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Nearest Common Root of a set of polynomials: A

structured singular value approach

Olga Limantseva, George Halikias, Nicos Karcanias

Control Engineering Research Centre, School of Engineering and Mathematical Sciences,
City University, Northampton Square, London EC1V 0HB, UK

Abstract

The paper considers the problem of calculating the nearest common root of
a polynomial set under perturbations in their coefficients. In particular, we
seek the minimum-magnitude perturbation in the coefficients of the poly-
nomial set such that the perturbed polynomials have a common root. It is
shown that the problem is equivalent to the solution of a structured singular
value (µ) problem arising in robust control for which numerous techniques
are available. It is also shown that the method can be extended to the calcu-
lation of an “approximate GCD” of fixed degree by introducing the notion of
the generalized structured singular value of a matrix. The work generalizes
previous results by the authors involving the calculation of the “approxi-
mate GCD” of two polynomials, although the general case considered here
is considerably harder and relies on a matrix-dilation approach and several
preliminary transformations.

Keywords:
structured singular value, Sylvester resultant matrix, approximate GCD,
distance to singularity, almost common root.

1. Introduction

The study of the Greatest Common Divisor (GCD) of a set of polyno-
mials has received considerable interest in recent years. The notion of GCD
of polynomial sets has several applications in Control Theory (e.g. algebraic
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control methods, determinantal assignment problems, distance to controlla-
bility or observability), Robust Control (stability of dynamic systems subject
to structured perturbations), Linear Systems, Numerical Analysis and other
Engineering fields. Many systems properties depend on the notion of zeros
and the GCD of a set of polynomials. Computation of the GCD is a non-
generic problem: Generically any set of polynomials is coprime and hence
the question of “coprimeness” needs to be reinterpreted from a binary notion
(with a yes or no answer) to one involving a continuously-valued function,
a notion which is more suitable for finite-precision calculations. Thus, it
is natural to define a set of polynomials as “approximately coprime” if its
distance from the nearest non-trivial common divisor (different from one) is
“sufficiently large” in an appropriate sense. The concept of “almost zero”
was first introduced in [1] as the complex number that is closest to a set
of coprime polynomials. Subsequently, this has led to the introduction of
the notion of “approximate GCD”, see [2], [3], [4], [5], [6], [7] and references
therein. Again, the definition of this notion is based on the relaxation of
the conditions defining the exact GCD. The approximate GCD of a set of
coprime polynomials is a polynomial which in some sense is closest to the
set.

The problem of finding the GCD of many polynomials has been a subject
of interest for a long time in mathematics, numerical analysis and control
theory. The origins go back to Euclid’s algorithms for two polynomials and
more recently on the work based on generalized resultants [8], [9], [10], [11].
Euclid’s algorithm has provided an algebraic framework for two polynomials
and its iterative use provides extension for many polynomials. In the later
case a matrix method based on the invariance property of GCD under row
equivalence and shifting was introduced in [12]. An alternative method re-
ducing GCD computation to matrix pencils was introduced in [3]. Several
numerical methods for GCD computation based on relaxation of the exact
methods have also been developed. Numerical techniques developed for GCD
computations were presented in [13], [14], [15], [3], [16], [6], [17], [2], [7], [18],
[19] and references therein.

The importance of defining the notion of an “almost common factor” for
a set of polynomials has been highlighted in [20], [21], [22] and references
therein. This is based on the relaxation of the conditions involved in ex-
act GCD computations. Alongside the classical computational framework
of GCD various strategies have been considered: The invariance property
of GCD leads to the numerical method of ERES methodologies [13], [2]; [7]
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considers a variety of approaches using the Euclidian algorithm; [23], [20]
rely on a matrix pencil technique, while [15] applies an augmented opti-
mization methodology based on factorisation techniques. The majority of
the proposed methods in the literature analyse characteristics of the set of
polynomials based on the Sylvester matrix representation and Generalized
Resultants [10], [14], [5], [20], [21], as these formulate the GCD problem in
linear-algebraic terms which can be implemented via reliable numerical algo-
rithms. The ERES methodology [2] differs from the Resultant Approaches
since it is based on the invariance property of GCD under Gaussian trans-
formations and shifting [12]. The current work proposes a method for cal-
culating the distance of a set of monic co-prime polynomials to the set of
polynomials sharing a common root and, more generally to the set of poly-
nomials with a GCD of fixed degree k, k ≥ 1. From this viewpoint the work
provides an alternative characterisation of the notion of “almost zero” [1].

The proposed technique is based on singular values to define and solve
approximate GCD problems. Consider for simplicity the case of two polyno-
mials. These are coprime if and only if the corresponding Sylvester Resultant
matrix, SP say, is nonsingular. Thus, it is reasonable to associate proximity
to singularity with the smallest singular value of SP . This follows from the
fact that the smallest singular value of a matrix A is equal to the minimum
norm perturbation ∆ such that A+ ∆ is singular (here the norm of ∆, ‖∆‖,
indicates the spectral norm, i.e. the largest singular value). Unfortunately,
as a measure of proximity to singularity, the smallest singular value of SP
can be conservative. The reason is that perturbations in SP arise from the
perturbations in the polynomials’ coefficients which enter SP in a highly
structured way.

Some limitations of the use of the singular values of SP as indicators of
the existence of an approximate GCD of a specific degree (for the case of two
polynomials) have been highlighted in [5]. In this reference the notion of the
generalised structured singular value (µ-value) was introduced to quantify
the distance of the corresponding Sylvester resultant matrix from the set
of matrices with nullity at least k. This corresponds to the distance from
the set of polynomials with a GCD of degree at least k. In the case k = 1
this notion reduces to the well-known structured singular value which is a
well-researched tool in the area of robust control.

The present work generalises the results of [5] to the general case of an
arbitrary number of polynomials h ≥ 2. We proceed by calculating the
distance of the Sylvester resultant matrix to a matrix of reduced rank under
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appropriate structured perturbations; this corresponds to the computation of
the closest (minimum distance) nontrivial GCD, i.e. a GCD with degree at
least one. It is shown that the problem is still equivalent to the calculation of
a structured singular value, however in this case the solution is significantly
more intricate compared to the case h = 2. Part of the technical difficulties
arise due to the fact that the derived equivalent structured approximation
problem no longer involves square matrices and also that the structured
approximation sets need to be redefined during the solution procedure. It is
also shown that the notion of generalized structured singular value can be
extended to general structured rank-approximation problems of non-square
matrices, in which approximate GCD problems of general degree can be
formulated in a natural way (although their solution is more complicated).

The structure of the paper is as follows: Section 2 summarises some fun-
damental results related to the GCD of a set of polynomials and its relation to
the generalised Sylvester resultant matrix. Section 3 shows that the problem
of calculating the closest common root of a set of polynomials subject to min-
imal magnitude perturbations in the polynomials’ coefficients is equivalent
to the calculation of a structured singular value of a matrix. It is also shown
that the calculation of the optimal approximate GCD of degree k > 1 is as-
sociated with the solution of a generalised structured singular value problem.
Computational techniques for solving structured singular value problems of
the type arising in this work are described in Section 4. Finally, the main
conclusions of the paper and suggestions for further research are included in
Section 5.

Throughout the paper standard notation is used. Rn×m denotes the set
of n×m real matrices and Cn×m the set of n×m complex matrices. The set
of non-negative (positive) numbers is denoted as R+0 (R+, respectively. The
sets R−0 and R− are defined analogously. On,m denotes the n×m zero matrix
and 1n the (column) vector of ones in Rn. R[s] defines the set of polynomials
with real coefficients. If d(s) ∈ R[s], then the degree of the polynomial is
deg{d(s)}. A′ is the transpose of matrix A ∈ Rn×m, while A∗ is the complex
conjugate transpose of A ∈ Cn×m. The spectrum of A ∈ Rn×n is denoted by
λ(A). N (A), R(A) correspond to the right null-space (kernel) and the range
(column span) of A ∈ Rn×m respectively. If A ∈ Rn×m, then according to the
rank-nullity theorem rank(A) + null(A) = m, where null(A) := dim(N (A))
and rank(A) := dim(R(A)). The set of singular values of A ∈ Rn×m is
defined as σ(A) = {σi(A), i = 1, . . . ,min(n,m)}, listed in the non-increasing
order σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥ 0. The spectral norm of a matrix A is its
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largest singular value, i.e. ‖A‖ = σ1(A). If f : Ω → R where Ω is an open
subset of Rq is differentiable at d ∈ Ω then

∇f(d) =
(

∂f(d)
∂d1

∂f(d)
∂d2

. . . ∂f(d)
∂dq

)′
and 〈∇f(d), x〉

denote, respectively, the gradient of f and the directional derivative of f along
direction x ∈ Rq, ‖x‖ = 1. If A ∈ Rm×n, then vec(A) : Rm×n → Rmn denotes
the vectorization operation of stacking the columns of A into a vector and
vec−1(·) denotes the inverse operator. Similarly if m = n and A = A′ then

vec(A) ∈ Rr, r = n(n+1)
2

, denotes the vector vec(A) with all the elements
of A below the main diagonal eliminated and vec−1(·) denotes the inverse
operation. The Kronecker product of two matrices A and B is denoted as
A⊗B. Additional notation is introduced in the sequel as needed.

2. The generalised Sylvester resultant for many polynomials

Consider a set of polynomials Ph+1,n:

Ph+1,n = {a(s), bi(s) ∈ R[s], i = 1, . . . , h;

n = deg{a(s)}, t = deg{bi(s)}, i = 1, 2, . . . , h, n ≥ t}
(1)

The notation is occasionally simplified to P if the integers n and h can be
inferred from the context. Let φ(s) be the GCD of the polynomial set Ph+1,n.
If the polynomials are coprime, i.e. φ(s) = 1, we denote the polynomial set
as P0

h+1,n. The Sylvester matrix background is considered next [9], [10], [13],
[14],[16], [11]:

Definition 2.1. Consider the set of monic polynomials Ph+1,n = {a(s), bi(s) ∈
R[s], i = 1, . . . , h}, where a(s) and bi(s), ∀i = 1, . . . , h, are given as:

a(s) = sn + αn−1s
n−1 + · · ·+ α0,

bi(s) = st + βt−1,is
t−1 + · · ·+ β0,i, i = 1, . . . , h (2)

We assume with no loss of generality that the polynomials are monic, i.e.
αn = βt,i = 1, i = 1, 2, . . . , h.

(i) Let S0 ∈ Rt×(n+t) be the Sylvester Resultant associated with a(s):

S0 =


1 αn−1 αn−2 . . . . . . α0 0 . . . 0
0 1 αn−1 . . . . . . α1 α0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 1 . . . αt−1 . . . . . . α0

 (3)
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(ii) Corresponding to bi(s) for each i = 1, . . . , h the resultant matrices
Si ∈ Rn×(n+t) are structured as:

Si =


1 βi,t−1 βi,t−2 . . . . . . βi,0 0 . . . 0
0 1 βi,t−1 . . . . . . βi,1 βi,0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 1 . . . βi,n−1 . . . . . . βi,0

 (4)

(iii) The Generalized Resultant for the set Ph+1,n is defined as:

SP =


S0

S1
...
Sh

 ∈ R(t+hn)×(n+t) (5)

The Sylvester resultant matrix holds important properties for GCD com-
putations. Moreover, the concept of “approximate GCD” and the distance
of the polynomials to the GCD variety can be analysed with respect to
the singular values of the corresponding Sylvester resultant. In previous
research papers [13], [4], [6] “approximate co-primeness” is studied alongside
the Sylvester matrix representation leading to some important notions that
are considered next.

Theorem 2.1. [14]: Let SP be a Sylvester resultant matrix of the set of
polynomials Ph+1,n

SP =



1 αn−1 αn−2 . . . . . . α0 0 . . . 0
0 1 αn−1 . . . . . . α1 α0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 1 . . . αt−1 . . . . . . α0

1 β1,t−1 β1,t−2 . . . . . . β1,0 0 . . . 0
0 1 β1,t−1 . . . . . . β1,1 β1,0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 1 . . . β1,n−1 . . . . . . β1,0
...

...
...

...
...

1 βh,t−1 βh,t−2 . . . . . . βh,0 0 . . . 0
0 1 βh,t−1 . . . . . . βh,1 βh,0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 1 . . . βh,n−1 . . . . . . βh,0



. (6)
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If we denote φ(s) as the GCD of the corresponding polynomial set Ph+1,n =
{a(s), bi(s),∀i = 1, . . . , h} than the following properties hold true:

1. For the polynomial set to be coprime it is necessary and sufficient that
the Sylvester Resultant has full rank, i.e. rank(SP) = n+ t;

2. If Ph+1,n has non-trivial GCD (deg(φ(s)) ≥ 1), then

rank(SP) = n+ t− deg{φ(s)}; (7)

3. Since GCD of SP stays invariant under elementary row operations, then
by reducing it to the row-echelon form the last non-vanishing row will
provide the coefficients of φ(s).

For a proof of these properties see [14].

Remark 1. The degree of the “approximate GCD” can be determined from
the values of the smaller singular values of the Sylvester resultant matrix.
For example, the matrix pencil technique [3], [16] defines the degree of the
approximate GCD with respect to a specified tolerance level tol, i.e. as the
number of singular values that are less than or equal to tol. This approach
is refined in this paper by replacing “singular values” by “structured singu-
lar values” which take explicitly into account the structure of the resultant
matrix.

3. Distance to the closest common root of a set of polynomials,
“approximate GCD” and the structured singular value

Structured singular values [24], [25] are a powerful tool for the analysis
and synthesis of robust control systems. They can be used to model uncer-
tainty in system dynamics arising from multiple sources, e.g. parametric un-
certainty in the coefficients of the differential or difference equations, unstruc-
tured norm-bounded uncertainty arising due to unmodelled high-frequency
dynamics, or combinations of these two types. Structured singular values
can be employed to establish non-conservative conditions for robust-stability
and robust-performance analysis and in combination with H∞ optimal con-
trol they can provide a systematic framework for robust control system design
[24], [26], [27].
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The computation of the structured singular value (µ) of a matrix is an
NP-hard problem. Convex relaxation methods are normally employed to
calculate upper bounds of µ; techniques for reducing the duality gap have also
been developed. In the present work, structured uncertainty arises from the
perturbations in the coefficients of the polynomials entering the generalized
resultant matrix and will be represented as a diagonal matrix of repeated
scalar perturbations. The definition of the appropriate uncertainty structure
requires a sequence of preliminary transformations which are introduced later
in the section.

Recently, a new approach was introduced for estimating the distance of
two polynomials to the set of polynomials with a common root [5]. It was
argued that, since the Sylvester resultant matrix is highly structured in terms
of the polynomial coefficients (and hence also their perturbations), general
approaches which use smallest singular value of the Sylvester resultant as
an indicator of numerical singularity tend to underestimate the actual dis-
tance as they are more applicable to matrix-distance approximation problems
involving unstructured perturbations. As an alternative, the structured sin-
gular value (µ-value) methodology was proposed. The effectiveness of this
method was demonstrated with a simple example. The technique is strictly
applicable to the case of two polynomials (corresponding to a square Sylvester
resultant matrix); generalization to the general case of an arbitrary number
of polynomials addressed in this paper is a more complex problem.

The definition of the structured singular value of a matrix is given next.
Note that the underlying perturbation structure is not the most general pos-
sible but is adequate for the purposes of this work:

Definition 3.1. [24] Let M ∈ Rn×n and consider the structured set of un-
certainties as

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, . . . , s} ⊆ Rn×n, (8)

where ri are positive integers corresponding to the block-structure of ∆, i.e.∑s
i=1 ri = n. If there exists ∆ ∈ ∆, such that det(In −M∆) = 0, then the

structured singular value of M is:

µ∆(M) =
1

min{‖∆‖ : ∆ ∈∆, det(In −M∆) = 0}
, (9)

If for all ∆ ∈∆ we have det(In −M∆) 6= 0 then µ∆(M) = 0.

8



The first problem considered is as follows:

Problem 1. (Distance to non-coprimeness). Consider the set P0
h+1,n of co-

prime polynomials

a0(s) = sn + αn−1s
n−1 + · · ·+ α0,

b0,i(s) = st + βt−1,is
t−1 + · · ·+ β0,i, i = 1, . . . , h (10)

with corresponding Sylvester resultant SP0 and define the set of perturbed
polynomials Ph+1,n:

a(s) = sn + (αn−1 + δn−1)s
n−1 + · · ·+ (α0 + δ0),

bi(s) = st + (βt−1,i + εt−1,i)s
t−1 + · · ·+ (β0,i + ε0,i), i = 1, . . . , h (11)

and the corresponding Sylvester resultant SP . Then, what is the minimal
absolute value perturbation in the coefficients of the nominal polynomials
P0
h+1,n so that the perturbed polynomials Ph+1,n have a common root? For-

mally define:

γ = max{|δ0|, . . . , |δn−1|, |ε0,1|, . . . , |εt−1,1|, . . . , |ε0,h|, . . . , |εt−1,h|}

We seek to minimise γ so that the perturbed polynomials (11) have a common
root. Introduce the Sylvester resultant of the perturbed polynomials SP =
SP0 + E where:

E =



0 δn−1 δn−2 . . . . . . δ0 0 . . . 0
0 0 δn−1 . . . . . . δ1 δ0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 0 . . . δt−1 . . . . . . δ0
0 ε1,t−1 ε1,t−2 . . . . . . ε1,0 0 . . . 0
0 0 ε1,t−1 . . . . . . ε1,1 ε1,0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 0 . . . ε1,n−1 . . . . . . ε1,0
...

...
...

...
...

0 εh,t−1 εh,t−2 . . . . . . εh,0 0 . . . 0
0 0 εh,t−1 . . . . . . εh,1 εh,0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 0 . . . εh,n−1 . . . . . . εh,0



. (12)
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Then, in view of Theorem 2.1 the problem can be formulated as:

inf{γ : null(SP) ≥ 1}.

Remark 2. For compatibility with previous notation and the framework of
[3], [28], [21] the h polynomials bi(s), i = 1, . . . , h, are considered to be of the
same degree t. Note, however, that all results can be easily amended to the
general case (i.e. any set of h + 1 polynomials {a(s), bi(s)}, i = 1, 2, . . . , h,
of arbitrary degrees deg{a(s), bi(s)} ≥ 1, i = 1, 2, . . . , h) with only minor
modifications.

Problem 1 can be generalized as follows:

Problem 2. (Approximate GCD of degree k) Let all variables be defined
as in Problem 1 above. Here we seek to minimise γ so that the perturbed
polynomials (11) have a GCD φ(s) with deg(φ(s)) ≥ k. Equivalently the
problem can be formulated as: inf{γ : null(SP) ≥ k}.

In the remaining part of this section it is shown that Problem 1 is equiv-
alent to the computation of a structured singular value with respect to a
diagonal set of repeated perturbations, while Problem 2 involves the com-
putation of a “generalized structured singular value”, defined over a similar
diagonal set. These generalize the results in [5] to the case of multiple poly-
nomials and rely on the following Lemma:

Lemma 3.1. Let M ∈ Rn×m, n ≥ m and define:

A =

(
In M
M ′ 0m

)
∈ R(n+m)×(n+m) (13)

Then null(M) = null(A). In particular M has full column rank if and only
if matrix A is nonsingular.

Proof. Straightforward and therefore omitted.

Considering Lemma 3.1 and the properties of the Sylvester matrix listed
in Theorem 2.1, Problem 1 can be reformulated as follows:
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Theorem 3.2. Let SP0 be the Sylvester Resultant matrix of the set of the
h+1 coprime polynomials P0

h+1,n = {a0(s), b0,i(s), ∀i = 1, . . . , h}. Introduce

perturbations {δi}i=0,1,...,n−1 and {εi,j}j=0,1,...,t−1
i=1,2,...,h in the polynomials’ coeffi-

cients and define γ as in Problem 1. Then the minimum-magnitude pertur-
bation γ∗ in the coefficients of P0

h+1,n such that the perturbed polynomials
in Ph+1,n have a common root is given by:

γ∗ = min{γ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆}

where ∆ is the structured set:

∆ = {diag(∆1,∆2)} ⊆ Rnt(h+1)×nt(h+1) (14)

where:
∆1 = diag(δn−1It, δn−2It, . . . , δ0It) ∈ Rnt×nt (15)

and

∆2 = diag(ε1,t−1In, . . . , ε1,0In, . . . , εh,t−1In, . . . , εh,0In) ∈ Rnth×nth (16)

in which δi ∈ R, εi,j ∈ R. Matrix Θ ∈ R(t+nh)×nt(h+1) is defined as:

Θ = diag(1′n ⊗ It, 1′t ⊗ In, . . . , 1′t ⊗ In)

which can be also written in expanded form as:

Θ =


It . . . It Ot,n . . . Ot,n . . . Ot,n . . . Ot,n

On,t . . . On,t In . . . In . . . On,n . . . On,n

...
...

...
...

. . .
...

...
On,t . . . On,t On,n . . . On,n . . . In . . . In

 (17)

Matrix Z is defined as:

Z =


Z1

Z2
...
Z2

 =

(
Z1

1h ⊗ Z2

)
∈ Rnt(h+1)×(n+t)

where

Z1 =


Z0
t,n

Z1
t,n
...

Zn−1
t,n

 ∈ Rnt×(n+t) and Z2 =


Z0
n,t

Z1
n,t
...

Zt−1
n,t

 ∈ Rnt×(n+t)
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in which

Zk
t,n =

(
Ot,k+1 It Ot,n−k−1

)
∈ Rt×(n+t), k = 0, 1, . . . , n− 1

and

Zk
n,t =

(
On,k+1 In On,t−k−1

)
∈ Rn×(n+t), k = 0, 1, . . . , t− 1

Proof. According to Theorem 2.1 polynomials Ph+1,n have a common root if
and only if SP = SP0 + E loses rank. By “pulling out the uncertainty” it is
straightforward to verify that SP0 + E = SP0 + Θ∆Z where ∆ ∈ ∆. This
follows by writing the Sylvester perturbation matrix in (12) as:

E =


∑n−1

λ=0 δλZ
n−λ−1
t,n∑t−1

λ=0 ε1,λZ
t−λ−1
n,t

...∑t−1
λ=0 εh,λZ

t−λ−1
n,t

 =


δn−1Z

0
t,n + δn−2Z

1
t,n + . . .+ δ0Z

n−1
t,n

ε1,t−1Z
0
n,t + ε1,t−2Z

1
n,t + . . .+ ε1,0Z

t−1
n,t

...
εh,t−1Z

0
n,t + εh,t−2Z

1
n,t + . . .+ εh,0Z

t−1
n,t


which reveals the displacement structure of the Sylvester resultant matrix.
Further note that γ = ‖∆‖ and hence:

γ∗ = inf{‖∆‖ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆} (18)

Consider the perturbations: δ0 = −α0, εi,0 = −βi,0, i = 1, 2, . . . , h. Then all
perturbed polynomials Ph+1,n have a common root at the origin and hence
γ∗ ≤ γ̂ := max{|α0|, |β1,0|, . . . , |βh,0|}. Hence we can restrict the constraint
set in (18) to the compact set:

{∆ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆, ‖∆‖ ≤ γ̂}

Since the function ∆ → ‖∆‖ is continuous the infimum in (18) is attained.

The following result shows that the solution of Problem 1 is equivalent
to the calculation of a structured singular value.

Theorem 3.3. Let all variables be defined as in Theorem 3.2. Then the
minimum-magnitude perturbation γ∗ in the coefficients of P0

h+1,n such that

the perturbed polynomials Ph+1,n have a common root is γ∗ = µ−1
∆̃

(M̃) where

M̃ = −P ′
(

Θ′SP0(S
′
P0
SP0)

−1Z ′ Θ′(I − SP0(S
′
P0
SP0)

−1S ′P0
)Θ

−Z(S ′P0
SP0)

−1Z ′ Z(S ′P0
SP0)

−1S ′P0
Θ

)
P

12



and P is a permutation matrix such that diag(∆,∆) = P∆̃P ′ in which

∆ = {diag(δn−1It, . . . , δ0It, ε1,t−1In, . . . , ε1,0In, . . . , εh,t−1In, . . . , εh,0In)}
(19)

and

∆̃ = {diag(δn−1I2t, . . . , δ0I2t, ε1,t−1I2n, . . . , ε1,0I2n, . . . , εh,t−1I2n, . . . , εh,0I2n)}
(20)

Proof. According to Theorem 3.2

γ∗ = min{‖∆‖ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆} (21)

From Lemma 3.1:

null(SP0 + Θ∆Z) ≥ 1 ⇔ det

(
I SP0 + Θ∆Z

S ′P0
+ Z ′∆Θ 0

)
= 0

which is also equivalent to condition:

det

{(
I SP0

S ′P0
0

)
+

(
Θ 0
0 Z ′

)(
∆ 0
0 ∆

)(
0 Z
Θ′ 0

)}
= 0 (22)

Since the set of polynomials Ph+1,n are assumed coprime the Sylvester resul-
tant SP0 has full column rank and hence the first matrix in equation (22) is
nonsingular (see Lemma 3.1). Next let ∆ ∈∆ and introduce permutation P
so that diag(∆,∆) = P ∆̃P ′, ∆̃ ∈ ∆̃ and note that:

∆ ∈∆ ⇔ ∆̃ ∈ ∆̃

Thus condition 22 is equivalent to: det(I + M̃∆̃) = 0 where

M̃ = P ′
(

Θ′ 0
0 Z

)(
I SP0

S ′P0
0

)−1(
0 Θ
Z ′ 0

)
P

Thus from equation (21) it follows that:

γ∗ = min{‖∆̃‖ : det(I + M̃∆̃) = 0, ∆̃ ∈ ∆̃} = µ−1
∆̃

(M̃) (23)

as required. The form of M̃ given in the statement of the Theorem follows
on noting that:(

I SP0

S ′P0
0

)−1
=

(
I − SP0(S

′
P0
SP0)

−1S ′P0
SP0(S

′
P0
SP0)

−1

(S ′P0
SP0)

−1S ′P0
−(S ′P0

SP0)
−1

)
after some algebra.
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Remark 3. The proposed method can be easily generalised to the case, when
the nominal coefficients of the polynomials are complex and the perturba-
tions are real. First, Lemma 3.1 can be generalised to the complex case by
replacing M ′ by M∗ in equation (13). This leads to the computation of the
real structured singular value of a complex matrix (relative to a real diagonal
structure with repeated elements). This can be calculated by separating real
and imaginary parts (see [24] for details).

In order to illustrate the structured singular value method for many poly-
nomials a simple numerical example is presented below.

Example 1. Consider the set of coprime polynomials P3,2:
p1(s) = s2 + s− 2

p2(s) = s2 + 6.0020s− 6.9860

p3(s) = s2 + 4s− 5

The corresponding resultant matrix is:

SP0 =


1 1 −2 0
0 1 1 −2
1 6.0020−6.9860 0
0 1 6.0020−6.9860
1 4 −5 0
0 1 4 −5


with singular values σ(SP0) = {13.6359, 8.9945, 0.9044, 0.0067}. Since the
smallest singular value is almost zero the numerical rank of SP0 is 3, indicating
an “approximate GCD” of degree one.

As SP0 ∈ R6×4 the generalised approach of Theorem 3.2 can be applied,
leading to an augmented matrix:

14



M =



1 0 0 0 0 0 1 1 −2 0
0 1 0 0 0 0 0 1 1 −2
0 0 1 0 0 0 1 6.0020−6.9860 0
0 0 0 1 0 0 0 1 6.0020−6.9860
0 0 0 0 1 0 1 4 −5 0
0 0 0 0 0 1 0 1 4 −5
1 0 1 0 1 0 0 0 0 0
1 1 6.0020 1 4 1 0 0 0 0
−2 1−6.9860 6.0020−5 4 0 0 0 0

0−2 0 −6.9860 0−5 0 0 0 0


Structured singular value calculations were performed with MATLAB’s µ-

analysis and synthesis toolbox [29]. The minimum distance to singularity (i.e.
the minimum norm perturbation in the coefficients of the three polynomials
such that the perturbed polynomials have a common root) is obtained (with
an accuracy of four decimal places) as γ∗ = 0.0035. This is the exact µ-value
as the lower and upper bounds, obtained via MATLAB, coincide (within the
specified tolerance): 

p1 = s2 + 1.0017s− 1.9983

p2 = s2 + 5.9986s− 6.9894

p3 = s2 + 4.0034s− 4.9965

which have GCD φ(s) = s− 0.9989.

In the last part of this section we turn our attention to the solution of
Problem 2 which involves the calculation of the numerical GCD (of arbi-
trary degree) of a set of polynomials P0

h+1,n (assumed coprime without loss
of generality). One possible approach is to develop an approximate solution
to this problem in the form of an iterative algorithm. This extracts sequen-
tially approximate common factors φi(s), by calculating the corresponding
structured singular value µ∆̃(M̃) and a corresponding minimum-norm sin-
gularising matrix perturbation by repeated application of Theorem 3.2. Af-
ter the extraction of each factor, the quotient ai+1(s) = ai(s)/φi(s) and
bi+1,j(s) = bi,j(s)/φi(s) are calculated, ignoring possible (small) remainder
terms of the divisions. The procedure is initialised by setting a0(s) = a(s),
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b0,j(s) = bj(s), j = 1, 2, . . . , h, and iterates by constructing at each step
of the algorithm the reduced-dimension Sylvester matrix corresponding to
the polynomials (ai+1(s), {bi+1,j(s)}j=1,2,...,h); this is followed by calculating

the new structured singular value µ∆̃(M̃) and a corresponding ∆̃0 ∈ ∆̃,
which in turn leads to the extraction of the new approximate factor φi+1(s).
The whole process is repeated until a tolerance condition is met, at which
stage the approximate GCD φ(s) can be constructed by accumulating the
extracted common factors φi(s). Special care is needed to ensure that any
complex roots in φ(s) appear in conjugate pairs.

Compared to this procedure a more elegant (and exact) approach is to
extract the approximate GCD of the polynomial set P0

h+1,n by solving a
single optimization problem. This involves the following generalization of
the notion of the structured singular value of a matrix:

Definition 3.2. Let M ∈ Rn×n and define the “structured” set:

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , s} (24)

where the ri are positive integers such that
∑s

i=1 ri = n. (Note that ∆ is a
subspace of Rn×n). The generalised structured singular value of M relative
to “structure” ∆ and for a non-negative integer k is defined as:

µ̂∆,k(M) =
1

min{‖∆‖ : ∆ ∈∆, null(In −M∆) > k}
(25)

unless there does not exist a ∆ ∈∆ such that null(In −M∆) > k, in which
case µ̂∆,k(M) = 0.

It follows immediately from the definition that µ̂∆,0(M) = µ∆(M) and
that µ̂∆,k(M) ≥ µ̂∆,k+1(M) for each integer k ≥ 0. Further if for some
integer k, µ̂∆,k(M) > 0 and µ̂∆,k+1(M) = 0, then any ∆0 that minimises the
denominator in (25) has null(In−M∆) = k+1. We can now state and prove
the following Theorem:

Theorem 3.4. Consider Problem 2 and let all variables be defined as in
Theorem 3.2. Then the minimum-magnitude perturbation γ∗ in the coef-
ficients of the polynomial set P0

h+1,n such that the perturbed polynomials

Ph+1,n have a GCD of degree at least k (1 ≤ k ≤ t) is γ∗ = µ̂−1
∆̃,k−1(M̃) where

M̃ and ∆̃ are as defined in Theorem 3.3.
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Proof. This is a simple generalization of the proof of Theorem 3.3 based on
the general conditions given in (13). Note that the inverse of µ̂∆̃,k−1(M̃),
k = 1, 2, . . . , t always exists since t is the minimum degree of all polynomials
in set P0

h+1,n and there are always perturbations in the coefficients of P0
h+1,n

such that the perturbed polynomials Ph+1,n have at least k common roots.
For example the perturbations:

δj = −αj, εi,j = −βi,j, i = 1, 2, . . . , h, j = 0, 1, . . . , k − 1

δj = 0, εi,j = 0, i = 1, 2, . . . , h, j ≥ k

result in a perturbed set of polynomials Ph+1,n which have at least k common
roots at the origin and hence

µ̂(M̃) ≥ 1

max{|αj|, |βi,j|}j=0,1,...,k−1
i=1,2,...,h

> 0

since the polynomials P0
h+1,n have been assumed to be coprime.

Theorem 3.4 suggests that the GCD of the polynomial set P0
h+1,n can be

obtained by calculating successively µ̂∆̃,k(M̃) for k = 0, 1, . . . , t − 1. The
procedure terminates when either k = t−1 is reached, or when the inverse of
the generalised structured singular value falls below a pre-specified tolerance
level.

The calculation of µ̂∆̃,k(M̃) is a nonconvex optimization problem. An
upper bound can be obtained as:

µ̂∆̃,k(M̃) ≤ inf
D∈D

σk+1(DM̃D−1) (26)

where D is the set of all positive definite matrices which commute with ∆̃.
See [5], [25] for details. The efficient calculation of µ̂∆̃,k(M̃) is a challenging
problem for which (to our knowledge) so solution is currently available. In
the following section we review the literature for calculating the (standard)
structured singular value and propose an algorithm for estimating the upper
bound of the generalized structured singular value given in in equation (26).
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4. Computational algorithms for µ and generalized µ problems

The computation of the structured singular value of a matrix M is an
NP-hard problem [30]. Thus, given any algorithm to compute µ(M), there
will be “worst-case problems” for which the algorithm will fail to find the
answer in polynomial-time. Although the structured singular value can be
obtained by maximizing the spectral radius of a matrix over a set of scaling
matrices, the objective function is non-concave and the corresponding algo-
rithms rarely converge to the optimal solution. In practice, upper bounds are
often sought by applying the so-called D-iteration procedure, which solves a
convex minimization problem and is equivalent to a Linear Matrix Inequality
(LMI). It can be shown that for certain simple perturbation structures the
gap between µ and its convex upper bound is zero. The same is also true for
certain other problems of special structure (rank-1 matrices [31], reciprocal
matrices [32], etc). These problem classes, however, are typically too small
for most practical applications. In general, the gap between µ and its convex
upper bound can be arbitrarily large (but grows no faster than linearly in
the number of uncertainty blocks) [30].

A systematic investigation of the gap between µ and its convex upper
bound was presented in [33]. It was shown that the gap can be breached
by solving an eigenvalue problem, provided a sufficiently tight bound can be
obtained for an auxiliary reduced-rank µ-problem, defined from the optimal
scaling matrices of the D-iteration procedure. In many cases the complexity
of the auxiliary problem is significantly reduced and breaching the convex
upper bound is feasible. Several other optimization methods for the general
µ problem or various of its specialized versions have been reported in the
literature [29], [34], [35], [24], [25] as well as the more recent one [36].

In the remaining of the section we outline a method for minimizing the
bound in (26) using gradient descent algorithms. Note that the problem
is in general nonconvex, so convergence to the global optimum cannot be
guaranteed. However, the approach can prove useful in practice if a good
starting point for the descent algorithm is available.

Consider the minimization problem: infD∈D σk+1(DMD−1) in which M ∈
Rn×n and

D = {diag(D1, D2, . . . , Ds) : Di ∈ Rri×ri , Di = D′i > 0},
s∑
i=1

ri = n

Note that matrices in D commute with matrices in the underlying perturba-
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tion set ∆ defined in (8). Let

d ∈ Rq, q =
1

2

s∑
i=1

ri(ri + 1)

be the vector of the (non-repeated) variables of D ∈ D. Further assume that
Ω is an open subset of Rq and let A(d) = DMD−1 : Ω → Rn×n be a real
matrix function of d ∈ Ω. Let Σ(d) = diag(σ1(d), σ2(d), . . . , σn(d)), σ1(d) ≥
σ2(d) ≥ · · · ≥ σn(d) ≥ 0 be the singular values of A(d). Assume that σk+1(d)
is non-repeated for every d ∈ Ω. This assumption is made for simplicity
and ensures the differentiability of σk+1(d) in Ω; if it fails at some d ∈ Ω
the gradient of σk+1(d) is not defined at that point and the descent-direction
algorithm may need to be modified using subgradient techniques [37], [38].

Define the matrix:

H(d) =

(
0 A(d)

A′(d) 0

)
∈ R2n×2n (27)

The eigenvalues of H(d) (arranged in non-increasing order) are related to the
singular values of A(d) as follows:

σ1(d) ≥ · · · ≥ σn(d) ≥ 0 ≥ −σn(d) ≥ · · · ≥ −σ1(d), ∀d ∈ Ω (28)

Thus the sensitivity of the singular values of A(d) can be inferred from the
sensitivity of the eigenvalues of H(d) [38].

Next fix d0 ∈ Ω and obtain the spectral decomposition of H(d0):

H(d0) = W

(
Σ(d0) 0

0 −Σ(d0)

)
W ′ (29)

in which the eigenvector matrix W ∈ R2n×2n is orthogonal. Denote by Wk+1

the (k+ 1)-th column of W ((k+ 1)-th eigenvector of H(d0)). Then, for each
vector x ∈ Rq, ‖x‖ = 1 the directional derivative of σk+1(DMD−1) at d0
along direction x is given as:

〈∇σk+1(d0), x〉 = W ′
k+1

{
q∑
i=1

xi

(
0 ∂(DMD−1)

∂di
(d0)

∂(DMD−1)
∂di

(d0) 0

)}
Wk+1

(30)
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where xi is the i-th component of x. Equivalently, if Wk+1 is partitioned as:

Wk+1 =

(
Uk+1

Vk+1

)
, Uk+1 ∈ Rn, Vk+1 ∈ Rn (31)

then:

〈∇σk+1(d0), x〉 = 2U ′k+1

(
q∑
i=1

xi
∂(DMD−1)

∂di
(d0)

)
Vk+1 (32)

Note that from the chain rule:

∂(DMD−1)

∂di
=
∂D

∂di
MD−1 −DMD−1

∂D

∂di
D−1, i = 1, 2 . . . , q (33)

The following steepest-descent algorithm can now be applied for solving
the optimization problem: infD∈D σk+1(DMD−1):

Algorithm:

Initialise: j = 0, Dj = In and dj = vec(Dj) ∈ Rr where r = n(n+1)
2

. Set
tolerance parameters ε1 > 0 and ε2 > 0 .

Step 1: Define A(dj) = DjMD−1j , H(dj) as in equation (27) and perform the
spectral decoposition (29) to obtain Σ(dj) and W (dj). Set Wk+1(dj) as
the (k + 1)-th column of W (dj) and decompose it as in equation (31)
to obtain the two Schmidt vectors Uk+1(dj) and Vk+1(dj).

Step 2: Using equation (32) calculate ∇σk+1(dj) by setting

(∇σk+1(dj))i = 〈∇σk+1(dj), ei〉, i = 1, 2, . . . , q

where ei is the i-th column of Iq.

Step 3: If ‖∇σk+1(dj)‖ ≤ ε1 stop and exit.

Step 4: Set
Ψj = vec−1(∇σk+1(dj)), Φj(t) = Dj − tΨj, t ≥ 0

and define the function:

fj : Ij → R+, fj(t) = σk+1

(
Φj(t)MΦ−1j (t)

)
whose domain Ij ⊆ R0+ is defined as follows: Solve the generalized
(symmetric) eigenvalue problem det(Dj − tΨj) = 0 and let λ(Dj,Ψj)
be the set of eigenvalues. If λ(Dj,Ψj) ⊆ R0− set Ij = R0+, otherwise
set Ij = [0, γj) where γj is the smallest positive eigenvalue.
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Step 5: Find the optimal step length t∗j , t > 0, and the optimal scaling matrix
Dj+1 such that

t∗j ∈ argmin{fj(t) : t ∈ Ij}, Dj+1 = Dj − t∗jΨj

Step 6: If ‖Dj+1 −Dj‖ ≤ ε2 stop and exit.

Step 7: Set dj+1 = vec(Dj+1).

Step 8: Set Dj ← Dj+1, dj ← dj+1, j ← j + 1 and go to step 1.

Remark 4. (1) We stress again that the steepest descent method imple-
mented in the algorithm above guarantees convergence to a local minimum
only. Since the objective function is not in general convex this may not cor-
respond to the globally optimal solution. (2) Restricting the optimization in
step 5 to the interval [0, γj) ensures that the optimal solution of the scaling
matrix remains always within the positive-definite cone so that fj remains
bounded. (3) Ideally the optimal steplength at every iteration has to be
selected as the global minimum of fj in Ij, which it typically estimated nu-
merically. If this is too expensive, approximate methods can be used. In
our programme implementation we estimate the optimal steplength by grid-
ing the interval [0, ηγj) where η is a fixed parameter such that 0 < η < 1
(typically we take η = 0.95).

The following examples illustrate our algorithm:

Example 2. Consider two coprime polynomials

a0(s) = s2 + α1s+ α0, b0(s) = s2 + ε1s+ ε0

and the corresponding Sylvester resultant matrix:

S0 =


1 α1 α0 0
0 1 α1 α0

1 β1 β0 0
0 1 β1 β0

 ,

in which α1 = −1.3026, α0 = −0.4218, β1 = −1.0026 and β0 = −0.3218. The
singular value set of S0 is σ(S0) = {2.5323, 1.8778, 0.1667, 0.0140} indicating
a numerical rank of 2 (or 3, depending on the required tolerance), hence

21



identifying the approximate GCD degree of the corresponding polynomials
as two (or one, again depending on the tolerance level). In this example the
exact analytical solution can be obtained for µ̂∆,1(M), where

∆ = {diag(δ1I2, δ0I2, ε1I2, ε0I2)} ⊆ R8×8

and M = −ZS−10 Θ, where Z, Θ are as specified in Theorem 3.2. Since the
two perturbed (monic) polynomials

a(s) = s2 + (α1 + δ1)s+ (α0 + δ0), b(s) = s2 + (β1 + ε1)s+ (β0 + ε0)

have two common roots if and only if they are identical we have that:

µ̂−1∆,1 = max

{
|α1 − β1|

2
,
|α0 − β0|

2

}
For the selected numerical values of the coefficients µ̂−1∆,1 = 0.15. The upper
bound of µ̂∆,1 given in (26) was calculated via the steepest descent algorithm
implemented in MATLAB. The local minimum was achieved at the 35-th
iteration as illustrated in figure 1. The value of σ2(DMD−1) obtained at
convergence results in the bound:

µ̂∆,1(M) ≤ 6.9867

This says that no structured perturbation ∆ ∈∆ with norm ‖∆‖ ≤ 6.9867−1 =
0.1431 can give rise to a pair of perturbed polynomials with two common
roots, which is consistent with the exact value of µ̂−1∆,1 = 0.15 obtained above.

Next we applied our algorithm to bound the distance of the Sylvester
matrix to singularity (which corresponds to at least one common root for the
pair of perturbed polynomials), given by

µ̂−1∆,0(M) = µ−1∆ (M)

In this case the steepest-descent algorithm produced the bound:

µ∆(M) =
1

γ∗
≤ 119.1796

which is in fact the exact value of µ∆(M) (up to the 9-th decimal point) as
calculated by Matlab’s µ-Control toolbox.
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Figure 1: Steepest-descent method for µ̂∆,1(M) upper bound (Example 2)

Example 3. Consider now a case of three polynomials,


a(s) = s3 − 6s2 + 11s− 6 = (s− 1)(s− 2)(s− 3)

b(s) = s2 − 3s+ 2.09 = (s− 1.1)(s− 1.9)

c(s) = s2 − 2.9s+ 1.68 = (s− 0.8)(s− 2.1)

that have an approximate common divisor of degree 2. As it is numerically
hard to obtain an exact solution µ̂∆,1(M) can be evaluated iteratively as
specified in Theorem 3.4. Such an approach does not guarantee the exact
solution, but can be used as an approximation.

At first, with the Sylvester resultant

S0 =



1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0
1 θ1 θ0 0 0
0 1 θ1 θ0 0
0 0 1 θ1 θ0


=



1 −6 11 −6 0
0 1 −6 11 −6
1 −3 2.09 0 0
0 1 −3 2.09 0
0 0 1 −3 2.09
1−2.9 1.68 0 0
0 1 −2.9 1.68 0
0 0 1 −2.9 1.68


we structure an augmented matrix M based on Theorem 3.2 and proceed
with calculating the minimum norm perturbations, corresponding to a bound
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of µ
(1)
∆ (M) = 29.3311. From the perturbed polynomials evaluated at the

first iteration we form a reduced Sylvester matrix, S1, by factoring out the
nearest common root from the derived polynomials. Then, the structure of
M , based on the reduced Sylvester matrix is used for the computation of the
structured singular values at the second iteration corresponding to a bound
on µ

(2)
∆ (M) = 11.7145.

Merging the results achieved an estimate of µ̂∆,1(M) = 4.8538. This
corresponds to the maximal absolute value of the perturbations in the coef-
ficients of the original polynomials. The final generalised structured singular
value estimate obtained as a result of this factorisation scheme is suboptimal
in general. However, for the purpose of our analysis it can be compared with
the upper bound obtained via the proposed steepest-descent algorithm which
also gives an approximation of µ̂∆,1(M). In this case this is obtained at the
8-th iteration as

µ̂∆,1(M) ≤ 8.7760.

Example 4. Assume that polynomials from the Example 3 are modified as
follows 

a(s) = (s− 1)(s− 2)(s− 3)

b(s) = (s− 1.1 + ε)(s− 1.9− δ)
c(s) = (s− 0.8− 2ε)(s− 2.1 + δ)

where δ and ε are given perturbations, i.e. (δ, ε) ∈ {0.02, 0.04, 0.06, 0.08}2.
Applying the steepest-descent algorithm for all the combinations of δ and ε
we obtain the results of µ̂∆,1(M) upper bound as presented in the Table 1.
It can be observed that within the specified tolerance the smaller the gap
between the common roots in the given polynomials, the greater is the value
of the bound.

5. Conclusion

In this paper we propose a novel method for calculating the distance of a
set of co-prime polynomials to the set of polynomials with a common root.
The problem is motivated by our work in algebraic control theory and has
several important applications in Numerical Analysis, Robust Control, Lin-
ear Systems and other Engineering fields. The approach seeks to identify the
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Parameters δ1 = 0.02 δ2 = 0.04 δ3 = 0.06 δ4 = 0.08
ε1 = 0.02 11.0057 9.8397 8.8328 7.9497
ε2 = 0.04 17.1778 14.7157 12.6656 10.9659
ε3 = 0.06 33.2325 27.9176 22.1343 17.6500
ε4 = 0.08 34.0382 53.1205 67.4566 44.388

Table 1: µ̂∆,1(M) upper bound for the different values of δ and ε

minimum-magnitude perturbations in the coefficients of the polynomials so
that the perturbed polynomials have a common root. It is demonstrated that
the problem is equivalent to the calculation of a structured singular value of
a matrix which is extensively studied in Robust Control. Our approach gen-
eralises previous results in [5], however, unlike the case of two polynomials,
the problem is significantly harder due to its non-square nature and the fact
that the uncertainty structure is redefined during the solution process. In
the last part of the paper our method is generalized and applied to the cal-
culation of the approximate GCD of an arbitrary set of polynomials. This
leads naturally to the concept of the “generalised structured singular value”
which involves the solution of a structured approximation problem with rank
constraints. Although in this case an upper bound can be obtained via an
optimal pair of positive-definite scaling matrices which commute with the
uncertainty structure, the resulting optimization problem is non-convex and
convergence to the global optimum cannot be guaranteed. A steepest descent
algorithm is proposed as a possible approach for tackling the problem which
is shown to perform well for problems of small complexity. However further
work is required to assess its numerical properties and its applicability to
problems of higher complexity.
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