(|𝑃𝑅|2𝑐𝑜𝑡∠𝑄 + |𝑃𝑄|2𝑐𝑜𝑡∠𝑅). (27)

Meyer et al. used the areas for the whole 1-ring neighborhood to compute the Voronoi

area of the vertex vi as follows:

 𝐴𝑉𝑜𝑟𝑜𝑛𝑜𝑖 =
1

8
∑ (cot 𝛼𝑖𝑗𝑗𝜖𝑁(𝑖) + cot 𝛽𝑖𝑗)‖𝑣𝑖 − 𝑣𝑗‖

2
. (28)

After computing the area of the 1-ring neighborhood, the weight is updated as follows:

 𝑤𝑖𝑗 =
1

2𝐴𝑖
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗), 𝑖 ≠ 𝑗, 𝑗 ∈ 𝑁(𝑖), (29)

124

where N(i) is the 1-ring neighborhood of vi, and Ai is the Voronoi area of the vertex vi. The

author cautioned that this expression for the Voronoi finite volume area does not hold in the

presence of obtuse angles [142].

Fig. 63. 1-ring neighborhood and angles opposite to an edge.

Experiments showed that the numerical quality of this operator is equivalent to the finite

difference operators for regular sampling [142]. The Voronoi regions of each sample point

minimize the bound on the error (created by local averaging of the mean curvature normal) due

to spatial averaging since they contain the closest points to each sample [144]. That is why the

numerical estimates acquired through this is optimized and require few extra computations. This

approach degrades gracefully if irregularity in the mesh is increased. This process is

implemented in two steps. First, the Voronoi area of each vertex is calculated. This Voronoi area

is summed up for the whole 1-ring neighborhood of the vertex. Second, the weight is updated

using this Voronoi area and the cotangent of two opposite angles of an edge.

125

6.4.3 Mayer Discretization

Mayer et al. developed a method to compute the Laplacian of a function defined on a

triangulated surface [143]. The spatial discretization triangulates the surface and approximates

any function, which is defined on the surface by its values of the vertex. For a function f on

surface S, Green's formula can be written as,

 ∫ ∆𝑓(𝑥)𝑑𝑥 = ∫ 𝜕𝑛𝑓(𝑠)𝑑𝑠,
𝜕𝐷∈(𝑧)𝐷∈(𝑧)

 (30)

where 𝐷∈(𝑧) is a small disk at a point z on the surface S and n is the intrinsic outer normal of the

boundary of the small disk and it is tangential to the surface. Mayer [143] discretized and

replaced the disk of the triangulated surface by the 1-ring neighborhood of the vertex vi and

provided the following approximation:

 ∆𝑓(𝑣𝑖) =
1

𝐴(𝑣𝑖)
∑

𝑑𝑖𝑗+𝑑𝑖,𝑗+1

2𝑗∈𝑁(𝑖) ∙
𝑓(𝑣𝑗)−𝑓(𝑣𝑖)

‖𝑣𝑖−𝑣𝑗‖
, (31)

where A(vi) is the sum of areas of triangles around the vertex vi, and for two consecutive vertices,

vj and v(j+1) on the 1-ring neighborhood of vi, dij and di,j+1 are the distances between them

respectively. We can write this approximation in the following way:

 ∆𝑓(𝑣𝑖) =
1

𝐴(𝑣𝑖)
∑

‖𝑣𝑎−𝑣𝑗‖+‖𝑣𝑏−𝑣𝑗‖

2‖𝑣𝑖−𝑣𝑗‖𝑗∈𝑁(𝑖) (𝑓(𝑣𝑗) − 𝑓(𝑣𝑖)), (32)

where A(vi) is the sum of areas of triangles around vertex vi, and a,b ∈ Ni ∩Nj .

Equation (27) is derived from equation (26) by approximating∫ ∆𝑓(𝑥)𝑑𝑥
𝐷∈(𝑧)

, 𝜕𝑛𝑓(𝑠) and ds

with ∆𝑓(𝑣𝑖)𝐴(𝑣𝑖),
𝑓(𝑣𝑗)−𝑓(𝑣𝑖)

‖𝑣𝑖−𝑣𝑗‖
 and

‖𝑣𝑎−𝑣𝑗‖+‖𝑣𝑏−𝑣𝑗‖

2
, respectively. This algorithm is used to

calculate the area of triangles around each vertex and discretized Green's formula of Riemannian

manifold. Here, the distance between a vertex and its neighbor vertex is also taken into account.

126

6.4.4 Desbrun Discretization

Desbrun et al. [144] found the (area normalized) cotangent Laplacian by computing the

area gradient explicitly in the discrete setting. They used two approaches for the Laplace-

Beltrami Operator. The first approach uses the cotangent formula of each opposite angles and the

sum of the cotangent of every angle and the second approach computes the gradient of 1-ring

neighborhood area and use the sum of the areas of each triangle. Eq28 is the normalized version

of the computed weight. Desbrun defined the weight as:

 𝑤𝑖 =
cot 𝛼𝑖+𝑐𝑜𝑡 𝛽𝑖

∑ (𝑗𝜖𝑁(𝑖) 𝑐𝑜𝑡 𝛼𝑗+𝑐𝑜𝑡 𝛽𝑗)
. (33)

This algorithm is based on very basic, uniform approximations of the Laplacian. The

second approach of Desbrun et al. used the gradient of the 1-ring area with respect to its center

vertex. For a non-obtuse triangle, Desbrun also considered 1-ring neighboring vertices of the

vertex vi as shown in Fig. 64. Area A is computed for a small region of a point p. Then the sum

of the small areas of the triangles around vi is computed and denoted as A(vi). The overall

approximation can be computed by as follows:

 ∆𝑓(𝑣𝑖) =
3

𝐴(𝑣𝑖)
∑

cot 𝛼𝑗+𝑐𝑜𝑡 𝛽𝑗

2𝑗∈𝑁(𝑖) |𝑓(𝑣𝑗) − 𝑓(𝑣𝑖)|, (34)

where N(i) is the index set of the 1-ring neighboring vertices of vertex vi. αj and βj are the angles

opposite to an edge as shown in the Fig. 63. This discretization achieves a good sharpening effect

with respect to the shape of the geometry, as no drift happens, and only geometric properties are

used.

6.5 Mesh Color Sharpening using the Laplace-Beltrami Operator

The previous sections discussed several discretizations of the Laplace-Beltrami operator,

including Pinkall, Meyer, Mayer, and two methods proposed by Desbrun. Developed for other

127

types of applications, none of these discretizations has been utilized for color sharpening on

irregular surface meshes. The color of each vertex of a 3D mesh contains three components: red,

green, and blue, and each component can be considered as a function defined on the mesh

surface. In this work, each color component is treated and processed separately. The Laplace-

Beltrami operator is calculated for each color component of a vertex, and then that color

component is updated by adding its Laplace-Beltrami operator weighted by a factor to its

original value. This operation is repeated for all color components of all vertices.

Fig. 64. A vertex and its 1-ring neighborhood in a mesh.

The 1-ring neighborhood of a vertex is used to calculate the Laplace-Beltrami operator in

all discretizations. Fig. 64 shows the 1-ring neighborhood of a vertex. If vertex v0 has a different

color than its surrounding vertices, the method searches for the 1-ring neighborhood of each

vertex and computes its associated weights and updates each color component of the vertex using

the Laplace-Beltrami operator. These weights vary with different discretizations, thus having a

different impact on the meshes. As discussed above, Pinkall and Desbrun discretizations

compute cotangent of angles, Mayer discretization utilizes the sum of areas of the triangles

around vertices, whereas Meyer discretization uses the Voronoi area to calculate weight factors.

128

The overall system structure of the proposed mesh color sharpening method is illustrated

in Fig. 65. The 3D object is first scanned using a 3D scanner such as Microsoft Kinect. The input

raw data are usually in the form of a point cloud from which a 3D mesh is then generated that

typically consists of triangles. The 1-ring neighborhood is built for all vertices to facilitate fast

processing and computing. These two steps establish the topology of the mesh. The mesh color-

sharpening phase processes all vertices in the 1-ring neighborhood of the center vertex. First, the

Laplace-Beltrami Operator (LBO) of a neighboring vertex is computed. Then the change caused

by that neighboring vertex is computed. Finally, the center vertex color is updated. This process

is repeated for all three color components (RGB) of all vertices of the 3D mesh.

Fig. 65. System architecture of the proposed mesh color sharpening methods.

129

The various mesh color sharpening methods were implemented in MeshLab [147], an

open source 3D mesh processing software package. MeshLab is connected by a central skeleton

framework and a large set of independent plugins. This plug-in-based architecture can be used to

implement new functionalities. Meshlab also has some components that use the core data

structure and basic algorithms provided by the VCG Library. VCG Library is a portable C++

template library to implement algorithms for simplical complexes. All proposed mesh color

sharpening methods were implemented as a plug-in C++ based on these data structures and

template library. Several experiments were conducted to assess the performance of different

implementations of the Laplace-Beltrami operator for mesh color sharpening using a wide range

of 3D models. The Coca-Cola can shown in Fig. 66 is a textured model. Fig. 66(b) is the result of

conversion from texture to vertex color. After the conversion, the color is distorted. The model in

Fig. 66(b) was used as an input to the mesh color sharpening. After applying the Laplace-

Beltrami operator for mesh color sharpening, Pinkall, Meyer, Mayer, and Desbrun-1 have similar

performances. Meyer discretization performed better than Pinkall, Mayer, and Desbrun-1, as it

recovered the Coca-Cola label better than these methods. Desbrun-2 achieved the best

performance, and it produced a result that looks even better than the original model (Fig. 66(a)).

130

Fig. 66. An artificial textured model (a) Original, (b) Color converted from textured to vertex, (c)

Pinkall, (d) Meyer, (e) Mayer, (f) Desbrun-1, (g) Desbrun-2.

Fig. 67. An artificial 3D model generated using Maya (a) Original, (b) Blurred, (c) Pinkall, (d)

Meyer, (e) Mayer, (f) Desbrun-1, (g) Desbrun-2.

To further demonstrate the performance of the proposed mesh color sharpening

algorithms, an artificial model cube (Fig. 67(a)) was generated with the 3D modeling software

Maya. Each face of the cube has a checkered pattern of red and blue squares. The cube was then

blurred in MeshLab to generate the artificial input model shown in Fig. 67(b), which was then

processed by different mesh color sharpening algorithms. Fig. 67(b) was generated by replacing

the color of each vertex by the average of its neighbors' colors. The Laplace- Beltrami operator

using five different discretizations was then applied to the fuzzy mesh, Fig. 67(b), to improve the

visual appearance of the mesh color and the results are shown in Fig. 67(c), (d), (e), (f), and (g)

131

respectively. It is clear that all five discretizations improved the sharpness of the mesh color to

different extents. The edges in the cube model become blurry and thicker after the smoothing

operation as shown in Fig. 67(b). All of the color-sharpening methods sharpen the cube, but

Meyer (Fig. 67(d)) and Desbrun-2 (Fig. 67(g)) performed better than other three discretizations.

Fig. 68. Mesh color sharpening with different implementations of the Laplace-Beltrami operator.

The 1st column shows the input models to mesh color sharpening, and remaining columns show

the mesh color sharpening results with Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2

discretizations (in this order).

Fig. 68 shows more results using different models, including a cube with butterfly

texture, a reindeer, and a doll. The first row is a cube with a butterfly texture generated using

Google SketchUp. The second row is a scanned model of a reindeer toy in a low light

132

environment using Microsoft Kinect. The last row is a toy generated using the scanner under

natural lighting condition. The original cube with the butterfly texture is dark and lacks details.

After applying mesh color sharpening with different discretizations of the Laplace-Beltrami

operator, the quality of the cube is improved significantly.

In particular, mesh color sharpening using the Desbrun-1 discretization of the Laplace-

Beltrami operator produced stunning results (Fig. 68, 1st row, 5th column). It appears more vivid

with visible veins on the leaf and crisp patterns on the butterfly wing. The background appears to

have more depth as well. The reindeer model was captured under the low light condition, and it

appears very dark, fuzzy, and dull. All mesh color processing methods improved the visual

appearance of the reindeer model significantly with more sharpness. The wrinkles of the cloth on

the reindeer are clearly visible, as are the eyes of the reindeer and the scarf it wears.

The color variations around the reindeer's nose are more prominent. The face and bottom

of the girl doll model are severely contaminated with undesired red and black spots and patches.

All mesh color sharpening method using different discretizations of the Laplace-Beltrami

operator improve the quality of mesh to varied extents. The result produced by the Meyer

discretization (Fig. 68, 3rd row, 3rd column) is almost perfect. It removed completely the

undesired red contamination on the face and black contamination on the bottom while enhancing

details overall. The Pinkall discretization (Fig. 68, 3rd row, 2nd column) also produced good

results with minor red color contamination on the face remaining. Other discretizations were not

able to remove the color contaminations completely, but still produced results better than the

contaminated input model. It is worth to emphasize that all the mesh color sharpening methods

proposed in the paper have been applied to the 3D meshes, not 2D images.

133

Fig. 69 shows some of the objects and their corresponding mesh structures. Based on the

experimental results presented in the paper, mesh color sharpening using different discretizations

of the Laplace-Beltrami operator had varied performances on different 3D objects, while overall

Desbrun-2 discretization achieved good performance on all models. All the mesh color-

sharpening methods have been implemented and incorporated into the open source software

Meshlab. It should be kept in mind that the computational cost is also critical for practical

applications. TABLE VIII shows the computation time of mesh color sharpening using different

discretizations of the Laplace-Beltrami operator on different 3D models. The butterfly, reindeer,

and doll have 24, 30338, 29103 vertices and 12, 44850, 56554 faces, respectively.

Fig. 69. 3D objects and their corresponding meshes. (a) and (d): Coca-Cola can. (b) and (e): Girl

doll. (c) and (f): Reindeer.

134

TABLE VIII

COMPUTATION TIME

Methods
Coca-Cola

Can
Cube Butterfly Reindeer Doll

Pinkall 125 2463 55 2621 2902

Meyer 171 4341 46 4151 5070

Mayer 156 4136 62 3947 4806

Desbrun-1 156 4141 63 3588 4383

Desbrun-2 171 4056 47 3963 4851

This work proposed a novel method for sharpening mesh colors using different

discretizations of the Laplace-Beltrami operator and applied it to color 3D meshes. The Laplace-

Beltrami operator is a second-order derivative operator defined for functions on surfaces. This

work implemented mesh color sharpening using different discretizations of the Laplace-Beltrami

operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 discretizations and applied

to various kinds of 3D models. All mesh color sharpening methods improved the visual

appearance of the 3D models. Different discretizations of the Laplace-Beltrami operator had

varied performances of mesh color sharpening on different meshes, while the Desbrun-2

discretization achieved good performance on all 3D models in the experiments. Future research

is needed to investigate the relationship between the mesh color sharpening performance and

mesh structures, such as triangle density and shape. It is also worth noting that mesh color

sharpening methods discussed in this part of the dissertation only changed the visual appearance

(vertex colors) of the meshes, not the geometrical shapes.

The next chapter gives a conclusive remark of this dissertation.

135

CHAPTER 7

CONCLUSIONS

The summary and future work of the dissertation are presented in this chapter.

7.1 Summary

This dissertation made several contributions towards point cloud filtering and 3D mesh

processing. The first contribution of this dissertation was to develop methods for point cloud

processing based on order statistic and adaptive filters, including vector median, fuzzy vector

median, adaptive mean, and adaptive median, which were originally developed for image

processing. A new filter, namely adaptive vector median, was proposed for point cloud filtering.

In the second contribution, a parallel processing method has been implemented using Microsoft

Parallel Pattern Library to reduce the computational time of the adaptive vector median filter.

This method has been extended in the third contribution for the Aerial LIDAR data filtering, and

the fourth contribution proposed a novel method for sharpening mesh colors using different

discretizations of the Laplace–Beltrami operator.

Removing noises while improving and sharpening the important features of the data is a

challenging task. In most of the cases, the sharp features of the point cloud are occluded or

hampered by the outliers and noisy points presented in the point cloud.

The proposed filters not only effectively remove most noise, but also preserve critical

features such as edges and corners in a reasonable time. For some cases, the median filter and

vector median filter cannot distinguish between fine details and noise and will likely enhance the

noise pattern. The noise reduction capabilities of the proposed methods have been compared with

several other filtering methods. Experimental results demonstrated a significant amount of

136

improvement in terms of performance both quantitatively and qualitatively. Although the

algorithm could extract most of the outliers in the scene, there were still some that were not

detected due to the similarity between the pattern of the data and noise. Another variation was

also proposed where normal of the points were taken into account. However, it requires a large

amount of time to process the point cloud with moderate performance improvement.

To mitigate this problem, a parallel approach has been adopted using Microsoft Parallel

Pattern Library. This technique utilizes the multicore functionality that is now common on

desktop and mobile computing devices. The presented results using the Parallel Pattern Library

showed a significant gain in computational time. The work demonstrated that the algorithm using

PPL scaled very well and achieved significant speed-ups.

A ground-filtering algorithm was proposed for aerial LIDAR data for both rural and

urban areas with the differentiated terrain. The method based on AVM was successful in both

visual and quantitative ways, achieved comparatively better Kappa and highest in ranking

according to the total error rate using the fifteen-reference data from ISPRS compared to five

other renowned methods. AVM demonstrated five lowest error rates and one highest error rates

for Type I error whereas for Type II error AVM ranked third among five top, well-known

methods. AVM generated 2.35%, 2.75%, 4.32%, 0.9%, 1.41%, 2.18% total error type for

different areas of the reference data. The average Kappa coefficient is 81.71 which is close to

some top filtering algorithm.

A novel method was presented for sharpening mesh colors using different discretizations

of the Laplace–Beltrami operator and applied it to color 3D meshes. The Laplace–Beltrami

operator is a second-order derivative operator defined for functions on surfaces. This work

implemented mesh color sharpening using different discretizations of the Laplace–Beltrami

137

operator, including Pinkall, Meyer, Mayer, Desbrun-1, and Desbrun-2 discretizations and applied

to various kinds of 3D models. All mesh color sharpening methods improved the visual

appearance of the 3D models. Different discretizations of the Laplace–Beltrami operator had

varied performances of mesh color sharpening on different meshes, while the Desbrun-2

discretization achieved good performance on all 3D models in the experiments. It is also worth

noting that mesh color sharpening methods discussed in this dissertation only changed the visual

appearance (vertex colors) of the meshes, not the geometrical shapes. A variety of experimental

results on synthetic and raw point scans demonstrated that the proposed methods were capable of

producing quality results, where sharp features and fine details are recovered well, in the

presence of a reasonably high level of noise, outliers, and sparsity.

7.2 Future Work

As future work, the plan is to extend the concept of AVM to other features as well such

as using magnitude instead of depth value or normal, different channels of color for point cloud

with color information, etc. For the parallel processing, GPU implementation is supposed to

speed up the filtering process significantly. Implementation of different deep learning models

such as Convolutional Neural Network and Deep Belief Networks for the LIDAR ground

filtering would also be of great interest.

138

REFERENCES

[1] Fuji Technical Research Inc. (August 29). Available: http://www.ftr.co.jp/n/eng/products/

galaxy_eye/cad.html. Available: http://www.ftr.co.jp/n/eng/products/galaxy_eye/cad

.html.

[2] M. J. Milroy, D. J. Weir, C. Bradley, and G. W. Vickers, "Reverse engineering

employing a 3D laser scanner: A case study," International Journal of Advanced

Manufacturing Technology, vol. 12, no. 2, pp. 111-121, 1996.

[3] M. Levoy, K. Pulli, S. Rusinkiewicz, M. Ginzton, J. Ginsberg, D. Koller, S. Anderson, J.

Shade, B. Curless, L. Pereira, J. Davis, and D. Fulk., "The digital Michelangelo project:

3D scanning of large statues.," in Proceedings of the 27th Annual Conference on

Computer Graphics and Interactive Techniques, 2000, pp. 131-144.

[4] S. F. El-Hakim, J. Beraldin, M. Picard, and G. Godin., "Detailed 3D reconstruction of

large-scale heritage sites with integrated techniques.," IEEE Computer Graphics and

Applications, vol. 24, no. 3, pp. 21-29, 2004.

[5] J. C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, and

T.R Evans, "Reconstruction and representation of 3D objects with radial basis functions,"

in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive

Techniques, 2001, pp. 67-76.

[6] C. Bajaj, F. Bernardini, and G. Xu, "Automatic reconstruction of surfaces and scalar

fields from 3d scans," in Proceedings of the 22nd Annual Conference on Computer

Graphics and Interactive Techniques, 1995, pp. 109-118.

[7] S. Cheng and M. Lau, "Denoising a point cloud for surface reconstruction,," CoRR, vol.

abs/1704.04038., no. arXiv:1704.04038.

[8] F. Zaman, Y. P. Wong, and B. Y. Ng, "Density-based Denoising of Point Cloud," CoRR,

vol. abs/1602.05312, 2016.

[9] X. F. Han, J. S. Jin, M. J. Wang, and W. Jiang, "Iterative guidance normal filter for point

cloud," Multimedia Tools and Applications.

[10] W. Hou, T. Chan, and M. Ding, "Denoising point cloud," Inverse Problems in Science

and Engineering, vol. 20, no. 3, pp. 287-298, 2012.

[11] L. Wang, B. Yuan, and J. Chen, "Robust Fuzzy C-Means and Bilateral Point Clouds

Denoising," presented at the 8th international Conference on Signal Processing 2006,

2006.

139

[12] S. Sotoodeh, "Outlier detection in laser scanner point clouds," International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, no. 5, pp.

297-302, 2006.

[13] Y. Song, "Boundary fitting for 2D curve reconstruction," The Visual Computer, vol. 26,

no. 3, pp. 187-204, 2010.

[14] B. Mederos, L. Velho, and L. H. d. Figueiredo, "Robust smoothing of noisy point

clouds," in Siam Conference on Geometric Design and Computing, 2003.

[15] C. Lea, "Near Real-time Pointcloud Smoothing for 3D Imaging Systems," 2011.

[16] K. Liu and R. Zayer, "Bundle Adjustment Constrained Smoothing for Multi-view Point

Cloud Data," presented at the 8th International Symposium on Visual Computing, 2012.

[17] Y. Wang and H.-Y. Feng, "Outlier detection for scanned point clouds using majority

voting," Computer-Aided Design, vol. 62, pp. 31-43, 2015.

[18] Z. Yang and D. Xiao, "A systemic point-cloud de-noising and smoothing method for 3D

shape reuse," presented at the 2012 12th International Conference on Control Automation

Robotics & Vision (ICARCV), 2012.

[19] B. Q. Shi, J. Liang, and Q. Liu, "Adaptive simplification of point cloud using k-means

clustering," Computer-Aided Design, vol. 43, no. 8, pp. 910-922, 2011.

[20] S. Xu, Z. Yang, and W. Wu, "Algorithm of denoising based on point cloud

segmentation," presented at the 5th International Conference on Computer Science and

Education (ICCSE), 2010.

[21] X. An, X. Yu, Q. Xu, and J. Wang, "Research on 3D scanning point cloud de-nosing,"

presented at the 2014 International Conference on Audio, Language and Image

Processing (ICALIP), 2014.

[22] Y. P. Lin and K. W. Hsu, "Dealing with Noisy Data on Point Cloud Models," presented

at the 2014 IEEE International Symposium on Multimedia (ISM), 2014.

[23] M. Wu, J. Wang, and H. Luo, "Research on 3D Modeling of Point cloud data Based on

Terrestrial Laser Scanner," presented at the 3rd International Conference on

Mechatronics, Robotics and Automation (ICMRA 2015), 2015.

[24] O. Schall, A. Belyaev, and H.P. Seidel, "Robust Filtering of Noisy Scattered Point Data,"

in IEEE VGTC Symposium Point-Based Graphics Proceedings Eurographics, 2005, pp.

71-144.

140

[25] H. Han, X. Han, F. Sun, and C. Huang, "Point cloud simplification with preserved edge

based on normalvector," Optik - International Journal for Light and Electron Optics, vol.

126, no. 19, pp. 2157-2162, 2015.

[26] G. Rosman, A. Dubrovina, and R. Kimmel, "Patch-Collaborative Spectral Point-Cloud

Denoising," Computer Graphics forum, vol. 32(2013), no. 8, pp. 1-12, 2013.

[27] J. E. Deschaud and F. Goulette, "A Fast and Accurate Plane Detection Algorithm for

Large Noisy Point Clouds Using Filtered Normals and Voxel Growing," presented at the

3DPVT, 2014.

[28] J. E. Deschaud and F. Goulette, "Point cloud non local denoising using local surface

descriptor similarity," 2010.

[29] J. Digne and C. d. Franchis, "The Bilateral Filter for Point Clouds," Image Processing On

Line, vol. 7, pp. 278-287, 2017.

[30] Z. Huang, Y. Huang, and J. Huang, "A Method for Noise Removal of LIDAR Point

Clouds," presented at the 2013 Third International Conference on Intelligent System

Design and Engineering Applications (ISDEA), 2013.

[31] T. Weber, R. Hänsch, and O. Hellwich, "Automatic registration of unordered point

clouds acquired by Kinect sensors using an overlap heuristic," vol. 102, pp. 96-109, 2015.

[32] R. Kolluri, J. R. Shewchuk, and J. F. O'Brien, "Spectral Surface Reconstruction from

Noisy Point Clouds," presented at the Symposium on Geometry Processing, 2004.

[33] N. Salman, M. Yvinec, and Q. Mérigot, "Feature Preserving Mesh Generation from 3D

Point Clouds," presented at the Computer Graphics Forum, 2010.

[34] Y. Zheng, G. Li, S. Wu, Y. Liu, and Y. Gao, "Guided point cloud denoising via sharp

feature skeletons," The Visual Computer, vol. 33, no. 6, 2017.

[35] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, "Subjective and objective quality

evaluation of 3D point cloud denoising algorithms,," presented at the IEEE

International Conference on Multimedia ExpoWorkshops (ICMEW), 2017.

[36] X. F. Han, J. S. Jin, M. J. Wang, W. Jiang, L. Gao, and L. Xiao, "A review of algorithms

for filtering the 3D point cloud,," Signal Processing: Image Communication vol. 57, pp.

103-112, 2017.

[37] Q. Yang, P. Ji, D. Li, S. Yao, and M. Zhang, "Fast stereo matching using adaptive guided

filtering," Image and Vision Computing, vol. 32, no. 3, pp. 202-211, 2014/03/01/ 2014.

141

[38] N. Aitali, B. Cherradi, A. E. Abbasi, and O. Bouattane, "Parallel Implementation of Bias

Field Correction Fuzzy C-Means Algorithm for Image Segmentation," International

Journal of Advanced Computer Science and Applications, vol. 7, no. 3, 2016.

[39] S. Galliani, K. Lasinger, and K. Schindler, "Massively Parallel Multiview Stereopsis by

Surface Normal Diffusion," in 2015 IEEE International Conference on Computer Vision

(ICCV), 2015, pp. 873-881.

[40] D. T. Anderson, R. H. Luke, and J. M. Keller, "Speedup of Fuzzy Clustering Through

Stream Processing on Graphics Processing Units," IEEE Transactions on Fuzzy Systems,

vol. 16, no. 4, pp. 1101-1106, 2008.

[41] H. Li, Z. Yang, and H. He, "An Improved Image Segmentation Algorithm Based on GPU

Parallel Computing," Journal of Software, vol. 9, no. 8, August 2014 2014.

[42] K. Tan, J. Zhang, Q. Du, and X. Wang, "GPU Parallel Implementation of Support Vector

Machines for Hyperspectral Image Classification," IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 8, no. 10, pp. 4647-4656, 2015.

[43] Z. Wu et al., "GPU Parallel Implementation of Spatially Adaptive Hyperspectral Image

Classification," IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 11, no. 4, pp. 1131-1143, 2018.

[44] A. I. El-Nashar, "To Parallelize or not to parallelize, speedup issue," International

Journal of Distributed and Parallel Systems (IJDPS), vol. 2, no. 2, 2011.

[45] J. L. Martínez, A. J. Reina, J. Morales, A. Mandow, and A. J. García-Cerezo, "Using

multicore processors to parallelize 3D point cloud registration with the Coarse Binary

Cubes method," in 2013 IEEE International Conference on Mechatronics (ICM), 2013,

pp. 335-340.

[46] D. Qiu, S. May, and A. N¨uchter, “GPU-Accelerated Nearest Neighbor Search for 3D

Registration”. Computer Vision Systems, ICVS 2009. Lecture Notes in Computer Science.

Springer, Berlin, Heidelberg, 2009.

[47] X. Hu and Y. Yuan, "Deep-Learning-Based Classification for DTM Extraction from ALS

Point Cloud," Remote Sensing, vol. 8, no. 9, p. 730, 2016.

[48] G. Sithole and G. Vosselman, "Experimental comparison of filter algorithms for bare-

Earth extraction from airborne laser scanning point clouds," The International journal of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 59, no. 1/2,

pp. 85–101, 2004.

[49] D. Mongus, N. Lukač, and B. Žalik, "Ground and building extraction from LiDAR data

based on differential morphological profiles and locally fitted surfaces," ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 93, pp. 145-156, 2014/07/01/ 2014.

142

[50] C. Chen, Y. Li, N. Zhao, J. Guo, and G. Liu, "A fast and robust interpolation filter for

airborne lidar point clouds," PLOS ONE, vol. 12, no. 5, p. e0176954, 2017.

[51] H. Yang, W. Chen, T. Qian, D. Shen, and J. Wang, "The Extraction of Vegetation Points

from LiDAR Using 3D Fractal Dimension Analyses," Remote Sensing, vol. 7, no. 8, p.

10815, 2015.

[52] Y. Li, B. Yong, P. van Oosterom, M. Lemmens, H. Wu, L. Ren, M. Zheng, and J. Zhou,

"Airborne LiDAR Data Filtering Based on Geodesic Transformations of Mathematical

Morphology," Remote Sensing, vol. 9, no. 11, p. 1104, 2017.

[53] X. Hu, X. Li, and Y. Zhang, "Fast Filtering of LiDAR Point Cloud in Urban Areas Based

on Scan Line Segmentation and GPU Acceleration," IEEE Geoscience and Remote

Sensing Letters, vol. 10, no. 2, pp. 308-312, 2013.

[54] W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, "An Easy-to-Use

Airborne LiDAR Data Filtering Method Based on Cloth Simulation," Remote Sensing,

vol. 8, no. 6, p. 501, 2016.

[55] T. J. Pingel, K. C. Clarke, and W. A. McBride, "An improved simple morphological filter

for the terrain classification of airborne LIDAR data," ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 77, pp. 21-30, 2013/03/01/ 2013.

[56] P. E. Axelsson, "DEM generation from laser scanner data using adaptive TIN models. ,"

International Archives of the Photogrammetry and Remote Sensing, vol. 33, pp. 110-117,

2000.

[57] K. Kraus and N. Pfeifer, "Determination of terrain models in wooded areas with airborne

laser scanner data. ," ISPRS Journal of Photogrammetry and Remote Sensing , vol. 53,

no. 4, pp. 193-203, 1998.

[58] C. Chen, Y. Li, W. Li, and H. Dai, "A multiresolution hierarchical classification

algorithm for filtering airborne LiDAR data," ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 82, pp. 1-9, 2013/08/01/ 2013.

[59] Z. Keqi, C. Shu-Ching, D. Whitman, S. Mei-Ling, Y. Jianhua, and Z. Chengcui, "A

progressive morphological filter for removing nonground measurements from airborne

LIDAR data," IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 4, pp.

872-882, 2003.

[60] X. Meng, N. Currit, and K. Zhao, "Ground Filtering Algorithms for Airborne LiDAR

Data: A Review of Critical Issues," Remote Sensing, vol. 2, no. 3, p. 833, 2010.

[61] X. Meng, L. Wang, J. L. Silván-Cárdenas, and N. Currit, "A multi-directional ground

filtering algorithm for airborne LIDAR," ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 64, no. 1, pp. 117-124, 2009/01/01/ 2009.

143

[62] J. Kilian, N. Haala, and M. Englich, Capture Andevaluation of Airborne Laser Scanner

Data (International Archives of Photogrammetry and Remote Sensing). 1996.

[63] Q. Chen, P. Gong, D. Baldocchi, and G. Xie, "Filtering Airborne Laser Scanning Data

with Morphological Methods," Photogrammetric Engineering & Remote Sensing, vol. 2,

pp. 175-185, 2007.

[64] C. A. Silva, C. Klauberg, Â. M. K. Hentz, A. P. D. Corte, U. Ribeiro, and V. Liesenberg,

"Comparing the Performance of Ground Filtering Algorithms for Terrain Modeling in a

Forest Environment Using Airborne LiDAR Data," Floresta e Ambiente, vol. 25, 2018.

[65] G. Vosselman, "Slope Based Filtering of Laser Altimetry Data," IAPRS, vol. 33, 2000.

[66] J. Shan and A. Sampath, "Urban DEM generation from raw lidar data," Photogrammetric

Engineering & Remote Sensing, vol. 71, pp. 217-226, 2005.

[67] S. Filin, "Surface clustering from airborne laser scanning data," International Archives of

Photogrammetry and Remote Sensing, vol. XXXII, no. 3A, pp. 119-124, 2002.

[68] M. Roggero, "Airborne Laser Scanning: Clustering in raw data," IAPRS, vol. XXXIV,

pp. 227-232, 2001.

[69] I. Lee and T. Schenk, "3D Perceptual Organization of Laser Altimetry Data," in IAPRS,

2001, vol. XXXIV, pp. 57-65.

[70] S. A. Hosseini, H. Arefi, and Z. Gharib, "Filtering of Lidar Point Cloud Using a Strip

Based Algorithm in Residential Mountainous Areas", 2014.

[71] Y. Liu and R. Zhong, "Buildings and Terrain of Urban Area Point Cloud Segmentation

based on PCL," in IOP Conf. Series: Earth and Environmental Science, 2014, vol. 17.

[72] G. Sithole, Filtering of Laser Altimetry Data using a Slope Adaptive Filter. 2011.

[73] Q. Zhan, Y. Liang, Y. Cai, and Y. Xiao, "Pattern detection in airborne LiDAR data using

Laplacian of Gaussian filter," Geo-spatial Information Science, journal article vol. 14, no.

3, p. 184, July 30 2011.

[74] M. Elmqvist, "Ground Estimation of Lasar Radar Data using Active Shape Models,"

Stockholm, Sweden, 2001.

[75] M. Elmqvist, E. Jungert, F. Lantz, Å. Persson, and U. Söderman, "Terrain modelling and

analysis using laser scanner data," in International Archives of Photogrammetry and

Remote, 2001, pp. 22-24.

144

[76] H. Hamraza, N. B. Jacobsa, M. A. Contrerasb, and C. H. Clarkb, "Deep learning for

conifer/deciduous classification of airborne LiDAR 3D point clouds representing

individual trees," Arxiv, 2018.

[77] D. Marmanis, A. Fathalrahman, M. Datcu, T. Esch, and U. Stilla, Deep Neural Networks

For Above-ground Detection in Very High Spatial Resolution Digital Elevation Models.

2015.

[78] S. I. Oh and H. B. Kang, "Object Detection and Classification by Decision-Level Fusion

for Intelligent Vehicle Systems," Sensors (Basel, Switzerland), vol. 17, no. 1, p. 207,

2017.

[79] Z. Ao, Y. Su, W. Li, Q. Guo, and J. Zhang, "One-Class Classification of Airborne

LiDAR Data in Urban Areas Using a Presence and Background Learning Algorithm,"

Remote Sensing, vol. 9, no. 10, p. 1001, 2017.

[80] X. Li, X. Cheng, W. Chen, G. Chen, and S. Liu, "Identification of Forested Landslides

Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms,"

Remote Sensing, vol. 7, no. 8, p. 9705, 2015.

[81] S. K. Lodha, E. J. Kreps, D. P. Helmbold, and D. Fitzpatrick, "Aerial LiDAR Data

Classification Using Support Vector Machines (SVM)," in 3D Data Processing,

Visualization, and Transmission, Third International Symposium on, 2006, pp. 567-574.

[82] F. Samadzadegan, B. Bigdeli and Pouria Ramzi, "Classification of Lidar Data Based on

Multi-class Svm", 2010.

[83] C. Bellman and M. Shortis, "Building recognition using wavelet analysis and support

vector machines," Spatial Knowledge without Boundaries, 2003.

[84] L. Guo, N. Chehata, C. Mallet, and S. Boukir, "Relevance of airborne lidar and

multispectral image data for urban scene classification using Random Forests," ISPRS

Journal of Photogrammetry and Remote Sensing, vol. 66, no. 1, pp. 56-66, 2011/01/01/

2011.

[85] H. Hu, Y. Ding, Q. Zhu, B. Wu, H. Lin, Z. Du, Y. Zhang, and Y. Zhang, "An adaptive

surface filter for airborne laser scanning point clouds by means of regularization and

bending energy," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp.

98-111, 2014/06/01/ 2014.

[86] A. Victoriano, J. Brasington, M. Guinau, G. Furdada, M. Cabré, and M. Moysset,

"Geomorphic impact and assessment of flexible barriers using multi-temporal LiDAR

data: The Portainé mountain catchment (Pyrenees)." Engineering Geology, 2018.

145

[87] J. A. Stevenson, X. Sun, and N. C. Mitchell, "Despeckling SRTM and other topographic

data with a denoising algorithm," Geomorphology, vol. 114, no. 3, pp. 238-252,

2010/01/15/ 2010.

[88] Y. Quan, J. Song, X. Guo, Q. Miao, and Y. Yang, "Filtering LiDAR data based on

adjacent triangle of triangulated irregular network," Multimedia Tools and Applications,

journal article vol. 76, no. 8, pp. 11051-11063, April 01 2017.

[89] A. Nurunnabi, G. West, and D. Belton, "Outlier detection and robust normal-curvature

estimation in mobile laser scanning 3D point cloud data," Pattern Recognition, vol. 48,

no. 4, pp. 1404-1419, 2015/04/01/ 2015.

[90] A. A. Matkan, M. Hajeb, B. Mirbagheri, S. Sadeghian, and M. Ahmadi, "Spatial Analysis

for Outlier Removal from LIDAR Data," presented at the The 1st ISPRS International

Conference on Geospatial Information Research, 2014.

[91] A. Abdullah and Z. Vojinovic, "Lidar Filtering Algorithms for Urban Flood Application:

Review on Current Algorithms and Filters Test," 2009.

[92] W. T. Tinkham et al., "A Comparison of Two Open Source LiDAR Surface

Classification Algorithms," Remote Sensing, vol. 3, no. 3, p. 638, 2011.

[93] J. Zhongping, L. Ligang, and W. Guojin, "A global Laplacian smoothing approach with

feature preservation," in Ninth International Conference on Computer Aided Design and

Computer Graphics (CAD-CG'05), 2005, p. 6.

[94] G. Taubin, "A signal processing approach to fair surface design," presented at the

Proceedings of the 22nd annual conference on Computer graphics and interactive

techniques, 1995.

[95] J. Vollmer, R. Mencl, and H. Müller, "Improved Laplacian Smoothing of Noisy Surface

Meshes," Computer Graphics Forum, vol. 18, no. 3, pp. 131-138, 1999.

[96] B. Hamann, S. E. Dillard, M. Hlawitschka, and S. Shafii, "The topological effects of

smoothing," IEEE Transactions on Visualization & Computer Graphics vol. 18, pp. 160–

72, 2011.

[97] C. C. L. Wang, "Bilateral recovering of sharp edges on feature-insensitive sampled

meshes," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 4, pp.

629-639, 2006.

[98] R. Fan and X. Jin, "Controllable Edge Feature Sharpening for Dental Applications,"

Computational and Mathematical Methods in Medicine, vol. 2014, p. 9, 2014, Art. no.

873635.

146

[99] M. Attene, B. Falcidieno, J. Rossignac, and M. Spagnuolo, "Edge-sharpener: recovering

sharp features in triangulations of non-adaptively re-meshed surfaces," presented at the

Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry

processing, Aachen, Germany, 2003.

[100] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski, "Polyhedral Surface Smoothing with

Simultaneous Mesh Regularization," presented at the Proceedings of the Geometric

Modeling and Processing 2000, 2000.

[101] Y. Shen and K. E. Barner, "Fuzzy vector median-based surface smoothing," IEEE

Transactions on Visualization and Computer Graphics, vol. 10, no. 3, pp. 252-265, 2004.

[102] U. Clarenz, U. Diewald, and M. Rumpf, "Anisotropic geometric diffusion in surface

processing," in Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145), 2000,

pp. 397-405.

[103] K. Hildebrandt and K. Polthier, "Constraint-based fairing of surface meshes," presented

at the Proceedings of the fifth Eurographics symposium on Geometry processing,

Barcelona, Spain, 2007.

[104] H. Zhao and G. Xu, "Triangular surface mesh fairing via Gaussian curvature flow,"

Journal of Computational and Applied Mathematics, vol. 195, no. 1–2, pp. 300-311,

10/15/ 2006.

[105] J. Shen, S. Zhang, Z. Chen, Y. Zhang, and X. Ye, "Mesh sharpening via normal

filtering," Journal of Zhejiang University-SCIENCE A, journal article vol. 10, no. 4, pp.

546-553, 2009.

[106] S. Ganesan and L. Tobiska, "Computations of flows with interfaces using arbitrary

Lagrangian Eulerian method," in Proceedings of the European Conference on

Computational Fluid Dynamics, ECCOMAS CFD 2006., Egmond aan Zee, The

Netherlands, 2006.

[107] C. H. Leung and M. Berzins, "A computational model for organism growth based on

surface mesh generation," Journal of Computational Physics, vol. 188, no. 1, pp. 75-99,

6/10/ 2003.

[108] F. Petronetto, A. Paiva, E. S. Helou, D. E. Stewart, and L. G. Nonato, "Mesh-Free

Discrete Laplace–Beltrami Operator," Computer Graphics Forum, vol. 32, no. 6, pp.

214-226, 2013.

[109] M. Belkin, J. Sun, and Y. Wang, "Discrete laplace operator on meshed surfaces,"

presented at the Proceedings of the twenty-fourth annual symposium on Computational

geometry, College Park, MD, USA, 2008.

147

[110] M. Desbrun, M. Meyer, P. Schrṏder, and A. H. Barr, "Implicit fairing of irregular meshes

using diffusion and curvature flow," presented at the Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, 1999.

[111] X. D. Gu, R. Guo, F. Luo, and W. Zeng, "Discrete Laplace–Beltrami operator determines

discrete Riemannian metric," CoRR 2010.

[112] W. JY, C. MH, and C. SG, "Convergent discrete Laplace–Beltrami operators over

surfaces," CoRR 2010, 2010.

[113] G. Xu, "Discrete Laplace–Beltrami operator on sphere and optimal spherical

triangulations," International Journal on Computational Geometry and Applications

2006, vol. 16, pp. 75-93, 2006.

[114] Y. Xiong, G. Li, and G. Han, "Mean Laplace–Beltrami Operator for Quadrilateral

Meshes," in Transactions on Edutainment V, Z. Pan, A. D. Cheok, W. Müller, and X.

Yang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 189-201.

[115] A. Wetzler, Y. Aflalo, A. Dubrovina, and R. Kimmel, "The Laplace-Beltrami Operator:

A Ubiquitous Tool for Image and Shape Processing," in Mathematical Morphology and

Its Applications to Signal and Image Processing: 11th International Symposium, ISMM

2013, Uppsala, Sweden, May 27-29, 2013. Proceedings, C. L. L. Hendriks, G. Borgefors,

and R. Strand, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 302-316.

[116] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, "Registration with the

Point Cloud Library: A Modular Framework for Aligning in 3-D," IEEE Robotics &

Automation Magazine, vol. 22, no. 4, pp. 110-124, 2015.

[117] Leica Geosystems HDS (08 October 2018). Available: https://leica-geosystems.com/en-

US/products/laser-scanners.

[118] Leica Geosystems Total Stations (10 October 2018). Available: https://leica-

geosystems.com/en-US/products/total-stations.

[119] R. B. Rusu, "Semantic 3D Object Maps for Everyday Manipulation in Human Living

Environments," Künstliche Intelligenz, vol. 24, pp. 345-348, 2009.

[120] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL)," Shanghai, China,

2011.

[121] J. Astola, P. Haavisto, and Y. Neuvo, "Vector median filters," Proceedings of the IEEE,

vol. 78, no. 4, pp. 678-689, 1990.

[122] M. Barni, F. Buti, F. Bartolini, and V. Cappellini, "A quasi-Euclidean norm to speed up

vector median filtering," IEEE Transactions on Image Processing, vol. 9, no. 10, pp.

1704-1709, 2000.

148

[123] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Boston, MA: Addison-

Wesley Longman Publishing Co., Inc., 1992.

[124] Point Cloud Library (October 2018). Available: http://www.pointclouds.org.

[125] Stanford Computer Graphics Laboratory (October 21 2018). Available:

http://www.graphics.stanford.edu/data/3Dscanrep/

[126] J. Berkmann and T. Caelli, "Computation of surface geometry and segmentation using

covariance techniques," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 16, no. 11, pp. 1114-1116, 1994.

[127] Parallel Patterns Library (PPL) (October 02, 2018.) Available:

https://docs.microsoft.com/en-us/previous-versions/dd492418(v=vs.140).

[128] G. M. Amdahl, "Validity of the single processor approach to achieving large scale

computing capabilities," presented at the Proceedings of the April 18-20, 1967, Spring

joint computer conference, Atlantic City, New Jersey, 1967.

[129] G. Sohn and I. Dowman, "Data fusion of high-resolution satellite imagery and LiDAR

data for automatic building extraction," ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 62, no. 1, pp. 43-63, 2007/05/01/ 2007.

[130] M. A. Brovelli, M. Cannata, and U. M. Longoni,, "LIDAR Data Filtering and DTM

Interpolation Within GRASS," Transactions in GIS, vol. 8, no. 2, pp. 155-174, 2004.

[131] R. A. Haugerud and D. J. Harding, "Some algorithms for virtual deforestation (VDF) of

LIDAR topographic survey data," IAPRS, vol. XXXIV -3/W4, pp. 211-218., 22-24

October 2001 2001.

[132] X. Meng, N. Currit and K. Zhao, "Ground Filtering Algorithms For Airborne Lidar

Data," Remote Sens. 2010, vol. 2 no. 3, pp. 833-860.

[133] J. L. Silván-Cárdenas and L. Wang, "A multi-resolution approach for filtering LiDAR

altimetry data," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, no. 1,

pp. 11-22, 2006/10/01/ 2006.

[134] K. Zhang and D. Whitman, "Comparison of Three Algorithms for Filtering Airborne

Lidar Data," Photogrammetric Engineering & Remote Sensing, vol. 71, no. 3, pp. 313-

324, // 2005.

[135] P. Axelsson, "Processing of laser scanner data—algorithms and applications," ISPRS

Journal of Photogrammetry and Remote Sensing, vol. 54, no. 2, pp. 138-147, 1999/07/01/

1999.

149

[136] J. Shan, "Urban DEM Generation from Raw Lidar Data : A Labeling Algorithm and its

Performance," 2005.

[137] X. Meng, L. Wang, and N. Currit, "Morphology-based Building Detection from Airborne

Lidar Data," Photogrammetric Engineering & Remote Sensing, vol. 75, no. 4, pp. 437-

442, // 2009.

[138] J. Cohen, "A Coefficient of Agreement for Nominal Scales," Educational and

Psychological Measurement, vol. 20, no. 1, pp. 37-46, 1960.

[139] ReconstructMe. (12.08.15). ReconstructMe:RealTime3DScanningSoftware. Available:

http://reconstructme.net/;

[140] Z. Afrose and Y. Shen, "Mesh color sharpening," Advances in Engineering Software, vol.

91, pp. 36-43, 2016/01/01/ 2016.

[141] U. Pinkall and K. Polthier, "Computing discrete minimal surfaces and their conjugates,"

(in en), pp. 15-36, 1993 1993.

[142] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, "Discrete Differential-Geometry

Operators for Triangulated 2-Manifolds," in Visualization and Mathematics III, H.-C.

Hege and K. Polthier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 35-

57.

[143] U. F. Mayer, "Numerical solutions for the surface diffusion flow in three space

dimensions," Computational & Applied Mathematics 2001, vol. 20, pp. 361–79, 2001.

[144] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, "Discrete Differential-Geometry

Operators in nD," vol. 20, pp. 35-57, 2000.

[145] C. I, Eigenvalues in Riemannian Geometry. Orlando, FL, USA: Academic Press

1984.

[146] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo, "Discrete Laplace–

Beltrami operators for shape analysis and segmentation," Computers & Graphics, vol. 33,

no. 3, pp. 381-390, 6// 2009.

[147] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia,

"Meshlab: an open-source mesh processing tool," in Proceedings of the Eurographics

Italian Chapter Conference, 2008, pp. 129–36.

150

VITA

Zinat Afrose

Department of Modeling, Simulation and Visualization Engineering

Old Dominion University

Norfolk, VA 23529

Education:

▪ Ph.D.: January 2013 – present, Old Dominion University, Norfolk, VA, USA

▪ M.Sc.: January 2012. Computer Science and Engineering, Jahangirnagar University,

Dhaka, Bangladesh.

▪ B.Sc.: May 2009. Computer Science and Engineering, Jahangirnagar University,

Dhaka, Bangladesh.

List of Publications:

1. Z. Afrose, Y. Shen, “Parallelization of adaptive vector median filter for point cloud

denoising”, Student Capstone Conference 2018.

2. Z. Afrose, Y. Shen, “Point cloud denoising using adaptive and order statistic filters”,

Student Capstone Conference 2017.

3. Z. Afrose, Y. Shen, “Mesh color sharpening”, Journal Advances in Engineering

Software, Volume 91 Issue C, January 2016, Pages 36-43, Elsevier Science Ltd. Oxford,

UK.

4. Z. Afrose, Y. Shen, “Vector Order Statistic-Based Noise Removal from Point Cloud

Data”, Student Capstone Conference 2016.

5. Z. Afrose, Y. Shen, “Repairing Color Mesh Models”, Student Capstone Conference

2015.

151

6. Z. Afrose, Y. Shen, “Applying Discrete Laplace-Beltrami Operator to Mesh Color

Sharpening”, Student Capstone Conference 2014.

7. Z. Afrose, Y. Shen, “Mesh color sharpening using Laplace-Beltrami operator”, Signal

and Information Processing (GlobalSIP), 2014 IEEE Global Conference on, Atlanta,

GA, 2014, pp. 1029-1033. doi: 10.1109/GlobalSIP.2014.7032277.

8. Z. Afrose, “A Comparative Study on Noise Removal of Compound Images using

Different Types of Filters”, IJCA International Journal of Computer Applications (USA),

vol 47,no.14, pp.45-48, June 2012.

9. Z. Afrose, M. A. Bhuiyan, “Road Sign Segmentation and Recognition under Bad

Illumination Condition using Modified Fuzzy C-means Clustering”, IJCA International

Journal of Computer Applications(USA), vol. 50, no.8, July 2012 , pp.1- 6, July 2012.

10. Z. Afrose, “Relaxed Median Filter: A Better Noise Removal Filter for Compound

Images”, IJCSE International Journal on Computer Science and Engineering (India),

vol. 4, no. 07, pp.1376- 1382, July 2012.

	Adaptive Methods for Point Cloud and Mesh Processing
	Recommended Citation

	tmp.1549979996.pdf.oNkJe

