796 research outputs found

    Relative Perturbation Theory for Quadratic Eigenvalue Problems

    Get PDF
    In this paper, we derive new relative perturbation bounds for eigenvectors and eigenvalues for regular quadratic eigenvalue problems of the form λ2Mx+λCx+Kx=0\lambda^2 M x + \lambda C x + K x = 0, where MM and KK are nonsingular Hermitian matrices and CC is a general Hermitian matrix. We base our findings on new results for an equivalent regular Hermitian matrix pair A−λBA-\lambda B. The new bounds can be applied to many interesting quadratic eigenvalue problems appearing in applications, such as mechanical models with indefinite damping. The quality of our bounds is demonstrated by several numerical experiments.Comment: 27 page

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    A fast solver for linear systems with displacement structure

    Full text link
    We describe a fast solver for linear systems with reconstructable Cauchy-like structure, which requires O(rn^2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructability. We have developed a software package, written in Matlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.Comment: 27 pages, 6 figure

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Fast Recovery and Approximation of Hidden Cauchy Structure

    Full text link
    We derive an algorithm of optimal complexity which determines whether a given matrix is a Cauchy matrix, and which exactly recovers the Cauchy points defining a Cauchy matrix from the matrix entries. Moreover, we study how to approximate a given matrix by a Cauchy matrix with a particular focus on the recovery of Cauchy points from noisy data. We derive an approximation algorithm of optimal complexity for this task, and prove approximation bounds. Numerical examples illustrate our theoretical results

    Over-constrained Weierstrass iteration and the nearest consistent system

    Full text link
    We propose a generalization of the Weierstrass iteration for over-constrained systems of equations and we prove that the proposed method is the Gauss-Newton iteration to find the nearest system which has at least kk common roots and which is obtained via a perturbation of prescribed structure. In the univariate case we show the connection of our method to the optimization problem formulated by Karmarkar and Lakshman for the nearest GCD. In the multivariate case we generalize the expressions of Karmarkar and Lakshman, and give explicitly several iteration functions to compute the optimum. The arithmetic complexity of the iterations is detailed
    • 

    corecore