
Graduate Theses, Dissertations, and Problem Reports

2006

Minimizing the makespan in a flexible flowshop with sequence Minimizing the makespan in a flexible flowshop with sequence

dependent setup times, uniform machines, and limited buffers dependent setup times, uniform machines, and limited buffers

Bret Crowder
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Crowder, Bret, "Minimizing the makespan in a flexible flowshop with sequence dependent setup times,
uniform machines, and limited buffers" (2006). Graduate Theses, Dissertations, and Problem Reports.
4220.
https://researchrepository.wvu.edu/etd/4220

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4220?utm_source=researchrepository.wvu.edu%2Fetd%2F4220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Minimizing the Makespan in a Flexible Flowshop with
Sequence Dependent Setup Times, Uniform Machines, and

Limited Buffers

Bret Crowder

Thesis submitted to the
College of Engineering and Mineral Resources

West Virginia University
In partial fulfillment of the requirements

For the degree of

Master of Science
In

Industrial Engineering

Wafik Iskander, Ph.D., Chair
Bhaskaran Gopalakrishnan, Ph.D.

Alan R. McKendall, Ph.D.

Department of Industrial and Management Systems Engineering

Morgantown, West Virginia
2006

Keywords: Flexible Flowshop, Makespan, Sequence Dependent Setup Times,
Uniform Machines, Scheduling, Simulated Annealing, Lower Bound, Limited
Buffers

Abstract

This research addresses the problem of minimizing the makespan in a flexible flowshop
with sequence dependent setup times, uniform machines, and limited buffers. A
mathematical model was developed to solve this problem. The problem is NP-Hard in
the strong sense and only very small problems could be solved optimally. For exact
methods, the computation times are long and not practical even when the problems are
relatively small. Two construction heuristics were developed that could find solutions
quickly. Also a simulated annealing heuristic was constructed that improved the
solutions obtained from the construction heuristics. The combined heuristics could
compute a good solution in a short amount of time. The heuristics were tested in three
different environments: 3 stages, 4 stages, and 5 stages. To assess the quality of the
solutions, a lower bound and two simple heuristics were generated for comparison
purposes. The proposed heuristics showed steady improvement over the simple
heuristics. When compared to the lower bounds, the heuristics performed well for the
smaller environment, but the performance quality decreased as the number of stages
increased. The combination of these heuristics defiantly shows promise for solving the
problem.

Acknowledgments

I would like to thank Dr. Iskander for guidance and support while working on this

thesis. His door was always open and he was always willing to help. While in graduate

school I’ve enjoyed taking his classes and working with him in the Industrial Assessment

Center. I would like to thank Dr. Gopala for his input on my research and for the

responsibilities that he has given me through the Industrial Assessment Center. While

working under him I’ve learned a great deal about energy and about the softer skills of

dealing with people that are not taught in the classroom. Even after leaving WVU I will

continue to benefit from my experience in the IAC working under these two Professors.

I would like to thank Dr. McKendall for his input on my research and for his

guidance while taking his classes in the graduate program. His IENG 350 course sparked

my interest in the operations research field and was one of the factors in my decision to

come to graduate school.

Last I would like to thank Dr. Plummer for taking me in at the IAC. Working at

the IAC helped me finance my degree. While working under Dr. Plummer I learned

about focusing on the important issues and how to work with people. Also working with

the other students in the IAC helped me to integrate into the graduate program.

 iii

Table of Contents:

Abstract ... ii
List of Tables ... vi
List of Figures ... vii
List of Acronyms .. vii
1 Introduction... 1
2 Literature Review.. 7

2.1 Flowshop Scheduling Overview.. 7
2.2 Exact Solution Methods... 9

2.2.1 Flowshop... 9
2.2.2 Flexible Flowshop Exact Methods.. 11

2.3 Heuristic Methods.. 12
2.3.1 Flowshop... 12

2.3.1.1 Classic Flowshop Methods ... 12
2.3.1.2 Recent Flowshop Heuristics ... 13
2.3.1.3 Flowshop with Setup/Buffers ... 15

2.3.2 Flowshop Heuristics Using Meta-heuristics .. 17
2.3.3 Flowshop Scheduling Using Combination of Meta-heuristics 20

2.4 Flexible Flowshop Heuristics .. 21
2.4.1 Two-Stage Flexible Flowshop .. 22
2.4.2 Three-Stage Flexible Flowshop .. 25
2.4.3 General Flexible Flowshop... 25
2.4.4 Flexible Flowshop Bottleneck Heuristics ... 27
2.4.5 Flexible Flowshop with Setup Times/Buffers .. 28
2.4.6 Flexible Flowshop Using Meta-heuristics .. 30
2.4.7 Flexible Flowshop with limited buffers Using Meta-heuristics 31
2.4.9 Flexible Flowshop with Setup Times Using Meta-heuristics 31

2.5 Simulated Annealing.. 32
3 Problem Statement and Objectives of Research ... 34

3.1 Problem Statement ... 34
3.2 Problem Assumptions .. 35
3.3 Objectives and Methodology of Research ... 37

4 Mathematical Model ... 38
5 Heuristics .. 43

5.1 RBFFS Construction Heuristic .. 44
5.2 RBFFS Construction Heuristic Example ... 46
5.3 RBFFS Simulated Annealing Heuristic ... 55
5.4 Route Based Simulated Annealing Example .. 62
5.5 PBFFS Construction Heuristic... 62
5.6 PBFFS Construction Heuristic Example ... 64

6 Lower Bound .. 71
6.1 Step 1 of the Lower Bound .. 74
6.2 Step 2 of the Lower Bound .. 75

 iv

6.3 Step 3 of the Lower Bound .. 79
7 Simple Heuristics .. 80

7.1 Simple Heuristic One... 80
7.2 Simple Heuristic Two .. 81

8 Experimentation.. 83
8.1 Problem Instances .. 83
8.2 Data Generation ... 84
8.3 Experimentation Overview .. 86
8.4 Simulated Annealing Parameters... 86
8.5 Experimentation Results .. 87

9 Conclusion .. 92
9.1 Overview of Research.. 92
9.2 Contribution to Literature: ... 94
9.3 Recommendations for Future Research:.. 94

10 References... 96
Appendix A: Experimental Results .. 107

 v

List of Tables
Table 4-1 Mathematical Model Nomenclature ... 38
Table 5-1 Construction Heuristic Ex. Process Times Stage 1 .. 46
Table 5-2 Construction Heuristic Ex. Setup Times Stage 1 ... 47
Table 5-3 Construction Heuristic Ex. Process Times Stage 2 .. 47
Table 5-4 Construction Heuristic Ex. Setup Times Stage 2 ... 47
Table 5-5 Construction Heuristic Ex. Process Times Stage 3 .. 47
Table 5-6 Construction Heuristic Ex. Setup Times Stage 3 ... 48
Table 5-7 Step 1 of RBFFS Example. .. 48
Table 5-8 Step 2 of RBFFS Example. .. 48
Table 5-9 Priority Routing for RBFFS Example. ... 49
Table 5-10 RBFFS Makespan for Sequence {3, 2}.. 50
Table 5-11 RBFFS Makespan for Sequence {2, 3}.. 50
Table 5-12 RBFFS Makespan for Sequence {3, 2, 4}.. 51
Table 5-13 RBFFS Makespan for Sequence {3, 4, 2}.. 51
Table 5-14 RBFFS Makespan for Sequence {4, 3, 2}.. 52
Table 5-15 RBFFS Makespan for Sequence {3, 4, 2, 1}.. 52
Table 5-16 RBFFS Makespan for Sequence {3, 4, 1, 2}.. 53
Table 5-17 RBFFS Makespan for Sequence {3, 1, 4, 2}.. 53
Table 5-18 RBFFS Makespan for Sequence {1, 3, 4, 2}.. 54
Table 5-19 Simulated Annealing Nomenclature... 56
Table 5-20 Step 1 of PBFFS Example.. 65
Table 5-21 Step 2 and 3 of PBFFS Example. ... 65
Table 5-22 PBFFS Makespan for Priority {3, 2} ... 66
Table 5-23 PBFFS Makespan for Priority {2, 3} ... 66
Table 5-24 PBFFS Makespan for Priority {3, 2, 4} ... 67
Table 5-25 PBFFS Makespan for Priority {3, 4, 2} ... 67
Table 5-26 PBFFS Makespan for Priority {4, 3, 2} ... 68
Table 5-27 PBFFS Makespan for Priority {3, 4, 2, 1} ... 69
Table 5-28 PBFFS Makespan for Priority {3, 4, 1, 2} ... 69
Table 5-29 PBFFS Makespan for Priority {3, 1, 4, 2} ... 69
Table 5-30 PBFFS Makespan for Priority {1, 3, 4, 2} ... 70
Table 6-1Lower Bound Nomenclature ... 71
Table 6-2 Lower Bound Example Stage 1 Processing Times... 73
Table 6-3 Lower Bound Example Setup Times.. 73
Table 6-4Lower Bound Example Stage 2 Processing Times.. 73
Table 6-5 Lower Bound Example Stage 3 Processing Times... 73
Table 6-6 Lower Bound Example Stage 4 Processing Times... 73
Table 6-7 Step 2 Lower Bound... 76
Table 6-8 Step 3 Lower Bound... 79
Table 7-1 SH1 Example Gantt Chart ... 81
Table 7-2 Sum of Base Processing Times .. 81
Table 7-3 SH2 Example Gantt Chart .. 82
Table 8-1 Experiment Nomenclature.. 85
Table 8-2 Experimentation Results for the 3-1-2 Environment.. 89

 vi

Table 8-3 Experimentation Results for the 2-1-2-1 Environment 90
Table 8-4 Experimentation Results for the 3-3-2-2-1 Environment................................ 91

List of Figures
Figure 1.1 Complexity Hierarchy of Deterministic Scheduling Environment (Pinedo,

2002) ... 3
Figure 3.1 Flexible Flowshop with limited Buffers.. 35
Figure 5.1 Simulated Annealing Process Flow Diagram4.. 59
Figure 5.1 cont: Simulated Annealing Process Flow Diagram... 60
Figure 5.1 cont: Simulated Annealing Process Flow Diagram... 61

List of Acronyms
AIS = Artificial Immune System

BB = Branch and Bound

CDS = Flowshop algorithm developed by Campbell, Dudek, and Smith

CDS2 = Combination of CDS with RA

CMD = Cumulative Minimum Deviation

ECTH = Earliest Completion Time Heuristic

EFM = Earliest Finished Machine

FAMH = Fastest Available Machine Heuristic

FCFS = First Come First Serve

FFS = Flexible Flowshop

FIFO = First In First Out

FS = Flowshop

GA = Genetic Algorithm

GCMD = Generalized Cumulative Minimum Deviation Rule developed by

 Narasimham

Ho = Algorithm developed by Ho (1995)

LB = Lower Bound

LBJD = Least Total Weighted Between-Jobs Delay

LP = Linear Programming

LPT = Longest Processing Time

LR = Lagrangian Relaxation

 vii

LSM = Latest Start Machine

MD = Minimum Deviation

MH = Mixed Heuristic

MIP = Mixed Integer Program

NEH = Flowshop algorithm developed by Nawaz, Enscore, and Ham

NP = Non-polynomial

PAM = Modified version of Palmer’s algorithm

PBFFS = Priority Based Construction Heuristic

PBFFS_SA = Priority Based Simulated Annealing Heuristic

PBI = Progressive Bottleneck Improvement

RA = Rapid Access algorithm developed by Dannenbring

RAES = Rapid Access with Extensive Search algorithm developed by

Dannenbring

RBFFS = Route Based Construction Heuristic

RBFFS_SA = Route Based Simulated Annealing Heuristic

SA = Simulated Annealing

SDST = Sequence Dependent Setup Times

SH1 = First Come First Serve Simple Heuristic

SH2 = Largest Processing Time Simple Heuristic

SPT = Shortest Processing Time

TS = Tabu Search

TSP = Traveling Salesman Problem

 viii

1 Introduction

Scheduling and sequencing is a form of decision making that plays an important

role in manufacturing and service industries. Scheduling is the allocation of resources to

perform a set of tasks over time and sequencing is the order in which the tasks are

performed. Resources can be a number of things such as, machines, workstations in a

factory, operators, personal, delivery trucks, office workers, taxis, or runways in an

airport. The products that are being processed are usually referred to as jobs and each one

of these jobs has a specific set of tasks assigned to it. These problems arise whenever

there is a choice to be made on the order in which a number of tasks can be performed

and by using which resources. Many scheduling problems are solved by chance,

scheduling the tasks in the order they arrive (First in First Out) (Conway et al., 1967).

This works in some instances such as purchasing tickets to an event or placing an order at

a fast food restaurant. However, in a manufacturing environment this approach can waste

valuable time and money. Even when scheduling systems are used, many times they are

developed by the operator with objectives that differ from the company’s objectives. The

operators may only be worried about their workstation and choose jobs based on what

will be easiest on them, without concern about other stations. In a flowshop environment

this may result in starving stations downstream, or blocking stations upstream.

Sometimes these scheduling rules will result in local optima, but when they are all put

together the entire system will suffer. In today’s global market place with fierce

competition, an efficient schedule can be very useful in reducing processing costs and

lead times. Scheduling also has an important role in lean manufacturing, which uses

scheduling to level production loads. As long as companies and businesses face capacity

 1

constraints, there will be a need for effective scheduling. Scheduling and sequencing

involve decision making and by studying these problems we can learn about decision

making, and apply it to other areas as well, so it has general practical value (Baker,

1974).

The first notable person to start working on the scheduling problem was Henry

Gantt in the early 1900’s. Various forms of the Gantt chart that he developed are still

used today to represent schedules by scheduling software systems. The first papers on

scheduling did not appear until the 1950’s and they were authored by scheduling pioneers

such as S.M. Johnson, W.E. Smith, and J.R. Jackson (Pinedo, 2002). Since that time a

great deal of literature has been devoted to scheduling research. Within scheduling, there

are infinite numbers of different problem situations that can be studied. The two main

categories are dynamic and static schedules. Dynamic scheduling involves systems that

are constantly changing, new jobs can enter or jobs can leave the scheduling

environment. In static scheduling systems, the available resources and the number of

jobs are known and fixed. Scheduling systems can be further broken down into

deterministic and stochastic. In the static, deterministic environment, the number of jobs

is fixed and all job data are known, such as processing times. In the static, stochastic

environment, the number of jobs is still fixed, but the job data may not be known with

certainty. This paper deals with the deterministic static scheduling environment, which

will be discussed further. The deterministic static scheduling complexity hierarchy is

listed in Figure 1.

 2

Single Machine
1

Parallel
2

Flowshop
3

Open Shop
4

Parallel with

 Uniform Machines
5

Flexible Flowshop
6

Job Shop
7

Random Shop
8

Flexible Job Shop
9

Figure 1.1 Complexity Hierarchy of Deterministic Scheduling Environment (Pinedo,

2002)

(1) The single machine environment is the simplest of all forms, each job j must be

processed on one machine.

(2) The parallel machine environment involves one stage where there are multiple

identical machines, and each job j must be processed on one of the machines.

 3

(3) In the flowshop there are m machines arranged in a series and each job j must be

processed on each machine and all jobs must follow the same route. Usually jobs

are assumed to move through the system in a first in first out manner.

(4) In the open shop each job j must be processed on each of m machines, but some of

the processing times may be zero. Also there are no restrictions on the routing of

the jobs and each job may have a different route.

(5) The parallel machine environment with uniform machines consists of m machines

in parallel, but with different speeds. The processing time depends on which

machine the job is processed on and is calculated by dividing the processing time

by the machine speed.

(6) The flexible flowshop is a combination of the flowshop and the parallel

environment. There is a number of stages in series with each stage having one or

more identical machines in parallel. Each job j must be processed on exactly one

machine at each stage and the queues may or may not operate on the first in first

out or last in first out basis.

(7) A job shop has m machines and each job j has a predetermined route to follow. In

some cases a job may visit a machine more than once.

(8) The random shop is very similar to the parallel machine environment with

uniform machines. In the random shop there are m machines in parallel with

varying speeds, but the machine speeds may be different for each job.

(9) The flexible job shop is a combination of the job shop and parallel machine

environments. The flexible job shop consists of work stations with a number of

 4

identical machines in parallel at each station. Each job has its predetermined

route and it must visit one machine at each work station on its route.

Flexible flowshops are a common occurrence in many industries. If the processing

times at one stage dominate others, then it is common to add another machine. If

changes in demand occur, new machines may be purchased over time and have

varying speeds. When the machines or resources are costly, the older versions may

not be discarded because they still have some value, even if they are not as fast as the

newer models.

Most scheduling problems studied in the literature consider setup times to be

included in the processing times. This can affect the quality of the solution if setup

times differ based on the preceding jobs. Setup times usually consist of preparing

tools, setting jigs, setting fixtures, and positioning the job. Since some jobs may be

similar in the work they require, it may require smaller time for set up between these

jobs and vice versa. When jobs are waiting for setup, no value is added and in some

instances the setup time is directly related to cost, so if the setup times are not

properly accounted, time and money could be wasted (Allahverdi, 1999).

This research studies a combination of the flowshop and the parallel shop with

uniform machines. The problem considers a flexible flowshop with uniform

machines, sequence dependent setup times and limited buffers with the objective of

minimizing the makespan. This problem is strongly NP hard (Pinedo, 2002), which

means that it belongs to a class of problems that are still NP hard even when all

numbers in the input are bounded by some polynomial in the length of the input

 5

(National Institute of Standards and Technology <http://www.nist.gov>). As a result

finding optimal solutions is not practical for large problems. A construction heuristic

will be developed based on the flowshop scheduling algorithm of Nawaz et al.

(1983). This algorithm uses a priority list that gives preference to jobs with larger

processing times and looks at [n(n+1)/2] -1 solutions instead of all n! solutions; where

n equals the number of jobs. This drastically reduces the number of possible

solutions considered; for example, for a problem consisting of 5 jobs there are 120

possible solutions, but this algorithm will only look at 14 solutions. After the initial

solution is constructed a simulated annealing algorithm will be used to improve the

initial solution.

In this research, “job” refers to a product, “machine” refers to a resource that can

perform any one of a number of tasks, and “stage” refers to a set of one or more

machines in a group that can all perform the same tasks. The jobs need to be

processed at every stage in chronological order, and they can be processed on any

machine at any given stage. Each stage may have one or more machines and the

machines may have differing speeds.

 6

2 Literature Review

2.1 Flowshop Scheduling Overview

Since the pioneering work of Johnson (1954), many researchers have studied

various forms of the flowshop scheduling problem. In an article by Dudek et al. (1992), a

review is done of flowshop scheduling and it is concluded that the flowshop scheduling

problem is a mathematically challenging problem. Some have tried exact approaches

such as branch and bound or mixed integer programming. These approaches are useful in

understanding the problem structure, but are only practical in solving very small

problems. The majority of the work on flowshop scheduling has been devoted to

heuristics. The heuristics are designed to find optimal or near optimal solutions in a

reasonable time period. Taillard (1993) gives data for testing permutation flowshop

schedules. Many papers have referenced his article and tested heuristics against the data

and lower bounds presented for makespan minimization. Unless otherwise stated, the

objective function of each algorithm in this literature review is to minimize the

makespan, which is the time period between when the first job starts processing on the

first stage to the time when the last job is finished at the final stage. Since the focus of

this research is on the static and deterministic scheduling situations, only those will be

considered in this review.

The scheduling literature is so vast that any literature search needs to be selective.

The theory of sequencing and scheduling is unlimited in problem types. Lawler et al.

(1993) presented a survey on deterministic machine scheduling. They discussed

complexity and approximation algorithms for problems involving single machine,

parallel machines, open shops, flowshops, and job shops. Sequencing and scheduling is

 7

concerned with the optimal allocation of resources to activities over time. A machine is a

resource that can perform at most one activity at a time, and activities are considered to

be jobs that can be worked on by at most one machine at a time (Lawler et al., 1993).

Four of the major approaches to dealing with static sequencing are: (1) combinatorial

approaches, which change jobs from one permutation to another, (2) general

mathematical programming, (3) heuristics, and (4) Monte Carlo sampling (Day and

Hottenstein, 1970).

 The flexible flowshop is a case of the flowshop where at each stage there may be one

or more machines. When there is more than one machine at a stage, three major issues

need to be considered (1) which machines will process which jobs, (2) in which order the

machines will process the jobs, and (3) how to decide if the schedule is good or not.

There can be many reasons to add machines at a stage such as to increase throughput and

reduce the problem of a bottleneck. Also, adding another machine may increase the

system reliability and flexibility. If machines are added at different time periods, they

may have different speeds resulting in what is termed as uniform machines (Cheng, T.,

1990). Linn and Zhang (1999) presented a survey on the flexible flowshop. They stated

that most of the research can be grouped into three main categories: 2-stage, 3-stage, and

>3-stage. There is not much research reported in the literature on uniform machines

which considers setup times. In most of the flowshop scheduling research, the setup

times are assumed to be included in the processing times, but in reality that may not be

the case. When a machine changes from processing one part to another of a different

type, the setup times can be 20%-40% of the processing time. Allahverdi et al. (1999)

presented a review of scheduling research involving setup considerations. Setup may be

 8

needed in obtaining tools, positioning wip, returning tool, cleanup, adjusting tools, setting

fixtures, and inspection. Two major types of setups are sequence-dependent and

sequence-independent. For this research we will be concerned with the first case.

This literature review is not designed to be an in-depth study of the entire field of

scheduling and sequencing research. In order to get a better overview, refer to the

articles mentioned in this section. This research is mainly focused on the flexible

flowshop with buffers, sequence dependent setup times, and uniform machines. Also an

overview of simulated annealing is presented in the last section.

2.2 Exact Solution Methods

2.2.1 Flowshop

The two machine flowshop can easily be solved by Johnson’s algorithm (1954).

However, branch and bound and dynamic programming have been used to solve some

special cases of the two machine flowshop problem. Corwin et al. (1974) presented a

dynamic programming formulation for the two-machine scheduling problem with

sequence dependent setup times at one stage. When the sequence dependent setup times

are at the second stage and there are less than fourteen jobs, dynamic programming is

preferred over branch and bound. Agnetis et al. (1998) used a branch-and-bound

algorithm in the two machine flowshop, where the input buffer of the second machine is

limited. This algorithm can compute optimal or suboptimal solutions for up to 40 jobs.

Other than certain special cases, the flowshop with three or more machines is considered

to be NP-Hard (Garey, 1976 and Koulamas, 1998). Ignall and Schrage (1965) and Lee,

C. et al. (1993) presented branch and bound techniques for the three machine flowshop

 9

problem. Branch and bound algorithms have also been developed for the multiple

machine flowshop, where the number of machines can be greater than three. Carlier et al.

(1996) presented two branch and bound algorithms for the m-machine permutation

flowshop. Both methods use the depth first strategy. The first method could not solve

problems with more than 30 jobs, while the second method could solve up to 50 jobs.

Rios-Mercado and Bard (1999A) presented a branch and bound algorithm for the

permutation flowshop problem with sequence dependent setup times. The setup times

were asymmetric, and lower bounds were calculated by relaxing the problem and

reducing it to the two machine case. An upper bound was found by using GRASP, which

is a heuristic developed by the authors. The setup times used are usually between 20%-

40% of the processing times. Also, the brand and bound procedure permits a partial

enumeration search procedure that can calculate approximate solutions.

There are other special cases of the flowshop scheduling problem that have

special structures which allow them to be modeled as a traveling salesman problem

(TSP). Gupta, J.N.D. (1976) looked at the flowshop scheduling problem with no

intermediate storage and uninterrupted flow. The objective was to minimize the

weighted sum of idle times on machines. The problem was modeled as a TSP and solved

using TSP techniques. Gupta, J.N.D. (1986), also modeled the uninterrupted flowshop

with sequence dependent setup times as a TSP.

 10

2.2.2 Flexible Flowshop Exact Methods

Arthanari et al. (1971) presented a branch and bound algorithm to optimally solve

the special case of the two-stage flexible flowshop (FFS) where there are multiple

machines at the first stage and only one machine at the second. Brah and Hunsucker

(1991) also presented a branch and bound algorithm for the general flexible flowshop

with multiple stages. This algorithm allows for machine idle time and calculates lower

bounds based on jobs, machines, and a composite of both. This enumeration method was

originally used for parallel machines, but has been modified to fit the flexible flowshop.

It optimally solves problems with 4-8 jobs, 2-5 stages, and 2-3 machines at each stage.

Azizoglu et al. (2001) presented a branch and bound algorithm to solve the flexible

flowshop where the solutions are not restricted to permutation schedules. They used

Brah and Hunsucker’s (1991) branching scheme and tested the proposed algorithm on

two data sets, one with small processing times and one with large. The algorithm works

only for small and medium sized problems. Moursli (1995) proposed a branch and bound

approach to solve the multistage flexible flowshop problem with multiple machines at

each stage. He also presented three improvements to Brah and Hunsucker’s algorithm

with three new lower bounds. Portman et al. (1998) presented a branch-and-bound

algorithm crossed with genetic algorithms (GA). They also made improvements to Brah

and Hunsucker’s (1991) lower bound. They used several heuristics to calculate initial

upper bounds, and then GA to improve the search value of the upper bound. By adding

GA, the proof of the optimal solution is found easier and the optimal solution is found

more often. Rajendran et al. (1992) presented a branch and bound algorithm for the

parallel machine flowshop where only permutation schedules are considered. Vignier et

 11

al. (1996) presented a branch and bound approach to minimize the total completion time

in a k-stage flexible flowshop. The upper bound is found by using the shortest processing

time.

Sawik (2002) presented a mixed integer programming approach for the flexible

flowshop. There were limited buffers viewed as machines with zero processing times.

Also in Sawik (2000), two mixed integer programs were presented for the FFS where one

case has buffers and the other does not. Aghezzaf et al. (1998) presented a mixed integer

linear programming model for the flexible flowshop with product and machine dependent

setup times, but it is feasible only for small problems.

2.3 Heuristic Methods

2.3.1 Flowshop

2.3.1.1 Classic Flowshop Methods

Since the pioneer work of Johnson in 1954 to minimize makespan in flowshop

sequencing, many have tried to develop algorithms that can solve the multiple machine

flowshop with the simplicity that his algorithm solved the two machine case. There are

four main classic heuristics that have been studied, referenced, used in comparison, and

used in constructing new algorithms by many researchers. All of the classic heuristics

use permutation schedules. The first is Palmer (1965) who presented a heuristic that

gives priority to jobs whose processing time changes from short to long. The slope order

produces schedules fairly close to optimal. The second classic algorithm CDS was

developed by Campbell, Dudek, and Smith (1970). This procedure can be applied by

hand and generates (m-1) schedule sequences, where m is the total number of machines.

 12

It outperforms Palmer’s, which produces only one sequence. The algorithm can solve for

3-60 jobs and 3-30 machines, or even larger problems. The third classic algorithm was

given by Dannenbring (1977). In his paper, he compares eleven flowshop heuristics,

three of which were previously unreported. Heuristics from previous literature included

Palmer and CDS, but the new heuristic he developed and called Rapid Access with

Extensive Search (RAES) performed the best. Problems were solved with up to 50 jobs

and 50 machines. In the larger problems, RAES found the best solution in 71.25% of the

problems, while the next best rule found the best solution in 18.13% of the problems.

The algorithm also has a neighborhood search strategy that changes neighbors until there

is no improvement. Even though Dannenbring’s algorithm worked well, the best of the

classic algorithms is the fourth, which was presented by Nawaz, Enscore, and Ham

(1983) (NEH). Taillard (1990) and others came to the same conclusion when comparing

the classic heuristics. This algorithm is still considered to be one of the best methods of

constructing initial solution (Koulamas, 1998). Numerous researchers still use NEH in

their construction algorithms before applying an improvement heuristic. NEH is superior

to CDS and all other algorithms developed up to 1983. It uses the assumption that jobs

with more processing times should get a higher priority. The only way CDS would

outperform NEH is if the number of machines greatly outnumbers the number of jobs

(Turner and Booth, 1987).

2.3.1.2 Recent Flowshop Heuristics

Hundal et al. (1988) extended Palmer’s algorithm and allowed it to generate three

sequences instead of one. They combined CDS with Palmer and added a pairwise

 13

exchange search strategy. Using these extensions improves the solution, but also adds

computation time. Koulamas (1998) presented a construction heuristic for the flowshop

scheduling problem. In this heuristic, non-permutation as well as permutation schedules

are considered. Koulamas’s heuristic performed as well as NEH when the optimal

schedule is a permutation and better when the optimal schedule is not a permutation. Ho

et al. (1991) developed a heuristic designed to reduce gaps between operations in

solutions generated by other heuristics. The algorithm was compared to CDS, Palmer,

Gupta, Dannenbring, Hundal and Rajgopal’s (1988). For minimizing makespan, Ho,

CDS, and Hundal and Rajgopal’s worked the best. Sarin et al. (1993) developed a

heuristic, that attempts to minimize the idle time on the last machine. Only permutation

schedules were considered. When compared with NEH (1983), NEH worked better for

small problems, but Sarin’s heuristic dominated for larger problems.

Chen et al. (1996) presented a heuristic for the three machine flowshop. The

heuristic is based on Johnson’s algorithm and has a worst case performance ratio that is

better than 2. Lee, C. et al. (1993) also presented heuristics and their error bounds for the

three machine flowshop problem. Barman (1998) looked at combining 3 different

priority rules for the three-stage flowshop where there are two machines at each stage.

The objectives were to minimize mean lateness, mean tardiness, maximum tardiness, and

percent tardy. The results showed that the combination of rules work better than using

any one rule by itself.

Carlier (1982) presented a unique algorithm that gives the bottleneck stage

priority over all others. The jobs are scheduled in a way that minimizes the time spent at

the bottleneck stage, also the algorithm considers release and processing times. Egin et

 14

al. (2004) proposed an artificial immune system (AIS) that is similar to neural networks.

Wang et al. (1997) presented two heuristics, the first heuristic reduces machine idle time,

and the second reduces machine idle time and job queue times.

2.3.1.3 Flowshop with Setup/Buffers

Other special cases of flowshop scheduling are those having setup times, limited

or no buffers, or uniform machines. In general flowshop scheduling, the processing times

include all setup times, the buffers are considered to be unlimited, and all machines are

identical (i.e. have the same speed). Sule (1982) looked at scheduling jobs on a two

machine flowshop. The processing time is separated into setup, processing, and removal

times. Also it further categorizes operations into inside and outside processing. Gupta,

J.N.D. et al. (1987) presented a heuristic for flowshop scheduling with sequence-

dependent additive setup times. The approximate solution can yield optimal schedules

for the two machine case. The heuristic produced better solutions than Sule’s algorithm.

Simmons (1992) presented four heuristics for the flowshop sequencing problem

with sequence dependent setup times. The results showed that sophistication does not

necessarily lead to better performance. One of the heuristics (TOTAL) uses the sum of

processing and setup times, where another (SETUP) just works with the sum of setup

times. TOTAL performed the best. Rios-Mercado and Bard (1998) presented two

heuristics for the flowshop scheduling problem with sequence dependent setup times,

where only permutation schedules are considered. The first heuristic was an extension of

the NEH flowshop heuristic, and the second was a greedy randomized adaptive search

procedure (GRASP). GRASP has a construction and improvement phase. Both

 15

heuristics were compared with Simmons’s (1992) (SETUP) heuristic using two data sets.

For the first data set, a traveling salesman heuristic (TSP) worked best for a small number

of machines, but (GRASP) worked better for a large number of machines. For the

second data set SETUP worked the best. Rios-Mercado and Bard (1999B) presented

another heuristic for solving the permutation flowshop problem with setup times. The

procedure transformed the problem into a Traveling Salesman Problem (TSP). Large

setup times and makespan are factors that penalize the objective function. The setup

times used were asymmetric and equal to 20%-40% of the processing time. The heuristic

worked better when the number of machines was small.

Allahverdi (2000) looked at minimizing the mean flow time in the two-machine

flowshop with sequence independent setup times. Three heuristics were given with an

overall average error of 0.7% of the optimal. Also, optimal solutions were found for two

special cases. Experiments were performed with job sets of 10, 15, 20, 25, 30, and 35.

The flowshop with sequence dependent setup times and limited buffers was studied by

Gupta, J.N.D. (1986), but no experiments were performed.

King and Spachis (1980) looked at existing and new heuristics to solve the

flowshop problem. The new heuristics studied the permutation, no-wait flowshop. The

no-wait flowshop is reducible to the asymmetric traveling salesman problem. For no

passing, the least total weighted between-jobs delay (LBJD) heuristic performed well.

For the no-wait problem, the minimum covering level, the maximum left shift savings,

and LBJD heuristics worked well. Details of these heuristics can be found in King and

Spachis (1980).

 16

2.3.2 Flowshop Heuristics Using Meta-heuristics

Most of the recent work in flowshop scheduling has been devoted to the

combinatorial approach and the use of meta-heuristics. The three traditional meta-

heuristics used in the literature are Tabu Search (TS), Genetic Algorithms (GA), and

Simulated Annealing (SA). SA and TS have both been found to work well for the

permutation flowshop problem. In this research, SA will be used, so the literature

covered will focus mainly on SA with some brief mention of the other methods. Also, it

should be noted that a new heuristic, called Ant Systems has recently been applied to the

permutation flowshop problem with comparable results to those of SA and TS.

Osman and Potts (1989) presented a simulated annealing (SA) heuristic for the

permutation flowshop scheduling problem. To search the neighborhood, a non-adjacent

interchange and a forward/backward shift system are used. Four different SA algorithms

were used and they perform better than NEH, but require more time. Ogbu et al. (1990B)

presented a different simulated annealing heuristic for the flowshop scheduling problem.

This heuristic used an acceptance probability that is the same for all iterations. The paper

states the importance of reducing the temperature slowly. Also the heuristic used a last

improvement technique that is different from Osman and Potts (1989) which used first

improvement. For this heuristic, the insertion/shift perturbation scheme worked better

than the interchange/pairwise. The paper also stated that for the n-job m-machine

flowshop, SA outperforms all other heuristics. Ogbu and Smith (1990A) also used

simulated annealing to solve the flowshop scheduling problem. The probability of

acceptance of an inferior solution is independent of the change in function value. Two

perturbation schemes are used; one uses pairwise exchange and the other uses job

 17

insertion. Insertion seemed to work better in the larger problems. In theory, the choice

of a starting solution will not matter, but practical experience showed that a good starting

solution leads to more efficient convergence. The initial starting solutions of Palmer and

Dannenbring were used here. Two sets of problems were considered, the small set had 7

jobs and 5 machines, and the large has 15 jobs and 10 machines. The small problems

were solved by branch and bound for comparison, and for the large problems the

solutions were compared by using the best solution found. The proposed heuristic found

better solutions in a set time period than traditional approaches. Kouvelis et al. (1992)

also developed a simulated annealing procedure. The initial solution is randomly

generated, but the article states that initial solutions that exploit specific problem

structure will get better final solutions. Ishibuchi et al. (1995) developed two simulated

annealing algorithms with modifications to the generation mechanism. The generation

mechanism is designed so the choice of cooling schedule will not affect the quality of the

solution; it works with a pool of possible solutions. They found that Tabu search is

slightly inferior to their algorithm. The proposed algorithm was also compared to the SA

algorithm presented by Osman and Potts (1989), and it was found that the proposed is

better for the 20 job problem and Osman and Potts algorithm was better for the 50 job

problem. Zegordi et al. (1995) presented a heuristic that combines simulated annealing

with problem specific knowledge. Johnson’s rule is used to develop a move desirability

index. The proposed algorithm was compared with NEH, CDS, and Osman and Potts.

Osman and Potts performed better on larger problems, but the proposed algorithm was

better on smaller problems. Low (2004) developed a simulated annealing algorithm that

uses a modified NEH algorithm as the initial starting solution. Three different

 18

neighborhood search schemes are used: adjacent pairwise exchange, general pairwise

exchange, and insertion. General pairwise exchange and insertion can yield good

solutions, but they are computationally costly. Adjacent pairwise exchange is considered

to be not as computationally costly. The algorithm was tested using Taillard’s (1993)

data and it was found that the proposed SA with an initial starting solution of SPT/FCFS

worked the best. Tian et al. (1999) used simulated annealing to solve combinatorial

optimization problems with permutation properties. The problems studied are traveling

salesperson, flowshop, and quadratic assignment. Six different perturbation schemes

were used for each problem and the results were presented. For the symmetric traveling

salesperson, block reversal worked best. For the flowshop, two job random exchange and

block insertion were the best performers.

Widmer and Hertz (1989) presented a two phase heuristic where the first phase

used a construction heuristic based on an analogy of the problem with the traveling

salesperson problem. In the second phase, the initial solution is improved using tabu

search. Their algorithm was compared with NEH, CDS, and Dannenbring’s RA, and the

proposed algorithm produced the best sequence 80% of the time. Taillard (1990)

presented a tabu search heuristic that was compared to NEH and shown to be superior.

Ying et al. (2004) presented an ant systems approach to the permutation flowshop

problem. The test data of Taillard (1993) were used. Ant systems can get good solutions

with reasonable computation time. The results showed that the proposed ant system

heuristic is on average minimally better than SA.

Weng (2000) used a modified NEH algorithm to solve the flowshop scheduling

problem with limited buffers. NEH is used to generate the initial permutation schedule,

 19

and then tabu search (TS) is used to improve the solution. The objective function is to

minimize the mean job flow time. TS was shown to improve the solution, and buffers

greater than four are not needed. As the numbers of machines or buffers increase, the TS

improvement decreases.

Parathasarathy et al. (1997) used simulated annealing to solve the flowshop

scheduling problem with sequence dependent setup times and the objective of

minimizing the mean weighted tardiness. A case study was carried out in a drill bit

manufacturing industry. The simulated annealing heuristic was compared to tabu search

and out-performed it 70% of the time. Also the proposed algorithm solved the 95 job

problem in 3 hours while tabu search took 12 hours. Norman (1999) presented a tabu

search heuristic for the flowshop problem with limited buffers and sequence dependent

setup times. NEH was used as the construction algorithm. Also, another heuristic was

developed using greedy improvement, but tabu search works much better. Good lower

bounds are difficult to establish because of the buffers and the asymmetric setup times.

 2.3.3 Flowshop Scheduling Using Combination of Meta-
heuristics

A new method of solving the flowshop problem is to combine two meta-

heuristics; most of this has been done by combining SA and GA. By combining these

two heuristics, good solutions can be obtained. Wang et al. (2003B) presented a hybrid

heuristic for the flowshop scheduling problem. The algorithm used NEH, GA, and SA.

The heuristic outperformed NEH and was comparable to TS, SA, and GA. Allahverdi et

al. (2004) presented a hybrid simulated annealing and genetic algorithms heuristic to

solve the no-wait flowshop. The objective was to minimize the weighted sum of

 20

makespan and maximum lateness. Nearcchou (2004A) used a hybrid simulated

annealing algorithm to solve the flowshop problem. The heuristic has the basic structure

of SA with some aspects borrowed from genetic algorithms and local search techniques.

A random exchange perturbation scheme is used. This heuristic worked with a

population of possible solutions at each iteration. The solutions obtained are comparable

to the best available in the literature. Nearcchou (2004B) presented a hybrid simulated

annealing algorithm to solve the permutation flowshop problem. The simulated

annealing algorithm is crossed with genetic algorithms. Initial solutions are randomly

generated and a shift perturbation scheme is used. The proposed algorithm can find

makespans faster than other known meta-heuristics.

2.4 Flexible Flowshop Heuristics

Finding the minimum makespan in a flexible flowshop problem is considered to

be NP-Hard (Hoogeveen et al., 1996). Therefore most of the research in FFS scheduling

has revolved around heuristic methods. Since heuristics are approximation methods and

are not likely to find the optimal solution, a method of testing their performance is

needed. There are three main methods to test a heuristic, test it against a lower bound,

against other heuristics for the same problem, or against the best solution found. Santos

et al. (1995) presented global lower bounds for makespan minimization on the flexible

flowshop scheduling problem. The purpose was to give a bench-mark to test the quality

of heuristics. The optimal makespan was predicted 38% of the time and the average

relative error was 4.6%. Also in 85% of the 653 problems tested, the bounds were within

10% of the optimal solution.

 21

2.4.1 Two-Stage Flexible Flowshop

Gupta, J.N.D. (1988) showed that the two-stage flowshop where there are

multiple identical machines at each stage is NP-Complete. Gupta, J.N.D. et al. (1997)

presented a heuristic to solve the two-stage flexible flowshop problem with multiple

machines at the first stage and one machine at the second stage. The heuristic uses

Johnson’s rule to create a list of jobs, then this list is used in one of five heuristics. Also

a steepest descent strategy is used to find local optima from the heuristic’s solution. Lee

et al. (1998) presented two heuristics for the same problem, one is a look ahead and the

other a look behind. Also, a dynamic programming algorithm was developed for the two

stage problem with two machines at each stage. Oi (1996) developed four heuristics for

the same problem. He assumed that the manufacturing is done at the first stage and

assembly is done at the second stage. The objective was to minimize the sum of

weighted customer lead times. Only permutation schedules were considered. The four

heuristics are Lagrangian relaxation, greedy search, total weighted shortest processing

time, and one that is simply tardiness based. Chen (1995) addressed the two-stage

problem with parallel machines at one stage and a single machine at the other. Oguz et

al. (1997) looked at the two-stage flexible flowshop problem with different machines at

the first stage and one common machine at the second stage. He developed a heuristic

based on Johnson’s rule which was found to be effective.

Narasimham et al. (1984) looked at scheduling rules in a two-stage flexible

flowshop with one machine at the first stage and two machines at the second. The

objective was to minimize the sum of machine idleness and in-process waiting time at the

second stage. Cumulative minimum deviation worked the best, minimum deviation

 22

(MD) second, and SPT and LPT were last. Gupta, J.N.D. et al. (1991) looked at

scheduling jobs in two-stage flexible flowshop with one machine at the first stage and

multiple machines at the second. They developed an algorithm that can be used to find

approximate solutions or to increase the efficiency of a branch and bound algorithm.

They had two objectives; the first was to minimize makespan and the second to minimize

the number of machines. This problem was also considered by Tsubone et al. (1996). In

Tsubone et al., the first stage used the shortest processing time, longest processing time,

RATIO, and a Modified Johnson’s rule. The second stage simply used first come first

serve. The RATIO rule worked best for makespan minimization. Li (1997) presented a

backward and a forward scheduling heuristic for the same problem. The heuristics

performed better than shortest processing time (SPT) and longest processing time (LPT).

A Pratt and Whitney Blade production line was the basis for this scheduling problem.

The backward algorithm performed better than the forward. Huang (1998) studied a

similar problem, but the first stage had one machine and the second stage had multiple

uniform machines. In his paper, the parts are grouped into families with major and minor

setup times that are independent of the machine speeds. The problem was examined by

using two heuristics and eight sequencing rules. This scheduling problem also came from

a Pratt and Whitney Blade manufacturing facility. Average results were between 20%

and 60% above the lower bounds. Riane et al. (1998) developed two heuristics for the

two stage hybrid flowshop with one machine in the first stage and two dedicated

machines in the second stage. The first heuristic was based on dynamic programming,

while the second used a construction heuristic combined with a greedy algorithm. The

dynamic programming approach worked best. For the same problem, Riane et al. (2002)

 23

proposed two heuristics that were found to be efficient. A dynamic programming

approach was also used for problems with less than 15 jobs.

Lee et al. (1994) presented a heuristic for solving the general two-stage flexible

flowshop. Five lower bounds were used to test the algorithm and an additional heuristic

was developed for the case with more than 2 stages. As the number of machines

increases, the problem becomes harder. Guinet et al. (1996) looked at scheduling of two-

stage flexible flowshops with unlimited storage. A MIP formulation was presented and

lower bounds were calculated. A sequence first and allocation second heuristic was

developed that uses Johnson’s rule and different combinations of seven other rules

developed by other authors to create a priority list, then the jobs are scheduled using the

priority list. Lin et al. (2003) studied the two-stage flexible flowshop with sequence

dependent setup times at stage one and dedicated machines at the second stage. This

problem came from a label sticker manufacturing company. A tabu search algorithm was

used in the first stage and a first in first out (FIFO) algorithm was used in the second

stage. The objective was to minimize the maximum weighted tardiness. The heuristic

performed well and was to be implemented at the company for which it was designed.

Narasimham et al. (1987) tested three scheduling rules for the two-stage flexible

flowshop. The rules tested were shortest processing time (SPT), longest processing time

(LPT), and minimum deviation. The problem was modeled after a scheduling problem in

the Schlitz Brewing Company. The objective function has multiple criteria such as

minimizing total cost of order waiting, machine idle time, makespan, and average

completion time. Generalized cumulative minimum deviation rule (GCMD) worked the

best. Soewandi et al. (2003) developed three heuristics for scheduling in the two-stage

 24

flexible flowshop with uniform machines at each stage. Some of the rules used are the

earliest finished machine (EFM) and latest start machine (LSM). Uetake et al. (1995)

looked at the two-stage FFS with one machine at the first stage and multiple different

machines at the second stage. The objective was to minimize makespan and maximum

work in process. This type of system occurs in steel, chemical, and paper industries. The

first stage used SPT, LPT, RATIO, Johnson’s rule, and the second stage used the first

come first serve rule (FCFS). Verma et al. (1999) showed that the two-stage FFS with

parallel and uniform machines is NP-Hard. Three different heuristics were presented;

earliest completion time (ECTH), fastest available machine heuristic (FAMH), and mixed

heuristic (MH). The mixed heuristic is just a combination of the others and tends to

perform the best.

2.4.2 Three-Stage Flexible Flowshop

Koulamas et al. (2000) presented a linear time algorithm for two-stage and three-

stage flexible flowshops. The worst case bounds are no worse than those currently

available. Soewandi et al. (2001) presented two heuristics for the three-stage problem.

Some rules that were used in the formation of the heuristics are Johnson’s, first available

machine, last busy machine, and modified Johnson’s rule.

2.4.3 General Flexible Flowshop

Wittrock (1985) looked at scheduling in flexible flow lines. The objective was to

maximize throughput and reduce work in process. He considered two scheduling

decisions, one is when should a job enter the system, and the other is what should the

 25

daily product mix be. The buffer works on a first come first serve basis and the heuristic

tries to balance workloads. Wittrock (1988) also looked at an adaptable scheduling

algorithm to minimize makespan and queueing in the flexible flowshop. The heuristic

breaks the problem into three subproblems; machine allocation, sequencing, and timing.

No queues are allowed in front of an idle machine, even though sometimes it may

improve the solution. Kochhar et al. (1988) studied entry point scheduling. This

technique uses local perturbation to obtain schedules within a few percent of optimal. A

construction heuristic and random starting solutions were used. They state in their paper

that a good starting solution is one that will lead the local search into different areas. The

local search techniques used are pairwise exchange and block exchange, both with

steepest descent and multiple starting solutions. Ding et al. (1994) presented three

heuristics for the flexible flowshop with 1 to 3 machines at each stage. Two of the

heuristics are based on Johnson’s and CDS algorithms, while the third is based on Gupta

(1972). The algorithms based on Johnson’s algorithm worked the best. Guinet and

Solomon (1996) looked at scheduling jobs in a flexible flowshop with the objective of

minimizing the makespan or maximum tardiness. The heuristics used are based on CDS,

NEH, and Townsend (1977). NEH worked the best for makespan minimization. Leon et

al. (1997) presented a heuristic that was previously used for job shop scheduling, but

adapted it for the flexible flowshop. The heuristic uses the shortest processing time rule

combined with local search techniques. The local search techniques used are single

neighborhood, steepest descent, and first improvement. Brah and Lou (1999) compared

five heuristics for the FFS with the objective of minimizing makespan and mean

flowtime. The heuristics tested are NEH, HO, CDS, PAM, and CDS2. NEH performed

 26

the best for makespan. The heuristics were compared using the global lower bounds

presented by Santos (1995). Chang (1994) developed an algorithm based on Lagrangian

relaxation and minimum cost linear network flow. A rescheduling algorithm is also

given. The objectives are to avoid overdue penalty, reduce cost of WIP, and reduce cost

of overtime. Jayamohan et al. (2000) looked at minimization of flow time and tardiness

of jobs in a flexible flowshop. Two approaches were investigated; one uses the same

dispatching rule at all stages while the other uses different rules at different stages. This

study found that using one good rule at all stages works best, which contradicts a

previous study done by Barman (1998), but his study was on the three stage flowshop.

Also, it should be noted that using different rules at different stages adds a great amount

of computation time.

2.4.4 Flexible Flowshop Bottleneck Heuristics

A few researchers took a different approach to scheduling in the FFS by putting

emphasis on the sequence at the bottleneck stage. Adams et al. (1988) presented a

shifting bottleneck heuristic (SBH) that is designed for the job shop scheduling problem,

but can be applied to the flexible flowshop. It works by scheduling jobs on the

bottleneck machine and then re-sequencing the other stages. Their algorithm can solve a

ten job, ten machine problem in less than six minutes. Cheng et al. (2001) used the

shifting bottleneck heuristic for the FFS in order to minimize the maximum lateness. The

heuristic works in two phases, the first schedules m stages one by one successively in

descending order of lower bounds, and the second phase re-optimizes each stage. The

results showed that optimal or near optimal solutions are found in short time periods.

 27

Phadnis et al. (2003) presented a progressive bottleneck improvement (PBI) procedure to

solve the FFS. Only one job is sequenced at a time and it is sequenced at all stages. The

bottle neck stage is identified before each job is scheduled. The heuristic is similar to

Adams (1988) shifting bottleneck heuristic. Phadnis’s heuristic is simple and produced

good solutions. Acero-Domingvez et al. (2004) developed a heuristic based on the theory

of constraints by optimizing the bottleneck stage. By optimizing the bottleneck stage the

overall system is improved; if other areas are improved they will only achieve local

improvement and the entire system may not benefit. The heuristic requires three steps: 1)

bottleneck identification, 2) scheduling of jobs at bottleneck stage, and 3) schedule non-

bottleneck stages. The algorithm was compared with the Shifting Bottleneck Heuristic

and performed comparably. Lee et al. (2004) used a bottleneck focused algorithm in

order to minimize total tardiness in a flexible flowshop. The problem in question comes

from the printed circuit board industry. The assumptions made include unlimited buffers

and that the machines never fail. The algorithm first schedules the bottleneck stage and

then schedules the other stages.

2.4.5 Flexible Flowshop with Setup Times/Buffers

Another special case of the flexible flowshop sequencing problem is that of

having setup times, limited buffers, or both. Kochhar and Morris (1987) presented

heuristic methods to solve the flexible flowshop sequencing problem with limited buffers

and setup times. The problem was broken into two parts, entry point scheduling and

dispatching. The problem was further broken down into three parts; initial sequence,

how to manage work in process, and if multiple jobs are available, which ones are

 28

chosen. The steepest descent neighborhood search technique was used with the

perturbation schemes of pairwise and block exchange. A realistic problem of 16

machines was solved in 30 minutes while smaller problems took seconds. Twelve cases

were solved and the average performance was 0.5% from optimal, with the worst case

performance about 2% from optimal. Sawik (1987) developed three heuristics for the

flexible flowshop with limited buffers. Beside makespan, the objective function included

minimization of work in process holding costs. In two of the heuristics, schedules are

period by period and fixed, while the third is capable of making adjustments to the

schedule when a buffer becomes full or a shortage to a machine occurs. Sawik (1995)

also presented a single pass part-by-part heuristic for the flexible flowshop with no

buffers. The schedule is determined only once and run time is short. Khmelnitsky et al.

(1997) developed a numerical method and two heuristics to solve the flexible flowshop

with partial sequence dependent setup times. Aghezzaf et al. (1998) presented a LP

based heuristic for the FFS where setup times are product and machine dependent, the

heuristic is based on the duality of linear programming. This algorithm requires a large

amount of computation time; at each iteration a trans-shipment problem must be solved.

Liu et al. (2000) presented a Lagrangian relaxation based approach for the flexible

flowshop with sequence dependent setup times. The objectives were to meet due dates,

reduce work in process, and reduce setup. In testing 16 problems, the average difference

between the proposed solution and the true optimum was 15%. Wang et al. (2003A)

looked at using a neural network system to solve the flexible flowshop problem. The

learning strategy borrows from simulated annealing and lagrangian relaxation. The lower

 29

bounds used for comparison were obtained from Santos (1995). Neural networks did not

provide good solutions in short times when compared to other heuristics.

2.4.6 Flexible Flowshop Using Meta-heuristics

This section discusses some of the meta-heuristics that have been applied to the

flexible flowshop, with the main focus on simulated annealing. Haouari et al. (1997)

used two two-phased heuristics based on simulated annealing and tabu search to solve the

two stage flexible flowshop with parallel machines at each stage. To construct an initial

solution, the most work remaining rule was used to create a priority list. The objective

was to minimize makespan. Tabu search performed just a little better than simulated

annealing. Riane et al. (1999) presented a simulated annealing algorithm to solve the

flexible flowshop problem where only permutation sequences are considered. The paper

emphasizes the importance of temperature reduction; spending too much time at a high

temperature wastes time and decreasing the temperature too fast will limit the search to

local optima. Negenman (2001) tested a variable depth search method combined with

three simulated annealing heuristics and three tabu search heuristics to solve the flexible

flowshop. The combination of variable depth search with tabu search performed the best.

Loukil et al. (2005) used simulated annealing for multiple-objective scheduling for the

one-machine, parallel machine, and permutation flowshop problems. Their neighborhood

search schemes consisted of random job exchange and job insertion. A random choice of

these two was made.

 30

2.4.7 Flexible Flowshop with limited buffers Using Meta-heuristics

Shieh (2003) studied the flexible flowshop with limited buffers. The objective

was to minimize the makespan and maximize the machine free time. An exact algorithm

was developed using mixed integer programming, and was able to solve only very small

problems. It works in two phases; the first minimizes the makespan and the second

maximizes the machine free time. A construction algorithm was developed called

(MGPAFFS). Then a simulated annealing improvement heuristic was used to improve

the construction algorithms solution. Two sets of data were used; one with 30 jobs and

the other with 60 jobs. The results show that after the application of SA, the solutions for

the small and larger sets were 1.6%-28.3% and 2.2%-32.7% respectively from the lower

bounds. Also SA improved the construction heuristics solution by 1.2%-4.9% and 0.9%-

8.9% for the small and large data sets respectively.

2.4.9 Flexible Flowshop with Setup Times Using Meta-heuristics

Low (2005) presented three simulated annealing algorithms for the multistage

flowshop with unrelated parallel machines. This problem has independent setup and

dependent removal times. A well designed solution generator was used to find the initial

solution. Sethanan (2001) looked at the problem of scheduling a flexible flowshop with

sequence dependent setup times and uniform machines. A mathematical model was

developed to solve small problems and two heuristics were presented to solve larger

problems. The first heuristic is a construction heuristic called “flexible flowshop with

sequence dependent setup times heuristic” (FFSDSTH). The second heuristic is a tabu

search and was used to further improve the solution obtained from the construction

 31

heuristic. Two lower bounds are calculated; one uses a forward system and the other a

backward. The machine waiting time, idle time, and total setup and processing times on

the last machine were used to calculate the lower bounds. The results show that

FFSDSTH is efficient at finding solutions and that TS improves the solution between

2.95% and 11.85%.

2.5 Simulated Annealing

Metropolis et al. (1953) were the first to look at the properties of annealing in

order to solve mathematical problems. Simulated annealing is derived from an analogy

between the physical annealing of solids and combinatorial optimization. Physically, it

refers to the heating of a substance to the melting point, then lowering the temperature

slowly and spending a long time at temperatures close to the freezing point. The ground

state of the solid will have a certain structure and the cooling will not obtain a good

structure if it is not done properly (Eglese, 1990). Kirkpatirick et al. (1983) were the first

to use simulated annealing to solve combinatorial problems. They listed some of the

positive aspects of simulated annealing such as: (1) significant improvements over

random starting solutions are possible, (2) there are many near optimal solutions, so a

stochastic search procedure such as SA should find some, (3) no one of the ground state

solutions is any better than the others, so it is not worth it to search for the absolute

optimal (Kirkpatirick et al., 1983). One thing that makes simulated annealing and other

metaheuristcs different from simple local search procedures is that the algorithm avoids

being trapped in a local optimum by sometimes accepting a neighborhood move that

increases the value of the solution (Eglese, 1990). Many researchers have shown that

 32

simulated annealing can find good solutions for scheduling permutation flowshop

problems (e.g. Allahverdi et al., 2004, Haouari et al., 1997, Ishibuchi et al., 1995,

Kouvelis et al., 1992, Loukil et al., 2005, Low, 2005, Low et al., 2004, Nearchou, 2004A,

Negenman, 2001, Ogbu et al., 1990A/B, Osman et al., 1989, Parthasarathy et al., 1997,

Riane et al., 1999, Shieh, 2003, Tian et al., 1999, and Zegordi et al., 1995). Simulated

Annealing will be used in this study in an effort to improve the initial solution obtained

using two construction algorithms.

 33

3 Problem Statement and Objectives of Research

3.1 Problem Statement

This research addresses the flexible flowshop with sequence dependent setup times,

uniform machines, and limited buffers. There are one or more machines at each stage,

and more than two stages. The machines at each stage have different processing speeds

and the first machine is considered to be the fastest. Each job has a base processing time

that is the time to be processed on the fastest machine. The processing times for the other

jobs are found by dividing the base processing times by the machine speed. There are

unlimited buffers before the first stage and after the last stage. For the stages in between,

the buffers are assumed to have limited capacity. If a buffer becomes full, it will block

machines at the previous stage until space becomes available in the buffer. The

environment is deterministic; that is the number of jobs and all of their data are known in

advance and fixed. The number of stages and machines at each stage are known in

advance and fixed. Jobs are considered to be tasks and must be processed on machines,

in each stage, in technological order. Machines are considered to be resources that

perform tasks. The objective is to minimize the makespan, which is the completion time

of the last job at the last stage. The flexible flowshop with limited buffers is shown in

Figure 3.1.

The standard flowshop with more than two machines with the objective of

minimizing makespan is considered to be NP-Hard in the strong sense (Pinedo 2002).

This problem is considerably more complex because it adds uniform parallel machines at

each stage, limited buffers, and sequence dependent setup times. Some research has been

done on the two stage flexible flowshops, but for greater than two stages the research is

 34

scarce. No research could be found in the literature that attempts to solve the flexible

flowshop with sequence depended setup times, uniform machines, and limited buffers.

 Stage 1 Stage 2 Stage M

B2 MC 1 B MC 1

MC N1 MC N2

M MC 1

MC Nm U
nl

im
ite

d
St

or
ag

e

U
nl

im
ite

d
St

or
ag

e

Limited
Storage

Limited
Storage

Figure 3.1 Flexible Flowshop with limited Buffers

3.2 Problem Assumptions

Because scheduling problems have a vast amount of variation, the following assumptions

are made for the problem under consideration.

1. The number of jobs to be scheduled and their processing times on each

machine at each stage is known in advance and fixed.

2. The number of stages and the machine configuration at each stage are known

in advance and fixed.

3. Preemption is not allowed.

4. Once a job has started processing, it must be completely finished before it can

move to the next stage.

5. No job splitting is allowed, a job must be processed on one and only one

machine at each stage.

6. All jobs are ready to begin processing at time period 0.

 35

7. Jobs may or may not be scheduled in the same order at each stage, i.e. job

passing is allowed.

8. Setup times are sequence dependent. There is also a setup time associated

with startup.

9. Setup times are the same for all machines within each stage regardless of

which machine the job is to be processed on.

10. The setup times uniformly range from 20% to 40% of the job processing time.

11. The machines at each stage are uniform. The first machine is considered to be

the fastest machine with a speed of 100%, the other machines have either the

same or a slower speed than the first (e.g., 60%, 50%, or 40%). The

processing time is found by dividing the base processing time by the machine

speed.

12. There are unlimited buffers before the first stage and after the last stage, but

between stages the buffers are limited. The buffer is numbered the same as

the stage that it feeds into.

13. Machine blocking does occur, so when a job is finished processing, it cannot

leave the machine unless there is room on a machine at the next stage or the

buffer for the next stage has an open space.

14. There are no due dates associated with the jobs and the objective is to

minimize the makespan.

 36

3.3 Objectives and Methodology of Research

There are four main objectives to this research:

1. To develop a mathematical model with the objective of minimizing the

makespan for the flexible flowshop with sequence dependent setup times,

uniform machines, and limited buffers.

2. Since this problem is considered strongly NP-Hard, develop heuristics to

solve this problem. First two construction algorithms are developed to obtain

solutions.

3. After the construction algorithm is developed; use a simulated annealing

heuristic to improve the solutions obtained from the construction algorithms.

4. Since this problem is very complex even small problems may not be able to be

solved optimally in reasonable time. A lower bound will be developed and

used to test the performance of the heuristic.

 37

4 Mathematical Model

Only small problems can be solved optimally, and even with small problems the

computation time is great. Even though only small problems can be solved by using the

mathematical model, there are still benefits to developing and studying it. Developing

the mathematical model helps one better understand the problem complexity and

structure. The difficulties that will arise in choosing a heuristic will usually come to the

surface after working through the mathematical model. The model hence has two main

benefits, better understanding of the problem and foreshadowing of issues with heuristic

development. Variables used in the mathematical model are listed in Table 4.1.

Table 4-1 Mathematical Model Nomenclature

Variable Notation Definition
j,i Job index.
J Total number of jobs.
s Stage index.
m Machine index.
t Time period index.

Ms Number of machines in stage s.
Psjm Processing time of job j on machine m at stage s.

SUPijs Setup time from job i to job j at stage s.
Bs Buffer capacity at Stage s.
M Large Number.
T Makespan of arbitrary solution.

Parameters

S Total number of stages.
Csjm Departure time of job j from machine m in stage s.
Ksj Departure time of job j from stage s.
Fsj The processing and blocking time of job j in stage s.

Integer Decision
Variables

E Makespan

 38

Variable Notation Definition

Xsjm =1 if job j is processed on machine m in stage s,
 = 0 otherwise.

Wsijm =1 if job j directly follows job i on machine m at stage s,
 = 0 otherwise.

D1sjt = 1 if time period t precedes the starting time of job j at
stage s,
 =0 otherwise.

D2sjt = 1 if time period t is after the departure time of job j at
stage s-1,
 = 0 otherwise.

Binary
Decision
Variables

Dsjt =1 if job j is in the buffer preceding stage s at time t,
 =0 otherwise.

Objective Function

Minimize makespan, E.

Constraints:

There is a zero job that is used to define the setup time for the first job to be

processed on each machine. The zero job has no value for processing time, but the setup

times from zero to other jobs vary.

The first constraint ensure that the completion time of job j is greater than or

equal to the processing and setup time for job j in the first stage. The second constraint

guarantees that if job j is processed on machine m in stage s, the completion time of job j

is greater than or equal to the completion time of the preceding job plus the processing

and setup time for job j. Constraint two also assures that the jobs are not interrupted

during processing. The third constraint ensures that if job j is the first job processed on

machine m in stage s then the completion time is greater than or equal to the processing

and setup time for job j plus the completion time for job j in stage s-1.

 39

sjm sj ∗ sijmW ijsSUP ; C ≥ mP + sjmX * ∀ j, i≠j, s=1, m=1..Ms (1)

 -)

sjm sim + M * (1 - sijmW ≥ + sijm * ijsSUP ;C C sjmP W ∀ s, j, i≠j, m= 1..Ms (2)

 - (1 -

sjm j)1− ≥ sjmP - M * (sjmX) + * ijsSUP ; C sK sijmW ∀ s ≠1, j, i ≠j, m=1..Ms (3)

≤ K

- X

 = 0;

Constraint nine states that each job i may or may not be followed by another job j, but it

can only be followed by at most one job.

 - ≥ 0; , i, m=1..Ms (9)

The fourth and fifth constraints set the value for as the time that job j leaves stage s. sjK

sjm sj ; ∀ s, j, m=1..Ms (4) C

sjmC ≥ sj - M * (1 jm); ∀ s, j, m=1..Ms (5) K s

Constraint six sets the makespan equal to the maximum finishing time of all jobs at the

final stage.

jSK)(≤ E; j (6) ∀

Constraint seven ensures that each job is processed on one and only one machine in each

stage.

∑
=

Ms

m
sjmX

1

 = 1; s, j≠0 (7) ∀

Constraint eight ensures that every job j must follow another job i.

sjmX - ∀ s, j≠0, m=1..Ms (8) ∑
<>

J

ji
sijmW

simX ∑
<>

J

ij
sijmW ∀ s

 40

Constraint ten sets the processing and blocking time for job j in stage s. It is the

difference of the finishing time of job j and the preceding job i in stage s. is used in

calculating the contents of the buffers.

sjF

sj ≤ sj - siK + M * (1 ; F K - sijmW) ∀ s, j, i≠j, m= 1..Ms (10)

1 a

 s at

buffer.

 - - t – M * + 1 ≤ 0;

Constraints eleven, twelve, and thirteen are the buffer constraints. is set to equal 1

if time period t is before the start of processing job j in stage s. sjt2 is set to equal 1 if

job j has left stage (s-1). Constraint fourteen sets sjtD equal to 1 only when D nd

sjtD2 are both equal to 1. If sjtD is equal to 1 then job j is in the buffer before stage

time t, because job j has left stage (s-1) but it has not started processing on stage s. From

the time a job enters the system until it leaves it is being setup, processed, blocked, or in a

sjtD1

D

sjt

sjF sjtD1 ∀ K sj s, j, t (11)

 0;

 - 1;

maximum limit on the number of jobs that will fit into the buffer Bs.

≤ Bs s≠1, t (14)

 - M * ≤ ∀ s≠1, j, t (12) t - jsK)1(− sjtD2

 = + ∀ s≠1, j, t (13) sjtD1 sjtD2Dsjt

Constraint fourteen sets the limits on the buffer’s capacity. For each stage there is a

∑
J

j
sjtD ; ∀

 41

Constraints fifteen and sixteen ensure that job 0 is processed first on every machine. This

is needed to calculate the setup times for the first job processed on each machine at each

stage.

ms0 = 1; ∀ s, m=1 X ..Ms (15)

 = 0; s, j, m=1..Ms (16)

∑
<>

J

ji
msiW 0 ∀

 42

5 Heuristics

Minimizing the makespan in a flexible flowshop with sequence dependent setup

times, uniform machines, and limited buffers is considered to be strongly NP-Hard; exact

methods are only practical for extremely small problems. To solve problems of this

complexity, heuristic algorithms are needed. Heuristics are algorithms designed to give a

good solution to a problem in a reasonable amount of time. The solution given by a

heuristic may not be optimal, but it should be relatively close to optimal. Heuristics

sacrifice some solution quality, but make up for it by being superior in computation time.

For example, to optimally solve a three stage problem with three machines in the first

stage, one machine in the second stage, one machine in the third stage, and 5 jobs took

around one hour, but by using the heuristics given in this research, a five stage, thirty job

problem can be solved in less than three minutes.

Two construction heuristics are developed in this research. The solutions from

each construction heuristic are used in a simulated annealing meta-heuristic, that is

designed for solution improvement. The two construction heuristics, RBFFS and PBFFS,

use the same solution representation, but the jobs are assigned to machines in different

ways. RBFFS is route based while PBFFS is job priority based. The simulated annealing

meta-heuristic uses the same solution representation as the construction heuristics, and

the same job/machine assignments corresponding to the construction heuristics. The

solutions are represented by a priority permutation of the jobs to be scheduled in the

system. This representation limits the solution space to n! solutions, where n is the

number of jobs. For example if there are five jobs to be scheduled in the system, a

solution could be represented as {2, 3, 1, 5, 4}.

 43

 The construction heuristics are based on the NEH algorithm developed by

Nawaz, Enscore, and Ham (1983). The NEH algorithm was developed for the multistage

flowshop environment. It gives higher priority to jobs with larger total processing times.

A priority list is made by arranging the jobs in decreasing order of their total processing

time on all machines. Next, the two jobs with the highest priority are chosen and the

makespans for job 1 followed by job 2 and for job 2 followed by job 1 are calculated.

The sequence with the smallest makespan is chosen as the best sequence, either 1-2 or 2-

1, then the job with the third highest priority enters the system. When job 3 enters the

system, adjacent pairwise exchange is used to create three new partial sequences, and the

makespan for each partial sequence is calculated. The partial sequence with the smallest

makespan is chosen as the best three job sequence. This process continues until all jobs

are scheduled. This heuristic looks at only {[n (n+1) / 2] - 1} permutation solutions as

opposed to all n! solutions that exist, where n equals the number of jobs. Many

researchers reference this algorithm as one of the best for constructing a solution for the

flowshop scheduling problem. A modified version of the NEH algorithm is used in this

research to construct a solution for the flexible flowshop with sequence dependent setup

times, uniform machines, and limited buffers.

5.1 RBFFS Construction Heuristic

 The RBFFS construction heuristic uses a priority routing system that assigns jobs

specific routes through the system. A route is a path that the job will travel through the

system. A job’s route dictates the machine it will visit at each stage, and the job that it

will follow on that machine. The routes are designed so that the machines in each stage

 44

will operate for, as much as possible, the same amount of time. For the purpose of

assigning the routes, all jobs are assumed to have the average base processing time. A

ratio is then used with the machine speeds to decide on how many jobs will visit each

machine. For example, if there are two machines at a stage, the first having a speed of

1.00 and the second a speed of 0.50, the ratio would equal: [(1.00 / 0.50) = 2]. By using

this ratio, 2 jobs would be processed on machine one for every 1 job processed on

machine two. In this heuristic, the order in which jobs will be processed on each machine

is predetermined; it is based on the routing system, the machine configuration, and the

job priority. Each job is given a route and follows that route through the system. In this

heuristic, a machine may be idle sometimes while it is waiting for a specific job, even

though other jobs may be ready for processing. In some cases, inserted idle time can be

beneficial to the system.

The steps for the RBFFS construction algorithm are as follows:

1. Sum the processing times on the fastest machine at each stage for each job.

2. Arrange the jobs in descending order of the sums of their processing times. The

jobs with the greatest sum of processing times are given the highest scheduling

priority.

3. Determine the routes that will be used by the jobs in order to navigate through the

system; details of route assignments are shown in the following example. The

makespan is calculated by using the job processing times and the routes

associated with each job. When the jobs are placed on different routes the

makespan may increase or decrease.

 45

4. Take the two jobs with the highest priority and schedule them, using pairwise

adjacent exchange. Calculate the makespan for each configuration and set the

best RBFFS sequence as the sequence with the smallest makespan.

5. Choose the job with the next highest priority and enter it at the end of the best

RBFFS sequence. Use pairwise adjacent exchange and calculate the makespan

for each partial sequence. Set the best RBFFS sequence as the partial sequence

with the smallest makespan.

6. If all jobs have been scheduled go to step 7, else go to step 5.

7. Set the best n job sequence as the RBFFS sequence and the best makespan as the

RBFFS makespan. STOP.

5.2 RBFFS Construction Heuristic Example

An example illustrating the construction heuristic is given in this section. It is an

instance with 4 jobs that need to be scheduled in a 3 stage environment with 3 machines

at the first stage, 1 machine at the second stage, and 2 machines at the third. The buffers

are limited to three jobs. The first machine at any stage is the fastest and considered to

have a speed of 1.00, any other machine has a speed of 0.50. This means that the fastest

machine is twice as fast as the other machines. The processing and setup times are given

below.

Table 5-1 Construction Heuristic Ex. Process Times Stage 1

Processing Times Stage 1
 Job 1 Job 2 Job 3 Job 4
Machine 1 4 14 16 10
Machine 2 8 28 32 20
Machine 3 8 28 32 20

 46

Table 5-2 Construction Heuristic Ex. Setup Times Stage 1

 Setup Times Stage 1

 To 1 To 2 To 3 To 4
From 0 1 4 5 3
From 1 0 3 3 4
From 2 1 0 6 3
From 3 1 3 0 3
From 4 1 3 3 0

Table 5-3 Construction Heuristic Ex. Process Times Stage 2

 Processing Times Stage 2
 Job 1 Job 2 Job 3 Job 4
Machine 1 4 8 10 7

Table 5-4 Construction Heuristic Ex. Setup Times Stage 2

 Setup Times Stage 2

 To 1 To 2 To 3 To 4
From 0 2 2 3 3
From 1 0 3 4 2
From 2 2 0 4 2
From 3 1 2 0 2
From 4 1 2 2 0

Table 5-5 Construction Heuristic Ex. Process Times Stage 3

Processing Times Stage 3

 Job 1 Job 2 Job 3 Job 4
Machine 1 6 9 14 9
Machine 2 12 18 28 18

 47

Table 5-6 Construction Heuristic Ex. Setup Times Stage 3

Setup Times Stage 3

 To 1 To 2 To 3 To 4
From 0 2 2 4 2
From 1 0 4 3 4
From 2 1 0 4 2
From 3 1 2 0 2
From 4 1 2 3 0

Step one, two, and three: sum the processing times on the fastest machine at each stage

for each individual job. Then set the RBFFS priority list by placing the jobs in

descending order of processing time sums.

Table 5-7 Step 1 of RBFFS Example.

 Step 1: Sum processing time for each job on the
fastest machine.

 Stage 1 Stage 2 Stage 3 Σ pt
Job 1 4 4 6 14
Job 2 14 8 9 31
Job 3 16 10 14 40
Job 4 10 7 9 26

Table 5-8 Step 2 of RBFFS Example.

RBFFS Priority List
First Job 3

Second Job 2
Third Job 4
Fourth Job 1

The proposed heuristic uses a priority routing system, Table 5.9 shows the priority

routing for the example problem. By using the ratios in stage one, 2 jobs will be

processed on machine one, for each job processed on machine two and three. Since there

is only one machine at the second stage all of the jobs will be processed on it. At the

third stage, 2 jobs will be processed on machine one for each job processed on machine

two.

 48

Table 5-9 Priority Routing for RBFFS Example.

 Stage 1 Stage 2 Stage3
Priority Route* 1 1-0 1-0 1-0
Priority Route* 2 1-1 1-1 2-0
Priority Route* 3 2-0 1-2 1-1
Priority Route* 4 3-0 1-3 1-3
Key: The first digit is the machine that processes the job; the second
digit is index of the job that it follows.
* It should be noted that the priority routing system for each
machine configuration is unique, but they do have the common goal
of machine utilization. The priority routing system is specifically
designed for each problem instance.

Step four and five: start with the first two jobs on the RBFFS priority list, use pairwise

adjacent exchange, calculate the makespans and choose the best. The first two jobs on

the RBFFS priority list are job 3 and job 2, so the makespans for the combinations {3, 2}

and {2, 3} will be calculated. Table 5.10 and 5.11 show the Gantt Charts for partial

sequences {3, 2} and {2, 3} respectfully.

 49

Table 5-10 RBFFS Makespan for Sequence {3, 2}

 20 21 22 23 24 25 33 34 35 36 37 38 39 47 48 49 50 52 53 67 68
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 24 25 33 34 35 36 37 38 39 47 48 49 50 52 53 67 68
Key
Job 1
Job 2
Job 3
Job 4

Table 5-11 RBFFS Makespan for Sequence {2, 3}

 15 16 17 18 19 20 27 28 29 30 38 39 40 41 42 54 55 84 85 86
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 15 16 17 18 19 20 27 28 29 30 38 39 40 41 42 54 55 84 85 86

 50

Since this is such a small example the limited buffers do not cause any machine blockage. The partial solution {3, 2} is chosen with a

makespan of 68. The next job to inter is job 4, so the partial solutions that will be considered are: {3, 2, 4}, {3, 4, 2}, and {4, 3, 2}.

Tables 5.12, 5.13, and 5.14, show the Gantt charts representing partial sequences {3, 2, 4}, {3, 4, 2}, and {4, 3, 2} respectfully.

Table 5-12 RBFFS Makespan for Sequence {3, 2, 4}

 20 21 22 23 24 33 34 35 36 37 38 39 40 47 48 49 50 51 52 53 56 57 58 67 68
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 24 33 34 35 36 37 38 39 40 47 48 49 50 51 52 53 56 57 58 67 68
Key
Job 1
Job 2
Job 3
Job 4

Table 5-13 RBFFS Makespan for Sequence {3, 4, 2}

 20 21 22 23 31 32 33 34 35 36 42 43 44 45 52 53 54 55 62 63 64
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 31 32 33 34 35 36 42 43 44 45 52 53 54 55 62 63 64

 51

Table 5-14 RBFFS Makespan for Sequence {4, 3, 2}

 12 13 14 15 22 23 24 25 31 32 33 34 35 43 44 45 46 53 54 55 64 65 66 67 76
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 12 13 14 15 22 23 24 25 31 32 33 34 35 43 44 45 46 53 54 55 64 65 66 67 76
Key
Job 1
Job 2
Job 3
Job 4

The partial solution {3, 4, 2} is chosen with a makespan of 64. The next job to inter is job 1, so the partial solutions that will be

considered are: {3, 4, 2, 1}, {3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2}. Tables 5.15, 5.16, 5.17, and 5.18 show the Gantt charts

representing partial sequences {3, 4, 2, 1}, {3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2} respectfully.

Table 5-15 RBFFS Makespan for Sequence {3, 4, 2, 1}

 8 9 10 20 21 22 23 31 32 33 34 35 42 43 44 45 51 52 53 54 58 59 60 64 65 71
 mc 1

mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 8 9 10 20 21 22 23 31 32 33 34 35 42 43 44 45 51 52 53 54 58 59 60 64 65 71

 52

Table 5-16 RBFFS Makespan for Sequence {3, 4, 1, 2}

 8 9 10 21 22 32 33 34 35 43 44 47 48 49 51 52 53 58 59 60 63 71 72
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 8 9 10 21 22 32 33 34 35 43 44 47 48 49 51 52 53 58 59 60 63 71 72
Key
Job 1
Job 2
Job 3
Job 4

Table 5-17 RBFFS Makespan for Sequence {3, 1, 4, 2}

 20 21 22 23 24 26 27 32 33 34 38 39 40 48 49 52 53 57 58 59 63 73 74
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 24 26 27 32 33 34 38 39 40 48 49 52 53 57 58 59 63 73 74

 53

Table 5-18 RBFFS Makespan for Sequence {1, 3, 4, 2}

 4 5 11 12 18 19 20 24 25 31 32 33 38 39 47 48 56 57 58 59 60 61 70 71
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 4 5 11 12 18 19 20 24 25 31 32 33 38 39 47 48 56 57 58 59 60 61 70 71

The final RBFFS solution is chosen as {3, 4, 2, 1} or {1, 3, 4, 2}, since there is a tie, either solution can be chosen. Arbitrarily

solution {3, 4, 2, 1} is chosen, so job 3 is given priority route* 1 and job 4 is given priority route* 2, etc. The final makespan, or

objective function is represented simply as 71.

Step 7: the RBFFS sequence is {3, 4, 2, 1} and the corresponding makespan is 71 units. STOP

 The final RBFFS sequence is then used as the starting solution in a simulated annealing algorithm.

 54

5.3 RBFFS Simulated Annealing Heuristic

Simulated annealing is a technique used to find good solutions to combinatorial

problems; the solutions may or may not be optimal. It originated from the physical

annealing of solids, and the connection between annealing and mathematical problems

was first made by Metropolis et al. (1953). Later, Kirkpatirick et al. (1983) used it to

solve combinatorial optimization problems, and it has shown good results. It looks at

random variations of the current solution. Sometimes a non-improving solution is

accepted as the new solution with a probability that decreases as the algorithm

progresses. By sometimes accepting a non-improving solution, the simulated annealing

algorithm avoids being trapped in local optima and can search different areas in the

solution space for the global optima. Many researchers have had good results in using

simulated annealing to solve flowshop scheduling problems.

The simulated annealing algorithm takes the final sequence from the RBFFS

construction algorithm and searches for improved solutions by rearranging the sequence.

This SA algorithm uses the same solution representation as the RBFFS heuristic, so the

solution space is also limited to n! solutions while in reality there may be many more

possible solutions. The solutions are listed as permutations of jobs, and use the priority

route* based scheduling as in the RBFFS construction heuristic. The nomenclature used

in the simulated annealing heuristic is given in Table 5.19.

 55

Table 5-19 Simulated Annealing Nomenclature

Variable Definition
n Total number of jobs.
m Total number of stages.
T Temperature
N Number of iterations at the current temperature.

minT Final temperature value.
maxN Max number of iterations at each temperature setting.

RBFFSms Makespan obtained from the construction heuristic.
RBFFSseq Sequence of jobs obtained from the construction heuristic.

bestms Lowest makespan
bestseq Sequence of jobs corresponding to the lowest makespan.

curbestms Current best makespan.
curbestseq Sequence of jobs corresponding to the current best makespan

Y Random integer value between 1 and n, including 1 and n.
Z Random integer value between 1 and n, including 1 and n.
R Random value between 0 and 1.

SAms Simulated Annealing makespan.
SAseq Simulated Annealing sequence.
∆TC Value of (currbestms – SAms)
α Temperature reduction factor.

The solution is represented in the SA heuristic the same way as in the construction

heuristic, as a sequence of jobs such as {3, 4, 2, 1} where the first job is given priority

route* 1, in this case job 3. The performance of each solution is based on its makespan,

which is the completion time of the last job completed at stage m.

The steps for the SA algorithm are as follows.

1. Set the heuristic parameters minT, maxN, α, T, and N. The final temperature value

minT dictates the length of the SA heuristic, i.e. the heuristic will run until T

reaches minT. The maximum number of iterations at each temperature setting

maxN, is one of the factors in determining how fast the temperature reduces. It

regulates how many iterations are ran at a given probability of accepting a non-

improving solution. The temperature reduction factor α, ranges between 0 and 1,

 56

and is the other factor in determining how fast the temperature is reduced. The

initial temperature T is a factor in the acceptance of a non-improving solution.

The higher the temperature, the greater the probability of accepting a non-

improving solution, which allows the heuristic to search different areas of the

solution space. The initial value of N, the number of iterations at each

temperature setting is set equal to 0.

2. Set bestms = RBFFSms, and bestseq = RBFFSseq. In this step the best solution

and sequence are set to the solution and sequence obtained from the RBFFS

construction algorithm. Also the current makespan and sequence are set equal to

the construction heuristic’s makespan and sequence, curbestms = RBFFSms and

curbestseq = RBFFSseq.

3. Generate random values for Y and Z. The jobs in these two places are the jobs

chosen for pairwise interchange; e.g. if Y = 10 and Z = 6, then the job assigned to

priority route* 10 will be assigned to priority route* 6 and the job originally

assigned priority route* 6 will now be assigned to priority route* 10. Y and Z

represent locations in the priority list, and not actual job numbers.

4. If Y is equal to Z then go back to step 3; else go to step 5

5. Calculate the makespan after the exchange and set it equal to SAms also set the

new sequence as SAseq.

6. Calculate ∆TC (curbestms – SAms). In this step, the difference between the

current best makespan and the simulated annealing makespan is calculated.

7. If ∆TC > 0.001 then set curbestms = SAms and curbestseq = SAseq. Step 7 checks

the difference between the curbest makespan and the simulated annealing

 57

makespan, if it is greater than 0.001 then it means that the SA solution is better

than the curbest. If this is the case then the curbest values are reset as the SA

values. Also if ∆TC > 0.001 then the simulated annealing solution is

compared to the overall best solution found so far. If SAms < bestms then set

bestms = SAms and bestseq = SAseq.

8. If ∆TC < 0.001 and e∆TC/T > R, then set curbestms = SAms and curbestseq =

SAseq. If the SA solution is non-improving, step 8 checks to see if it will be

accepted anyway. R is a random value between 0.00 and 1.00. As the increase in

the makespan gets smaller, the non-improving solution has a higher chance of

being accepted. Also as T gets smaller the probability of accepting a non-

improving solution decreases.

9. Set N = N +1.

10. If N = maxN then T = α * T and N = 0. This step checks how many iterations have

taken place at the current temperature. If the maximum number of iterations at

this temperature has been reached, maxN, then the value of T is reset to the

current temperature multiplied by the temperature reduction factor. After the new

temperature is calculated it is compared with the minimum temperature, if T< =

minT, the heuristic terminates, else go back to step 3.

The process flow chart for the simulated annealing heuristic is shown in Figure 5.1.

Step 1. Input values for minT, maxN, α, T, N.

Step 2. Set bestms = RBFFSms, bestseq = RBFFSseq, .
curbestms = RBFFSms, and curbestseq = RBFFSseq.

Step 3. Generate two random values between 1 and n for Y
and Z.

Yes

No

Step 4.
Y = Z

Step 5. Exchange the jobs in priority position Y and Z.
Calculate the makespan and set it equal to SAms.

Also set the SAseq = to the new sequence after the
exchange.

Section
Break 1

Figure 5.1 Simulated Annealing Process Flow Diagram

Section
Break 1

SAms < bestms bestms = SAms
bestseq = SAseq

Step 6. Calculate ∆TC

Section
Break 2

Yes

No

Step 7.
∆TC >
0.001

curbestms = SAms
curbestseq = SAseq

Yes

No

Step 8.
e∆TC/T > R and
∆TC < 0.001

Yes

No

curbestms = SAms
curbestseq = SAseq

Figure 5.1 cont: Simulated Annealing Process Flow Diagram

 60

Section
Break 2

Step 9. N = N+1

Yes

No

Step 10.
N = maxN T = α * T

T <= minT

End

Proceed Back
to Step 3

Yes

No

Figure 5.1 cont: Simulated Annealing Process Flow Diagram

 61

5.4 Route Based Simulated Annealing Example

A simple illustration of the simulated annealing heuristic is now given. The

illustration will use the same data as the RBFFS construction heuristic. The starting

solution for the simulated annealing heuristic is the final solution of the RBFFS

construction heuristic, so the starting solution for SA is {3, 4, 2, 1}.

Step 1: minT = 80, maxN = 1, α = 0.80, T = 100, N = 0

Step 2: bestms = 71, bestseq = {3, 4, 2, 1}, curbestms = 71, curbestseq = {3, 4, 2, 1}

Step 3: Y = 2, Z = 4.

Step 4: Y ≠ Z

Step 5: SAseq = {3, 1, 2, 4}, SAms = 74

Step 6: ∆TC = (curbestms – SAms) = (71 – 74) = -3

Step 7: ∆TC is not greater than 0.001.

Step 8: e∆TC/T = e -3 / 100 = 0.97, R = 0.25, Also ∆TC < 0.001, so the non-improving

solution

 is accepted. curbestms = 74, curbestseq = {3, 1, 2, 4}.

Step 9: N = 0 + 1 = 1.

Step 10: N = maxN, so T = 100 * 0.80 = 80. Since T <= minT the heuristic is stopped.

5.5 PBFFS Construction Heuristic

 The PBFFS construction heuristic is a job priority based heuristic. Each job is

given a priority index, and when a machine becomes open the available job with the

lowest index is assigned to that machine. The priority given to each job is the same for

all stages; it is an entire system priority. The solution is represented as a list of jobs with

 62

the first job listed as having a priority of 1. For example a four job problem may have the

solution {3, 4, 1, 2}, where job 3 has the highest priority, job 4 has the next highest, job 1

the next, and job 2 has the lowest priority. As with the other heuristic, this solution

technique limits the solution space to n! solutions, where n is the number of jobs. The

PBFFS heuristic has the same procedure as RBFFS except, the job assignments are not

route based. In the PBFFS, jobs are scheduled based on two criteria, their priority index,

and their availability for processing. The job order for each machine in this case is not

known in advance; it depends on the job’s priority and processing times.

The steps for the PBFFS heuristic are as follows:

1. Sum the processing times on the fastest machine at each stage for each

job.

2. Arrange the jobs in descending order of the sums of their processing

times. The jobs with the greatest sum of processing times are given the

highest scheduling priority. Assign each job a priority, a number from 1

to n, where 1 is the highest priority.

3. Set all machine open times equal to 0. All jobs are initially ready for

processing at stage 1, but will not become available for stage 2 until after

they are finished processing at stage 1. This holds true for all stages 3, 4,

etc.

4. Take the two jobs with the highest priority and schedule them, using

pairwise adjacent exchange. Start scheduling jobs at stage one starting

with the first machine; assign the available job with the highest priority.

As jobs are scheduled and processed, the machine open time is calculated

 63

as (the previous job completion time + job setup time + job processing

time + any blocking time that may occur). Jobs are scheduled on the

machine with the lowest open time, until all jobs have been processed

through the system. If there is a tie on machine open time, the job will be

processed on the machine with the smallest machine index, ex. mc 1, mc

2, or mc 3. Calculate the makespan for each configuration and set the

best PBFFS sequence as the sequence with the smallest makespan.

5. Choose the job with the next highest priority and enter it at the end of the

best PBFFS sequence. Use pairwise adjacent exchange and calculated the

makespan for each partial sequence. Set the best PBFFS sequence as the

partial sequence with the smallest makespan.

6. If all jobs have been scheduled, go to step 7. Else go to step 5.

7. Set the best n job sequence as the PBFFS sequence and the best makespan

as the PBFFS makespan. STOP.

5.6 PBFFS Construction Heuristic Example
An illustration of the PBFFS construction heuristic is shown using the same job

data that were used in the RBFFS example. The steps for PBFFS are the same as RBFFS

except the jobs are scheduled in a different way. Since the example is small the limited

buffers do not block any machines.

Step one two, and three: sum the processing times on the fastest machine at each

stage, for each individual job. Then set the PBFFS priority list by place the jobs in

descending order and assigning a priority index to each job.

 64

Table 5-20 Step 1 of PBFFS Example.

 Step 1: Sum processing time for each job on the
fastest machine.

 Stage 1 Stage 2 Stage 3 Σ pt
Job 1 4 4 6 14
Job 2 14 8 9 31
Job 3 16 10 14 40
Job 4 10 7 9 26

Table 5-21 Step 2 and 3 of PBFFS Example.

 PBFFS Priority List
First Job 3

Second Job 2
Third Job 4
Fourth Job 1

Step four and five: start with the first two jobs on the PBFFS priority list, use

pairwise adjacent exchange, calculate the makespans and choose the best. The first two

jobs on the PBFFS priority list are job 3 and job 2, so the makespans for the combinations

{3, 2} and {2, 3} will be calculated. Table 5.22 and 5.23 show the Gantt Charts for

partial priority lists {3, 2} and {2, 3} respectfully.

 65

Table 5-22 PBFFS Makespan for Priority {3, 2}

 19 20 21 22 23 31 32 33 34 35 43 44 45 46 51 52 53 63 64
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 19 20 21 22 23 31 32 33 34 35 43 44 45 46 51 52 53 63 64
Key
Job 1
Job 2
Job 3
Job 4

Table 5-23 PBFFS Makespan for Priority {2, 3}

 17 18 19 20 27 28 29 36 37 38 39 40 50 51 52 82 83
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 17 18 19 20 27 28 29 36 37 38 39 40 50 51 52 82 83

 66

The partial solution {3, 2} is chosen with a makespan of 64. The next job to inter is job 4, so the partial solutions that will be

considered are: {3, 2, 4}, {3, 4, 2}, and {4, 3, 2}. Tables 5.24, 5.25, and 5.26, show the Gantt charts representing partial sequences

{3, 2, 4}, {3, 4, 2}, and {4, 3, 2} respectfully.

Table 5-24 PBFFS Makespan for Priority {3, 2, 4}

 20 21 22 23 24 32 33 34 35 43 44 45 51 52 53 54 64
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 24 32 33 34 35 43 44 45 51 52 53 54 64

Table 5-25 PBFFS Makespan for Priority {3, 4, 2}

 20 21 22 23 24 31 32 33 34 35 42 43 44 51 52 53 54 62 63 64
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 20 21 22 23 24 31 32 33 34 35 42 43 44 51 52 53 54 62 63 64

 67

Table 5-26 PBFFS Makespan for Priority {4, 3, 2}

 12 13 14 23 24 32 33 34 35 37 38 42 43 44 56 57 61 62 63 73
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 12 13 14 23 24 32 33 34 35 37 38 42 43 44 56 57 61 62 63 73

The partial solution {3, 2, 4} and {3, 4, 2} each have a makespan of 64, so either partial sequence can be used. Arbitrarily the partial

sequence {3, 4, 2}, is chosen. The next job to enter is job 1, so the partial solutions that will be considered are: {3, 4, 2, 1}, {3, 4, 1,

2}, {3, 1, 4, 2}, and {1, 3, 4, 2}. Tables 5.27, 5.28, 5.29, and 5.30 show the Gantt charts representing partial sequences {3, 4, 2, 1},

{3, 4, 1, 2}, {3, 1, 4, 2}, and {1, 3, 4, 2} respectfully.

 68

 69

Table 5-27 PBFFS Makespan for Priority {3, 4, 2, 1}

 21 22 23 24 26 27 32 33 34 35 43 44 51 52 53 54 59 60 63 64 65 76
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 21 22 23 24 26 27 32 33 34 35 43 44 51 52 53 54 59 60 63 64 65 76

Table 5-28 PBFFS Makespan for Priority {3, 4, 1, 2}

 8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 55 56 57 66 67
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 55 56 57 66 67

Table 5-29 PBFFS Makespan for Priority {3, 1, 4, 2}

 8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 56 57 65 66 67
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 8 9 10 15 16 21 22 23 24 34 35 40 41 43 44 53 54 56 57 65 66 67

Table 5-30 PBFFS Makespan for Priority {1, 3, 4, 2}

 4 5 6 11 12 19 22 23 24 31 32 33 36 37 42 43 52 53 54 55 56 57 73 74
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 4 5 6 11 12 19 22 23 24 31 32 33 36 37 42 43 52 53 54 55 56 57 73 74
Key
Job 1
Job 2

 Job 3
Job 4

The final PBFFS solution is chosen as {3, 4, 1, 2} or {3, 1, 4, 2}, since there is a tie, either solution can be chosen. Arbitrarily

solution {3, 4, 1, 2}is selected. The final makespan, or objective function is represented simply as 67.

Step 7: the PBFFS sequence is {3, 4, 1, 2} and the corresponding makespan is 67 units. STOP

 The final PBFFS sequence is then used as the starting solution in a simulated annealing algorithm. The simulated annealing

algorithm is the same as the one used in conjunction with the RBFFS construction heuristic, and it adjusts the sequence in the same

way; the only difference in the development of the schedules is when the makespans are calculated. The makespans are calculated

using the method from the PBFFS construction heuristic.

 70

6 Lower Bound

The flexible flowshop with sequence dependent setup times, uniform machines,

and limited buffers is a very complex problem, where only extremely small problems can

be solved optimally. If the optimal solution cannot be found, other means for measuring

the performance of the heuristics need to be employed. Three prominent ways of testing

are using upper/lower bounds and comparing with other heuristics. In this research,

lower bounds and comparison with other heuristics will be used. This section details how

the lower bound is developed. The lower bound solution may be infeasible, but it gives a

point of reference in testing the heuristic solutions. Due to the complexity of the

problem, the lower bound presented is not very strong, and is not expected to be very

close to the value of the optimal solution, but the complexity of the problem makes it

very difficult to obtain a stronger lower bound. The lower bound presented was

compared with LP relaxation for two randomly chosen medium sized problems, 4 stages

and 30 jobs. The presented LB was 39.7% and 31.3% higher than the objective function

of the LP relaxation solution.

Variable key for Lower Bound:
Table 6-1Lower Bound Nomenclature

Variable Description
s Stage index.
Ms The number of machines at each stage s.
BPTs Sum of base processing times for stage s.
PPs Processing power of stage s.
Bs BPTs divided by PPs for each stage s.
SSETs Sum of the smallest setup times for all jobs at each stage s.
Ds SSETs divided by Ms for each stage s.
Gs The sum of Bs and Ds for each stage s, rounded up to the next

integer.
Es The largest sum (for any job) of the job basic processing time and

its smallest setup time for each stage s.

 71

Variable Description

Ks The maximum between Gs and Es for each stage s.
F The fastest time any job can reach the bottleneck stage,

including the setup times, from 0.
Fn The nth fastest time a job can reach the bottleneck stage.
Ls The fastest estimated completion times for two jobs in each

stage s leading up to the bottleneck stage. It is found by using
the 2 jobs with the minimum base processing times and set up
times at each stage. The jobs chosen at each of the stages are
independent. The value for Ls is found by taking the
maximum value between (sum processing times / machine
processing power using the fastest 2 machines) + (smallest
setup times / number of machines at stage s (with a maximum
of 2 machines at stage s)) , and (largest base processing time
+ smallest setup time for job with largest base processing
time)}

H The sum of Ls, for all stages leading up to the bottleneck
stage. ex. For stage 3 as the bottleneck, H = L1 + L2

SH The earliest possible time processing can start on the second
machine in the bottleneck stage. SH = max[H, F2], where F2
is the second smallest sum calculated in the determination of
F.

I SH minus F.
Os Similar to Ls except that is uses the 3 smallest jobs at each

stage.
J The sum of Os, for all stages leading up to the bottleneck

stage. ex. For stage 3 as the bottleneck, J = O1+ O2
SJ The earliest possible time processing can start on the third

machine in the bottleneck stage. SJ = max[J,F3], where F3 is
the third smallest sum calculated in the determination of F.

Q SJ minus F.
S2LB Lower bound after step 2.
BPTBN Sum of the Base processing times at the bottleneck stage.
PM2 Processing power of machine 2 at the bottleneck stage.
PM3 Processing power of machine 3 at the bottleneck stage.
PBS Processing power of all machines at the bottleneck stage.
P The smallest possible value for any job to finish processing

after the bottleneck stage including setup.
LB Lower Bound

An example of the lower bound will be worked out with its presentation. The

data used in the example are listed in Tables 6.2 – 6.6. For the example problem a four

 72

stage flexible flowshop with three machines in each of the stages is considered. There

are four jobs to be processed, and for simplicity, all of the setup times in this illustration

are considered to be equal to 1. Also in the example, the first machine at each stage has a

speed of 100% and all other machines have a speed of 50%.

Table 6-2 Lower Bound Example Stage 1 Processing Times

Stage 1 Processing Times
 Job 1 Job 2 Job 3 Job 4 ∑ pt
Machine 1 4 5 3 8 20
Machine 2 8 10 6 16 40
Machine 3 8 10 6 16 40

Table 6-3 Lower Bound Example Setup Times

All Stages Setup Times
 To Job 1 Job 2 Job 3 Job 4

From Job 0 1 1 1 1
 Job 1 X 1 1 1
 Job 2 1 X 1 1
 Job 3 1 1 X 1
 Job 4 1 1 1 X

Table 6-4Lower Bound Example Stage 2 Processing Times

Stage 2 Processing Times
 Job 1 Job 2 Job 3 Job 4 ∑ pt
Machine 1 6 5 6 2 19
Machine 2 12 10 12 4 38
Machine 3 12 10 12 4 38

Table 6-5 Lower Bound Example Stage 3 Processing Times

Stage 3 Processing Times
 Job 1 Job 2 Job 3 Job 4 ∑ pt
Machine 1 8 4 6 8 26
Machine 2 16 8 12 16 52
Machine 3 16 8 12 16 52

Table 6-6 Lower Bound Example Stage 4 Processing Times

Stage 4 Processing Times
 Job 1 Job 2 Job 3 Job 4 ∑ pt
Machine 1 2 6 5 2 15
Machine 2 4 12 10 4 30
Machine 3 4 12 10 4 30

 73

6.1 Step 1 of the Lower Bound

The lower bound is developed in three steps. In the first step, the bottleneck stage

is determined. To identify the bottleneck stage, the sum of base processing times for

each job is calculated for each stage and is designated as (BPTs). Then (BPTs) is divided

by the processing power at that stage (PPs), this becomes value (Bs). The processing

power is basically the sum of the machine speeds. A more detailed description of

processing power is given in the next paragraph. The smallest setup time is determined

for each job, and the smallest setup times are added for all jobs and set equal to (SSETs).

Next (SSETs), is divided by the total number of machines in the stage (Ms); this value is

labeled as (Ds). The final value for this part of step one is found by adding (Bs) and (Ds)

for each stage and rounding up to the next integer, this value becomes (Gs).

The processing power is calculated by summing the speeds of the machines. The

processing times for jobs are calculated by dividing the base processing time by the speed

of the machine. For example if a stage has three machines with speeds of 100%, 50%,

and 50%, and a job has a base processing time of 6 units, the time to process that job on

machine 1 will be (6/1) = 6 units, machine 2 and 3 (6/0.50) = 12 units. If a stage has only

one machine then the processing power is 1, for a stage with two machines the processing

power is (1.00 + 0.50) = 1.50, and for a stage with three machines the processing power

is (1.00 + 0.50 + 0.50) = 2.00. Also the largest sum of any single job’s base processing

time and its smallest setup time is calculated for each stage and labeled as (Es). For each

stage, the fastest estimated completion time of all jobs is the largest value of either (Gs)

or (Es) and is labeled as (Ks). The first part of the lower bound determines the stage with

the largest (Ks) which is the estimated completion time for that stage. The stage where

 74

the maximum (Ks) occurs is considered to be the bottleneck stage and the rest of the

lower bound is based around this stage. It should be noted that the bottleneck stage is

estimated using lower bounds and may not be the actual bottleneck stage. Using the data

given in Tables 6.2- 6.6, calculations for step one of the lower bound are as follows:

For first stage, K1 = Max {(20/2) + (4/3), (8 + 1)} = Max {10 + 1.33, 9} = 12.

The second stage K2 = Max {(19/2) + (4/3), (6 + 1)} = Max {9.5 + 1.33, 7} = 11.

The third stage K3 = Max {(26/2) + (4/3), (8 + 1)} = Max {13 + 1.33, 9} = 15.

The fourth stage K4 = Max {(15/2) + (4/3), (6 + 1)} = Max {7.5 + 1.33, 7} = 9.

Since the third stage has the largest calculated value of Ks, it is considered to be the

bottleneck.

6.2 Step 2 of the Lower Bound

The second step in the lower bound calculation accounts for the idle time in the

bottleneck stage, before the processing of the first job. If the bottleneck stage is not the

first stage then some idle time will occur on each of the machines at the bottleneck stage

while they are waiting for jobs to arrive from the previous stages. To find the earliest

possible start time for any machine at the bottleneck stage, the base processing and setup

up times from zero for each job, at each stage preceding the bottleneck stage, are summed

over all stages, and then the smallest total value is chosen and designated as value (F).

Table 6.7 shows how this is calculated for the example problem:

 75

Table 6-7 Step 2 Lower Bound

 Job 1 Job 2 Job 3 Job 4

Stage 1 4 + 1 = 5 5 + 1 = 6 3 + 1 = 4 8 + 1 = 9

Stage 2 6 + 1 = 7 5 + 1 = 6 6 + 1 = 7 2 + 1 = 3

Total 12 12 11 12

Job 3 would be chosen (with F = 11 units), so 11 idle units on all machines will be added

to the lower bound. All machines at the considered bottleneck stage will be idle for at

least 11 time units.

In addition to the idle time that all machines at the considered bottleneck stage

will experience, additional idle time may occur on the second machine before it starts

processing jobs. After the first machine at bottleneck stage begins processing, some

additional idle time may occur on the other machines, because they may have to wait for

the next available jobs to arrive. To account for the idle time on the second machine to

begin processing at the bottleneck stage, the two jobs with the minimum values of the

sum of basic processing times and the smallest setup times are chosen from each stage.

The jobs chosen are independent for each stage, so if a job is chosen in one stage it does

not have to be used at the following stages. After the jobs are chosen, an estimated

completion time for each stage is obtained in a similar way as for value (Ks) in the first

step of the lower bound. The estimated completion time for each stage s is denoted as

(Ls). The sum of the values for (Ls) leading up to the bottleneck stage is calculated and is

denoted as (H). The start time for the second machine at the bottleneck stage, denoted as

(SH). SH is calculated as the maximum value between [H, F2]. The extra idle time for

 76

the second machine at the bottleneck stage is calculated by subtracting (F) from (SH) and

is denoted as value (I),where (I) is greater than or equal to zero.

 For the example, job 3 and job 1 are chosen from the first stage, job 4 and job 2

are chosen from the second stage.

The first stage (L1) value is Max {(7/1.5) + (2/2), (4 + 1)} = Max {4.67 + 1, 5} = 6.

The second stage (L2) value is Max {(7/1.5) + (2/2), (5 +1)} = Max {4.67 + 1, 6} = 6.

The value for (H) is calculated as 6 + 6 = 12.

The earliest time for a job to reach machine two at the bottleneck stage (SH) is calculated

as Max {12, 12} = 12. Since no jobs are ready for processing at the bottleneck stage until

time period 11, and the earliest possible time a second job may be ready for processing is

at time period 12, one extra idle unit (12 – 11 = 1) will be added to the second machine, (I

= 1).

The extra idle time for the third machine is calculated in the same way as for the

second machine except the three jobs with the minimum values of the sum of the base

processing time and smallest setup times are used. The estimated completion time for

each stage s is labeled as (Os). The extra idle time for machine three is found by

summing (Os) for each stage leading up to the bottleneck stage and is designated as (J).

The start time for the third machine at the bottleneck stage, denoted as (SJ). SJ is

calculated as the maximum [J,F3]. The extra idle time units to add to the third machine

are found by subtracting (F) from (SJ) and this value is designated as (Q), where (Q) is

greater than or equal to zero.

 77

For the example, jobs 3, 1, and 2 would be chosen from the first stage and job 4,

2, and 1 or 3 would be chosen from the second stage. The jobs at each stage are treated

independently.

The first stage value of O1 = Max {(12/2) + (3/3), (5 + 1)} = Max {6 + 1, 6} = 7.

The second stage value of O2 = Max {(13/2) + (3/3), (6 + 1)} = Max {6.5 + 1, 7} = 8.

The value of J is calculated as 7 + 8 = 15.

The earliest time for a job to reach machine three in the bottleneck stage (SJ) is calculated

as Max {12, 15}. Since the minimum time for the third job to reach the bottleneck stage

is 15 time units, four extra idle units will be added to the starting time of the third

machine at the bottleneck stage, (Q) is calculated as 15 – 11 = 4. This process is repeated

until all lower bound extra idle times are determined for all of the machines at the

bottleneck stage.

The last part of step 2 involves calculating the new lower bound after adding the

idle times to the processing time for the bottleneck stage. This is done by using the

following equation:

 Step 2 LB = Max {[
PBS

PMQPMIBPTBN)3()2(×+×+
 + Ds], Es} + F

Step 2 LB = Lower bound after step 2.
BPTBN = Sum of the base processing times at the bottleneck stage.
PM2 = Processing power of machine 2 at the bottleneck stage.
PM3 = Processing power of machine 3 at the bottleneck stage.
PBS = Processing power of all machines at the bottleneck stage.
* It should be noted that the calculated value in the brackets [] is also rounded up.

 78

For the example the lower bound value after step 2 would be calculated as follows:

Step 2 LB = Max {[26 + (1 * 0.50) + (4 * 0.50) + (4/3)], (8 + 1)} + 11
 2

= Max {14.25 + 1.33, 9} + 11
= 27

6.3 Step 3 of the Lower Bound

In the last step of the lower bound, extra time is added for the stages that follow

the bottleneck stage. All jobs are considered. For each job, the base processing time for

each of the post bottleneck stages is added to the smallest possible setup time, excluding

the setup times from 0. The smallest value between all the jobs is labeled as (P). (P) is

then added to the lower bound that was calculated after step 2, and this value is the final

lower bound, (LB).

LB = Step 2 LB + P

 For the example problem, the value for step three is calculated as follows:

Table 6-8 Step 3 Lower Bound

 Job 1 Job 2 Job 3 Job 4

Stage 4 2 + 1 = 3 6 + 1 = 7 5 + 1 = 6 2 + 1 = 3

Job 1 or 4 is chosen to be the final job processed, and 3 time units are added to the last

value obtained in step 2. The final lower bound (LB) is calculated as 27 + 3 = 30.

Even though the buffers in between stages have a limited capacity and blocking may

occur; this could not be included in the calculations of the lower bound.

 79

7 Simple Heuristics

Two quick and easy simple heuristics are also developed as another means of

testing the solution quality of the RBFFS and PBFFS heuristics. The first simple

heuristic SH1 assigns jobs priority based on the order in which they are placed

(FCFS). The second simple heuristic SH2 allocates priorities to jobs based on the

largest total processing time (LTPT). The simple heuristics then process the jobs

through the system and record the maximum completion time. In both heuristics the

jobs that are ready for processing are assigned to the first available machine based on

the job’s priority. The job with priority 1 is chosen over all others, then the job with

priority 2, and so forth.

7.1 Simple Heuristic One

 In the first simple heuristic, SH1, jobs are designated priorities on a first come

first serve basis, and then they are processed through the system. In this heuristic the jobs

are assigned a priority index as they enter the system, for example job 1 would receive

priority 1, and so forth. Table 7.1 shows an example of the first come FCFS heuristic,

SH1. The example is calculated using the same data that were used in the construction

heuristic example in section 5.2. The SH1 job priority index is {1, 2, 3, 4}.

 80

Table 7-1 SH1 Example Gantt Chart

 5 6 11 12 19 20 28 29 32 33 37 42 43 48 49 55 56 74
mc 1
mc 2 Stage 1

mc 3
Stage 2 mc 1

mc 1 Stage 3
mc 2

 5 6 11 12 19 20 28 29 32 33 37 42 43 48 49 55 56 74
Key
Job 1
Job 2
Job 3
Job 4

The corresponding makespan to the SH1 sequence {1, 2, 3, 4} is calculated as 74.

7.2 Simple Heuristic Two

In the second simple heuristic SH2, the jobs are given priorities based on the

largest processing time, with the largest one getting the highest priority. To calculate

SH2, the LPT based simple heuristic, first the base processing times for each job at all

stages must be added together. Table 7.2 shows the results of the summation of the base

processing times.

Table 7-2 Sum of Base Processing Times

 Job 1 Job 2 Job 3 Job 4
Stage 1 4 14 16 10
Stage 2 4 8 10 7
Stage 3 6 9 14 9
Total 14 31 40 26

The priority list associated with this example would be {3, 2, 4, 1}. The Gantt Chart for

the SH2 makespan is shown in Table 7.3.

 81

Table 7-3 SH2 Example Gantt Chart

 21 22 23 24 26 27 32 34 35 44 45 52 53 54 58 59 64 65 71
mc 1
mc 2 Stage 1
mc 3

Stage 2 mc 1
mc 1 Stage 3
mc 2

 21 22 23 24 26 27 32 34 35 44 45 52 53 54 58 59 64 65 71
Key
Job 1
Job 2
Job 3
Job 4

The corresponding makespan for the SH2 sequence {3, 2, 4, 1} is 71 units. Both of these simple heuristics provide a feasible solution

that can be used as a reference, when determining the solution quality of the more complicated RBFFS and PBFFS heuristics. For the

same example data, the construction heuristics RBFFS and PBFFS makespans were 71 and 67 respectively.

 82

8 Experimentation

Since this specific problem has not been addressed in the literature, a means of testing

the proposed heuristics is needed. There are two methods that will be used to test the

solution quality of each heuristic:

1. Comparison with a lower bound. By comparing with a lower bound, an idea

is obtained on how good the solution is. Even though the lower bound may be

infeasible and may be much lower than the optimal value, it is a good

measuring tool for solution quality.

2. The second method used to test solution quality is to use other heuristics and

compare the results. For comparison, two simple heuristics were developed.

The first simple heuristic gives the jobs priority on a first come first serve

basis. This would occur when jobs are sent to the end of the queue and wait

for processing. The second simple heuristic gives jobs priority based on total

processing time, where the jobs with larger total processing times get higher

scheduling priority. While the lower bound may be infeasible, all heuristics

developed in this research give feasible solutions.

8.1 Problem Instances

Three different simplified flexible flowshop environments were chosen to test the

performance of the proposed heuristics. The first environment consists of 3 stages with a

machine configuration of 3-1-2 and a limit of 3 jobs in the buffers between stages. This

environment is modeled after part of a hydraulic hose manufacturing process. In the first

 83

stage the hoses are attached to a harness, in the second stage the hoses are put in an oven

for heat treating, and in the last stage the fittings are assembled.

The second environment consists of 4 stages with a machine configuration of 2-1-2-1

and a limit of 3 jobs in the buffers between stages. This environment is modeled after a

vinyl window manufacture. In the first stage the pieces of vinyl are cut to length, in the

second stage the four sides of the window are welded together, in the third stage the

latches and tracks are added, and in the last stage the final assembly takes place.

The third environment consists of 5 stages with a machine configuration of 3-3-2-2-1

and a limit of 4 jobs in buffers between stages. This environment is modeled after a high

voltage circuit breaker assembly manufacturer. In the first stage painting is preformed, in

the second stage wiring takes place, in the third mechanical assembly is done, in the

fourth electrical assembly takes place, and in the last step the unit is tested.

8.2 Data Generation

Data were not available for the jobs in these manufacturing environments, so they

were generated. The first machine at each stage is considered to be the fastest with a

speed of 1.00 all other machines have a speed of 0.50. The processing power of a stage is

found by adding the speeds of all machines at that stage. The base processing time for a

job at any stage is considered to be the job processing time on the fastest machine at that

stage. The job setup time for any stage is between 20 to 40% of the job base processing

time. The job processing times were generated as to not present any obvious bottleneck

stages. If there were a bottleneck stage, the problem would basically reduce to a one

stage scheduling problem. The data were generated as follows:

 84

• If a stage has 1 machine, then the base processing time is chosen form a

uniform distribution between 2 and 10. This gives an average processing time

of 6 units. The average processing time divided by the machine processing

power is (6 / 1) = 6 units.

• If a stage has 2 machines, then the base processing time is chosen from a

uniform distribution between 3 and 15. This gives an average processing time

of 9 units. The average processing time divided by the machine processing

power = (9 / 1.5) = 6 units.

• If a stage has 3 machines, then the base processing time is chosen from a

uniform distribution between 4 and 20. This gives an average processing time

of 12 units. The average processing time divided by the machine processing

power = (12 / 2) = 6 time units.

• Ten different data sets with 30 jobs each were generated for each of the three

flowshop environments.

The nomenclature used in the experimentation is listed in Table 8.1.

Table 8-1 Experiment Nomenclature

Nomenclature Definition
SH1 Refers to the simple heuristic, using first come first serve

priority allocation.
SH2 Refers to the simple heuristic, using a largest total processing

time priority allocation.
RBFFS Refers to the route based construction heuristic.
PBFFS Refers to the priority based construction heuristic

RBFFS_SA Refers to the route based construction heuristic combined with
the simulated annealing algorithm.

PBFFS_SA Refers to the priority based construction heuristic combined
with the simulated annealing algorithm.

LB Lower bound

 85

8.3 Experimentation Overview

Before applying the heuristics, the priority lists and the lower bounds are

calculated using Microsoft Excel. A program was written in Microsoft Visual Basic-6.0

that takes the priority lists, job processing times, and setup times and calculates the

solution for each heuristic. Also a VB program was written that performs all of the

exchanges for the construction heuristics and displays the final sequence and the

corresponding objective function. The program then inputs the final construction

heuristic sequence and makespan as the starting sequence and makespan for the simulated

annealing heuristic. The SA algorithm, also a VB program is initiated and runs until the

temperature is reduced to a predetermined value.

8.4 Simulated Annealing Parameters

The simulated annealing parameters ensure that the temperature does not get

reduced too fast, resulting in poor solutions. Also the SA parameters reduce the

temperature fast enough that time is not wasted. The initial temperature is set by using

the following equation:

)ln(
)1(

PA
SHLBIT −

=

Where,

IT = The initial temperature setting.
LB = Value obtained for the lower bound
SH1 = Value of the makespan found for the initial solution,
PA = Initial probability of accepting a non-improving solution,
 For this research the probability is set as 40 or 30%.

The initial probability of accepting a non-improving solution is set at 40% for the

first five runs (1-5) and set at 30% for the next five runs (6-10). The value for the

 86

temperature reduction factor is set at 0.90. The maximum number of iterations at each

temperature setting is 100 for each problem. The heuristic is stopped when the

temperature is reduced to 0.01.

8.5 Experimentation Results

 For each data set, the simple heuristic solutions and lower bounds were calculated

first, and then the construction heuristics were initiated. Since the SA heuristic is random

in nature and has a small run time it was run 10 different times. The PBFFS_SA

heuristics run times were about 70, 95, and 135 seconds for the 3-1-2, 2-1-2-1, and 3-3-2-

2-1 environments respectfully. The RBFFS_SA heuristics run times were all under 20

seconds for each environment. Each time the SA was run, it used the same starting

solution given by the construction heuristic, but the initial probability of acceptance for a

non-improving solution was adjusted. In the first five runs (1-5) the initial probability of

acceptance was set at 40% and in the next five runs (6-10) the initial probability of

acceptance was set at 30%. In Tables 8.2 through 8.4 only the best solution obtained

from the 10 runs is shown, all results for each run can be viewed in appendix A. In these

tables, the ratio to LB is calculated as the ratio between the solution in question and LB,

and the ratio to BF is calculated as the ratio between the solution in question and the best

solution found.

For the 3-1-2 machine scheduling environment, the RBFFS heuristic averaged an

increase of 23.2% from the lower bound, 14.8% from the best solution found, and

achieved a 1.2% improvement over the best simple heuristic solution. The RBFFS_SA

heuristic averaged 7.3% from the lower bound, equaled the best solution found, and

achieved a 16% improvement over the best simple heuristic solution. Also by adding

simulated annealing to RBFFS, the solution improved by 14.8%. The PBFFS heuristic

averaged 18.8% from the lower bound, 10.8% from the best solution found, and achieved

a 4.7% improvement over the best simple heuristic solution. The PBFFS_SA heuristic

averaged 12.1% from the lower bound, 4.5% from the best solution found, and achieved

an 11% improvement over the best simple heuristic solution. By adding simulated

annealing to PBFFS, the solution was improved by 6%.

 87

For the 2-1-2-1 machine scheduling environment the RBFFS heuristic averaged

25.7% from the lower bound, 12% from the best solution found, and achieved a 1.7%

improvement over the best simple heuristic solution. The RBFFS_SA heuristic averaged

12.3% from the lower bound, 0.1 % from the best solution found, and achieved a 13.8%

improvement over the best simple heuristic solution. Also by adding simulated annealing

to RBFFS, the solution improved by 11.9%. The PBFFS heuristic averaged 22.1% from

the lower bound, 8.8% from the best solution found, and achieved a 4.7% improvement

over the best simple heuristic solution. The PBFFS_SA heuristic averaged 15.3% from

the lower bound, 2.8% from the best solution found, and achieved a 10.8% improvement

over the best simple heuristic solution. By adding simulated annealing to PBFFS, the

solution was improved by 5.8%.

For the 3-3-2-2-1 machine scheduling environment the RBFFS heuristic averaged

46% from the lower bound, 12.8% from the best solution found, and performed 3.6%

worse than the best simple heuristic solution. The RBFFS_SA heuristic averaged 32.4%

from the lower bound, 2.3 % from the best solution found, and 6.3% from the best simple

heuristic solution. Also by adding simulated annealing to RBFFS, the solution improved

by 10.3%. The PBFFS heuristic averaged 36.2% from the lower bound, 5.2% from the

best solution found, and achieved a 3.3% improvement over the best simple heuristic

solution. The PBFFS_SA heuristic averaged 29.5% from the lower bound, equaled the

best solution found, and achieved an 8.7% improvement over the best simple heuristic

solution. By adding simulated annealing to PBFFS, the solution was improved by 5.2%.

 88

Table 8-2 Experimentation Results for the 3-1-2 Environment
Configuration 3-1-2 Buffer capacity =3
 SH1 SH2 RBFFS

 LB Sol
Ratio to

LB
Ratio to

BF Sol
Ratio
to LB

Ratio to
BF Sol

Ratio
to LB

Ratio
to BF

Data set 1 205 275 1.3415 1.2387 265 1.2927 1.1937 266 1.2976 1.1982
Data set 2 228 285 1.25 1.1492 281 1.2325 1.1331 270 1.1842 1.0887
Data set 3 219 269 1.2283 1.1798 273 1.2466 1.1974 260 1.1872 1.1404
Data set 4 214 256 1.1963 1.1429 268 1.2523 1.1964 264 1.2336 1.1786
Data set 5 246 305 1.2398 1.1466 303 1.2317 1.1391 298 1.2114 1.1203
Data set 6 231 291 1.2597 1.1878 293 1.2684 1.1959 284 1.2294 1.1592
Data set 7 224 280 1.25 1.1864 274 1.2232 1.161 268 1.1964 1.1356
Data set 8 230 299 1.3 1.1818 290 1.2609 1.1462 303 1.3174 1.1976
Data set 9 258 322 1.2481 1.1709 324 1.2558 1.1782 301 1.1667 1.0945
Data set 10 199 253 1.2714 1.15 255 1.2814 1.1591 257 1.2915 1.1682
Average 225.4 283.5 1.259 1.173 282.6 1.255 1.170 277.1 1.232 1.148

 RBFFS_SA PBFFS PBFFS_SA

 LB Sol
Ratio to

LB
Ratio to

BF Sol
Ratio
to LB

Ratio to
BF Sol

Ratio
to LB

Ratio
to BF

Data set 1 205 222 1.0829 1 245 1.1951 1.1036 228 1.1122 1.027
Data set 2 228 248 1.0877 1 266 1.1667 1.0726 254 1.114 1.0242
Data set 3 219 228 1.0411 1 255 1.1644 1.1184 237 1.0822 1.0395
Data set 4 214 224 1.0467 1 254 1.1869 1.1339 239 1.1168 1.067
Data set 5 246 266 1.0813 1 292 1.187 1.0977 280 1.1382 1.0526
Data set 6 231 245 1.0606 1 279 1.2078 1.1388 261 1.1299 1.0653
Data set 7 224 236 1.0536 1 263 1.1741 1.1144 246 1.0982 1.0424
Data set 8 230 253 1.1 1 280 1.2174 1.1067 268 1.1652 1.0593
Data set 9 258 275 1.0659 1 303 1.1744 1.1018 287 1.1124 1.0436
Data set 10 199 220 1.1055 1 241 1.2111 1.0955 227 1.1407 1.0318
Average 225.4 241.7 1.073 1 267.8 1.188 1.108 252.7 1.121 1.045

 89

Table 8-3 Experimentation Results for the 2-1-2-1 Environment

Configuration 2-1-2-1 Buffer capacity =3
 SH1 SH2 RBFFS

 LB Sol
Ratio
to LB

Ratio to
BF Sol

Ratio to
LB

Ratio to
BF Sol

Ratio
to LB

Ratio to
BF

Data set 1 206 280 1.3592 1.1915 277 1.3447 1.1787 268 1.301 1.1404
Data set 2 237 310 1.308 1.2016 298 1.2574 1.155 284 1.1983 1.1008
Data set 3 225 294 1.3067 1.1713 296 1.3156 1.1793 289 1.2844 1.1514
Data set 4 214 277 1.2944 1.1688 278 1.2991 1.173 279 1.3037 1.1772
Data set 5 248 312 1.2581 1.1143 319 1.2863 1.1393 315 1.2702 1.125
Data set 6 234 307 1.312 1.1585 294 1.2564 1.1094 291 1.2436 1.0981
Data set 7 224 297 1.3259 1.1647 288 1.2857 1.1294 275 1.2277 1.0784
Data set 8 239 304 1.272 1.1259 307 1.2845 1.137 295 1.2343 1.0926
Data set 9 262 327 1.2481 1.1085 322 1.229 1.0915 323 1.2328 1.0949

Data set 10 216 276 1.2778 1.15 285 1.3194 1.1875 275 1.2731 1.1458
Average 230.5 298.4 1.296 1.156 296.4 1.288 1.148 289.4 1.257 1.120

 RBFFS_SA PBFFS PBFFS_SA

 LB Sol
Ratio
to LB

Ratio to
BF Sol

Ratio to
LB

Ratio to
BF Sol

Ratio
to LB

Ratio to
BF

Data set 1 206 235 1.1408 1 256 1.2427 1.0894 246 1.1942 1.0468
Data set 2 237 258 1.0886 1 280 1.1814 1.0853 267 1.1266 1.0349
Data set 3 225 251 1.1156 1 280 1.2444 1.1155 260 1.1556 1.0359
Data set 4 214 237 1.1075 1 267 1.2477 1.1266 245 1.1449 1.0338
Data set 5 248 280 1.129 1 302 1.2177 1.0786 290 1.1694 1.0357
Data set 6 234 265 1.1325 1 282 1.2051 1.0642 270 1.1538 1.0189
Data set 7 224 255 1.1384 1 276 1.2321 1.0824 259 1.1563 1.0157
Data set 8 239 270 1.1297 1 294 1.2301 1.0889 278 1.1632 1.0296
Data set 9 262 299 1.1412 1.0136 306 1.1679 1.0373 295 1.126 1

Data set 10 216 240 1.1111 1 267 1.2361 1.1125 247 1.1435 1.0292
Average 230.5 259 1.123 1.001 281 1.221 1.088 265.7 1.153 1.028

 90

Table 8-4 Experimentation Results for the 3-3-2-2-1 Environment

Configuration 3-3-2-2-1 Buffer capacity = 4
 SH1 SH2 RBFFS

 LB Sol
Ratio
to LB

Ratio to
BF Sol

Ratio to
LB Ratio to BF Sol

Ratio
to LB

Ratio to
BF

Data set 1 214 313 1.4626 1.0982 315 1.472 1.1053 320 1.4953 1.1228
Data set 2 243 334 1.3745 1.0503 348 1.4321 1.0943 351 1.4444 1.1038
Data set 3 226 331 1.4646 1.1336 333 1.4735 1.1404 338 1.4956 1.1575
Data set 4 222 305 1.3739 1.0517 319 1.4369 1.1 329 1.482 1.1345
Data set 5 264 363 1.375 1.0804 377 1.428 1.122 376 1.4242 1.119
Data set 6 247 348 1.4089 1.0943 353 1.4291 1.1101 361 1.4615 1.1352
Data set 7 239 329 1.3766 1.0894 352 1.4728 1.1656 346 1.4477 1.1457
Data set 8 243 355 1.4609 1.0957 355 1.4609 1.0957 365 1.5021 1.1265
Data set 9 268 378 1.4104 1.0957 379 1.4142 1.0986 384 1.4328 1.113
Data set 10 227 311 1.37 1.0799 339 1.4934 1.1771 322 1.4185 1.1181
Average 239.3 336.7 1.408 1.087 347 1.451 1.121 349.2 1.460 1.128

 RBFFS_SA PBFFS PBFFS_SA

 LB Sol
Ratio
to LB

Ratio to
BF Sol

Ratio to
LB Ratio to BF Sol

Ratio
to LB

Ratio to
BF

Data set 1 214 287 1.3411 1.007 297 1.3879 1.0421 285 1.3318 1
Data set 2 243 324 1.3333 1.0189 328 1.3498 1.0314 318 1.3086 1
Data set 3 226 297 1.3142 1.0171 326 1.4425 1.1164 292 1.292 1
Data set 4 222 294 1.3243 1.0138 296 1.3333 1.0207 290 1.3063 1
Data set 5 264 346 1.3106 1.0298 358 1.3561 1.0655 336 1.2727 1
Data set 6 247 328 1.3279 1.0314 330 1.336 1.0377 318 1.2874 1
Data set 7 239 312 1.3054 1.0331 323 1.3515 1.0695 302 1.2636 1
Data set 8 243 330 1.358 1.0185 342 1.4074 1.0556 324 1.3333 1
Data set 9 268 356 1.3284 1.0319 356 1.3284 1.0319 345 1.2873 1
Data set 10 227 295 1.2996 1.0243 302 1.3304 1.0486 288 1.2687 1
Average 239.3 316.9 1.324 1.023 325.8 1.362 1.052 309.8 1.295 1.000

 91

9 Conclusion

9.1 Overview of Research

The objective of this research was to minimize the makepsan in a flexible flowshop

with sequence dependent setup times, uniform machines, and limited buffers. At the time

of this research, no attempt to solve this problem could be found in the literature. The

goals of this research were to:

1. Develop a mathematical model of the problem.

2. Develop two construction heuristics to construct initial feasible solutions to

the problem. Then use a simulated annealing algorithm to improve the initial

solutions.

3. Develop a lower bound to test the solution quality.

This problem is extremely complex and it is not practical to solve optimally. A

mathematical model for the problem was created, and used to solve small problems

optimally. Even very small problems, such as a three stage 5 job problem, took around

an hour to solve.

Two construction heuristics, RBFFS and PBFFS were developed based on a flowshop

heuristic given by Nawaz et. al (1983). The first heuristic is route based, and the second

is job priority based. The heuristics give a higher scheduling priority to jobs that have

larger processing times. They use adjacent pariwise exchange and add jobs one at a time

until all jobs are scheduled. Next, a simulated annealing heuristic is used to improve the

final solutions obtained from the construction heuristics. The construction and SA

heuristics use a solution space of n!, where n is the total number of jobs. This reduces the

solution space but allows good solutions to be found in a reasonable amount of time.

 92

 Two methods were used to test the proposed algorithms performance. A lower

bound was developed that focused on the bottleneck stage and then scheduled jobs before

and after that stage. Also two simple heuristics were used to solve the problem. One

simple heuristic, SH1, assigned jobs priority on a first come first serve basis. The second

simple heuristic, SH2, assigned jobs priorities based on total processing time, with the

higher total processing time jobs receiving higher priority. The simple heuristics provide

feasible solutions that are used for comparison.

In all but one case, both construction heuristics obtained a better solution than the

best simple heuristic. The simulated annealing heuristic was able to improve on the

solutions obtained with the construction heuristics. When comparing to the lower bound,

both construction algorithms and simulated annealing heuristics performed well for the

smaller systems. For the machine configurations of 3-1-2, 2-1-2-1 and 3-3-2-2-1, the

RBFFS_SA heuristic was 7.3%, 12.3%, and 32.4.5% respectively higher than the lower

bound; while the PBFFS_SA heuristic was 12.1%, 15.3%, and 29.5% higher than the

lower bound. The increase in the gap between the heuristic solution and the lower bound

for the larger stage environments is most likely due to deficiencies in the lower bound

and not due to poor heuristic performance. The presented lower bound does not account

for machine blocking, and as the number of stages increase, the chances of a machine

being blocked also increase. The lower bound presented was compared to a lower bound

calculated by relaxing the binary and integer variables. The LB presented outperformed

the relaxed version.

The RBFFS_SA heuristic performed the best for the small and medium sized

problems. The PBFFS_SA heuristic out performed the RBFFS for the larger problem.

 93

The simulated annealing algorithm had a much larger affect on the RBFFS’s solution; it

was improved between 10.3% and 14.8%, while the SA improved the PBFFS only 5.2%

to 6%. Limiting the solution space to permutation schedules may have produced this

difference. The RBFFS is much more delicate and dependant on the permutation

solution. The RBFFS_SA heuristic has a short run time, but it does take extra time to

develop a good routing system. Both heuristics were able to provide good solutions to

the problem in a reasonable amount of time.

9.2 Contribution to Literature:

The contributions made to the literature by this research are as follows:

• A mathematical model was developed for the flexible flowshop with sequence

dependent setup times, uniform machines, and limited buffers.

• Development of two construction heuristics combined with an improvement

heuristic to give a good quick solution to the problem.

• Development of a simulated annealing heuristic to improve the solution of the

construction heuristics.

• Development of a lower bound for the problem.

• Laid ground work for future research on this type of problem.

9.3 Recommendations for Future Research:

The work performed in this research opens the door for more investigation of the flexible

flowshop with sequence dependent setup times, uniform machines, and limited buffers

problem. Suggestion for future research include:

 94

• Develop a tighter lower bound to test the heuristic approaches to this problem by

adding a factor to account for machine blocking.

• Look at other meta-heuristics to improve the solution obtained from the

construction algorithm.

• Experiment with different job priority systems for the problem.

• Experiment with other machine configurations and/or different systems of data

generation.

• Add job ready times and/or due dates.

• Before scheduling a job check to see which machine would finish processing it

faster. The total time may be less if it waits for a machine to open up, instead of

being processed on the first available machine.

 95

10 References

Acero-Dominguez, M. and Paternina-Arboleda, C. (2004). Scheduling Jobs on a K-Stage
Flexible Flowshop Using a TOC-Based (Bottleneck) Procedure. Proceedings of the 2004
Systems and Information Engineering Design Symposium, 295-297.

Adams, J., Balas, E., and Zawack, D. (1988). The Shifting Bottleneck Procedure For Job
Shop Scheduling. Management Science, 34 (3), 391-401.

Agnetis, A., Rossi, F., and Gristina, G. (1998). An Exact Algorithm for the Batch
Sequence Problem in a Two-Machine Flowshop with Limited Buffer. Naval Research
Logistics, 45, 141-164.

Allahverdi, A. (2000). Minimizing mean flow time in a two-machine flowshop with
sequence-independent setup times. Computers and Operations Research, 111-127.

Allahverdi, A. and Aldowaisan, T. (2004). No-wait flowshops with bicriteria of
makespan and maximum lateness. European Journal of Operational Research, 152,
132-147.

Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T. (1999). A review of scheduling
research involving setup considerations. Omega International Journal of Management
Science, 27, 219-239.

Arthanari, T., and Ramamurthy, K. (1971). An Extension of Two Machines Sequencing
Problem. Opsearch, 8, 10-22.

Azizoglu, M., Cakmak, E., and Suna, K. (2001). A flexible flowshop problem with total
flow time minimization. European Journal of Operational Research, 132, 528-538.

Baker, K. (1974). Introduction to Sequencing & Scheduling. United States: John Wiley
& Sons.

Barman, S. (1998). The impact of priority rule combinations on lateness and tardiness.
IIE Transactions, 30, 495-504.

Brah, S. and Hunsucker, J. (1991). Branch and bound algorithm for the flowshop with
multiple processors. European Journal of Operational Research, 51, 88-99.

Brah, S. and Loo, L. (1999). Heuristics for scheduling in a flowshop with multiple
processors. European Journal of Operational Research, 113, 113-122.

Buzacott, J. and Yao, D. (1986). Flexible Manufacturing Systems: A Review of
Analytical Models. Management Science, 32 (7), 890-905.

 96

Campbell, H., Dudek, R., and Smith, M. (1970). A Heuristic Algorithm for the n Job, m
Machine Sequencing Problem. Management Science , 16(10), B-630-37.

Carlier, Jacques (1982). The one-machine sequencing problem. European Journal of
Operational Research , 11, 42-47.

Carlier, J. and Rebai, I. (1996). Two branch and bound algorithms for the permutation
flowshop problem. European Journal of Operational Research, 90, 238-251.

Chang, S. (1994). Scheduling Flexible Flowshops with No Setup Effects. IEEE
Transactions on Robotics and Automation, 10(2), 112-122.

Chen, Bo., Glass, C., Potts, C., and Strusevich V. (1996). A New Heuristic for Three-
Machine Flowshop Scheduling. Operations Research, 44(6), 891-898.

Chen, Bo (1995). Analysis of Classes of Heuristics for Scheduling a Two-Stage
Flowshop with Parallel Machines at One Stage. Journal of the Operational Research
Society, 46, 234-244.

Chen, Bo (1994). Scheduling multiprocessor flowshops. Advances in optimization and
approximation, 1-8.

Cheng, J., Karuno, Y. and Kise, H. (2001). A shifting bottleneck approach for a parallel-
machine flowshop scheduling problem. Journal of the Operations Research Society of
Japan, 44(2), 140-156.

Cheng, T., and Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling
research. European Journal of Operational Research, 47, 271-292.

Cliffe, R., and MacManus, B. (1980). An approach to optimization with heuristic
methods scheduling. International Journal of Production Research, 18(4), pp 479-490.

Co, Henry (1992). Streamlining material flow in flexible manufacturing systems: a
lesson in simplicity. International Journal of Production Research, 32(7), 1483-1499.

Conway, R., Maxwell, W., & Miller, L. (1967). Theory of Scheduling. New York: Dover
Publications.

Corwin, B. and Esogbue, A. (1974). Two Machine Flowshop Scheduling Problems with
Sequence Dependent Setup Times: A Dynamic Programming Approach. Naval Research
Logistics Quarterly, 21(3), 515-524.

Daniels, R. and Mazzola, J. (1994). Flowshop Scheduling With Resource Flexibility.
Operations Research Society of America, 42(3), 504-522.

 97

Dannenbring, D. (1977). An Evaluation of Flowshop Sequencing Heuristics.
Management Science , 23(11), 1174-112

Day, J., and Hottenstein, M. (1970). Review of Sequencing Research. Naval Research
Logistics Quarterly , 17(1), 11-39.

Ding, F., and Kittichartphayak, D. (1994). Heuristics For Scheduling Flexible Flow
Lines. Computers and Industrial Engineering , 26(1), 27-34.

Dudek, R., Panwalkar, S., and Smith, M. (1992). The Lessons of Flowshop Scheduling
Research. Operations Research, 40(1), 7-13.

Eglese, R. (1990). Simulated Annealing: A tool for operational research. European
Journal of Operational Research, 46, 271-281.

Garey, M., Johnson, D., and Sethi, R. (1976). The Complexity of Flowshop and Jobshop
Scheduling. Mathematics of Operations Research, 1(2), 117-129.

Gilmore, P., and Gomory, R. (1964). Sequencing a One State-Variable Machine a
Solvable Case of the Traveling Salesman Problem. Operations Research, 12, 655-679.

Gonzalez, T., Ibarra, O., and Sahni, S. (1977). Bounds for LPT Schedules on Uniform
Processors. SIAM Journal on Computing, 6(1), 155-166.

Guinet, A. and Solomon, M. (1996). Scheduling hybrid flowshops to minimize
maximum tardiness or maximum completion time. International Journal of Production
Research, 34(6), 1643-1654.

Guinet, A., Solomon, M., Kedia, P., and Dussauchy, A. (1996). A computational study
of heuristics for two-stage flexible flowshops. International Journal of Production
Research, 34(5), 1399-1415.

Gupta, J.N.D. (1972). Heuristic algorithms for multistage flowshop scheduling problem.
AIIE Transactions, 4(1), 11-18.

Gupta, J.N.D. (1976). Optimal Flowshop Schedules with No Intermediate Storage Space.
Naval Research Logistics Quarterly, 23, 235-243.

Gupta, J.N.D. (1986). Flowshop Schedules with Sequence Dependent Setup Times.
Journal of the Operations Research Society of Japan, 29(3), 206-219.

Gupta, J.N.D. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Operational
Research Society, 39(4), 359-364.

Gupta, J.N.D., Hariri, A., and Potts, C. (1997). Scheduling a two-stage hybrid flowshop
with parallel machines at the first stage. Annals of Operations Research, 69, 171-191.

 98

Gupta, JND and Ruiz-Torres, A. (2000). Minimizing makespan subject to minimum total
flow-time on identical parallel machines. European Journal of Operational Research,
125, 370-380.

Gupta, J.N.D., and Szwarc, W. (1987). A Flow-Shop Problem with Sequence-Dependent
Additive Setup Times. Naval Research Logistics, 34, 619-627.

Gupta, J.N.D., and Tunc, E. (1994). Scheduling a two-stage hybrid flowshop with
separable setup and removal times. European Journal of Operational Research, 77,
415-428.

Gupta, J.N.D., and Tunc, E. (1991). Schedules for a two-stage hybrid flowshop with
parallel machines at the second stage. International Journal of Production Research,
29(7), 1489-1502.

Gupta, Sushil (1982). N jobs and M machines job-shop problems with sequence-
dependent setup times. International Journal of Production Research, 20, (5), 643-
656.

Haouari, M., and M’Hallah, R. (1997). Heuristic algorithms for the two-stage hybrid
flowshop problem. Operations Research Letters, 21, 43-53.

Hejeck, B. (1988). Cooling Schedules for optimal annealing. Mathematics of
Operations Research, 13(2), 311-329.

Ho, J. (1995). Flowshop sequencing with mean flowtime objective. European Journal
of Operational Research, 81, 571-578.

Ho, J., and Chang, Y. (1991). A new heuristic for the n-job, M-machine flow-shop
problem. European Journal of Operational Research, 52, 194-202.

Hoogeveen, J., Lenstra, J, and Veltman, B. (1996). Preemptive scheduling in a two-stage
multiprocessor flowshop is NP-hard. European Journal of Operational Research, 89,
172-175.

Huang, W. (1998). A Two-Stage Hybrid Flowshop with Uniform Machines and Setup
Times. Mathematical and Computer Modelling, 27(2), 27-45.

Hundal, T., and Rajgopal, J. (1988). An extension of Palmer’s heuristic for the flowshop
scheduling problem. International Journal of Production Research, 26(6), 1119-1124.

Ishibuchi, H., Misaki, S., and Tanaka, H. (1995). Modified simulated annealing
algorithms for the flowshop sequencing problem. European Journal of Operational
Research, 81, 388-398.

 99

Ignall, E. and Schrage, L. (1965). Application of the Branch-and-Bound Technique to
Some Flow-Shop Scheduling Problems. Operations Research, 13(3)

Jayamohan, M. and Rajendran, C. (2000). A comparative analysis of two different
approaches to scheduling in flexible flowshops. Production Planning and Control,
11(6), 572-580.

Johnson, S.M. (1954). Optimal Two-and Three-Stage Production Schedules with Setup
Times included. Naval Research Logistics Quarterly, 1(1), 61-67.

Kadipasaoglu, S., Xiang, W., and Khumawala, B. (1997). A comparison of sequencing
rules in static and dynamic hybrid flow systems. International Journal of Production
Research , 35(5), 1359-1384.

Khmelnitsky, E., Kogan, K., and Maimon, O. (1997). Maximum principle-based
methods for production scheduling with partially sequence-dependent setups.
International Journal of Production Research, 35(10), 2701-2712.

King, J. and Spachis, A. (1980). Heuristic for flow-shop scheduling. International
Journal of Production Research, 18(3), 345-357.

Kirkpatrick, S., Gelatt, D., and Vecchi, M. (1983). Optimization by Simulated
Annealing. Science, 220 (4598).

Kochhar, S. and Morris, R. (1987). Heuristic Methods for Flexible Flow Line
Scheduling. Journal of Manufacturing Systems, 6(4), 299-314.

Kochhar, S., Morris, R., and Wong, W. (1988). The Local Search Approach to Flexible
Flow Line Scheduling. Engineering Costs and Production Economics, 14, 25-37.

Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem.
European Journal of Operational Research, 105, 66-71.

Koulamas, C., and Kyparisis, G. (2000). Asymptotically Optimal Linear Time
Algorithms for Two-Stage and Three-Stage Flexible Flowshops. Naval Research
Logistics , 47, 259-268.

Kouvelis, P., and Chiang, W. (1992). A simulated annealing procedure for single row
layout problems in flexible manufacturing systems. International Journal of Production
Research, 30(4), 717-732.

Lawler, E. et al. (1993). Sequencing and Scheduling: Algorithms and Complexity.
Handbook in Operations Research and Management Science, Edited by Rinnooy Kan
and Zipkin, Vol. 4: Logistics of Production and Inventory, pp 445-522. North-Holland,
New York.

 100

Lee, C., Cheng, T., and Lin, B. (1993). Minimizing the Makespan in the 3-Machine
Assembly-type Flowshop Scheduling Problem. Management Science, 39(5), 616-625.

Lee, C. and Vairaktarakis, G. (1994). Minimizing makespan in hybrid flowshops.
Operations Research Letters, 16, 149-158.

Lee, C. and Vairaktarakis, G. (1998). Performance Comparison of Some Classes of
Flexible Flowshops and Job Shops. The International Journal of Flexible Manufacturing
Systems, 10, 379-405.

Lee, G., Kin, Y., and Choi, S. (2004). Bottleneck-focused scheduling for a hybrid
flowshop. International Journal of Production Research, 42(1), 165-181.

Lee, Y. and Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence-
dependent setup times. European Journal of Operational Research, 100, 464-474.

Leon, V., and Ramamoorthy, B. (1997). An adaptable problem-space-based search
method for flexible flow line scheduling. IIE Transactions, 29, 115-125.

Li, Shanling (1997). A hybrid two-stage flowshop with part family, batch production
major and minor setups. European Journal of Operational Research, 102, 142-156.

Linn, R. and Zhang, W. (1999). Hybrid Flowshop Scheduling: A Survey. Computers &
Industrial Engineering, 37, 57-61.

Liu, C., and Chang, S. (2000). Scheduling Flexible Flowshops with Sequence-
Dependent Setup Effects. IEEE Transactions on Robotics and Automation, 16(4), 408-
419.

Loukil, T., Teghem, J., and Tuyttens, D. (2005). Solving multi-objective production
scheduling problems using meta-heuristics. European Journal of Operational Research,
161, 42-61.

Low, C. (2005). Simulated annealing heuristic for flowshop scheduling problems with
unrelated parallel machines. Computers & Operations Research, 32, 2013-2025.

Low, C., Yeh, J., and Huang, K. (2004). A robust simulated annealing heuristic for
flowshop scheduling problems. International Journal of Advanced Manufacturing
Technology, 23, 762-767.

Moursli, O. (1995). Branch and Bound Lower Bounds for the Hybrid Flowshop.
Intelligent Manufacturing Systems , 4th IFAC Workshop, 31-36.

Narasimham, S. and Mangiameli, P. (1987). A Comparison of Sequencing Rules for a
Two-Stage Hybrid Flowshop. Decision Sciences, 18, 250-265.

 101

Narasimhan, S., and Panwalker, S. (1984). Scheduling in a two-stage manufacturing
process. International Journal of Production Research, 22(4), 555-564.

Nawaz, M., Enscore, E., and Ham, I. (1983). A Heuristic Algorithm for the m-machine
n-Job Flowshop Sequencing Problem. Omega, 11(1) , 91-95.

Nearchou, A. (2004). A novel meta-heuristic approach for the flowshop scheduling
problem. Engineering Applications of Artificial Intelligence, 17, 289-300.

Nearchou, A. (2004). Flow-shop sequencing using hybrid simulated annealing. Journal
of Intelligent Manufacturing, 15, 317-328.

Negenman, E. (2001). Local search algorithms for the multiprocessor flowshop
scheduling problem. European Journal of Operational Research, 128, 147-158.

Neron, E., Baptiste, P., and Gupta, JND. (2001). Solving hybrid flowshop problem using
energetic reasoning and global operations. Omega, 29, 501-511.

Norman, B. (1999). Scheduling flowshops with finite buffers and sequence-dependent
setup times. Computers & Industrial Engineering, 36, 163-177.

Nowicki, E., and Smutnicki, C. (1993). New results in the worst-case analysis for flow-
shop scheduling. Discrete Applied Mathematics, 46, 21-41.

Nowicki, E., and Smutnicki, C. (1989). Worst-Case Analysis of an Approximation
Algorithm for Flow-Shop Scheduling. Operations Research Letters, 8(3), 171-177.

Ogbu, F. and Smith, D. (1990). Simulated Annealing for the Permutation Flowshop
Problem. Omega, 19(1), 64-67.

Ogbu, F. and Smith, D. (1990). The application of the simulated annealing algorithm to
the solution of the n/mCmax flowshop problem. Computers and Operations Research,
17(3), 243-253.

Oguz, C., Lin, B., and Cheng, T. (1997). Two-stage flowshop scheduling with a
common second-stage machine. Computers and Operations Research, 24(12), 1169-
1174.

Oi, Mei. (1996). Scheduling two-stage production lines with multiple machines.
Production Planning & Control, 7(4), 418-429

Osman, I., and Potts, C. (1989). Simulated Annealing for Permutation Flow-Shop
Scheduling. OMEGA International Journal of Management Science, 17(6), 551-557.

 102

Palmer, D. (1965). Sequencing Jobs through a Multi-Stage Process in the Minimum Total
Time-A Quick Method of Obtaining a Near Optimum. Operations Research Quarterly,
16, 101-107.

Parthasarathy, S. and Rajendran, C. (1997). A simulated annealing heuristic for
scheduling to minimize mean weighted tardiness in a flowshop with sequence-dependent
setup times of jobs- a case study. Production Planning and Control, 8(5). 475-483.

Peeters, P., Brussel, H., Valckenaers, P., Wyns, Jo., Bongaerts, L., Kollingbaum, M., and
Heikkila, T. (2001). Pheromone based emergent shop floor control system for flexible
flowshops. Artificial Intelligence in Engineering, 15, 343-352.

Phadnis, S., Brevick, J., and Irani, S. (2003, March). Development of a New Heuristic
For Scheduling Flow-Shops with Parallel Machines By Prioritizing Bottleneck Stages.
Transactions of the Society for Design and Process Science, 7(1), 87-97.

Pinedo, M., (2002). Scheduling Theory, Algorithms, and Systems. New Jersey: Prentice
Hall.

Portman, M., Vignier, A., Dardilhac, D., and Dezalay, D. (1998). Branch and bound
crossed with GA to solve hybrid flowshops. European Journal of Operational Research,
107, 389-400.

Raban, S., and Nagel, R. (1991). Constraint-based control of flexible flow lines.
International Journal of Production Research, 29(10), 1941-1951.

Rajendran, C., and Chaudhuri, D. (1992). Scheduling in n-job, m-stage flowshop with
parallel processors to minimize makespan. International Journal of Production
Economics, 27, 137-143.

Randhawa, S., and Kuo, C. (1997). Evaluating scheduling heuristics for non-identical
parallel processors. International Journal of Production Research, 35(4), 969-981.

Randhawa, S,. and Smith, T. (1995). An experimental investigation of scheduling non-
identical, parallel processors with sequence-dependent setup times and due dates.
International Journal of Production Research, 33(1), 59-69.

Riane, F., Artiba, A., and Elmaghraby, S. (1998). A hybrid three-stage flowshop
problem: Efficient heuristics to minimize makespan. European Journal of Operational
Research, 109, 321-329.

Riane, F., Raczy, C., and Artiba, A. (1999). Hybrid Auto-adaptable Simulated Annealing
based Heuristic. Computers & Industrial Engineering, 37, 277-280.

 103

Riane, F.k, Artiba, A., and Elamaghraby, S. (2002). Sequencing a hybrid two-stage
flowshop with dedicated machines. International Journal of production Research,
40(17) , 4353-4380.

Rios-Mecado, R. and Bard, J. (1999). A branch-and-bound algorithm for permutation
flowshops with sequence-dependent setup times. IIE Transactions, 31, 721-731.

Rios-Mercado, R. and Bard, J. (1999). An Enhanced TSP-Based Heuristic for Makespan
Minimization in a Flowshop with Setup Times. Journal of Heuristics, 5, 53-70.

Rios-Mercado, R. and Bard, J. (2003). The Flowshop Scheduling Polyhedron with Setup
Times. Journal of Combinatorial Optimization, 7, 291-318.

Rios-Mercado, R. and Bard, J. (1998). Heuristics for the flow line problem with setup
costs. European Journal of Operational Research, 110, 76-98.

Sarin, S. and Lefoka, M. (1993). Scheduling Heuristic for the n-Job m-Machine
Flowshop. OMEGA International Journal of Management Science, 21(2), 229-234.

Sawik, T. (2002). An Exact Approach for Batch Scheduling in Flexible Flow Lines with
Limited Intermediate Buffers. Mathematical and Computer Modelling, 36, 461-471.

Sawik, T. (2000). Mixed Integer Programming for Scheduling Flexible Flow Lines with
Limited Intermediate Buffers. Mathematical and Computer Modelling, 31, 39-52.

Sawik, T. (1995). Scheduling flexible flow lines with no in-process buffers.
International Journal of Production Research, 33(5), 1357-1367.

Sawik, T. (1987). Multilevel Scheduling of Multistage Production with Limited In-
Process Inventory. Journal of the Operational Research Society, 38(7), 651-664.

Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup
Times. Dissertation for Doctor of Philosophy in Decision Sciences and Production
Systems, West Virginia University.

Shieh, A. (2003). A Simulated Annealing Approach for Flexible Flowshop Scheduling to
Maximize Flexiblity. Masters Thesis, for Master of Science in Industrial Engineering,
West Virginia University.

Simons, J. (1992). Heuristics in Flowshop Scheduling with Sequence Dependent Setup
Times. OMEGA International Journal of Management Science, 20(2), 215-225.

Soewandi, H., and Elmaghraby, S. (2003). Sequencing on two-stage hybrid flowshops
with uniform machines to minimize makespan. IIE Transactions, 35, 467-477.

 104

Soewandi, H., and Elmaghraby, S. (2001). Sequencing three-stage flexible flowshops
with identical machines to minimize makespan. IIE Transactions, 33, 985-993.

Srikar, B. and Ghosh, S. (1986). A MILP model for the n-job, M-stage flowshop with
sequence dependent setup times. International Journal of Production Research, 24(6),
1459-1474.

Sriskandarajah, C., and Sethi, S. (1989). Scheduling algorithms for flexible flowshops:
Worst and average case performance. European Journal of Operational Research, 43,
143-160.

Stafford, E., and Tseng, F. (1990). On the Srikar-Ghosh MILP model for the N x M
SDST flowshop problem. International Journal of Production Research, 28(10), 1817-
1830.

Stecke, K. and Kim, I. (1991). A flexible approach to part type selection in flexible flow
systems using part mix ratios. International Journal of Production Research, 29(1), 53-
75.

Szwarc, W. and Gupta, J. (1987). A Flow-Shop Problem with Sequence-Dependent
Additive Setup Times. Naval Research Logistics, 34, 619-627.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64, 278-285.

Taillard, E. (1990). Some efficient heuristic methods for the flowshop sequencing
problem. European Journal of Operational Research, 47, 65-74.

Townsend, D. (1977). Sequencing n jobs on m machines to minimize tardiness: a branch
and bound solution. Management Science, 23, 1016-1019.

Tsubone, H., Ohba, M., and Uetake, T. (1996). The impact of lot sizing and sequencing
on manufacturing performance in a two-stage hybrid flowshop. International Journal of
Production Research, 34(11), 3037-3053.

Turner, S. and Booth, D. (1987). Comparison of Heuristics for Flowshop Sequencing.
Omega, 15(1), 75-85.

Uetake, T., Tsubone, H., and Ohba, M. (1995). A production scheduling system in a
hybrid flowshop. International Journal of Production Economics, 41, 395-398.

Verma, S., and Dessouky, M. (1999). Multistage Hybrid Flowshop Scheduling With
Identical Jobs and Uniform Parallel Machines. Journal of Scheduling, 2, 135-150.

Vignier, A., Dardilhac, D., Dezalay, D., and Proust, C. (1996). A branch and bound
approach to minimize the total completion time in a k-stage hybrid flowshop.

 105

Procedings: IEEE Conference on Emerging Technologies and Factory Automation, 215
– 220.

Wang, C., Chu, C., and Proth, J. (1997). Heuristic approaches for n/m/F/ΣCi scheduling
problems. European Journal of Operational Research, 96, 636-644.

Wang, H., Jacob, V., and Rolland, E. (2003). Design of efficient hybrid neural networks
for flexible flowshop scheduling. Expert Systems, 20(4), 208-231.

Wang, L. and Zheng, D. (2003). An Effective Hybrid Heuristic for Flowshop
Scheduling. International Journal of Manufacturing Technology, 21, 38-44.

Weng, M. (2000). Scheduling Flow-Shops with Limited Buffer Spaces. Proceedings of
the 2000 Winter Simulation Conference, 1359-1363.

White, C., and Wilson, R. (1977). Sequence dependent setup times and job sequencing.
International Journal of Production Research, 15(2), 191-202.

Widmer, M. and Hertz, A. (1989). A new heuristic method for the flowshop sequencing
problem. European Journal of Operational Research, 41, 186-193.

Wittrock, R. (1988). An Adaptable Scheduling Algorithm for Flexible Flow Lines.
Operations Research Society of America, 36(3), 445-453

 Wittrock, R. (1985). Scheduling algorithms for flexible flow lines. IBM Journal of
Research and Development, 29(4), 401-412.

Ying, K. and Liao, C. (2004). An ant colony system for permutation flow-shop
sequencing. Computers an Operations Research, 31, 791-801.

Zegordi, S., Itoh, K., and Enkawa, T. (1995). Minimizing makespan for flowshop
scheduling by combining simulated annealing with sequencing knowledge. European
Journal of Operational Research, 85, 515-531.

Zhou, C. and Egbelu, P. (1989). Scheduling in a manufacturing shop with sequence-
dependent setup times. Robotics and Computer-Integrated Manufacturing, 5(1), 73-81.

 106

Appendix A: Experimental Results

Data set 1 Ratio to LB Data set 2 Ratio to LB
LB 205

Stage Configuration
3-1-2 LB 228

Stage Configuration
3-1-2

SH1 275 1.3415 Buffers size = 3 SH1 285 1.2500 Buffers size = 3
SH2 265 1.2927 SH2 281 1.2325
RBFFS 266 1.2976 RBFFS 270 1.1842

Data set
1 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
2 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 223 1.0878 1.1883 1.1928 Exp 1 248 1.0877 1.1331 1.0887
Exp 2 229 1.1171 1.1572 1.1616 Exp 2 251 1.1009 1.1195 1.0757
Exp 3 226 1.1024 1.1726 1.1770 Exp 3 249 1.0921 1.1285 1.0843
Exp 4 222 1.0829 1.1937 1.1982 Exp 4 252 1.1053 1.1151 1.0714
Exp 5 225 1.0976 1.1778 1.1822 Exp 5 249 1.0921 1.1285 1.0843
Exp 6 226 1.1024 1.1726 1.1770 Exp 6 254 1.1140 1.1063 1.0630
Exp 7 225 1.0976 1.1778 1.1822 Exp 7 249 1.0921 1.1285 1.0843
Exp 8 230 1.1220 1.1522 1.1565 Exp 8 248 1.0877 1.1331 1.0887
Exp 9 222 1.0829 1.1937 1.1982 Exp 9 253 1.1096 1.1107 1.0672
Exp 10 231 1.1268 1.1472 1.1515 Exp 10 252 1.1053 1.1151 1.0714

107

Data set 3 Ratio to LB Data set 4 Ratio to LB
LB 219

Stage Configuration
3-1-2 LB 214

Stage Configuration
3-1-2

SH1 269 1.2283 Buffers size = 3 SH1 256 1.1963 Buffers size = 3
SH2 273 1.2466 SH2 268 1.2523
RBFFS 260 1.1872 RBFFS 264 1.2336

Data set
3 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
4 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 236 1.0776 1.1398 1.1017 Exp 1 228 1.0654 1.1228 1.1579
Exp 2 231 1.0548 1.1645 1.1255 Exp 2 229 1.0701 1.1179 1.1528
Exp 3 231 1.0548 1.1645 1.1255 Exp 3 224 1.0467 1.1429 1.1786
Exp 4 232 1.0594 1.1595 1.1207 Exp 4 232 1.0841 1.1034 1.1379
Exp 5 228 1.0411 1.1798 1.1404 Exp 5 231 1.0794 1.1082 1.1429
Exp 6 229 1.0457 1.1747 1.1354 Exp 6 230 1.0748 1.1130 1.1478
Exp 7 236 1.0776 1.1398 1.1017 Exp 7 230 1.0748 1.1130 1.1478
Exp 8 232 1.0594 1.1595 1.1207 Exp 8 228 1.0654 1.1228 1.1579
Exp 9 234 1.0685 1.1496 1.1111 Exp 9 226 1.0561 1.1327 1.1681
Exp 10 234 1.0685 1.1496 1.1111 Exp 10 232 1.0841 1.1034 1.1379

 108

Data set 5 Ratio to LB Data set 6 Ratio to LB
LB 246

Stage Configuration
3-1-2 LB 231

Stage Configuration
3-1-2

SH1 305 1.2398 Buffers size = 3 SH1 291 1.2597 Buffers size = 3
SH2 303 1.2317 SH2 293 1.2684
RBFFS 298 1.2114 RBFFS 284 1.2294

Data set
5 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA Data set 6 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 272 1.1057 1.1140 1.0956 Exp 1 246 1.0649 1.1829 1.1545
Exp 2 269 1.0935 1.1264 1.1078 Exp 2 245 1.0606 1.1878 1.1592
Exp 3 267 1.0854 1.1348 1.1161 Exp 3 246 1.0649 1.1829 1.1545
Exp 4 270 1.0976 1.1222 1.1037 Exp 4 254 1.0996 1.1457 1.1181
Exp 5 267 1.0854 1.1348 1.1161 Exp 5 249 1.0779 1.1687 1.1406
Exp 6 271 1.1016 1.1181 1.0996 Exp 6 255 1.1039 1.1412 1.1137
Exp 7 266 1.0813 1.1391 1.1203 Exp 7 252 1.0909 1.1548 1.1270
Exp 8 270 1.0976 1.1222 1.1037 Exp 8 252 1.0909 1.1548 1.1270
Exp 9 272 1.1057 1.1140 1.0956 Exp 9 247 1.0693 1.1781 1.1498
Exp 10 271 1.1016 1.1181 1.0996 Exp 10 252 1.0909 1.1548 1.1270

 109

Data set 7 Ratio to LB Data set 8 Ratio to LB
LB 224

Stage Configuration
3-1-2 LB 230

Stage Configuration
3-1-2

SH1 280 1.2500 Buffers size = 3 SH1 299 1.3000 Buffers size = 3
SH2 274 1.2232 SH2 290 1.2609
RBFFS 268 1.1964 RBFFS 303 1.3174

Data
set 7 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
8 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 239 1.0670 1.1464 1.1213 Exp 1 256 1.1130 1.1328 1.1836
Exp 2 241 1.0759 1.1369 1.1120 Exp 2 254 1.1043 1.1417 1.1929
Exp 3 236 1.0536 1.1610 1.1356 Exp 3 253 1.1000 1.1462 1.1976
Exp 4 237 1.0580 1.1561 1.1308 Exp 4 259 1.1261 1.1197 1.1699
Exp 5 236 1.0536 1.1610 1.1356 Exp 5 258 1.1217 1.1240 1.1744
Exp 6 240 1.0714 1.1417 1.1167 Exp 6 256 1.1130 1.1328 1.1836
Exp 7 240 1.0714 1.1417 1.1167 Exp 7 259 1.1261 1.1197 1.1699
Exp 8 241 1.0759 1.1369 1.1120 Exp 8 257 1.1174 1.1284 1.1790
Exp 9 239 1.0670 1.1464 1.1213 Exp 9 256 1.1130 1.1328 1.1836
Exp 10 237 1.0580 1.1561 1.1308 Exp 10 257 1.1174 1.1284 1.1790

 110

Data set 9 Ratio to LB Data set 10 Ratio to LB
LB 258

Stage Configuration
3-1-2 LB 199

Stage Configuration
3-1-2

SH1 322 1.2481 Buffers size = 3 SH1 253 1.2714 Buffers size = 3
SH2 324 1.2558 SH2 255 1.2814
RBFFS 301 1.1667 RBFFS 257 1.2915

Data set
9 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
10 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 275 1.0659 1.1709 1.0945 Exp 1 225 1.1307 1.1244 1.1422
Exp 2 280 1.0853 1.1500 1.0750 Exp 2 220 1.1055 1.1500 1.1682
Exp 3 278 1.0775 1.1583 1.0827 Exp 3 222 1.1156 1.1396 1.1577
Exp 4 277 1.0736 1.1625 1.0866 Exp 4 226 1.1357 1.1195 1.1372
Exp 5 276 1.0698 1.1667 1.0906 Exp 5 223 1.1206 1.1345 1.1525
Exp 6 282 1.0930 1.1418 1.0674 Exp 6 224 1.1256 1.1295 1.1473
Exp 7 277 1.0736 1.1625 1.0866 Exp 7 223 1.1206 1.1345 1.1525
Exp 8 276 1.0698 1.1667 1.0906 Exp 8 221 1.1106 1.1448 1.1629
Exp 9 276 1.0698 1.1667 1.0906 Exp 9 223 1.1206 1.1345 1.1525
Exp 10 277 1.0736 1.1625 1.0866 Exp 10 222 1.1156 1.1396 1.1577

 111

Data set 1 Ratio to LB Data set 2
Ratio to

LB
LB 205

Stage Configuration
3-1-2 LB 228

Stage Configuration
3-1-2

SH1 275 1.3415 Buffers size = 3 SH1 285 1.2500 Buffers size = 3
SH2 265 1.2927 SH2 281 1.2325
PBFFS 245 1.1951 PBFFS 266 1.1667

Data set 1 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA Data set 2 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 237 1.1561 1.1181 1.0338 Exp 1 263 1.1535 1.0684 1.0114
Exp 2 234 1.1415 1.1325 1.0470 Exp 2 255 1.1184 1.1020 1.0431
Exp 3 234 1.1415 1.1325 1.0470 Exp 3 261 1.1447 1.0766 1.0192
Exp 4 228 1.1122 1.1623 1.0746 Exp 4 257 1.1272 1.0934 1.0350
Exp 5 234 1.1415 1.1325 1.0470 Exp 5 254 1.1140 1.1063 1.0472
Exp 6 236 1.1512 1.1229 1.0381 Exp 6 255 1.1184 1.1020 1.0431
Exp 7 232 1.1317 1.1422 1.0560 Exp 7 261 1.1447 1.0766 1.0192
Exp 8 232 1.1317 1.1422 1.0560 Exp 8 256 1.1228 1.0977 1.0391
Exp 9 238 1.1610 1.1134 1.0294 Exp 9 257 1.1272 1.0934 1.0350
Exp 10 234 1.1415 1.1325 1.0470 Exp 10 258 1.1316 1.0891 1.0310

 112

Data set 3
Ratio to

LB Data set 4
Ratio to

LB
LB 219

Stage Configuration
3-1-2 LB 214

Stage Configuration
3-1-2

SH1 269 1.2283 Buffers size = 3 SH1 256 1.1963 Buffers size = 3
SH2 273 1.2466 SH2 268 1.2523
PBFFS 255 1.1644 PBFFS 254 1.1869

Data set
3 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
4 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 238 1.0868 1.1303 1.0714 Exp 1 240 1.1215 1.0667 1.0583
Exp 2 241 1.1005 1.1162 1.0581 Exp 2 241 1.1262 1.0622 1.0539
Exp 3 249 1.1370 1.0803 1.0241 Exp 3 240 1.1215 1.0667 1.0583
Exp 4 246 1.1233 1.0935 1.0366 Exp 4 242 1.1308 1.0579 1.0496
Exp 5 244 1.1142 1.1025 1.0451 Exp 5 242 1.1308 1.0579 1.0496
Exp 6 240 1.0959 1.1208 1.0625 Exp 6 244 1.1402 1.0492 1.0410
Exp 7 237 1.0822 1.1350 1.0759 Exp 7 239 1.1168 1.0711 1.0628
Exp 8 242 1.1050 1.1116 1.0537 Exp 8 242 1.1308 1.0579 1.0496
Exp 9 246 1.1233 1.0935 1.0366 Exp 9 241 1.1262 1.0622 1.0539
Exp 10 242 1.1050 1.1116 1.0537 Exp 10 245 1.1449 1.0449 1.0367

 113

Data set 5
Ratio to

LB Data set 6
Ratio to

LB
LB 246

Stage Configuration
3-1-2 LB 231

Stage Configuration
3-1-2

SH1 305 1.2398 Buffers size = 3 SH1 291 1.2597 Buffers size = 3
SH2 303 1.2317 SH2 293 1.2684
PBFFS 292 1.1870 PBFFS 279 1.2078

Data set
5 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 6 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 283 1.1504 1.0707 1.0318 Exp 1 267 1.1558 1.0899 1.0449
Exp 2 281 1.1423 1.0783 1.0391 Exp 2 261 1.1299 1.1149 1.0690
Exp 3 283 1.1504 1.0707 1.0318 Exp 3 262 1.1342 1.1107 1.0649
Exp 4 284 1.1545 1.0669 1.0282 Exp 4 266 1.1515 1.0940 1.0489
Exp 5 282 1.1463 1.0745 1.0355 Exp 5 266 1.1515 1.0940 1.0489
Exp 6 285 1.1585 1.0632 1.0246 Exp 6 261 1.1299 1.1149 1.0690
Exp 7 280 1.1382 1.0821 1.0429 Exp 7 266 1.1515 1.0940 1.0489
Exp 8 280 1.1382 1.0821 1.0429 Exp 8 263 1.1385 1.1065 1.0608
Exp 9 281 1.1423 1.0783 1.0391 Exp 9 266 1.1515 1.0940 1.0489
Exp 10 285 1.1585 1.0632 1.0246 Exp 10 267 1.1558 1.0899 1.0449

 114

Data set 7
Ratio to

LB Data set 8 Ratio to LB
LB 224

Stage Configuration
3-1-2 LB 230

Stage Configuration
3-1-2

SH1 280 1.2500 Buffers size = 3 SH1 299 1.3000 Buffers size = 3
SH2 274 1.2232 SH2 290 1.2609
PBFFS 263 1.1741 PBFFS 280 1.2174

Data
set 7 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 8 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio PBFFS
to

PBFFS_SA
Exp 1 252 1.1250 1.0873 1.0437 Exp 1 270 1.1739 1.0741 1.0370
Exp 2 246 1.0982 1.1138 1.0691 Exp 2 268 1.1652 1.0821 1.0448
Exp 3 256 1.1429 1.0703 1.0273 Exp 3 270 1.1739 1.0741 1.0370
Exp 4 253 1.1295 1.0830 1.0395 Exp 4 269 1.1696 1.0781 1.0409
Exp 5 253 1.1295 1.0830 1.0395 Exp 5 272 1.1826 1.0662 1.0294
Exp 6 249 1.1116 1.1004 1.0562 Exp 6 272 1.1826 1.0662 1.0294
Exp 7 250 1.1161 1.0960 1.0520 Exp 7 270 1.1739 1.0741 1.0370
Exp 8 254 1.1339 1.0787 1.0354 Exp 8 268 1.1652 1.0821 1.0448
Exp 9 251 1.1205 1.0916 1.0478 Exp 9 273 1.1870 1.0623 1.0256
Exp 10 252 1.1250 1.0873 1.0437 Exp 10 269 1.1696 1.0781 1.0409

 115

Data set 9 Ratio to LB Data set 10
Ratio to

LB
LB 258

Stage Configuration
3-1-2 LB 199

Stage Configuration
3-1-2

SH1 322 1.2481 Buffers size = 3 SH1 253 1.2714 Buffers size = 3
SH2 324 1.2558 SH2 255 1.2814
PBFFS 303 1.1744 PBFFS 241 1.2111

Data
set 9 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 10 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 287 1.1124 1.1220 1.0557 Exp 1 230 1.1558 1.1000 1.0478
Exp 2 293 1.1357 1.0990 1.0341 Exp 2 229 1.1508 1.1048 1.0524
Exp 3 295 1.1434 1.0915 1.0271 Exp 3 230 1.1558 1.1000 1.0478
Exp 4 293 1.1357 1.0990 1.0341 Exp 4 231 1.1608 1.0952 1.0433
Exp 5 299 1.1589 1.0769 1.0134 Exp 5 231 1.1608 1.0952 1.0433
Exp 6 291 1.1279 1.1065 1.0412 Exp 6 227 1.1407 1.1145 1.0617
Exp 7 293 1.1357 1.0990 1.0341 Exp 7 229 1.1508 1.1048 1.0524
Exp 8 293 1.1357 1.0990 1.0341 Exp 8 233 1.1709 1.0858 1.0343
Exp 9 289 1.1202 1.1142 1.0484 Exp 9 234 1.1759 1.0812 1.0299
Exp 10 296 1.1473 1.0878 1.0236 Exp 10 232 1.1658 1.0905 1.0388

 116

Data set 1 Ratio to LB Data set 2 Ratio to LB
LB 206

Stage Configuration
2-1-2-1 LB 237

Stage Configuration
2-1-2-1

SH1 280 1.3592 Buffers size = 3 SH1 310 1.3080 Buffers size = 3
SH2 277 1.3447 SH2 298 1.2574
RBFFS 268 1.3010 RBFFS 284 1.1983

Data set
1 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
2 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 240 1.1650 1.1542 1.1167 Exp 1 258 1.0886 1.1550 1.1008
Exp 2 238 1.1553 1.1639 1.1261 Exp 2 266 1.1224 1.1203 1.0677
Exp 3 239 1.1602 1.1590 1.1213 Exp 3 264 1.1139 1.1288 1.0758
Exp 4 239 1.1602 1.1590 1.1213 Exp 4 263 1.1097 1.1331 1.0798
Exp 5 239 1.1602 1.1590 1.1213 Exp 5 263 1.1097 1.1331 1.0798
Exp 6 240 1.1650 1.1542 1.1167 Exp 6 267 1.1266 1.1161 1.0637
Exp 7 235 1.1408 1.1787 1.1404 Exp 7 265 1.1181 1.1245 1.0717
Exp 8 239 1.1602 1.1590 1.1213 Exp 8 260 1.0970 1.1462 1.0923
Exp 9 239 1.1602 1.1590 1.1213 Exp 9 265 1.1181 1.1245 1.0717
Exp 10 240 1.1650 1.1542 1.1167 Exp 10 266 1.1224 1.1203 1.0677

 117

Data set 3 Ratio to LB Data set 4 Ratio to LB
LB 225

Stage Configuration
2-1-2-1 LB 214

Stage Configuration
2-1-2-1

SH1 294 1.3067 Buffers size = 3 SH1 277 1.2944 Buffers size = 3
SH2 296 1.3156 SH2 278 1.2991
RBFFS 289 1.2844 RBFFS 279 1.3037

Data set
3 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
4 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 261 1.1600 1.1264 1.1073 Exp 1 244 1.1402 1.1352 1.1434
Exp 2 251 1.1156 1.1713 1.1514 Exp 2 237 1.1075 1.1688 1.1772
Exp 3 257 1.1422 1.1440 1.1245 Exp 3 241 1.1262 1.1494 1.1577
Exp 4 256 1.1378 1.1484 1.1289 Exp 4 238 1.1121 1.1639 1.1723
Exp 5 255 1.1333 1.1529 1.1333 Exp 5 245 1.1449 1.1306 1.1388
Exp 6 261 1.1600 1.1264 1.1073 Exp 6 246 1.1495 1.1260 1.1341
Exp 7 254 1.1289 1.1575 1.1378 Exp 7 246 1.1495 1.1260 1.1341
Exp 8 251 1.1156 1.1713 1.1514 Exp 8 243 1.1355 1.1399 1.1481
Exp 9 256 1.1378 1.1484 1.1289 Exp 9 241 1.1262 1.1494 1.1577
Exp 10 256 1.1378 1.1484 1.1289 Exp 10 245 1.1449 1.1306 1.1388

 118

Data set 5 Ratio to LB Data set 6 Ratio to LB
LB 248

Stage Configuration
2-1-2-1 LB 234

Stage Configuration
2-1-2-1

SH1 312 1.2581 Buffers size = 3 SH1 307 1.3120 Buffers size = 3
SH2 319 1.2863 SH2 294 1.2564
RBFFS 315 1.2702 RBFFS 291 1.2436

Data set
5 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA Data set 6 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 286 1.1532 1.0909 1.1014 Exp 1 271 1.1581 1.0849 1.0738
Exp 2 283 1.1411 1.1025 1.1131 Exp 2 272 1.1624 1.0809 1.0699
Exp 3 284 1.1452 1.0986 1.1092 Exp 3 268 1.1453 1.0970 1.0858
Exp 4 285 1.1492 1.0947 1.1053 Exp 4 274 1.1709 1.0730 1.0620
Exp 5 287 1.1573 1.0871 1.0976 Exp 5 267 1.1410 1.1011 1.0899
Exp 6 280 1.1290 1.1143 1.1250 Exp 6 267 1.1410 1.1011 1.0899
Exp 7 290 1.1694 1.0759 1.0862 Exp 7 276 1.1795 1.0652 1.0543
Exp 8 288 1.1613 1.0833 1.0938 Exp 8 265 1.1325 1.1094 1.0981
Exp 9 291 1.1734 1.0722 1.0825 Exp 9 270 1.1538 1.0889 1.0778
Exp 10 284 1.1452 1.0986 1.1092 Exp 10 267 1.1410 1.1011 1.0899

 119

Data set 7 Ratio to LB Data set 8 Ratio to LB
LB 224

Stage Configuration
2-1-2-1 LB 239

Stage Configuration
2-1-2-1

SH1 297 1.3259 Buffers size = 3 SH1 304 1.2720 Buffers size = 3
SH2 288 1.2857 SH2 307 1.2845
RBFFS 275 1.2277 RBFFS 295 1.2343

Data
set 7 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
8 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 260 1.1607 1.1077 1.0577 Exp 1 275 1.1506 1.1055 1.0727
Exp 2 261 1.1652 1.1034 1.0536 Exp 2 273 1.1423 1.1136 1.0806
Exp 3 262 1.1696 1.0992 1.0496 Exp 3 272 1.1381 1.1176 1.0846
Exp 4 255 1.1384 1.1294 1.0784 Exp 4 274 1.1464 1.1095 1.0766
Exp 5 265 1.1830 1.0868 1.0377 Exp 5 272 1.1381 1.1176 1.0846
Exp 6 261 1.1652 1.1034 1.0536 Exp 6 276 1.1548 1.1014 1.0688
Exp 7 261 1.1652 1.1034 1.0536 Exp 7 275 1.1506 1.1055 1.0727
Exp 8 263 1.1741 1.0951 1.0456 Exp 8 271 1.1339 1.1218 1.0886
Exp 9 260 1.1607 1.1077 1.0577 Exp 9 274 1.1464 1.1095 1.0766
Exp 10 260 1.1607 1.1077 1.0577 Exp 10 270 1.1297 1.1259 1.0926

 120

 121

Data set 9 Ratio to LB Data set 10 Ratio to LB
LB 262

Stage Configuration
2-1-2-1 LB 216

Stage Configuration
2-1-2-1

SH1 327 1.2481 Buffers size = 3 SH1 276 1.2778 Buffers size = 3
SH2 322 1.2290 SH2 285 1.3194
RBFFS 323 1.2328 RBFFS 275 1.2731

Data set
9 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
10 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 303 1.1565 1.0627 1.0660 Exp 1 242 1.1204 1.1405 1.1364
Exp 2 302 1.1527 1.0662 1.0695 Exp 2 242 1.1204 1.1405 1.1364
Exp 3 303 1.1565 1.0627 1.0660 Exp 3 245 1.1343 1.1265 1.1224
Exp 4 301 1.1489 1.0698 1.0731 Exp 4 247 1.1435 1.1174 1.1134
Exp 5 302 1.1527 1.0662 1.0695 Exp 5 245 1.1343 1.1265 1.1224
Exp 6 303 1.1565 1.0627 1.0660 Exp 6 250 1.1574 1.1040 1.1000
Exp 7 304 1.1603 1.0592 1.0625 Exp 7 245 1.1343 1.1265 1.1224
Exp 8 299 1.1412 1.0769 1.0803 Exp 8 240 1.1111 1.1500 1.1458
Exp 9 299 1.1412 1.0769 1.0803 Exp 9 242 1.1204 1.1405 1.1364
Exp 10 304 1.1603 1.0592 1.0625 Exp 10 244 1.1296 1.1311 1.1270

Data set 1 Ratio to LB Data set 2
Ratio to

LB
LB 206

Stage Configuration
2-1-2-1 LB 237

Stage Configuration
2-1-2-1

SH1 280 1.3592 Buffers size = 3 SH1 310 1.3080 Buffers size = 3
SH2 277 1.3447 SH2 298 1.2574
PBFFS 256 1.2427 PBFFS 280 1.1814

Data set 1 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA Data set 2 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 251 1.2184 1.1036 1.0199 Exp 1 270 1.1392 1.1037 1.0370
Exp 2 250 1.2136 1.1080 1.0240 Exp 2 274 1.1561 1.0876 1.0219
Exp 3 252 1.2233 1.0992 1.0159 Exp 3 273 1.1519 1.0916 1.0256
Exp 4 254 1.2330 1.0906 1.0079 Exp 4 273 1.1519 1.0916 1.0256
Exp 5 246 1.1942 1.1260 1.0407 Exp 5 267 1.1266 1.1161 1.0487
Exp 6 251 1.2184 1.1036 1.0199 Exp 6 272 1.1477 1.0956 1.0294
Exp 7 252 1.2233 1.0992 1.0159 Exp 7 276 1.1646 1.0797 1.0145
Exp 8 252 1.2233 1.0992 1.0159 Exp 8 274 1.1561 1.0876 1.0219
Exp 9 250 1.2136 1.1080 1.0240 Exp 9 274 1.1561 1.0876 1.0219
Exp 10 251 1.2184 1.1036 1.0199 Exp 10 269 1.1350 1.1078 1.0409

 122

Data set 3
Ratio to

LB Data set 4
Ratio to

LB
LB 225

Stage Configuration
2-1-2-1 LB 214

Stage Configuration
2-1-2-1

SH1 294 1.3067 Buffers size = 3 SH1 277 1.2944 Buffers size = 3
SH2 296 1.3156 SH2 278 1.2991
PBFFS 280 1.2444 PBFFS 267 1.2477

Data set
3 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
4 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 261 1.1600 1.1264 1.0728 Exp 1 258 1.2056 1.0736 1.0349
Exp 2 260 1.1556 1.1308 1.0769 Exp 2 245 1.1449 1.1306 1.0898
Exp 3 266 1.1822 1.1053 1.0526 Exp 3 255 1.1916 1.0863 1.0471
Exp 4 264 1.1733 1.1136 1.0606 Exp 4 254 1.1869 1.0906 1.0512
Exp 5 263 1.1689 1.1179 1.0646 Exp 5 256 1.1963 1.0820 1.0430
Exp 6 263 1.1689 1.1179 1.0646 Exp 6 256 1.1963 1.0820 1.0430
Exp 7 268 1.1911 1.0970 1.0448 Exp 7 254 1.1869 1.0906 1.0512
Exp 8 266 1.1822 1.1053 1.0526 Exp 8 256 1.1963 1.0820 1.0430
Exp 9 266 1.1822 1.1053 1.0526 Exp 9 257 1.2009 1.0778 1.0389
Exp 10 264 1.1733 1.1136 1.0606 Exp 10 255 1.1916 1.0863 1.0471

 123

Data set 5
Ratio to

LB Data set 6
Ratio to

LB
LB 248

Stage Configuration
2-1-2-1 LB 234

Stage Configuration
2-1-2-1

SH1 312 1.2581 Buffers size = 3 SH1 307 1.3120 Buffers size = 3
SH2 319 1.2863 SH2 294 1.2564
PBFFS 302 1.2177 PBFFS 282 1.2051

Data set
5 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 6 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 297 1.1976 1.0505 1.0168 Exp 1 270 1.1538 1.0889 1.0444
Exp 2 300 1.2097 1.0400 1.0067 Exp 2 271 1.1581 1.0849 1.0406
Exp 3 293 1.1815 1.0648 1.0307 Exp 3 277 1.1838 1.0614 1.0181
Exp 4 294 1.1855 1.0612 1.0272 Exp 4 277 1.1838 1.0614 1.0181
Exp 5 290 1.1694 1.0759 1.0414 Exp 5 277 1.1838 1.0614 1.0181
Exp 6 293 1.1815 1.0648 1.0307 Exp 6 275 1.1752 1.0691 1.0255
Exp 7 301 1.2137 1.0365 1.0033 Exp 7 277 1.1838 1.0614 1.0181
Exp 8 291 1.1734 1.0722 1.0378 Exp 8 275 1.1752 1.0691 1.0255
Exp 9 291 1.1734 1.0722 1.0378 Exp 9 277 1.1838 1.0614 1.0181
Exp 10 292 1.1774 1.0685 1.0342 Exp 10 277 1.1838 1.0614 1.0181

 124

Data set 7
Ratio to

LB Data set 8 Ratio to LB
LB 224

Stage Configuration
2-1-2-1 LB 239

Stage Configuration
2-1-2-1

SH1 297 1.3259 Buffers size = 3 SH1 304 1.2720 Buffers size = 3
SH2 288 1.2857 SH2 307 1.2845
PBFFS 276 1.2321 PBFFS 294 1.2301

Data
set 7 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 8 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio PBFFS
to

PBFFS_SA
Exp 1 262 1.1696 1.0992 1.0534 Exp 1 283 1.1841 1.0742 1.0389
Exp 2 262 1.1696 1.0992 1.0534 Exp 2 279 1.1674 1.0896 1.0538
Exp 3 270 1.2054 1.0667 1.0222 Exp 3 278 1.1632 1.0935 1.0576
Exp 4 269 1.2009 1.0706 1.0260 Exp 4 281 1.1757 1.0819 1.0463
Exp 5 263 1.1741 1.0951 1.0494 Exp 5 289 1.2092 1.0519 1.0173
Exp 6 265 1.1830 1.0868 1.0415 Exp 6 283 1.1841 1.0742 1.0389
Exp 7 268 1.1964 1.0746 1.0299 Exp 7 283 1.1841 1.0742 1.0389
Exp 8 259 1.1563 1.1120 1.0656 Exp 8 284 1.1883 1.0704 1.0352
Exp 9 264 1.1786 1.0909 1.0455 Exp 9 279 1.1674 1.0896 1.0538
Exp 10 266 1.1875 1.0827 1.0376 Exp 10 289 1.2092 1.0519 1.0173

 125

Data set 9 Ratio to LB Data set 10
Ratio to

LB
LB 262

Stage Configuration
2-1-2-1 LB 216

Stage Configuration
2-1-2-1

SH1 327 1.2481 Buffers size = 3 SH1 276 1.2778 Buffers size = 3
SH2 322 1.2290 SH2 285 1.3194
PBFFS 306 1.1679 PBFFS 267 1.2361

Data
set 9 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 10 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 298 1.1374 1.0805 1.0268 Exp 1 254 1.1759 1.0866 1.0512
Exp 2 296 1.1298 1.0878 1.0338 Exp 2 252 1.1667 1.0952 1.0595
Exp 3 298 1.1374 1.0805 1.0268 Exp 3 251 1.1620 1.0996 1.0637
Exp 4 300 1.1450 1.0733 1.0200 Exp 4 251 1.1620 1.0996 1.0637
Exp 5 296 1.1298 1.0878 1.0338 Exp 5 247 1.1435 1.1174 1.0810
Exp 6 298 1.1374 1.0805 1.0268 Exp 6 251 1.1620 1.0996 1.0637
Exp 7 300 1.1450 1.0733 1.0200 Exp 7 252 1.1667 1.0952 1.0595
Exp 8 298 1.1374 1.0805 1.0268 Exp 8 251 1.1620 1.0996 1.0637
Exp 9 295 1.1260 1.0915 1.0373 Exp 9 251 1.1620 1.0996 1.0637
Exp 10 301 1.1489 1.0698 1.0166 Exp 10 248 1.1481 1.1129 1.0766

 126

Data set 1 Ratio to LB Data set 2 Ratio to LB
LB 214 -

Stage Configuration
3-3-2-2-1 LB 243 -

Stage Configuration
3-3-2-2-1

SH1 313 1.4626 Buffers size = 4 SH1 334 1.3745 Buffers size = 4
SH2 315 1.4720 SH2 348 1.4321
RBFFS 320 1.4953 RBFFS 351 1.4444

Data set
1 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
2 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 292 1.3645 1.0719 1.0959 Exp 1 328 1.3498 1.0183 1.0701
Exp 2 297 1.3879 1.0539 1.0774 Exp 2 328 1.3498 1.0183 1.0701
Exp 3 298 1.3925 1.0503 1.0738 Exp 3 332 1.3663 1.0060 1.0572
Exp 4 300 1.4019 1.0433 1.0667 Exp 4 328 1.3498 1.0183 1.0701
Exp 5 295 1.3785 1.0610 1.0847 Exp 5 324 1.3333 1.0309 1.0833
Exp 6 295 1.3785 1.0610 1.0847 Exp 6 334 1.3745 1.0000 1.0509
Exp 7 292 1.3645 1.0719 1.0959 Exp 7 330 1.3580 1.0121 1.0636
Exp 8 287 1.3411 1.0906 1.1150 Exp 8 328 1.3498 1.0183 1.0701
Exp 9 290 1.3551 1.0793 1.1034 Exp 9 329 1.3539 1.0152 1.0669
Exp 10 292 1.3645 1.0719 1.0959 Exp 10 326 1.3416 1.0245 1.0767

 127

Data set 3 Ratio to LB Data set 4 Ratio to LB
LB 226 -

Stage Configuration
3-3-2-2-1 LB 222 -

Stage Configuration
3-3-2-2-1

SH1 331 1.4646 Buffers size = 4 SH1 305 1.3739 Buffers size = 4
SH2 333 1.4735 SH2 319 1.4369
RBFFS 338 1.4956 RBFFS 329 1.4820

Data set
3 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
4 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 301 1.3319 1.0997 1.1229 Exp 1 303 1.3649 1.0066 1.0858
Exp 2 311 1.3761 1.0643 1.0868 Exp 2 306 1.3784 0.9967 1.0752
Exp 3 313 1.3850 1.0575 1.0799 Exp 3 300 1.3514 1.0167 1.0967
Exp 4 307 1.3584 1.0782 1.1010 Exp 4 304 1.3694 1.0033 1.0822
Exp 5 309 1.3673 1.0712 1.0939 Exp 5 294 1.3243 1.0374 1.1190
Exp 6 306 1.3540 1.0817 1.1046 Exp 6 303 1.3649 1.0066 1.0858
Exp 7 297 1.3142 1.1145 1.1380 Exp 7 301 1.3559 1.0133 1.0930
Exp 8 305 1.3496 1.0852 1.1082 Exp 8 306 1.3784 0.9967 1.0752
Exp 9 305 1.3496 1.0852 1.1082 Exp 9 312 1.4054 0.9776 1.0545
Exp 10 309 1.3673 1.0712 1.0939 Exp 10 304 1.3694 1.0033 1.0822

 128

Data set 5 Ratio to LB Data set 6 Ratio to LB
LB 264 -

Stage Configuration
3-3-2-2-1 LB 247

Stage Configuration
3-3-2-2-1

SH1 363 1.3750 Buffers size = 4 SH1 348 1.4089 Buffers size = 4
SH2 377 1.4280 SH2 353 1.4291
RBFFS 376 1.4242 RBFFS 361 1.4615

Data set
5 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA Data set 6 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 355 1.3447 1.0225 1.0592 Exp 1 339 1.3725 1.0265 1.0649
Exp 2 356 1.3485 1.0197 1.0562 Exp 2 339 1.3725 1.0265 1.0649
Exp 3 353 1.3371 1.0283 1.0652 Exp 3 334 1.3522 1.0419 1.0808
Exp 4 357 1.3523 1.0168 1.0532 Exp 4 335 1.3563 1.0388 1.0776
Exp 5 348 1.3182 1.0431 1.0805 Exp 5 333 1.3482 1.0450 1.0841
Exp 6 357 1.3523 1.0168 1.0532 Exp 6 331 1.3401 1.0514 1.0906
Exp 7 352 1.3333 1.0313 1.0682 Exp 7 331 1.3401 1.0514 1.0906
Exp 8 352 1.3333 1.0313 1.0682 Exp 8 331 1.3401 1.0514 1.0906
Exp 9 346 1.3106 1.0491 1.0867 Exp 9 332 1.3441 1.0482 1.0873
Exp 10 352 1.3333 1.0313 1.0682 Exp 10 328 1.3279 1.0610 1.1006

 129

Data set 7 Ratio to LB Data set 8 Ratio to LB
LB 239

Stage Configuration
3-3-2-2-1 LB 243

Stage Configuration
3-3-2-2-1

SH1 329 1.3766 Buffers size = 4 SH1 355 1.4609 Buffers size = 4
SH2 352 1.4728 SH2 355 1.4609
RBFFS 346 1.4477 RBFFS 365 1.5021

Data set
7 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
8 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 316 1.3222 1.0411 1.0949 Exp 1 342 1.4074 1.0380 1.0673
Exp 2 316 1.3222 1.0411 1.0949 Exp 2 331 1.3621 1.0725 1.1027
Exp 3 317 1.3264 1.0379 1.0915 Exp 3 336 1.3827 1.0565 1.0863
Exp 4 312 1.3054 1.0545 1.1090 Exp 4 335 1.3786 1.0597 1.0896
Exp 5 320 1.3389 1.0281 1.0813 Exp 5 339 1.3951 1.0472 1.0767
Exp 6 318 1.3305 1.0346 1.0881 Exp 6 339 1.3951 1.0472 1.0767
Exp 7 317 1.3264 1.0379 1.0915 Exp 7 330 1.3580 1.0758 1.1061
Exp 8 320 1.3389 1.0281 1.0813 Exp 8 337 1.3868 1.0534 1.0831
Exp 9 318 1.3305 1.0346 1.0881 Exp 9 345 1.4198 1.0290 1.0580
Exp 10 313 1.3096 1.0511 1.1054 Exp 10 337 1.3868 1.0534 1.0831

 130

Data set 9 Ratio to LB Data set 10 Ratio to LB
LB 268

Stage Configuration
3-3-2-2-1 LB 227

Stage Configuration
3-3-2-2-1

SH1 378 1.4104 Buffers size = 4 SH1 311 1.3700 Buffers size = 4
SH2 379 1.4142 SH2 339 1.4934
RBFFS 384 1.4328 RBFFS 322 1.4185

Data set
9 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Data set
10 RBFFS_SA

Ratio
RBFFS_SA

to LB

Ratio Best
SH to

RBFFS_SA

Ratio
RBFFS to

RBFFS_SA
Exp 1 364 1.3582 1.0385 1.0549 Exp 1 302 1.3304 1.0298 1.0662
Exp 2 368 1.3731 1.0272 1.0435 Exp 2 301 1.3260 1.0332 1.0698
Exp 3 356 1.3284 1.0618 1.0787 Exp 3 297 1.3084 1.0471 1.0842
Exp 4 357 1.3321 1.0588 1.0756 Exp 4 304 1.3392 1.0230 1.0592
Exp 5 364 1.3582 1.0385 1.0549 Exp 5 303 1.3348 1.0264 1.0627
Exp 6 368 1.3731 1.0272 1.0435 Exp 6 300 1.3216 1.0367 1.0733
Exp 7 364 1.3582 1.0385 1.0549 Exp 7 300 1.3216 1.0367 1.0733
Exp 8 362 1.3507 1.0442 1.0608 Exp 8 295 1.2996 1.0542 1.0915
Exp 9 361 1.3470 1.0471 1.0637 Exp 9 295 1.2996 1.0542 1.0915
Exp 10 364 1.3582 1.0385 1.0549 Exp 10 299 1.3172 1.0401 1.0769

 131

Data set 1 Ratio to LB Data set 2
Ratio to

LB
LB 214 -

Stage Configuration
3-3-2-2-1 LB 243 -

Stage Configuration
3-3-2-2-1

SH1 313 1.4626 Buffers size = 4 SH1 334 1.3745 Buffers size = 4
SH2 315 1.4720 SH2 348 1.4321
PBFFS 297 1.3879 PBFFS 328 1.3498

Data set 1 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
2 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 287 1.3411 1.0906 1.0348 Exp 1 325 1.3374 1.0277 1.0092
Exp 2 287 1.3411 1.0906 1.0348 Exp 2 319 1.3128 1.0470 1.0282
Exp 3 288 1.3458 1.0868 1.0313 Exp 3 322 1.3251 1.0373 1.0186
Exp 4 285 1.3318 1.0982 1.0421 Exp 4 318 1.3086 1.0503 1.0314
Exp 5 286 1.3364 1.0944 1.0385 Exp 5 318 1.3086 1.0503 1.0314
Exp 6 286 1.3364 1.0944 1.0385 Exp 6 319 1.3128 1.0470 1.0282
Exp 7 285 1.3318 1.0982 1.0421 Exp 7 323 1.3292 1.0341 1.0155
Exp 8 291 1.3598 1.0756 1.0206 Exp 8 321 1.3210 1.0405 1.0218
Exp 9 289 1.3505 1.0830 1.0277 Exp 9 320 1.3169 1.0438 1.0250
Exp 10 289 1.3505 1.0830 1.0277 Exp 10 321 1.3210 1.0405 1.0218

 132

Data set 3
Ratio to

LB Data set 4
Ratio to

LB
LB 226 -

Stage Configuration
3-3-2-2-1 LB 222 -

Stage Configuration
3-3-2-2-1

SH1 331 1.4646 Buffers size = 4 SH1 305 1.3739 Buffers size = 4
SH2 333 1.4735 SH2 319 1.4369
PBFFS 326 1.4425 PBFFS 296 1.3333

Data set
3 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
4 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 296 1.3097 1.1182 1.1014 Exp 1 294 1.3243 1.0374 1.0068
Exp 2 292 1.2920 1.1336 1.1164 Exp 2 295 1.3288 1.0339 1.0034
Exp 3 295 1.3053 1.1220 1.1051 Exp 3 290 1.3063 1.0517 1.0207
Exp 4 295 1.3053 1.1220 1.1051 Exp 4 292 1.3153 1.0445 1.0137
Exp 5 296 1.3097 1.1182 1.1014 Exp 5 294 1.3243 1.0374 1.0068
Exp 6 293 1.2965 1.1297 1.1126 Exp 6 293 1.3198 1.0410 1.0102
Exp 7 296 1.3097 1.1182 1.1014 Exp 7 294 1.3243 1.0374 1.0068
Exp 8 298 1.3186 1.1107 1.0940 Exp 8 296 1.3333 1.0304 1.0000
Exp 9 292 1.2920 1.1336 1.1164 Exp 9 294 1.3243 1.0374 1.0068
Exp 10 293 1.2965 1.1297 1.1126 Exp 10 290 1.3063 1.0517 1.0207

 133

Data set 5
Ratio to

LB Data set 6
Ratio to

LB
LB 264 -

Stage Configuration
3-3-2-2-1 LB 247

Stage Configuration
3-3-2-2-1

SH1 363 1.3750 Buffers size = 4 SH1 348 1.4089 Buffers size = 4
SH2 377 1.4280 SH2 353 1.4291
PBFFS 358 1.3561 PBFFS 330 1.3360

Data set
5 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data
set 6 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 339 1.2841 1.0708 1.0560 Exp 1 324 1.3117 1.0741 1.0185
Exp 2 345 1.3068 1.0522 1.0377 Exp 2 318 1.2874 1.0943 1.0377
Exp 3 343 1.2992 1.0583 1.0437 Exp 3 324 1.3117 1.0741 1.0185
Exp 4 340 1.2879 1.0676 1.0529 Exp 4 323 1.3077 1.0774 1.0217
Exp 5 340 1.2879 1.0676 1.0529 Exp 5 323 1.3077 1.0774 1.0217
Exp 6 342 1.2955 1.0614 1.0468 Exp 6 324 1.3117 1.0741 1.0185
Exp 7 343 1.2992 1.0583 1.0437 Exp 7 324 1.3117 1.0741 1.0185
Exp 8 347 1.3144 1.0461 1.0317 Exp 8 320 1.2955 1.0875 1.0313
Exp 9 345 1.3068 1.0522 1.0377 Exp 9 321 1.2996 1.0841 1.0280
Exp 10 336 1.2727 1.0804 1.0655 Exp 10 324 1.3117 1.0741 1.0185

 134

Data set 7
Ratio to

LB Data set 8 Ratio to LB
LB 239

Stage Configuration
3-3-2-2-1 LB 243

Stage Configuration
3-3-2-2-1

SH1 329 1.3766 Buffers size = 4 SH1 355 1.4609 Buffers size = 4
SH2 352 1.4728 SH2 355 1.4609
PBFFS 323 1.3515 PBFFS 342 1.4074

Data set
7 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
8 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio PBFFS
to

PBFFS_SA
Exp 1 311 1.3013 1.0579 1.0386 Exp 1 326 1.3416 1.0890 1.0491
Exp 2 308 1.2887 1.0682 1.0487 Exp 2 331 1.3621 1.0725 1.0332
Exp 3 309 1.2929 1.0647 1.0453 Exp 3 330 1.3580 1.0758 1.0364
Exp 4 307 1.2845 1.0717 1.0521 Exp 4 324 1.3333 1.0957 1.0556
Exp 5 308 1.2887 1.0682 1.0487 Exp 5 325 1.3374 1.0923 1.0523
Exp 6 307 1.2845 1.0717 1.0521 Exp 6 328 1.3498 1.0823 1.0427
Exp 7 302 1.2636 1.0894 1.0695 Exp 7 329 1.3539 1.0790 1.0395
Exp 8 313 1.3096 1.0511 1.0319 Exp 8 329 1.3539 1.0790 1.0395
Exp 9 306 1.2803 1.0752 1.0556 Exp 9 332 1.3663 1.0693 1.0301
Exp 10 310 1.2971 1.0613 1.0419 Exp 10 334 1.3745 1.0629 1.0240

 135

Data set 9 Ratio to LB Data set 10
Ratio to

LB
LB 268

Stage Configuration
3-3-2-2-1 LB 227

Stage Configuration
3-3-2-2-1

SH1 378 1.4104 Buffers size = 4 SH1 311 1.3700 Buffers size = 4
SH2 379 1.4142 SH2 339 1.4934
PBFFS 356 1.3284 PBFFS 302 1.3304

Data set
9 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Data set
10 PBFFS_SA

Ratio
PBFFS_SA

to LB

Ratio Best
SH to

PBFFS_SA

Ratio
PBFFS to
PBFFS_SA

Exp 1 350 1.3060 1.0800 1.0171 Exp 1 290 1.2775 1.0724 1.0414
Exp 2 353 1.3172 1.0708 1.0085 Exp 2 293 1.2907 1.0614 1.0307
Exp 3 351 1.3097 1.0769 1.0142 Exp 3 293 1.2907 1.0614 1.0307
Exp 4 351 1.3097 1.0769 1.0142 Exp 4 289 1.2731 1.0761 1.0450
Exp 5 350 1.3060 1.0800 1.0171 Exp 5 290 1.2775 1.0724 1.0414
Exp 6 346 1.2910 1.0925 1.0289 Exp 6 290 1.2775 1.0724 1.0414
Exp 7 349 1.3022 1.0831 1.0201 Exp 7 293 1.2907 1.0614 1.0307
Exp 8 345 1.2873 1.0957 1.0319 Exp 8 288 1.2687 1.0799 1.0486
Exp 9 354 1.3209 1.0678 1.0056 Exp 9 293 1.2907 1.0614 1.0307
Exp 10 352 1.3134 1.0739 1.0114 Exp 10 291 1.2819 1.0687 1.0378

 136

	Minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers
	Recommended Citation

	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Literature Review
	Flowshop Scheduling Overview
	Exact Solution Methods
	Flowshop
	Flexible Flowshop Exact Methods

	Heuristic Methods
	Flowshop
	2.3.1.1 Classic Flowshop Methods
	2.3.1.2 Recent Flowshop Heuristics
	2.3.1.3 Flowshop with Setup/Buffers

	2.3.2 Flowshop Heuristics Using Meta-heuristics
	2.3.3 Flowshop Scheduling Using Combination of Meta-heurist

	2.4 Flexible Flowshop Heuristics
	2.4.1 Two-Stage Flexible Flowshop
	2.4.2 Three-Stage Flexible Flowshop
	2.4.3 General Flexible Flowshop
	2.4.4 Flexible Flowshop Bottleneck Heuristics
	2.4.5 Flexible Flowshop with Setup Times/Buffers
	2.4.6 Flexible Flowshop Using Meta-heuristics
	2.4.7 Flexible Flowshop with limited buffers Using Meta-heu
	2.4.9 Flexible Flowshop with Setup Times Using Meta-heuristi

	2.5 Simulated Annealing

	Problem Statement and Objectives of Research
	3.1 Problem Statement
	3.2 Problem Assumptions
	3.3 Objectives and Methodology of Research

	Mathematical Model
	Heuristics
	RBFFS Construction Heuristic
	RBFFS Construction Heuristic Example
	RBFFS Simulated Annealing Heuristic
	Route Based Simulated Annealing Example
	PBFFS Construction Heuristic
	PBFFS Construction Heuristic Example

	Lower Bound
	Step 1 of the Lower Bound
	Step 2 of the Lower Bound
	Step 3 of the Lower Bound

	Simple Heuristics
	Simple Heuristic One
	Simple Heuristic Two

	Experimentation
	Problem Instances
	Data Generation
	Experimentation Overview
	Simulated Annealing Parameters
	Experimentation Results

	Conclusion
	Overview of Research
	Contribution to Literature:
	Recommendations for Future Research:

	References
	Appendix A: Experimental Results

		2006-04-21T12:34:13-0400
	John H. Hagen
	I am approving this document

	Text4: Bret Crowder
	Text3: Minimizing the Makespan in a Flexible Flowshop with Sequence Dependent Setup Times, Uniform Machines, and Limited Buffers
	Text1: 58
	Text2: 59

