1,560 research outputs found

    Low Power Adaptive Circuits: An Adaptive Log Domain Filter and A Low Power Temperature Insensitive Oscillator Applied in Smart Dust Radio

    Get PDF
    This dissertation focuses on exploring two low power adaptive circuits. One is an adaptive filter at audio frequency for system identification. The other is a temperature insensitive oscillator for low power radio frequency communication. The adaptive filter is presented with integrated learning rules for model reference estimation. The system is a first order low pass filter with two parameters: gain and cut-off frequency. It is implemented using multiple input floating gate transistors to realize online learning of system parameters. Adaptive dynamical system theory is used to derive robust control laws in a system identification task. Simulation results show that convergence is slower using simplified control laws but still occurs within milliseconds. Experimental results confirm that the estimated gain and cut-off frequency track the corresponding parameters of the reference filter. During operation, deterministic errors are introduced by mismatch within the analog circuit implementation. An analysis is presented which attributes the errors to current mirror mismatch. The harmonic distortion of the filter operating in different inversion is analyzed using EKV model numerically. The temperature insensitive oscillator is designed for a low power wireless network. The system is based on a current starved ring oscillator implemented using CMOS transistors instead of LC tank for less chip area and power consumption. The frequency variance with temperature is compensated by the temperature adaptive circuits. Experimental results show that the frequency stability from 5°C to 65°C has been improved 10 times with automatic compensation and at least 1 order less power is consumed than published competitors. This oscillator is applied in a 2.2GHz OOK transmitter and a 2.2GHz phase locked loop based FM receiver. With the increasing needs of compact antenna, possible high data rate and wide unused frequency range of short distance communication, a higher frequency phase locked loop used for BFSK receiver is explored using an LC oscillator for its capability at 20GHz. The success of frequency demodulation is demonstrated in the simulation results that the PLL can lock in 0.5μs with 35MHz lock-in range and 2MHz detection resolution. The model of a phase locked loop used for BFSK receiver is analyzed using Matlab

    Mitigating impacts of workload variation on ring oscillator-based thermometers.

    Get PDF
    Thermal issues have resulted in growing concerns among industries fabricating semiconductor devices such as Chip Multiprocessors (CMP) and reconfigurable hardware devices. To reduce passive cooling costs and eliminate the need to package for worst-case temperatures, dynamic thermal management (DTM) techniques are being devised to combat thermal effects. Reliable runtime measurement of device temperature is necessary for implementing DTM techniques. Ring oscillators have often been used for on-chip Field Programmable Gate Array (FPGA) temperature measurement due to their strong linear temperature dependence and compact design using available spare reconfigurable resources. A major problem in using ring oscillators to measure temperature, however, is that their frequency of oscillation is affected by changes in device core voltage and current distribution, induced by changes in application workload. The need, then, is to have a workload-compensated ring oscillator-based thermometer for reconfigurable devices. This work performs a characterization of the ideal as well as non-ideal effects of workload variation on ring oscillator frequency response. Where non-ideal refers to impacts on ring oscillator oscillation frequency due to phenomena other than the workload\u27s impact on device temperature. The data obtained from this characterization is used to compensate for these non-ideal effects. A complete hardware-software solution is implemented to collect temperature and power related data along with ring oscillator frequency response to varying workload configurations. The characterization results show an error of approximately 1°C in the estimated temperature for every 8.6mA change in current drawn from the supply on a Xilinx Virtex-5 LX110T FPGA, with respect to the current draw measured while running a baseline workload during thermometer calibration. This lead to a maximum error of ∼74°C for the workloads evaluated. The compensation technique implemented is shown to reduce this error to ∼2°C. In addition, a potential issue with using the Xilinx System Monitor to measure die temperature at high temperatures is observed. The System Monitor reported temperatures show a deviation of up to 20°C from temperatures obtained using a case-mounted thermal probe

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Digital controlled oscillator (DCO) for all digital phase-locked loop (ADPLL) – a review

    Get PDF
    Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL

    A 192×128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology

    Get PDF
    A 192 X 128 pixel single photon avalanche diode (SPAD) time-resolved single photon counting (TCSPC) image sensor is implemented in STMicroelectronics 40-nm CMOS technology. The 13% fill factor, 18.4\,\,\mu \text {m} \times 9.2\,\,\mu \text{m} pixel contains a 33-ps resolution, 135-ns full scale, 12-bit time-to-digital converter (TDC) with 0.9-LSB differential and 5.64-LSB integral nonlinearity (DNL/INL). The sensor achieves a mean 219-ps full-width half-maximum (FWHM) impulse response function (IRF) and is operable at up to 18.6 kframes/s through 64 parallelized serial outputs. Cylindrical microlenses with a concentration factor of 3.25 increase the fill factor to 42%. The median dark count rate (DCR) is 25 Hz at 1.5-V excess bias. A digital calibration scheme integrated into a column of the imager allows off-chip digital process, voltage, and temperature (PVT) compensation of every frame on the fly. Fluorescence lifetime imaging microscopy (FLIM) results are presented

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Time-encoding analog-to-digital converters : bridging the analog gap to advanced digital CMOS? Part 2: architectures and circuits

    Get PDF
    The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs: they remain large in area and power consumption in spite of process scaling. Analog circuits based on time encoding [1], [2], where the signal information is encoded in the waveform transitions instead of its amplitude, have been developed to overcome these issues. While part one of this overview article [3] presented the basic principles of time encoding, this follow-up article describes and compares the main time-encoding architectures for analog-to-digital converters (ADCs) and discusses the corresponding design challenges of the circuit blocks. The focus is on structures that avoid, as much as possible, the use of traditional analog blocks like operational amplifiers (opamps) or comparators but instead use digital circuitry, ring oscillators, flip-flops, counters, an so on. Our overview of the state of the art will show that these circuits can achieve excellent performance. The obvious benefit of this highly digital approach to realizing analog functionality is that the resulting circuits are small in area and more compatible with CMOS process scaling. The approach also allows for the easy integration of these analog functions in systems on chip operating at "digital" supply voltages as low as 1V and lower. A large part of the design process can also be embedded in a standard digital synthesis flow

    Low power CMOS IC, biosensor and wireless power transfer techniques for wireless sensor network application

    Get PDF
    The emerging field of wireless sensor network (WSN) is receiving great attention due to the interest in healthcare. Traditional battery-powered devices suffer from large size, weight and secondary replacement surgery after the battery life-time which is often not desired, especially for an implantable application. Thus an energy harvesting method needs to be investigated. In addition to energy harvesting, the sensor network needs to be low power to extend the wireless power transfer distance and meet the regulation on RF power exposed to human tissue (specific absorption ratio). Also, miniature sensor integration is another challenge since most of the commercial sensors have rigid form or have a bulky size. The objective of this thesis is to provide solutions to the aforementioned challenges

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided
    • …
    corecore