4,764 research outputs found

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    Random transverse-field Ising chain with long-range interactions

    Get PDF
    We study the low-energy properties of the long-range random transverse-field Ising chain with ferromagnetic interactions decaying as a power alpha of the distance. Using variants of the strong-disorder renormalization group method, the critical behavior is found to be controlled by a strong-disorder fixed point with a finite dynamical exponent z_c=alpha. Approaching the critical point, the correlation length diverges exponentially. In the critical point, the magnetization shows an alpha-independent logarithmic finite-size scaling and the entanglement entropy satisfies the area law. These observations are argued to hold for other systems with long-range interactions, even in higher dimensions.Comment: 6 pages, 4 figure

    Strong Griffiths singularities in random systems and their relation to extreme value statistics

    Full text link
    We consider interacting many particle systems with quenched disorder having strong Griffiths singularities, which are characterized by the dynamical exponent, z, such as random quantum systems and exclusion processes. In several d=1 and d=2 dimensional problems we have calculated the inverse time-scales, t^{-1}, in finite samples of linear size, L, either exactly or numerically. In all cases, having a discrete symmetry, the distribution function, P(t^{-1},L), is found to depend on the variable, u=t^{-1}L^{z/d}, and to be universal given by the limit distribution of extremes of independent and identically distributed random numbers. This finding is explained in the framework of a strong disorder renormalization group approach when, after fast degrees of freedom are decimated out the system is transformed into a set of non-interacting localized excitations. The Frechet distribution of P(t^{-1},L) is expected to hold for all random systems having a strong disorder fixed point, in which the Griffiths singularities are dominated by disorder fluctuations.Comment: 11 pages, 11 figure

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∌2 particles/m 2 is required to achieve 100% convergence success for large-scale (∌100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    Absence of Phase Transition for Antiferromagnetic Potts Models via the Dobrushin Uniqueness Theorem

    Full text link
    We prove that the qq-state Potts antiferromagnet on a lattice of maximum coordination number rr exhibits exponential decay of correlations uniformly at all temperatures (including zero temperature) whenever q>2rq > 2r. We also prove slightly better bounds for several two-dimensional lattices: square lattice (exponential decay for q≄7q \ge 7), triangular lattice (q≄11q \ge 11), hexagonal lattice (q≄4q \ge 4), and Kagom\'e lattice (q≄6q \ge 6). The proofs are based on the Dobrushin uniqueness theorem.Comment: 32 pages including 3 figures. Self-unpacking file containing the tex file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 ps file

    Critical behavior and entanglement of the random transverse-field Ising model between one and two dimensions

    Get PDF
    We consider disordered ladders of the transverse-field Ising model and study their critical properties and entanglement entropy for varying width, w≀20w \le 20, by numerical application of the strong disorder renormalization group method. We demonstrate that the critical properties of the ladders for any finite ww are controlled by the infinite disorder fixed point of the random chain and the correction to scaling exponents contain information about the two-dimensional model. We calculate sample dependent pseudo-critical points and study the shift of the mean values as well as scaling of the width of the distributions and show that both are characterized by the same exponent, Îœ(2d)\nu(2d). We also study scaling of the critical magnetization, investigate critical dynamical scaling as well as the behavior of the critical entanglement entropy. Analyzing the ww-dependence of the results we have obtained accurate estimates for the critical exponents of the two-dimensional model: Îœ(2d)=1.25(3)\nu(2d)=1.25(3), x(2d)=0.996(10)x(2d)=0.996(10) and ψ(2d)=0.51(2)\psi(2d)=0.51(2).Comment: 10 pages, 9 figure

    Ensemble renormalization group for disordered systems

    Full text link
    We propose and study a renormalization group transformation that can be used also for models with strong quenched disorder, like spin glasses. The method is based on a mapping between disorder distributions, chosen such as to keep some physical properties (e.g., the ratio of correlations averaged over the ensemble) invariant under the transformation. We validate this ensemble renormalization group by applying it to the hierarchical model (both the diluted ferromagnetic version and the spin glass version), finding results in agreement with Monte Carlo simulations.Comment: 7 pages, 10 figure

    Strong-randomness infinite-coupling phase in a random quantum spin chain

    Get PDF
    We study the ground-state phase diagram of the Ashkin-Teller random quantum spin chain by means of a generalization of the strong-disorder renormalization group. In addition to the conventional paramagnetic and ferromagnetic (Baxter) phases, we find a partially ordered phase characterized by strong randomness and infinite coupling between the colors. This unusual phase acts, at the same time, as a Griffiths phase for two distinct quantum phase transitions both of which are of infinite-randomness type. We also investigate the quantum multi-critical point that separates the two-phase and three-phase regions; and we discuss generalizations of our results to higher dimensions and other systems.Comment: 9 pages, 6 eps figures, final version as publishe

    Correlation amplitude and entanglement entropy in random spin chains

    Get PDF
    Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-state behavior of the average time-independent spin-spin correlation function C(l)=\upsilon l^{-\eta}. In addition to the well-known universal (disorder-independent) power-law exponent \eta=2, we find interesting universal features displayed by the prefactor \upsilon=\upsilon_o/3, if l is odd, and \upsilon=\upsilon_e/3, otherwise. Although \upsilon_o and \upsilon_e are nonuniversal (disorder dependent) and distinct in magnitude, the combination \upsilon_o + \upsilon_e = -1/4 is universal if C is computed along the symmetric (longitudinal) axis. The origin of the nonuniversalities of the prefactors is discussed in the renormalization-group framework where a solvable toy model is considered. Moreover, we relate the average correlation function with the average entanglement entropy, whose amplitude has been recently shown to be universal. The nonuniversalities of the prefactors are shown to contribute only to surface terms of the entropy. Finally, we discuss the experimental relevance of our results by computing the structure factor whose scaling properties, interestingly, depend on the correlation prefactors.Comment: v1: 16 pages, 15 figures; v2: 17 pages, improved discussions and statistics, references added, published versio
    • 

    corecore