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Abstract 

PHARMACEUTICAL SCHEDULING USING 

SIMULATED ANNEALING AND STEEPEST 

DESCENT METHOD 

Bryant J. Spencer 

In the pharmaceutical manufacturing world, a deadline could be the difference between losing a 
multimillion-dollar contract or extending it. This, among many other reasons, is why good scheduling 
methods are vital. This problem report addresses Flexible Flowshop (FF) scheduling using 
Simulated Annealing (SA) in conjunction with the Steepest Descent heuristic (SD).  

FF is a generalized version of the flowshop problem, where each product goes through S number of 
stages, where each stage has M number of machines. As opposed to a normal flowshop problem, 
all ‘jobs’ do not have to flow in the same sequence from stage to stage. The SA metaheuristic is a 
global optimization method for solving hard combinatorial optimization problems. SD is a local 
search method that keeps track only of the current solution and moves only to neighboring 
permutations based on the largest decrease in the objective function value. The goal of this problem 
report is to use FF in conjunction with SA to minimize the makespan (length of schedule) in a 
pharmaceutical manufacturing environment. There are 4 total stages in the tentative production 
route: granulation, compression, coating, and packaging. This process will be uniform; as in, each 
stage will have the same number of identical machines.  

In this study, SA solved the illustrative small-scale example problems precisely and efficiently using 
a very small amount of computation time. Afterward, the SD heuristic is used to ensure that the best 
solution found by SA is a local optimum. SD did not improve upon the solutions found by SA. 
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Chapter 1: Introduction 

Manufacturers are the source (suppliers) of the prescription drugs in the pharmaceutical supply 

chain. The pharmaceutical manufacturing industry is composed of two distinct business models: 

manufacturers of brand-name drugs (e.g., Pfizer, Merck, and Novartis) and manufacturers of 

generic drugs (e.g., Mylan, Roxane, and Barr)  (Health Strategies Consultancy, 2005).  The major 

difference is that brand-name manufacturers allocate most resources toward research and 

development of new drugs, while generic manufacturers formulate drugs directly based on a 

branded version with an expired patent. 

 

Pharmaceutical manufacturing for tablets utilizes four generalized steps (Fig. 1): granulation, 

compression, coating, and packaging. 

 

 

Figure I: Four Steps in Pharmaceutical Manufacturing 

 

Raw materials are received, checked for quality, and assigned lot numbers. The active and inactive 

ingredients are then processed and blended to the appropriate consistency. The blending operation 
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typically uses v-blenders. Raw materials are rotated in these blenders to achieve a homogenous 

blend. Then wet or dry granulation techniques are used to further process the ingredients. The wet 

granulation process consists of three-story tall fluid bed granulators and high shear mixers. The dry 

powder is suspended in mid air by high volume airflow. A granulating solution is sprayed onto the 

suspended powder. The temperature is then increased to dry the wet granulation. This powder is 

then milled to achieve a specific particle size and density. The powder is then blended again for 

uniformity. 

 

At the compression stage, the powder is then compressed into tablets or filled into capsules. For the 

purpose of the study, only tablets will be focused on. A tablet press consists of a large, rotating 

turret, where upper and lower punches are forced together within a die to form tablets. Tablets are 

then placed into coating pans. A coating machine resembles an industrial clothes dryer; however, a 

coating machine also has a spray gun system in order to coat the tablets at desired temperature. 

The tablets are then coated with a color or clear coating. The coating can serve as decorative (for 

identification) or functional (to hide taste, extended release, etc.). These coated tablets are then 

packaged into bottles.  

 

Since the pharmaceutical manufacturing industry is so competitive, one of the most, if not the most, 

important drivers is time-to-market. Time-to-market is the time it takes from a product being 

conceived until it’s processed and available for sale.  Pharmaceutical is also a highly regulated 

industry, with large amounts of cleaning, set-ups, and trainings. There are other major factors, 

including, but not limited to: high but uncertain demand, long lead times from suppliers, and different 

product variations (different milligrams, extended release, delayed release, chewable). 

 

These are some of the many reasons why scheduling is so important in the pharmaceutical 

manufacturing industry. It helps to minimize production time while fulfilling predicted and actual 

demand. The overall objective would be to minimize late deliveries; late deliveries lead to penalties 

and loss of contracts. In this problem report a four-stage scheduling problem is considered. 
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Chapter 2: Literature Review 

 

Combinatorial approach 

Combinatorial approaches are based on the changing of one permutation (solution) to another by 

switching jobs around in order to optimize a given objective function (Sethanan, 2001). The process 

searches for an optimal value whose solution space is a discrete but large configuration space. 

Some simple examples of typical combinatorial optimization problems are: 

• Traveling Salesman Problem 

• Bin-Packing 

• Job-shop Scheduling 

 

 

Enumerative optimal methods 

The most general techniques are mathematical formulations (such as linear programming, dynamic 

programming, integer programming), and branch and bound methods (Sethanan, 2001). The 

complexity of the variable interactions makes these methods far too difficult and time consuming. 

 

 

Heuristic approach 

Exact solution measures may not exist or may be too exhaustive to apply for large-sized, or even 

small sized, scheduling problems (Sethanan, 2001). It is then necessary to use heuristics, which will 

yield good solutions. These solutions may or may not be optimal, but they supply a local optima that 

is acceptable. The following are examples of heuristic approaches: 

1. Relaxed Exact Solutions 

a. Linear Programming relaxation 

b. Lagrangian relaxation 

2. Local Search Techniques 

a. Random Descent 

b. Steepest Descent 

3. Meta-Heuristics 

a. Tabu Search 

b. Simulated Annealing 

c. Genetic Algorithms 

4. Ad Hoc Decision Rules 
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Simulated Annealing 

Simulated annealing (SA) is derived from an analogy between the physical annealing of solids and 

combinatorial optimization. Physically, it refers to the heating of a substance close to the melting 

point, staying at this temperature for a set time, and then lowering the temperature slowly until the 

substance reaches a stable state. This process softens the substance by removing internal 

stresses, but the substance never actually leaves the solid state. Metropolis et al. (1953) realized 

that Markov chains, a random sequence of states whose probabilities depend on the previous state, 

could be used to converge to a probability distribution. Furthermore, Kirkpatrick (1983) discovered 

that there is a deep, useful connection between statistical methods and combinatorial optimization. 

A detailed analogy with annealing solids provides a framework for optimization of very large, 

complex systems (Kirkpatrick, 1983). 

 

 

Simple Flowshop Problem 

Johnson (1954) developed an unrestricted flowshop (FS) where each item is to be produced on 

machine one and then machine two. A simple decision rule is obtained in the literature for the 

optimal scheduling of the production so that the makespan (total length of schedule) is a minimum 

(Johnson, 1952). A restricted three-stage problem was also explored. 

 

 

Flexible Flowshop w/o Restriction  

Flexible flowshop (FFS) is the generalized FS problem. Where FS is a specific number of machines 

in a series, FFS is a series of stages with a parallel amount of machines per stage (Shieh, 2004). 

 

 

Two-stage FFS 

Arthanari et al. (1971) presented a branch and bound algorithm to optimally solve the special case 

of the two-stage flexible flowshop (FFS) where there are multiple machines at the first stage and 

only one machine at the second (Crowder, 2006). Gupta (1988) addressed the two stage FFS 

problem where there are identical machines at each stage. A heuristic was developed for a special 

case where there is only one machine at stage two. This problem has also been examined by 

Blazewicz et al. (1992) to show that Johnson’s algorithm (1954) and the longest processing time 

(LPT) rule can be proven to be the best and closest to optimal (Shieh, 2004). Chen (1995) also 

developed a heuristic for the special case with one machine at the second stage. Koulamas (2000) 

considered two-stage and three-stage FFS with parallel machines at each stage. The objective was 

to minimize makespan and was accomplished using lower complexity algorithms. Soewandi (2001) 
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successfully developed several heuristic procedures of time O(n log n) to solve the three-stage 

FFS. 

 

 

Multiple stage (>2 stages) FFS with unlimited buffer  

Brah and Hunsucker (1991) developed a branch and bound algorithm to solve scheduling problems 

that optimize maximum completion time for facilities. The lower bounds and elimination rules 

developed are based upon the generalization of the flow shop problem. Brockman et al. (1997) 

improved Brah and Hunsucker’s (1991) algorithm; however, their algorithm was not able to handle 

availability time of machines until 1998. Portman (1998) is also an improved algorithm to Brah and 

Hunsucker (1991). It was proved that the original lower bound may decrease along a path of the 

search tree, and genetic algorithms was used to improve the search value of the upper bound. A 

problem with fifteen jobs and five stages was solved with a 3% deviation from the branch and 

bound method. Verma and Dessouky (1998) present a branch and bound procedure which 

provides an optimal solution to the 3-stage problem, and a fast heuristic procedure that is shown to 

provide good approximate solutions on sample problems. This heuristic is a natural extension of the 

2-stage polynomial-time procedure. Verma and Dessouky (1999) compared their results/algorithm 

to the Latest Start Time rule (LST), which refers to the latest time at which the activity can be 

completed without delaying the project. 

 

 

Multiple stage (>2 stages) FFS with buffer limitation (machine blockage) 

Buffer limitation, or machine blockage, is where a completed job may remain on a machine and 

occupy it until a downstream machine becomes available. Gilmore (1964) found the minimal cost 

sequence with a special case traveling salesman problem, where time or money is used for 

changing over a machine for the next job. Salavador (1973) solved this type of problem using 

branch & bound algorithm. Wittrock (1988) solved this problem by minimizing the makespan and 

queueing time. The problem is decomposed into three subproblems and each of these is solved 

using a fast heuristic. The algorithm was tested by computing schedules for a real production line. 

Sawik (2000) presents new mixed integer programming formulations for scheduling of a flexible flow 

line with blocking. The basic mixed integer programming formulations have been enhanced to 

model blocking scheduling with alternative processing routes where for each product a set of routes 

is available for processing, and a reentrant flow line where a product visits a set of stages more 

than once is also considered (Sawki, 2000). Sawik (2002) also develops a mixed integer 

programming approach for lines that consist of finite intermediate buffers, which cause machine 

blocking.   
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Chapter 3: Problem statement and objectives of research 

This study is based on the need of a pharmaceutical company to schedule its production process. 

This pharmaceutical company manufactures a vast array of products in a flexible flow shop 

environment. A flow shop is a problem that has a set amount of products that each go through a set 

amount of machines, as opposed to job shop, where each product has its own route through a set 

of machines. Flexible flow shop is an even more general form of flow shop where each product 

goes through one of many identical machines at each stage. Both of these instances are NP-hard 

and generally considered too complex to solve using exact methods.  

 

Because scheduling problems have a vast amount of variation, the following assumptions are made 

for the problem under consideration (assumptions noted with an asterisk have been deemed 

realistic) 

 

1. *N products, S stages, M identical machines per stage. 

2. *Preplanned campaign based; campaign contains smaller lots or batches of the same 

 product family. Product families contain similar variation of a product (different milligram, 

 delayed release, extended release, chewable). This will minimize set-up and cleaning 

 times that arise when switching between product families (Guomundsdóttir, 2012). 

3. *Production time is per campaign. 

4. Each stage will have the same number of machines. 

5. *The number of jobs to be scheduled and their processing times on each machine at 

 each stage is known in advance and fixed. 

6. *The number of stages and the machine configuration at each stage are known in   

 advance and fixed. 

7. Preemption, temporarily interrupting a job, is not allowed. Once a job has started, it must 

 be completely finished on the assigned machine before it can move to the next stage. 

8. All jobs are ready to begin processing at time period 0.  

9.  Jobs may or may not be scheduled in the same order at each stage, i.e. job passing is   

 allowed. 

10. *Set-up and clean times are included in the processing time of each job at each stage. 

11. Buffers/storage space is ignored. It is unlimited.  

12. Machine blocking cannot occur, so when a job is finished processing, it can leave the 

 machine before there is room on a machine at the next stage  

13. There are no due dates associated with the jobs and the objective is to minimize the 

 makespan. 
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14. *Production is considered as make-for-stock based on a forecast, as opposed to make-

 to-order. 

15. *Transportation time between stages and buffers are considered to be negligible. 

 

There are five main objectives to this research:  

1. Consider the main objective of minimizing the makespan for the multi-stage flexible 

flowshop with uniform machines and unlimited buffers.  

2. Use a random permutation as the initial job processing order. Construction heuristics used 

in conjunction with a random model produce no advantage. 

3. Since this problem is considered strongly NP-Hard, use SA to solve this problem. 

4. After SA is complete; use SD to ensure the solution is a local optimum. 

5. Solve multiple examples to test the performance of the heuristics (see Illustrative 

Examples). 
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Chapter 4: Methodology 

 

SA Algorithm Pseudo-Code 

1. Obtain initial π solution S where S is the solution space (set of all feasible solutions). 

2. Select initial temperatre T(0), T > 0. 

3. Set temperature counter t=0, iteration counter at current temperature n=0, and total 

iteration counter k=0. 

4. Generate state π’, a neighbor of π using local search technique. 

5. Obtain ΔTC = TC(π) – TC(π’). 

6. If ΔTC >0, then π = π’ (minimization). If ΔTC<0 and exp(ΔTC/T)>rand(0,1), then π=π’. 

1. Else keep π. 

2. Set k = k+1 and n=n+1. 

3. Repeat steps 4-6 until n = N(t) (epoch length) or stopping criterion has been 

reached (e.g., k = max_itera).  

7. Set t=t+1, T=T(t), n=0. Go step 4. 

 

 

Makespan Pseudo Code 

1. Let 

a. t(i,j,m) = processing time, at stage i, on machine m of job in position j in 

processing sequence P 

b. T(i,j,m) = completion time, at stage i, on machine m of job in position j in 

processing sequence P 

c. TM(i,m)=current processing time of machine m at stage i. 

2. The establishment of the makespan table is as follows: 

a. Let I = number of stages 

b. Let N = number of jobs to be scheduled 

c. Let M = number of machines 

3. Develop I tables with N internal rows and M internal columns. Add 2 columns to the the 

table to depict the job-processing sequence under consideration and a top row to head 

the columns. 

4. For each row associated with each job in position j, enter the process times of that job in 

the upper half of the cells for that row (i.e., enter t(i,j,m) for each j). 

5. For table i=1 j,m=1..M: T(1,j,m)=t(1,j,m)=TM(1,m) 

6. For table i=1 and j>M: T(1,j,m) = min{TM(1,m)}+t(1,j,m)=TM(1,m) 
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7. After table 1 is complete, organize products in ascending order by T(1,j,m). This is the 

new processing sequence P.  

8. For table i=2, j,m=1..M: T(i,j,m)=T(i-1=1=,j,m)+t(i=2,j,m)+TM(i=2,m) 

9. For table i=2 and j>M: T(i=2,j,m) = max{T(i-

1=1,j,m),min{TM(i=2,m)}}+t(i=2,j,m)=TM(i=2,m) 

10. After table i=2 is complete, organize products in ascending order by T(i=2,j,m). This is the 

new processing sequence P.  

11. Repeat steps 8-10 for Tables 3 through I. 

12. The max of T(I,j,m) or TM(I,m) will give the Total Makespan of the whole process. 

 

 

Steepest Descent Pseudo Code 

1. Select a starting solution s0 in S (a set of feasible solutions) 

2. Select s in N(s0) such that f(s) < f(s0) by steepest descent (largest improvement/decrease) 

3. Replace s0 by s. 

4. Repeat steps 2-3 until f(s) ≥ f(s0) for all s in N(s0). 
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Chapter 5: Computational Results 

 

Illustrative Example 1:  

Consider a 7 job, 4 stage (1 machine per stage) FS problem with processing time as shown in table 

1. Problem taken from Kumar et al (2014). 

 

Table I: Illustrative Example 1 

JOBS M1 M2 M3 M4 

J1 3 1 4 12 

J2 8 0 5 15 

J3 11 3 8 10 

J4 4 7 3 8 

J5 5 5 1 10 

J6 10 2 0 13 

J7 2 5 6 9 

 

In the Gupta heuristic algorithm all the jobs are divided into two groups by comparing the 

dispensation times of the first machine and the last machine in each job. For every group, calculate 

the sum of processing times of any two adjacent tasks in a job and find the minimum processing 

time, and then schedules the jobs in sorting order according to their minimum summed processing 

times (Kumar et al., 2014). 

 

Table II: Makespan Calculation using GUPTA’s 

Algorithm for Illustrative Example 1 

JOBS M1 M2 M3 M4 

J1 0-3 3-4 4-8 8-20 

J2 3-11 11-11 11-16 20-35 

J5 11-16 16-21 21-22 35-45 

J7 16-18 21-26 26-32 45-54 

J4 18-22 26-33 33-36 54-62 

J3 22-33 33-36 36-44 62-72 

J6 33-44 44-46 46-46 72-85 

 

The best sequence using GUPTA’s Algorithm is = {J1, J2, J5, J7, J4, J3, J6} , which gives a 

makespan of 85. 
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This problem was also solved using a novel hybrid permutation flow shop scheduling developed by 

Kumar et al. (2014). The satisfaction criteria to use this permutation is as follows: If the maximum 

processing time on Machine 1 is greater than or equal to the minimum processing time on machine 

m1, m2,… mM-1 and if the minimum processing time on machine mM is greater than or equal to the 

maximum processing time on machine m2, m3,…mM-1. The conditions for the above problem are 

met; therefore, two hypothetical machines X and Y are introduced, respectively. X is the sum of the 

processing times of the first three machines, while Y is the sum of the last three machines. 

 

Table III: Hypothetical Machines for 

Illustrative Example 1 

JOBS X Y 

J1 8 17 

J2 13 20 

J3 22 21 

J4 14 18 

J5 11 16 

J6 12 15 

J7 13 20 

 

Ordered Group in Ascending X= {J1, J5, J6, J7, J2, J4} due to Y > X for these respective machines. 

Ordered Group in Descending Y= {J3} due to X > Y for this machine. 

 

This concludes in this schedule with the below makespan table: {J1, J5, J6, J7, J2, J4, J3} 
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Table IV: Makespan Using a Novel Hybrid 

Permutation Flow Shop Scheduling for 

Illustrative Example 1 

JOBS M1 M2 M3 M4 

J1 0-3 3-4 4-8 8-20 

J5 3-7 7-14 14-17 20-30 

J6 7-17 17-19 19-19 30-43 

J7 17-19 19-24 24-30 43-52 

J2 19-27 27-27 30-35 52-67 

J4 27-31 31-38 38-41 67-75 

J3 31-42 42-45 45-53 75-85 

 

According to Kumar et al. (2014) the makespan for this generated sequence is 85. This is after 

correcting the processing time for Job 5 on Machine 4 from 8 to 10 (the makespan in the literature is 

incorrectly calculated to 83). 

 

The initial parameters and the solution summary can be seen below. 

 

Initial Parameters: 

• The initial temperature is: 15 

• The epoch length is: 70 (10 × N) 

• The maximum iterations without improvement : 350 (50 * N) 

• The cooling parameter is: 0.9 

 
Solution Summary: 

• Best Found Solution 

• The best schedule is: 1  2  5  3  4  6  7 

• The time for the best schedule is: 85 time units 

• Best Solution found at iteration #5 

• The iterations at the current temperature: 7 

• The total iterations is: 357 

• The number of temperature changes: 5 

• The time taken to solve this problem is 0.21387 seconds 
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See makespan Table V below for best job sequence and job completion times for stages 1, 2, 3, 

and 4 using SA heuristic. An attempt to improve the sequence was made by applying steepest 

descent heuristic to the solution. See neighborhood of solutions in Table VI below. It is important 

to note that the schedule did not improve. 

 
 

Table V: Makespan Table for Illustrative Example 1 

Job Stage 1 Stage 2 Stage 3 Stage 4 

1 3 4 8 20 

2 11 11 16 35 

5 16 21 22 45 

3 27 30 38 55 

4 31 38 41 63 

6 41 43 43 76 

7 43 48 54 85 

 
 

Table VI: Steepest Descent Neighborhood of Solutions and Makespans for Solution 

1 2 5 3 4 6 7 of Illustrative Example 1 

2     1     5     3     4     6     7 

5     2     1     3     4     6     7 

3     2     5     1     4     6     7 

4     2     5     3     1     6     7 

6     2     5     3     4     1     7 

7     2     5     3     4     6     1 

1     5     2     3     4     6     7 

1     3     5     2     4     6     7 

1     4     5     3     2     6     7 

1     6     5     3     4     2     7 

1     7     5     3     4     6     2 

90 

88 

99 

91 

89 

90 

85 

90 

85 

85 

85 

 

1     2     3     5     4     6     7 

1     2     4     3     5     6     7 

1     2     6     3     4     5     7 

1     2     7     3     4     6     5 

1     2     5     4     3     6     7 

1     2     5     6     4     3     7 

1     2     5     7     4     6     3 

1     2     5     3     6     4     7 

1     2     5     3     7     6     4 

1     2     5     3     4     7     6 

85 

85 

85 

85 

85 

85 

85 

85 

85 

85 

 
Illustrative Example 2:  

Consider ten jobs and four stages, with each stage having 4 parallel, uniform machines (Table VII) 

(Tyagi, 2016). 
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The Construction Algortihm used (Tyagi, 2016) utilizes the Minimum Processing Time Selective 

Approach (MPTSA) and the Longest Processing Times (LPT) approach. The problem first 

categorizes the four-stage (four machines per stage) flexible flowshop problem into four four-stage, 

single machine flexible flowshop scheduling problems (seen in the equations below). Jobs are then 

assigned to these four separate problems using MPTSA (Tyagi, 2016). LPT is then used in each 

individual flowshop to schedule the respective jobs. The makespan of 34 is calculated using the 

maximum of each of the four flowshops.  

 

𝐹𝑆1
= 𝑀11 + 𝑀21 + 𝑀31 + 𝑀41 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗7, 𝑗8 

𝐹𝑆2
= 𝑀12 + 𝑀22 + 𝑀32 + 𝑀42 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗1, 𝑗3, 𝑗10 

𝐹𝑆3
= 𝑀13 + 𝑀23 + 𝑀33 + 𝑀43 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗4, 𝑗6, 𝑗9 

𝐹𝑆4
= 𝑀14 + 𝑀24 + 𝑀34 + 𝑀44 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠 𝑗2, 𝑗5 

 

 Table VII: Ten Job, Four Stage FF Data for Illustrative Example 2 

 Stages 

S1 S2 S3 S4 

Jobs M1i M2i M3i M4i 

J1 6 2 9 5 

J2 8 3 4 2 

J3 5 4 7 8 

J4 6 5 2 4 

J5 5 2 4 1 

J6 3 4 1 2 

J7 1 3 5 2 

J8 2 7 4 5 

J9 8 4 3 6 

J10 2 1 6 3 

 

This example is also solved using the Heuristic Algorithm Using Palmer Approach developed by 

Tyagi. Jobs are assigned to four separate flowshop problems as per the method above. However, 

now a slope for every job is calculated, and the jobs are sequenced using Longest Slope Value 

(LSV) (Tyagi, 2016) in descending order. The slope Yi for nth jobs (i=1 to n) for every category of the 

flow shop scheduling (𝐹𝑆𝑞
) on each machine center stage (𝑆𝑞) is as follows: 

𝑌𝑖 = − ∑ {𝑞 − (2𝑘 − 1)]𝑚𝑖(𝐹𝑆𝑞)
𝑞
𝑘=1  (Calculated slopes can be seen in Table VIII below) 
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Table VIII: Calculated Slope Value for Palmer Based Heuristic Algorithm for 
Illustrative Example 2 

 Jobs 
𝒋𝒊 

𝒎𝟏𝒊 𝒎𝟐𝒊 𝒎𝟑𝒊 𝒎𝟒𝒊 𝒀𝒊 

k=1 k=2 k=3 k=4 

𝑭𝑺𝟏
 𝑗7 3 3 -5 -6 5 

𝑗8 6 7 -4 -9 6 

𝑭𝑺𝟐
 𝑗1 18 2 -9 -15 4 

𝑗3 15 4 -7 -24 12 

𝑗10 6 1 -6 -9 8 

𝑭𝑺𝟑
 𝑗4 18 5 -3 -12 -9 

𝑗6 9 4 -2 -6 -6 

𝑗9 24 4 -3 -18 -7 

𝑭𝑺𝟒
 𝑗2 24 3 -4 -6 -17 

𝑗5 15 2 -4 -3 -10 

 

The makespan of 36 is calculated using the maximum of each of the flowshops. Sequencing, 

solutions, and comparisons  for both methods can be seen below in Table IX, Table X, Table XI, 

and Table XII. 

 

Table IX: Sequencing of Jobs According to LPT and LSV for Illustrative Example 2 
Machine Center 

Stage K 
Flowshop 

Categories (𝑭𝑺𝒌
) 

Assigned 
Jobs 

Sequenced Jobs 
for LPT 

Sequenced Jobs 
for LSV 

1 𝐹𝑆1
 𝑗7, 𝑗8 𝑗7 > 𝑗8 𝑗7 > 𝑗8 

2 𝐹𝑆2
 𝑗1, 𝑗3, 𝑗10 𝑗3 > 𝑗1 > 𝑗10 𝑗3 > 𝑗10 > 𝑗1 

3 𝐹𝑆3
 𝑗4, 𝑗6, 𝑗9 𝑗9 > 𝑗4 > 𝑗6 𝑗6 > 𝑗9 > 𝑗4 

4 𝐹𝑆4
 𝑗2, 𝑗5 𝑗2 > 𝑗5 𝑗5 > 𝑗2 

 
 

Table X: In-Out Table for FFS using Constructive Heuristic Algorithm for Illustrative 
Example 2 

 Jobs 
𝒋𝒊 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒  

In---Out In---Out In---Out In---Out 

𝑭𝑺𝟏
 𝑗8 0---2 2---6 6---12 12---15  

𝑗7 2---3 6---12 12---17 17---19 𝐶𝑚𝑎𝑥𝐹𝑆1
 

𝑭𝑺𝟐
 𝑗3 0---5 5---9 9---16 16---24  

𝑗1 5---11 11---13 16---25 25---30  

𝑗10 11---13 13---14 25---31 31---34 𝐶𝑚𝑎𝑥𝐹𝑆2
 

𝑭𝑺𝟑
 𝑗9 0---8 8---12 12---15 15---21  

𝑗4 8---14 14---19 19---21 21---25  

𝑗6 14---17 19---23 23---24 25---27 𝐶𝑚𝑎𝑥𝐹𝑆3
 

𝑭𝑺𝟒
 𝑗2 0---8 8---11 11---15 15---17  

𝑗5 8---13 13---15 15---19 19---20 𝐶𝑚𝑎𝑥𝐹𝑆4
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Table XI: In-Out Table for FFS using Palmer Based Heuristic Algorithm for 
Illustrative Example 2 

 Jobs 
𝒋𝒊 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒  

In---Out In---Out In---Out In---Out 

𝑭𝑺𝟏
 𝑗8 0---2 2---6 6---12 12---15  

𝑗7 2---3 6---12 12---17 17---19 𝐶𝑚𝑎𝑥𝐹𝑆1
 

𝑭𝑺𝟐
 𝑗3 0---5 5---9 9---16 16---24  

𝑗10 5---17 9---10 16---22 24---27  

𝑗1 7---13 13---15 22---31 31---36 𝐶𝑚𝑎𝑥𝐹𝑆2
 

𝑭𝑺𝟑
 𝑗6 0---3 3---7 7---8 8---10  

𝑗9 3---11 11---15 15---18 18---24  

𝑗4 11---17 17---22 22---24 24---28 𝐶𝑚𝑎𝑥𝐹𝑆3
 

𝑭𝑺𝟒
 𝑗5 0---5 5---7 7---11 11---12  

𝑗2 5---13 13---16 16---20 20---22 𝐶𝑚𝑎𝑥𝐹𝑆4
 

 
 

Table XII: Comparative Study Between Constructive and Palmer 

Based Heuristic Algorithms for Illustrative Example 2 

Makespan Constructive Palmer 

𝑪𝒎𝒂𝒙𝑭𝑺𝟏
 19 19 

𝑪𝒎𝒂𝒙𝑭𝑺𝟐
 34 36 

𝑪𝒎𝒂𝒙𝑭𝑺𝟑
 27 28 

𝑪𝒎𝒂𝒙𝑭𝑺𝟒
 20 22 

𝑪𝒎𝒂𝒙𝑭𝑳𝑬𝑿
 100 105 

 

The initial parameters and the solution summary can be seen below. 

 

Initial Parameters: 

• The initial temperature is: 15 

• The epoch length is: 100 (50 * N) 

• The maximum iterations without improvement : 500 (50 * N) 

• The cooling parameter is: 0.9 

 

Solution Summary: 

• Best Found Solution 

• The best schedule is: 3   8  10   4   7   1   9   2   6   5 

• The time for the best schedule is: 24 time units 

• Best Solution found at iteration #13 
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• The iterations at the current temperature: 15 

• The total iterations is: 515 

• The number of temperature changes: 5 

• The time taken to solve this problem is 0.28794 seconds 

 

See makespan Tables XIII, XIV, XV, and XVI below for job and machine assignments (upper left 

corner) and completion times on machines (lower right corner) for stages 1, 2, 3, and 4, 

respectively. The solution (24 time units) can be seen in Table XVI, which is the maximum of all the 

machine times in the final stage. An attempt to improve the sequence was made by applying the 

steepest descent heuristic to the solution. See neighborhood of solutions in Table XVII below. 

Again, the schedule did not improve. 

 

Table XIII: Makespan Table for Illustrative Example 2, Stage 

1 

Machine 1 Machine 2 Machine 3 Machine 4 

3    8   10    4   

   5    2    2    6 

2   7   1   6   

   13   3    8    9 

NA    9   5   NA   

   NA    11    13    NA 

 

 

Table XIV: Makespan Table for Illustrative Example 2, Stage 2 

Machine 1 Machine 2 Machine 3 Machine 4 

8   10   7   3   

  9   3   6   9 

6   4   1   9   

  13   11   10   15 

NA   5   2   NA   

  NA   15   16   NA 

 

  



 18 

Table XV: Makespan Table for Illustrative Example 2, Stage 3 

Machine 1 Machine 2 Machine 3 Machine 4 

10   7   8   3   

  9   11   13   16 

1   4   9   2   

  19   13   18   20 

NA   6   NA   NA   

  NA   14   NA   NA 

NA   5   NA   NA   

  NA   19   NA   NA 

 
 

Table XVI: Makespan Table for Illustrative Example 2, Stage 4 

Machine 1 Machine 2 Machine 3 Machine 4 

10   7   8   4   

  12   13   18   17 

6   3   5   1   

  16   24   20   24 

9   NA   2   NA   

  24   NA   22   NA 
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Table XVII: Steepest Descent Neighborhood of Solutions and Makespans for 

Solution 3 8 10 4 7 1 9 2 6 5 of Illustrative Example 2 

 8     3    10     4     7     1     9     2     6     5 

10     8     3     4     7     1     9     2     6     5 

 4     8    10     3     7     1     9     2     6     5 

 7     8    10     4     3     1     9     2     6     5 

 1     8    10     4     7     3     9     2     6     5 

 9     8    10     4     7     1     3     2     6     5 

 2     8    10     4     7     1     9     3     6     5 

 6     8    10     4     7     1     9     2     3     5 

 5     8    10     4     7     1     9     2     6     3 

 3    10     8     4     7     1     9     2     6     5 

 3     4    10     8     7     1     9     2     6     5 

 3     7    10     4     8     1     9     2     6     5 

 3     1    10     4     7     8     9     2     6     5 

 3     9    10     4     7     1     8     2     6     5 

 3     2    10     4     7     1     9     8     6     5 

 3     6    10     4     7     1     9     2     8     5 

 3     5    10     4     7     1     9     2     6     8 

 3     8     4    10     7     1     9     2     6     5 

 3     8     7     4    10     1     9     2     6     5 

 3     8     1     4     7    10     9     2     6     5 

 3     8     9     4     7     1    10     2     6     5 

 3     8     2     4     7     1     9    10     6     5 

 3     8     6     4     7     1     9     2    10     5 

24 

24 

24 

25 

26 

28 

30 

30 

32 

24 

24 

24 

27 

25 

27 

28 

27 

24 

24 

26 

27 

27 

27 

 3     8     5     4     7     1     9     2     6    10 

 3     8    10     7     4     1     9     2     6     5 

 3     8    10     1     7     4     9     2     6     5 

 3     8    10     9     7     1     4     2     6     5 

 3     8    10     2     7     1     9     4     6     5 

 3     8    10     6     7     1     9     2     4     5 

 3     8    10     5     7     1     9     2     6     4 

 3     8    10     4     1     7     9     2     6     5 

 3     8    10     4     9     1     7     2     6     5 

 3     8    10     4     2     1     9     7     6     5 

 3     8    10     4     6     1     9     2     7     5 

 3     8    10     4     5     1     9     2     6     7 

 3     8    10     4     7     9     1     2     6     5 

 3     8    10     4     7     2     9     1     6     5 

 3     8    10     4     7     6     9     2     1     5 

 3     8    10     4     7     5     9     2     6     1 

 3     8    10     4     7     1     2     9     6     5 

 3     8    10     4     7     1     6     2     9     5 

 3     8    10     4     7     1     5     2     6     9 

 3     8    10     4     7     1     9     6     2     5 

 3     8    10     4     7     1     9     5     6     2 

 3     8    10     4     7     1     9     2     5     6 

 

25 

24 

25 

25 

24 

25 

25 

24 

27 

27 

27 

26 

25 

27 

28 

28 

26 

27 

27 

24 

25 

24 
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Chapter 6: Conclusion/Future Work 

In this study, SA solved the illustrative examples using a very small amount of computation time 

(<0.3 seconds). A data error was found in the example problem of Tyagi (2016) which was 

corrected so the solutions could be compared. SD did not improve upon the solutions found by SA. 

This was most likely due to the small size of the problems.  

 

In future work, assumptions not deemed realistic (see Problem Statement) will be relaxed. These 

realistic conditions will add complexity to the problem. SA can also be compared to Tabu Search or 

Genetic Algorithms, for comparison and/or validation of solution. It would also be very beneficial to 

find large-scale, non-randomized data (with good or optimal solutions provided) to test the limits of 

the proposed SA heuristic and other solution methods. 
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Appendix 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% 

%Problem Report - Pharmaceutical Scheduling using Simulated Annealing  

%Illustrative Example 2 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Input Data 

 

%Processing Time Table 

ProcessTime=[6 2 9 5; 

             8 3 4 2; 

             5 4 7 8; 

             6 5 2 4; 

             5 2 4 1; 

             3 4 1 2; 

             1 3 5 2; 

             2 7 4 5; 

             8 4 3 6; 

             2 1 6 3]; 

          

M=4; %Number of machines @ each stage 

N=10; %Total number of products 

I=4; %Number of stages 

 

 

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time 

after each stage) 

P(1,:)=randperm(N); %Randomly chooses initial sequence (this will be handled with the SA 

portion of the code) 

s0=P(1,:); 

 

CompletionTime=zeros(N,M); %Creates empty Makespan table 

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine 
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MachinePN=ones(1,M); %Table keeps track of number of products that have been on each 

machine 

Schedule=zeros(N,M); %Overall schedule of all machines/all stages 

 

%% Obtain Initial Solution 

%Stage 1 

 

i=1; %current stage 

 

for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing 

time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during 

Stage 1 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

end 

 

for j=M+1:N %For the remaining products during stage 1 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i); 

%Updates the completion time of the chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage 1 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

end 

 

CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 
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%Reorders products in ascending order based on completion time 

[Y,sortedindex]=sort(P(2,:)); 

P=P(:,sortedindex); 

 

%Stages 2 through I 

 

for i=2:I %For all stages beyond Stage 1 

    CompletionTime=zeros(N,M); %Erases makespan table 

    MachineCT=zeros(1,M); %Erases machine completion time table 

    MachinePN=ones(1,M); %Erases machine product number table 

    Schedule=zeros(N,M); %Ereases overall schedule 

     

    for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the 

previous stage plus processing time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

    end 

     

    for j=M+1:N %For the remaining products 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time 

of the selected machine or the product's current completion time from the previous stage 

    CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates 

completion time of chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage i 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

     

    end 
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    CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

    Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

     

     

     

    %Reorders products in ascending order based on completion time 

    [Y,sortedindex]=sort(P(2,:));  

    P=P(:,sortedindex); 

 

end 

 

%The makespan is the maximum completion time at the end of the last stage 

MakeSpan=max(MachineCT); 

fs0=MakeSpan; 

 

sbest=s0; %Sets initial as best 

zbest=fs0; 

ibest=0; 

 

 

 

 

%% Initial Temp and Counters 

 

T=15; %15; %Initial/Current Temperature (will change) 

Tinit=T; %Initial Temperature for summary at the end 

t=0; %temp counter 

n=0; %iteration counter at current temp 

kprime=0; %total # of iterations counter 

kimprove=0; %iterations without improvment counter 

Nt=10*N; %epoch length 

max_itera=100*N; %max iterations without improvment 

alpha=.9; %cooling schedule 
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disp(['The initial temperature is: ' num2str(T)]); 

disp(['The epoch length is: ' num2str(Nt)]); 

disp(['The maximum iterations without improvement : ' num2str(max_itera)]); 

disp(['The cooling parameter is: ' num2str(alpha)]); 

disp(' '); 

 

%% Randomly Generate a Neighbor 

tic; 

while kimprove <= max_itera %stopping criteria: iterations without improvment 

 

u=randi([1 N],1); %random numbers for pairwise exchange 

 

v=randi([1 N],1); 

 

while v==u %prevents u from equaling v 

    v=randi([1 N],1); 

end 

 

s=s0; %sets s as s0 to perform exchange 

 

temp=s(u); 

s(u)=s(v); 

s(v)=temp; 

 

 

%% Determine Change in OFV 

 

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time 

after each stage) 

P(1,:)=s; %Randomly chooses initial sequence (this will be handled with the SA portion of the 

code) 

 

CompletionTime=zeros(N,M); %Creates empty Makespan table 

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine 
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MachinePN=ones(1,M); %Table keeps track of number of products that have been on each 

machine 

Schedule=zeros(N,M); %Overall schedule of all machines/all stages 

 

%Stage 1 

 

i=1; %current stage 

 

for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing 

time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during 

Stage 1 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

end 

 

for j=M+1:N %For the remaining products during stage 1 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i); 

%Updates the completion time of the chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage 1 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

end 

 

CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

 

 

%Reorders products in ascending order based on completion time 
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[Y,sortedindex]=sort(P(2,:)); 

P=P(:,sortedindex); 

 

%Stages 2 through I 

 

for i=2:I %For all stages beyond Stage 1 

    CompletionTime=zeros(N,M); %Erases makespan table 

    MachineCT=zeros(1,M); %Erases machine completion time table 

    MachinePN=ones(1,M); %Erases machine product number table 

    Schedule=zeros(N,M); %Ereases overall schedule 

     

    for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the 

previous stage plus processing time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

    end 

     

    for j=M+1:N %For the remaining products 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time 

of the selected machine or the product's current completion time from the previous stage 

    CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates 

completion time of chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage i 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

     

    end 
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    CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

    Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

     

 

     

     

    %Reorders products in ascending order based on completion time 

    [Y,sortedindex]=sort(P(2,:));  

    P=P(:,sortedindex); 

 

end 

 

%The makespan is the maximum completion time at the end of the last stage 

MakeSpan=max(MachineCT); 

fs=MakeSpan; 

 

 

 

deltaf=fs0-fs; %difference between OFV of current and neighbor solution 

nonimprove=exp(deltaf/T); %value used for nonimproving solution 

 

 

if deltaf > 0 %choose improving solution 

    s0=s; 

    fs0=fs; 

elseif deltaf < 0 & nonimprove > rand(0,1) %choose non-improving solution 

    s0=s; 

    fs0=fs; 

end 

 

if fs0 < zbest %new best solution 

    sbest=s0; 

    zbest=fs0; 

    ibest=kprime; %best solution found at iteration # 

    kimprove=0; 
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else 

    kimprove=kimprove+1; %no improvment 

end 

 

 

 

n=n+1; %increase iteration @ current temp 

kprime=kprime+1; %increase total iteration 

 

if n==Nt 

    T=T*alpha; %change current temp 

    n=0; %reset iteration @ current temp counter 

    t=t+1; %increase temperature change counter 

end 

 

 

 

 

end 

 

 

%final solution 

disp('Summary'); 

disp(' '); 

disp('Best Found Solution'); 

disp(['The best schedule is: ' num2str(sbest)]); 

disp(' '); 

 

%Recalculating Optimal Solution 

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time 

after each stage) 

P(1,:)=sbest; %Randomly chooses initial sequence (this will be handled with the SA portion of 

the code) 

 

CompletionTime=zeros(N,M); %Creates empty Makespan table 
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MachineCT=zeros(1,M); %Table keeps track of completion time for each machine 

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each 

machine 

Schedule=zeros(N,M); %Overall schedule of all machines/all stages 

 

%Stage 1 

 

i=1; %current stage 

 

for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing 

time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during 

Stage 1 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

end 

 

for j=M+1:N %For the remaining products during stage 1 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i); 

%Updates the completion time of the chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage 1 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

end 

 

CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

 

display(['Stage ' num2str(i)]) %Displays Stage# in command window 
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display(Schedule) %Displays machine/product schedule for Stage 1 

display(CompletionTime) %Displays completion times for Stage 1 

 

%Reorders products in ascending order based on completion time 

[Y,sortedindex]=sort(P(2,:)); 

P=P(:,sortedindex); 

 

%Stages 2 through I 

 

for i=2:I %For all stages beyond Stage 1 

    CompletionTime=zeros(N,M); %Erases makespan table 

    MachineCT=zeros(1,M); %Erases machine completion time table 

    MachinePN=ones(1,M); %Erases machine product number table 

    Schedule=zeros(N,M); %Ereases overall schedule 

     

    for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the 

previous stage plus processing time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

    end 

     

    for j=M+1:N %For the remaining products 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time 

of the selected machine or the product's current completion time from the previous stage 

    CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates 

completion time of chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage i 
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    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

     

    end 

    

    CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

    Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

     

    display(['Stage ' num2str(i)]) %Displays Stage# in command window 

    display(Schedule) %Displays machine/product schedule for Stage i 

    display(CompletionTime) %Displays completion times for Stage i 

     

     

    %Reorders products in ascending order based on completion time 

    [Y,sortedindex]=sort(P(2,:));  

    P=P(:,sortedindex); 

 

end 

 

 

 

disp(['The time for the best schedule is: ' num2str(zbest) ' time units']); 

disp(['Best Solution found at iteration #' num2str(ibest)]); 

disp(' '); 

disp('Iteration Information'); 

disp(['The iterations at the current temperature: ' num2str(n)]); 

disp(['The total iterations is: ' num2str(kprime)]); 

disp(['The number of temperature changes: ' num2str(t)]); 

disp(['The time taken to solve this problem is ' num2str(toc) ' seconds']); 

disp(' '); 

 

 

%Steepest Descent 

 

Continue =1; 
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NumOfSolns=N*(N-1)/2; 

NbhdOfSolns=zeros(NumOfSolns,N); 

Time=zeros(NumOfSolns,1); 

 

while Continue == 1 

 

x=0; 

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time 

after each stage) 

P(1,:)=sbest; %randperm(N); %Randomly chooses initial sequence (this will be handled with 

the SA portion of the code) 

s0=P(1,:); 

 

for p=1:N-1 

    for q=p+1:N 

        x=x+1; 

        NS=sbest; 

        temp=NS(p); 

        NS(p)=NS(q); 

        NS(q)=temp; 

        %NS(N+1)=NS(1); 

        NbhdOfSolns(x,:)=NS; 

    end 

end 

 

 

 

 

% Use Makespan to calculate the Time 

for a=1:NumOfSolns 

%% Makespan 

 

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time 

after each stage) 
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P(1,:)=NbhdOfSolns(a,:); %Randomly chooses initial sequence (this will be handled with the 

SA portion of the code) 

s0=P(1,:); 

 

CompletionTime=zeros(N,M); %Creates empty Makespan table 

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine 

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each 

machine 

Schedule=zeros(N,M); %Overall schedule of all machines/all stages 

     

%Stage 1 

 

i=1; %current stage 

 

for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing 

time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during 

Stage 1 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

end 

 

for j=M+1:N %For the remaining products during stage 1 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i); 

%Updates the completion time of the chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage 1 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

end 
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CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

 

 

 

%Reorders products in ascending order based on completion time 

[Y,sortedindex]=sort(P(2,:)); 

P=P(:,sortedindex); 

 

%Stages 2 through I 

 

for i=2:I %For all stages beyond Stage 1 

    CompletionTime=zeros(N,M); %Erases makespan table 

    MachineCT=zeros(1,M); %Erases machine completion time table 

    MachinePN=ones(1,M); %Erases machine product number table 

    Schedule=zeros(N,M); %Ereases overall schedule 

     

    for j = 1:M %For the first product on each machine 

    CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the 

previous stage plus processing time 

    Schedule(1,j)=P(1,j); %Keeps track of products on machines 

    P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i 

    MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine  

    end 

     

    for j=M+1:N %For the remaining products 

    [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product 

    MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each 

machine 

    maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time 

of the selected machine or the product's current completion time from the previous stage 

    CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates 

completion time of chosen machine 

    Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines 
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    P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time 

for each product for Stage i 

    MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current 

completion time for each machine  

     

    end 

    

    CompletionTime( ~any(CompletionTime,2), : ) = [];  %deletes empty rows 

    Schedule( ~any(Schedule,2), : ) = [];  %deletes empty rows 

     

 

     

    %Reorders products in ascending order based on completion time 

    [Y,sortedindex]=sort(P(2,:));  

    P=P(:,sortedindex); 

 

end 

 

%The makespan is the maximum completion time at the end of the last stage 

MakeSpan=max(MachineCT); 

Time(a)=MakeSpan; 

 

 

 

 

end 

 

 

 

MinTime=min(Time);  

 

if MinTime >= zbest 

    Continue=0; 

else 

    sbest=NbhdOfSolns(a,:);  
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    zbest=MinTime; 

    Continue=1; 

end 

 

 

end 

 

disp('Steepest Descent'); 

disp(NbhdOfSolns); 

disp(['The best schedule is: ' num2str(sbest)]); 

disp(['The time for this schedule: ' num2str(zbest) ' time units']); 

disp(' '); 


	PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND STEEPEST DESCENT METHOD
	Recommended Citation

	PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND STEEPEST DESCENT METHOD

