1,529 research outputs found

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    Design of a Comparator and an Amplifier in CMOS using standard logic gates

    Get PDF
    Using standard logic gates in CMOS, or standard-cells, has the advantage of full synthe- sizability, as well as the voltage scalability between technologies. In this work a general pur- pose standard-cell-based voltage comparator and amplifier are presented. The objective is to design a general purpose standard-cell-based comparator and ampli- fier in 130 nm CMOS by optimizing the already existing topologies with the aim of improving some of the specifications of the studied topologies. Various simulation testbenches were made to test the studied topologies of comparators and amplifiers, in which the results were compared. The top performing standard-cell com- parator and amplifier were then modified. After successfully designing the comparator, it was used in the design of an opamp-less Sigma-Delta modulator (ΣΔM). The proposed comparator is an OR-AND-Inverter-based comparator with dual inputs and outputs, achieving a delay of 109 ps, static input offset of 591 μV, and random offset of 10.42 μV, while dissipating 890 μW, when clocked at 1.5 GHz. The proposed amplifier is a single-path three-stage inverter-based operational transcon- ductance amplifier (OTA) with active common-mode feedback loop, achieving a DC gain of 63 dB, 1444 MHz of unity-gain bandwidth, 51º of phase margin while dissipating 1098 μW, considering a load of 1 pF. The proposed comparator was employed in the ΣΔM with a standard-cell based edge- triggered flip-flop. The ΣΔM, with a sampling frequency of 2 MHz and a signal bandwidth of 2.5 kHz, achieved a peak SNDR of 69 dB while dissipating only 136.7 μW.Utilizando portas lógicas básicas em CMOS oferece a vantagem de um circuito comple- tamente sintetizável, tal como o escalamento de tensão entre tecnologias. Neste trabalho são apresentados um comparador de tensão e um amplificador utilizando portas lógicas. O objetivo deste trabalho é desenhar um comparador e um amplificador utilizando por- tas lógicas através do estudo e otimização de topologias já existentes com a finalidade de me- lhoramento de algumas das especificações das mesmas. Foram realizados vários bancos de teste para testar as topologias estudadas de compa- radores e amplificadores, em que os resultados foram comparados. As topologias de compa- radores e amplificadores de portas lógicas com melhor performance foram então modificadas. Após o comparador ter sido projetado com sucesso, foi utilizado na projeção de um modula- dor Sigma-Delta (ΣΔM) opamp-less. O comparador proposto é um OR-AND-Inversor com duas entradas e saídas, que apre- senta um atraso de 109 ps, offset estático na entrada de 591 μV, offset aleatório de 10.42 μV, enquanto dissipando 890 μW, utilizando uma frequência de relógio de 1.5 GHz O amplificador proposto é um amplificador operacional de transcondutância single- path three-stage inverter-based com um loop ativo de realimentação do modo-comum, que apresenta um ganho DC de 63 dB, 1444 MHz de ganho-unitário de largura de banda, 51º de margem de fase e dissipando 1098 μW, considerando uma carga de 1 pF. O comparador proposto foi aplicado no ΣΔM com um flip-flop edge-triggered baseado em portas lógicas. O ΣΔM, com uma frequência de amostragem de 2 MHz e uma largura de banda de 2.5 kHz, apresentou um SNDR máximo de 69 dB enquanto dissipando apenas 136.7 μW

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF
    Implantable medical devices provide therapy to treat numerous health conditions as well as monitoring and diagnosis. Over the years, the development of these devices has seen remarkable progress thanks to tremendous advances in microelectronics, electrode technology, packaging and signal processing techniques. Many of today’s implantable devices use wireless technology to supply power and provide communication. There are many challenges when creating an implantable device. Issues such as reliable and fast bidirectional data communication, efficient power delivery to the implantable circuits, low noise and low power for the recording part of the system, and delivery of safe stimulation to avoid tissue and electrode damage are some of the challenges faced by the microelectronics circuit designer. This paper provides a review of advances in microelectronics over the last decade or so for implantable medical devices and systems. The focus is on neural recording and stimulation circuits suitable for fabrication in modern silicon process technologies and biotelemetry methods for power and data transfer, with particular emphasis on methods employing radio frequency inductive coupling. The paper concludes by highlighting some of the issues that will drive future research in the field

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Design and Development of Smart Brain-Machine-Brain Interface (SBMIBI) for Deep Brain Stimulation and Other Biomedical Applications

    Get PDF
    Machine collaboration with the biological body/brain by sending electrical information back and forth is one of the leading research areas in neuro-engineering during the twenty-first century. Hence, Brain-Machine-Brain Interface (BMBI) is a powerful tool for achieving such machine-brain/body collaboration. BMBI generally is a smart device (usually invasive) that can record, store, and analyze neural activities, and generate corresponding responses in the form of electrical pulses to stimulate specific brain regions. The Smart Brain-Machine-Brain-Interface (SBMBI) is a step forward with compared to the traditional BMBI by including smart functions, such as in-electrode local computing capabilities, and availability of cloud connectivity in the system to take the advantage of powerful cloud computation in decision making. In this dissertation work, we designed and developed an innovative form of Smart Brain-Machine-Brain Interface (SBMBI) and studied its feasibility in different biomedical applications. With respect to power management, the SBMBI is a semi-passive platform. The communication module is fully passive—powered by RF harvested energy; whereas, the signal processing core is battery-assisted. The efficiency of the implemented RF energy harvester was measured to be 0.005%. One of potential applications of SBMBI is to configure a Smart Deep-Brain-Stimulator (SDBS) based on the general SBMBI platform. The SDBS consists of brain-implantable smart electrodes and a wireless-connected external controller. The SDBS electrodes operate as completely autonomous electronic implants that are capable of sensing and recording neural activities in real time, performing local processing, and generating arbitrary waveforms for neuro-stimulation. A bidirectional, secure, fully-passive wireless communication backbone was designed and integrated into this smart electrode to maintain contact between the smart electrodes and the controller. The standard EPC-Global protocol has been modified and adopted as the communication protocol in this design. The proposed SDBS, by using a SBMBI platform, was demonstrated and tested through a hardware prototype. Additionally the SBMBI was employed to develop a low-power wireless ECG data acquisition device. This device captures cardiac pulses through a non-invasive magnetic resonance electrode, processes the signal and sends it to the backend computer through the SBMBI interface. Analysis was performed to verify the integrity of received ECG data

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    A self-powered single-chip wireless sensor platform

    Get PDF
    Internet of things” require a large array of low-cost sensor nodes, wireless connectivity, low power operation and system intelligence. On the other hand, wireless biomedical implants demand additional specifications including small form factor, a choice of wireless operating frequencies within the window for minimum tissue loss and bio-compatibility This thesis describes a low power and low-cost internet of things system suitable for implant applications that is implemented in its entirety on a single standard CMOS chip with an area smaller than 0.5 mm2. The chip includes integrated sensors, ultra-low-power transceivers, and additional interface and digital control electronics while it does not require a battery or complex packaging schemes. It is powered through electromagnetic (EM) radiation using its on-chip miniature antenna that also assists with transmit and receive functions. The chip can operate at a short distance (a few centimeters) from an EM source that also serves as its wireless link. Design methodology, system simulation and optimization and early measurement results are presented

    Active and passive wavelength filters for silicon photonic integrated spectrometers

    Get PDF
    corecore