269 research outputs found

    Overview on: sequencing in mixed model flowshop production line with static and dynamic context

    Get PDF
    In the present work a literature overview was given on solution techniques considering basic as well as more advanced and consequently more complex arrangements of mixed model flowshops. We first analyzed the occurrence of setup time/cost; existing solution techniques are mainly focused on permutation sequences. Thereafter we discussed objectives resulting in the introduction of variety of methods allowing resequencing of jobs within the line. The possibility of resequencing within the line ranges from 1) offline or intermittent buffers, 2) parallel stations, namely flexible, hybrid or compound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant flowshops, to 5) change job attributes without physically interchanging the position. In continuation the differences in the consideration of static and dynamic demand was studied. Also intermittent setups are possible, depending on the horizon and including the possibility of resequencing, four problem cases were highlighted: static, semi dynamic, nearly dynamic and dynamic case. Finally a general overview was given on existing solution methods, including exact and approximation methods. The approximation methods are furthermore divided in two cases, know as heuristics and methaheuristic

    Iterative beam search algorithms for the permutation flowshop

    Full text link
    We study an iterative beam search algorithm for the permutation flowshop (makespan and flowtime minimization). This algorithm combines branching strategies inspired by recent branch-and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results, reports many new-best-so-far solutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime minimization) without using any NEH-based branching or iterative-greedy strategy. The source code is available at: https://gitlab.com/librallu/cats-pfsp

    Minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers

    Get PDF
    This research addresses the problem of minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers. A mathematical model was developed to solve this problem. The problem is NP-Hard in the strong sense and only very small problems could be solved optimally. For exact methods, the computation times are long and not practical even when the problems are relatively small. Two construction heuristics were developed that could find solutions quickly. Also a simulated annealing heuristic was constructed that improved the solutions obtained from the construction heuristics. The combined heuristics could compute a good solution in a short amount of time. The heuristics were tested in three different environments: 3 stages, 4 stages, and 5 stages. To assess the quality of the solutions, a lower bound and two simple heuristics were generated for comparison purposes. The proposed heuristics showed steady improvement over the simple heuristics. When compared to the lower bounds, the heuristics performed well for the smaller environment, but the performance quality decreased as the number of stages increased. The combination of these heuristics defiantly shows promise for solving the problem

    PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND STEEPEST DESCENT METHOD

    Get PDF
    In the pharmaceutical manufacturing world, a deadline could be the difference between losing a multimillion-dollar contract or extending it. This, among many other reasons, is why good scheduling methods are vital. This problem report addresses Flexible Flowshop (FF) scheduling using Simulated Annealing (SA) in conjunction with the Steepest Descent heuristic (SD). FF is a generalized version of the flowshop problem, where each product goes through S number of stages, where each stage has M number of machines. As opposed to a normal flowshop problem, all ‘jobs’ do not have to flow in the same sequence from stage to stage. The SA metaheuristic is a global optimization method for solving hard combinatorial optimization problems. SD is a local search method that keeps track only of the current solution and moves only to neighboring permutations based on the largest decrease in the objective function value. The goal of this problem report is to use FF in conjunction with SA to minimize the makespan (length of schedule) in a pharmaceutical manufacturing environment. There are 4 total stages in the tentative production route: granulation, compression, coating, and packaging. This process will be uniform; as in, each stage will have the same number of identical machines. In this study, SA solved the illustrative small-scale example problems precisely and efficiently using a very small amount of computation time. Afterward, the SD heuristic is used to ensure that the best solution found by SA is a local optimum. SD did not improve upon the solutions found by SA

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    Benchmarking Permutation Flow Shop Problem: Adaptive and Enumerative Approaches Implementations via Novel Threading Techniques

    Full text link
    A large number of real-world planning problems are combinatorial optimization problems which are easy to state and have a finite but usually very large number of feasible solutions. The minimum spanning tree problem and the shortest path problem are some which are solvable through polynomial algorithms. Even though there are other problems such as crew scheduling, vehicle routing, production planning, and hotel room operations which have no properties such as to solve the problem with polynomial algorithms. All these problems are NP-hard. The permutation flow shop problem is also NP-hard problem and they require high computation. These problems are solvable as in the form of the optimal and near-optimal solution. Some approach to get optimal are exhaustive search and branch and bound whereas near optimal are achieved annealing, Genetic algorithm, and other various methods. We here have used different approach exhaustive search, branch and bound and genetic algorithm. We optimize these algorithms to get performance in time as well as get the result closer to optimal. The exhaustive search and branch and bound gives all possible optimal solutions. We here have shown the comparative result of optimal calculation for 10 jobs with varying machine number up to 20. The genetic algorithm scales up and gives results to the instances with a larger number of jobs and machines

    Permutation Flow Shop via Simulated Annealing and NEH

    Full text link
    Permutation Flow Shop Scheduling refers to the process of allocating operations of jobs to machines such that an operation starts to process on machine j only after the processing completes in j-1machine. At a time a machine can process only one operation and similarly a job can have only one operation processed at a time. Finding a schedule that minimizes the overall completion times for Permutation Flow Shop problems is NP-Hard if the number of machines is greater than 2. Sowe concentrates on approaches with approximate solutions that are good enough for the problems. Heuristics is one way to find the approximate solutions for a problem. For our thesis, we have used two heuristics - NEH and Simulated Annealing, both individually and in a combined form, to find the solutions for Permutation Flow Shop problems. We have compared NEH and Simulated Annealing algorithm based on result and execution time and also compared the combined algorithm with existing ones. Standard benchmarks are used to evaluate the performances of the implemented algorithm

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects

    Full text link
    [EN] This paper addresses a sequence dependent setup times no-wait flowshop with learning and forgetting effects to minimize total flowtime. This problem is NP-hard and has never been considered before. A position-based learning and forgetting effects model is constructed. Processing times of operations change with the positions of corresponding jobs in a schedule. Objective increment properties are deduced and based on them three accelerated neighbourhood construction heuristics are presented. Because of the simplicity and excellent performance shown in flowshop scheduling problems, an iterated greedy heuristic is proposed. The proposed iterated greedy algorithm is compared with some existing algorithms for related problems on benchmark instances. Comprehensive computational and statistical tests show that the presented method obtains the best performance among the compared methods. (C) 2018 Elsevier Inc. All rights reserved.This work is supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377), the Collaborative Innovation Center of Wireless Communications Technology and the Key Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 12KJA630001). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness(MINECO), under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" with reference DPI2015-65895-R.Li, X.; Yang, Z.; Ruiz García, R.; Chen, T.; Sui, S. (2018). An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects. Information Sciences. 453:408-425. https://doi.org/10.1016/j.ins.2018.04.038S40842545
    corecore