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We consider disordered ladders of the transverse-field Ising model and study their critical prop-
erties and entanglement entropy for varying width, w ≤ 20, by numerical application of the strong
disorder renormalization group method. We demonstrate that the critical properties of the ladders
for any finite w are controlled by the infinite disorder fixed point of the random chain and the
correction to scaling exponents contain information about the two-dimensional model. We calculate
sample dependent pseudo-critical points and study the shift of the mean values as well as scal-
ing of the width of the distributions and show that both are characterized by the same exponent,
ν(2d). We also study scaling of the critical magnetization, investigate critical dynamical scaling
as well as the behavior of the critical entanglement entropy. Analyzing the w-dependence of the
results we have obtained accurate estimates for the critical exponents of the two-dimensional model:
ν(2d) = 1.25(3), x(2d) = 0.996(10) and ψ(2d) = 0.51(2).

I. INTRODUCTION

In nature there are materials, which are in a way be-
tween two integer dimensions, such as they are built from
(d − 1)-dimensional layers having a finite width, w. Ex-
amples are thin films1, magnetic multilayers2 or ladders
of quantum spins3. One interesting question for such
multilayer systems is the properties of critical fluctua-
tions, when the linear extent of the layers, L, goes to
infinity. If the system is classical having thermal fluctu-
ations, finite-size scaling theory4,5 can be applied. One
basic observation of this theory is that for any finite w
the critical behavior is controlled by the fixed point of
the (d− 1)-dimensional system, but the scaling functions
in terms of the variable, w/L, involve also the critical
exponents of the d-dimensional system. For example the
critical points, Tc(w), measured at a finite width, w, ap-
proach the true d-dimensional critical point, Tc ≡ Tc(∞),
as

Tc − Tc(w) ∼ w−1/νs , (1)

where the shift exponent, νs, generally corresponds to
the correlation-length exponent, ν, in the d-dimensional
system.
In a quantum system having a quantum critical point

at zero temperature, T = 0, by varying a control pa-
rameter, θ, the dimensional cross-over is a more subtle
problem. If the d-dimensional critical quantum system is
isomorphic with a (d+ 1)-dimensional classical system6,
then results of finite-size scaling can be transferred to the
quantum system, too. This is the case, e.g. for the quan-
tum critical point of the d-dimensional transverse-field
Ising model, which is equivalent to the critical point of
the classical (d + 1)-dimensional Ising model. However,
the situation is more complicated for antiferromagnetic
models with continuous symmetry, such as for Heisenberg

antiferromagnetic spin ladders. In this case the form of
low-energy excitations could sensitively depend on the
value of w: if the ladder contains even number of legs
there is a gap, whereas for odd number of legs the sys-
tem is gapless3. In the following for quantum systems we
restrict ourselves to models with a discrete symmetry,
such as to the transverse-field Ising model.
In disordered systems, in which besides deterministic

(thermal or quantum) fluctuations there are also disor-
der fluctuations in a sample of finite width one can define
and measure a sample-dependent pseudo-critical point,
Tc(w) (or θc(w)), and study its distribution7. In particu-
lar one concerns the shift of the mean value, Tc(w), and
the scaling of the width of the distribution, ∆Tc(w). In
this case besides the shift exponent, νs, which is defined
analogously to Eq.(1) one should determine the width ex-
ponent, νw, too, which is defined by the scaling relation:

∆Tc(w) ∼ w−1/νw . (2)

According to renormalization group theory8 the finite-
size scaling behavior of random classical systems depends
on the relevance or irrelevance of the disorder9. If the
disorder represents an irrelevant perturbation at the pure
system’s fixed point, which happens if the correlation
length exponent in the pure system satisfies νp > 2/d,
than for the disordered system we have νs = νp and νw =
2/d and the thermodynamic quantities at the fixed point
are self-averaging. On the contrary for relevant disorder,
which happens for νp < 2/d, there is a new conventional

random fixed point with a correlation-length exponent,
ν ≥ 2/d10, and we have νs = νw = ν. In this fixed point
there is a lack of self-averaging. These predictions, which
have been debated for some time11, were checked later for
various models7,8,12,13,14.
For quantum systems quenched disorder is perfectly

correlated in the (imaginary) time direction, therefore
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generally it has a more profound effect at a quantum crit-
ical point15. In some cases the critical properties of the
random model are controlled by a so called infinite disor-
der fixed point16, in which the disorder fluctuations play
a completely dominant rǒle over quantum fluctuations.
This happens, among others for the random transverse-
field Ising model, as shown by analytical results16 in 1d
and numerical results17,18,19,20 in 2d. Finite-size scaling
has been tested for the 1d model and a new scenario is
observed21. The finite-size transition points, denoted by
θc(L) in a system of length, L, are shown to be charac-
terized by two different exponents, νs < νw. This means,
that asymptotically ∆θc(L)/[θc(∞)−θc(L)] → ∞, which
is just the opposite limit as known for irrelevant disorder.

In the present paper we go to the two-dimensional
problem and study the finite-size scaling properties of
ladders of random transverse-field Ising models. For
this investigations we use a numerical implementation
of the so called strong disorder renormalization group
method22. As in 2d this method is expected to be asymp-
totically exact in large scales. In the numerical imple-
mentation of the method we have used efficient com-
puter algorithms and in this way we could treat ladders
with a large number of sites: we went up to lengths
L = 4096 for w = 20 legs and used 4 × 104 random
samples. Our aim with these investigations is threefold.
First, we want to clarify the form of finite-size scaling
valid for this random quantum model. Second, using
the appropriate form of the scaling Ansatz we want to
calculate estimates for the critical exponents of the 2d
model. Previous studies17,18,19,20,23 in this respect have
quite large error bars and we want to increase the ac-
curacy of the estimates considerably. Our third aim is
to calculate also the entanglement entropy24 in the lad-
der geometry and study its cross-over behavior between
one25 and two dimensions26,27.

The structure of the rest of the paper is the follow-
ing. The model and the method of the calculation is pre-
sented in Sec. II. In Sec. III finite-size transition points
are calculated and their distribution (shift and width)
is analyzed. In Sec. IV we present calculations at the
critical point about the magnetization and the dynam-
ical scaling behavior. Results about the entanglement
entropy are presented in Sec.V. Our paper is closed by a
discussion.

II. MODEL AND METHOD

A. Random transverse-field Ising ladder

We consider the random transverse-field Ising model
in a ladder geometry in which the sites, i and j, are
taken from a strip of the square lattice of length, L, and
width, w. We use periodic boundary conditions in both

directions. The model is defined by the Hamiltonian:

H = −
∑

〈ij〉

Jijσ
x
i σ

x
j −

∑

i

hiσ
z
i (3)

in terms of the Pauli-matrices, σx,zi . Here the first sum
runs over nearest neighbor sites and the Jij couplings and
the hi transverse fields are independent random numbers,
which are taken from the distributions, p(J) and q(h),
respectively. For concreteness we use box-like distribu-
tions: p(J) = 1, for 0 ≤ J ≤ 1 and p(J) = 0, for J > 1;
q(h) = 1/h0, for 0 ≤ h ≤ h0 and q(h) = 0, for h > h0.
We consider the system at T = 0 and use θ = lnh0 as
the quantum control parameter.

In the thermodynamic limit, L → ∞, the system in
Eq.(3) displays a paramagnetic phase, for θ > θc(w), and
a ferromagnetic phase, for θ < θc(w). In between there
is a random quantum critical point at θ = θc(w) and we
are going to study its properties for various widths, w.

B. Strong disorder renormalization group method

The model is studied by the strong disorder renor-
malization group method22, which has been introduced
by Ma, Dasgupta and Hu28 and later developed by D.
Fisher16 and others. In this method the largest local
term in the Hamiltonian (either a coupling or a trans-
verse field) is successively eliminated and at the same
time new terms are generated between remaining sites.
If the largest term is a coupling, say J2,3 = Ω connect-
ing sites 2 and 3, (Ω being the energy-scale at the given
RG step), then after renormalization the two sites form
a spin cluster with an effective moment µ̃2,3 = µ2 + µ3,
where in the starting situation each spin has unit mo-
ment, µi = 1. The spin cluster is put in an effective
transverse field of strength: h̃2,3 ≈ h2h3/J2,3, which is
obtained in second order perturbation calculation. On
the other hand, if the largest local term is a transverse-
field, say h2 = Ω, then site 2 is eliminated and new cou-
plings are generated between each pairs of spins, which
are nearest neighbors to 2. If say k and l are nearest
neighbor spins to 2, than the new coupling connecting
them is given by: J̃k,l ≈ J2,kJ2,l/h2, also in second order
perturbation calculation. If the sites k and l are already
connected by a coupling, Jk,l 6= 0, than for the renormal-

ized coupling we take max[Jk,l, J̃k,l]. This last step is
justified if the renormalized couplings have a very broad
distribution, which is indeed the case at infinite disorder
fixed points. The renormalization is repeated: at each
step one more site is eliminated and the energy scale is
continuously lowered. For a finite system the renormal-
ization is stopped at the last site, where we keep the
energy-scale, Ω∗, and the total moment, µ∗, as well as
the structure of the clusters.
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C. Known exact results in the chain geometry

The renormalization has special characters in the chain
geometry, i.e. with w = 1. In this case the topol-
ogy of the system stays invariant under renormalization
and the couplings and the transverse fields are dual vari-
ables. From this follows that at the quantum critical
point the couplings and the transverse fields are deci-
mated symmetrically, thus the critical point is located at
θc(1) = 029. The RG equations for the distribution func-
tion of the couplings and that of the transverse fields can
be written in closed form as an integro-differential equa-
tion, which has been solved analytically both at the crit-
ical point16 and in the off-critical region, in the so-called
Griffiths-phase30. Here we list the main results.

The energy-scale, Ω, and the length-scale, L, are re-
lated as:

ln(Ω0/Ω) ∼ Lψ , (4)

with an exponent: ψ(1d) = 1/2. (Here L can be the
size of a finite system and Ω0 is a reference energy scale.)
The average spin-spin correlation function is defined as
G(r) = [〈σxi σxi+r〉]av, where 〈. . . 〉 denotes the ground-
state average and [. . . ]av stands for the averaging over
quenched disorder. In the vicinity of the critical point
G(r) has an exponential decay:

G(r) ∼ exp(−r/ξ) , (5)

in which the correlation length, ξ, is divergent at the
critical point as:

ξ ∼ |θ − θc|−ν , (6)

with ν(1d) = 2. At the critical point the average corre-
lations have a power-law decay:

G(r) ∼ r−2x, θ = θc , (7)

with a decay exponent:

x(1d) = (3−
√
5)/4 . (8)

The average cluster moment, µ, is related to the energy-
scale, Ω as:

µ ∼ [ln(Ω0/Ω)]
φ , (9)

with φ(1d) = (1 +
√
5)/2. The average cluster moment

can be expressed also with the size as µ ∼ Ldf , where
the fractal dimension of the cluster is expressed by the
other exponents as:

df = φψ = d− x , (10)

with d = 1.

III. FINITE-SIZE CRITICAL POINTS

A. Results in the chain geometry

In the chain geometry finite-size critical points are
studied in Ref.21, in which they are located by different
methods, which all are based on the free-fermion map-
ping of the problem31. The finite-size critical points are
shown to satisfy the micro-canonical condition:

L∑

i=1

ln Ji =

L∑

i=1

lnhi , (11)

from which follows that the distribution of θc(L) is
Gaussian with zero mean and with a mean deviation of
∆θc(L) ∼ L−1/2. Consequently the width-exponent of
the distribution is given by:

νw = ν(1d) = 2 . (12)

On the other hand the shift-exponent is given by:

νs = 1 , (13)

although in some cases (c.f. for periodic boundary con-
ditions) the prefactor of the scaling function can be van-
ishing.

B. The doubling method

In the ladder geometry, i.e. for w ≥ 2, the free-
fermionic mapping is no longer valid, therefore new meth-
ods have to be utilized to locate pseudo-critical points.
Here we used the doubling method combined with the
strong disorder renormalization group.
In the doubling procedure14 for a given random sam-

ple (α) of length L and width w, we construct a repli-
cated sample (2α) of length 2L and width w by gluing
two copies of (α) together and study the ratio of the
magnetizations: rm(α,L,w) = m(2α, 2L,w)/m(α,L,w),
which are calculated by the strong disorder renormaliza-
tion group method. In Fig.1 we illustrate the θ depen-
dence of the total magnetic moments, µ(2α, 2L,w) and
µ(α,L,w), for a given sample of a w = 2-leg L = 128
ladder. The corresponding ratio of the magnetizations,
rm(α,L,w), is shown in the upper inset of this figure. It
is seen, that in the ordered phase: θ < θc(α,L,w) this
ratio approaches rm(α,L,w) → 1. On the other hand
in the disordered phase: θ > θc(α,L,w) the magnetiza-
tions approach their minimal values, which in the SDRG
method can be 1/2L and 1/L, respectively, thus we have
rm(α,L,w) → 1/2. In between there is a sudden change
in the value of this ratio, which can be used to define a
sample-dependent pseudo-critical point, θc(α,L,w).
There is another possibility, if we consider the ratio

of the two gaps: rΩ(α,L,w) = Ω(2α, 2L,w)/Ω(α,L,w),
which are also calculated by the strong disorder renor-
malization group method. In Fig.1 we show the two
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log-gaps, − logΩ(2α, 2L,w) and − logΩ(α,L,w), for the
same sample as before and the corresponding ratio,
rΩ(α,L,w), is put in the upper inset of this figure. It is
seen that this ratio in the ordered phase, θ < θc(α,L,w),
approaches rΩ(α,L,w) → 0 and in the disordered phase:
θ > θc(α,L,w), goes to rΩ(α,L,w) → 1. In between
this ratio has a quick variation and we can fix the point
where rΩ(α,L,w) = 1/2 to define a sample-dependent
pseudo-critical point, θc(α,L,w).

C. Numerical results

1. Comparison of the two definitions

In the doubling method we have calculated pseudo-
critical points by using both ratios. We have observed,

that for a given sample θ
(Ω)
c calculated from the ratio of

the gaps is always somewhat smaller, than θ
(m)
c , which

is obtained from the ratio of the magnetizations. This
is illustrated in the upper inset of Fig.1 for a given sam-
ple. We have also calculated for several realizations the

ratio of the two pseudo-critical points, θ
(Ω)
c /θ

(m)
c , which

is shown in the lower inset of Fig.1 as a function of θ
(m)
c

for the w = 10 leg ladder for various lengths, L = 32, 64
and 128. The relative difference between the two pseudo-
critical points is indeed vary small, it is of the order of
10−3 and this is decreasing with increasing L and w. In
the following we restrict ourselves to those pseudo-critical
points, which are calculated from the ratio of the magne-
tization and which have a relative precision of 10−4 for
each sample.

2. Distribution of finite-size critical points

We have calculated the distribution of pseudo-critical
points for ladders with a fixed number of legs, 1 ≤ w ≤
20, for varying lengths, L = 2l, with l = 5, 6, . . . , 10. In-
deed, for the largest values of L the relation, w/L≪ 1 is
well satisfied. For the w = 10 leg ladder the distribution
of the θc values for various lengths are shown in Fig.2,
which are obtained for 104 realizations for each cases. As
seen in this figure the width of the distribution is decreas-
ing with increasing L and there is only a weak shift of
the position of the maximum. The distributions some-
what deviate from Gaussians, they are asymmetric, as
can be seen in the log-lin plot in the inset of Fig.2. With
increasing L, however, the skewness of the distribution is
decreasing, which is in agreement with the expectation,
that in the w/L→ 0 limit we get back the corresponding
results for chains.
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FIG. 1: (Color online) SDRG results for the total mag-
netic moments, µ(2α) and µ(α), as well as for the log-gaps,
− log Ω(2α) and − log Ω(α), as a function of the control pa-
rameter, θ, for a given realization (α) of a w = 2-leg L = 128
ladder and its double (2α), see text. Upper inset: ratio of the
magnetizations, rm, and that of the gaps, rΩ, as a function
of θ (log-lin scale) in the vicinity of the finite-size transition
points. The finite-size critical point for rm is given at the
jump, for rΩ it is located where rΩ = 1/2. Lower inset: Ratio

of the two pseudo-critical points, η = θ
(Ω)
c /θ

(m)
c as a function

of θ
(m)
c for the w = 10 leg ladder for various lengths and for

500 realizations.
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FIG. 2: (Color online) Distribution of the pseudo-critical
points, θc, for the w = 10 leg ladder for various lengths and
for 104 realizations. In the inset in a log-lin plot deviations
from the Gaussian distributions are seen, which however are
decreasing with increasing L.

3. ”True” critical points for ladders

For a fixed value of the number of legs, w, we have
calculated the mean value of the pseudo-critical points.
We have observed that the L-dependence of θc(w,L) be-
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TABLE I: Quantum critical points of ladders of the random
transverse-field Ising model, θc, and the asymptotic prefactor
of the standard deviation in Eq.(17), a, for different number
of legs.

w θc a w θc a

1 0.00021(30) 1.413(8) 11 1.39399(20) 0.728(5)

2 0.64418(15) 0.997(1) 12 1.41211(10) 0.709(3)

3 0.94736(10) 0.925(5) 13 1.42778(10) 0.696(2)

4 1.08059(15) 0.881(2) 14 1.44165(20) 0.681(4)

5 1.16859(10) 0.844(5) 15 1.45397(10) 0.669(4)

6 1.23207(15) 0.815(5) 16 1.46472(15) 0.658(4)

7 1.27962(15) 0.807(4) 17 1.47445(10) 0.650(4)

8 1.31727(20) 0.781(3) 18 1.48332(10) 0.640(1)

9 1.34787(10) 0.763(3) 19 1.49095(30) 0.626(4)

10 1.37270(15) 0.733(2) 20 1.49855(15) 0.620(2)

comes weaker and weaker with increasing L, which is
in agreement with the fact, that the system approaches
more and more the chain geometry. Due to this one can
obtain accurate estimates in the thermodynamic limit for
the ”true” critical points of ladders, which are listed in
Table I for different number of legs. Here the errors are
merely due to disorder fluctuations since for L ≥ 192 the
finite length effects are negligible.
Here we also list our estimate for the chain, w = 1,

which agrees within the error of the calculation with the
exact result: θc(1) = 0 and a(1) =

√
2 (see Sec.III C 4).
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FIG. 3: (Color online) Critical points of the ladders for vary-
ing number of legs, w, and the extrapolation curve (broken
(green) line) for large w. Upper inset: estimates of the in-
verse of the local shift exponent, 1/νs(w), calculated through
Eq.(14). The broken (green) straight line indicates the ex-
trapolation through 1/w. Lower inset: ratio of the scaled
difference of the critical points and the scaled standard devi-
ations as a function of 1/w(see text). The horizontal broken
(green) line at rs = 1. indicates a value which is close to the
expected asymptotic behavior.

These data approach the critical point in the 2d sys-

tem, θc(2d), see Fig.3. Here the corrections for large-w
are expected to have a power-law form, and analogously
to Eq.(1), it contains the shift exponent, νs, of the 2d
system.
Estimates for the effective (w-dependent) values of the

shift exponent are obtained from the ratio of the second
and the first finite differences:

1

νs(w)
=

∆2θc(w)

∆1θc(w)
w − 1 , (14)

which are calculated at the central point of five-point
fits. The effective exponents are given in the upper inset
of Fig.3, which are extrapolated as 1/νs(2d) = 0.81(10),
thus we obtain:

νs(2d) = 1.24(15) . (15)

4. Scaling of the width of the distribution

We have measured the standard deviation of the distri-
bution of the pseudo-critical points, ∆θc(w,L), for lad-
ders with w legs and with a varying length, L. This
quantity is expected to scale with the length as:

∆θc(w,L) = L−1/νw(2d)σ(w/L) , (16)

where the scaling function, σ(y), behaves for small argu-
ments as: σ(y) ∼ y−1/νw(2d)+1/νw(1d). From this follows,
that for finite widths we have:

∆θc(w,L) = L−1/νw(1d)a(w) , (17)

with a prefactor, a(w), which behaves for large w as
a(w) ∼ wǫ, with an exponent ǫ = −1/νw(2d)+1/νw(1d).
We have checked this scenario by analyzing the data for
∆θc(w,L). First, for a fixed w we have fitted a func-
tion a(w)L−ω, with a free parameter, ω. We have found
that for each widths, 1 ≤ w ≤ 20, the exponent ω agrees
with 1/νw(1d) = 0.5, within a few thousands of error, as
illustrated in Fig.4.
In the next step we have fixed the value of ω = 0.5

and estimated the limiting value of ∆θc(w,L)L
0.5 for

large L, which is denoted by a(w). These limiting val-
ues are presented in Table I, which are analyzed for large
w. As seen in the upper inset of Fig. 4 in a log-log
plot the a(w) values are asymptotically on a straight
line. We have calculated effective, w-dependent expo-
nents: ǫ(w) = log(a(w)/a(w/2))/ log 2, which are pre-
sented in the lower inset of Fig.4 as a function of 1/w.
These effective exponents have a weak w-dependence and
we estimate its limiting value as ǫ = −0.30(2). With this
we have for the width exponent in 2d:

νw(2d) = 1.25(3) . (18)

Closing this section we try to decide in a direct way
about the relation between the two exponents, νs(2d) and
νw(2d). For this we form the scaled difference: dθc(w) =
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FIG. 4: (Color online) Scaling of the width of the distribution
of the pseudo-critical points, ∆θc(w,L), with L for different
number of legs, w. In a log-log plot the slope of the curves
are compatible with the theoretical prediction, νw(1d) = 1/2,
which is indicated by a full straight line. In the upper inset
the limiting value of the prefactor, a(w) is shown as a function
of w in a log-log plot. The dashed (green) straight line has
a slope, ǫ = 0.30, as extrapolated from effective exponents in
the lower inset.

∆1θc(w)w (see Eq.(14)), which scales as w−1/νs , as well
as the scaled standard deviation: sa(w) = w−0.5a(w),
which scales as w−1/νw , and form their ratio, rs(w) =
dθc(w)/sa(w). As seen in the lower inset of Fig.3 this
ratio approaches a finite value which can be estimated
as rs = 1.01(2). Thus we can conclude that at the infi-
nite disorder fixed point of the 2d random transverse-field
Ising model the shift and the width exponents are equal
and they correspond to the correlation length exponent
of the model.

Using the best estimate for νs(2d) = νw(2d) and
including the first analytic correction to scaling term:
θc = θc(w) − Aw−1/νs(1 + B/w) we fit our data (see
Fig.3) and obtain for the critical point of the 2d system:

θc(2d) = 1.676(5) . (19)

This value is in agreement with the previous estimate,
θc(2d) = 1.680(5), in Ref.[27].

IV. SCALING AT THE CRITICAL POINT

Having estimates for the critical points of random lad-
ders with w legs, θc(w), we have calculated scaling of the
magnetization at the critical point as well as the criti-
cal dynamical scaling. These calculations are made for
lengths up to 212 and for 4× 104 realizations.

A. Magnetization

We have calculated the average total magnetic moment
at the critical point, µc(w,L), for varying lengths, L,
which is expected to scale as:

µc(w,L) = Ldf(2d)µ̃c(w/L) , (20)

with a scaling function, which behaves for small argu-
ments as: µ̃c(y) ∼ ydf(2d)−df (1d). Then, for a finite
width, w, we have:

µc(w,L) = Ldf(1d)b(w) , (21)

with a prefactor, which for large w behaves as: b(w) ∼
wκ, with κ = df (2d)− df (1d).
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FIG. 5: (Color online) Scaling of the average total magnetic
moment at the critical point of a ladder with w legs and length
L, µc(w,L). In the log-log plot the slope of the curves are
compatible with the theoretical prediction, df (1d) in Eq.(10),
which is indicated by a full straight line. In the lower inset
the limiting value of the prefactor, b(w) is shown as a function
of w in a log-log plot. The dashed (green) straight line has a
slope, κ = 0.195, as extrapolated from effective exponents in
the upper inset.

The scaling Ansatz in Eq.(21) is checked in Fig.5.
Then, we have calculated the limiting value of
L−df(1d)µc(w,L), which is denoted by b(w) and which
is presented as a function of w in a log-log plot in the
lower inset of Fig.5. Effective, w-dependent exponents
are calculated, which are extrapolated in the upper inset
of Fig.5 giving κ = 0.195(10). Thus the fractal dimension
in 2d is df (2d) = df (1d) + κ and from Eq.(10) we obtain
for the magnetization scaling dimension:

x(2d) = 0.996(10) . (22)

B. Dynamical scaling

At an infinite disorder fixed point there is a special
form of dynamical scaling, as given in Eq.(4). The en-
ergy scale of a sample at the end of the renormalization
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FIG. 6: (Color online) Distribution of the last decimated
log-coupling, λ, (upper panel) and the last decimated log-
transverse field, γ (lower panel) for various lengths, L, for the
w = 10-leg ladder. In the insets the distribution of the scaled
variables: λL−0.5 and γL−0.5, respectively are shown.

can be defined either by the value of the last decimated
(log) coupling − log J̃ = λ or by the last decimated (log)

transverse field − log h̃ = γ. The distribution of λ as well
as γ are shown in Fig.6 in upper and in the lower panel,
respectively, for the w = 10-leg ladder for various values
of the length, L. An appropriate scaling collapse of the
date is observed in terms of the scaling variables, λL−ψ

and γL−ψ, with ψ = ψ(1d) = 1/2, as illustrated in the
insets.

In order to have a more quantitative picture about dy-
namical scaling we consider the mean value: Γ(w,L) =
[γ(w,L)]av and the standard deviation, ∆Γ(w,L) and
similarly, Λ(w,L) = [λ(w,L)]av and ∆Λ(w,L). All these
quantities are expected to scale in the same way, for ex-
ample with Γ(w,L) we have:

Γ(w,L) = Lψ(2d)Γ̃(w/L) , (23)

with Γ̃(y) ∼ yψ(2d)−ψ(1d). For a finite width, w, we have

then:

Γ(w,L) = Lψ(1d)g(w) , (24)

with g(w) ∼ wδ for large w with δ = ψ(2d)− ψ(1d).

 0
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 2
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 5  10  15  20

g

w

Γ
∆Γ
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FIG. 7: (Color online) Scaling functions for typical energy-

scales: g(w) = limL→∞G(w,L)L−1/2, in which G(w,L) is
either Γ(w,L), ∆Γ(w,L), Λ(w,L) or ∆Λ(w,L), see text.

We have checked that the scaling form in Eq.(24) is
indeed satisfied for all values of 1 ≤ w ≤ 20 and than
calculated the limiting value of Γ(w,L)L−1/2, which is
denoted by g(w). As illustrated in Fig.7 the scaling func-
tions of the typical energy-scales have only a very weak
w dependence, and we estimate (not shown) a small ex-
ponent: δ = 0.01(2). Thus we have for the ψ exponent
in the 2d model:

ψ(2d) = 0.51(2) . (25)

V. ENTANGLEMENT ENTROPY

In the ladder geometry we consider a block, A, which
contains all the w legs and has a length, ℓ ≪ L. Con-
sequently the block has two parallel lines of width, w,
at which it has contact with the rest of the system, B.
The entanglement of A with B is quantified by the von-
Neumann entropy24:

SA(w, ℓ) = −TrA(ρA log ρA) , (26)

in terms of the reduced density matrix: ρA = TrB|Ψ〉〈Ψ|,
where |Ψ〉 denotes a pure state (in our case the ground
state) of the complete system.
At the critical point of a random quantum system the

properties of which are controlled by an infinite disor-
der fixed point the asymptotic behavior of the entropy
in the large l limit can be obtained by the strong dis-
order renormalization group method. For the random
transverse-field Ising model entanglement between A and
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B are given by such renormalized spin clusters, which
contain sites both in A and in B, and the cluster is elim-
inated at some point of the renormalization25,26,27. Due
to the very broad distribution of the effective couplings
and transverse fields, the cluster at the energy scale of

its decimation is in a so called GHZ entangled state of
the form: 1/

√
2(| ↑↑ . . . ↑〉+ | ↓↓ . . . ↓〉). Each such clus-

ter contribute by an amount of log 2 to the entanglement
entropy, thus calculation of the entropy is equivalent to
a cluster counting problem, which is illustrated in Fig.8.

FIG. 8: (Color online) Structure of the decimated spin clusters at the critical point of a ladder of 20 × 128 sites, which is
devided into two equal blocks the boundary of which is indicated by thick vertical lines. There are three clusters, denoted by
blue, red and green colors, respectively, which contain sites at both blocks and thus result in an entropy 3× log 2.

In the chain geometry the asymptotic behavior of the en-
tropy at the critical point is obtained from the analytical
solution of the RG equations as25:

SA(1, ℓ) ≈
c(1)

3
log ℓ+ k(1) , (27)

where k(1) is a non-universal constant, which depends
on the form of the disorder, whereas the prefactor of
the logarithm, c(1), which is also called as the effec-
tive central charge, is universal and given by: c(1) =
ln 2/2. This result is checked numerically in Ref.[32]. In
the two-dimensional case, which is expected to hold for
w/L = O(1), there are somewhat conflicting numerical
results at the critical point. Lin et al.26 have observed a
double-logarithmic multiplicative factor to the area-law:
SA(ℓ, ℓ) ≈ ℓ log log ℓ whereas later Yu et al.27 argued to
have only a subleading logarithmic term to the area law:
SA(ℓ, ℓ) ≈ aℓ+ b log ℓ+ k.
Here we study numerically the critical ladder systems

with various number of legs and try to identify the cross-
over between one- and two dimensions. To illustrate the
ℓ dependence of the entanglement entropy in Fig.9 we
show SA as a function of log ℓ for different number of
legs for L = 4096. (We have checked, that the asymptotic
results does not change for L = 2048.) The central parts
of the curves are very well linear having approximately
the same slope, which is consistent with the exact result
for the w = 1 chain geometry. Thus we conclude that
the effective central charge, c(w), does not depend on
the number of legs.
In the next step we fix c(w) = ln 2/2, calculate the non-

universal term: k(w, ℓ) = SA(w, ℓ)− ln 2
6 log ℓ and take its

limit, k(w), for large ℓ (but still with ℓ ≪ L). As illus-
trated in the upper inset of Fig.9 the ℓ-dependent correc-
tion term is approximated as log ℓ/ℓ and the asymptotic
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FIG. 9: (Color online) The log-ℓ-dependence of the entan-
glement entropy at the critical point of ladders for different
number of legs, w, and for L = 4096. The linear part of the
curves has approximately the same slope, which is consistent
with ln 2/6, as indicated by a full straight line. Upper in-
set: the non-universal part of the critical entropy, k(w, ℓ), for
the w = 10-leg ladder and its extrapolation for ℓ ≫ w (but
ℓ ≪ L = 4096) with a correction term of ∼ log ℓ/ℓ. Lower
inset: the asymptotic value of the non-universal part of the
critical entropy, k(w), as a function of w. Asymptotically
there is a linear w-dependence, which is shown by a broken
(green) straight line.

non-universal terms, k(w), are shown for different num-
ber of legs in the lower inset of Fig.9. One can see that
starting with the chain, w = 1, first k(w) is decreasing,
has a minimum around w = 3 and then starts to increase.
This increase for large w is approximately linear, we have
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fitted: k(w) = 0.0256(5)w+0.148(5). This linear increase
is compatible with the area law, which should hold for
non-critical systems and for large blocks. Our analysis
can be used to clarify the one- to two-dimensional cross-
over of the entropy in the limit w/ℓ ≪ 1. However, our
data can not be used to make predictions further, for
w/L = O(1), i.e. for the two-dimensional case. For this
one should analyze the occurrent and possibly very weak
w dependence of the prefactor of the linear term of k(w),
which however can not be done with our data, which are
only up to w = 20.

VI. DISCUSSION

In this paper we have studied the critical properties
and the entanglement entropy of random transverse-field
Ising models in the ladder geometry by the strong dis-
order renormalization group method. In our numerical
calculation we went up to w=20 legs and with a length up
to L=4096 for 4× 104 realizations. In principle the sizes
of the systems could have been increased further, but it
was not necessary. With L we have already reached the
limit where no further systematic finite-size effects are
seen. On the other hand for larger values of w we would
have obtained too large errors in calculating quantities,
such as through two-point fit.

First, we have calculated sample dependent finite-size
critical points, which are obtained by the doubling pro-
cedure and the strong disorder renormalization group
method. We have analyzed the shift of the mean value
of the transition points and the width of the distribution
as a function of the number of legs, w, and estimated
the exponents of the 2d model, νs(2d) and νw(2d), re-
spectively. These are found to be identical and given by
the correlation-length exponent of the 2d model. Conse-
quently the scaling behavior of the pseudo-critical points
of the 2d random transverse-field Ising model is in the
same form as for classical and conventional random fixed
points8. In this respect there is a difference with the 1d
model21, in which νs(1d) < νw(1d). For this latter model
probably the free-fermionic character could be the reason
for the different scaling properties. Our estimate for the
correlation length exponent, ν(2d) = 1.25(3), is clearly
larger than the possible limiting value of 2/d, which has
been observed in the 1d model and in some other random
systems11.

Scaling at the critical point for different quantities is
analyzed in a similar way, what we summarize here as
follows. Let us consider a physical observable, A, which
at the critical point has the mean value, A(w,L). This
quantity scales with the critical exponent of the 2dmodel,
α(2d), as:

A(w,L) ∼ Lα(2d)Ã(w/L) (28)

where the scaling function, Ã(y), for small arguments

TABLE II: Numerical estimates of the critical exponents at
the infinite disorder fixed point in 2d. MC: Monte Carlo
simulation; SDRG: numerical strong disorder renormalization
group; CP: Monte Carlo simulation of the 2d random contact
process. The exponents, φ, denoted by an asterisk are calcu-
lated from the scaling relation in Eq.(10).

ψ φ ν x method

0.4(1) 2.5* 1.0 MC17

0.42(6) 2.5(4) 1.07(15) 1.0(1) SDRG18

0.5 2 0.94 SDRG19

0.6 1.7 1.25 0.97 SDRG20

0.51(6) 2.04(28)* 1.20(15) 0.96(2) CP23

0.51(2) 1.97(10)* 1.25(3) 0.996(10) this work

behaves as:

Ã(y) ∼ yα(2d)−α(1d) (29)

where α(1d) is the critical exponent in the 1d model.
Consequently for a finite w, but for L→ ∞, we have

A(w,L) ∼ Lα(1d)a(w) (30)

with a(w) ∼ wω and ω = α(2d) − α(1d). In general we
measure the scaling function a(w) for different widths,
estimate the exponent ω and calculate the critical expo-
nent in 2d as: α(2d) = α(1d) + ω. Since the exponents
in 1d are exactly known and the correction term, ω, is
comparatively small we have obtained quite accurate ex-
ponents in 2d. In the following we compare the estimates
for the different critical exponents in the 2d infinite dis-
order fixed point, which are listed in Table II.
Here besides different numerical strong disorder renor-

malization group results there are also Monte Carlo simu-
lations, both for the random transverse-field Ising model
and for the random contact process. This latter model
is expected to belong to the same universality class33, at
least for strong enough disorder. It is seen in Table II
that our estimates fit to the trend of the previous results
and generally have a somewhat smaller error.
We have also studied the scaling behavior of the en-

tanglement entropy in the ladder geometry. For a fixed
width, w, the entropy is found to grow logarithmically
with the length of the block, ℓ, and the prefactor is found
independent of w. On the other hand the ℓ independent
term of the entropy is found to have a linear w depen-
dence, at least for large enough w, which corresponds to
the are law for this systems.
The investigations presented in this work can be nat-

urally continued for larger and larger widths and ap-
proaching the case, w/L = O(1), which corresponds to
the two-dimensional model. However, with increasing
w the numerical computation becomes more and more
costly. The reason for this is the fact that the con-
nected clusters in the strong disorder renormalization
group method are typically of size w×w, which for large
w becomes fully connected after decimating a small per-
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cent of the transverse fields. The number of further renor-
malization steps grows in a näıve approach as w6, so that
by this method one can not go further than L ∼ 100
or 200 in 2d. To treat larger 2d systems improved al-
gorithms are necessary. Studies in this direction are in
progress.

Acknowledgments

This work has been supported by the Hungarian Na-
tional Research Fund under grant No OTKA K62588,

K75324 and K77629 and by a German-Hungarian ex-
change program (DFG-MTA). We are grateful to P.
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