
Graduate Theses, Dissertations, and Problem Reports

2019

PHARMACEUTICAL SCHEDULING USING SIMULATED PHARMACEUTICAL SCHEDULING USING SIMULATED

ANNEALING AND STEEPEST DESCENT METHOD ANNEALING AND STEEPEST DESCENT METHOD

Bryant Jamison Spencer
bspence3@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Industrial Engineering Commons, Operational Research Commons, Other Operations

Research, Systems Engineering and Industrial Engineering Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
Spencer, Bryant Jamison, "PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND
STEEPEST DESCENT METHOD" (2019). Graduate Theses, Dissertations, and Problem Reports. 3796.
https://researchrepository.wvu.edu/etd/3796

This Problem/Project Report is protected by copyright and/or related rights. It has been brought to you by the The
Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Problem/Project
Report in any way that is permitted by the copyright and related rights legislation that applies to your use. For other
uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a
Creative Commons license in the record and/ or on the work itself. This Problem/Project Report has been accepted
for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized
administrator of The Research Repository @ WVU. For more information, please contact
researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/3796?utm_source=researchrepository.wvu.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND

STEEPEST DESCENT METHOD

Bryant J. Spencer

Problem Report submitted to the

Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

Alan McKendall, PhD, Committee Chairperson

Robert Creese, PhD

Ashish Nimbarte, PhD

Department of Industrial and Management Systems Engineering

Morgantown, West Virginia

2019

Keywords: Pharmaceutical Manufacturing, Scheduling, Flexible Flowshop,

Simulated Annealing, Steepest Descent Method

Copyright 2019 Bryant J. Spencer

Abstract

PHARMACEUTICAL SCHEDULING USING

SIMULATED ANNEALING AND STEEPEST

DESCENT METHOD

Bryant J. Spencer

In the pharmaceutical manufacturing world, a deadline could be the difference between losing a
multimillion-dollar contract or extending it. This, among many other reasons, is why good scheduling
methods are vital. This problem report addresses Flexible Flowshop (FF) scheduling using
Simulated Annealing (SA) in conjunction with the Steepest Descent heuristic (SD).

FF is a generalized version of the flowshop problem, where each product goes through S number of
stages, where each stage has M number of machines. As opposed to a normal flowshop problem,
all ‘jobs’ do not have to flow in the same sequence from stage to stage. The SA metaheuristic is a
global optimization method for solving hard combinatorial optimization problems. SD is a local
search method that keeps track only of the current solution and moves only to neighboring
permutations based on the largest decrease in the objective function value. The goal of this problem
report is to use FF in conjunction with SA to minimize the makespan (length of schedule) in a
pharmaceutical manufacturing environment. There are 4 total stages in the tentative production
route: granulation, compression, coating, and packaging. This process will be uniform; as in, each
stage will have the same number of identical machines.

In this study, SA solved the illustrative small-scale example problems precisely and efficiently using
a very small amount of computation time. Afterward, the SD heuristic is used to ensure that the best
solution found by SA is a local optimum. SD did not improve upon the solutions found by SA.

 iii

Dedication

Dedicated to my wife, Tonya Spencer, my children, Jacobi Spencer, Kiara and Avery Gibson, my

parents, Franki and Gerard Spencer, and my brothers, Donavan and Sebastian Spencer. In

memory of my Nana, Mary Elizabeth Taylor.

Keep the family close.

 iv

Acknowledgments

I am very grateful to my advisor, Dr. Alan McKendall, who assisted in my admittance to the

master’s program and went out of his way to ensure that I finished. Without his help and guidance

over the past several years, I may not have finished my research. I would like to thank Dr. Robert

Creese, who took time out of his busy schedule to be a part of my committee, even in retirement.

Thank you to Dr. Ashish Nimbarte for being a part of my committee and ensuring that I could

finish out this last semester to graduate. I would also like to thank Marie Owen for always being

able to help any time that I needed it.

 v

Table of Contents

Abstract .. ii

Dedication.. iii

Acknowledgments ... iv

Table of Contents ... v

List of Tables ... vi

List of Figures .. vi

Chapter 1: Introduction ...1

Chapter 2: Literature Review ..3

Combinatorial approach ...3

Enumerative optimal methods ..3

Heuristic approach ..3

Simulated Annealing...4

Simple Flowshop Problem ..4

Flexible Flowshop w/o Restriction ..4

Two-stage FFS ...4

Multiple stage (>2 stages) FFS with unlimited buffer5

Multiple stage (>2 stages) FFS with buffer limitation (machine blockage) .5

Chapter 3: Problem statement and objectives of research6

Chapter 4: Methodology ...8

SA Algorithm Pseudo-Code ...8

Makespan Pseudo Code ..8

Steepest Descent Pseudo Code ..9

Chapter 5: Computational Results ..10

Illustrative Example 1: ..10

Illustrative Example 2: ..13

Chapter 6: Conclusion/Future Work ...20

Appendix ..24

 vi

List of Tables

Table I: Illustrative Example 1 ..10

Table II: Makespan Calculation using GUPTA’s Algorithm for Illustrative Example 110

Table III: Hypothetical Machines for Illustrative Example 1 ..11

Table IV: Makespan Using a Novel Hybrid Permutation Flow Shop Scheduling for

Illustrative Example 1 ...12

Table V: Makespan Table for Illustrative Example 1 ..13

Table VI: Steepest Descent Neighborhood of Solutions and Makespans for Solution 1 2 5

3 4 6 7 of Illustrative Example 1 ...13

Table VII: Ten Job, Four Stage FF Data for Illustrative Example 214

Table VIII: Calculated Slope Value for Palmer Based Heuristic Algorithm for Illustrative

Example 2 ..15

Table IX: Sequencing of Jobs According to LPT and LSV for Illustrative Example 215

Table X: In-Out Table for FFS using Constructive Heuristic Algorithm for Illustrative

Example 2 ..15

Table XI: In-Out Table for FFS using Palmer Based Heuristic Algorithm for Illustrative

Example 2 ..16

Table XII: Comparative Study Between Constructive and Palmer Based Heuristic

Algorithms for Illustrative Example 2 ..16

Table XIII: Makespan Table for Illustrative Example 2, Stage 1 ...17

Table XIV: Makespan Table for Illustrative Example 2, Stage 2 ..17

Table XV: Makespan Table for Illustrative Example 2, Stage 3 ...18

Table XVI: Makespan Table for Illustrative Example 2, Stage 4 ..18

Table XVII: Steepest Descent Neighborhood of Solutions and Makespans for Solution 3 8

10 4 7 1 9 2 6 5 of Illustrative Example 2 ...19

List of Figures

Figure I: Four Steps in Pharmaceutical Manufacturing ..1

 1

Chapter 1: Introduction

Manufacturers are the source (suppliers) of the prescription drugs in the pharmaceutical supply

chain. The pharmaceutical manufacturing industry is composed of two distinct business models:

manufacturers of brand-name drugs (e.g., Pfizer, Merck, and Novartis) and manufacturers of

generic drugs (e.g., Mylan, Roxane, and Barr) (Health Strategies Consultancy, 2005). The major

difference is that brand-name manufacturers allocate most resources toward research and

development of new drugs, while generic manufacturers formulate drugs directly based on a

branded version with an expired patent.

Pharmaceutical manufacturing for tablets utilizes four generalized steps (Fig. 1): granulation,

compression, coating, and packaging.

Figure I: Four Steps in Pharmaceutical Manufacturing

Raw materials are received, checked for quality, and assigned lot numbers. The active and inactive

ingredients are then processed and blended to the appropriate consistency. The blending operation

 2

typically uses v-blenders. Raw materials are rotated in these blenders to achieve a homogenous

blend. Then wet or dry granulation techniques are used to further process the ingredients. The wet

granulation process consists of three-story tall fluid bed granulators and high shear mixers. The dry

powder is suspended in mid air by high volume airflow. A granulating solution is sprayed onto the

suspended powder. The temperature is then increased to dry the wet granulation. This powder is

then milled to achieve a specific particle size and density. The powder is then blended again for

uniformity.

At the compression stage, the powder is then compressed into tablets or filled into capsules. For the

purpose of the study, only tablets will be focused on. A tablet press consists of a large, rotating

turret, where upper and lower punches are forced together within a die to form tablets. Tablets are

then placed into coating pans. A coating machine resembles an industrial clothes dryer; however, a

coating machine also has a spray gun system in order to coat the tablets at desired temperature.

The tablets are then coated with a color or clear coating. The coating can serve as decorative (for

identification) or functional (to hide taste, extended release, etc.). These coated tablets are then

packaged into bottles.

Since the pharmaceutical manufacturing industry is so competitive, one of the most, if not the most,

important drivers is time-to-market. Time-to-market is the time it takes from a product being

conceived until it’s processed and available for sale. Pharmaceutical is also a highly regulated

industry, with large amounts of cleaning, set-ups, and trainings. There are other major factors,

including, but not limited to: high but uncertain demand, long lead times from suppliers, and different

product variations (different milligrams, extended release, delayed release, chewable).

These are some of the many reasons why scheduling is so important in the pharmaceutical

manufacturing industry. It helps to minimize production time while fulfilling predicted and actual

demand. The overall objective would be to minimize late deliveries; late deliveries lead to penalties

and loss of contracts. In this problem report a four-stage scheduling problem is considered.

 3

Chapter 2: Literature Review

Combinatorial approach

Combinatorial approaches are based on the changing of one permutation (solution) to another by

switching jobs around in order to optimize a given objective function (Sethanan, 2001). The process

searches for an optimal value whose solution space is a discrete but large configuration space.

Some simple examples of typical combinatorial optimization problems are:

• Traveling Salesman Problem

• Bin-Packing

• Job-shop Scheduling

Enumerative optimal methods

The most general techniques are mathematical formulations (such as linear programming, dynamic

programming, integer programming), and branch and bound methods (Sethanan, 2001). The

complexity of the variable interactions makes these methods far too difficult and time consuming.

Heuristic approach

Exact solution measures may not exist or may be too exhaustive to apply for large-sized, or even

small sized, scheduling problems (Sethanan, 2001). It is then necessary to use heuristics, which will

yield good solutions. These solutions may or may not be optimal, but they supply a local optima that

is acceptable. The following are examples of heuristic approaches:

1. Relaxed Exact Solutions

a. Linear Programming relaxation

b. Lagrangian relaxation

2. Local Search Techniques

a. Random Descent

b. Steepest Descent

3. Meta-Heuristics

a. Tabu Search

b. Simulated Annealing

c. Genetic Algorithms

4. Ad Hoc Decision Rules

 4

Simulated Annealing

Simulated annealing (SA) is derived from an analogy between the physical annealing of solids and

combinatorial optimization. Physically, it refers to the heating of a substance close to the melting

point, staying at this temperature for a set time, and then lowering the temperature slowly until the

substance reaches a stable state. This process softens the substance by removing internal

stresses, but the substance never actually leaves the solid state. Metropolis et al. (1953) realized

that Markov chains, a random sequence of states whose probabilities depend on the previous state,

could be used to converge to a probability distribution. Furthermore, Kirkpatrick (1983) discovered

that there is a deep, useful connection between statistical methods and combinatorial optimization.

A detailed analogy with annealing solids provides a framework for optimization of very large,

complex systems (Kirkpatrick, 1983).

Simple Flowshop Problem

Johnson (1954) developed an unrestricted flowshop (FS) where each item is to be produced on

machine one and then machine two. A simple decision rule is obtained in the literature for the

optimal scheduling of the production so that the makespan (total length of schedule) is a minimum

(Johnson, 1952). A restricted three-stage problem was also explored.

Flexible Flowshop w/o Restriction

Flexible flowshop (FFS) is the generalized FS problem. Where FS is a specific number of machines

in a series, FFS is a series of stages with a parallel amount of machines per stage (Shieh, 2004).

Two-stage FFS

Arthanari et al. (1971) presented a branch and bound algorithm to optimally solve the special case

of the two-stage flexible flowshop (FFS) where there are multiple machines at the first stage and

only one machine at the second (Crowder, 2006). Gupta (1988) addressed the two stage FFS

problem where there are identical machines at each stage. A heuristic was developed for a special

case where there is only one machine at stage two. This problem has also been examined by

Blazewicz et al. (1992) to show that Johnson’s algorithm (1954) and the longest processing time

(LPT) rule can be proven to be the best and closest to optimal (Shieh, 2004). Chen (1995) also

developed a heuristic for the special case with one machine at the second stage. Koulamas (2000)

considered two-stage and three-stage FFS with parallel machines at each stage. The objective was

to minimize makespan and was accomplished using lower complexity algorithms. Soewandi (2001)

 5

successfully developed several heuristic procedures of time O(n log n) to solve the three-stage

FFS.

Multiple stage (>2 stages) FFS with unlimited buffer

Brah and Hunsucker (1991) developed a branch and bound algorithm to solve scheduling problems

that optimize maximum completion time for facilities. The lower bounds and elimination rules

developed are based upon the generalization of the flow shop problem. Brockman et al. (1997)

improved Brah and Hunsucker’s (1991) algorithm; however, their algorithm was not able to handle

availability time of machines until 1998. Portman (1998) is also an improved algorithm to Brah and

Hunsucker (1991). It was proved that the original lower bound may decrease along a path of the

search tree, and genetic algorithms was used to improve the search value of the upper bound. A

problem with fifteen jobs and five stages was solved with a 3% deviation from the branch and

bound method. Verma and Dessouky (1998) present a branch and bound procedure which

provides an optimal solution to the 3-stage problem, and a fast heuristic procedure that is shown to

provide good approximate solutions on sample problems. This heuristic is a natural extension of the

2-stage polynomial-time procedure. Verma and Dessouky (1999) compared their results/algorithm

to the Latest Start Time rule (LST), which refers to the latest time at which the activity can be

completed without delaying the project.

Multiple stage (>2 stages) FFS with buffer limitation (machine blockage)

Buffer limitation, or machine blockage, is where a completed job may remain on a machine and

occupy it until a downstream machine becomes available. Gilmore (1964) found the minimal cost

sequence with a special case traveling salesman problem, where time or money is used for

changing over a machine for the next job. Salavador (1973) solved this type of problem using

branch & bound algorithm. Wittrock (1988) solved this problem by minimizing the makespan and

queueing time. The problem is decomposed into three subproblems and each of these is solved

using a fast heuristic. The algorithm was tested by computing schedules for a real production line.

Sawik (2000) presents new mixed integer programming formulations for scheduling of a flexible flow

line with blocking. The basic mixed integer programming formulations have been enhanced to

model blocking scheduling with alternative processing routes where for each product a set of routes

is available for processing, and a reentrant flow line where a product visits a set of stages more

than once is also considered (Sawki, 2000). Sawik (2002) also develops a mixed integer

programming approach for lines that consist of finite intermediate buffers, which cause machine

blocking.

 6

Chapter 3: Problem statement and objectives of research

This study is based on the need of a pharmaceutical company to schedule its production process.

This pharmaceutical company manufactures a vast array of products in a flexible flow shop

environment. A flow shop is a problem that has a set amount of products that each go through a set

amount of machines, as opposed to job shop, where each product has its own route through a set

of machines. Flexible flow shop is an even more general form of flow shop where each product

goes through one of many identical machines at each stage. Both of these instances are NP-hard

and generally considered too complex to solve using exact methods.

Because scheduling problems have a vast amount of variation, the following assumptions are made

for the problem under consideration (assumptions noted with an asterisk have been deemed

realistic)

1. *N products, S stages, M identical machines per stage.

2. *Preplanned campaign based; campaign contains smaller lots or batches of the same

 product family. Product families contain similar variation of a product (different milligram,

 delayed release, extended release, chewable). This will minimize set-up and cleaning

 times that arise when switching between product families (Guomundsdóttir, 2012).

3. *Production time is per campaign.

4. Each stage will have the same number of machines.

5. *The number of jobs to be scheduled and their processing times on each machine at

 each stage is known in advance and fixed.

6. *The number of stages and the machine configuration at each stage are known in

 advance and fixed.

7. Preemption, temporarily interrupting a job, is not allowed. Once a job has started, it must

 be completely finished on the assigned machine before it can move to the next stage.

8. All jobs are ready to begin processing at time period 0.

9. Jobs may or may not be scheduled in the same order at each stage, i.e. job passing is

 allowed.

10. *Set-up and clean times are included in the processing time of each job at each stage.

11. Buffers/storage space is ignored. It is unlimited.

12. Machine blocking cannot occur, so when a job is finished processing, it can leave the

 machine before there is room on a machine at the next stage

13. There are no due dates associated with the jobs and the objective is to minimize the

 makespan.

 7

14. *Production is considered as make-for-stock based on a forecast, as opposed to make-

 to-order.

15. *Transportation time between stages and buffers are considered to be negligible.

There are five main objectives to this research:

1. Consider the main objective of minimizing the makespan for the multi-stage flexible

flowshop with uniform machines and unlimited buffers.

2. Use a random permutation as the initial job processing order. Construction heuristics used

in conjunction with a random model produce no advantage.

3. Since this problem is considered strongly NP-Hard, use SA to solve this problem.

4. After SA is complete; use SD to ensure the solution is a local optimum.

5. Solve multiple examples to test the performance of the heuristics (see Illustrative

Examples).

 8

Chapter 4: Methodology

SA Algorithm Pseudo-Code

1. Obtain initial π solution S where S is the solution space (set of all feasible solutions).

2. Select initial temperatre T(0), T > 0.

3. Set temperature counter t=0, iteration counter at current temperature n=0, and total

iteration counter k=0.

4. Generate state π’, a neighbor of π using local search technique.

5. Obtain ΔTC = TC(π) – TC(π’).

6. If ΔTC >0, then π = π’ (minimization). If ΔTC<0 and exp(ΔTC/T)>rand(0,1), then π=π’.

1. Else keep π.

2. Set k = k+1 and n=n+1.

3. Repeat steps 4-6 until n = N(t) (epoch length) or stopping criterion has been

reached (e.g., k = max_itera).

7. Set t=t+1, T=T(t), n=0. Go step 4.

Makespan Pseudo Code

1. Let

a. t(i,j,m) = processing time, at stage i, on machine m of job in position j in

processing sequence P

b. T(i,j,m) = completion time, at stage i, on machine m of job in position j in

processing sequence P

c. TM(i,m)=current processing time of machine m at stage i.

2. The establishment of the makespan table is as follows:

a. Let I = number of stages

b. Let N = number of jobs to be scheduled

c. Let M = number of machines

3. Develop I tables with N internal rows and M internal columns. Add 2 columns to the the

table to depict the job-processing sequence under consideration and a top row to head

the columns.

4. For each row associated with each job in position j, enter the process times of that job in

the upper half of the cells for that row (i.e., enter t(i,j,m) for each j).

5. For table i=1 j,m=1..M: T(1,j,m)=t(1,j,m)=TM(1,m)

6. For table i=1 and j>M: T(1,j,m) = min{TM(1,m)}+t(1,j,m)=TM(1,m)

 9

7. After table 1 is complete, organize products in ascending order by T(1,j,m). This is the

new processing sequence P.

8. For table i=2, j,m=1..M: T(i,j,m)=T(i-1=1=,j,m)+t(i=2,j,m)+TM(i=2,m)

9. For table i=2 and j>M: T(i=2,j,m) = max{T(i-

1=1,j,m),min{TM(i=2,m)}}+t(i=2,j,m)=TM(i=2,m)

10. After table i=2 is complete, organize products in ascending order by T(i=2,j,m). This is the

new processing sequence P.

11. Repeat steps 8-10 for Tables 3 through I.

12. The max of T(I,j,m) or TM(I,m) will give the Total Makespan of the whole process.

Steepest Descent Pseudo Code

1. Select a starting solution s0 in S (a set of feasible solutions)

2. Select s in N(s0) such that f(s) < f(s0) by steepest descent (largest improvement/decrease)

3. Replace s0 by s.

4. Repeat steps 2-3 until f(s) ≥ f(s0) for all s in N(s0).

 10

Chapter 5: Computational Results

Illustrative Example 1:

Consider a 7 job, 4 stage (1 machine per stage) FS problem with processing time as shown in table

1. Problem taken from Kumar et al (2014).

Table I: Illustrative Example 1

JOBS M1 M2 M3 M4

J1 3 1 4 12

J2 8 0 5 15

J3 11 3 8 10

J4 4 7 3 8

J5 5 5 1 10

J6 10 2 0 13

J7 2 5 6 9

In the Gupta heuristic algorithm all the jobs are divided into two groups by comparing the

dispensation times of the first machine and the last machine in each job. For every group, calculate

the sum of processing times of any two adjacent tasks in a job and find the minimum processing

time, and then schedules the jobs in sorting order according to their minimum summed processing

times (Kumar et al., 2014).

Table II: Makespan Calculation using GUPTA’s

Algorithm for Illustrative Example 1

JOBS M1 M2 M3 M4

J1 0-3 3-4 4-8 8-20

J2 3-11 11-11 11-16 20-35

J5 11-16 16-21 21-22 35-45

J7 16-18 21-26 26-32 45-54

J4 18-22 26-33 33-36 54-62

J3 22-33 33-36 36-44 62-72

J6 33-44 44-46 46-46 72-85

The best sequence using GUPTA’s Algorithm is = {J1, J2, J5, J7, J4, J3, J6} , which gives a

makespan of 85.

 11

This problem was also solved using a novel hybrid permutation flow shop scheduling developed by

Kumar et al. (2014). The satisfaction criteria to use this permutation is as follows: If the maximum

processing time on Machine 1 is greater than or equal to the minimum processing time on machine

m1, m2,… mM-1 and if the minimum processing time on machine mM is greater than or equal to the

maximum processing time on machine m2, m3,…mM-1. The conditions for the above problem are

met; therefore, two hypothetical machines X and Y are introduced, respectively. X is the sum of the

processing times of the first three machines, while Y is the sum of the last three machines.

Table III: Hypothetical Machines for

Illustrative Example 1

JOBS X Y

J1 8 17

J2 13 20

J3 22 21

J4 14 18

J5 11 16

J6 12 15

J7 13 20

Ordered Group in Ascending X= {J1, J5, J6, J7, J2, J4} due to Y > X for these respective machines.

Ordered Group in Descending Y= {J3} due to X > Y for this machine.

This concludes in this schedule with the below makespan table: {J1, J5, J6, J7, J2, J4, J3}

 12

Table IV: Makespan Using a Novel Hybrid

Permutation Flow Shop Scheduling for

Illustrative Example 1

JOBS M1 M2 M3 M4

J1 0-3 3-4 4-8 8-20

J5 3-7 7-14 14-17 20-30

J6 7-17 17-19 19-19 30-43

J7 17-19 19-24 24-30 43-52

J2 19-27 27-27 30-35 52-67

J4 27-31 31-38 38-41 67-75

J3 31-42 42-45 45-53 75-85

According to Kumar et al. (2014) the makespan for this generated sequence is 85. This is after

correcting the processing time for Job 5 on Machine 4 from 8 to 10 (the makespan in the literature is

incorrectly calculated to 83).

The initial parameters and the solution summary can be seen below.

Initial Parameters:

• The initial temperature is: 15

• The epoch length is: 70 (10 × N)

• The maximum iterations without improvement : 350 (50 * N)

• The cooling parameter is: 0.9

Solution Summary:

• Best Found Solution

• The best schedule is: 1 2 5 3 4 6 7

• The time for the best schedule is: 85 time units

• Best Solution found at iteration #5

• The iterations at the current temperature: 7

• The total iterations is: 357

• The number of temperature changes: 5

• The time taken to solve this problem is 0.21387 seconds

 13

See makespan Table V below for best job sequence and job completion times for stages 1, 2, 3,

and 4 using SA heuristic. An attempt to improve the sequence was made by applying steepest

descent heuristic to the solution. See neighborhood of solutions in Table VI below. It is important

to note that the schedule did not improve.

Table V: Makespan Table for Illustrative Example 1

Job Stage 1 Stage 2 Stage 3 Stage 4

1 3 4 8 20

2 11 11 16 35

5 16 21 22 45

3 27 30 38 55

4 31 38 41 63

6 41 43 43 76

7 43 48 54 85

Table VI: Steepest Descent Neighborhood of Solutions and Makespans for Solution

1 2 5 3 4 6 7 of Illustrative Example 1

2 1 5 3 4 6 7

5 2 1 3 4 6 7

3 2 5 1 4 6 7

4 2 5 3 1 6 7

6 2 5 3 4 1 7

7 2 5 3 4 6 1

1 5 2 3 4 6 7

1 3 5 2 4 6 7

1 4 5 3 2 6 7

1 6 5 3 4 2 7

1 7 5 3 4 6 2

90

88

99

91

89

90

85

90

85

85

85

1 2 3 5 4 6 7

1 2 4 3 5 6 7

1 2 6 3 4 5 7

1 2 7 3 4 6 5

1 2 5 4 3 6 7

1 2 5 6 4 3 7

1 2 5 7 4 6 3

1 2 5 3 6 4 7

1 2 5 3 7 6 4

1 2 5 3 4 7 6

85

85

85

85

85

85

85

85

85

85

Illustrative Example 2:

Consider ten jobs and four stages, with each stage having 4 parallel, uniform machines (Table VII)

(Tyagi, 2016).

 14

The Construction Algortihm used (Tyagi, 2016) utilizes the Minimum Processing Time Selective

Approach (MPTSA) and the Longest Processing Times (LPT) approach. The problem first

categorizes the four-stage (four machines per stage) flexible flowshop problem into four four-stage,

single machine flexible flowshop scheduling problems (seen in the equations below). Jobs are then

assigned to these four separate problems using MPTSA (Tyagi, 2016). LPT is then used in each

individual flowshop to schedule the respective jobs. The makespan of 34 is calculated using the

maximum of each of the four flowshops.

𝐹𝑆1
= 𝑀11 + 𝑀21 + 𝑀31 + 𝑀41 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗7, 𝑗8

𝐹𝑆2
= 𝑀12 + 𝑀22 + 𝑀32 + 𝑀42 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗1, 𝑗3, 𝑗10

𝐹𝑆3
= 𝑀13 + 𝑀23 + 𝑀33 + 𝑀43 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠: 𝑗4, 𝑗6, 𝑗9

𝐹𝑆4
= 𝑀14 + 𝑀24 + 𝑀34 + 𝑀44 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑗𝑜𝑏𝑠 𝑗2, 𝑗5

 Table VII: Ten Job, Four Stage FF Data for Illustrative Example 2

 Stages

S1 S2 S3 S4

Jobs M1i M2i M3i M4i

J1 6 2 9 5

J2 8 3 4 2

J3 5 4 7 8

J4 6 5 2 4

J5 5 2 4 1

J6 3 4 1 2

J7 1 3 5 2

J8 2 7 4 5

J9 8 4 3 6

J10 2 1 6 3

This example is also solved using the Heuristic Algorithm Using Palmer Approach developed by

Tyagi. Jobs are assigned to four separate flowshop problems as per the method above. However,

now a slope for every job is calculated, and the jobs are sequenced using Longest Slope Value

(LSV) (Tyagi, 2016) in descending order. The slope Yi for nth jobs (i=1 to n) for every category of the

flow shop scheduling (𝐹𝑆𝑞
) on each machine center stage (𝑆𝑞) is as follows:

𝑌𝑖 = − ∑ {𝑞 − (2𝑘 − 1)]𝑚𝑖(𝐹𝑆𝑞)
𝑞
𝑘=1 (Calculated slopes can be seen in Table VIII below)

 15

Table VIII: Calculated Slope Value for Palmer Based Heuristic Algorithm for
Illustrative Example 2

 Jobs
𝒋𝒊

𝒎𝟏𝒊 𝒎𝟐𝒊 𝒎𝟑𝒊 𝒎𝟒𝒊 𝒀𝒊

k=1 k=2 k=3 k=4

𝑭𝑺𝟏
 𝑗7 3 3 -5 -6 5

𝑗8 6 7 -4 -9 6

𝑭𝑺𝟐
 𝑗1 18 2 -9 -15 4

𝑗3 15 4 -7 -24 12

𝑗10 6 1 -6 -9 8

𝑭𝑺𝟑
 𝑗4 18 5 -3 -12 -9

𝑗6 9 4 -2 -6 -6

𝑗9 24 4 -3 -18 -7

𝑭𝑺𝟒
 𝑗2 24 3 -4 -6 -17

𝑗5 15 2 -4 -3 -10

The makespan of 36 is calculated using the maximum of each of the flowshops. Sequencing,

solutions, and comparisons for both methods can be seen below in Table IX, Table X, Table XI,

and Table XII.

Table IX: Sequencing of Jobs According to LPT and LSV for Illustrative Example 2
Machine Center

Stage K
Flowshop

Categories (𝑭𝑺𝒌
)

Assigned
Jobs

Sequenced Jobs
for LPT

Sequenced Jobs
for LSV

1 𝐹𝑆1
 𝑗7, 𝑗8 𝑗7 > 𝑗8 𝑗7 > 𝑗8

2 𝐹𝑆2
 𝑗1, 𝑗3, 𝑗10 𝑗3 > 𝑗1 > 𝑗10 𝑗3 > 𝑗10 > 𝑗1

3 𝐹𝑆3
 𝑗4, 𝑗6, 𝑗9 𝑗9 > 𝑗4 > 𝑗6 𝑗6 > 𝑗9 > 𝑗4

4 𝐹𝑆4
 𝑗2, 𝑗5 𝑗2 > 𝑗5 𝑗5 > 𝑗2

Table X: In-Out Table for FFS using Constructive Heuristic Algorithm for Illustrative
Example 2

 Jobs
𝒋𝒊

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

In---Out In---Out In---Out In---Out

𝑭𝑺𝟏
 𝑗8 0---2 2---6 6---12 12---15

𝑗7 2---3 6---12 12---17 17---19 𝐶𝑚𝑎𝑥𝐹𝑆1

𝑭𝑺𝟐
 𝑗3 0---5 5---9 9---16 16---24

𝑗1 5---11 11---13 16---25 25---30

𝑗10 11---13 13---14 25---31 31---34 𝐶𝑚𝑎𝑥𝐹𝑆2

𝑭𝑺𝟑
 𝑗9 0---8 8---12 12---15 15---21

𝑗4 8---14 14---19 19---21 21---25

𝑗6 14---17 19---23 23---24 25---27 𝐶𝑚𝑎𝑥𝐹𝑆3

𝑭𝑺𝟒
 𝑗2 0---8 8---11 11---15 15---17

𝑗5 8---13 13---15 15---19 19---20 𝐶𝑚𝑎𝑥𝐹𝑆4

 16

Table XI: In-Out Table for FFS using Palmer Based Heuristic Algorithm for
Illustrative Example 2

 Jobs
𝒋𝒊

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

In---Out In---Out In---Out In---Out

𝑭𝑺𝟏
 𝑗8 0---2 2---6 6---12 12---15

𝑗7 2---3 6---12 12---17 17---19 𝐶𝑚𝑎𝑥𝐹𝑆1

𝑭𝑺𝟐
 𝑗3 0---5 5---9 9---16 16---24

𝑗10 5---17 9---10 16---22 24---27

𝑗1 7---13 13---15 22---31 31---36 𝐶𝑚𝑎𝑥𝐹𝑆2

𝑭𝑺𝟑
 𝑗6 0---3 3---7 7---8 8---10

𝑗9 3---11 11---15 15---18 18---24

𝑗4 11---17 17---22 22---24 24---28 𝐶𝑚𝑎𝑥𝐹𝑆3

𝑭𝑺𝟒
 𝑗5 0---5 5---7 7---11 11---12

𝑗2 5---13 13---16 16---20 20---22 𝐶𝑚𝑎𝑥𝐹𝑆4

Table XII: Comparative Study Between Constructive and Palmer

Based Heuristic Algorithms for Illustrative Example 2

Makespan Constructive Palmer

𝑪𝒎𝒂𝒙𝑭𝑺𝟏
 19 19

𝑪𝒎𝒂𝒙𝑭𝑺𝟐
 34 36

𝑪𝒎𝒂𝒙𝑭𝑺𝟑
 27 28

𝑪𝒎𝒂𝒙𝑭𝑺𝟒
 20 22

𝑪𝒎𝒂𝒙𝑭𝑳𝑬𝑿
 100 105

The initial parameters and the solution summary can be seen below.

Initial Parameters:

• The initial temperature is: 15

• The epoch length is: 100 (50 * N)

• The maximum iterations without improvement : 500 (50 * N)

• The cooling parameter is: 0.9

Solution Summary:

• Best Found Solution

• The best schedule is: 3 8 10 4 7 1 9 2 6 5

• The time for the best schedule is: 24 time units

• Best Solution found at iteration #13

 17

• The iterations at the current temperature: 15

• The total iterations is: 515

• The number of temperature changes: 5

• The time taken to solve this problem is 0.28794 seconds

See makespan Tables XIII, XIV, XV, and XVI below for job and machine assignments (upper left

corner) and completion times on machines (lower right corner) for stages 1, 2, 3, and 4,

respectively. The solution (24 time units) can be seen in Table XVI, which is the maximum of all the

machine times in the final stage. An attempt to improve the sequence was made by applying the

steepest descent heuristic to the solution. See neighborhood of solutions in Table XVII below.

Again, the schedule did not improve.

Table XIII: Makespan Table for Illustrative Example 2, Stage

1

Machine 1 Machine 2 Machine 3 Machine 4

3 8 10 4

 5 2 2 6

2 7 1 6

 13 3 8 9

NA 9 5 NA

 NA 11 13 NA

Table XIV: Makespan Table for Illustrative Example 2, Stage 2

Machine 1 Machine 2 Machine 3 Machine 4

8 10 7 3

 9 3 6 9

6 4 1 9

 13 11 10 15

NA 5 2 NA

 NA 15 16 NA

 18

Table XV: Makespan Table for Illustrative Example 2, Stage 3

Machine 1 Machine 2 Machine 3 Machine 4

10 7 8 3

 9 11 13 16

1 4 9 2

 19 13 18 20

NA 6 NA NA

 NA 14 NA NA

NA 5 NA NA

 NA 19 NA NA

Table XVI: Makespan Table for Illustrative Example 2, Stage 4

Machine 1 Machine 2 Machine 3 Machine 4

10 7 8 4

 12 13 18 17

6 3 5 1

 16 24 20 24

9 NA 2 NA

 24 NA 22 NA

 19

Table XVII: Steepest Descent Neighborhood of Solutions and Makespans for

Solution 3 8 10 4 7 1 9 2 6 5 of Illustrative Example 2

 8 3 10 4 7 1 9 2 6 5

10 8 3 4 7 1 9 2 6 5

 4 8 10 3 7 1 9 2 6 5

 7 8 10 4 3 1 9 2 6 5

 1 8 10 4 7 3 9 2 6 5

 9 8 10 4 7 1 3 2 6 5

 2 8 10 4 7 1 9 3 6 5

 6 8 10 4 7 1 9 2 3 5

 5 8 10 4 7 1 9 2 6 3

 3 10 8 4 7 1 9 2 6 5

 3 4 10 8 7 1 9 2 6 5

 3 7 10 4 8 1 9 2 6 5

 3 1 10 4 7 8 9 2 6 5

 3 9 10 4 7 1 8 2 6 5

 3 2 10 4 7 1 9 8 6 5

 3 6 10 4 7 1 9 2 8 5

 3 5 10 4 7 1 9 2 6 8

 3 8 4 10 7 1 9 2 6 5

 3 8 7 4 10 1 9 2 6 5

 3 8 1 4 7 10 9 2 6 5

 3 8 9 4 7 1 10 2 6 5

 3 8 2 4 7 1 9 10 6 5

 3 8 6 4 7 1 9 2 10 5

24

24

24

25

26

28

30

30

32

24

24

24

27

25

27

28

27

24

24

26

27

27

27

 3 8 5 4 7 1 9 2 6 10

 3 8 10 7 4 1 9 2 6 5

 3 8 10 1 7 4 9 2 6 5

 3 8 10 9 7 1 4 2 6 5

 3 8 10 2 7 1 9 4 6 5

 3 8 10 6 7 1 9 2 4 5

 3 8 10 5 7 1 9 2 6 4

 3 8 10 4 1 7 9 2 6 5

 3 8 10 4 9 1 7 2 6 5

 3 8 10 4 2 1 9 7 6 5

 3 8 10 4 6 1 9 2 7 5

 3 8 10 4 5 1 9 2 6 7

 3 8 10 4 7 9 1 2 6 5

 3 8 10 4 7 2 9 1 6 5

 3 8 10 4 7 6 9 2 1 5

 3 8 10 4 7 5 9 2 6 1

 3 8 10 4 7 1 2 9 6 5

 3 8 10 4 7 1 6 2 9 5

 3 8 10 4 7 1 5 2 6 9

 3 8 10 4 7 1 9 6 2 5

 3 8 10 4 7 1 9 5 6 2

 3 8 10 4 7 1 9 2 5 6

25

24

25

25

24

25

25

24

27

27

27

26

25

27

28

28

26

27

27

24

25

24

 20

Chapter 6: Conclusion/Future Work

In this study, SA solved the illustrative examples using a very small amount of computation time

(<0.3 seconds). A data error was found in the example problem of Tyagi (2016) which was

corrected so the solutions could be compared. SD did not improve upon the solutions found by SA.

This was most likely due to the small size of the problems.

In future work, assumptions not deemed realistic (see Problem Statement) will be relaxed. These

realistic conditions will add complexity to the problem. SA can also be compared to Tabu Search or

Genetic Algorithms, for comparison and/or validation of solution. It would also be very beneficial to

find large-scale, non-randomized data (with good or optimal solutions provided) to test the limits of

the proposed SA heuristic and other solution methods.

 21

References

Arthanari, T., and Ramamurthy, K. (1971). An Extension of Two Machines Sequencing Problem.

Opsearch, 8, 10-22.

Blazewicz, J., M. Dror, G. Pawlak, K. Stecke (1992), “Scheduling parts through a two-stage tandem

flexible flow shop”, Working paper 699, Division of research, school of Business Administration, The

University of Michigan.

Brah, S. and Hunsucker, J. (1991). Branch and bound algorithm for the flowshop with multiple

processors. European Journal of Operational Research, 51, 88-99.

Brockmann, K., W. Dangelmaier, N. Holthöfer (1997),”Parallel Branch & Bound

Algorithm for makespan Optimal Scheduling in flowshops with multiple

processors”, Operations Research Proceedings 1997, Selected Papers of the

Symposium on Operations Research (SOR 97), 428-433.

Chen, Bo (1995). Analysis of Classes of Heuristics for Scheduling a Two-Stage Flowshop with

Parallel Machines at One Stage. Journal of the Operational Research Society, 46, 234-244.

Crowder, Bret. (2006). Minimizing the Makespan in a Flexible Flowshop with Sequence Dependent

Setup Times, Uniform Machines, and Limited Buffers. Thesis submitted to the College of

Engineering and Mineral Resources.

Gilmore, P., and Gomory, R. (1964). Sequencing a One State-Variable Machine a Solvable Case of

the Traveling Salesman Problem. Operations Research, 12, 655-679.

Guðmundsdóttir, Rannveig. (2012). Production Scheduling in a Campaign Based Flexible Flow

Shop. Research thesis submitted to the School of Science and Engineering at Reykjavík University.

Gupta, J.N.D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Operational Research

Society, 39(4), 359-364.

Johnson, S.M. (1954). Optimal Two-and Three-Stage Production Schedules with Setup Times

included. Naval Research Logistics Quarterly, 1(1), 61-67.

Koulamas, C., and Kyparisis, G. (2000). Asymptotically Optimal Linear Time Algorithms for Two-

 22

Stage and Three-Stage Flexible Flowshops. Naval Research Logistics, Volume47, Issue3, April

2000, 259-268.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller (1953), "Equation of State

Calculations by Fast Computing Machines", J. Chem. Phys., 21, 6, 1087-1092

Portman, M., Vignier, A., Dardilhac, D., and Dezalay, D. (1998). Branch and bound crossed with GA

to solve hybrid flowshops. European Journal of Operational Research, 107, 389-400.

Salvador, M. S. (1973), “A Solution of a Special Class of Flow Shop Scheduling

Problems”, In proceedings of the symposium on the theory of scheduling and its

Applications, pp. 83-91, Springer-Verlag, Berlin.

Sawik, T. (2000). Mixed Integer Programming for Scheduling Flexible Flow Lines with Limited

Intermediate Buffers. Mathematical and Computer Modelling, 31, 39-52.

Sawik, T. (2002). An Exact Approach for Batch Scheduling in Flexible Flow Lines with Limited

Intermediate Buffers. Mathematical and Computer Modelling. Volume 36, Issues 4–5, 461-471

Sethanan, Kanchana. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup

Times. Dissertation submitted to the College of Engineering and Mineral Resources at West

Virginia University.

Shieh, Alireza. (2004). A Simulated Annealing Approach for Flexible Flowshop Scheduling to

Maximize Flexibility. Thesis submitted to the College of Engineering and Mineral Resources at West

Virginia University.

Soewandi, H., and Elmaghraby, S. (2001). Sequencing three-stage flexible flowshops with identical

machines to minimize makespan. IIE Transactions, 33, 985-993.

Tyagi, Neelam, Tripathi, R.P., and Chandramoul, A.B.. (2016). Flexible Flowshop Scheduling Model

with Four Stages. Indian Journal of Science and Technology, Vol 9(42).

Verma, S., and Dessouky, M. (1999). Multistage Hybrid Flowshop Scheduling With Identical Jobs

and Uniform Parallel Machines. Journal of Scheduling, 2, 135-150.

 23

Wittrock, R. (1988). An Adaptable Scheduling Algorithm for Flexible Flow Lines. Operations

Research Society of America, 36(3), 445-453

 24

Appendix

%%

%%%%%%%%%%%%%%%%%%%%%%%%

%Problem Report - Pharmaceutical Scheduling using Simulated Annealing

%Illustrative Example 2

%%

%%%%%%%%%%%%%%%%%%%%%%%%%

%% Input Data

%Processing Time Table

ProcessTime=[6 2 9 5;

 8 3 4 2;

 5 4 7 8;

 6 5 2 4;

 5 2 4 1;

 3 4 1 2;

 1 3 5 2;

 2 7 4 5;

 8 4 3 6;

 2 1 6 3];

M=4; %Number of machines @ each stage

N=10; %Total number of products

I=4; %Number of stages

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time

after each stage)

P(1,:)=randperm(N); %Randomly chooses initial sequence (this will be handled with the SA

portion of the code)

s0=P(1,:);

CompletionTime=zeros(N,M); %Creates empty Makespan table

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine

 25

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each

machine

Schedule=zeros(N,M); %Overall schedule of all machines/all stages

%% Obtain Initial Solution

%Stage 1

i=1; %current stage

for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing

time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during

Stage 1

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

end

for j=M+1:N %For the remaining products during stage 1

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i);

%Updates the completion time of the chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage 1

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

end

CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

Schedule(~any(Schedule,2), :) = []; %deletes empty rows

 26

%Reorders products in ascending order based on completion time

[Y,sortedindex]=sort(P(2,:));

P=P(:,sortedindex);

%Stages 2 through I

for i=2:I %For all stages beyond Stage 1

 CompletionTime=zeros(N,M); %Erases makespan table

 MachineCT=zeros(1,M); %Erases machine completion time table

 MachinePN=ones(1,M); %Erases machine product number table

 Schedule=zeros(N,M); %Ereases overall schedule

 for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the

previous stage plus processing time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

 end

 for j=M+1:N %For the remaining products

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time

of the selected machine or the product's current completion time from the previous stage

 CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates

completion time of chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage i

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

 end

 27

 CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

 Schedule(~any(Schedule,2), :) = []; %deletes empty rows

 %Reorders products in ascending order based on completion time

 [Y,sortedindex]=sort(P(2,:));

 P=P(:,sortedindex);

end

%The makespan is the maximum completion time at the end of the last stage

MakeSpan=max(MachineCT);

fs0=MakeSpan;

sbest=s0; %Sets initial as best

zbest=fs0;

ibest=0;

%% Initial Temp and Counters

T=15; %15; %Initial/Current Temperature (will change)

Tinit=T; %Initial Temperature for summary at the end

t=0; %temp counter

n=0; %iteration counter at current temp

kprime=0; %total # of iterations counter

kimprove=0; %iterations without improvment counter

Nt=10*N; %epoch length

max_itera=100*N; %max iterations without improvment

alpha=.9; %cooling schedule

 28

disp(['The initial temperature is: ' num2str(T)]);

disp(['The epoch length is: ' num2str(Nt)]);

disp(['The maximum iterations without improvement : ' num2str(max_itera)]);

disp(['The cooling parameter is: ' num2str(alpha)]);

disp(' ');

%% Randomly Generate a Neighbor

tic;

while kimprove <= max_itera %stopping criteria: iterations without improvment

u=randi([1 N],1); %random numbers for pairwise exchange

v=randi([1 N],1);

while v==u %prevents u from equaling v

 v=randi([1 N],1);

end

s=s0; %sets s as s0 to perform exchange

temp=s(u);

s(u)=s(v);

s(v)=temp;

%% Determine Change in OFV

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time

after each stage)

P(1,:)=s; %Randomly chooses initial sequence (this will be handled with the SA portion of the

code)

CompletionTime=zeros(N,M); %Creates empty Makespan table

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine

 29

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each

machine

Schedule=zeros(N,M); %Overall schedule of all machines/all stages

%Stage 1

i=1; %current stage

for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing

time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during

Stage 1

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

end

for j=M+1:N %For the remaining products during stage 1

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i);

%Updates the completion time of the chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage 1

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

end

CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

Schedule(~any(Schedule,2), :) = []; %deletes empty rows

%Reorders products in ascending order based on completion time

 30

[Y,sortedindex]=sort(P(2,:));

P=P(:,sortedindex);

%Stages 2 through I

for i=2:I %For all stages beyond Stage 1

 CompletionTime=zeros(N,M); %Erases makespan table

 MachineCT=zeros(1,M); %Erases machine completion time table

 MachinePN=ones(1,M); %Erases machine product number table

 Schedule=zeros(N,M); %Ereases overall schedule

 for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the

previous stage plus processing time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

 end

 for j=M+1:N %For the remaining products

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time

of the selected machine or the product's current completion time from the previous stage

 CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates

completion time of chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage i

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

 end

 31

 CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

 Schedule(~any(Schedule,2), :) = []; %deletes empty rows

 %Reorders products in ascending order based on completion time

 [Y,sortedindex]=sort(P(2,:));

 P=P(:,sortedindex);

end

%The makespan is the maximum completion time at the end of the last stage

MakeSpan=max(MachineCT);

fs=MakeSpan;

deltaf=fs0-fs; %difference between OFV of current and neighbor solution

nonimprove=exp(deltaf/T); %value used for nonimproving solution

if deltaf > 0 %choose improving solution

 s0=s;

 fs0=fs;

elseif deltaf < 0 & nonimprove > rand(0,1) %choose non-improving solution

 s0=s;

 fs0=fs;

end

if fs0 < zbest %new best solution

 sbest=s0;

 zbest=fs0;

 ibest=kprime; %best solution found at iteration #

 kimprove=0;

 32

else

 kimprove=kimprove+1; %no improvment

end

n=n+1; %increase iteration @ current temp

kprime=kprime+1; %increase total iteration

if n==Nt

 T=T*alpha; %change current temp

 n=0; %reset iteration @ current temp counter

 t=t+1; %increase temperature change counter

end

end

%final solution

disp('Summary');

disp(' ');

disp('Best Found Solution');

disp(['The best schedule is: ' num2str(sbest)]);

disp(' ');

%Recalculating Optimal Solution

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time

after each stage)

P(1,:)=sbest; %Randomly chooses initial sequence (this will be handled with the SA portion of

the code)

CompletionTime=zeros(N,M); %Creates empty Makespan table

 33

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each

machine

Schedule=zeros(N,M); %Overall schedule of all machines/all stages

%Stage 1

i=1; %current stage

for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing

time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during

Stage 1

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

end

for j=M+1:N %For the remaining products during stage 1

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i);

%Updates the completion time of the chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage 1

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

end

CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

Schedule(~any(Schedule,2), :) = []; %deletes empty rows

display(['Stage ' num2str(i)]) %Displays Stage# in command window

 34

display(Schedule) %Displays machine/product schedule for Stage 1

display(CompletionTime) %Displays completion times for Stage 1

%Reorders products in ascending order based on completion time

[Y,sortedindex]=sort(P(2,:));

P=P(:,sortedindex);

%Stages 2 through I

for i=2:I %For all stages beyond Stage 1

 CompletionTime=zeros(N,M); %Erases makespan table

 MachineCT=zeros(1,M); %Erases machine completion time table

 MachinePN=ones(1,M); %Erases machine product number table

 Schedule=zeros(N,M); %Ereases overall schedule

 for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the

previous stage plus processing time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

 end

 for j=M+1:N %For the remaining products

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time

of the selected machine or the product's current completion time from the previous stage

 CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates

completion time of chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage i

 35

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

 end

 CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

 Schedule(~any(Schedule,2), :) = []; %deletes empty rows

 display(['Stage ' num2str(i)]) %Displays Stage# in command window

 display(Schedule) %Displays machine/product schedule for Stage i

 display(CompletionTime) %Displays completion times for Stage i

 %Reorders products in ascending order based on completion time

 [Y,sortedindex]=sort(P(2,:));

 P=P(:,sortedindex);

end

disp(['The time for the best schedule is: ' num2str(zbest) ' time units']);

disp(['Best Solution found at iteration #' num2str(ibest)]);

disp(' ');

disp('Iteration Information');

disp(['The iterations at the current temperature: ' num2str(n)]);

disp(['The total iterations is: ' num2str(kprime)]);

disp(['The number of temperature changes: ' num2str(t)]);

disp(['The time taken to solve this problem is ' num2str(toc) ' seconds']);

disp(' ');

%Steepest Descent

Continue =1;

 36

NumOfSolns=N*(N-1)/2;

NbhdOfSolns=zeros(NumOfSolns,N);

Time=zeros(NumOfSolns,1);

while Continue == 1

x=0;

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time

after each stage)

P(1,:)=sbest; %randperm(N); %Randomly chooses initial sequence (this will be handled with

the SA portion of the code)

s0=P(1,:);

for p=1:N-1

 for q=p+1:N

 x=x+1;

 NS=sbest;

 temp=NS(p);

 NS(p)=NS(q);

 NS(q)=temp;

 %NS(N+1)=NS(1);

 NbhdOfSolns(x,:)=NS;

 end

end

% Use Makespan to calculate the Time

for a=1:NumOfSolns

%% Makespan

P=zeros(2,N); %Creates empty processing sequence table (row1=jobs, row2=completion time

after each stage)

 37

P(1,:)=NbhdOfSolns(a,:); %Randomly chooses initial sequence (this will be handled with the

SA portion of the code)

s0=P(1,:);

CompletionTime=zeros(N,M); %Creates empty Makespan table

MachineCT=zeros(1,M); %Table keeps track of completion time for each machine

MachinePN=ones(1,M); %Table keeps track of number of products that have been on each

machine

Schedule=zeros(N,M); %Overall schedule of all machines/all stages

%Stage 1

i=1; %current stage

for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i); %Completion time is the same as processing

time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product during

Stage 1

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

end

for j=M+1:N %For the remaining products during stage 1

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 CompletionTime(MachinePN(machine),machine)=minMCT+ProcessTime(P(1,j),i);

%Updates the completion time of the chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage 1

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

end

 38

CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

Schedule(~any(Schedule,2), :) = []; %deletes empty rows

%Reorders products in ascending order based on completion time

[Y,sortedindex]=sort(P(2,:));

P=P(:,sortedindex);

%Stages 2 through I

for i=2:I %For all stages beyond Stage 1

 CompletionTime=zeros(N,M); %Erases makespan table

 MachineCT=zeros(1,M); %Erases machine completion time table

 MachinePN=ones(1,M); %Erases machine product number table

 Schedule=zeros(N,M); %Ereases overall schedule

 for j = 1:M %For the first product on each machine

 CompletionTime(1,j)=ProcessTime(P(1,j),i)+P(2,j); %The product's completion time from the

previous stage plus processing time

 Schedule(1,j)=P(1,j); %Keeps track of products on machines

 P(2,j)=CompletionTime(1,j); %Updates current completion time for each product for Stage i

 MachineCT(j)=CompletionTime(1,j); %Updates current completion time for each machine

 end

 for j=M+1:N %For the remaining products

 [minMCT,machine]=min(MachineCT); %Finds which machine gets the next product

 MachinePN(machine)=MachinePN(machine)+1; %Updates the number of products on each

machine

 maxTM=max(minMCT,P(2,j)); %Completion time is the maximum of current completion time

of the selected machine or the product's current completion time from the previous stage

 CompletionTime(MachinePN(machine),machine)=maxTM+ProcessTime(P(1,j),i); %Updates

completion time of chosen machine

 Schedule(MachinePN(machine),machine)=P(1,j); %Keeps track of products on machines

 39

 P(2,j)=CompletionTime(MachinePN(machine),machine); %Updates current completion time

for each product for Stage i

 MachineCT(machine)=CompletionTime(MachinePN(machine),machine); %Updates current

completion time for each machine

 end

 CompletionTime(~any(CompletionTime,2), :) = []; %deletes empty rows

 Schedule(~any(Schedule,2), :) = []; %deletes empty rows

 %Reorders products in ascending order based on completion time

 [Y,sortedindex]=sort(P(2,:));

 P=P(:,sortedindex);

end

%The makespan is the maximum completion time at the end of the last stage

MakeSpan=max(MachineCT);

Time(a)=MakeSpan;

end

MinTime=min(Time);

if MinTime >= zbest

 Continue=0;

else

 sbest=NbhdOfSolns(a,:);

 40

 zbest=MinTime;

 Continue=1;

end

end

disp('Steepest Descent');

disp(NbhdOfSolns);

disp(['The best schedule is: ' num2str(sbest)]);

disp(['The time for this schedule: ' num2str(zbest) ' time units']);

disp(' ');

	PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND STEEPEST DESCENT METHOD
	Recommended Citation

	PHARMACEUTICAL SCHEDULING USING SIMULATED ANNEALING AND STEEPEST DESCENT METHOD

