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Abstract 

 
This research addresses the problem of minimizing the makespan in a flexible flowshop 
with sequence dependent setup times, uniform machines, and limited buffers.  A 
mathematical model was developed to solve this problem.  The problem is NP-Hard in 
the strong sense and only very small problems could be solved optimally.  For exact 
methods, the computation times are long and not practical even when the problems are 
relatively small.  Two construction heuristics were developed that could find solutions 
quickly.  Also a simulated annealing heuristic was constructed that improved the 
solutions obtained from the construction heuristics.  The combined heuristics could 
compute a good solution in a short amount of time.  The heuristics were tested in three 
different environments: 3 stages, 4 stages, and 5 stages.  To assess the quality of the 
solutions, a lower bound and two simple heuristics were generated for comparison 
purposes.  The proposed heuristics showed steady improvement over the simple 
heuristics.  When compared to the lower bounds, the heuristics performed well for the 
smaller environment, but the performance quality decreased as the number of stages 
increased.  The combination of these heuristics defiantly shows promise for solving the 
problem.           
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1 Introduction 
 

Scheduling and sequencing is a form of decision making that plays an important 

role in manufacturing and service industries.  Scheduling is the allocation of resources to 

perform a set of tasks over time and sequencing is the order in which the tasks are 

performed.  Resources can be a number of things such as, machines, workstations in a 

factory, operators, personal, delivery trucks, office workers, taxis, or runways in an 

airport. The products that are being processed are usually referred to as jobs and each one 

of these jobs has a specific set of tasks assigned to it.  These problems arise whenever 

there is a choice to be made on the order in which a number of tasks can be performed 

and by using which resources.  Many scheduling problems are solved by chance, 

scheduling the tasks in the order they arrive (First in First Out) (Conway et al., 1967).  

This works in some instances such as purchasing tickets to an event or placing an order at 

a fast food restaurant.  However, in a manufacturing environment this approach can waste 

valuable time and money.  Even when scheduling systems are used, many times they are 

developed by the operator with objectives that differ from the company’s objectives.  The 

operators may only be worried about their workstation and choose jobs based on what 

will be easiest on them, without concern about other stations.  In a flowshop environment 

this may result in starving stations downstream, or blocking stations upstream.  

Sometimes these scheduling rules will result in local optima, but when they are all put 

together the entire system will suffer.  In today’s global market place with fierce 

competition, an efficient schedule can be very useful in reducing processing costs and 

lead times.   Scheduling also has an important role in lean manufacturing, which uses 

scheduling to level production loads.  As long as companies and businesses face capacity 
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constraints, there will be a need for effective scheduling.  Scheduling and sequencing 

involve decision making and by studying these problems we can learn about decision 

making, and apply it to other areas as well, so it has general practical value (Baker, 

1974).   

The first notable person to start working on the scheduling problem was Henry 

Gantt in the early 1900’s.  Various forms of the Gantt chart that he developed are still 

used today to represent schedules by scheduling software systems.  The first papers on 

scheduling did not appear until the 1950’s and they were authored by scheduling pioneers 

such as S.M. Johnson, W.E. Smith, and J.R. Jackson (Pinedo, 2002).  Since that time a 

great deal of literature has been devoted to scheduling research.  Within scheduling, there 

are infinite numbers of different problem situations that can be studied.  The two main 

categories are dynamic and static schedules.  Dynamic scheduling involves systems that 

are constantly changing, new jobs can enter or jobs can leave the scheduling 

environment.  In static scheduling systems, the available resources and the number of 

jobs are known and fixed.  Scheduling systems can be further broken down into 

deterministic and stochastic.  In the static, deterministic environment, the number of jobs 

is fixed and all job data are known, such as processing times.  In the static, stochastic 

environment, the number of jobs is still fixed, but the job data may not be known with 

certainty.  This paper deals with the deterministic static scheduling environment, which 

will be discussed further. The deterministic static scheduling complexity hierarchy is 

listed in Figure 1. 
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Figure 1.1 Complexity Hierarchy of Deterministic Scheduling Environment (Pinedo, 

2002) 
 
 

(1) The single machine environment is the simplest of all forms, each job j must be 

processed on one machine. 

(2) The parallel machine environment involves one stage where there are multiple 

identical machines, and each job j must be processed on one of the machines.   
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(3) In the flowshop there are m machines arranged in a series and each job j must be 

processed on each machine and all jobs must follow the same route.  Usually jobs 

are assumed to move through the system in a first in first out manner.   

(4) In the open shop each job j must be processed on each of m machines, but some of 

the processing times may be zero.  Also there are no restrictions on the routing of 

the jobs and each job may have a different route.   

(5) The parallel machine environment with uniform machines consists of m machines 

in parallel, but with different speeds.  The processing time depends on which 

machine the job is processed on and is calculated by dividing the processing time 

by the machine speed.   

(6) The flexible flowshop is a combination of the flowshop and the parallel 

environment.  There is a number of stages in series with each stage having one or 

more identical machines in parallel.  Each job j must be processed on exactly one 

machine at each stage and the queues may or may not operate on the first in first 

out or last in first out basis.    

(7) A job shop has m machines and each job j has a predetermined route to follow.  In 

some cases a job may visit a machine more than once.   

(8) The random shop is very similar to the parallel machine environment with 

uniform machines.  In the random shop there are m machines in parallel with 

varying speeds, but the machine speeds may be different for each job.   

(9) The flexible job shop is a combination of the job shop and parallel machine 

environments.  The flexible job shop consists of work stations with a number of 
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identical machines in parallel at each station.  Each job has its predetermined 

route and it must visit one machine at each work station on its route.   

 
 
Flexible flowshops are a common occurrence in many industries.  If the processing 

times at one stage dominate others, then it is common to add another machine.  If 

changes in demand occur, new machines may be purchased over time and have 

varying speeds.  When the machines or resources are costly, the older versions may 

not be discarded because they still have some value, even if they are not as fast as the 

newer models.   

Most scheduling problems studied in the literature consider setup times to be 

included in the processing times.  This can affect the quality of the solution if setup 

times differ based on the preceding jobs.  Setup times usually consist of preparing 

tools, setting jigs, setting fixtures, and positioning the job.  Since some jobs may be 

similar in the work they require, it may require smaller time for set up between these 

jobs and vice versa.   When jobs are waiting for setup, no value is added and in some 

instances the setup time is directly related to cost, so if the setup times are not 

properly accounted, time and money could be wasted (Allahverdi, 1999).     

This research studies a combination of the flowshop and the parallel shop with 

uniform machines.  The problem considers a flexible flowshop with uniform 

machines, sequence dependent setup times and limited buffers with the objective of 

minimizing the makespan.   This problem is strongly NP hard (Pinedo, 2002), which 

means that it belongs to a class of problems that are still NP hard even when all 

numbers in the input are bounded by some polynomial in the length of the input 
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(National Institute of Standards and Technology <http://www.nist.gov>).  As a result 

finding optimal solutions is not practical for large problems.  A construction heuristic 

will be developed based on the flowshop scheduling algorithm of Nawaz et al. 

(1983).  This algorithm uses a priority list that gives preference to jobs with larger 

processing times and looks at [n(n+1)/2] -1 solutions instead of all n! solutions; where 

n equals the number of jobs.  This drastically reduces the number of possible 

solutions considered; for example, for a problem consisting of 5 jobs there are 120 

possible solutions, but this algorithm will only look at 14 solutions.  After the initial 

solution is constructed a simulated annealing algorithm will be used to improve the 

initial solution.    

In this research, “job” refers to a product, “machine” refers to a resource that can 

perform any one of a number of tasks, and “stage” refers to a set of one or more 

machines in a group that can all perform the same tasks.  The jobs need to be 

processed at every stage in chronological order, and they can be processed on any 

machine at any given stage.  Each stage may have one or more machines and the 

machines may have differing speeds.       
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2 Literature Review 

2.1 Flowshop Scheduling Overview 
 

Since the pioneering work of Johnson (1954), many researchers have studied 

various forms of the flowshop scheduling problem.  In an article by Dudek et al. (1992), a 

review is done of flowshop scheduling and it is concluded that the flowshop scheduling 

problem is a mathematically challenging problem.  Some have tried exact approaches 

such as branch and bound or mixed integer programming.  These approaches are useful in 

understanding the problem structure, but are only practical in solving very small 

problems.  The majority of the work on flowshop scheduling has been devoted to 

heuristics.  The heuristics are designed to find optimal or near optimal solutions in a 

reasonable time period.  Taillard (1993) gives data for testing permutation flowshop 

schedules.  Many papers have referenced his article and tested heuristics against the data 

and lower bounds presented for makespan minimization.  Unless otherwise stated, the 

objective function of each algorithm in this literature review is to minimize the 

makespan, which is the time period between when the first job starts processing on the 

first stage to the time when the last job is finished at the final stage.  Since the focus of 

this research is on the static and deterministic scheduling situations, only those will be 

considered in this review.   

The scheduling literature is so vast that any literature search needs to be selective.  

The theory of sequencing and scheduling is unlimited in problem types.  Lawler et al. 

(1993) presented a survey on deterministic machine scheduling.  They discussed 

complexity and approximation algorithms for problems involving single machine, 

parallel machines, open shops, flowshops, and job shops.  Sequencing and scheduling is 
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concerned with the optimal allocation of resources to activities over time.  A machine is a 

resource that can perform at most one activity at a time, and activities are considered to 

be jobs that can be worked on by at most one machine at a time (Lawler et al., 1993).   

Four of the major approaches to dealing with static sequencing are: (1) combinatorial 

approaches, which change jobs from one permutation to another, (2) general 

mathematical programming, (3) heuristics, and (4) Monte Carlo sampling (Day and 

Hottenstein, 1970). 

       The flexible flowshop is a case of the flowshop where at each stage there may be one 

or more machines.  When there is more than one machine at a stage, three major issues 

need to be considered (1) which machines will process which jobs, (2) in which order the 

machines will process the jobs, and (3) how to decide if the schedule is good or not.  

There can be many reasons to add machines at a stage such as to increase throughput and 

reduce the problem of a bottleneck.  Also, adding another machine may increase the 

system reliability and flexibility.  If machines are added at different time periods, they 

may have different speeds resulting in what is termed as uniform machines (Cheng, T., 

1990).  Linn and Zhang (1999) presented a survey on the flexible flowshop.  They stated 

that most of the research can be grouped into three main categories: 2-stage, 3-stage, and 

>3-stage.  There is not much research reported in the literature on uniform machines 

which considers setup times.  In most of the flowshop scheduling research, the setup 

times are assumed to be included in the processing times, but in reality that may not be 

the case.  When a machine changes from processing one part to another of a different 

type, the setup times can be 20%-40% of the processing time.  Allahverdi et al. (1999) 

presented a review of scheduling research involving setup considerations.  Setup may be 
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needed in obtaining tools, positioning wip, returning tool, cleanup, adjusting tools, setting 

fixtures, and inspection.  Two major types of setups are sequence-dependent and 

sequence-independent.  For this research we will be concerned with the first case.   

This literature review is not designed to be an in-depth study of the entire field of 

scheduling and sequencing research.  In order to get a better overview, refer to the 

articles mentioned in this section.  This research is mainly focused on the flexible 

flowshop with buffers, sequence dependent setup times, and uniform machines. Also an 

overview of simulated annealing is presented in the last section.    

2.2  Exact Solution Methods   

2.2.1 Flowshop 
 

The two machine flowshop can easily be solved by Johnson’s algorithm (1954).  

However, branch and bound and dynamic programming have been used to solve some 

special cases of the two machine flowshop problem.  Corwin et al. (1974) presented a 

dynamic programming formulation for the two-machine scheduling problem with 

sequence dependent setup times at one stage.  When the sequence dependent setup times 

are at the second stage and there are less than fourteen jobs, dynamic programming is 

preferred over branch and bound.  Agnetis et al. (1998) used a branch-and-bound 

algorithm in the two machine flowshop, where the input buffer of the second machine is 

limited.  This algorithm can compute optimal or suboptimal solutions for up to 40 jobs.  

Other than certain special cases, the flowshop with three or more machines is considered 

to be NP-Hard (Garey, 1976 and  Koulamas, 1998).  Ignall and Schrage (1965) and Lee, 

C. et al. (1993) presented branch and bound techniques for the three machine flowshop 
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problem.  Branch and bound algorithms have also been developed for the multiple 

machine flowshop, where the number of machines can be greater than three.  Carlier et al. 

(1996) presented two branch and bound algorithms for the m-machine permutation 

flowshop.  Both methods use the depth first strategy.  The first method could not solve 

problems with more than 30 jobs, while the second method could solve up to 50 jobs.  

Rios-Mercado and Bard (1999A) presented a branch and bound algorithm for the 

permutation flowshop problem with sequence dependent setup times.  The setup times 

were asymmetric, and lower bounds were calculated by relaxing the problem and 

reducing it to the two machine case.  An upper bound was found by using GRASP, which 

is a heuristic developed by the authors.  The setup times used are usually between 20%-

40% of the processing times. Also, the brand and bound procedure permits a partial 

enumeration search procedure that can calculate approximate solutions.   

There are other special cases of the flowshop scheduling problem that have 

special structures which allow them to be modeled as a traveling salesman problem 

(TSP).  Gupta, J.N.D. (1976) looked at the flowshop scheduling problem with no 

intermediate storage and uninterrupted flow.  The objective was to minimize the 

weighted sum of idle times on machines.  The problem was modeled as a TSP and solved 

using TSP techniques.  Gupta, J.N.D. (1986), also modeled the uninterrupted flowshop 

with sequence dependent setup times as a TSP.   
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2.2.2 Flexible Flowshop Exact Methods 
 

Arthanari et al. (1971) presented a branch and bound algorithm to optimally solve 

the special case of the two-stage flexible flowshop (FFS) where there are multiple 

machines at the first stage and only one machine at the second.  Brah and Hunsucker 

(1991) also presented a branch and bound algorithm for the general flexible flowshop 

with multiple stages.  This algorithm allows for machine idle time and calculates lower 

bounds based on jobs, machines, and a composite of both.  This enumeration method was 

originally used for parallel machines, but has been modified to fit the flexible flowshop.  

It optimally solves problems with 4-8 jobs, 2-5 stages, and 2-3 machines at each stage.  

Azizoglu et al. (2001) presented a branch and bound algorithm to solve the flexible 

flowshop where the solutions are not restricted to permutation schedules.  They used 

Brah and Hunsucker’s (1991) branching scheme and tested the proposed algorithm on 

two data sets, one with small processing times and one with large.  The algorithm works 

only for small and medium sized problems.  Moursli (1995) proposed a branch and bound 

approach to solve the multistage flexible flowshop problem with multiple machines at 

each stage.  He also presented three improvements to Brah and Hunsucker’s algorithm 

with three new lower bounds.  Portman et al. (1998) presented a branch-and-bound 

algorithm crossed with genetic algorithms (GA).  They also made improvements to Brah 

and Hunsucker’s (1991) lower bound.  They used several heuristics to calculate initial 

upper bounds, and then GA to improve the search value of the upper bound.  By adding 

GA, the proof of the optimal solution is found easier and the optimal solution is found 

more often.  Rajendran et al. (1992) presented a branch and bound algorithm for the 

parallel machine flowshop where only permutation schedules are considered.  Vignier et 
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al. (1996) presented a branch and bound approach to minimize the total completion time 

in a k-stage flexible flowshop.  The upper bound is found by using the shortest processing 

time.    

Sawik (2002) presented a mixed integer programming approach for the flexible 

flowshop.  There were limited buffers viewed as machines with zero processing times.  

Also in Sawik (2000), two mixed integer programs were presented for the FFS where one 

case has buffers and the other does not.  Aghezzaf et al. (1998) presented a mixed integer 

linear programming model for the flexible flowshop with product and machine dependent 

setup times, but it is feasible only for small problems.   

2.3 Heuristic Methods 

2.3.1 Flowshop 

2.3.1.1  Classic Flowshop Methods 
 

Since the pioneer work of Johnson in 1954 to minimize makespan in flowshop 

sequencing, many have tried to develop algorithms that can solve the multiple machine 

flowshop with the simplicity that his algorithm solved the two machine case.  There are 

four main classic heuristics that have been studied, referenced, used in comparison, and 

used in constructing new algorithms by many researchers.  All of the classic heuristics 

use permutation schedules.  The first is Palmer (1965) who presented a heuristic that 

gives priority to jobs whose processing time changes from short to long.  The slope order 

produces schedules fairly close to optimal.   The second classic algorithm CDS was 

developed by Campbell, Dudek, and Smith (1970).  This procedure can be applied by 

hand and generates (m-1) schedule sequences, where m is the total number of machines.  
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It outperforms Palmer’s, which produces only one sequence.  The algorithm can solve for 

3-60 jobs and 3-30 machines, or even larger problems.  The third classic algorithm was 

given by Dannenbring (1977).  In his paper, he compares eleven flowshop heuristics, 

three of which were previously unreported.  Heuristics from previous literature included 

Palmer and CDS, but the new heuristic he developed and called Rapid Access with 

Extensive Search (RAES) performed the best.  Problems were solved with up to 50 jobs 

and 50 machines.  In the larger problems, RAES found the best solution in 71.25% of the 

problems, while the next best rule found the best solution in 18.13% of the problems.  

The algorithm also has a neighborhood search strategy that changes neighbors until there 

is no improvement.  Even though Dannenbring’s algorithm worked well, the best of the 

classic algorithms is the fourth, which was presented by Nawaz, Enscore, and Ham 

(1983) (NEH).  Taillard (1990) and others came to the same conclusion when comparing 

the classic heuristics.  This algorithm is still considered to be one of the best methods of 

constructing initial solution (Koulamas, 1998).  Numerous researchers still use NEH in 

their construction algorithms before applying an improvement heuristic.  NEH is superior 

to CDS and all other algorithms developed up to 1983.  It uses the assumption that jobs 

with more processing times should get a higher priority.  The only way CDS would 

outperform NEH is if the number of machines greatly outnumbers the number of jobs 

(Turner and Booth, 1987).   

2.3.1.2  Recent Flowshop Heuristics 
  

Hundal et al. (1988) extended Palmer’s algorithm and allowed it to generate three 

sequences instead of one.  They combined CDS with Palmer and added a pairwise 
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exchange search strategy.  Using these extensions improves the solution, but also adds 

computation time.  Koulamas (1998) presented a construction heuristic for the flowshop 

scheduling problem.  In this heuristic, non-permutation as well as permutation schedules 

are considered.  Koulamas’s heuristic performed as well as NEH when the optimal 

schedule is a permutation and better when the optimal schedule is not a permutation.  Ho 

et al. (1991) developed a heuristic designed to reduce gaps between operations in 

solutions generated by other heuristics.  The algorithm was compared to CDS, Palmer, 

Gupta, Dannenbring, Hundal and Rajgopal’s (1988).  For minimizing makespan, Ho, 

CDS, and Hundal and Rajgopal’s worked the best.  Sarin et al. (1993) developed a 

heuristic, that attempts to minimize the idle time on the last machine.  Only permutation 

schedules were considered.  When compared with NEH (1983), NEH worked better for 

small problems, but Sarin’s heuristic dominated for larger problems.   

Chen et al. (1996) presented a heuristic for the three machine flowshop.  The 

heuristic is based on Johnson’s algorithm and has a worst case performance ratio that is 

better than 2.  Lee, C. et al. (1993) also presented heuristics and their error bounds for the 

three machine flowshop problem.  Barman (1998) looked at combining 3 different 

priority rules for the three-stage flowshop where there are two machines at each stage.  

The objectives were to minimize mean lateness, mean tardiness, maximum tardiness, and 

percent tardy.  The results showed that the combination of rules work better than using 

any one rule by itself.   

Carlier (1982) presented a unique algorithm that gives the bottleneck stage 

priority over all others.  The jobs are scheduled in a way that minimizes the time spent at 

the bottleneck stage, also the algorithm considers release and processing times.  Egin et 
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al. (2004) proposed an artificial immune system (AIS) that is similar to neural networks.  

Wang et al. (1997) presented two heuristics, the first heuristic reduces machine idle time, 

and the second reduces machine idle time and job queue times.   

2.3.1.3  Flowshop with Setup/Buffers 
 

Other special cases of flowshop scheduling are those having setup times, limited 

or no buffers, or uniform machines.  In general flowshop scheduling, the processing times 

include all setup times, the buffers are considered to be unlimited, and all machines are 

identical (i.e. have the same speed).  Sule (1982) looked at scheduling jobs on a two 

machine flowshop.  The processing time is separated into setup, processing, and removal 

times.  Also it further categorizes operations into inside and outside processing.  Gupta, 

J.N.D. et al. (1987) presented a heuristic for flowshop scheduling with sequence-

dependent additive setup times.  The approximate solution can yield optimal schedules 

for the two machine case.  The heuristic produced better solutions than Sule’s algorithm.   

Simmons (1992) presented four heuristics for the flowshop sequencing problem 

with sequence dependent setup times.  The results showed that sophistication does not 

necessarily lead to better performance.  One of the heuristics (TOTAL) uses the sum of 

processing and setup times, where another (SETUP) just works with the sum of setup 

times.  TOTAL performed the best.  Rios-Mercado and Bard (1998) presented two 

heuristics for the flowshop scheduling problem with sequence dependent setup times, 

where only permutation schedules are considered.  The first heuristic was an extension of 

the NEH flowshop heuristic, and the second was a greedy randomized adaptive search 

procedure (GRASP).  GRASP has a construction and improvement phase.  Both 
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heuristics were compared with Simmons’s (1992) (SETUP) heuristic using two data sets.  

For the first data set, a traveling salesman heuristic (TSP) worked best for a small number 

of  machines, but (GRASP) worked better for a  large number of machines.  For the 

second data set SETUP worked the best.  Rios-Mercado and Bard (1999B) presented 

another heuristic for solving the permutation flowshop problem with setup times.  The 

procedure transformed the problem into a Traveling Salesman Problem (TSP).  Large 

setup times and makespan are factors that penalize the objective function.  The setup 

times used were asymmetric and equal to 20%-40% of the processing time.  The heuristic 

worked better when the number of machines was small.   

Allahverdi (2000) looked at minimizing the mean flow time in the two-machine 

flowshop with sequence independent setup times.  Three heuristics were given with an 

overall average error of 0.7% of the optimal.  Also, optimal solutions were found for two 

special cases.  Experiments were performed with job sets of 10, 15, 20, 25, 30, and 35.  

The flowshop with sequence dependent setup times and limited buffers was studied by 

Gupta, J.N.D. (1986), but no experiments were performed.    

King and Spachis (1980) looked at existing and new heuristics to solve the 

flowshop problem.  The new heuristics studied the permutation, no-wait flowshop.  The 

no-wait flowshop is reducible to the asymmetric traveling salesman problem.  For no 

passing, the least total weighted between-jobs delay (LBJD) heuristic performed well.  

For the no-wait problem, the minimum covering level, the maximum left shift savings, 

and LBJD heuristics worked well. Details of these heuristics can be found in King and 

Spachis (1980). 

 

 16



2.3.2   Flowshop Heuristics Using Meta-heuristics  
 

Most of the recent work in flowshop scheduling has been devoted to the 

combinatorial approach and the use of meta-heuristics.  The three traditional meta-

heuristics used in the literature are Tabu Search (TS), Genetic Algorithms (GA), and 

Simulated Annealing (SA).  SA and TS have both been found to work well for the 

permutation flowshop problem.  In this research, SA will be used, so the literature 

covered will focus mainly on SA with some brief mention of the other methods.  Also, it 

should be noted that a new heuristic, called Ant Systems has recently been applied to the 

permutation flowshop problem with comparable results to those of SA and TS.   

Osman and Potts (1989) presented a simulated annealing (SA) heuristic for the 

permutation flowshop scheduling problem.  To search the neighborhood, a non-adjacent 

interchange and a forward/backward shift system are used.  Four different SA algorithms 

were used and they perform better than NEH, but require more time.  Ogbu et al. (1990B) 

presented a different simulated annealing heuristic for the flowshop scheduling problem.  

This heuristic used an acceptance probability that is the same for all iterations.  The paper 

states the importance of reducing the temperature slowly.  Also the heuristic used a last 

improvement technique that is different from Osman and Potts (1989) which used first 

improvement.  For this heuristic, the insertion/shift perturbation scheme worked better 

than the interchange/pairwise.  The paper also stated that for the n-job m-machine 

flowshop, SA outperforms all other heuristics.   Ogbu and Smith (1990A) also used 

simulated annealing to solve the flowshop scheduling problem.  The probability of 

acceptance of an inferior solution is independent of the change in function value.  Two 

perturbation schemes are used; one uses pairwise exchange and the other uses job 
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insertion.  Insertion seemed to work better in the larger problems.  In theory, the choice 

of a starting solution will not matter, but practical experience showed that a good starting 

solution leads to more efficient convergence.  The initial starting solutions of Palmer and 

Dannenbring were used here.  Two sets of problems were considered, the small set had 7 

jobs and 5 machines, and the large has 15 jobs and 10 machines.  The small problems 

were solved by branch and bound for comparison, and for the large problems the 

solutions were compared by using the best solution found.  The proposed heuristic found 

better solutions in a set time period than traditional approaches. Kouvelis et al. (1992) 

also developed a simulated annealing procedure.  The initial solution is randomly 

generated, but the article states that initial solutions that exploit specific problem 

structure will get better final solutions.  Ishibuchi et al. (1995) developed two simulated 

annealing algorithms with modifications to the generation mechanism.  The generation 

mechanism is designed so the choice of cooling schedule will not affect the quality of the 

solution; it works with a pool of possible solutions.  They found that Tabu search is 

slightly inferior to their algorithm.  The proposed algorithm was also compared to the SA 

algorithm presented by Osman and Potts (1989), and it was found that the proposed is 

better for the 20 job problem and Osman and Potts algorithm was better for the 50 job 

problem.  Zegordi et al. (1995) presented a heuristic that combines simulated annealing 

with problem specific knowledge.  Johnson’s rule is used to develop a move desirability 

index.  The proposed algorithm was compared with NEH, CDS, and Osman and Potts.  

Osman and Potts performed better on larger problems, but the proposed algorithm was 

better on smaller problems.  Low (2004) developed a simulated annealing algorithm that 

uses a modified NEH algorithm as the initial starting solution.  Three different 
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neighborhood search schemes are used: adjacent pairwise exchange, general pairwise 

exchange, and insertion.  General pairwise exchange and insertion can yield good 

solutions, but they are computationally costly.  Adjacent pairwise exchange is considered 

to be not as computationally costly.  The algorithm was tested using Taillard’s (1993) 

data and it was found that the proposed SA with an initial starting solution of SPT/FCFS 

worked the best.  Tian et al. (1999) used simulated annealing to solve combinatorial 

optimization problems with permutation properties. The problems studied are traveling 

salesperson, flowshop, and quadratic assignment.  Six different perturbation schemes 

were used for each problem and the results were presented.  For the symmetric traveling 

salesperson, block reversal worked best.  For the flowshop, two job random exchange and 

block insertion were the best performers.  

Widmer and Hertz (1989) presented a two phase heuristic where the first phase 

used a construction heuristic based on an analogy of the problem with the traveling 

salesperson problem. In the second phase, the initial solution is improved using tabu 

search.  Their algorithm was compared with NEH, CDS, and Dannenbring’s RA, and the 

proposed algorithm produced the best sequence 80% of the time.  Taillard (1990) 

presented a tabu search heuristic that was compared to NEH and shown to be superior.  

Ying et al. (2004) presented an ant systems approach to the permutation flowshop 

problem.  The test data of Taillard (1993) were used.  Ant systems can get good solutions 

with reasonable computation time.  The results showed that the proposed ant system 

heuristic is on average minimally better than SA.     

Weng (2000) used a modified NEH algorithm to solve the flowshop scheduling 

problem with limited buffers.  NEH is used to generate the initial permutation schedule, 
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and then tabu search (TS) is used to improve the solution.  The objective function is to 

minimize the mean job flow time.  TS was shown to improve the solution, and buffers 

greater than four are not needed.  As the numbers of machines or buffers increase, the TS 

improvement decreases. 

Parathasarathy et al. (1997) used simulated annealing to solve the flowshop 

scheduling problem with sequence dependent setup times and the objective of 

minimizing the mean weighted tardiness.  A case study was carried out in a drill bit 

manufacturing industry.  The simulated annealing heuristic was compared to tabu search 

and out-performed it 70% of the time.  Also the proposed algorithm solved the 95 job 

problem in 3 hours while tabu search took 12 hours.  Norman (1999) presented a tabu 

search heuristic for the flowshop problem with limited buffers and sequence dependent 

setup times.  NEH was used as the construction algorithm.  Also, another heuristic was 

developed using greedy improvement, but tabu search works much better.  Good lower 

bounds are difficult to establish because of the buffers and the asymmetric setup times.  

 2.3.3  Flowshop Scheduling Using Combination of Meta-
heuristics   
 

A new method of solving the flowshop problem is to combine two meta-

heuristics; most of this has been done by combining SA and GA.  By combining these 

two heuristics, good solutions can be obtained.  Wang et al. (2003B) presented a hybrid 

heuristic for the flowshop scheduling problem.  The algorithm used NEH, GA, and SA.  

The heuristic outperformed NEH and was comparable to TS, SA, and GA.  Allahverdi et 

al. (2004) presented a hybrid simulated annealing and genetic algorithms heuristic to 

solve the no-wait flowshop.  The objective was to minimize the weighted sum of 
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makespan and maximum lateness.  Nearcchou (2004A) used a hybrid simulated 

annealing algorithm to solve the flowshop problem.  The heuristic has the basic structure 

of SA with some aspects borrowed from genetic algorithms and local search techniques.  

A random exchange perturbation scheme is used.  This heuristic worked with a 

population of possible solutions at each iteration.  The solutions obtained are comparable 

to the best available in the literature.  Nearcchou (2004B) presented a hybrid simulated 

annealing algorithm to solve the permutation flowshop problem.  The simulated 

annealing algorithm is crossed with genetic algorithms.  Initial solutions are randomly 

generated and a shift perturbation scheme is used.  The proposed algorithm can find 

makespans faster than other known meta-heuristics.   

2.4 Flexible Flowshop Heuristics 
 

Finding the minimum makespan in a flexible flowshop problem is considered to 

be NP-Hard (Hoogeveen et al., 1996).  Therefore most of the research in FFS scheduling 

has revolved around heuristic methods.  Since heuristics are approximation methods and 

are not likely to find the optimal solution, a method of testing their performance is 

needed.  There are three main methods to test a heuristic, test it against a lower bound, 

against other heuristics for the same problem, or against the best solution found.  Santos 

et al. (1995) presented global lower bounds for makespan minimization on the flexible 

flowshop scheduling problem.  The purpose was to give a bench-mark to test the quality 

of heuristics.  The optimal makespan was predicted 38% of the time and the average 

relative error was 4.6%.  Also in 85% of the 653 problems tested, the bounds were within 

10% of the optimal solution.   
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2.4.1 Two-Stage Flexible Flowshop 
 

Gupta, J.N.D. (1988) showed that the two-stage flowshop where there are 

multiple identical machines at each stage is NP-Complete.  Gupta, J.N.D. et al. (1997) 

presented a heuristic to solve the two-stage flexible flowshop problem with multiple 

machines at the first stage and one machine at the second stage.  The heuristic uses 

Johnson’s rule to create a list of jobs, then this list is used in one of five heuristics.  Also 

a steepest descent strategy is used to find local optima from the heuristic’s solution.  Lee 

et al. (1998) presented two heuristics for the same problem, one is a look ahead and the 

other a look behind.  Also, a dynamic programming algorithm was developed for the two 

stage problem with two machines at each stage.  Oi (1996) developed four heuristics for 

the same problem.  He assumed that the manufacturing is done at the first stage and 

assembly is done at the second stage.  The objective was to minimize the sum of 

weighted customer lead times.  Only permutation schedules were considered. The four 

heuristics are Lagrangian relaxation, greedy search, total weighted shortest processing 

time, and one that is simply tardiness based.  Chen (1995) addressed the two-stage 

problem with parallel machines at one stage and a single machine at the other.  Oguz et 

al. (1997) looked at the two-stage flexible flowshop problem with different machines at 

the first stage and one common machine at the second stage.  He developed a heuristic 

based on Johnson’s rule which was found to be effective.   

Narasimham et al. (1984) looked at scheduling rules in a two-stage flexible 

flowshop with one machine at the first stage and two machines at the second.  The 

objective was to minimize the sum of machine idleness and in-process waiting time at the 

second stage.  Cumulative minimum deviation worked the best, minimum deviation 
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(MD) second, and SPT and LPT were last.  Gupta, J.N.D. et al. (1991) looked at 

scheduling jobs in two-stage flexible flowshop with one machine at the first stage and 

multiple machines at the second.  They developed an algorithm that can be used to find 

approximate solutions or to increase the efficiency of a branch and bound algorithm.  

They had two objectives; the first was to minimize makespan and the second to minimize 

the number of machines.  This problem was also considered by Tsubone et al. (1996).  In 

Tsubone et al., the first stage used the shortest processing time, longest processing time, 

RATIO, and a Modified Johnson’s rule.  The second stage simply used first come first 

serve.  The RATIO rule worked best for makespan minimization.  Li (1997) presented a 

backward and a forward scheduling heuristic for the same problem.  The heuristics 

performed better than shortest processing time (SPT) and longest processing time (LPT).  

A Pratt and Whitney Blade production line was the basis for this scheduling problem.  

The backward algorithm performed better than the forward.  Huang (1998) studied a 

similar problem, but the first stage had one machine and the second stage had multiple 

uniform machines.  In his paper, the parts are grouped into families with major and minor 

setup times that are independent of the machine speeds.  The problem was examined by 

using two heuristics and eight sequencing rules.  This scheduling problem also came from 

a Pratt and Whitney Blade manufacturing facility.  Average results were between 20% 

and 60% above the lower bounds.    Riane et al. (1998) developed two heuristics for the 

two stage hybrid flowshop with one machine in the first stage and two dedicated 

machines in the second stage.  The first heuristic was based on dynamic programming, 

while the second used a construction heuristic combined with a greedy algorithm.  The 

dynamic programming approach worked best.  For the same problem, Riane et al. (2002) 
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proposed two heuristics that were found to be efficient.  A dynamic programming 

approach was also used for problems with less than 15 jobs.   

Lee et al. (1994) presented a heuristic for solving the general two-stage flexible 

flowshop.   Five lower bounds were used to test the algorithm and an additional heuristic 

was developed for the case with more than 2 stages.  As the number of machines 

increases, the problem becomes harder.  Guinet et al. (1996) looked at scheduling of two-

stage flexible flowshops with unlimited storage.  A MIP formulation was presented and 

lower bounds were calculated.  A sequence first and allocation second heuristic was 

developed that uses Johnson’s rule and different combinations of seven other rules 

developed by other authors to create a priority list, then the jobs are scheduled using the 

priority list.  Lin et al. (2003) studied the two-stage flexible flowshop with sequence 

dependent setup times at stage one and dedicated machines at the second stage.  This 

problem came from a label sticker manufacturing company.  A tabu search algorithm was 

used in the first stage and a first in first out (FIFO) algorithm was used in the second 

stage.  The objective was to minimize the maximum weighted tardiness.  The heuristic 

performed well and was to be implemented at the company for which it was designed.  

Narasimham et al. (1987) tested three scheduling rules for the two-stage flexible 

flowshop.  The rules tested were shortest processing time (SPT), longest processing time 

(LPT), and minimum deviation.  The problem was modeled after a scheduling problem in 

the Schlitz Brewing Company.  The objective function has multiple criteria such as 

minimizing total cost of order waiting, machine idle time, makespan, and average 

completion time.  Generalized cumulative minimum deviation rule (GCMD) worked the 

best.   Soewandi et al. (2003) developed three heuristics for scheduling in the two-stage 

 24



flexible flowshop with uniform machines at each stage.  Some of the rules used are the 

earliest finished machine (EFM) and latest start machine (LSM).  Uetake et al. (1995) 

looked at the two-stage FFS with one machine at the first stage and multiple different 

machines at the second stage.  The objective was to minimize makespan and maximum 

work in process.  This type of system occurs in steel, chemical, and paper industries.  The 

first stage used SPT, LPT, RATIO, Johnson’s rule, and the second stage used the first 

come first serve rule (FCFS).   Verma et al. (1999) showed that the two-stage FFS with 

parallel and uniform machines is NP-Hard.  Three different heuristics were presented; 

earliest completion time (ECTH), fastest available machine heuristic (FAMH), and mixed 

heuristic (MH).  The mixed heuristic is just a combination of the others and tends to 

perform the best.   

2.4.2 Three-Stage Flexible Flowshop 
 

Koulamas et al. (2000) presented a linear time algorithm for two-stage and three-

stage flexible flowshops.  The worst case bounds are no worse than those currently 

available.  Soewandi et al. (2001) presented two heuristics for the three-stage problem.  

Some rules that were used in the formation of the heuristics are Johnson’s, first available 

machine, last busy machine, and modified Johnson’s rule.   

2.4.3 General Flexible Flowshop 
 

Wittrock (1985) looked at scheduling in flexible flow lines.  The objective was to 

maximize throughput and reduce work in process.  He considered two scheduling 

decisions, one is when should a job enter the system, and the other is what should the 
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daily product mix be.  The buffer works on a first come first serve basis and the heuristic 

tries to balance workloads.  Wittrock (1988) also looked at an adaptable scheduling 

algorithm to minimize makespan and queueing in the flexible flowshop.  The heuristic 

breaks the problem into three subproblems; machine allocation, sequencing, and timing.  

No queues are allowed in front of an idle machine, even though sometimes it may 

improve the solution.  Kochhar et al. (1988) studied entry point scheduling. This 

technique uses local perturbation to obtain schedules within a few percent of optimal.  A 

construction heuristic and random starting solutions were used.  They state in their paper 

that a good starting solution is one that will lead the local search into different areas.  The 

local search techniques used are pairwise exchange and block exchange, both with 

steepest descent and multiple starting solutions.  Ding et al. (1994) presented three 

heuristics for the flexible flowshop with 1 to 3 machines at each stage.  Two of the 

heuristics are based on Johnson’s and CDS algorithms, while the third is based on Gupta 

(1972).  The algorithms based on Johnson’s algorithm worked the best.    Guinet and 

Solomon (1996) looked at scheduling jobs in a flexible flowshop with the objective of 

minimizing the makespan or maximum tardiness.  The heuristics used are based on CDS, 

NEH, and Townsend (1977).  NEH worked the best for makespan minimization.  Leon et 

al. (1997) presented a heuristic that was previously used for job shop scheduling, but 

adapted it for the flexible flowshop.  The heuristic uses the shortest processing time rule 

combined with local search techniques.  The local search techniques used are single 

neighborhood, steepest descent, and first improvement.  Brah and Lou (1999) compared 

five heuristics for the FFS with the objective of minimizing makespan and mean 

flowtime.  The heuristics tested are NEH, HO, CDS, PAM, and CDS2.  NEH performed 
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the best for makespan.  The heuristics were compared using the global lower bounds 

presented by Santos (1995).  Chang (1994) developed an algorithm based on Lagrangian 

relaxation and minimum cost linear network flow.  A rescheduling algorithm is also 

given.  The objectives are to avoid overdue penalty, reduce cost of WIP, and reduce cost 

of overtime.  Jayamohan et al. (2000) looked at minimization of flow time and tardiness 

of jobs in a flexible flowshop.  Two approaches were investigated; one uses the same 

dispatching rule at all stages while the other uses different rules at different stages.  This 

study found that using one good rule at all stages works best, which contradicts a 

previous study done by Barman (1998), but his study was on the three stage flowshop.  

Also, it should be noted that using different rules at different stages adds a great amount 

of computation time.   

2.4.4  Flexible Flowshop Bottleneck Heuristics 
 

A few researchers took a different approach to scheduling in the FFS by putting 

emphasis on the sequence at the bottleneck stage.  Adams et al. (1988) presented a 

shifting bottleneck heuristic (SBH) that is designed for the job shop scheduling problem, 

but can be applied to the flexible flowshop.  It works by scheduling jobs on the 

bottleneck machine and then re-sequencing the other stages.  Their algorithm can solve a 

ten job, ten machine problem in less than six minutes.  Cheng et al. (2001) used the 

shifting bottleneck heuristic for the FFS in order to minimize the maximum lateness.  The 

heuristic works in two phases, the first schedules m stages one by one successively in 

descending order of lower bounds, and the second phase re-optimizes each stage.  The 

results showed that optimal or near optimal solutions are found in short time periods.  
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Phadnis et al. (2003) presented a progressive bottleneck improvement (PBI) procedure to 

solve the FFS.  Only one job is sequenced at a time and it is sequenced at all stages.  The 

bottle neck stage is identified before each job is scheduled.  The heuristic is similar to 

Adams (1988) shifting bottleneck heuristic.  Phadnis’s heuristic is simple and produced 

good solutions.  Acero-Domingvez et al. (2004) developed a heuristic based on the theory 

of constraints by optimizing the bottleneck stage.  By optimizing the bottleneck stage the 

overall system is improved; if other areas are improved they will only achieve local 

improvement and the entire system may not benefit.  The heuristic requires three steps: 1) 

bottleneck identification, 2) scheduling of jobs at bottleneck stage, and 3) schedule non-

bottleneck stages.  The algorithm was compared with the Shifting Bottleneck Heuristic 

and performed comparably.  Lee et al. (2004) used a bottleneck focused algorithm in 

order to minimize total tardiness in a flexible flowshop.  The problem in question comes 

from the printed circuit board industry.  The assumptions made include unlimited buffers 

and that the machines never fail.  The algorithm first schedules the bottleneck stage and 

then schedules the other stages.   

2.4.5 Flexible Flowshop with Setup Times/Buffers 
 

Another special case of the flexible flowshop sequencing problem is that of 

having setup times, limited buffers, or both.  Kochhar and Morris (1987) presented 

heuristic methods to solve the flexible flowshop sequencing problem with limited buffers 

and setup times.  The problem was broken into two parts, entry point scheduling and 

dispatching.  The problem was further broken down into three parts; initial sequence, 

how to manage work in process, and if multiple jobs are available, which ones are 

 28



chosen.  The steepest descent neighborhood search technique was used with the 

perturbation schemes of pairwise and block exchange.  A realistic problem of 16 

machines was solved in 30 minutes while smaller problems took seconds.  Twelve cases 

were solved and the average performance was 0.5% from optimal, with the worst case 

performance about 2% from optimal.  Sawik (1987) developed three heuristics for the 

flexible flowshop with limited buffers.  Beside makespan, the objective function included 

minimization of work in process holding costs.  In two of the heuristics, schedules are 

period by period and fixed, while the third is capable of making adjustments to the 

schedule when a buffer becomes full or a shortage to a machine occurs.    Sawik (1995) 

also presented a single pass part-by-part heuristic for the flexible flowshop with no 

buffers.  The schedule is determined only once and run time is short. Khmelnitsky et al. 

(1997) developed a numerical method and two heuristics to solve the flexible flowshop 

with partial sequence dependent setup times.  Aghezzaf et al. (1998) presented a LP 

based heuristic for the FFS where setup times are product and machine dependent, the 

heuristic is based on the duality of linear programming.  This algorithm requires a large 

amount of computation time; at each iteration a trans-shipment problem must be solved.   

Liu et al. (2000) presented a Lagrangian relaxation based approach for the flexible 

flowshop with sequence dependent setup times.  The objectives were to meet due dates, 

reduce work in process, and reduce setup.  In testing 16 problems, the average difference 

between the proposed solution and the true optimum was 15%.  Wang et al. (2003A) 

looked at using a neural network system to solve the flexible flowshop problem.  The 

learning strategy borrows from simulated annealing and lagrangian relaxation.  The lower 
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bounds used for comparison were obtained from Santos (1995).  Neural networks did not 

provide good solutions in short times when compared to other heuristics.   

2.4.6 Flexible Flowshop Using Meta-heuristics  
 

This section discusses some of the meta-heuristics that have been applied to the 

flexible flowshop, with the main focus on simulated annealing.  Haouari et al. (1997) 

used two two-phased heuristics based on simulated annealing and tabu search to solve the 

two stage flexible flowshop with parallel machines at each stage.  To construct an initial 

solution, the most work remaining rule was used to create a priority list.  The objective 

was to minimize makespan.  Tabu search performed just a little better than simulated 

annealing.  Riane et al. (1999) presented a simulated annealing algorithm to solve the 

flexible flowshop problem where only permutation sequences are considered.  The paper 

emphasizes the importance of temperature reduction; spending too much time at a high 

temperature wastes time and decreasing the temperature too fast will limit the search to 

local optima.   Negenman (2001) tested a variable depth search method combined with 

three simulated annealing heuristics and three tabu search heuristics to solve the flexible 

flowshop.  The combination of variable depth search with tabu search performed the best.   

Loukil et al. (2005) used simulated annealing for multiple-objective scheduling for the 

one-machine, parallel machine, and permutation flowshop problems.  Their neighborhood 

search schemes consisted of random job exchange and job insertion.  A random choice of 

these two was made.   
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2.4.7 Flexible Flowshop with limited buffers Using  Meta-heuristics   
 

Shieh (2003) studied the flexible flowshop with limited buffers.  The objective 

was to minimize the makespan and maximize the machine free time.  An exact algorithm 

was developed using mixed integer programming, and was able to solve only very small 

problems.  It works in two phases; the first minimizes the makespan and the second 

maximizes the machine free time.  A construction algorithm was developed called 

(MGPAFFS).  Then a simulated annealing improvement heuristic was used to improve 

the construction algorithms solution.  Two sets of data were used; one with 30 jobs and 

the other with 60 jobs.  The results show that after the application of SA, the solutions for 

the small and larger sets were 1.6%-28.3% and 2.2%-32.7% respectively from the lower 

bounds.  Also SA improved the construction heuristics solution by 1.2%-4.9% and 0.9%-

8.9% for the small and large data sets respectively.   

2.4.9 Flexible Flowshop with Setup Times Using Meta-heuristics 
 

Low (2005) presented three simulated annealing algorithms for the multistage 

flowshop with unrelated parallel machines.  This problem has independent setup and 

dependent removal times.  A well designed solution generator was used to find the initial 

solution.  Sethanan (2001) looked at the problem of scheduling a flexible flowshop with 

sequence dependent setup times and uniform machines.  A mathematical model was 

developed to solve small problems and two heuristics were presented to solve larger 

problems.  The first heuristic is a construction heuristic called “flexible flowshop with 

sequence dependent setup times heuristic” (FFSDSTH).  The second heuristic is a tabu 

search and was used to further improve the solution obtained from the construction 
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heuristic.  Two lower bounds are calculated; one uses a forward system and the other a 

backward. The machine waiting time, idle time, and total setup and processing times on 

the last machine were used to calculate the lower bounds.  The results show that 

FFSDSTH is efficient at finding solutions and that TS improves the solution between 

2.95% and 11.85%.   

2.5 Simulated Annealing 
 

Metropolis et al. (1953) were the first to look at the properties of annealing in 

order to solve mathematical problems.  Simulated annealing is derived from an analogy 

between the physical annealing of solids and combinatorial optimization.  Physically, it 

refers to the heating of a substance to the melting point, then lowering the temperature 

slowly and spending a long time at temperatures close to the freezing point.  The ground 

state of the solid will have a certain structure and the cooling will not obtain a good 

structure if it is not done properly (Eglese, 1990).  Kirkpatirick et al. (1983) were the first 

to use simulated annealing to solve combinatorial problems.  They listed some of the 

positive aspects of simulated annealing such as: (1) significant improvements over 

random starting solutions are possible, (2) there are many near optimal solutions, so a 

stochastic search procedure such as SA should find some, (3) no one of the ground state 

solutions is any better than the others, so it is not worth it to search for the absolute 

optimal (Kirkpatirick et al., 1983).  One thing that makes simulated annealing and other 

metaheuristcs different from simple local search procedures is that the algorithm avoids 

being trapped in a local optimum by sometimes accepting a neighborhood move that 

increases the value of the solution (Eglese, 1990).  Many researchers have shown that 
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simulated annealing can find good solutions for scheduling permutation flowshop 

problems (e.g. Allahverdi et al., 2004, Haouari et al., 1997, Ishibuchi et al., 1995, 

Kouvelis et al., 1992, Loukil et al., 2005, Low, 2005, Low et al., 2004, Nearchou, 2004A, 

Negenman, 2001, Ogbu et al., 1990A/B, Osman et al., 1989, Parthasarathy et al., 1997, 

Riane et al., 1999, Shieh, 2003, Tian et al., 1999, and Zegordi et al., 1995).  Simulated 

Annealing will be used in this study in an effort to improve the initial solution obtained 

using two construction algorithms.   
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3  Problem Statement and Objectives of Research 

3.1 Problem Statement 
 
This research addresses the flexible flowshop with sequence dependent setup times, 

uniform machines, and limited buffers.  There are one or more machines at each stage, 

and more than two stages.  The machines at each stage have different processing speeds 

and the first machine is considered to be the fastest.  Each job has a base processing time 

that is the time to be processed on the fastest machine.  The processing times for the other 

jobs are found by dividing the base processing times by the machine speed.  There are 

unlimited buffers before the first stage and after the last stage.  For the stages in between, 

the buffers are assumed to have limited capacity.  If a buffer becomes full, it will block 

machines at the previous stage until space becomes available in the buffer.  The 

environment is deterministic; that is the number of jobs and all of their data are known in 

advance and fixed.  The number of stages and machines at each stage are known in 

advance and fixed.  Jobs are considered to be tasks and must be processed on machines, 

in each stage, in technological order.  Machines are considered to be resources that 

perform tasks.  The objective is to minimize the makespan, which is the completion time 

of the last job at the last stage.  The flexible flowshop with limited buffers is shown in 

Figure 3.1. 

The standard flowshop with more than two machines with the objective of 

minimizing makespan is considered to be NP-Hard in the strong sense (Pinedo 2002).  

This problem is considerably more complex because it adds uniform parallel machines at 

each stage, limited buffers, and sequence dependent setup times.  Some research has been 

done on the two stage flexible flowshops, but for greater than two stages the research is 
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scarce.  No research could be found in the literature that attempts to solve the flexible 

flowshop with sequence depended setup times, uniform machines, and limited buffers.   
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Figure 3.1 Flexible Flowshop with limited Buffers 

3.2 Problem Assumptions 
 
Because scheduling problems have a vast amount of variation, the following assumptions 

are made for the problem under consideration.   

1. The number of jobs to be scheduled and their processing times on each 

machine at each stage is known in advance and fixed.   

2. The number of stages and the machine configuration at each stage are known 

in advance and fixed.   

3. Preemption is not allowed. 

4. Once a job has started processing, it must be completely finished before it can 

move to the next stage.   

5. No job splitting is allowed, a job must be processed on one and only one 

machine at each stage. 

6. All jobs are ready to begin processing at time period 0.  
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7. Jobs may or may not be scheduled in the same order at each stage, i.e. job 

passing is allowed.   

8. Setup times are sequence dependent.  There is also a setup time associated 

with startup.   

9. Setup times are the same for all machines within each stage regardless of 

which machine the job is to be processed on.   

10. The setup times uniformly range from 20% to 40% of the job processing time. 

11. The machines at each stage are uniform.  The first machine is considered to be 

the fastest machine with a speed of 100%, the other machines have either the 

same or a slower speed than the first (e.g., 60%, 50%, or 40%).  The 

processing time is found by dividing the base processing time by the machine 

speed.    

12. There are unlimited buffers before the first stage and after the last stage, but 

between stages the buffers are limited.  The buffer is numbered the same as 

the stage that it feeds into. 

13. Machine blocking does occur, so when a job is finished processing, it cannot 

leave the machine unless there is room on a machine at the next stage or the 

buffer for the next stage has an open space.   

14. There are no due dates associated with the jobs and the objective is to 

minimize the makespan.   
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3.3 Objectives and Methodology of Research 
 

There are four main objectives to this research: 
 

1. To develop a mathematical model with the objective of minimizing the 

makespan for the flexible flowshop with sequence dependent setup times, 

uniform machines, and limited buffers. 

2. Since this problem is considered strongly NP-Hard, develop heuristics to 

solve this problem.  First two construction algorithms are developed to obtain 

solutions.     

3. After the construction algorithm is developed; use a simulated annealing 

heuristic to improve the solutions obtained from the construction algorithms.     

4. Since this problem is very complex even small problems may not be able to be 

solved optimally in reasonable time.  A lower bound will be developed and 

used to test the performance of the heuristic.     
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4 Mathematical Model  
 

Only small problems can be solved optimally, and even with small problems the 

computation time is great.  Even though only small problems can be solved by using the 

mathematical model, there are still benefits to developing and studying it.  Developing 

the mathematical model helps one better understand the problem complexity and 

structure.  The difficulties that will arise in choosing a heuristic will usually come to the 

surface after working through the mathematical model.  The model hence has two main 

benefits, better understanding of the problem and foreshadowing of issues with heuristic 

development. Variables used in the mathematical model are listed in Table 4.1.   

 
Table 4-1 Mathematical Model Nomenclature 

Variable  Notation Definition 
j,i Job index. 
J Total number of jobs. 
s Stage index. 
m Machine index. 
t Time period index. 

Ms Number of machines in stage s. 
Psjm Processing time of job j on machine m at stage s. 

SUPijs Setup time from job i to job j at stage s. 
Bs Buffer capacity at Stage s. 
M Large Number. 
T Makespan of arbitrary solution. 

Parameters 

S Total number of stages. 
Csjm Departure time of job j from machine m in stage s.   
Ksj Departure time of job j from stage s.  
Fsj The processing and blocking time of job j in stage s. 

Integer Decision 
Variables 

E Makespan 
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Variable  Notation Definition 

Xsjm  =1 if job j is processed on machine m in stage s,  
 = 0 otherwise. 

Wsijm  =1 if job j directly follows job i on machine m at stage s,  
 = 0 otherwise. 

D1sjt  = 1 if time period t precedes the starting time of job j at 
stage s, 
 =0 otherwise. 

D2sjt  = 1 if time period t is after the departure time of job j at 
stage s-1,  
 = 0 otherwise.   

Binary 
Decision 
Variables 

Dsjt  =1 if job j is in the buffer preceding stage s at time t, 
 =0 otherwise.   

 
 
Objective Function 
 
Minimize makespan, E. 
 
Constraints: 
 

There is a zero job that is used to define the setup time for the first job to be 

processed on each machine.  The zero job has no value for processing time, but the setup 

times from zero to other jobs vary.  

The first constraint ensure that the completion time of job j is greater than or 

equal to the processing and setup time for job j in the first stage.  The second constraint 

guarantees that if job j is processed on machine m in stage s, the completion time of job j 

is greater than or equal to the completion time of the preceding job plus the processing 

and setup time for job j.  Constraint two also assures that the jobs are not interrupted 

during processing.  The third constraint ensures that if job j is the first job processed on 

machine m in stage s then the completion time is greater than or equal to the processing 

and setup time for job j plus the completion time for job j in stage s-1.   
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sjm sj  ∗  sijmW  ijsSUP  ; C  ≥ mP  + sjmX * ∀  j,  i≠j, s=1, m=1..Ms (1) 

 - )  
 

sjm sim  + M * (1 - sijmW ≥ + sijm * ijsSUP ;C C sjmP  W ∀  s, j, i≠j, m= 1..Ms (2) 

 - (  1 -
 

sjm j)1−  ≥  sjmP  - M * (  sjmX ) + * ijsSUP ; C sK sijmW  ∀ s ≠1, j, i ≠j, m=1..Ms (3) 

≤ K

- X

 = 0; 

Constraint nine states that each job i may or may not be followed by another job j, but it 

can only be followed by at most one job.   

 - ≥ 0; , i, m=1..Ms   (9) 

 

 
The fourth and fifth constraints set the value for  as the time that job j leaves stage s.   sjK
 

sjm sj ; ∀ s, j, m=1..Ms (4) C   
 

sjmC  ≥ sj  - M * (1 jm ); ∀ s, j, m=1..Ms (5) K  s

 
Constraint six sets the makespan equal to the maximum finishing time of all jobs at the 

final stage. 
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Constraint seven ensures that each job is processed on one and only one machine in each 

stage.   
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Constraint eight ensures that every job j must follow another job i.     
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Constraint ten sets the processing and blocking time for job j in stage s.  It is the 

difference of the finishing time of job j and the preceding job i in stage s.   is used in 

calculating the contents of the buffers.     

sjF

 
 

sj  ≤ sj  - siK  + M * (1 ; F  K  -  sijmW ) ∀  s, j, i≠j, m= 1..Ms (10) 

1  a

 s at 

 

buffer.   

 -  - t – M *   + 1 ≤ 0; 

 
 
Constraints eleven, twelve, and thirteen are the buffer constraints.   is set to equal 1 

if time period t is before the start of processing job j in stage s.  sjt2  is set to equal 1 if 

job j has left stage (s-1).  Constraint fourteen sets sjtD  equal to 1 only when D nd 

sjtD2  are both equal to 1.  If sjtD  is equal to 1 then job j is in the buffer before stage

time t, because job j has left stage (s-1) but it has not started processing on stage s.  From

the time a job enters the system until it leaves it is being setup, processed, blocked, or in a 

sjtD1

D

sjt

 
 

sjF sjtD1 ∀  K sj s, j, t  (11) 

 0; 

 
 - 1; 

maximum limit on the number of jobs that will fit into the buffer Bs. 

 

≤ Bs s≠1, t  (14) 

 

 
 

 - M * ≤ ∀  s≠1, j, t  (12) t - jsK )1( − sjtD2  
 

 =  + ∀  s≠1, j, t (13) sjtD1 sjtD2Dsjt

 
Constraint fourteen sets the limits on the buffer’s capacity.  For each stage there is a 

∑
J

j
sjtD  ; ∀  
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Constraints fifteen and sixteen ensure that job 0 is processed first on every machine.  This 

is needed to calculate the setup times for the first job processed on each machine at each 

stage.   

 
ms0  = 1; ∀  s, m=1  X ..Ms (15) 

 = 0;  s, j, m=1..Ms (16) 

 

 
 

∑
<>

J

ji
msiW 0 ∀  
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5  Heuristics 
 

Minimizing the makespan in a flexible flowshop with sequence dependent setup 

times, uniform machines, and limited buffers is considered to be strongly NP-Hard; exact 

methods are only practical for extremely small problems.  To solve problems of this 

complexity, heuristic algorithms are needed.  Heuristics are algorithms designed to give a 

good solution to a problem in a reasonable amount of time.  The solution given by a 

heuristic may not be optimal, but it should be relatively close to optimal.  Heuristics 

sacrifice some solution quality, but make up for it by being superior in computation time.    

For example, to optimally solve a three stage problem with three machines in the first 

stage, one machine in the second stage,  one machine in the third stage, and 5 jobs took 

around one hour, but by using the heuristics given in this research, a five stage, thirty job 

problem can be solved in less than three minutes.   

Two construction heuristics are developed in this research.  The solutions from 

each construction heuristic are used in a simulated annealing meta-heuristic, that is 

designed for solution improvement.  The two construction heuristics, RBFFS and PBFFS, 

use the same solution representation, but the jobs are assigned to machines in different 

ways.  RBFFS is route based while PBFFS is job priority based.  The simulated annealing 

meta-heuristic uses the same solution representation as the construction heuristics, and 

the same job/machine assignments corresponding to the construction heuristics.  The 

solutions are represented by a priority permutation of the jobs to be scheduled in the 

system.  This representation limits the solution space to n! solutions, where n is the 

number of jobs.   For example if there are five jobs to be scheduled in the system, a 

solution could be represented as {2, 3, 1, 5, 4}.          
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  The construction heuristics are based on the NEH algorithm developed by 

Nawaz, Enscore, and Ham (1983).  The NEH algorithm was developed for the multistage 

flowshop environment. It gives higher priority to jobs with larger total processing times.  

A priority list is made by arranging the jobs in decreasing order of their total processing 

time on all machines.  Next, the two jobs with the highest priority are chosen and the 

makespans for job 1 followed by job 2 and for job 2 followed by job 1 are calculated.  

The sequence with the smallest makespan is chosen as the best sequence, either 1-2 or 2-

1, then the job with the third highest priority enters the system.  When job 3 enters the 

system, adjacent pairwise exchange is used to create three new partial sequences, and the 

makespan for each partial sequence is calculated.  The partial sequence with the smallest 

makespan is chosen as the best three job sequence.  This process continues until all jobs 

are scheduled.  This heuristic looks at only {[n (n+1) / 2] - 1} permutation solutions as 

opposed to all n! solutions that exist, where n equals the number of jobs.   Many 

researchers reference this algorithm as one of the best for constructing a solution for the 

flowshop scheduling problem.  A modified version of the NEH algorithm is used in this 

research to construct a solution for the flexible flowshop with sequence dependent setup 

times, uniform machines, and limited buffers. 

5.1 RBFFS Construction Heuristic 
 

  The RBFFS construction heuristic uses a priority routing system that assigns jobs 

specific routes through the system.  A route is a path that the job will travel through the 

system.  A job’s route dictates the machine it will visit at each stage, and the job that it 

will follow on that machine.  The routes are designed so that the machines in each stage 
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will operate for, as much as possible, the same amount of time.  For the purpose of 

assigning the routes, all jobs are assumed to have the average base processing time.  A 

ratio is then used with the machine speeds to decide on how many jobs will visit each 

machine.  For example, if there are two machines at a stage, the first having a speed of 

1.00 and the second a speed of 0.50, the ratio would equal: [(1.00 / 0.50) = 2].  By using 

this ratio, 2 jobs would be processed on machine one for every 1 job processed on 

machine two.  In this heuristic, the order in which jobs will be processed on each machine 

is predetermined; it is based on the routing system, the machine configuration, and the 

job priority.  Each job is given a route and follows that route through the system.  In this 

heuristic, a machine may be idle sometimes while it is waiting for a specific job, even 

though other jobs may be ready for processing.  In some cases, inserted idle time can be 

beneficial to the system.         

The steps for the RBFFS construction algorithm are as follows: 

1. Sum the processing times on the fastest machine at each stage for each job.   

2. Arrange the jobs in descending order of the sums of their processing times.  The 

jobs with the greatest sum of processing times are given the highest scheduling 

priority. 

3. Determine the routes that will be used by the jobs in order to navigate through the 

system; details of route assignments are shown in the following example.  The 

makespan is calculated by using the job processing times and the routes 

associated with each job.  When the jobs are placed on different routes the 

makespan may increase or decrease.   
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4. Take the two jobs with the highest priority and schedule them, using pairwise 

adjacent exchange.  Calculate the makespan for each configuration and set the 

best RBFFS sequence as the sequence with the smallest makespan.   

5. Choose the job with the next highest priority and enter it at the end of the best 

RBFFS sequence.  Use pairwise adjacent exchange and calculate the makespan 

for each partial sequence.  Set the best RBFFS sequence as the partial sequence 

with the smallest makespan.   

6. If all jobs have been scheduled go to step 7, else go to step 5. 

7. Set the best n job sequence as the RBFFS sequence and the best makespan as the 

RBFFS makespan. STOP. 

5.2 RBFFS Construction Heuristic Example 
 

An example illustrating the construction heuristic is given in this section.  It is an 

instance with 4 jobs that need to be scheduled in a 3 stage environment with 3 machines 

at the first stage, 1 machine at the second stage, and 2 machines at the third.  The buffers 

are limited to three jobs.  The first machine at any stage is the fastest and considered to 

have a speed of 1.00, any other machine has a speed of 0.50.  This means that the fastest 

machine is twice as fast as the other machines.  The processing and setup times are given 

below. 

Table 5-1 Construction Heuristic Ex. Process Times Stage 1 

Processing Times Stage 1 
  Job 1 Job 2 Job 3 Job 4
Machine 1 4 14 16 10 
Machine 2 8 28 32 20 
Machine 3 8 28 32 20 
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Table 5-2 Construction Heuristic Ex. Setup Times Stage 1 

 
 Setup Times Stage 1 

  To 1 To 2 To 3 To 4 
From 0 1 4 5 3 
From 1 0 3 3 4 
From 2 1 0 6 3 
From 3 1 3 0 3 
From 4 1 3 3 0 

 
 

 
 

 

 

Table 5-3 Construction Heuristic Ex. Process Times Stage 2 

 Processing Times Stage 2 
  Job 1 Job 2 Job 3 Job 4
Machine 1 4 8 10 7 

 
 
 

Table 5-4 Construction Heuristic Ex. Setup Times Stage 2 

 
   Setup Times Stage 2 

  To 1 To 2 To 3 To 4 
From 0 2 2 3 3 
From 1 0 3 4 2 
From 2 2 0 4 2 
From 3 1 2 0 2 
From 4 1 2 2 0 

 

 

 

 

 

 
Table 5-5 Construction Heuristic Ex. Process Times Stage 3 

 
Processing Times Stage 3 

  Job 1 Job 2 Job 3 Job 4
Machine 1 6 9 14 9 
Machine 2 12 18 28 18 
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Table 5-6 Construction Heuristic Ex. Setup Times Stage 3 

 
Setup Times Stage 3 

  To 1 To 2 To 3 To 4 
From 0 2 2 4 2 
From 1 0 4 3 4 
From 2 1 0 4 2 
From 3 1 2 0 2 
From 4 1 2 3 0 

 
 
 
 
 
 
 
 
Step one, two, and three: sum the processing times on the fastest machine at each stage 

for each individual job.  Then set the RBFFS priority list by placing the jobs in 

descending order of processing time sums.   

Table 5-7 Step 1 of RBFFS Example. 

 Step 1: Sum processing time for each job on the 
fastest machine. 

  Stage 1 Stage 2 Stage 3 Σ pt 
Job 1 4 4 6 14 
Job 2 14 8 9 31 
Job 3 16 10 14 40 
Job 4 10 7 9 26 

 

 

 
 
 
 

Table 5-8 Step 2 of RBFFS Example. 

 
RBFFS Priority List  
First  Job 3 

Second Job 2 
Third Job 4 
Fourth Job 1 

 
 
 
 
 
 

The proposed heuristic uses a priority routing system, Table 5.9 shows the priority 

routing for the example problem.  By using the ratios in stage one, 2 jobs will be 

processed on machine one, for each job processed on machine two and three.  Since there 

is only one machine at the second stage all of the jobs will be processed on it.  At the 

third stage, 2 jobs will be processed on machine one for each job processed on machine 

two.       
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Table 5-9 Priority Routing for RBFFS Example. 

 
  Stage 1 Stage 2 Stage3 
Priority Route* 1 1-0 1-0 1-0 
Priority Route* 2 1-1 1-1 2-0 
Priority Route* 3 2-0 1-2 1-1 
Priority Route* 4 3-0 1-3 1-3 
Key: The first digit is the machine that processes the job; the second 
digit is index of the job that it follows.  
* It should be noted that the priority routing system for each 
machine configuration is unique, but they do have the common goal 
of machine utilization.  The priority routing system is specifically 
designed for each problem instance. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Step four and five: start with the first two jobs on the RBFFS priority list, use pairwise 

adjacent exchange, calculate the makespans and choose the best.  The first two jobs on 

the RBFFS priority list are job 3 and job 2, so the makespans for the combinations {3, 2} 

and {2, 3} will be calculated.    Table 5.10 and 5.11 show the Gantt Charts for partial 

sequences {3, 2} and {2, 3} respectfully.   
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Table 5-10 RBFFS Makespan for Sequence {3, 2} 

    20 21 22 23 24 25 33 34 35 36 37 38 39 47 48 49 50 52 53 67 68
mc 1                                           
mc 2                                           Stage 1 
mc 3                                           

Stage 2 mc 1                                           
mc 1                                           Stage 3 
mc 2                                           

    20 21 22 23 24 25 33 34 35 36 37 38 39 47 48 49 50 52 53 67 68
Key                        
Job 1                        
Job 2                        
Job 3                        
Job 4                        

 
Table 5-11 RBFFS Makespan for Sequence {2, 3} 

                      15 16 17 18 19 20 27 28 29 30 38 39 40 41 42 54 55 84 85 86 
mc 1                                         
mc 2                                         Stage 1 
mc 3                                        

Stage 2 mc 1                                         
mc 1                                         Stage 3 
mc 2                                         

                      15 16 17 18 19 20 27 28 29 30 38 39 40 41 42 54 55 84 85 86 
 

 50



Since this is such a small example the limited buffers do not cause any machine blockage.  The partial solution {3, 2} is chosen with a 

makespan of 68.  The next job to inter is job 4, so the partial solutions that will be considered are: {3, 2, 4}, {3, 4, 2}, and {4, 3, 2}.   

Tables 5.12, 5.13, and 5.14, show the Gantt charts representing partial sequences {3, 2, 4}, {3, 4, 2}, and {4, 3, 2} respectfully.   

Table 5-12 RBFFS Makespan for Sequence {3, 2, 4} 

         20 21 22 23 24 33 34 35 36 37 38 39 40 47 48 49 50 51 52 53 56 57 58 67 68
mc 1                                                   
mc 2                                                   Stage 1 
mc 3                                                   

Stage 2 mc 1                                                   
mc 1                                                   Stage 3 
mc 2                                                   

         20 21 22 23 24 33 34 35 36 37 38 39 40 47 48 49 50 51 52 53 56 57 58 67 68
Key                            
Job 1                            
Job 2                            
Job 3                            
Job 4                            

 
Table 5-13 RBFFS Makespan for Sequence {3, 4, 2} 

    20 21 22 23 31 32 33 34 35 36 42 43 44 45 52 53 54 55 62 63 64
mc 1                                           
mc 2                                           Stage 1 
mc 3                                           

Stage 2 mc 1                                           
mc 1                                           Stage 3 
mc 2                                           

    20 21 22 23 31 32 33 34 35 36 42 43 44 45 52 53 54 55 62 63 64
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Table 5-14 RBFFS Makespan for Sequence {4, 3, 2} 

    12 13 14 15 22 23 24 25 31 32 33 34 35 43 44 45 46 53 54 55 64 65 66 67 76
mc 1                                                   
mc 2                                                   Stage 1 
mc 3                                                   

Stage 2 mc 1                                                   
mc 1                                                   Stage 3 
mc 2                                                   

    12 13 14 15 22 23 24 25 31 32 33 34 35 43 44 45 46 53 54 55 64 65 66 67 76
Key                            
Job 1                            
Job 2                            
Job 3                            
Job 4                            

 
The partial solution {3, 4, 2} is chosen with a makespan of 64.  The next job to inter is job 1, so the partial solutions that will be 

considered are: {3, 4, 2, 1}, {3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2}.   Tables 5.15, 5.16, 5.17, and 5.18 show the Gantt charts 

representing partial sequences {3, 4, 2, 1}, {3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2} respectfully. 

Table 5-15 RBFFS Makespan for Sequence {3, 4, 2, 1} 

    8  9 10 20 21 22 23 31 32 33 34 35 42 43 44 45 51 52 53 54 58 59 60 64 65 71
                                              mc 1       

mc 2                                                     Stage 1 
mc 3                                                     

Stage 2 mc 1                                                     
mc 1                                                     Stage 3 
mc 2                                                     

    8  9 10 20 21 22 23 31 32 33 34 35 42 43 44 45 51 52 53 54 58 59 60 64 65 71
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Table 5-16 RBFFS Makespan for Sequence {3, 4, 1, 2} 

    8   9 10 21 22 32 33 34 35 43 44 47 48 49 51 52 53 58 59 60 63 71 72
mc 1                                               
mc 2                                               Stage 1 
mc 3                                               

Stage 2 mc 1                                               
mc 1                                               Stage 3 
mc 2                                               

    8   9 10 21 22 32 33 34 35 43 44 47 48 49 51 52 53 58 59 60 63 71 72
Key                          
Job 1                          
Job 2                          
Job 3                          
Job 4                          

 

Table 5-17 RBFFS Makespan for Sequence {3, 1, 4, 2} 

    20 21 22 23 24 26 27 32 33 34 38 39 40 48 49 52 53 57 58 59 63 73 74
mc 1                                               
mc 2                                               Stage 1 
mc 3                                               

Stage 2 mc 1                                               
mc 1                                               Stage 3 
mc 2                                               

    20 21 22 23 24 26 27 32 33 34 38 39 40 48 49 52 53 57 58 59 63 73 74
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Table 5-18 RBFFS Makespan for Sequence {1, 3, 4, 2} 

    4  5 11 12 18 19 20 24 25 31 32 33 38 39 47 48 56 57 58 59 60 61 70 71
mc 1                                                 
mc 2                                                 Stage 1 
mc 3                                                 

Stage 2 mc 1                                                 
mc 1                                                 Stage 3 
mc 2                                                 

    4  5 11 12 18 19 20 24 25 31 32 33 38 39 47 48 56 57 58 59 60 61 70 71
 

The final RBFFS solution is chosen as {3, 4, 2, 1} or {1, 3, 4, 2}, since there is a tie, either solution can be chosen.  Arbitrarily 

solution {3, 4, 2, 1} is chosen, so job 3 is given priority route* 1 and job 4 is given priority route* 2, etc.  The final makespan, or 

objective function is represented simply as 71.       

Step 7: the RBFFS sequence is {3, 4, 2, 1} and the corresponding makespan is 71 units.   STOP 

 The final RBFFS sequence is then used as the starting solution in a simulated annealing algorithm. 
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5.3 RBFFS Simulated Annealing Heuristic 
 

Simulated annealing is a technique used to find good solutions to combinatorial 

problems; the solutions may or may not be optimal.  It originated from the physical 

annealing of solids, and the connection between annealing and mathematical problems 

was first made by Metropolis et al. (1953).  Later, Kirkpatirick et al. (1983) used it to 

solve combinatorial optimization problems, and it has shown good results.  It looks at 

random variations of the current solution.  Sometimes a non-improving solution is 

accepted as the new solution with a probability that decreases as the algorithm 

progresses.   By sometimes accepting a non-improving solution, the simulated annealing 

algorithm avoids being trapped in local optima and can search different areas in the 

solution space for the global optima.  Many researchers have had good results in using 

simulated annealing to solve flowshop scheduling problems. 

The simulated annealing algorithm takes the final sequence from the RBFFS 

construction algorithm and searches for improved solutions by rearranging the sequence.  

This SA algorithm uses the same solution representation as the RBFFS heuristic, so the 

solution space is also limited to n! solutions while in reality there may be many more 

possible solutions.  The solutions are listed as permutations of jobs, and use the priority 

route* based scheduling as in the RBFFS construction heuristic.  The nomenclature used 

in the simulated annealing heuristic is given in Table 5.19.  
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Table 5-19 Simulated Annealing Nomenclature 

Variable  Definition 
n Total number of jobs. 
m Total number of stages. 
T Temperature  
N Number of iterations at the current temperature. 

minT Final temperature value. 
maxN Max number of iterations at each temperature setting. 

RBFFSms Makespan obtained from the construction heuristic. 
RBFFSseq Sequence of jobs obtained from the construction heuristic.   

bestms Lowest makespan 
bestseq Sequence of jobs corresponding to the lowest makespan. 

curbestms Current best makespan. 
curbestseq Sequence of jobs corresponding to the current best makespan 

Y Random integer value between 1 and n, including 1 and n. 
Z Random integer value between 1 and n, including 1 and n. 
R Random value between 0 and 1. 

SAms Simulated Annealing makespan. 
SAseq Simulated Annealing sequence. 
∆TC Value of (currbestms – SAms) 
α Temperature reduction factor. 

 

The solution is represented in the SA heuristic the same way as in the construction 

heuristic, as a sequence of jobs such as {3, 4, 2, 1} where the first job is given priority 

route* 1, in this case job 3.  The performance of each solution is based on its makespan, 

which is the completion time of the last job completed at stage m.   

The steps for the SA algorithm are as follows.   

1. Set the heuristic parameters minT, maxN, α, T, and N.  The final temperature value 

minT dictates the length of the SA heuristic, i.e. the heuristic will run until T 

reaches minT.   The maximum number of iterations at each temperature setting 

maxN, is one of the factors in determining how fast the temperature reduces.  It 

regulates how many iterations are ran at a given probability of accepting a non-

improving solution.   The temperature reduction factor α, ranges between 0 and 1, 
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and is the other factor in determining how fast the temperature is reduced.  The 

initial temperature T is a factor in the acceptance of a non-improving solution.  

The higher the temperature, the greater the probability of accepting a non-

improving solution, which allows the heuristic to search different areas of the 

solution space.  The initial value of N, the number of iterations at each 

temperature setting is set equal to 0. 

2. Set  bestms = RBFFSms, and bestseq = RBFFSseq.  In this step the best solution 

and sequence are set to the solution and sequence obtained from the RBFFS 

construction algorithm.  Also the current makespan and sequence are set equal to 

the construction heuristic’s makespan and sequence, curbestms = RBFFSms and 

curbestseq = RBFFSseq.      

3. Generate random values for Y and Z.  The jobs in these two places are the jobs 

chosen for pairwise interchange; e.g. if Y = 10 and Z = 6, then the job assigned to 

priority route* 10 will be assigned to priority route* 6 and the job originally 

assigned priority route* 6 will now be assigned to priority route* 10.  Y and Z 

represent locations in the priority list, and not actual job numbers.  

4. If Y is equal to Z then go back to step 3; else go to step 5 

5. Calculate the makespan after the exchange and set it equal to SAms also set the 

new sequence as SAseq.     

6. Calculate ∆TC (curbestms – SAms).  In this step, the difference between the 

current best makespan and the simulated annealing makespan is calculated.   

7. If ∆TC > 0.001 then set curbestms = SAms and curbestseq = SAseq.  Step 7 checks 

the difference between the curbest makespan and the simulated annealing 

 57



makespan, if it is greater than 0.001 then it means that the SA solution is better 

than the curbest.  If this is the case then the curbest values are reset as the SA 

values.   Also if      ∆TC > 0.001 then the simulated annealing solution is 

compared to the overall best solution found so far.  If SAms < bestms then set 

bestms = SAms and bestseq = SAseq.      

8. If ∆TC < 0.001 and e∆TC/T > R, then set curbestms = SAms and curbestseq = 

SAseq.  If the SA solution is non-improving, step 8 checks to see if it will be 

accepted anyway.  R is a random value between 0.00 and 1.00.  As the increase in 

the makespan gets smaller, the non-improving solution has a higher chance of 

being accepted.  Also as T gets smaller the probability of accepting a non-

improving solution decreases.   

9. Set N = N +1.     

10. If N = maxN then T = α * T and N = 0.  This step checks how many iterations have 

taken place at the current temperature.  If the maximum number of iterations at 

this temperature has been reached, maxN, then the value of T is reset to the 

current temperature multiplied by the temperature reduction factor.  After the new 

temperature is calculated it is compared with the minimum temperature, if T< = 

minT, the heuristic terminates, else go back to step 3.       

 

The process flow chart for the simulated annealing heuristic is shown in Figure 5.1. 

 



 
 
 

Step 1. Input values for minT, maxN, α, T, N.  
 
 
 

Step 2. Set bestms = RBFFSms, bestseq = RBFFSseq, . 
curbestms = RBFFSms, and curbestseq = RBFFSseq. 

 
 
 
 

Step 3. Generate two random values between 1 and n for Y 
and Z. 
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Y = Z 

Step 5.  Exchange the jobs in priority position Y and Z.  
Calculate the makespan and set it equal to SAms. 

Also set the SAseq = to the new sequence after the 
exchange. 

Section 
Break 1 

 
Figure 5.1 Simulated Annealing Process Flow Diagram 
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Figure 5.1 cont: Simulated Annealing Process Flow Diagram 
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Break 2 

Step 9. N = N+1 
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Figure 5.1 cont: Simulated Annealing Process Flow Diagram 
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5.4  Route Based Simulated Annealing  Example 
 

A simple illustration of the simulated annealing heuristic is now given.  The 

illustration will use the same data as the RBFFS construction heuristic.  The starting 

solution for the simulated annealing heuristic is the final solution of the RBFFS 

construction heuristic, so the starting solution for SA is {3, 4, 2, 1}.   

Step 1:  minT = 80, maxN = 1,  α = 0.80, T = 100, N = 0 

Step 2:  bestms = 71, bestseq = {3, 4, 2, 1}, curbestms = 71, curbestseq = {3, 4, 2, 1} 

Step 3: Y = 2, Z = 4. 

Step 4: Y ≠ Z 

Step 5: SAseq = {3, 1, 2, 4}, SAms = 74 

Step 6: ∆TC = (curbestms – SAms) = (71 – 74) = -3 

Step 7:  ∆TC is not greater than 0.001. 

Step 8: e∆TC/T =  e -3 / 100 = 0.97, R = 0.25, Also ∆TC < 0.001, so the non-improving 

solution  

  is accepted.  curbestms = 74, curbestseq = {3, 1, 2, 4}. 

Step 9: N = 0 + 1 = 1. 

Step 10: N = maxN, so T = 100 * 0.80 = 80.  Since T <= minT the heuristic is stopped. 

5.5 PBFFS Construction Heuristic 
 
 The PBFFS construction heuristic is a job priority based heuristic.  Each job is 

given a priority index, and when a machine becomes open the available job with the 

lowest index is assigned to that machine.  The priority given to each job is the same for 

all stages; it is an entire system priority.  The solution is represented as a list of jobs with 
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the first job listed as having a priority of 1.  For example a four job problem may have the 

solution {3, 4, 1, 2}, where job 3 has the highest priority, job 4 has the next highest, job 1 

the next, and job 2 has the lowest priority.  As with the other heuristic, this solution 

technique limits the solution space to n! solutions, where n is the number of jobs.  The 

PBFFS heuristic has the same procedure as RBFFS except, the job assignments are not 

route based.  In the PBFFS, jobs are scheduled based on two criteria, their priority index, 

and their availability for processing. The job order for each machine in this case is not 

known in advance; it depends on the job’s priority and processing times.      

The steps for the PBFFS heuristic are as follows: 

1. Sum the processing times on the fastest machine at each stage for each 

job.   

2. Arrange the jobs in descending order of the sums of their processing 

times.  The jobs with the greatest sum of processing times are given the 

highest scheduling priority.  Assign each job a priority, a number from 1 

to n, where 1 is the highest priority. 

3. Set all machine open times equal to 0.  All jobs are initially ready for 

processing at stage 1, but will not become available for stage 2 until after 

they are finished processing at stage 1.  This holds true for all stages 3, 4, 

etc.    

4. Take the two jobs with the highest priority and schedule them, using 

pairwise adjacent exchange.  Start scheduling jobs at stage one starting 

with the first machine; assign the available job with the highest priority.  

As jobs are scheduled and processed, the machine open time is calculated 
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as (the previous job completion time + job setup time + job processing 

time + any blocking time that may occur).  Jobs are scheduled on the 

machine with the lowest open time, until all jobs have been processed 

through the system.  If there is a tie on machine open time, the job will be 

processed on the machine with the smallest machine index, ex. mc 1, mc 

2, or mc 3.   Calculate the makespan for each configuration and set the 

best PBFFS sequence as the sequence with the smallest makespan.   

5. Choose the job with the next highest priority and enter it at the end of the 

best PBFFS sequence.  Use pairwise adjacent exchange and calculated the 

makespan for each partial sequence.  Set the best PBFFS sequence as the 

partial sequence with the smallest makespan.   

6. If all jobs have been scheduled, go to step 7.  Else go to step 5. 

7. Set the best n job sequence as the PBFFS sequence and the best makespan 

as the PBFFS makespan. STOP. 

5.6 PBFFS Construction Heuristic Example 
An illustration of the PBFFS construction heuristic is shown using the same job 

data that were used in the RBFFS example.  The steps for PBFFS are the same as RBFFS 

except the jobs are scheduled in a different way.  Since the example is small the limited 

buffers do not block any machines.     

Step one two, and three: sum the processing times on the fastest machine at each 

stage, for each individual job.  Then set the PBFFS priority list by place the jobs in 

descending order and assigning a priority index to each job.   
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Table 5-20 Step 1 of PBFFS Example. 

 Step 1: Sum processing time for each job on the 
fastest machine. 

  Stage 1 Stage 2 Stage 3 Σ pt 
Job 1 4 4 6 14 
Job 2 14 8 9 31 
Job 3 16 10 14 40 
Job 4 10 7 9 26 

 

 

 
 
 
 

 
 

Table 5-21 Step 2 and 3 of PBFFS Example. 

 PBFFS Priority List  
First  Job 3 

Second Job 2 
Third Job 4 
Fourth Job 1 

 
 
 
 
 

 
 
 

Step four and five: start with the first two jobs on the PBFFS priority list, use 

pairwise adjacent exchange, calculate the makespans and choose the best.  The first two 

jobs on the PBFFS priority list are job 3 and job 2, so the makespans for the combinations 

{3, 2} and {2, 3} will be calculated.  Table 5.22 and 5.23 show the Gantt Charts for 

partial priority lists {3, 2} and {2, 3} respectfully.
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Table 5-22 PBFFS Makespan for Priority {3, 2} 

    19 20 21 22 23 31 32 33 34 35 43 44 45 46 51 52 53 63 64
mc 1                                       
mc 2                                       Stage 1 
mc 3                                       

Stage 2 mc 1                                       
mc 1                                       Stage 3 
mc 2                                       

    19 20 21 22 23 31 32 33 34 35 43 44 45 46 51 52 53 63 64
Key                      
Job 1                      
Job 2                      
Job 3                      
Job 4                      

 
Table 5-23 PBFFS Makespan for Priority {2, 3} 

    17 18 19 20 27 28 29 36 37 38 39 40 50 51 52 82 83
mc 1                                   
mc 2                                   Stage 1 
mc 3                                   

Stage 2 mc 1                                   
mc 1                                   Stage 3 
mc 2                                   

    17 18 19 20 27 28 29 36 37 38 39 40 50 51 52 82 83
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The partial solution {3, 2} is chosen with a makespan of 64.  The next job to inter is job 4, so the partial solutions that will be 

considered are: {3, 2, 4}, {3, 4, 2}, and {4, 3, 2}.   Tables 5.24, 5.25, and 5.26, show the Gantt charts representing partial sequences 

{3, 2, 4}, {3, 4, 2}, and {4, 3, 2} respectfully. 

Table 5-24 PBFFS Makespan for Priority {3, 2, 4} 

    20 21 22 23 24 32 33 34 35 43 44 45 51 52 53 54 64
mc 1                                   
mc 2                                   Stage 1 
mc 3                                   

Stage 2 mc 1                                   
mc 1                                   Stage 3 
mc 2                                   

    20 21 22 23 24 32 33 34 35 43 44 45 51 52 53 54 64
 

Table 5-25 PBFFS Makespan for Priority {3, 4, 2} 

     20 21 22 23 24 31 32 33 34 35 42 43 44 51 52 53 54 62 63 64
mc 1                                         
mc 2                                         Stage 1 
mc 3                                         

Stage 2 mc 1                                         
mc 1                                         Stage 3 
mc 2                                         

     20 21 22 23 24 31 32 33 34 35 42 43 44 51 52 53 54 62 63 64
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Table 5-26 PBFFS Makespan for Priority {4, 3, 2} 

     12 13 14 23 24 32 33 34 35 37 38 42 43 44 56 57 61 62 63 73
mc 1                                         
mc 2                                         Stage 1 
mc 3                                         

Stage 2 mc 1                                         
mc 1                                         Stage 3 
mc 2                                         

     12 13 14 23 24 32 33 34 35 37 38 42 43 44 56 57 61 62 63 73
 

The partial solution {3, 2, 4} and {3, 4, 2} each have a makespan of 64, so either partial sequence can be used.  Arbitrarily the partial 

sequence {3, 4, 2}, is chosen.  The next job to enter is job 1, so the partial solutions that will be considered are: {3, 4, 2, 1}, {3, 4, 1, 

2}, {3, 1, 4, 2}, and {1, 3, 4, 2}.   Tables 5.27, 5.28, 5.29, and 5.30 show the Gantt charts representing partial sequences {3, 4, 2, 1}, 

{3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2} respectfully. 
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Table 5-27 PBFFS Makespan for Priority {3, 4, 2, 1} 

      21 22 23 24 26 27 32 33 34 35 43 44 51 52 53 54 59 60 63 64 65 76
mc 1                                             
mc 2                                             Stage 1 
mc 3                                             

Stage 2 mc 1                                             
mc 1                                             Stage 3 
mc 2                                             

      21 22 23 24 26 27 32 33 34 35 43 44 51 52 53 54 59 60 63 64 65 76

Table 5-28 PBFFS Makespan for Priority {3, 4, 1, 2} 

    8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 55 56 57 66 67
mc 1                                             
mc 2                                             Stage 1 
mc 3                                             

Stage 2 mc 1                                             
mc 1                                             Stage 3 
mc 2                                             

    8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 55 56 57 66 67

Table 5-29 PBFFS Makespan for Priority {3, 1, 4, 2} 

    8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 56 57 65 66 67
mc 1                                             
mc 2                                             Stage 1 
mc 3                                             

Stage 2 mc 1                                             
mc 1                                             Stage 3 
mc 2                                             

    8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 56 57 65 66 67
 

 



Table 5-30 PBFFS Makespan for Priority {1, 3, 4, 2} 

       4 5 6 11 12 19 22 23 24 31 32 33 36 37 42 43 52 53 54 55 56 57 73 74
mc 1                                                 
mc 2                                                 Stage 1 
mc 3                                                 

Stage 2 mc 1                                                 
mc 1                                                 Stage 3 
mc 2                                                 

       4 5 6 11 12 19 22 23 24 31 32 33 36 37 42 43 52 53 54 55 56 57 73 74
Key                           
Job 1                           
Job 2                           

        Job 3                   
Job 4                           

 

The final PBFFS solution is chosen as {3, 4, 1, 2} or {3, 1, 4, 2}, since there is a tie, either solution can be chosen.  Arbitrarily 

solution {3, 4, 1, 2}is selected.  The final makespan, or objective function is represented simply as 67.       

Step 7: the PBFFS sequence is {3, 4, 1, 2} and the corresponding makespan is 67 units.   STOP 

 The final PBFFS sequence is then used as the starting solution in a simulated annealing algorithm.  The simulated annealing 

algorithm is the same as the one used in conjunction with the RBFFS construction heuristic, and it adjusts the sequence in the same 

way; the only difference in the development of the schedules is when the makespans are calculated.  The makespans are calculated 

using the method from the PBFFS construction heuristic.  
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6  Lower Bound  
 

The flexible flowshop with sequence dependent setup times, uniform machines, 

and limited buffers is a very complex problem, where only extremely small problems can 

be solved optimally.  If the optimal solution cannot be found, other means for measuring 

the performance of the heuristics need to be employed.  Three prominent ways of testing 

are using upper/lower bounds and comparing with other heuristics.  In this research, 

lower bounds and comparison with other heuristics will be used.  This section details how 

the lower bound is developed.  The lower bound solution may be infeasible, but it gives a 

point of reference in testing the heuristic solutions.  Due to the complexity of the 

problem, the lower bound presented is not very strong, and is not expected to be very 

close to the value of the optimal solution, but the complexity of the problem makes it 

very difficult to obtain a stronger lower bound.    The lower bound presented was 

compared with LP relaxation for two randomly chosen medium sized problems, 4 stages 

and 30 jobs.  The presented LB was 39.7% and 31.3% higher than the objective function 

of the LP relaxation solution.   

Variable key for Lower Bound: 
Table 6-1Lower Bound Nomenclature 

Variable Description 
s Stage index. 
Ms The number of machines at each stage s. 
BPTs Sum of base processing times for stage s. 
PPs Processing power of stage s. 
Bs BPTs divided by PPs for each stage s. 
SSETs Sum of the smallest setup times for all jobs at each stage s. 
Ds SSETs divided by Ms for each stage s. 
Gs The sum of Bs and Ds for each stage s, rounded up to the next 

integer. 
Es The largest sum (for any job) of the job basic processing time and 

its smallest setup time for each stage s. 
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Variable Description 

Ks The maximum between Gs and Es for each stage s. 
F The fastest time any job can reach the bottleneck stage, 

including the setup times, from 0.   
Fn The nth fastest time a job can reach the bottleneck stage. 
Ls The fastest estimated completion times for two jobs in each 

stage s leading up to the bottleneck stage.  It is found by using 
the 2 jobs with the minimum base processing times and set up 
times at each stage.  The jobs chosen at each of the stages are 
independent.  The value for Ls is found by taking the 
maximum value between (sum processing times / machine 
processing power using the fastest 2 machines) + (smallest 
setup times / number of machines at stage s (with a maximum 
of 2 machines at stage s)) , and  (largest base processing time 
+ smallest setup time for job with largest base processing 
time)}                                                     

H The sum of Ls, for all stages leading up to the bottleneck 
stage.  ex. For stage 3 as the bottleneck, H = L1 + L2

SH The earliest possible time processing can start on the second 
machine in the bottleneck stage.  SH = max[H, F2], where F2 
is the second smallest sum calculated in the determination of 
F. 

I SH minus F. 
Os Similar to Ls except that is uses the 3 smallest jobs at each 

stage. 
J The sum of Os, for all stages leading up to the bottleneck 

stage.  ex. For stage 3 as the bottleneck, J = O1+ O2
SJ The earliest possible time processing can start on the third 

machine in the bottleneck stage.  SJ = max[J,F3], where F3 is 
the third smallest sum calculated in the determination of F. 

Q SJ minus F. 
S2LB Lower bound after step 2. 
BPTBN Sum of the Base processing times at the bottleneck stage. 
PM2 Processing power of machine 2 at the bottleneck stage. 
PM3 Processing power of machine 3 at the bottleneck stage. 
PBS Processing power of all machines at the bottleneck stage. 
P The smallest possible value for any job to finish processing 

after the bottleneck stage including setup.  
LB Lower Bound 
 
 

An example of the lower bound will be worked out with its presentation.  The 

data used in the example are listed in Tables 6.2 – 6.6.   For the example problem a four 
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stage flexible flowshop with three machines in each of the stages is considered.  There 

are four jobs to be processed, and for simplicity, all of the setup times in this illustration 

are considered to be equal to 1.  Also in the example, the first machine at each stage has a 

speed of 100% and all other machines have a speed of 50%.   

Table 6-2 Lower Bound Example Stage 1 Processing Times 

Stage 1 Processing Times 
 Job 1 Job 2 Job 3 Job 4 ∑ pt 
Machine 1 4 5 3 8 20 
Machine 2 8 10 6 16 40 
Machine 3 8 10 6 16 40 

Table 6-3 Lower Bound Example Setup Times 

All Stages  Setup Times 
 To  Job 1  Job 2  Job 3  Job 4 

From Job 0 1 1 1 1 
 Job 1 X 1 1 1 
 Job 2 1 X 1 1 
 Job 3 1 1 X 1 
 Job 4 1 1 1 X 

Table 6-4Lower Bound Example Stage 2 Processing Times 

Stage 2 Processing Times 
 Job 1 Job 2 Job 3 Job 4 ∑ pt 
Machine 1 6 5 6 2 19 
Machine 2 12 10 12 4 38 
Machine 3 12 10 12 4 38 

Table 6-5 Lower Bound Example Stage 3 Processing Times 

Stage 3 Processing Times 
 Job 1 Job 2 Job 3 Job 4 ∑ pt 
Machine 1 8 4 6 8 26 
Machine 2 16 8 12 16 52 
Machine 3 16 8 12 16 52 

Table 6-6 Lower Bound Example Stage 4 Processing Times 

Stage 4 Processing Times 
 Job 1 Job 2 Job 3 Job 4 ∑ pt 
Machine 1 2 6 5 2 15 
Machine 2 4 12 10 4 30 
Machine 3 4 12 10 4 30 
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6.1  Step 1 of the Lower Bound 
 

The lower bound is developed in three steps.  In the first step, the bottleneck stage 

is determined.  To identify the bottleneck stage, the sum of base processing times for 

each job is calculated for each stage and is designated as (BPTs).  Then (BPTs) is divided 

by the processing power at that stage (PPs), this becomes value (Bs).  The processing 

power is basically the sum of the machine speeds. A more detailed description of 

processing power is given in the next paragraph.  The smallest setup time is determined 

for each job, and the smallest setup times are added for all jobs and set equal to (SSETs).  

Next (SSETs), is divided by the total number of machines in the stage (Ms); this value is 

labeled as (Ds).  The final value for this part of step one is found by adding (Bs) and (Ds) 

for each stage and rounding up to the next integer, this value becomes (Gs).       

The processing power is calculated by summing the speeds of the machines.  The 

processing times for jobs are calculated by dividing the base processing time by the speed 

of the machine.  For example if a stage has three machines with speeds of 100%, 50%, 

and 50%, and a job has a base processing time of 6 units, the time to process that job on 

machine 1 will be (6/1) = 6 units, machine 2 and 3 (6/0.50) = 12 units.  If a stage has only 

one machine then the processing power is 1, for a stage with two machines the processing 

power is (1.00 + 0.50) = 1.50, and for a stage with three machines the processing power 

is (1.00 + 0.50 + 0.50) = 2.00.  Also the largest sum of any single job’s base processing 

time and its smallest setup time is calculated for each stage and labeled as (Es).  For each 

stage, the fastest estimated completion time of all jobs is the largest value of either (Gs) 

or (Es) and is labeled as (Ks).  The first part of the lower bound determines the stage with 

the largest (Ks) which is the estimated completion time for that stage.  The stage where 
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the maximum (Ks) occurs is considered to be the bottleneck stage and the rest of the 

lower bound is based around this stage.  It should be noted that the bottleneck stage is 

estimated using lower bounds and may not be the actual bottleneck stage.  Using the data 

given in Tables 6.2- 6.6, calculations for step one of the lower bound are as follows:   

 
For first stage, K1 =  Max {(20/2) + (4/3), (8 + 1)} = Max {10 + 1.33, 9} = 12. 

 
The second stage K2 = Max {(19/2) + (4/3), (6 + 1)} = Max {9.5 + 1.33, 7} = 11. 
 
The third stage K3 = Max {(26/2) + (4/3), (8 + 1)} = Max {13 + 1.33, 9} = 15. 
 
The fourth stage K4 = Max {(15/2) + (4/3), (6 + 1)} = Max {7.5 + 1.33, 7} = 9. 
 
Since the third stage has the largest calculated value of Ks, it is considered to be the 

bottleneck.   

6.2 Step 2 of the Lower Bound 
 

The second step in the lower bound calculation accounts for the idle time in the 

bottleneck stage, before the processing of the first job.  If the bottleneck stage is not the 

first stage then some idle time will occur on each of the machines at the bottleneck stage 

while they are waiting for jobs to arrive from the previous stages.  To find the earliest 

possible start time for any machine at the bottleneck stage, the base processing and setup 

up times from zero for each job, at each stage preceding the bottleneck stage, are summed 

over all stages, and then the smallest total value is chosen and designated as value (F).    

Table 6.7 shows how this is calculated for the example problem:  
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Table 6-7 Step 2 Lower Bound 

 Job 1 Job 2 Job 3 Job 4 

Stage 1 4 + 1 = 5 5 + 1 = 6 3 + 1 = 4 8 + 1 = 9 

Stage 2 6 + 1 = 7 5 + 1 = 6 6 + 1 = 7 2 + 1 = 3 

Total 12 12 11 12 

 

Job 3 would be chosen (with F = 11 units), so 11 idle units on all machines will be added 

to the lower bound.  All machines at the considered bottleneck stage will be idle for at 

least 11 time units.    

In addition to the idle time that all machines at the considered bottleneck stage 

will experience, additional idle time may occur on the second machine before it starts 

processing jobs.  After the first machine at bottleneck stage begins processing, some 

additional idle time may occur on the other machines, because they may have to wait for 

the next available jobs to arrive.  To account for the idle time on the second machine to 

begin processing at the bottleneck stage, the two jobs with the minimum values of the 

sum of basic processing times and the smallest setup times are chosen from each stage.  

The jobs chosen are independent for each stage, so if a job is chosen in one stage it does 

not have to be used at the following stages.  After the jobs are chosen, an estimated 

completion time for each stage is obtained in a similar way as for value (Ks) in the first 

step of the lower bound.  The estimated completion time for each stage s is denoted as 

(Ls).  The sum of the values for (Ls) leading up to the bottleneck stage is calculated and is 

denoted as (H).  The start time for the second machine at the bottleneck stage, denoted as 

(SH).  SH is calculated as the maximum value between [H, F2].   The extra idle time for 
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the second machine at the bottleneck stage is calculated by subtracting (F) from (SH) and 

is denoted as value (I),where (I) is greater than or equal to zero.  

 For the example, job 3 and job 1 are chosen from the first stage, job 4 and job 2 

are chosen from the second stage.   

The first stage (L1) value is Max {(7/1.5) + (2/2), (4 + 1)} = Max {4.67 + 1, 5} = 6. 
 
The second stage (L2) value is Max {(7/1.5) + (2/2), (5 +1)} = Max {4.67 + 1, 6} = 6. 

The value for (H) is calculated as 6 + 6 = 12. 

The earliest time for a job to reach machine two at the bottleneck stage (SH) is calculated 

as Max {12, 12} = 12.  Since no jobs are ready for processing at the bottleneck stage until 

time period 11, and the earliest possible time a second job may be ready for processing is 

at time period 12, one extra idle unit (12 – 11 = 1) will be added to the second machine, (I 

= 1).         

The extra idle time for the third machine is calculated in the same way as for the 

second machine except the three jobs with the minimum values of the sum of the base 

processing time and smallest setup times are used.  The estimated completion time for 

each stage s is labeled as (Os).  The extra idle time for machine three is found by 

summing (Os) for each stage leading up to the bottleneck stage and is designated as (J).  

The start time for the third machine at the bottleneck stage, denoted as (SJ).  SJ is 

calculated as the maximum [J,F3].  The extra idle time units to add to the third machine 

are found by subtracting (F) from (SJ) and this value is designated as (Q), where (Q) is 

greater than or equal to zero.   
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For the example, jobs 3, 1, and 2 would be chosen from the first stage and job 4, 

2, and 1 or 3 would be chosen from the second stage.  The jobs at each stage are treated 

independently.   

The first stage value of O1 = Max {(12/2) + (3/3), (5 + 1)} = Max {6 + 1, 6} = 7. 

The second stage value of O2 = Max {(13/2) + (3/3), (6 + 1)} = Max {6.5 + 1, 7} = 8. 

The value of J is calculated as 7 + 8 = 15. 

The earliest time for a job to reach machine three in the bottleneck stage (SJ) is calculated 

as Max {12, 15}.  Since the minimum time for the third job to reach the bottleneck stage 

is 15 time units, four extra idle units will be added to the starting time of the third 

machine at the bottleneck stage, (Q) is calculated as 15 – 11 = 4.  This process is repeated 

until all lower bound extra idle times are determined for all of the machines at the 

bottleneck stage.   

The last part of step 2 involves calculating the new lower bound after adding the 

idle times to the processing time for the bottleneck stage.  This is done by using the 

following equation: 

 Step 2 LB = Max {[
PBS

PMQPMIBPTBN )3()2( ×+×+
 + Ds], Es} + F 

Step 2 LB = Lower bound after step 2. 
BPTBN = Sum of the base processing times at the bottleneck stage. 
PM2  = Processing power of machine 2 at the bottleneck stage. 
PM3  = Processing power of machine 3 at the bottleneck stage. 
PBS  = Processing power of all machines at the bottleneck stage. 
* It should be noted that the calculated value in the brackets [] is also rounded up. 
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For the example the lower bound value after step 2 would be calculated as follows: 

Step 2 LB =  Max  {[26 + (1 * 0.50) + (4 * 0.50)  + (4/3)], (8 + 1)} + 11 
             2 
 

=  Max {14.25 + 1.33, 9} + 11 
=  27 

 

6.3 Step 3 of the Lower Bound 
 

In the last step of the lower bound, extra time is added for the stages that follow 

the bottleneck stage.  All jobs are considered. For each job, the base processing time for 

each of the post bottleneck stages is added to the smallest possible setup time, excluding 

the setup times from 0.   The smallest value between all the jobs is labeled as (P).  (P) is 

then added to the lower bound that was calculated after step 2, and this value is the final 

lower bound, (LB).  

LB = Step 2 LB + P 

 For the example problem, the value for step three is calculated as follows: 

Table 6-8 Step 3 Lower Bound 

 Job 1 Job 2 Job 3 Job 4 

Stage 4 2 + 1 = 3 6 + 1 = 7 5 + 1 = 6 2 + 1 = 3 

 

Job 1 or 4 is chosen to be the final job processed, and 3 time units are added to the last 

value obtained in step 2.  The final lower bound (LB) is calculated as 27 + 3 = 30.   

Even though the buffers in between stages have a limited capacity and blocking may 

occur; this could not be included in the calculations of the lower bound.    
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7 Simple Heuristics 
 
Two quick and easy simple heuristics are also developed as another means of 

testing the solution quality of the RBFFS and PBFFS heuristics.  The first simple 

heuristic SH1 assigns jobs priority based on the order in which they are placed 

(FCFS).  The second simple heuristic SH2 allocates priorities to jobs based on the 

largest total processing time (LTPT).  The simple heuristics then process the jobs 

through the system and record the maximum completion time.  In both heuristics the 

jobs that are ready for processing are assigned to the first available machine based on 

the job’s priority.  The job with priority 1 is chosen over all others, then the job with 

priority 2, and so forth.     

7.1 Simple Heuristic One 
 
   In the first simple heuristic, SH1, jobs are designated priorities on a first come 

first serve basis, and then they are processed through the system.  In this heuristic the jobs 

are assigned a priority index as they enter the system, for example job 1 would receive 

priority 1, and so forth.  Table 7.1 shows an example of the first come FCFS heuristic, 

SH1.  The example is calculated using the same data that were used in the construction 

heuristic example in section 5.2.  The SH1 job priority index is {1, 2, 3, 4}.   
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Table 7-1  SH1 Example Gantt Chart 

    5 6 11 12 19 20 28 29 32 33 37 42 43 48 49 55 56 74
mc 1                   
mc 2                   Stage 1 

mc 3                   
Stage 2 mc 1                   

mc 1                   Stage 3 
mc 2                   

    5 6 11 12 19 20 28 29 32 33 37 42 43 48 49 55 56 74
Key                     
Job 1                     
Job 2                     
Job 3                     
Job 4                     

 
 
The corresponding makespan to the SH1 sequence {1, 2, 3, 4} is calculated as 74.   

7.2 Simple Heuristic Two 
 

In the second simple heuristic SH2, the jobs are given priorities based on the 

largest processing time, with the largest one getting the highest priority.    To calculate 

SH2, the LPT based simple heuristic, first the base processing times for each job at all 

stages must be added together.  Table 7.2 shows the results of the summation of the base 

processing times.   

Table 7-2 Sum of Base Processing Times 

 Job 1 Job 2 Job 3 Job 4 
Stage 1 4 14 16 10 
Stage 2 4 8 10 7 
Stage 3 6 9 14 9 
Total 14 31 40 26 

  

The priority list associated with this example would be {3, 2, 4, 1}.  The Gantt Chart for 

the SH2 makespan is shown in Table 7.3.        
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Table 7-3 SH2 Example Gantt Chart 

    21 22 23 24 26 27 32 34 35 44 45 52 53 54 58 59 64 65 71
mc 1                                       
mc 2                                       Stage 1 
mc 3                                       

Stage 2 mc 1                                       
mc 1                                       Stage 3 
mc 2                                       

    21 22 23 24 26 27 32 34 35 44 45 52 53 54 58 59 64 65 71
Key                      
Job 1                      
Job 2                      
Job 3                      
Job 4                      

 
 
The corresponding makespan for the SH2 sequence {3, 2, 4, 1} is 71 units.  Both of these simple heuristics provide a feasible solution 

that can be used as a reference, when determining the solution quality of the more complicated RBFFS and PBFFS heuristics.  For the 

same example data, the construction heuristics RBFFS and PBFFS makespans were 71 and 67 respectively.  
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8  Experimentation  
 

Since this specific problem has not been addressed in the literature, a means of testing 

the proposed heuristics is needed.  There are two methods that will be used to test the 

solution quality of each heuristic: 

1. Comparison with a lower bound.  By comparing with a lower bound, an idea 

is obtained on how good the solution is.  Even though the lower bound may be 

infeasible and may be much lower than the optimal value, it is a good 

measuring tool for solution quality. 

2. The second method used to test solution quality is to use other heuristics and 

compare the results.  For comparison, two simple heuristics were developed.  

The first simple heuristic gives the jobs priority on a first come first serve 

basis.  This would occur when jobs are sent to the end of the queue and wait 

for processing.  The second simple heuristic gives jobs priority based on total 

processing time, where the jobs with larger total processing times get higher 

scheduling priority.  While the lower bound may be infeasible, all heuristics 

developed in this research give feasible solutions.     

8.1 Problem Instances  
 

Three different simplified flexible flowshop environments were chosen to test the 

performance of the proposed heuristics.  The first environment consists of 3 stages with a 

machine configuration of 3-1-2 and a limit of 3 jobs in the buffers between stages.  This 

environment is modeled after part of a hydraulic hose manufacturing process.  In the first 
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stage the hoses are attached to a harness, in the second stage the hoses are put in an oven 

for heat treating, and in the last stage the fittings are assembled.   

The second environment consists of 4 stages with a machine configuration of 2-1-2-1 

and a limit of 3 jobs in the buffers between stages.  This environment is modeled after a 

vinyl window manufacture.  In the first stage the pieces of vinyl are cut to length, in the 

second stage the four sides of the window are welded together, in the third stage the 

latches and tracks are added, and in the last stage the final assembly takes place.   

The third environment consists of 5 stages with a machine configuration of 3-3-2-2-1 

and a limit of 4 jobs in buffers between stages.  This environment is modeled after a high 

voltage circuit breaker assembly manufacturer.  In the first stage painting is preformed, in 

the second stage wiring takes place, in the third mechanical assembly is done, in the 

fourth electrical assembly takes place, and in the last step the unit is tested.   

8.2 Data Generation 

  
Data were not available for the jobs in these manufacturing environments, so they 

were generated.  The first machine at each stage is considered to be the fastest with a 

speed of 1.00 all other machines have a speed of 0.50.  The processing power of a stage is 

found by adding the speeds of all machines at that stage.  The base processing time for a 

job at any stage is considered to be the job processing time on the fastest machine at that 

stage.  The job setup time for any stage is between 20 to 40% of the job base processing 

time.  The job processing times were generated as to not present any obvious bottleneck 

stages.  If there were a bottleneck stage, the problem would basically reduce to a one 

stage scheduling problem.  The data were generated as follows: 

 84



• If a stage has 1 machine, then the base processing time is chosen form a 

uniform distribution between 2 and 10.  This gives an average processing time 

of 6 units.  The average processing time divided by the machine processing 

power is (6 / 1) = 6 units.   

• If a stage has 2 machines, then the base processing time is chosen from a 

uniform distribution between 3 and 15.  This gives an average processing time 

of 9 units.  The average processing time divided by the machine processing 

power = (9 / 1.5) = 6 units. 

• If a stage has 3 machines, then the base processing time is chosen from a 

uniform distribution between 4 and 20.  This gives an average processing time 

of 12 units.  The average processing time divided by the machine processing 

power = (12 / 2) = 6 time units.   

• Ten different data sets with 30 jobs each were generated for each of the three 

flowshop environments.   

The nomenclature used in the experimentation is listed in Table 8.1.   

Table 8-1 Experiment Nomenclature 

Nomenclature  Definition 
SH1 Refers to the simple heuristic, using first come first serve 

priority allocation. 
SH2 Refers to the simple heuristic, using a largest total processing 

time priority allocation. 
RBFFS Refers to the route based construction heuristic. 
PBFFS Refers to the priority based construction heuristic 

RBFFS_SA Refers to the route based construction heuristic combined with 
the simulated annealing algorithm. 

PBFFS_SA Refers to the priority based construction heuristic combined 
with the simulated annealing algorithm. 

LB Lower bound 
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8.3 Experimentation Overview 
 

Before applying the heuristics, the priority lists and the lower bounds are 

calculated using Microsoft Excel.  A program was written in Microsoft Visual Basic-6.0 

that takes the priority lists, job processing times, and setup times and calculates the 

solution for each heuristic.  Also a VB program was written that performs all of the 

exchanges for the construction heuristics and displays the final sequence and the 

corresponding objective function.  The program then inputs the final construction 

heuristic sequence and makespan as the starting sequence and makespan for the simulated 

annealing heuristic.  The SA algorithm, also a VB program is initiated and runs until the 

temperature is reduced to a predetermined value.   

8.4 Simulated Annealing Parameters 
 

The simulated annealing parameters ensure that the temperature does not get 

reduced too fast, resulting in poor solutions.  Also the SA parameters reduce the 

temperature fast enough that time is not wasted.  The initial temperature is set by using 

the following equation: 

)ln(
)1(

PA
SHLBIT −

=  

 
Where, 
 
IT  = The initial temperature setting. 
LB  = Value obtained for the lower bound 
SH1  = Value of the makespan found for the initial solution,  
PA  = Initial probability of accepting a non-improving solution, 
        For this research the probability is set as 40 or 30%. 
 

The initial probability of accepting a non-improving solution is set at 40% for the 

first five runs (1-5) and set at 30% for the next five runs (6-10).  The value for the 
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temperature reduction factor is set at 0.90.  The maximum number of iterations at each 

temperature setting is 100 for each problem.  The heuristic is stopped when the 

temperature is reduced to 0.01.       

8.5 Experimentation Results 
 

 For each data set, the simple heuristic solutions and lower bounds were calculated 

first, and then the construction heuristics were initiated.  Since the SA heuristic is random 

in nature and has a small run time it was run 10 different times.  The PBFFS_SA 

heuristics run times were about 70, 95, and 135 seconds for the 3-1-2, 2-1-2-1, and 3-3-2-

2-1 environments respectfully.  The RBFFS_SA heuristics run times were all under 20 

seconds for each environment.  Each time the SA was run, it used the same starting 

solution given by the construction heuristic, but the initial probability of acceptance for a 

non-improving solution was adjusted.  In the first five runs (1-5) the initial probability of 

acceptance was set at 40% and in the next five runs (6-10) the initial probability of 

acceptance was set at 30%.  In Tables 8.2 through 8.4 only the best solution obtained 

from the 10 runs is shown, all results for each run can be viewed in appendix A.  In these 

tables, the ratio to LB is calculated as the ratio between the solution in question and LB, 

and the ratio to BF is calculated as the ratio between the solution in question and the best 

solution found.      

For the 3-1-2 machine scheduling environment, the RBFFS heuristic averaged an 

increase of 23.2% from the lower bound, 14.8% from the best solution found, and 

achieved a 1.2% improvement over the best simple heuristic solution.  The RBFFS_SA 

heuristic averaged 7.3% from the lower bound, equaled the best solution found, and 

achieved a 16% improvement over the best simple heuristic solution.  Also by adding 

simulated annealing to RBFFS, the solution improved by 14.8%.  The PBFFS heuristic 

averaged 18.8% from the lower bound, 10.8% from the best solution found, and achieved 

a 4.7% improvement over the best simple heuristic solution.  The PBFFS_SA heuristic 

averaged 12.1% from the lower bound, 4.5% from the best solution found, and achieved 

an 11% improvement over the best simple heuristic solution.  By adding simulated 

annealing to PBFFS, the solution was improved by 6%.      
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For the 2-1-2-1 machine scheduling environment the RBFFS heuristic averaged 

25.7% from the lower bound, 12% from the best solution found, and achieved a 1.7% 

improvement over the best simple heuristic solution.  The RBFFS_SA heuristic averaged 

12.3% from the lower bound, 0.1 % from the best solution found, and achieved a 13.8% 

improvement over the best simple heuristic solution.  Also by adding simulated annealing 

to RBFFS, the solution improved by 11.9%.  The PBFFS heuristic averaged 22.1% from 

the lower bound, 8.8% from the best solution found, and achieved a 4.7% improvement 

over the best simple heuristic solution.  The PBFFS_SA heuristic averaged 15.3% from 

the lower bound, 2.8% from the best solution found, and achieved a 10.8% improvement 

over the best simple heuristic solution.  By adding simulated annealing to PBFFS, the 

solution was improved by 5.8%.      

For the 3-3-2-2-1 machine scheduling environment the RBFFS heuristic averaged 

46% from the lower bound, 12.8% from the best solution found, and performed 3.6% 

worse than the best simple heuristic solution.  The RBFFS_SA heuristic averaged 32.4% 

from the lower bound, 2.3 % from the best solution found, and 6.3% from the best simple 

heuristic solution.  Also by adding simulated annealing to RBFFS, the solution improved 

by 10.3%.  The PBFFS heuristic averaged 36.2% from the lower bound, 5.2% from the 

best solution found, and achieved a 3.3% improvement over the best simple heuristic 

solution.  The PBFFS_SA heuristic averaged 29.5% from the lower bound, equaled the 

best solution found, and achieved an 8.7% improvement over the best simple heuristic 

solution.  By adding simulated annealing to PBFFS, the solution was improved by 5.2%.      
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Table 8-2 Experimentation Results for the 3-1-2 Environment 
Configuration 3-1-2  Buffer capacity =3      
    SH1 SH2 RBFFS  

  LB  Sol 
Ratio to 

LB 
Ratio to 

BF Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio 
to LB 

Ratio 
to BF 

Data set 1 205 275 1.3415 1.2387 265 1.2927 1.1937 266 1.2976 1.1982 
Data set 2 228 285 1.25 1.1492 281 1.2325 1.1331 270 1.1842 1.0887 
Data set 3 219 269 1.2283 1.1798 273 1.2466 1.1974 260 1.1872 1.1404 
Data set 4 214 256 1.1963 1.1429 268 1.2523 1.1964 264 1.2336 1.1786 
Data set 5 246 305 1.2398 1.1466 303 1.2317 1.1391 298 1.2114 1.1203 
Data set 6 231 291 1.2597 1.1878 293 1.2684 1.1959 284 1.2294 1.1592 
Data set 7 224 280 1.25 1.1864 274 1.2232 1.161 268 1.1964 1.1356 
Data set 8 230 299 1.3 1.1818 290 1.2609 1.1462 303 1.3174 1.1976 
Data set 9 258 322 1.2481 1.1709 324 1.2558 1.1782 301 1.1667 1.0945 
Data set 10 199 253 1.2714 1.15 255 1.2814 1.1591 257 1.2915 1.1682 
Average 225.4 283.5 1.259 1.173 282.6 1.255 1.170 277.1 1.232 1.148 

 
    RBFFS_SA PBFFS PBFFS_SA 

  LB  Sol 
Ratio to 

LB 
Ratio to 

BF Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio 
to LB 

Ratio 
to BF 

Data set 1 205 222 1.0829 1 245 1.1951 1.1036 228 1.1122 1.027 
Data set 2 228 248 1.0877 1 266 1.1667 1.0726 254 1.114 1.0242
Data set 3 219 228 1.0411 1 255 1.1644 1.1184 237 1.0822 1.0395
Data set 4 214 224 1.0467 1 254 1.1869 1.1339 239 1.1168 1.067 
Data set 5 246 266 1.0813 1 292 1.187 1.0977 280 1.1382 1.0526
Data set 6 231 245 1.0606 1 279 1.2078 1.1388 261 1.1299 1.0653
Data set 7 224 236 1.0536 1 263 1.1741 1.1144 246 1.0982 1.0424
Data set 8 230 253 1.1 1 280 1.2174 1.1067 268 1.1652 1.0593
Data set 9 258 275 1.0659 1 303 1.1744 1.1018 287 1.1124 1.0436
Data set 10 199 220 1.1055 1 241 1.2111 1.0955 227 1.1407 1.0318
Average 225.4 241.7 1.073 1 267.8 1.188 1.108 252.7 1.121 1.045 
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Table 8-3 Experimentation Results for the 2-1-2-1 Environment  

Configuration 2-1-2-1 Buffer capacity =3
  SH1 SH2 RBFFS 

 LB Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio to 
LB 

Ratio to 
BF Sol 

Ratio 
to LB 

Ratio to 
BF 

Data set 1 206 280 1.3592 1.1915 277 1.3447 1.1787 268 1.301 1.1404 
Data set 2 237 310 1.308 1.2016 298 1.2574 1.155 284 1.1983 1.1008 
Data set 3 225 294 1.3067 1.1713 296 1.3156 1.1793 289 1.2844 1.1514 
Data set 4 214 277 1.2944 1.1688 278 1.2991 1.173 279 1.3037 1.1772 
Data set 5 248 312 1.2581 1.1143 319 1.2863 1.1393 315 1.2702 1.125 
Data set 6 234 307 1.312 1.1585 294 1.2564 1.1094 291 1.2436 1.0981 
Data set 7 224 297 1.3259 1.1647 288 1.2857 1.1294 275 1.2277 1.0784 
Data set 8 239 304 1.272 1.1259 307 1.2845 1.137 295 1.2343 1.0926 
Data set 9 262 327 1.2481 1.1085 322 1.229 1.0915 323 1.2328 1.0949 

Data set 10 216 276 1.2778 1.15 285 1.3194 1.1875 275 1.2731 1.1458 
Average 230.5 298.4 1.296 1.156 296.4 1.288 1.148 289.4 1.257 1.120 

  
  RBFFS_SA PBFFS PBFFS_SA 

 LB Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio to 
LB 

Ratio to 
BF Sol 

Ratio 
to LB 

Ratio to 
BF 

Data set 1 206 235 1.1408 1 256 1.2427 1.0894 246 1.1942 1.0468 
Data set 2 237 258 1.0886 1 280 1.1814 1.0853 267 1.1266 1.0349 
Data set 3 225 251 1.1156 1 280 1.2444 1.1155 260 1.1556 1.0359 
Data set 4 214 237 1.1075 1 267 1.2477 1.1266 245 1.1449 1.0338 
Data set 5 248 280 1.129 1 302 1.2177 1.0786 290 1.1694 1.0357 
Data set 6 234 265 1.1325 1 282 1.2051 1.0642 270 1.1538 1.0189 
Data set 7 224 255 1.1384 1 276 1.2321 1.0824 259 1.1563 1.0157 
Data set 8 239 270 1.1297 1 294 1.2301 1.0889 278 1.1632 1.0296 
Data set 9 262 299 1.1412 1.0136 306 1.1679 1.0373 295 1.126 1 

Data set 10 216 240 1.1111 1 267 1.2361 1.1125 247 1.1435 1.0292 
Average 230.5 259 1.123 1.001 281 1.221 1.088 265.7 1.153 1.028 
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Table 8-4  Experimentation Results for the 3-3-2-2-1 Environment 

Configuration  3-3-2-2-1  Buffer capacity = 4    
    SH1 SH2 RBFFS  

  LB  Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio to 
LB Ratio to BF Sol 

Ratio 
to LB 

Ratio to 
BF 

Data set 1 214 313 1.4626 1.0982 315 1.472 1.1053 320 1.4953 1.1228 
Data set 2 243 334 1.3745 1.0503 348 1.4321 1.0943 351 1.4444 1.1038 
Data set 3 226 331 1.4646 1.1336 333 1.4735 1.1404 338 1.4956 1.1575 
Data set 4 222 305 1.3739 1.0517 319 1.4369 1.1 329 1.482 1.1345 
Data set 5 264 363 1.375 1.0804 377 1.428 1.122 376 1.4242 1.119 
Data set 6 247 348 1.4089 1.0943 353 1.4291 1.1101 361 1.4615 1.1352 
Data set 7 239 329 1.3766 1.0894 352 1.4728 1.1656 346 1.4477 1.1457 
Data set 8 243 355 1.4609 1.0957 355 1.4609 1.0957 365 1.5021 1.1265 
Data set 9 268 378 1.4104 1.0957 379 1.4142 1.0986 384 1.4328 1.113 
Data set 10 227 311 1.37 1.0799 339 1.4934 1.1771 322 1.4185 1.1181 
Average 239.3 336.7 1.408 1.087 347 1.451 1.121 349.2 1.460 1.128 
           
    RBFFS_SA PBFFS PBFFS_SA 

  LB  Sol 
Ratio 
to LB 

Ratio to 
BF Sol 

Ratio to 
LB Ratio to BF Sol 

Ratio 
to LB 

Ratio to 
BF 

Data set 1 214 287 1.3411 1.007 297 1.3879 1.0421 285 1.3318 1 
Data set 2 243 324 1.3333 1.0189 328 1.3498 1.0314 318 1.3086 1 
Data set 3 226 297 1.3142 1.0171 326 1.4425 1.1164 292 1.292 1 
Data set 4 222 294 1.3243 1.0138 296 1.3333 1.0207 290 1.3063 1 
Data set 5 264 346 1.3106 1.0298 358 1.3561 1.0655 336 1.2727 1 
Data set 6 247 328 1.3279 1.0314 330 1.336 1.0377 318 1.2874 1 
Data set 7 239 312 1.3054 1.0331 323 1.3515 1.0695 302 1.2636 1 
Data set 8 243 330 1.358 1.0185 342 1.4074 1.0556 324 1.3333 1 
Data set 9 268 356 1.3284 1.0319 356 1.3284 1.0319 345 1.2873 1 
Data set 10 227 295 1.2996 1.0243 302 1.3304 1.0486 288 1.2687 1 
Average 239.3  316.9 1.324 1.023 325.8 1.362 1.052 309.8 1.295 1.000 
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9 Conclusion 

9.1 Overview of Research  
 
The objective of this research was to minimize the makepsan in a flexible flowshop 

with sequence dependent setup times, uniform machines, and limited buffers.  At the time 

of this research, no attempt to solve this problem could be found in the literature.  The 

goals of this research were to: 

1. Develop a mathematical model of the problem.   

2. Develop two construction heuristics to construct initial feasible solutions to 

the problem.  Then use a simulated annealing algorithm to improve the initial 

solutions.   

3. Develop a lower bound to test the solution quality.   

 

This problem is extremely complex and it is not practical to solve optimally.  A 

mathematical model for the problem was created, and used to solve small problems 

optimally.  Even very small problems, such as a three stage 5 job problem, took around 

an hour to solve.   

Two construction heuristics, RBFFS and PBFFS were developed based on a flowshop 

heuristic given by Nawaz et. al (1983).  The first heuristic is route based, and the second 

is job priority based.  The heuristics give a higher scheduling priority to jobs that have 

larger processing times.  They use adjacent pariwise exchange and add jobs one at a time 

until all jobs are scheduled.  Next, a simulated annealing heuristic is used to improve the 

final solutions obtained from the construction heuristics.  The construction and SA 

heuristics use a solution space of n!, where n is the total number of jobs.  This reduces the 

solution space but allows good solutions to be found in a reasonable amount of time.     
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  Two methods were used to test the proposed algorithms performance.  A lower 

bound was developed that focused on the bottleneck stage and then scheduled jobs before 

and after that stage.  Also two simple heuristics were used to solve the problem.  One 

simple heuristic, SH1, assigned jobs priority on a first come first serve basis.  The second 

simple heuristic, SH2, assigned jobs priorities based on total processing time, with the 

higher total processing time jobs receiving higher priority.  The simple heuristics provide 

feasible solutions that are used for comparison.            

In all but one case, both construction heuristics obtained a better solution than the 

best simple heuristic.  The simulated annealing heuristic was able to improve on the 

solutions obtained with the construction heuristics.  When comparing to the lower bound, 

both construction algorithms and simulated annealing heuristics performed well for the 

smaller systems.  For the machine configurations of 3-1-2, 2-1-2-1 and 3-3-2-2-1, the 

RBFFS_SA heuristic was 7.3%, 12.3%, and 32.4.5% respectively higher than the lower 

bound; while the PBFFS_SA heuristic was 12.1%, 15.3%, and 29.5% higher than the 

lower bound.  The increase in the gap between the heuristic solution and the lower bound 

for the larger stage environments is most likely due to deficiencies in the lower bound 

and not due to poor heuristic performance.  The presented lower bound does not account 

for machine blocking, and as the number of stages increase, the chances of a machine 

being blocked also increase.  The lower bound presented was compared to a lower bound 

calculated by relaxing the binary and integer variables.  The LB presented outperformed 

the relaxed version.   

The RBFFS_SA heuristic performed the best for the small and medium sized 

problems.  The PBFFS_SA heuristic out performed the RBFFS for the larger problem.  

 93



The simulated annealing algorithm had a much larger affect on the RBFFS’s solution; it 

was improved between 10.3% and 14.8%, while the SA improved the PBFFS only 5.2% 

to 6%.  Limiting the solution space to permutation schedules may have produced this 

difference.  The RBFFS is much more delicate and dependant on the permutation 

solution.  The RBFFS_SA heuristic has a short run time, but it does take extra time to 

develop a good routing system.  Both heuristics were able to provide good solutions to 

the problem in a reasonable amount of time.        

 

9.2 Contribution to Literature: 
 
The contributions made to the literature by this research are as follows: 

• A mathematical model was developed for the flexible flowshop with sequence 

dependent setup times, uniform machines, and limited buffers. 

• Development of two construction heuristics combined with an improvement 

heuristic to give a good quick solution to the problem.  

• Development of a simulated annealing heuristic to improve the solution of the 

construction heuristics. 

• Development of a lower bound for the problem.   

• Laid ground work for future research on this type of problem.   

9.3 Recommendations for Future Research: 
 
The work performed in this research opens the door for more investigation of the flexible 

flowshop with sequence dependent setup times, uniform machines, and limited buffers 

problem.  Suggestion for future research include: 

 94



• Develop a tighter lower bound to test the heuristic approaches to this problem by 

adding a factor to account for machine blocking.   

• Look at other meta-heuristics to improve the solution obtained from the 

construction algorithm.   

• Experiment with different job priority systems for the problem.   

• Experiment with other machine configurations and/or different systems of data 

generation.   

• Add job ready times and/or due dates.   

• Before scheduling a job check to see which machine would finish processing it 

faster.  The total time may be less if it waits for a machine to open up, instead of 

being processed on the first available machine.     
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Appendix A: Experimental Results 
 
 

Data set 1 Ratio to LB Data set 2 Ratio to LB 
LB 205   

Stage Configuration       
3-1-2 LB 228   

Stage Configuration       
3-1-2 

SH1 275 1.3415 Buffers size = 3 SH1 285 1.2500 Buffers size = 3 
SH2 265 1.2927     SH2 281 1.2325     
RBFFS 266 1.2976     RBFFS 270 1.1842     

Data set 
1 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
2 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 223 1.0878 1.1883 1.1928 Exp 1 248 1.0877 1.1331 1.0887 
Exp 2 229 1.1171 1.1572 1.1616 Exp 2 251 1.1009 1.1195 1.0757 
Exp 3 226 1.1024 1.1726 1.1770 Exp 3 249 1.0921 1.1285 1.0843 
Exp 4 222 1.0829 1.1937 1.1982 Exp 4 252 1.1053 1.1151 1.0714 
Exp 5 225 1.0976 1.1778 1.1822 Exp 5 249 1.0921 1.1285 1.0843 
Exp 6 226 1.1024 1.1726 1.1770 Exp 6 254 1.1140 1.1063 1.0630 
Exp 7 225 1.0976 1.1778 1.1822 Exp 7 249 1.0921 1.1285 1.0843 
Exp 8 230 1.1220 1.1522 1.1565 Exp 8 248 1.0877 1.1331 1.0887 
Exp 9 222 1.0829 1.1937 1.1982 Exp 9 253 1.1096 1.1107 1.0672 
Exp 10 231 1.1268 1.1472 1.1515 Exp 10 252 1.1053 1.1151 1.0714 
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Data set 3 Ratio to LB Data set 4 Ratio to LB 
LB 219   

Stage Configuration       
3-1-2 LB 214   

Stage Configuration       
3-1-2 

SH1 269 1.2283 Buffers size = 3 SH1 256 1.1963 Buffers size = 3 
SH2 273 1.2466     SH2 268 1.2523     
RBFFS 260 1.1872     RBFFS 264 1.2336     

Data set 
3 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
4 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA 
Exp 1 236 1.0776 1.1398 1.1017 Exp 1 228 1.0654 1.1228 1.1579 
Exp 2 231 1.0548 1.1645 1.1255 Exp 2 229 1.0701 1.1179 1.1528 
Exp 3 231 1.0548 1.1645 1.1255 Exp 3 224 1.0467 1.1429 1.1786 
Exp 4 232 1.0594 1.1595 1.1207 Exp 4 232 1.0841 1.1034 1.1379 
Exp 5 228 1.0411 1.1798 1.1404 Exp 5 231 1.0794 1.1082 1.1429 
Exp 6 229 1.0457 1.1747 1.1354 Exp 6 230 1.0748 1.1130 1.1478 
Exp 7 236 1.0776 1.1398 1.1017 Exp 7 230 1.0748 1.1130 1.1478 
Exp 8 232 1.0594 1.1595 1.1207 Exp 8 228 1.0654 1.1228 1.1579 
Exp 9 234 1.0685 1.1496 1.1111 Exp 9 226 1.0561 1.1327 1.1681 
Exp 10 234 1.0685 1.1496 1.1111 Exp 10 232 1.0841 1.1034 1.1379 
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Data set 5 Ratio to LB Data set 6 Ratio to LB 
LB 246   

Stage Configuration       
3-1-2 LB 231   

Stage Configuration        
3-1-2 

SH1 305 1.2398 Buffers size = 3 SH1 291 1.2597 Buffers size = 3 
SH2 303 1.2317     SH2 293 1.2684     
RBFFS 298 1.2114     RBFFS 284 1.2294     

Data set 
5 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA Data set 6 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 272 1.1057 1.1140 1.0956 Exp 1 246 1.0649 1.1829 1.1545 
Exp 2 269 1.0935 1.1264 1.1078 Exp 2 245 1.0606 1.1878 1.1592 
Exp 3 267 1.0854 1.1348 1.1161 Exp 3 246 1.0649 1.1829 1.1545 
Exp 4 270 1.0976 1.1222 1.1037 Exp 4 254 1.0996 1.1457 1.1181 
Exp 5 267 1.0854 1.1348 1.1161 Exp 5 249 1.0779 1.1687 1.1406 
Exp 6 271 1.1016 1.1181 1.0996 Exp 6 255 1.1039 1.1412 1.1137 
Exp 7 266 1.0813 1.1391 1.1203 Exp 7 252 1.0909 1.1548 1.1270 
Exp 8 270 1.0976 1.1222 1.1037 Exp 8 252 1.0909 1.1548 1.1270 
Exp 9 272 1.1057 1.1140 1.0956 Exp 9 247 1.0693 1.1781 1.1498 
Exp 10 271 1.1016 1.1181 1.0996 Exp 10 252 1.0909 1.1548 1.1270 
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Data set 7 Ratio to LB Data set 8 Ratio to LB 
LB 224   

Stage Configuration       
3-1-2 LB 230   

Stage Configuration       
3-1-2 

SH1 280 1.2500 Buffers size = 3 SH1 299 1.3000 Buffers size = 3 
SH2 274 1.2232     SH2 290 1.2609     
RBFFS 268 1.1964     RBFFS 303 1.3174     

Data 
set 7 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
8 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 239 1.0670 1.1464 1.1213 Exp 1 256 1.1130 1.1328 1.1836 
Exp 2 241 1.0759 1.1369 1.1120 Exp 2 254 1.1043 1.1417 1.1929 
Exp 3 236 1.0536 1.1610 1.1356 Exp 3 253 1.1000 1.1462 1.1976 
Exp 4 237 1.0580 1.1561 1.1308 Exp 4 259 1.1261 1.1197 1.1699 
Exp 5 236 1.0536 1.1610 1.1356 Exp 5 258 1.1217 1.1240 1.1744 
Exp 6 240 1.0714 1.1417 1.1167 Exp 6 256 1.1130 1.1328 1.1836 
Exp 7 240 1.0714 1.1417 1.1167 Exp 7 259 1.1261 1.1197 1.1699 
Exp 8 241 1.0759 1.1369 1.1120 Exp 8 257 1.1174 1.1284 1.1790 
Exp 9 239 1.0670 1.1464 1.1213 Exp 9 256 1.1130 1.1328 1.1836 
Exp 10 237 1.0580 1.1561 1.1308 Exp 10 257 1.1174 1.1284 1.1790 
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Data set 9 Ratio to LB Data set 10 Ratio to LB 
LB 258   

Stage Configuration      
3-1-2 LB 199   

Stage Configuration       
3-1-2 

SH1 322 1.2481 Buffers size = 3 SH1 253 1.2714 Buffers size = 3 
SH2 324 1.2558     SH2 255 1.2814     
RBFFS 301 1.1667     RBFFS 257 1.2915     

Data set 
9 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
10 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 275 1.0659 1.1709 1.0945 Exp 1 225 1.1307 1.1244 1.1422 
Exp 2 280 1.0853 1.1500 1.0750 Exp 2 220 1.1055 1.1500 1.1682 
Exp 3 278 1.0775 1.1583 1.0827 Exp 3 222 1.1156 1.1396 1.1577 
Exp 4 277 1.0736 1.1625 1.0866 Exp 4 226 1.1357 1.1195 1.1372 
Exp 5 276 1.0698 1.1667 1.0906 Exp 5 223 1.1206 1.1345 1.1525 
Exp 6 282 1.0930 1.1418 1.0674 Exp 6 224 1.1256 1.1295 1.1473 
Exp 7 277 1.0736 1.1625 1.0866 Exp 7 223 1.1206 1.1345 1.1525 
Exp 8 276 1.0698 1.1667 1.0906 Exp 8 221 1.1106 1.1448 1.1629 
Exp 9 276 1.0698 1.1667 1.0906 Exp 9 223 1.1206 1.1345 1.1525 
Exp 10 277 1.0736 1.1625 1.0866 Exp 10 222 1.1156 1.1396 1.1577 
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Data set 1 Ratio to  LB Data set 2 
Ratio to  

LB 
LB 205   

Stage Configuration       
3-1-2 LB 228   

Stage Configuration       
3-1-2 

SH1 275 1.3415 Buffers size = 3 SH1 285 1.2500 Buffers size = 3 
SH2 265 1.2927     SH2 281 1.2325     
PBFFS 245 1.1951     PBFFS 266 1.1667     

Data set 1 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA Data set 2 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 237 1.1561 1.1181 1.0338 Exp 1 263 1.1535 1.0684 1.0114 
Exp 2 234 1.1415 1.1325 1.0470 Exp 2 255 1.1184 1.1020 1.0431 
Exp 3 234 1.1415 1.1325 1.0470 Exp 3 261 1.1447 1.0766 1.0192 
Exp 4 228 1.1122 1.1623 1.0746 Exp 4 257 1.1272 1.0934 1.0350 
Exp 5 234 1.1415 1.1325 1.0470 Exp 5 254 1.1140 1.1063 1.0472 
Exp 6 236 1.1512 1.1229 1.0381 Exp 6 255 1.1184 1.1020 1.0431 
Exp 7 232 1.1317 1.1422 1.0560 Exp 7 261 1.1447 1.0766 1.0192 
Exp 8 232 1.1317 1.1422 1.0560 Exp 8 256 1.1228 1.0977 1.0391 
Exp 9 238 1.1610 1.1134 1.0294 Exp 9 257 1.1272 1.0934 1.0350 
Exp 10 234 1.1415 1.1325 1.0470 Exp 10 258 1.1316 1.0891 1.0310 
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Data set 3 
Ratio to  

LB Data set 4 
Ratio to  

LB 
LB 219   

Stage Configuration       
3-1-2 LB 214   

Stage Configuration       
3-1-2 

SH1 269 1.2283 Buffers size = 3 SH1 256 1.1963 Buffers size = 3 
SH2 273 1.2466     SH2 268 1.2523     
PBFFS 255 1.1644     PBFFS 254 1.1869     

Data set 
3 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data set 
4 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 238 1.0868 1.1303 1.0714 Exp 1 240 1.1215 1.0667 1.0583 
Exp 2 241 1.1005 1.1162 1.0581 Exp 2 241 1.1262 1.0622 1.0539 
Exp 3 249 1.1370 1.0803 1.0241 Exp 3 240 1.1215 1.0667 1.0583 
Exp 4 246 1.1233 1.0935 1.0366 Exp 4 242 1.1308 1.0579 1.0496 
Exp 5 244 1.1142 1.1025 1.0451 Exp 5 242 1.1308 1.0579 1.0496 
Exp 6 240 1.0959 1.1208 1.0625 Exp 6 244 1.1402 1.0492 1.0410 
Exp 7 237 1.0822 1.1350 1.0759 Exp 7 239 1.1168 1.0711 1.0628 
Exp 8 242 1.1050 1.1116 1.0537 Exp 8 242 1.1308 1.0579 1.0496 
Exp 9 246 1.1233 1.0935 1.0366 Exp 9 241 1.1262 1.0622 1.0539 
Exp 10 242 1.1050 1.1116 1.0537 Exp 10 245 1.1449 1.0449 1.0367 
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Data set 5 
Ratio to  

LB Data set 6 
Ratio to  

LB 
LB 246   

Stage Configuration       
3-1-2 LB 231   

Stage Configuration        
3-1-2 

SH1 305 1.2398 Buffers size = 3 SH1 291 1.2597 Buffers size = 3 
SH2 303 1.2317     SH2 293 1.2684   
PBFFS 292 1.1870     PBFFS 279 1.2078     

Data set 
5 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data 
set 6 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 283 1.1504 1.0707 1.0318 Exp 1 267 1.1558 1.0899 1.0449 
Exp 2 281 1.1423 1.0783 1.0391 Exp 2 261 1.1299 1.1149 1.0690 
Exp 3 283 1.1504 1.0707 1.0318 Exp 3 262 1.1342 1.1107 1.0649 
Exp 4 284 1.1545 1.0669 1.0282 Exp 4 266 1.1515 1.0940 1.0489 
Exp 5 282 1.1463 1.0745 1.0355 Exp 5 266 1.1515 1.0940 1.0489 
Exp 6 285 1.1585 1.0632 1.0246 Exp 6 261 1.1299 1.1149 1.0690 
Exp 7 280 1.1382 1.0821 1.0429 Exp 7 266 1.1515 1.0940 1.0489 
Exp 8 280 1.1382 1.0821 1.0429 Exp 8 263 1.1385 1.1065 1.0608 
Exp 9 281 1.1423 1.0783 1.0391 Exp 9 266 1.1515 1.0940 1.0489 
Exp 10 285 1.1585 1.0632 1.0246 Exp 10 267 1.1558 1.0899 1.0449 
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Data set 7 
Ratio to  

LB Data set 8 Ratio to  LB 
LB 224   

Stage Configuration         
3-1-2 LB 230   

Stage Configuration         
3-1-2 

SH1 280 1.2500 Buffers size = 3 SH1 299 1.3000 Buffers size = 3 
SH2 274 1.2232   SH2 290 1.2609   
PBFFS 263 1.1741     PBFFS 280 1.2174     

Data 
set 7 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA 

Data 
set 8 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio PBFFS  
to  

PBFFS_SA 
Exp 1 252 1.1250 1.0873 1.0437 Exp 1 270 1.1739 1.0741 1.0370 
Exp 2 246 1.0982 1.1138 1.0691 Exp 2 268 1.1652 1.0821 1.0448 
Exp 3 256 1.1429 1.0703 1.0273 Exp 3 270 1.1739 1.0741 1.0370 
Exp 4 253 1.1295 1.0830 1.0395 Exp 4 269 1.1696 1.0781 1.0409 
Exp 5 253 1.1295 1.0830 1.0395 Exp 5 272 1.1826 1.0662 1.0294 
Exp 6 249 1.1116 1.1004 1.0562 Exp 6 272 1.1826 1.0662 1.0294 
Exp 7 250 1.1161 1.0960 1.0520 Exp 7 270 1.1739 1.0741 1.0370 
Exp 8 254 1.1339 1.0787 1.0354 Exp 8 268 1.1652 1.0821 1.0448 
Exp 9 251 1.1205 1.0916 1.0478 Exp 9 273 1.1870 1.0623 1.0256 
Exp 10 252 1.1250 1.0873 1.0437 Exp 10 269 1.1696 1.0781 1.0409 
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Data set 9 Ratio to  LB Data set 10 
Ratio to  

LB 
LB 258   

Stage Configuration         
3-1-2 LB 199   

Stage Configuration       
3-1-2 

SH1 322 1.2481 Buffers size = 3 SH1 253 1.2714 Buffers size = 3 
SH2 324 1.2558     SH2 255 1.2814     
PBFFS 303 1.1744     PBFFS 241 1.2111     

Data 
set 9 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Data 
set 10 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 287 1.1124 1.1220 1.0557 Exp 1 230 1.1558 1.1000 1.0478 
Exp 2 293 1.1357 1.0990 1.0341 Exp 2 229 1.1508 1.1048 1.0524 
Exp 3 295 1.1434 1.0915 1.0271 Exp 3 230 1.1558 1.1000 1.0478 
Exp 4 293 1.1357 1.0990 1.0341 Exp 4 231 1.1608 1.0952 1.0433 
Exp 5 299 1.1589 1.0769 1.0134 Exp 5 231 1.1608 1.0952 1.0433 
Exp 6 291 1.1279 1.1065 1.0412 Exp 6 227 1.1407 1.1145 1.0617 
Exp 7 293 1.1357 1.0990 1.0341 Exp 7 229 1.1508 1.1048 1.0524 
Exp 8 293 1.1357 1.0990 1.0341 Exp 8 233 1.1709 1.0858 1.0343 
Exp 9 289 1.1202 1.1142 1.0484 Exp 9 234 1.1759 1.0812 1.0299 
Exp 10 296 1.1473 1.0878 1.0236 Exp 10 232 1.1658 1.0905 1.0388 
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Data set 1 Ratio to LB Data set 2 Ratio to LB 
LB 206   

Stage Configuration       
2-1-2-1 LB 237   

Stage Configuration       
2-1-2-1 

SH1 280 1.3592 Buffers size = 3 SH1 310 1.3080 Buffers size = 3 
SH2 277 1.3447     SH2 298 1.2574     
RBFFS 268 1.3010     RBFFS 284 1.1983     

Data set 
1 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
2 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 240 1.1650 1.1542 1.1167 Exp 1 258 1.0886 1.1550 1.1008 
Exp 2 238 1.1553 1.1639 1.1261 Exp 2 266 1.1224 1.1203 1.0677 
Exp 3 239 1.1602 1.1590 1.1213 Exp 3 264 1.1139 1.1288 1.0758 
Exp 4 239 1.1602 1.1590 1.1213 Exp 4 263 1.1097 1.1331 1.0798 
Exp 5 239 1.1602 1.1590 1.1213 Exp 5 263 1.1097 1.1331 1.0798 
Exp 6 240 1.1650 1.1542 1.1167 Exp 6 267 1.1266 1.1161 1.0637 
Exp 7 235 1.1408 1.1787 1.1404 Exp 7 265 1.1181 1.1245 1.0717 
Exp 8 239 1.1602 1.1590 1.1213 Exp 8 260 1.0970 1.1462 1.0923 
Exp 9 239 1.1602 1.1590 1.1213 Exp 9 265 1.1181 1.1245 1.0717 
Exp 10 240 1.1650 1.1542 1.1167 Exp 10 266 1.1224 1.1203 1.0677 
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Data set 3 Ratio to LB Data set 4 Ratio to LB 
LB 225   

Stage Configuration       
2-1-2-1 LB 214   

Stage Configuration       
2-1-2-1 

SH1 294 1.3067 Buffers size = 3 SH1 277 1.2944 Buffers size = 3 
SH2 296 1.3156     SH2 278 1.2991     
RBFFS 289 1.2844     RBFFS 279 1.3037     

Data set 
3 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
4 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA 
Exp 1 261 1.1600 1.1264 1.1073 Exp 1 244 1.1402 1.1352 1.1434 
Exp 2 251 1.1156 1.1713 1.1514 Exp 2 237 1.1075 1.1688 1.1772 
Exp 3 257 1.1422 1.1440 1.1245 Exp 3 241 1.1262 1.1494 1.1577 
Exp 4 256 1.1378 1.1484 1.1289 Exp 4 238 1.1121 1.1639 1.1723 
Exp 5 255 1.1333 1.1529 1.1333 Exp 5 245 1.1449 1.1306 1.1388 
Exp 6 261 1.1600 1.1264 1.1073 Exp 6 246 1.1495 1.1260 1.1341 
Exp 7 254 1.1289 1.1575 1.1378 Exp 7 246 1.1495 1.1260 1.1341 
Exp 8 251 1.1156 1.1713 1.1514 Exp 8 243 1.1355 1.1399 1.1481 
Exp 9 256 1.1378 1.1484 1.1289 Exp 9 241 1.1262 1.1494 1.1577 
Exp 10 256 1.1378 1.1484 1.1289 Exp 10 245 1.1449 1.1306 1.1388 
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Data set 5 Ratio to LB Data set 6 Ratio to LB 
LB 248   

Stage Configuration       
2-1-2-1 LB 234   

Stage Configuration        
2-1-2-1 

SH1 312 1.2581 Buffers size = 3 SH1 307 1.3120 Buffers size = 3 
SH2 319 1.2863     SH2 294 1.2564     
RBFFS 315 1.2702     RBFFS 291 1.2436     

Data set 
5 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA Data set 6 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 286 1.1532 1.0909 1.1014 Exp 1 271 1.1581 1.0849 1.0738 
Exp 2 283 1.1411 1.1025 1.1131 Exp 2 272 1.1624 1.0809 1.0699 
Exp 3 284 1.1452 1.0986 1.1092 Exp 3 268 1.1453 1.0970 1.0858 
Exp 4 285 1.1492 1.0947 1.1053 Exp 4 274 1.1709 1.0730 1.0620 
Exp 5 287 1.1573 1.0871 1.0976 Exp 5 267 1.1410 1.1011 1.0899 
Exp 6 280 1.1290 1.1143 1.1250 Exp 6 267 1.1410 1.1011 1.0899 
Exp 7 290 1.1694 1.0759 1.0862 Exp 7 276 1.1795 1.0652 1.0543 
Exp 8 288 1.1613 1.0833 1.0938 Exp 8 265 1.1325 1.1094 1.0981 
Exp 9 291 1.1734 1.0722 1.0825 Exp 9 270 1.1538 1.0889 1.0778 
Exp 10 284 1.1452 1.0986 1.1092 Exp 10 267 1.1410 1.1011 1.0899 
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Data set 7 Ratio to LB Data set 8 Ratio to LB 
LB 224   

Stage Configuration       
2-1-2-1 LB 239   

Stage Configuration       
2-1-2-1 

SH1 297 1.3259 Buffers size = 3 SH1 304 1.2720 Buffers size = 3 
SH2 288 1.2857     SH2 307 1.2845     
RBFFS 275 1.2277     RBFFS 295 1.2343     

Data 
set 7 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
8 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 260 1.1607 1.1077 1.0577 Exp 1 275 1.1506 1.1055 1.0727 
Exp 2 261 1.1652 1.1034 1.0536 Exp 2 273 1.1423 1.1136 1.0806 
Exp 3 262 1.1696 1.0992 1.0496 Exp 3 272 1.1381 1.1176 1.0846 
Exp 4 255 1.1384 1.1294 1.0784 Exp 4 274 1.1464 1.1095 1.0766 
Exp 5 265 1.1830 1.0868 1.0377 Exp 5 272 1.1381 1.1176 1.0846 
Exp 6 261 1.1652 1.1034 1.0536 Exp 6 276 1.1548 1.1014 1.0688 
Exp 7 261 1.1652 1.1034 1.0536 Exp 7 275 1.1506 1.1055 1.0727 
Exp 8 263 1.1741 1.0951 1.0456 Exp 8 271 1.1339 1.1218 1.0886 
Exp 9 260 1.1607 1.1077 1.0577 Exp 9 274 1.1464 1.1095 1.0766 
Exp 10 260 1.1607 1.1077 1.0577 Exp 10 270 1.1297 1.1259 1.0926 
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Data set 9 Ratio to LB Data set 10 Ratio to LB 
LB 262   

Stage Configuration       
2-1-2-1 LB 216   

Stage Configuration       
2-1-2-1 

SH1 327 1.2481 Buffers size = 3 SH1 276 1.2778 Buffers size = 3 
SH2 322 1.2290     SH2 285 1.3194     
RBFFS 323 1.2328     RBFFS 275 1.2731     

Data set 
9 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
10 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 303 1.1565 1.0627 1.0660 Exp 1 242 1.1204 1.1405 1.1364 
Exp 2 302 1.1527 1.0662 1.0695 Exp 2 242 1.1204 1.1405 1.1364 
Exp 3 303 1.1565 1.0627 1.0660 Exp 3 245 1.1343 1.1265 1.1224 
Exp 4 301 1.1489 1.0698 1.0731 Exp 4 247 1.1435 1.1174 1.1134 
Exp 5 302 1.1527 1.0662 1.0695 Exp 5 245 1.1343 1.1265 1.1224 
Exp 6 303 1.1565 1.0627 1.0660 Exp 6 250 1.1574 1.1040 1.1000 
Exp 7 304 1.1603 1.0592 1.0625 Exp 7 245 1.1343 1.1265 1.1224 
Exp 8 299 1.1412 1.0769 1.0803 Exp 8 240 1.1111 1.1500 1.1458 
Exp 9 299 1.1412 1.0769 1.0803 Exp 9 242 1.1204 1.1405 1.1364 
Exp 10 304 1.1603 1.0592 1.0625 Exp 10 244 1.1296 1.1311 1.1270 

 
 
 
 
 
 
 
 
 
 
 
 



Data set 1 Ratio to  LB Data set 2 
Ratio to  

LB 
LB 206   

Stage Configuration       
2-1-2-1 LB 237   

Stage Configuration       
2-1-2-1 

SH1 280 1.3592 Buffers size = 3 SH1 310 1.3080 Buffers size = 3 
SH2 277 1.3447     SH2 298 1.2574     
PBFFS 256 1.2427     PBFFS 280 1.1814     

Data set 1 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA Data set 2 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 251 1.2184 1.1036 1.0199 Exp 1 270 1.1392 1.1037 1.0370 
Exp 2 250 1.2136 1.1080 1.0240 Exp 2 274 1.1561 1.0876 1.0219 
Exp 3 252 1.2233 1.0992 1.0159 Exp 3 273 1.1519 1.0916 1.0256 
Exp 4 254 1.2330 1.0906 1.0079 Exp 4 273 1.1519 1.0916 1.0256 
Exp 5 246 1.1942 1.1260 1.0407 Exp 5 267 1.1266 1.1161 1.0487 
Exp 6 251 1.2184 1.1036 1.0199 Exp 6 272 1.1477 1.0956 1.0294 
Exp 7 252 1.2233 1.0992 1.0159 Exp 7 276 1.1646 1.0797 1.0145 
Exp 8 252 1.2233 1.0992 1.0159 Exp 8 274 1.1561 1.0876 1.0219 
Exp 9 250 1.2136 1.1080 1.0240 Exp 9 274 1.1561 1.0876 1.0219 
Exp 10 251 1.2184 1.1036 1.0199 Exp 10 269 1.1350 1.1078 1.0409 
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Data set 3 
Ratio to  

LB Data set 4 
Ratio to  

LB 
LB 225   

Stage Configuration       
2-1-2-1 LB 214   

Stage Configuration       
2-1-2-1 

SH1 294 1.3067 Buffers size = 3 SH1 277 1.2944 Buffers size = 3 
SH2 296 1.3156     SH2 278 1.2991     
PBFFS 280 1.2444     PBFFS 267 1.2477     

Data set 
3 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data set 
4 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 261 1.1600 1.1264 1.0728 Exp 1 258 1.2056 1.0736 1.0349 
Exp 2 260 1.1556 1.1308 1.0769 Exp 2 245 1.1449 1.1306 1.0898 
Exp 3 266 1.1822 1.1053 1.0526 Exp 3 255 1.1916 1.0863 1.0471 
Exp 4 264 1.1733 1.1136 1.0606 Exp 4 254 1.1869 1.0906 1.0512 
Exp 5 263 1.1689 1.1179 1.0646 Exp 5 256 1.1963 1.0820 1.0430 
Exp 6 263 1.1689 1.1179 1.0646 Exp 6 256 1.1963 1.0820 1.0430 
Exp 7 268 1.1911 1.0970 1.0448 Exp 7 254 1.1869 1.0906 1.0512 
Exp 8 266 1.1822 1.1053 1.0526 Exp 8 256 1.1963 1.0820 1.0430 
Exp 9 266 1.1822 1.1053 1.0526 Exp 9 257 1.2009 1.0778 1.0389 
Exp 10 264 1.1733 1.1136 1.0606 Exp 10 255 1.1916 1.0863 1.0471 
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Data set 5 
Ratio to  

LB Data set 6 
Ratio to  

LB 
LB 248   

Stage Configuration       
2-1-2-1 LB 234   

Stage Configuration        
2-1-2-1 

SH1 312 1.2581 Buffers size = 3 SH1 307 1.3120 Buffers size = 3 
SH2 319 1.2863     SH2 294 1.2564   
PBFFS 302 1.2177     PBFFS 282 1.2051     

Data set 
5 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data 
set 6 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 297 1.1976 1.0505 1.0168 Exp 1 270 1.1538 1.0889 1.0444 
Exp 2 300 1.2097 1.0400 1.0067 Exp 2 271 1.1581 1.0849 1.0406 
Exp 3 293 1.1815 1.0648 1.0307 Exp 3 277 1.1838 1.0614 1.0181 
Exp 4 294 1.1855 1.0612 1.0272 Exp 4 277 1.1838 1.0614 1.0181 
Exp 5 290 1.1694 1.0759 1.0414 Exp 5 277 1.1838 1.0614 1.0181 
Exp 6 293 1.1815 1.0648 1.0307 Exp 6 275 1.1752 1.0691 1.0255 
Exp 7 301 1.2137 1.0365 1.0033 Exp 7 277 1.1838 1.0614 1.0181 
Exp 8 291 1.1734 1.0722 1.0378 Exp 8 275 1.1752 1.0691 1.0255 
Exp 9 291 1.1734 1.0722 1.0378 Exp 9 277 1.1838 1.0614 1.0181 
Exp 10 292 1.1774 1.0685 1.0342 Exp 10 277 1.1838 1.0614 1.0181 
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Data set 7 
Ratio to  

LB Data set 8 Ratio to  LB 
LB 224   

Stage Configuration         
2-1-2-1 LB 239   

Stage Configuration         
2-1-2-1 

SH1 297 1.3259 Buffers size = 3 SH1 304 1.2720 Buffers size = 3 
SH2 288 1.2857   SH2 307 1.2845   
PBFFS 276 1.2321     PBFFS 294 1.2301     

Data 
set 7 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA 

Data 
set 8 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio PBFFS  
to  

PBFFS_SA 
Exp 1 262 1.1696 1.0992 1.0534 Exp 1 283 1.1841 1.0742 1.0389 
Exp 2 262 1.1696 1.0992 1.0534 Exp 2 279 1.1674 1.0896 1.0538 
Exp 3 270 1.2054 1.0667 1.0222 Exp 3 278 1.1632 1.0935 1.0576 
Exp 4 269 1.2009 1.0706 1.0260 Exp 4 281 1.1757 1.0819 1.0463 
Exp 5 263 1.1741 1.0951 1.0494 Exp 5 289 1.2092 1.0519 1.0173 
Exp 6 265 1.1830 1.0868 1.0415 Exp 6 283 1.1841 1.0742 1.0389 
Exp 7 268 1.1964 1.0746 1.0299 Exp 7 283 1.1841 1.0742 1.0389 
Exp 8 259 1.1563 1.1120 1.0656 Exp 8 284 1.1883 1.0704 1.0352 
Exp 9 264 1.1786 1.0909 1.0455 Exp 9 279 1.1674 1.0896 1.0538 
Exp 10 266 1.1875 1.0827 1.0376 Exp 10 289 1.2092 1.0519 1.0173 
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Data set 9 Ratio to  LB Data set 10 
Ratio to  

LB 
LB 262   

Stage Configuration         
2-1-2-1 LB 216   

Stage Configuration       
2-1-2-1 

SH1 327 1.2481 Buffers size = 3 SH1 276 1.2778 Buffers size = 3 
SH2 322 1.2290   SH2 285 1.3194   
PBFFS 306 1.1679     PBFFS 267 1.2361     

Data 
set 9 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Data 
set 10 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 298 1.1374 1.0805 1.0268 Exp 1 254 1.1759 1.0866 1.0512 
Exp 2 296 1.1298 1.0878 1.0338 Exp 2 252 1.1667 1.0952 1.0595 
Exp 3 298 1.1374 1.0805 1.0268 Exp 3 251 1.1620 1.0996 1.0637 
Exp 4 300 1.1450 1.0733 1.0200 Exp 4 251 1.1620 1.0996 1.0637 
Exp 5 296 1.1298 1.0878 1.0338 Exp 5 247 1.1435 1.1174 1.0810 
Exp 6 298 1.1374 1.0805 1.0268 Exp 6 251 1.1620 1.0996 1.0637 
Exp 7 300 1.1450 1.0733 1.0200 Exp 7 252 1.1667 1.0952 1.0595 
Exp 8 298 1.1374 1.0805 1.0268 Exp 8 251 1.1620 1.0996 1.0637 
Exp 9 295 1.1260 1.0915 1.0373 Exp 9 251 1.1620 1.0996 1.0637 
Exp 10 301 1.1489 1.0698 1.0166 Exp 10 248 1.1481 1.1129 1.0766 
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Data set 1 Ratio to LB Data set 2 Ratio to LB 
LB 214 - 

Stage Configuration       
3-3-2-2-1 LB 243 - 

Stage Configuration       
3-3-2-2-1 

SH1 313 1.4626 Buffers size = 4 SH1 334 1.3745 Buffers size = 4 
SH2 315 1.4720     SH2 348 1.4321     
RBFFS 320 1.4953     RBFFS 351 1.4444     

Data set 
1 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
2 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 292 1.3645 1.0719 1.0959 Exp 1 328 1.3498 1.0183 1.0701 
Exp 2 297 1.3879 1.0539 1.0774 Exp 2 328 1.3498 1.0183 1.0701 
Exp 3 298 1.3925 1.0503 1.0738 Exp 3 332 1.3663 1.0060 1.0572 
Exp 4 300 1.4019 1.0433 1.0667 Exp 4 328 1.3498 1.0183 1.0701 
Exp 5 295 1.3785 1.0610 1.0847 Exp 5 324 1.3333 1.0309 1.0833 
Exp 6 295 1.3785 1.0610 1.0847 Exp 6 334 1.3745 1.0000 1.0509 
Exp 7 292 1.3645 1.0719 1.0959 Exp 7 330 1.3580 1.0121 1.0636 
Exp 8 287 1.3411 1.0906 1.1150 Exp 8 328 1.3498 1.0183 1.0701 
Exp 9 290 1.3551 1.0793 1.1034 Exp 9 329 1.3539 1.0152 1.0669 
Exp 10 292 1.3645 1.0719 1.0959 Exp 10 326 1.3416 1.0245 1.0767 
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Data set 3 Ratio to LB Data set 4 Ratio to LB 
LB 226 - 

Stage Configuration       
3-3-2-2-1 LB 222 - 

Stage Configuration       
3-3-2-2-1 

SH1 331 1.4646 Buffers size = 4 SH1 305 1.3739 Buffers size = 4 
SH2 333 1.4735     SH2 319 1.4369     
RBFFS 338 1.4956     RBFFS 329 1.4820     

Data set 
3 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
4 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA 
Exp 1 301 1.3319 1.0997 1.1229 Exp 1 303 1.3649 1.0066 1.0858 
Exp 2 311 1.3761 1.0643 1.0868 Exp 2 306 1.3784 0.9967 1.0752 
Exp 3 313 1.3850 1.0575 1.0799 Exp 3 300 1.3514 1.0167 1.0967 
Exp 4 307 1.3584 1.0782 1.1010 Exp 4 304 1.3694 1.0033 1.0822 
Exp 5 309 1.3673 1.0712 1.0939 Exp 5 294 1.3243 1.0374 1.1190 
Exp 6 306 1.3540 1.0817 1.1046 Exp 6 303 1.3649 1.0066 1.0858 
Exp 7 297 1.3142 1.1145 1.1380 Exp 7 301 1.3559 1.0133 1.0930 
Exp 8 305 1.3496 1.0852 1.1082 Exp 8 306 1.3784 0.9967 1.0752 
Exp 9 305 1.3496 1.0852 1.1082 Exp 9 312 1.4054 0.9776 1.0545 
Exp 10 309 1.3673 1.0712 1.0939 Exp 10 304 1.3694 1.0033 1.0822 
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Data set 5 Ratio to LB Data set 6 Ratio to LB 
LB 264 - 

Stage Configuration       
3-3-2-2-1 LB 247   

Stage Configuration        
3-3-2-2-1 

SH1 363 1.3750 Buffers size = 4 SH1 348 1.4089 Buffers size = 4 
SH2 377 1.4280     SH2 353 1.4291     
RBFFS 376 1.4242     RBFFS 361 1.4615     

Data set 
5 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA Data set 6 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 355 1.3447 1.0225 1.0592 Exp 1 339 1.3725 1.0265 1.0649 
Exp 2 356 1.3485 1.0197 1.0562 Exp 2 339 1.3725 1.0265 1.0649 
Exp 3 353 1.3371 1.0283 1.0652 Exp 3 334 1.3522 1.0419 1.0808 
Exp 4 357 1.3523 1.0168 1.0532 Exp 4 335 1.3563 1.0388 1.0776 
Exp 5 348 1.3182 1.0431 1.0805 Exp 5 333 1.3482 1.0450 1.0841 
Exp 6 357 1.3523 1.0168 1.0532 Exp 6 331 1.3401 1.0514 1.0906 
Exp 7 352 1.3333 1.0313 1.0682 Exp 7 331 1.3401 1.0514 1.0906 
Exp 8 352 1.3333 1.0313 1.0682 Exp 8 331 1.3401 1.0514 1.0906 
Exp 9 346 1.3106 1.0491 1.0867 Exp 9 332 1.3441 1.0482 1.0873 
Exp 10 352 1.3333 1.0313 1.0682 Exp 10 328 1.3279 1.0610 1.1006 
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Data set 7 Ratio to LB Data set 8 Ratio to LB 
LB 239   

Stage Configuration       
3-3-2-2-1 LB 243   

Stage Configuration       
3-3-2-2-1 

SH1 329 1.3766 Buffers size = 4 SH1 355 1.4609 Buffers size = 4 
SH2 352 1.4728     SH2 355 1.4609     
RBFFS 346 1.4477     RBFFS 365 1.5021     

Data set 
7 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
8 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 316 1.3222 1.0411 1.0949 Exp 1 342 1.4074 1.0380 1.0673 
Exp 2 316 1.3222 1.0411 1.0949 Exp 2 331 1.3621 1.0725 1.1027 
Exp 3 317 1.3264 1.0379 1.0915 Exp 3 336 1.3827 1.0565 1.0863 
Exp 4 312 1.3054 1.0545 1.1090 Exp 4 335 1.3786 1.0597 1.0896 
Exp 5 320 1.3389 1.0281 1.0813 Exp 5 339 1.3951 1.0472 1.0767 
Exp 6 318 1.3305 1.0346 1.0881 Exp 6 339 1.3951 1.0472 1.0767 
Exp 7 317 1.3264 1.0379 1.0915 Exp 7 330 1.3580 1.0758 1.1061 
Exp 8 320 1.3389 1.0281 1.0813 Exp 8 337 1.3868 1.0534 1.0831 
Exp 9 318 1.3305 1.0346 1.0881 Exp 9 345 1.4198 1.0290 1.0580 
Exp 10 313 1.3096 1.0511 1.1054 Exp 10 337 1.3868 1.0534 1.0831 
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Data set 9 Ratio to LB Data set 10 Ratio to LB 
LB 268  

Stage Configuration       
3-3-2-2-1 LB 227   

Stage Configuration       
3-3-2-2-1 

SH1 378 1.4104 Buffers size = 4 SH1 311 1.3700 Buffers size = 4 
SH2 379 1.4142     SH2 339 1.4934     
RBFFS 384 1.4328     RBFFS 322 1.4185     

Data set 
9 RBFFS_SA 

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA

Ratio 
RBFFS to 

RBFFS_SA
Data set 
10 RBFFS_SA

Ratio 
RBFFS_SA 

to LB 

Ratio  Best 
SH to 

RBFFS_SA 

Ratio 
RBFFS to 

RBFFS_SA
Exp 1 364 1.3582 1.0385 1.0549 Exp 1 302 1.3304 1.0298 1.0662 
Exp 2 368 1.3731 1.0272 1.0435 Exp 2 301 1.3260 1.0332 1.0698 
Exp 3 356 1.3284 1.0618 1.0787 Exp 3 297 1.3084 1.0471 1.0842 
Exp 4 357 1.3321 1.0588 1.0756 Exp 4 304 1.3392 1.0230 1.0592 
Exp 5 364 1.3582 1.0385 1.0549 Exp 5 303 1.3348 1.0264 1.0627 
Exp 6 368 1.3731 1.0272 1.0435 Exp 6 300 1.3216 1.0367 1.0733 
Exp 7 364 1.3582 1.0385 1.0549 Exp 7 300 1.3216 1.0367 1.0733 
Exp 8 362 1.3507 1.0442 1.0608 Exp 8 295 1.2996 1.0542 1.0915 
Exp 9 361 1.3470 1.0471 1.0637 Exp 9 295 1.2996 1.0542 1.0915 
Exp 10 364 1.3582 1.0385 1.0549 Exp 10 299 1.3172 1.0401 1.0769 
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Data set 1 Ratio to  LB Data set 2 
Ratio to  

LB 
LB 214 - 

Stage Configuration       
3-3-2-2-1 LB 243 - 

Stage Configuration       
3-3-2-2-1 

SH1 313 1.4626 Buffers size = 4 SH1 334 1.3745 Buffers size = 4 
SH2 315 1.4720     SH2 348 1.4321     
PBFFS 297 1.3879     PBFFS 328 1.3498     

Data set 1 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA

Data set 
2 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 287 1.3411 1.0906 1.0348 Exp 1 325 1.3374 1.0277 1.0092 
Exp 2 287 1.3411 1.0906 1.0348 Exp 2 319 1.3128 1.0470 1.0282 
Exp 3 288 1.3458 1.0868 1.0313 Exp 3 322 1.3251 1.0373 1.0186 
Exp 4 285 1.3318 1.0982 1.0421 Exp 4 318 1.3086 1.0503 1.0314 
Exp 5 286 1.3364 1.0944 1.0385 Exp 5 318 1.3086 1.0503 1.0314 
Exp 6 286 1.3364 1.0944 1.0385 Exp 6 319 1.3128 1.0470 1.0282 
Exp 7 285 1.3318 1.0982 1.0421 Exp 7 323 1.3292 1.0341 1.0155 
Exp 8 291 1.3598 1.0756 1.0206 Exp 8 321 1.3210 1.0405 1.0218 
Exp 9 289 1.3505 1.0830 1.0277 Exp 9 320 1.3169 1.0438 1.0250 
Exp 10 289 1.3505 1.0830 1.0277 Exp 10 321 1.3210 1.0405 1.0218 
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Data set 3 
Ratio to  

LB Data set 4 
Ratio to  

LB 
LB 226 - 

Stage Configuration       
3-3-2-2-1 LB 222 - 

Stage Configuration       
3-3-2-2-1 

SH1 331 1.4646 Buffers size = 4 SH1 305 1.3739 Buffers size = 4 
SH2 333 1.4735     SH2 319 1.4369     
PBFFS 326 1.4425     PBFFS 296 1.3333     

Data set 
3 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data set 
4 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 296 1.3097 1.1182 1.1014 Exp 1 294 1.3243 1.0374 1.0068 
Exp 2 292 1.2920 1.1336 1.1164 Exp 2 295 1.3288 1.0339 1.0034 
Exp 3 295 1.3053 1.1220 1.1051 Exp 3 290 1.3063 1.0517 1.0207 
Exp 4 295 1.3053 1.1220 1.1051 Exp 4 292 1.3153 1.0445 1.0137 
Exp 5 296 1.3097 1.1182 1.1014 Exp 5 294 1.3243 1.0374 1.0068 
Exp 6 293 1.2965 1.1297 1.1126 Exp 6 293 1.3198 1.0410 1.0102 
Exp 7 296 1.3097 1.1182 1.1014 Exp 7 294 1.3243 1.0374 1.0068 
Exp 8 298 1.3186 1.1107 1.0940 Exp 8 296 1.3333 1.0304 1.0000 
Exp 9 292 1.2920 1.1336 1.1164 Exp 9 294 1.3243 1.0374 1.0068 
Exp 10 293 1.2965 1.1297 1.1126 Exp 10 290 1.3063 1.0517 1.0207 
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Data set 5 
Ratio to  

LB Data set 6 
Ratio to  

LB 
LB 264 - 

Stage Configuration       
3-3-2-2-1 LB 247   

Stage Configuration        
3-3-2-2-1 

SH1 363 1.3750 Buffers size = 4 SH1 348 1.4089 Buffers size = 4 
SH2 377 1.4280     SH2 353 1.4291     
PBFFS 358 1.3561     PBFFS 330 1.3360     

Data set 
5 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Data 
set 6 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Exp 1 339 1.2841 1.0708 1.0560 Exp 1 324 1.3117 1.0741 1.0185 
Exp 2 345 1.3068 1.0522 1.0377 Exp 2 318 1.2874 1.0943 1.0377 
Exp 3 343 1.2992 1.0583 1.0437 Exp 3 324 1.3117 1.0741 1.0185 
Exp 4 340 1.2879 1.0676 1.0529 Exp 4 323 1.3077 1.0774 1.0217 
Exp 5 340 1.2879 1.0676 1.0529 Exp 5 323 1.3077 1.0774 1.0217 
Exp 6 342 1.2955 1.0614 1.0468 Exp 6 324 1.3117 1.0741 1.0185 
Exp 7 343 1.2992 1.0583 1.0437 Exp 7 324 1.3117 1.0741 1.0185 
Exp 8 347 1.3144 1.0461 1.0317 Exp 8 320 1.2955 1.0875 1.0313 
Exp 9 345 1.3068 1.0522 1.0377 Exp 9 321 1.2996 1.0841 1.0280 
Exp 10 336 1.2727 1.0804 1.0655 Exp 10 324 1.3117 1.0741 1.0185 
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Data set 7 
Ratio to  

LB Data set 8 Ratio to  LB 
LB 239   

Stage Configuration         
3-3-2-2-1 LB 243   

Stage Configuration         
3-3-2-2-1 

SH1 329 1.3766 Buffers size = 4 SH1 355 1.4609 Buffers size = 4 
SH2 352 1.4728     SH2 355 1.4609     
PBFFS 323 1.3515     PBFFS 342 1.4074     

Data set 
7 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA 

Data set 
8 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio PBFFS  
to  

PBFFS_SA 
Exp 1 311 1.3013 1.0579 1.0386 Exp 1 326 1.3416 1.0890 1.0491 
Exp 2 308 1.2887 1.0682 1.0487 Exp 2 331 1.3621 1.0725 1.0332 
Exp 3 309 1.2929 1.0647 1.0453 Exp 3 330 1.3580 1.0758 1.0364 
Exp 4 307 1.2845 1.0717 1.0521 Exp 4 324 1.3333 1.0957 1.0556 
Exp 5 308 1.2887 1.0682 1.0487 Exp 5 325 1.3374 1.0923 1.0523 
Exp 6 307 1.2845 1.0717 1.0521 Exp 6 328 1.3498 1.0823 1.0427 
Exp 7 302 1.2636 1.0894 1.0695 Exp 7 329 1.3539 1.0790 1.0395 
Exp 8 313 1.3096 1.0511 1.0319 Exp 8 329 1.3539 1.0790 1.0395 
Exp 9 306 1.2803 1.0752 1.0556 Exp 9 332 1.3663 1.0693 1.0301 
Exp 10 310 1.2971 1.0613 1.0419 Exp 10 334 1.3745 1.0629 1.0240 
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Data set 9 Ratio to  LB Data set 10 
Ratio to  

LB 
LB 268  

Stage Configuration         
3-3-2-2-1 LB 227   

Stage Configuration       
3-3-2-2-1 

SH1 378 1.4104 Buffers size = 4 SH1 311 1.3700 Buffers size = 4 
SH2 379 1.4142     SH2 339 1.4934     
PBFFS 356 1.3284     PBFFS 302 1.3304     

Data set 
9 PBFFS_SA 

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA 

Ratio 
PBFFS  to  
PBFFS_SA

Data set 
10 PBFFS_SA

Ratio 
PBFFS_SA  

to  LB 

Ratio  Best 
SH  to  

PBFFS_SA

Ratio 
PBFFS  to  
PBFFS_SA 

Exp 1 350 1.3060 1.0800 1.0171 Exp 1 290 1.2775 1.0724 1.0414 
Exp 2 353 1.3172 1.0708 1.0085 Exp 2 293 1.2907 1.0614 1.0307 
Exp 3 351 1.3097 1.0769 1.0142 Exp 3 293 1.2907 1.0614 1.0307 
Exp 4 351 1.3097 1.0769 1.0142 Exp 4 289 1.2731 1.0761 1.0450 
Exp 5 350 1.3060 1.0800 1.0171 Exp 5 290 1.2775 1.0724 1.0414 
Exp 6 346 1.2910 1.0925 1.0289 Exp 6 290 1.2775 1.0724 1.0414 
Exp 7 349 1.3022 1.0831 1.0201 Exp 7 293 1.2907 1.0614 1.0307 
Exp 8 345 1.2873 1.0957 1.0319 Exp 8 288 1.2687 1.0799 1.0486 
Exp 9 354 1.3209 1.0678 1.0056 Exp 9 293 1.2907 1.0614 1.0307 
Exp 10 352 1.3134 1.0739 1.0114 Exp 10 291 1.2819 1.0687 1.0378 
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