306 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationHigh speed wireless communication systems (e.g., long-term evolution (LTE), Wi-Fi) operate with high bandwidth and large peak-to-average power ratios (PAPRs). This is largely due to the use of orthogonal frequency division multiplexing (OFDM) modulation that is prevalent to maximize the spectral efficiency of the communication system. The power amplifier (PA) in the transmitter is the dominant energy consumer in the radio, largely because of the PAPR of the input signal. To reduce the energy consumption of the PA an amplifier that simultaneously achieves high efficiency and high linearity. Furthermore, to lower the cost for high volume production, it is desirable to achieve a complete System-on-Chip (SoC) integration. Linear amplifiers (e.g., Class-A, -B, -AB) are inefficient when amplifying signals with large PAPR that is associated by high peak-to-average modulation techniques such as LTE. OFDM. Switching amplifiers (e.g., Class-D, -E, -F) are very promising due to their high efficiency when compared to their linear amplifier counterparts. Linearization techniques for switching amplifiers have been intensively investigated due to their limited sensitivity to the input amplitude of the signal. Deep-submicron CMOS technology is mostly utilized for logic circuitry, and the Moore's law scaling of CMOS optimizes transistors to operate as high-speed and low-loss switches rather than high gain transistors. Hence, it is advantageous to use transistors in switching mode as switching amplifies and use high-speed digital logic circuitry to implement linearization systems and circuitry. In this work, several linearization architectures are investigated and demonstrated. An envelope elimination and restoration (EER) transmitter that comprises a class-E power amplifier and a 10-bit digital-to-analog converter (DAC) controlled current modulator is investigated. A pipelined switched-capacitor DAC is designed to control an open-loop transconductor that operates as a current modulator, modulating the amplitude of the current supplied to a class-E PA. Such a topology allows for increased filtering of the quantization noise that is problematic in most digital PAs (DPA). The proposed quadrature and multiphase architecture can avoid the bandwidth expansion and delay mismatch associated with polar PAs. The multiphase switched capacitor power amplifier (SCPA) was proposed after the quadrature SCPA and it significantly improves the power efficiency

    Highly efficient linear CMOS power amplifiers for wireless communications

    Get PDF
    The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.PhDCommittee Chair: Kenney, J. Stevenson; Committee Member: Jongman Kim; Committee Member: Kohl, Paul A.; Committee Member: Kornegay, Kevin T.; Committee Member: Lee, Chang-H

    A linear high-efficiency millimeter-wave CMOS Doherty radiator leveraging on-antenna active load-modulation

    Get PDF
    This thesis presents a Doherty Radiator architecture that explores multi-feed antennas to achieve an on-antenna Doherty load modulation network and demonstrate high-speed high-efficiency transmission of wideband modulated signals. On the passive circuits, we exploit the multi-feed antenna concept to realize compact and high-efficiency on-antenna active load modulation for close-to-ideal Doherty operation, on-antenna power combining, and mm-Wave signal radiation. Moreover, we analyze the far-field transmission of the proposed Doherty Radiator and demonstrate its wide Field-of-View (FoV). On the active circuits, we employ a GHz-bandwidth adaptive biasing at the Doherty Auxiliary power amplifier (PA) path to enhance the Main/Auxiliary Doherty cooperation and appropriate turning-on/-off of the Auxiliary path. A proof-of-concept Doherty Radiator implemented in a 45nm CMOS SOI process over 62-68GHz exhibits a consistent 1.45-1.53× PAE enhancement at 6dB PBO over an idealistic class-B PA with the same PAE at P1dB. The measured Continuous-Wave (CW) performance at 65GHz demonstrates 19.4/19.2dBm PSAT/P1dB and achieves 27.5%/20.1% PAE at peak/6dB PBO, respectively. For single-carrier 1Gsym/s 64-QAM modulation, the Doherty Radiator shows average output power of 14.2dBm with an average 20.2% PAE and -26.7dB EVM without digital predistortion. Consistent EVMs are observed over the entire antenna FoV, demonstrating spatially undistorted transmission and constant Doherty PBO efficiency enhancement.M.S

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Analysis and Design of CMOS Radio-Frequency Power Amplifiers

    Get PDF
    The continuous advancement of semiconductor technologies, especially CMOS technology, has enabled exponential growth of the wireless communication industry. This explosive growth in turn has completely changed people’s lives. The CMOS feature size scale down greatly benefits digital logic integrations, which result in more powerful, versatile, and economical digital signal processing. Further research and development has pushed analog, mixed-signal, and even radio-frequency (RF) circuit blocks to be implemented and integrated in CMOS. Future generations of wireless communication call for even further level of integration, and as of now, the only circuit block that is rarely integrated in CMOS along with other parts of the system is the power amplifier (PA). Due to the fact that the PA in a wireless communication system is the most power-hungry circuit block, the integration of RF PA in CMOS would potentially not only save the cost of the wireless communication system real estate, but also reduce power consumption since die-to-die connection loss can be eliminated. RF PA design involves handling large amounts of voltage and current at the radio frequencies, which in the present wireless communication standards are in the range of giga-hertz. Therefore, a good understanding of many aspects related to RF PA design is necessary. Theoretical analysis of the communication system, nonlinear effects of the PA, as well as the impedance matching network is systematically presented. The analysis of the nonlinear effects proposes a formal mathematical description of the multitone nonlinearity, and through its relationship with two-tone test, the proposed PA design methodology would greatly reduce the design time while improving the design accuracy. A thorough analysis of the available architecture and design techniques for efficiency and linearity enhancement of RF PA shows that despite tremendous amounts of research and development into this topic, the fundamental tradeoff between the two still limits the RF PA implementation largely within SiGe, GaAs, and InP technologies. A RF PA for Wideband Code-Division Multiple Access (WCDMA) application standard is proposed, designed, and implemented in CMOS that demonstrates the proposed segmentation technique that resolved the main tradeoff between power efficiency and linearity. The innovative architecture developed in this work is not limited to applications in the WCDMA communication protocol or the CMOS technology, although CMOS implementation would take advantage of the readily available digital resources

    Analysis and Design of CMOS Radio-Frequency Power Amplifiers

    Get PDF
    The continuous advancement of semiconductor technologies, especially CMOS technology, has enabled exponential growth of the wireless communication industry. This explosive growth in turn has completely changed people’s lives. The CMOS feature size scale down greatly benefits digital logic integrations, which result in more powerful, versatile, and economical digital signal processing. Further research and development has pushed analog, mixed-signal, and even radio-frequency (RF) circuit blocks to be implemented and integrated in CMOS. Future generations of wireless communication call for even further level of integration, and as of now, the only circuit block that is rarely integrated in CMOS along with other parts of the system is the power amplifier (PA). Due to the fact that the PA in a wireless communication system is the most power-hungry circuit block, the integration of RF PA in CMOS would potentially not only save the cost of the wireless communication system real estate, but also reduce power consumption since die-to-die connection loss can be eliminated. RF PA design involves handling large amounts of voltage and current at the radio frequencies, which in the present wireless communication standards are in the range of giga-hertz. Therefore, a good understanding of many aspects related to RF PA design is necessary. Theoretical analysis of the communication system, nonlinear effects of the PA, as well as the impedance matching network is systematically presented. The analysis of the nonlinear effects proposes a formal mathematical description of the multitone nonlinearity, and through its relationship with two-tone test, the proposed PA design methodology would greatly reduce the design time while improving the design accuracy. A thorough analysis of the available architecture and design techniques for efficiency and linearity enhancement of RF PA shows that despite tremendous amounts of research and development into this topic, the fundamental tradeoff between the two still limits the RF PA implementation largely within SiGe, GaAs, and InP technologies. A RF PA for Wideband Code-Division Multiple Access (WCDMA) application standard is proposed, designed, and implemented in CMOS that demonstrates the proposed segmentation technique that resolved the main tradeoff between power efficiency and linearity. The innovative architecture developed in this work is not limited to applications in the WCDMA communication protocol or the CMOS technology, although CMOS implementation would take advantage of the readily available digital resources
    • 

    corecore