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Using strong-disorder renormalization group, numerical exact diagonalization, and quantum Monte Carlo
methods, we revisit the random antiferromagnetic XXZ spin-1/2 chain focusing on the long-length and ground-
state behavior of the average time-independent spin-spin correlation function C(/)=v/"". In addition to the
well-known universal (disorder-independent) power-law exponent =2, we find interesting universal features
displayed by the prefactor v=v,/3, if [ is odd, and v=v,/3, otherwise. Although v, and v, are nonuniversal
(disorder dependent) and distinct in magnitude, the combination v,+v,=-1/4 is universal if C is computed
along the symmetric (longitudinal) axis. The origin of the nonuniversalities of the prefactors is discussed in the
renormalization-group framework where a solvable toy model is considered. Moreover, we relate the average
correlation function with the average entanglement entropy, whose amplitude has been recently shown to be
universal. The nonuniversalities of the prefactors are shown to contribute only to surface terms of the entropy.
Finally, we discuss the experimental relevance of our results by computing the structure factor whose scaling

properties, interestingly, depend on the correlation prefactors.

DOI: 10.1103/PhysRevB.76.174425

I. INTRODUCTION

Random low-dimensional quantum spin systems have
been intensively investigated recently. The interplay between
disorder, quantum fluctuations, and correlations generates
low-temperature phase diagrams with exotic phases.! In this
context, one of the most investigated systems is the random
antiferromagnetic (AF) quantum XXZ spin-1/2 chain, whose
Hamiltonian reads

H= 2 Ti(Si ST + 878 + ASiS ). (L.1)

in which i labels the chain sites, S; are the usual spin-1/2
operators, J;’s are positive uncorrelated random variables
drawn from a probability distribution Py(J), and A;’s are an-
isotropy parameters, also random uncorrelated variables.

The clean system, J;=1 and A;=A, is a Tomonaga-
Luttinger liquid for -1 <A =<1, with well-known asymptotic
ground-state correlation functions,??

Co(D) =S}ty = (= D'FIe— Froetne, (1.2)
1
CH() =(SiS3, ) = (- VAV 7e - —— 1.3
() =(SiSip=(=1) ppIy: (1.3)
as [—oo. The clean-system exponent is> 7,.=1

—(arccos A)/ar. At the “free-fermion” point A=0, the prefac-
tors of the leading terms are known exactly,*> being given by
A=1/(27%) and F=~0.14709.° Away from this point (|A]
<1), analytical forms for A and F were derived by Luky-
anov and Zamolodchikov’# and checked numerically later
on.? Furthermore, the constant F , evaluated numerically in
Ref. 9, is at least 1 order of magnitude smaller than F. At the

1098-0121/2007/76(17)/174425(17)

174425-1

PACS number(s): 75.10.Pq, 75.10.Nr, 05.70.Jk

isotropic point A=1, irrelevant operators become marginal,
yielding logarithmic corrections'®!!

1
CE() = CE(D) = (- 1)1(2\77—‘)2,21. (1.4)

For A>1, a spin gap opens and the system enters an
antiferromagnetic Ising phase; otherwise, for A<<-1, the
chain becomes a gapped Ising ferromagnet.

Disorder strongly modifies the behavior in the clean criti-
cal regime. It was shown that even the least amount of dis-
order in J; destabilizes the Tomonaga-Luttinger phase, pro-
vided =1/2<A;<1."? For =1 <A;<-1/2, a finite amount
of disorder is required to destabilize the clean phase. The
low-energy behavior of the random AF spin-1/2 chain then
corresponds to a random-singlet phase, characterized by ac-
tivated dynamical scaling with a universal “tunneling” expo-
nent y=1/2, i.e., length (/) and energy ({)) scales are related
through Q ~ exp(—1"), irrespective of Py(J)."> Moreover, the
transverse and the longitudinal mean spin-spin correlation
functions decay as a power law ~u/~7 for large distances,
both with the same universal exponent 7=2.'>!3 The mean
value of the correlation function is dominated by rare widely
separated spin pairs coupled in strongly correlated singlet
states. The remarkable fact that all correlations (xx, yy, and
zz) decay with the same exponent, irrespective of A, can be
ascribed to the isotropy of the singlet state. In contrast, the
typical value of the correlation function decays as a stretched
exponential ~exp(—[?). These results were obtained by using
the most successful theoretical tool to investigate such sys-
tems, the real-space strong-disorder renormalization-group
(SDRG) method, first introduced in Refs. 14 and 15.

The main idea behind the SDRG method is to gradually
lower the energy scale by successively coupling the most

©2007 The American Physical Society
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strongly interacting spin pairs into singlet states. At each step
of the renormalization transformation, one such pair is deci-
mated out of the chain, and its remaining neighboring spins
become connected by a weaker renormalized coupling con-
stant, calculated within perturbation theory. Thus, in this
framework, the ground state can be viewed as a collection of
“noninteracting” singlets formed by arbitrarily distant spin
pairs. Although this description is not strictly exact, spin
pairs do couple in states arbitrarily close to singlets.'®

Recently, efforts to compute certain numerical prefactors
on disordered systems have been made. Fisher and Young'’
have shown that the end-to-end correlation amplitude of the
random transverse-field Ising chain at criticality is nonuni-
versal because of some high-energy small-scale features that
are not treated correctly by the SDRG method. It is reason-
able to expect that the same holds for bulk correlations. In-
deed, no sign of universality was found in the correlation
amplitude of the random XXZ chain.!3-2°

Refael and Moore,?! on the other hand, have considered
the mean entanglement entropy S(/) (for a recent review, see
Ref. 22) between two complementary subsystems A (of size
[) and B. Similarly to the clean system,”>~> they have shown
that S(/)=b+(y/3)Inl, diverging logarithmically with the
subsystem size. More interestingly, the prefactor 7 is univer-
sal for a large class of systems governed by an infinite-
randomness fixed point, namely, the random transverse-field
Ising chain at the critical point and the spin-1/2 random
antiferromagnetic XXZ chain. Later, this amplitude was
shown to be universal for a broader class of systems gov-
erned by infinite-randomness fixed points: the random g-state
Potts chain and the Z, clock chain® and the random antifer-
romagnetic spin-S chain at the random-singlet phase.?’-?
Moreover, it has also been shown that this amplitude is also
universal in a large class of aperiodic chains.?®3% In the
renormalization-group sense, and following Fisher and
Young,'” Refael and Moore?! argued that the nonuniversali-
ties of the correlation amplitudes are related to inaccuracies
of order of the lattice spacing in the location of the effective
spins. Such errors can only contribute a surface term b to the
entanglement entropy, and therefore, its prefactor y should
remain universal. Notably, this should explain why all those
other models displaying a random-singlet-like ground state
show universal entropy prefactors.

Our aim in this work is to further explore the issue of
universality in the behavior of ground-state correlation func-
tions in random antiferromagnetic XXZ chains and make
some direct links between spin correlations, structure factor,
and entanglement entropy. We first calculate exactly, within
the SDRG framework, the numerical prefactor v of the mean
correlation function (S;-S,,;) in the limit /— o, by relating it
to the distribution of singlet-pair bond lengths in the ground
state. Surprisingly, it turns out to be universal and equals
y,=—1/4, if [ is odd, and v,=0, otherwise, because the non-
interacting singlets can only be formed between spins sepa-
rated by an odd number of lattice sites. Naturally, this result
is an artifact of the (perturbative) SDRG scheme, as shown
by exact diagonalization (ED) studies of the XX model'®!°
(in which A;=0, Vi) and quantum Monte Carlo (QMC) cal-
culations applied to the isotropic Heisenberg model®® (in
which A;=1, Vi). Nevertheless, as we show from ED calcu-
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lations, in the XX limit, the long-distance behavior of the

longitudinal mean correlation function (S35, ,) is shown to be

very well described by this renormalization-group prediction,

while the transverse mean correlation function (S;S},;) exhib-
its two distinct prefactors, v, and v, for odd and even /,
respectively [see Eq. (3.3)].

Furthermore, we explicitly show that the mean entangle-
ment entropy is directly related to the bond-length distribu-
tion of the singlet pairs and, therefore, directly related to the
correlation function. This is interesting because it links a
pairwise quantity (correlation) with a blockwise one (en-
tropy).

Since such a relation arises in the scenario of noninteract-
ing spin singlets, in which nonuniversal effects are omitted,
we introduce a toy model in which the correlations between
different singlet pairs can be treated exactly. From the toy
model, we gain some insight into the microscopic nature of
the random-singlet phase and quantify the role of the inter-
actions between the singlets.

The picture emerging from our analytical results, and con-
firmed by our own ED and QMC calculations, is the follow-
ing. At long-length scales, the chain can be recast as a col-
lection of noninteracting effective-spin singlets sharing
strong pairwise correlations. These effective spins are clus-
ters of original spin variables whose number depends on the
details of the coupling-constant distribution. With respect to
the original spin variables, the singletlike correlations
“spread” among the spins in the cluster, an effect which leads
to the nonuniversal high-energy contributions discussed in
the literature.!”-?! Here, we go further by quantifying these
contributions within the exactly solvable toy model. Interest-
ingly, whenever the correlation is computed along a symme-
try (z) axis, it equals the corresponding —1/4 singlet contri-
bution, i.e., summing the correlations between all pairs of
spins sitting at different clusters gives —1/4. For the mean
correlation function, the result is that the combination of
prefactors of +1=—1/4 is universal. For correlations along a
nonsymmetry (x or y) axis, not only the prefactors are non-
universal but also the combination v} +v}. This points to the
importance of symmetry for the observed universality, a fea-
ture which was absent from the previously considered
models.!” Finally, effective spins contribute only nonuniver-
sal surface terms to the entanglement entropy, as expected.
When one traces completely one of the spin clusters, its con-
tribution to the entanglement entropy is the same as that of a
singlet pair; only when the boundary between the subsystems
is crossed by one of the clusters does that cluster contribute a
nonuniversal term. Therefore, the entanglement-entropy
prefactor is universal regardless of the existence of a sym-
metry axis.

As a supplement, we compute both analytically and nu-
merically the static structure factor S(g), which can be
probed by neutron scattering experiments. Interestingly, we
show that S(g) is dictated by disorder in the small-g limit,
namely, S(g<1)=«]|q|. This is a consequence of two facts:
(i) the decay exponent =2 being universal, and (ii) the
magnitude of the numerical prefactors v, and v, being differ-
ent. Moreover, we find that k=—7>(v,+1,)/3, which implies
that x=72/12 is universal for S computed along a symmetry

174425-2



CORRELATION AMPLITUDE AND ENTANGLEMENT...

axis. On the other hand, the behavior near the AF peak ¢
= is dominated by the characteristic divergence of the clean
system. However, the true divergence at g=1r is suppressed
by disorder and the peak width is broadened. Since there is
no divergence in the case of S(g) along the z axis in the XX
model, disorder universally determines its behavior near the
AF peak, ie., S(g=m—€)=m—«|€| for e<1. Only for g
~ /2 is the clean-system behavior S*(g)=|g| found.

The remainder of this paper is as follows. We derive the
universal SDRG expression for the mean correlation function
in Sec. II, reporting our numerical analyses in Sec. III. Sec-
tion IV discusses an exactly solvable model that yields in-
structive results on the origin of the universal behavior of
correlation functions. In Sec. V, we derive the entanglement
entropy and relate it to the distribution of singlet lengths and
to the correlation function. We discuss the experimental rel-
evance of our results by computing the structure factor in
Sec. VI. Finally, we make some concluding remarks in Sec.
VIL

II. MEAN CORRELATION FUNCTION IN THE STRONG-
DISORDER RENORMALIZATION-GROUP
FRAMEWORK

We start this section with a brief review of the SDRG
method, followed by the derivation of the mean correlation
function.

A. Strong-disorder renormalization-group method: A brief
review

The main idea behind the SDRG method is to reduce the
energy scale by integrating out the strongest couplings and
renormalizing the remaining ones. In the present case, one
locates the strongest coupling constant Q=max{J;}, say, J,,
and then exactly treats the two-spin Hamiltonian H,
=Q(S5S5+ S35 +A,8555), considering H=H-H, as a
perturbation.'* At low energies, spins S, and S; “freeze” into
a (nonmagnetic) singlet state, with the result that they can be
effectively removed from the chain, provided that the neigh-
boring spins S; and S, are now connected by a renormalized
coupling constant

JiJ3

J=m, (2.1)

calculated within second-order perturbation theory. The an-
isotropy parameter is also renormalized to 5=A1A3(1
+A,)/2. Note that J is smaller than either J,, J3, or £, lead-
ing to an overall decrease in the energy scale. After the deci-
mation procedure, the distance between S; and S, which are
now nearest neighbors, is renormalized to

7= ll +lz+l3, (22)

with /; defined as the distance between the spin S; and its
nearest neighbor to the right. The SDRG decimation scheme
is illustrated in Fig. 1.

Clearly, as the SDRG scheme is iterated and the energy
scale () is reduced, the distribution of effective coupling con-
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Ji, A \Xé/z/ J3, A3
1 Iy 2/2 3 I3 4
J, A
1 7 4

FIG. 1. (Color online) Schematic decimation procedure (see
text).

stants P;(J;)) is modified. Searching for fixed-point

coupling-constant distributions P;(J :Q), Fisher found that
there is only one regular stable fixed point,

. o Q l-a

P,(J;Q =6’JHQ—J—(—) R 2.3

1(7;Q) = 6(J) 6 ) al7 (2.3)

in which 6(x) is the Heaviside step function and with!3 a=

—1/In Q (we set the initial energy scale ), to 1). This has

been named an infinite-randomness fixed point (IRFP) since,
as 1 —0, the distribution becomes infinitely broad, i.e.,

v’m/ J— o, where Var J and J are the variance and mean
value of the coupling constants, respectively. Thus, the per-
turbative decimation procedure becomes more and more pre-
cise along the flow because the probability that both J; and
J;3 are much smaller than J, increases as the energy scale is
lowered.

A useful quantity to be calculated is the fraction ng of
“active” (not yet decimated) spins at the energy scale (). It is
obtained from the rate equation

dng =2nqP,(J = Q;Q)dQ, (2.4)

where 2no P (J=0;Q)d() is the fraction of decimated spins
when the energy scale is lowered from () to (2—d(). Hence,
close to the fixed point,
1
T

(2.5)

Equation (2.5) directly gives the low-temperature mag-
netic susceptibility x(7). One iterates the SDRG procedure
until the low-temperature scale 7. Spin pairs decimated at
high-energy scales (0> T are “frozen” into singlet states, and
thus their contribution to the magnetic susceptibility can be
neglected. As the fixed-point distribution is very broad, all
couplings between active spins are very weak compared to 7,
and the active spins can be considered as essentially free
spins, each contributing a Curie term to the susceptibility.'3
Therefore,

(2.6)

The low-energy modes are also given by Eq. (2.5). These
modes are polarizations of widely separated weakly coupled
singlet pairs, decimated at the energy scale () for which the
mean distance between spins was l~n51. Thus, the energy
cost ) to break a singlet of length [ is
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Q ~exp(-19),

in which ¢=1/2."3 This unusual exponential relation be-
tween () and / is named “activated” dynamical scaling and ¢
has been dubbed the “tunneling exponent.”

The scaling behavior of the mean correlation function
C(I) is cleverly obtained when one realizes that typically two
very distant spins are not in a singlet state and thus are only
weakly correlated. On the other hand, some rare and arbi-
trarily separated spin pairs that were decimated together are
strongly correlated and hence dominate the long-distance be-
havior of C(I). Therefore, the mean correlation function must
be proportional to the total number of spin singlets deci-
mated at the length scale /. Since the probability of decimat-
ing a spin pair is proportional to the probability that both
spins have not been decimated yet, it follows that

1
e

(2.7)

C() ~ (= 1)'ngy ~ (2.8)
with 7=2.13

In contrast, the typical correlation function Cy,(I) be-
haves quite differently. Its long-distance behavior is obtained
by the following argument. Suppose spins S, and S; are
those to be decimated at a given SDRG step, as in Fig. 1. In
that case, the correlation between S, and S; equals —3/4
+0O(J5/Q)?, while the correlation between S, and S; is of
order —J3/(). Thus, the typical value of the correlation func-

tion will be proportional to the typical value of JIQ. Using
the fixed-point distribution (2.3), one finds In|Cyy,(1)] ~=¢\1,
i.e., the typical correlation function decays as a stretched
exponential, with a nonuniversal prefactor ¢ of order unity.'3

B. Mean correlation function

We now derive the mean correlation function in a more
formal calculation which allows us to compute its amplitude
in addition to its power-law decay. In the SDRG framework,
the mean correlation function C(/) between spins separated
by a distance [ is obtained from the corresponding distribu-
tion of singlet-pair bond lengths in the ground state P(/),

3
c()=- ng(lL (2.9)
since each singlet contributes a factor of —=3/4 to C(I) and
there are two spins in each singlet.

The singlet bond-length distribution P(I) can be calcu-
lated from

Q
P = ZJ noP(J=Q,1;Q)d, (2.10)
0

where P(J,1;Q)dJdl is the probability of finding a coupling
constant between J and J+dJ connecting spins separated by
a distance between [ and [+dI at the energy scale (), and the
factor of 2 comes from normalization. If we follow exactly
the joint probability P(J,[;{}) along the SDRG flow, then we

can obtain an exact expression for P (). In fact, we only
need P(J,[;Q) at J=0).
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It turns out that we can carry out this task for A;=0 and
couplings taken from the family of initial distributions,

&)l—ﬂo

7 (2.11)

o) = o662~ 2
0
in which 97>0 gauges the strength of the initial disorder
and (), sets the initial energy scale.’! We first calculate the
density of active spins ng. For that, we need P,(J;(})
=[P(J,1;Q)dl, which is obtained from the flow equation'*

oP JJ
&Q’ P,(Q; Q)fd] dJ3PJ(J1,Q)PJ(J3,Q)5<J— Q*)
(2.12)
Introducing the ansatz3>33
HQ H)
P(J:0) = ;} )( ]) (2.13)
into Eq. (2.12) yields
Iy
HO) = T (2.14)
0

where I'=1n(Q,/€). Thus, from the rate equation (2.4), we
obtain

1
S S 2.15
"0T (14 9,0)? 2.15)

and Eq. (2.5) is recovered in the low-energy limit I'— o,
We now need to follow the SDRG flow of the joint dis-
tribution P(J,[;(), which is governed by the equation'3

JP
E =- J dlldlzdl3dJ]dJ3P(.]l,ll)P(Q,lz)P(J3,l3)

J1J3)
XNl -1,-1,-1 J———].
(I-1,-1, 3)5< Q

As shown in Appendix A, this can be done exactly by
Laplace transforming P(J,[;{)) and using an ansatz for the
corresponding flow equation. The final result for P({),[)

=P(J=0,1;Q) is
2
n+l_2 H
2F3E( 1)"*'n exp{ (al")l}’

(2.17)

(2.16)

P(Q,1) =

where a=190\s"2—lo, and [p=1 is the “bare” lattice spacing.
Although the leading term of Eq. (2.17) had been obtained
before,' the explicit dependence on the initial disorder dis-
tribution encoded in a was not emphasized. As will be shown
next, this dependence is essential for our discussion.
Plugging Egs. (2.15) and (2.17) into Eq. (2.10), we obtain
e
P()= )*n? | ———5==dl
D) 2 R T
I “ (- 1)n+1

l n=1

o —(n'n'/ar)zl

(2.18a)
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21 —
=1+ 00D}, (2.18b)
where
1(~ e “de
L=t J . (219
f( ) lo 0 (\'E/(W}’l) + V/l/(lof))z ( )

and we used f(I>1y,n)— 1/K1 +(9(\«‘“M)} in the last step.
As explicitly shown in Eq. (2.18a), the distribution of sin-
glets in the ground state is independent of the initial disorder
parameter ¥, at all length scales. Moreover, it follows a
universal power law in the large-distance limit.

Finally, taking into account that singlets can only be
formed between spins separated by distances corresponding
to odd multiples of [, the mean correlation function takes the
universal form

Ip\*> ] 1 if U/lyis odd
C(H=-v—| X )
l 0 otherwise,

where v=1/4, irrespective of the initial disorder parameter.
Note that Eq. (2.20) recovers Fisher’s scaling result Eq.
(2.8). In view of the fact that correlations between the spins
in a singlet state are isotropic, correlations between compo-
nents of the spins along a given direction a=x, y, or z should
behave as

coa(ly = 1'/(1_0)2 " {1 if /1, i§ odd
3 \1 0 otherwise,
with a prefactor given by —v/3=-1/12.
In order to check the prediction of Eq. (2.20), we calcu-
lated the mean correlation function C(I/) from numerical
implementations of the SDRG algorithm on very large chains

(2% 107 sites), with initial couplings following probability
distributions of the form

(2.20)

(2.21)

Py() = O = Jmin) Q0 = J) By ( Q

1—1‘}0
. (.22
1= i/ Qo) %0 Q J) 222

where Qy=1, 9,>0, and J,,;,= 0. Figure 2 shows, for vari-
ous chains, the relative difference between the calculated
correlation function and the universal prediction, &(/)
=C(l)/C,(l)-1, as a function of /. We considered both the
XX (A;=0) and the isotropic Heisenberg (A, = 1) models, for
which we averaged over 100 and 1000 disorder realizations,
respectively. In agreement with the previous analysis, the
long-distance behavior of the correlation functions is well
described by the universal prediction C,(/), regardless of the
model under consideration, within an error of less than 5%.
Moreover, the mean correlation function of chains Dyy, Fyy,
and Hyy (all of which have J,,;,=0, as described in the figure
caption) are statistically identical at all length scales, in
agreement with Eq. (2.18a), which predicts the same short-
distance behavior for those spin chains whose coupling con-
stants are distributed according to Eq. (2.11). Notice that &(/)
approaches zero for large / even for distributions with J,;,
>0, which clearly do not belong to the particular class of
distributions [Eq. (2.11)] employed in the derivation of C,(1).
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0.4 T T T T T T T T
L o—o AXX

o0 Dxx > Fxx > Hxx‘

log, [

FIG. 2. (Color online) Relative difference 6=C/C,—1 between
the mean correlation function C and the universal prediction C, as
a function of the distance [ in the SDRG framework, for various
choices of initial disorder, and both XX and isotropic Heisenberg (or
XXX) models. Chains A, D, F, and H have couplings distributed
according to Py(J) [see Eq. (2.22)] with (Jppin» D) equal to (0.5,1),
(0,3), (0,1), and (0,0.3), respectively. The results for chains Fyy and
Hyy (omitted for clarity) are statistically indistinguishable from
those for chain Dyy. Error bars (not shown for clarity) are of the
order of the statistical data fluctuations. Lines are guides to the
eyes.

The clear difference between the convergence rates of the
mean correlation functions in the XX and Heisenberg models
is due to the extra numerical prefactor of 1/2 present in the
recursion relation of the latter model [cf. Eq. (2.1)], which
delays the convergence of C(/) to the asymptotic form C,(I).
This prefactor (which becomes negligible as the SDRG
scheme proceeds) alters the relation between length and en-
ergy scales, relevant for the derivation of C,. However, at
logarithmically large energy scales, I'=In(£}y/{2)>1n 2, the
simple relation between length and energy scales in Eq. (2.7)
is recovered.

III. NUMERICAL RESULTS

We now confront the predicted long-distance form of the
mean correlation function, given in Sec. II, with numerical
results for XX chains, obtained through the mapping to free
fermions, and for isotropic Heisenberg chains, obtained by
quantum Monte Carlo (QMC) calculations.

A. XX chains

We analyzed disordered XX chains with periodic bound-
ary conditions, and coupling constants following box distri-
butions

1-
O = Junin) (€ —J)ﬁ<%> . (3.0

Py(J) =
)= T ) O\ g

with Qg=1, 97>0, and J;,>0, or binary distributions

174425-5



HOYOS et al.
0.3 ————————
r 1/7t2
-- 1/12
[ . Box distribution, J . =0
0.2+ o . min
< f- Boxdistribution,J . =1/4
:Q_) A Binary distribution, J . =1/10
] E‘ .
0'1:___________3__2..2_g.g§§
: " a2 aaal aaaal
0.05 0 100

FIG. 3. (Color online) Dependence of —/>C%(I) on the spin sepa-
ration / in the XX model for three different probability distributions
of the couplings: a box distribution (J,=1) with J;;,=0, a box
distribution with J,;,=1/4, and a binary distribution with J;,
=1/10 [see Egs. (3.1) and (3.2)]. The orange solid line corresponds
to the disorder-free prediction (Ref. 4) —/2C%=1/x?. For short-
length scales, all chains approach the behavior of the uniform sys-
tem. After a disorder-dependent crossover length, the data approach
the universal prediction of Eq. (2.21), which is indicated by the
black dashed line. Statistical fluctuations increase with [, and so
results for /=300, as well as error bars, are omitted for clarity.

0N =300~ I+ 38000 (32

Below, we present results for different choices of parameters.
Figure 3 shows the mean longitudinal correlation function
C¥(1)=(S;S5,) as a function of the spin separation / for a
chain with 4000 sites and couplings taken from three prob-
ability distributions: two boxlike distributions (9,=1) with
Jmin=1/4 and J;,=0, and one binary distribution with J;,
=1/10, in which we average over 700, 1000, and 800 disor-
der realizations, respectively. Other disorder distributions
give similar results. The short-length behavior approaches
the uniform-system result,* C%(I)=—(l)~2. After a disorder-
dependent crossover length,'®?° the mean longitudinal corre-
lation function decays as a power law with exponent 7=2,
and the prefactor clearly approaches the universal value
—1/12 [see Eq. (2.21)]. Although not shown in the figure, the
typical longitudinal correlation function nyzp(l), in contrast,
has a nonuniversal prefactor.

It is remarkable how the random-singlet hallmark appears
in Fig. 3. Since C¥*~[~2 both in the clean and in the disor-
dered cases, one could naively think that disorder does not
play any role for C*. However, our statistics are good
enough to distinguish the different prefactors. We stress that
the fluctuations seen at larger length scales reflect only the
increasingly and inevitably poorer statistics, since the num-
ber of singlet pairs decreases as =2 and their relative fraction
becomes smaller and smaller. Indeed, the mean correlation
function is self-averaging. This could be directly double
checked from the decrease of the relative fluctuations with
the square root of the inverse chain size.

We now turn our attention to the transverse mean corre-
lation function C**({). Compared to its longitudinal counter-

PHYSICAL REVIEW B 76, 174425 (2007)

| — Clean system |
107E-- 112
F - Boxdist,J . =1/4 ]
min
[ o Boxdist.,J . =0
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FIG. 4. (Color online) Dependence of 12|C**(I)| on the spin sepa-
ration [ for the XX model with the same coupling distributions as in
Fig. 3. The short-distance behavior, as in the uniform system, cor-
responds to a power law with exponent 7.=1/2. The random-
singlet nature of the ground state governs the long-distance behav-
ior, with =2, but nonuniversal prefactors. The orange solid line
corresponds to the clean-system transverse correlation function
(Ref. 5) (=1)0.147 09/1. The black dashed line is the prediction
for the disordered system given in Eq. (2.21) (see text).

part, it behaves quite differently. The short-distance behavior,
as in the uniform system, corresponds to a power-law decay
with exponent 7.=1/2. After a nonuniversal crossover
length, the random-singlet behavior is recovered, with a uni-
versal exponent =2, but nonuniversal prefactors, as shown
in Fig. 4 and previously pointed out in Refs. 18-20. Without
loss of generality, the large-distance scaling form of C*(I)
can be written as

cos 1) 1) vl if [ is odd
" 3| yI? otherwise,

(3.3)
with suitably chosen functions v}, and v,. When couplings are
drawn from disorder distributions sufficiently close to the
IRFP form of Eq. (2.3), v, and v, are expected to approach
the constant values vj=-1/4 and }=0.

The results from different coupling distributions provide
evidence that v, and v} indeed approach constant values for
arbitrary initial disorder, with —v} and v} assuming close (but
certainly distinct) values. Additionally, it seems that the
quantity v} + v, approaches an asymptotic value close to —1/4
for sufficiently strong disorder. This can be seen in Fig. 5,
where we plot (for [ odd) the combination C%, (I)=
—[C™(I)+C*™(I+1)]. Notice that, for the box distribution
with J,;,=0 and the binary distribution with J,;,=1/10, the
curves for Cj, (1) are reasonably well described by the scal-
ing form 1/(12/%) in the long-distance limit. However, this is
not the case for chains with couplings drawn from the box
distribution with J,;,=1/4, at least up to the sizes studied
(I=1000, not shown). Indeed, we argue in Sec. IV that de-
viations from that scaling form should be expected for the
transverse correlations in XX chains.

Finally, we report that we have considered also smaller
chains (1000 sites) but with more disordered distributions
(Jmin=0, with 93=0.3 or 9,=0.6). For the sake of clarity, we

174425-6



CORRELATION AMPLITUDE AND ENTANGLEMENT...

% T T
oF T
10T Sl a
Y T
E ‘\§R§;uunn
3 NC

N

L-- (112)
F - Boxdist., Jmin =1/4

-6 .-_ ° i =
10 B?x dlSt.', J o 0
» Binary dist., Jmin =1/10
:
-8: P |
10 4 10

100

FIG. 5. (Color online) The summed transverse correlation func-
tion C%, ()=C*(1)+C*(I+1) as a function of the distance [ (for
odd /) for XX chains and the same coupling distributions as in the
previous figure. Although for sufficiently strong disorder (circles
and triangles) the curves approach a power law, corresponding to
the random-singlet exponent =2 and to a prefactor (V)+})/3=
—1/12, the less disordered system (squares) shows a different pref-
actor. Again, results for />400 and error bars are omitted for
clarity.

have omitted their data in Figs. 3-5. The mean longitudinal
correlation function is remarkably well described by the na-
ive SDRG prediction (2.21). The mean transverse correlation
function, on the other hand, is well described by Eq. (3.3)
with v+, ~-1/4.

B. XXX chains

We now present QMC results obtained for the SU(2) sym-
metric model,
Ly

H= 2 JiSi ' Si+l’
i=1

(3.4)

with the random AF couplings J;’s distributed according to
the box distributions

P(J) = %0(1—](1 -W)OUJ(1+W)=J). (3.5
2JW

The QMC algorithm we use is based on a stochastic series
expansion of the partition function.>*3> This is a finite tem-
perature 7 technique which, in principle, allows access to
ground-state properties, provided 7" is chosen to be much
smaller than the finite-size gap of the system Qo L;*. As
already discussed in several works (see, for instance, Refs.
20 and 36-38), the ground-state properties in random spin
systems can be very hard to access because extremely small
energy correlations might develop between distant spins or
spin clusters. For random finite chains, the dynamical expo-
nent z is formally infinite since we expect exponentially
small couplings to develop at large distances between spins,
so that Q «exp(—yLo). In order to accelerate the convergence
toward the ground state, we used the B-doubling scheme®®
and thus performed the QMC measurements at temperatures

as small as 4 X 107° in units of J. We show in Figs. 6 and 7
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FIG. 6. (Color online) Correlation function (=1)/C%(l) in the
ground state of isotropic random AF Heisenberg spin-1/2 chains
[Eq. (3.4)] of length Ly=200 with disorder strength W=0.75. The

quantum Monte Carlo results were obtained at 7/J=1.5X 107> and
averaged over Ngmpies=500 realizations. When the distance / be-
tween spins is even (circles), the asymptotic regime is described by
C%(1)=0.9/1 (black, solid line), whereas for odd / (squares), the
best fit gives C¥%(I)=-0.98/1? (red, dashed line).

QMC results for the average spin-spin correlation function in
the ground state,

1 N, samples LO/ 2

D T ASISE N,

samples o=1 LO i=1

C*(l) = (3.6)

N,

where we perform disorder averaging over Ngpye; indepen-
dent random samples, as well as space averaging along the
periodic chains. Note that the SU(2) symmetry of the Hamil-
tonian ensures that C¥<(I)=C">(I)=C*(l).

As studied in great detail in Refs. 19 and 20, there is a
crossover phenomenon which is governed by the localization
length ¢ of the corresponding one-dimensional Jordan-

-1

10 E k“\\' — T T — T3

I I

- -

+ 10 E_ \1 3

= f -

NQ_'_) 10-3j" T:«—, 3

=~ [ o-ow=075 Es ]

- o anr %\ 3

-5 s
10¢ e
1 10 100

)

FIG. 7. (Color online) Summed correlation function C% (I)
=|C%#()+C%#(I+1)| in the ground state of isotropic random AF
Heisenberg spin-1/2 chains [Eq. (3.4)] of length Ly=200 with dis-
order strength W=0.75 (red, squares) and Ly=100 with W=1 (or-

ange, diamonds). The quantum Monte Carlo results were obtained
at T/J=1.5X10" for W=0.75 and T/J=4x107° for W=1 and
averaged over Ng,mpies=500 realizations for each disorder strength.
The dashed line is the 1/(12/?) prediction.
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Wigner fermions with random hoppings. In order to be in the
asymptotic regime, i.e., in the vicinity of the IRFP, we have
to look at system sizes L,> &. For the SU(2) symmetric case,
& has been estimated to be =20 for W=0.75 and =10 for
W=1.20 Thus, in order to study the IRFP asymptotic regime,
we study two different systems: W=0.75 with Ly=200 sites
(see Fig. 6) and W=1 with Ly=100 (see Fig. 7). In Fig. 6, we
first clearly see the crossover behavior for distances /<20
and then the IRFP prediction, Eq. (2.8), recovered for larger
separations. On the other hand, the prediction of Eq. (2.21) is
not verified, and we confirm the observation already made
for the XX case. Again, we can write

1{u,,z-2 if is odd

C(l> 9=~

3 (3.7)

y,I72 otherwise,

where v, and v, are disorder-dependent prefactors.

Nevertheless, the universality is recovered when looking
at the sum of the prefactors (see Fig. 6) v,+v,=-0.08=
—1/12. As shown in Fig. 7, the quantity

Cam(D) ==[C=(D) + C=(1 + 1)]
seems to behave as 1/(12{%) for W=0.75 and W=1.

(3.8)

C. Discussion

The origin of the apparent universality of v,+v,=—1/4 is
not obvious. It is clear that the breakdown of the SDRG
prediction (y,=—1/4, y,=0) must be related to the fact that a
collection of singlet pairs is not an exact eigenstate of the
Hamiltonian for any finite disorder. Although the SDRG
method becomes asymptotically exact at low energies, deci-
mations involving spins connected by couplings of the order
of the initial energy scale (), unavoidably lead to significant
errors due to the fact that the calculation is perturbative.
Thus, instead of singlet pairs, these steps should really in-
volve blocks of three or more neighboring spins, so that cor-
relations spread over a few sites (whose number decreases as
the strength of the initial disorder increases), forming clus-
ters of correlated spins.

Figure 8 shows the correlation functions ij)‘:(Sf)S;) and
Ci'=(55S;) between a reference spin S, and the jth neighbor-
ing spin to the right S; as a function of j for XX chains with
couplings drawn from boxlike distributions [panels (a) and
(b)] and a power-law distribution [panel (c)]. For the particu-
lar realizations in the figure, we find that, decimating the
chains according to the SDRG scheme, S, should couple to
S;+ in a singlet pair, where j"=97, 439, and 297 for panels
(a), (b), and (c), respectively. Indeed, there is a pronounced
peak at j', as expected from SDRG. In addition, S, also
develops strong correlations with a few spins adjacent to S+
and S,. As expected for a localized phase, these contributions
vanish exponentially at larger distances.

We now can define two spin clusters: The first one is
composed by S, and its neighbors such that the magnitude of
the transverse correlation function between S, and a spin
belonging to that cluster is bigger than a certain cutoff, say,
1073, The second cluster is analogous to the first one, but
replacing S, by S;+. Interestingly, the sum of all the longitu-
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FIG. 8. (Color online) The magnitude of the transverse C** and
longitudinal C** correlation functions between S, and S; as a func-
tion of j (for j#0). Main panels (a), (b), and (c) correspond to
different samples drawn from different disorder distributions [see
Eq. (3.1)] whose parameters (Jp,,dy) are (0.25,1), (0,1), and
(0,0.7), respectively. Insets (i) and (ii) show C** and C% between
spins S; and S; as a function of j for different values of i between
—3 and 3 and for values of j around j*. In the SDRG picture for
these particular realizations, Sy and S;+ should couple in a singlet
state where j* equals 97, 439, and 297 in panels (a), (b), and (c),
respectively. The lines in the insets are guides to the eyes.
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dinal correlations between the spins in the first cluster and
the spins in the second cluster approaches —1/4. We thus say
that the correlation between S, and S;+ “spreads” among the
spins in the clusters, and each of them acts collectively as a
single spin, leading to the universal result that v,+v,=-1/4
at large length scales. However, such feature is not verified
when we consider the transverse correlation function. As we
show in the next section, this is related to the lack of total
spin conservation in the transverse direction.

IV. EXACTLY SOLVABLE MODEL

The discussion at the end of Sec. III suggests that the
formation of spin clusters is responsible for the failure of the
prediction of universal correlation functions, Eq. (2.20). Ac-
cording to the Marshall-Lieb-Mattis theorem,>*? the ground
state of a spin cluster with antiferromagnetic couplings is a
singlet, if the number of spins is even, or a doublet, if the
number of spins is odd. Thus, at low enough temperature, a
cluster with an even number of spins does not contribute to
the magnetic properties of the chain, while a cluster with an
odd number of spins can be represented by an effective spin-
1/2 object.

To gain insight into the origin of the apparent universality
of v,+v, observed in the numerical calculations of Sec. III,
we now consider a chain that, at low energies, can be inter-
preted as being composed of a certain fraction € of “effec-
tive” spins and a fraction 1— € of remaining “original” spins.
Each effective spin represents a cluster with an odd number
of original spins. For simplicity, we assume here that each
effective spin represents a cluster with only three original
spins. In addition, we locate the effective spin at the position
corresponding to the middle spin of the underlying three-spin

cluster. With this restriction, if the effective chain contains N
spins (original and effective ones), there are, in fact, N

=N(1+2e¢) underlying original spins involved. Moreover, if
there are /-1 spins between a given spin pair in the effective

chain, we say that 1 is the effective distance between the
spins in that pair. [This is not the same as the renormalized
distance defined in Eq. (2.2).]

Now, we choose the couplings in the effective chain from
a probability distribution like that in Eq. (2.11), with 9,<<1,
so that it is sufficiently close to the infinite-disorder fixed-
point distribution and the occurrence of “bad” decimations is
highly improbable. With this choice of couplings, it follows

from Eq. (2.18b) that, in terms of the effective lengths l~, the
effective singlet distribution is given by

-~ 2
P()=—, (4.1)
3R

for odd I, while I;S(T)=O for even I. Therefore, the average

number of singlets of effective length 7 in the effective chain
is given by

N,(1)= =NP(]), 4.2)

1
2

with 7 restricted to odd values.

PHYSICAL REVIEW B 76, 174425 (2007)

type 0

type 1
type 2

[ odd lo=1

FIG. 9. (Color online) The various types of singlets. Black
circles denote isolated original spins. Blue squares denote original
spins belonging to effective three-spin clusters.

In order to obtain the ground-state correlations in the un-
derlying chain, we have to determine the distribution of sin-
glet lengths in terms of the underlying original distances /,
and these will depend on how many effective spins are lo-
cated between the two spins in a given singlet. Let us con-
sider a singlet formed between spins separated by an effec-
tive distance /. Hence, there are I-1 intermediate spins, m of
which we assume are effective ones. Note that there are three
possible types of singlets (see Fig. 9): a pair of original spins
(type 0), one original spin and one effective spin (type 1),
and a pair of effective spins (type 2). If the singlet is of type

0, then the underlying distance [ is given by [ =1+2m; if the
singlet is of type 1, then / =I+2m+1; and for singlets of type

2, I=1+2m+2. We immediately conclude that, while singlets
of types 0 and 2 are associated with odd underlying distances
[ (since [ is odd), singlets of type 1 are associated with even
underlying distances. This leads to the appearance of corre-
lations between spins separated by even distances, as in our
numerical calculations, and in contrast to the assumption of
the SDRG approach.

For a singlet of length I, the number of intermediate ef-
fective spins varies between 0 and I-1. The probability of
finding exactly m intermediate effective spins is given by

(l_ ! )8’”(1 - 8)7_1_”‘.

Thus, the numbers of singlets of types O, 1, and 2 with un-
derlying length [ are given, respectively, by

N,o(D) = %ﬁ X (1-¢)?R(l), (4.3)
Ny (D)= %ﬁ X 2e(1—e)R(I-1), (4.4)
and
Ny,() = %ﬁ X &?R(1-2), (4.5)
with
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-0 m 1-3m-1
2 [-2m—1 1-
R()=3 3 ( " )—8 ((l_;)n)z

m=0

(4.6)

In the limit of large /, the sum in R(I) can be written as an
integral, which can be calculated by Laplace’s method, using
Stirling’s approximation. The final result is

R() = %(1 +2e)72+ 0(173). 4.7)

Consequently,

Ny o(l) = %’(1 )2+ 0(I7%) (forodd ), (4.8)

2N
N, (1) = ?8(1 —e)2+0(™3) (forevenl), (4.9)
and

Nyo(l) = %7821-2 +0(I7%) (for odd [). (4.10)

In order to calculate the ground-state correlations C**(l)
=(S7S7;), with a=x,y,z, let us focus on a fixed odd value of
[. There are contributions to C**(I) and C**(I+1) coming
from singlets of type 0, with underlying length /; from sin-
glets of type 1, with lengths /-1 and /+1; and from singlets
of type 2, with lengths /-2, [, and [+2. If we denote by c{,4
(cppia) the “weight” of a spin in either end (in the middle) of
a three-spin cluster to the a component of an effective spin
(see Appendix B), we can combine all contributions to write

(see Fig. 9)

1
Cc(l)=- HV{NJ’O(Z) + [Ny (1= 1)+ Ng (I + 1)]eong
+[Nso(I=2) + Nyo(1+ 2)](and)2 + N (D)
X[2(cga) + (cmia) (4.11)
and
o, 1 (23
C (l + 1) == IV{NY’I(I + 1)Cmid + Z[Nc,z(l)
+ N o (1+2) JegaCmial s (4.12)
so that, to leading order in [, we have
1
c¥(l) =- El‘z{(l —g)*+4de(l—g)cly
+&7[4(cq0) + (e’ T} (4.13)

and
1
C**(I+1)=- El"z{Zs(l — &) +4e%cl Jety. (4.14)

Note that the above results are significantly different from
the bare SDRG results of Sec. II, most notably in that the
average correlation is, in general, not zero for even /. Both
C*¥(I) and C**(I+1) decay with the random-singlet expo-
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nent 7=2, but with different prefactors vf, and v, respec-
tively. However, we have

1 1
S+ ) == D =[1- Qe+ ciglel. (4.15)

For the XXZ chain, irrespective of the initial anisotropy A,
the z component of the total spin is a good quantum number,
assuming the value S§ =0 in the (singlet) ground state. This
means that the sum of the ground-state correlations <S;TS;"->
between a given spin i and all other spins j in the chain is
equal to —1/4. Since this is also true for an effective spin, it
follows that 2¢: 4+c¢5 =1 (as can be easily verified explic-

itly; see Appendix B), and we must have
(4.16)

irrespective of the concentration € of effective spins (and
thus of the initial disorder). Furthermore, in the Heisenberg
limit (A=1), owing to the SU(2) symmetry, we also have

(4.17)

This last result, however, is not valid for A<<1. In particular,
in the XX limit, for which 2c¢ +cy,iq=0.9142, we obtain

mid

(4.18)

U+ = - i(l - 0.0858¢),
yielding a weak dependence on e.

For the isotropic Heisenberg chain and for C*(I), the ana-
Iytical results derived in this section are in agreement with
the numerical results in Sec. III, strengthening the conjecture
of a universal behavior for sum of prefactors of the longitu-
dinal ground-state correlations in random XXZ chains. The
presence of larger effective-spin clusters (as typically occurs
for weaker disorder; see Fig. 8) should not change the con-
clusions of this section concerning the universality of o}
+1, since the sum of all the weights of the original spins
belonging to an effective cluster is identically 1 when com-
puted with respect to the symmetry axis.

V. ENTANGLEMENT ENTROPY AND ITS RELATION TO
THE CORRELATION FUNCTION

In this section, we discuss the relation between the en-
tanglement entropy S(/) and the ground-state mean correla-
tion function C(l).

The entanglement entropy between two complementary
subsystems A and B is given by

S(l) ==Tr ps In py =="Tr pg In pg, (5.1)
where [/ is the length of one of the subsystems,
PAzTrBPZE <¢53|P|¢%> (5.2)

is the reduced density matrix obtained by tracing out the
degrees of freedom of subsystem B in the ground-state den-
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1

FIG. 10. (Color online) Ground state of the infinite-disordered
AF spin-1/2 chain. The entanglement entropy between the sub-
system inside the box of length / and the rest of the chain is equal
to the number of singlets shared by them. In this case, S(/)=5s,
with s being the entanglement entropy of a singlet pair when one
of the spins is traced out.

sity matrix p=|@)(¢|, and {|¢})} is a set of states spanning

the degrees of freedom of B (with a similar definition for pp).
In the SDRG framework, the ground state of random XXZ

chains is a collection of independent singlet pairs, i.e.,

Ly/2
[#)=© |0, (5.3)
where |0;) denotes the ith singlet pair and L, is the total
number of spins in the chain (see Fig. 10).

As the entanglement entropy between two spins in a sin-
glet state is s,=1n2,*! the total entanglement entropy due to
a given choice of subsystems A and B is equal to s, times the
number of singlet pairs in which one spin belongs to A and
the other one to B (see Fig. 10). Using this fact, Refael and
Moore?! calculated the mean number of times that each bond
is decimated, which is equivalent to the mean number of
singlet lines crossing a given boundary. They found that the
mean value of the entanglement entropy grows as (yIn1)/3,
with y=In 2 being a universal number. This is reminiscent of
the entanglement entropy in conformally invariant (clean)
one-dimensional quantum systems, which increases as
(cInl)/3, where ¢ is the central charge, a signature of the
universality class of conformally invariant systems.?>? In
the clean critical XXZ chain, c=1.

We now re-derive the mean entanglement entropy by re-
lating it to the distribution of singlet lengths [see Eq. (2.18b)]
and thus to the SDRG mean correlation function [see Eg.
(2.20)]. By definition, the mean value of the entanglement
entropy S(/) between a subsystem of length / and the rest of
the chain is the sum of the entropies of all subsystems of
length [, divided by L. (In a Ly-site chain with periodic
boundary conditions, there are L, different subsystems with
the same length.) The contribution of a given singlet of
length /; depends on the relation between [/, and /. If [[>1,
there are 2/ different subsystems of length / whose bound-
aries are crossed by the singlet line [see Fig. 11(a)]. Like-

FIG. 11. (Color online) Schematic entropy counting. (a) When
the singlet length (in this case [,=5) is greater than the subsystem
length (I4=3), there are [, different subsystems whose right bound-
aries are crossed by the singlet. (b) Otherwise, when the subsystem
length [ is greater than [, (in this case, [z=4 and [,=3), there are [,
different subsystems whose left boundaries are crossed by the
singlet.
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wise, 2/, different subsystems have their boundaries crossed
by a singlet of length /<! [see Fig. 11(b)]. Thus,

25 l Lo/2
S() == D IN() +1 > N(L) (. (5.4)
Ly | 121 I=l+1

where N,(l,) is the number of singlets with length [ in the
ground state and sy=In 2 is the contribution of a singlet pair
to the entanglement entropy.

As shown in Sec. II, N,(l,) is simply related to the corre-
lation function by N (l,)=-4L,C(l,)/3. Thus, substituting
Eq. (2.20) into Eq. (5.4), and noting that C(l,)=0 for even [,
we obtain, for />1 and Ly— o,

Ly/2

1
8
5(1)=—§s0 > cl)+1 Y, C(ly)
I=1

I=1+1

2 (1 (" 1 (1 )
=—so| = —dx+ =1 —dx | +b (5.5b)
3 2)y x 2 Jianx

Y
3

(5.5a)

Inl/+b, (5.5¢)

in which y=sy=In2, while » and b’ are nonuniversal con-
stants that depend on the short-distance details of C(/). In
this way, we recover the result obtained by Refael and
Moore. Yet another derivation of the above result is pre-
sented in Appendix C.

Note that Eq. (5.5a) relates the mean value of the en-
tanglement entropy to the mean correlation function. This
relation is valid only in the context of infinite-randomness
spin chains, where both quantities are dominated by rare spin
singlets. In AF spin-1/2 chains without disorder, for in-
stance, such relation is no longer valid, and the correct ex-
pression is far from simple (though an efficient valence-bond
approach can be developed to study block entanglement
properties*?).

Contrary to the naive universal form [Eq. (2.21)] of the
ground-state correlation function, which is found not to hold
when confronted with exact diagonalization or QMC calcu-
lations, the universal prediction of Eq. (5.5¢) is fully sup-
ported by numerical results (see Ref. 43) and, as shown in
Fig. 12, does not depend on the initial disorder strength. In
view of the relation between these two quantities, revealed
by Eq. (5.5a), the arising question is how these seemingly
contradictory results can be reconciled.

We address this question by looking at the entanglement
entropy of the exactly solvable model of Sec. IV. The ground
state of the model can be viewed as a collection of singlets of
three different types (see Fig. 9). So, although Eq. (5.5a) can
no longer be used, the entanglement entropy is still related to
the distributions of singlet lengths, in analogy with Eq. (5.4).
However, we must remember that an effective spin repre-
sents a three-spin cluster. It can be easily shown that the
entanglement entropies between a three-spin cluster and a
single spin, as well as between two three-spin clusters, are
also given by sy=In 2. However, since we have to average
over all different possible subsystems of a given size, we
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FIG. 12. (Color online) Entanglement entropy of random XX
chains with Ly=1000 sites, and disorder of the form of Eq. (3.5)
with, from top to bottom, W=0 (no disorder, open circles), W
=0.25 (cyan, circles), W=0.5 (orange, triangles), W=0.75 (red,
squares), and W=1 (green, diamonds). These are exact diagonaliza-
tion results averaged over 10°< Ny s=<10* realizations. The
black dashed lines are fits of the form S(/)=(1/3)In2In[+b with
b=1.048,0.925,0.876,0.849 for W=0.25,0.5,0.75,1. In the inset,
the constant b is also plotted versus 6!, where 6°=(InJ)>—(In J)?
and naively fitted to b(5)=0.812+0.034 56/ 6.

must take into account situations in which one of the spins in
a three-spin cluster lies in a different subsystem than the
other two. When averaged over all subsystems and singlet
types, these “internal” contributions, being only boundary
effects, lead to an additional constant term and thus do not
affect the scaling properties of the entanglement entropy. Ex-
plicitly, we have

S0 = L {500+, + 5,0, (5.6)
in which Sy(1), S,(1), and S,(I) are the average entanglement
entropies due to singlets of types 0, 1, and 2, respectively.
From Eq. (5.4), taking into account the internal contributions
bj(e), we can immediately write S;(), for j=0, 1, and 2, as
! Lo/2
Si() = bj(2) +2s, IE LN, (1) +1 2 Nyl

=1 I=l+1
(5.7)
with N (1) given by Eqs. (4.8)—(4.10). Bearing in mind that

N, (1) and N ,(I) are zero for even [, while N, ;(/) is zero for
odd /, we can use the fact that

L
Noo(l) + Ny (1= 1)+ Nyoll) = 22+ O, (5.8)
for odd [, to conclude from Eq. (5.6) that
Y
S(l)=§1nl+b(e), (5.9)
again with y=s,=In2 and an e-dependent constant b(e), as
in Eq. (5.5¢).

Although this exactly solvable model yields a nonuniver-
sal ground-state correlation function C(/), the entanglement
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entropy S(I) does follow the universal form derived by Re-
fael and Moore.?! This last result and the numerical confir-
mation of the universality of S(I) (see Ref. 43 and Fig. 12)
suggest that a description of the ground state of random XXZ
chains in terms of a collection of independent singlets re-
mains valid at sufficiently large distances, provided we use
the notion of effective spins already discussed in the previ-
ous sections.

Finally, we should mention that the notion of the nonuni-
versality of the correlation amplitude due to high-energy
small-scale details was first considered and investigated by
Fisher and Young.!” Later, Refael and Moore?! realized that
such details only contribute to the inaccuracies in the loca-
tion of the low-energy effective spins, which lead only to a
surface term contribution to the entanglement entropy, as we
have formally shown here.

VI. STRUCTURE FACTOR

In this section, we compute the static structure factor

Ly Ly-1
2 o )
So‘(q) — E: e—zq(/—k)/lo<sjzszz> =2 E: e—qu/locaa(l) ,
Lo =1 =0

(6.1)

which is straightforwardly related to the mean spin-spin
time-independent correlation function C**(l) and is directly
measured in neutron scattering experiments. Indeed, neutron
scattering experiments probe the dynamical structure factor

L,
- o * .
Sa((x),q) - E e—lq(l—k)/lof dl‘elwt<Sf(t)S,?(0)>,

Loji=1 o

(6.2)
which reduces to §%(g) in Eq. (6.1) after an integration over

w.
There are three noteworthy properties of S*(g):

S%q)=S8"(=q), (6.3)
7L
> S4q)= 70 (6.4)
qeBZ
where the sum is over the first Brillouin zone, and
21T
S8%g=0)=——((S%)?. (6.5)
Ly

where Sy, is the total spin along the « direction and (---)
means its expectation value on the ground state. Hence,
S4(0)=0 for the XX model and S***(0)=0 for the isotropic
case. Note that, in the continuum limit, Eq. (6.4) leads to
17 dqS*(q) =

We now show our numerical results on the static structure
factor for the disordered chain in the XX and XXX models.
We anticipate that all three properties [Egs. (6.3)—(6.5)] are
obeyed by our numerical results.
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FIG. 13. (Color online) The longitudinal structure factor in the
XX model for various disordered chains of lengths up to Ly=4000.
As can be seen, they are practically indistinguishable. Inset (i) high-
lights &° for small ¢ in which the curves become somewhat distin-
guishable near ¢=0.067r. Moreover, they slightly deviate from the
clean-system prediction =g (dotted line) tending to a universal
form S=«k|qg| (dashed line), with xk=72/12 (see text). Inset (ii)
shows &° near g=1r/2, where disorder is irrelevant. See Egs. (3.1)
and (3.2) for the definition of the disorder parameters (here, ()
=1 and 9,=0).

A. XX model

Figure 13 shows the longitudinal structure factor in the
XX model for the clean system [in which Si(g)=|g| (see
inset)] and various disordered chains. Because the longitudi-
nal mean correlation function depends very weakly on the
disorder (only through the crossover length) and its universal
amplitude in the disordered case is very close to the clean-
system value (1/12 in comparison to 1/7%; see Secs. II B
and IIT A), the longitudinal structure factor is, for all practi-
cal purposes, universal.

In general, due to spin conservation and the fact that
C%(1)=0 for even I, & equals 0 and 7 at the points g=0 and
q=r, respectively. Moreover, it can be shown that S&¢ has
inversion symmetry around the point g=m/2, i.e., S(m/2
+k)+S(mw/2-k)=m, for —w/2<k<mw/2, which implies
S¥(m/2)=/2.

Let us now consider the effects of disorder more closely.
Because the behavior of §° for small ¢ is dominated by the
large-/ behavior of the longitudinal correlation function, it
follows that S(g<1)—«lg|, where k=7"v/3=7"/12
~(.822 is a universal constant [see inset (i) of Fig. 13]. In
the same way, because C%(I)=0 for even [, the behavior near
g= is also dominated by disorder. In this case, m—S&(¢
~ 1) — k|m—q|. This is verified by the data of Fig. 13, but
not shown for clarity. Finally, because the Fourier series [Eq.
(6.1)] at g near 7/2 selects small values of [, the behavior
near g=1/2 is dominated by the clean-system prediction,
& (g=m/2)—|q| as shown in inset (ii) of Fig. 13. Note that
all these arguments are valid because C%([)=0 for even [.

We now discuss the behavior of S* (see Fig. 14), in which
disorder plays a more prominent role. In the absence of dis-

order, C¥(I)=—F/PPK+VCK 4 (_1)/F/1VCK) where K=1 is
the Luttinger liquid parameter [see Eq. (1.2)], and F and F
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FIG. 14. (Color online) The transverse structure factor in the XX
model for various disordered chains of lengths up to Ly=4000. Inset
(i) highlights & for small ¢, where §%(0)=0.194, 0.159, 0.128 for
the box distributions with J;;,=1/4, J,;,=0, and the binary distri-
bution, respectively. In all cases, S*(q)—S*(0) ~ |q|. Inset (ii) shows
the behavior of & near g=. It follows the characteristic diver-
gence of the clean-system prediction (dotted line) until a crossover
vector ¢, above which it saturates to a constant (see text).

~(0.14709 (Ref. 5) are positive constants. Since the first
term is monotonic, it dominates the structure factor for g
<1. Hence, S(g<1)-8%(q=0)~|q|*’*>. The second (stag-
gered) term gives a subdominant contribution ~g?. Near the
AF peak, g=1; however, the second term dominates, yield-
ing a divergent contribution, namely, S(g=m—¢€)~ €™,
for |e <1.

Quenched disorder dramatically changes the above sce-
nario. Rewriting the transverse correlation function [see Eq.
(33)] as  C¥(I> 1)~ (U+1) 00/ BP)+(=1)1}1 (31
(where & ,qq=1, if [ is odd, and &} ,44=0, otherwise), it be-
comes clear that S(g<<1) is dominated by the first term:
S(g<1)-8(q=0)—-m (i +v)|q|/3, where —(v'+1})
=1/4+nonuniversal contributions [see inset (i) of Fig. 14].
Note that this result strongly relies on the fact that v} +; is
nonzero; otherwise, S*(¢<<1) would be dominated by the
short-length scale contributions to C*, which follow the
clean-system prediction.

The characteristic AF divergence near g=1r is suppressed
by disorder, as shown in inset (ii) of Fig. 14. For ¢>g¢.
=2m/L., where L, is the crossover length above which the
correlation function is dominated by the disorder, S* satu-
rates to a constant approximately equal to 27F Elefll/ V1. Fi-
nally, because Eq. (6.4) has to be satisfied, the decrease of
the AF peak is accompanied by its broadening as disorder
increases [see inset (ii) of Fig. 14].

B. XXX model

We now turn our attention to the isotropic Heisenberg
model (see Fig. 15). Similarly to the XX model, the universal
features of the correlation amplitude yield a universal struc-
ture factor for g<<1: S%q) — «|q|, V a, since v,+v,=1/4 is
universal. By coincidence, the clean system prediction also
scales linearly,* S%(g<1)— K|q|, however, with a different
slope K=1/2 which is the Luttinger liquid parameter. As
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FIG. 15. (Color online) The structure factor as a function of ¢
for different disorder parameters [see Eq. (3.5)] in the isotropic
Heisenberg model for chains of lengths up to Ly=200. Inset (i)
shows S% for ¢<<1 and compares it with the (field-theoretical)
clean-system prediction S&— K|g|, with K=1/2 being the Luttinger
liquid parameter, and the disordered system prediction S%— «|q],
with universal x=72/12. Inset (i) highlights S% near the AF peak
g =~ . The dashed line is the clean-system prediction, namely, S
——=N1In(1-g/m), with A\=—m7/2 (see text).

shown in inset (i) of Fig. 15, S*(¢) is linear, but apparently
with no universal slope. However, although we have statisti-
cal fluctuations and finite-size effects, a close inspection of
our data for ¢=0.07 shows that «|g| fits better than K|g|.

The logarithmic divergence at the g=a point is sup-
pressed by disorder. As shown in inset (ii) of Fig. 15, S%(q)
follows the clean-system divergence up to a crossover vector
q.=2m/L,, where L, is the crossover length above which the
correlation exponent follows the long-distance prediction of
the disordered system. Beyond ¢, S* saturates at a nonuni-
versal constant proportional to 2735, VM/ [. We note that
the clean-system prediction depicted by the dashed line, S¢
——(m/2)In(1—q/ ), is actually the prediction of the
Haldane-Shastry model,*>*¢ which is a good approximation
to the Heisenberg model for ¢=13m/1447* For ¢
>137/14, 8¢ diverges as [-In(1-g/m)]*?, consistent with
C~(=1)NIn 1/1 for I>1.

C. Discussion

Summarizing, S%(g) is peaked at g=1r, Va, in both mod-
els, while it approaches zero at ¢=0, reflecting the antiferro-
magnetic quasi-long-range order. Near g=r, the low-energy
behavior of the structure factor is dominated by the short-
length scale behavior of the spin-spin correlation function,
and thus its scaling is determined by the physics of the clean
system. However, the true divergence is completely sup-
pressed by disorder, and the peak becomes shorter and
broader. On the other hand, the structure factor vanishes uni-
versally ~|q| for g<<1 [for &* in the XX model, one may
consider the quantity S*(¢g)—S*(¢=0)] as a consequence of
two features: (i) the power-law scaling of the mean spin-spin
correlation function C*%([) ~ [~7, with universal exponent'>!3
=2, and (ii) the amplitudes v, and v, being different in
magnitude. Moreover, due to the universal features of these
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amplitudes, S%(g)—S*(g=0) vanishes as «|g|, with a univer-
sal k=72/12,if ais a symmetry axis, and a nonuniversal «,
otherwise.

We now briefly discuss a controversy that has appeared in
the literature. The dynamical structure factor S*(w,q)
was theoretically studied in Refs. 49 and 50 within the
SDRG framework (and thus, in the small-w limit) and
experimentally studied in Refs. 51-53, mainly by measuring
the local dynamical structure factor S(w) [obtained when
one integrates S(w,q) over g¢] for the compound
BaCu,(Sij 5Ge5),07. Previously, it had been thought that
this compound is a good experimental realization of the ran-
dom AF spin-1/2 chain with quenched bond randomness,
since both the experimentally determined static magnetic
susceptibility and local dynamical structure factor were
found to be in good agreement with the strong-disorder the-
oretical predictions.’! However, further and more precise
measurements appeared to be in contradiction with the
strong-disorder theoretical scaling of S(w).’>>3 Interestingly,
the magnetic susceptibility measurements remained in agree-
ment with the theoretical prediction for the disordered
system.>? This led to a puzzle. Thermodynamical quantities
seem to be dominated by the physics of the disordered sys-
tem, whereas spin correlations seem to show the clean-
system physics.

We tentatively argue that the low-energy behavior of the
quantity oS(w) investigated experimentally may not be
dominated by the physics of the disordered system, even if
the system itself is governed by a strongly disordered fixed
point. The quantity S(w) is obtained from an integration over
all values of g. Therefore, it is dominated by the antiferro-
magnetic peak g=m. Such large momentum reflects the
shortest length scales of the time-dependent correlation func-
tion, whose behavior is expected to be dominated by the
physics of the disorder-free system, as in the case of the
time-independent correlation function. Hence, the experi-
mental determination of the full g-dependent S%(q, w) would
be highly desirable.

Recently, it was shown®* that the spin-1/2 compound
MgTiOBOj; displays a remarkable random-singlet signature
for the magnetic susceptibility in a wide and accessible range
of temperature. It would be interesting to perform neutron
scattering experiments on this compound in order to check
the predictions shown here for the static structure factor.

VII. CONCLUSIONS

In this paper, we revisited the ground-state properties of
random-bond antiferromagnetic quantum spin-1/2 chains us-
ing analytical and numerical tools. We focused on the ques-
tion of the universality of the spin-spin correlation function
C(1) and of the average entanglement entropy S(/), as func-
tions of the distance [, as well as the connection between
them.

By following exactly the SDRG flow of a family of
coupling-constant distributions, we showed that the SDRG
approach predicts a fully universal power-law scaling form
of the pair correlation function C(I), in which both the pref-
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actor and the decay exponent are disorder independent. How-
ever, the SDRG prediction is strictly valid only in the limit of
infinite randomness. Exact diagonalization and quantum
Monte Carlo calculations on finite chains showed that this
purported universality does not hold, except for the correla-
tions along the symmetry axis in the XX model. Moreover,
these numerical results reveal different correlation ampli-
tudes for spins separated by odd and even distances, v, and
v,, respectively. Nevertheless, we showed numerical evi-
dence that the combination v,+v,, at least for the XXX model
and for correlations along the symmetry axis in the XX
model, is indeed universal and agrees with the SDRG pre-
diction if we consider that spin clusters themselves develop
singletlike correlations. In other words, the correlations of
random singlets spread among spins in the clusters.

As the average number of spins in a cluster depends on
the details of the coupling-constant distribution, correlation-
function prefactors are nonuniversal. However, the conserva-
tion law for the total spin component along the symmetry
axis guarantees that correlations spread over all spins in the
effective-spin singlets, leading to the universality of v,+v,
=-1/4. This hypothesis was confirmed analytically in an ex-
actly solvable model, in which a number of three-spin clus-
ters were introduced into an infinite-disorder random-bond
chain. Interestingly, the fact that v, and v, are different in
magnitude has important experimental relevance: the small-g
behavior of the structure factor is dominated by disorder. We
have argued that g-resolved neutron scattering experiments
may be able to probe the universal features of those ampli-
tudes.

We also rederived the average ground-state entanglement
entropy S([), relating it to the mean correlation function. In
contrast to the nonuniversality of v,+v, when considering
C(I) along a nonsymmetry axis, the universal form of S(/)
first derived by Refael and Moore?! was shown to hold for
the exactly solvable model with effective spins, in agreement
with the numerical data presented in Sec. V and previously
elsewhere.*3

Note added. Recently, we became aware of Ref. 55 where
the dynamical structure factor is also studied and the contro-
versy mentioned at the end of Sec. VI is considered.
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APPENDIX A: CALCULATION OF P(Q,])

Laplace transforming Eq. (2.16) with respect to the length
variable [ yields

PHYSICAL REVIEW B 76, 174425 (2007)

P p p ou
= PN J dJIdfaP(Juk)P(Ja”‘)‘;(J B 1?3)
(A1)

where P(J,\)= J exp(=N)P(J,1)dl. We now substitute the
ansatz3233

. a(\, Q) ( Q) 1=A0)
PUN)=—"— A2
o= 22 (A2)
into Eq. (A1) and find a pair of equations,
d
Ea =-ap, (A3)
d 2
N A4
P (A4)
with the boundary conditions a(A=0,Q)=B(A=0,Q)
=39(Q). Since
(- a)=0 (A5)
dar ’
we find the solutions’>
+ ¢ tanh(cl’
g= Boc + ¢ tanh(c )’ (A6)
¢ + B, tanh(cI")
[2_ 2
cNBy—c (A7)

“= cosh(cT') + B, sinh(cl")’

where c=c(\) is a constant of the flow, defined by ¢*=f>
—a?. Moreover, ¢ is a real number since B> a, which can be
shown by considering an explicit calculation of the mean
distance between the active spins,

_ od [t .
I=| dll | dJP(J,)==1im — | dJP(J,\)
r—0 dN\ J
1 a()\,Q))
=lim —(1-———]. A8
me( BONQ) (A%)

As >0, Eq. (A8) ensures that a<j3.
The boundary conditions lead to ¢(A—0)<<1, and so
A<D =a®\"+O\™"). From

- 1 VB -¢? . c?
[=lim —|1—-—]=Ilim >
A—0 A B A—0 2\B

2
- %(1 + 902 =To(1 + 9,0)2,
0

(A9)

one finds 7=1, the last step coming from the definition [

=ly/ng, where [ is the initial mean distance between the
sites. For simplicity, we consider that initially all spins are

uniformly separated, i.e., l,-:j(l: Iy 1s the lattice spacing. The
constant a thus equals Jy\2/, and depends on the two pa-
rameters of the problem, the initial length parameter [, and
the initial disorder parameter J,. This is a consequence of
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the fact that the magnitude of a coupling constant J shared by
two spins a distance / apart is correlated with /, and thus the
joint distribution P(J,) cannot be written as P;(J)P/(I).

We can finally obtain P({),l) by Laplace inverting
IA’(Q,)\) in the appropriate scaling limit, i.e., N\ —0, ['— o0,
and a\">T'~O(1). Thus, Egs. (A7) and (A6) become

a=a \K cosech(a \"KF) , (A10)
B= an coth(a \JKF), (A11)
respectively, yielding
47 nm 2
P(Q,l)_Q 2F32( 1)™*1n? exp T I(.
(A12)

APPENDIX B: RENORMALIZATION OF A THREE-SPIN
CLUSTER

A cluster of three spins S;, S,, and S;, connected by an-
tiferromagnetic XXZ couplings, can be replaced at low ener-
gies by an effective spin—% object. If the three-spin Hamil-
tonian is given by

H iy =J(S1S5 + 8185+ AS5S5) + J(S385 + S35 + AS5S5).,

(B1)

with J>0 and 0<A=<1, then the ground state is doubly
degenerate. Thus, we can define an effective spin S, such
that, in the doublet subspace, the original spins are repre-
sented by “weights” defined by>®

S¢=clSE,  SY=c5SE,  S§=c5Sy, (B2)
with a=x,y,z and
, A+VA%+38
):jE x,y= C%C’y = A (B3)

24 HA A2+ 8)%

i(A + VA% +8)?
2+ i(A +VA2+8)%

(B4)
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1
=== , (B5)
: 1+ 5(A+ A2+ 8)?

) SA(A + A%+ 8)
mid = 3=~ 1 =0 (B6)
1+5(A+VA"+38)

APPENDIX C: ANOTHER DERIVATION OF THE
ENTANGLEMENT ENTROPY IN THE STRONG-
DISORDER RENORMALIZATION-GROUP FRAMEWORK

Following Refael and Moore,?! we exactly calculate the

mean number of times a given bond is decimated, which
corresponds to the mean number of singlet links M crossing
a given point in the chain at the energy scale (). Averaging
over all the sites in the lattice, this is simply the sum of the
lengths of all bonds decimated until the energy scale (), di-
vided by the chain length:

Q o
M(Q) = f a0 f dingP(Q, D). (C1)
QO 0

Using the results in Egs. (2.15) and (2.17) we find that

M(Q) = [1n(1+ﬁ0F)+ -1] (C2)

1+ 9

11 1 i
=—<—ln—+ \/z— 1), (C3)
3\2 gy Vi

where we have used the relation between length and energy
scales in Eq. (A9). Again, the reader should be aware of an
extra 1/2 prefactor when integrating over /, due to the fact
that singlet lengths are restricted to odd multiples of [,. Fi-
nally, because any subsystem has two boundaries,

S(1) = 25oM, = g Inl+b, (C4)
in which y=sy=In2 is a universal constant. Note that the
constant b=—1/3+O(I"""?) presented here has no physical
meaning. Although its value does not depend on the initial
disorder strength in this derivation, deviations from such
value are expected due to the spin clusters crossing the
boundaries (see Sec. V).
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