15 research outputs found

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Full text link
    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O(p2d)\mathcal{O}(p^{2d}) storage and O(p3d)\mathcal{O}(p^{3d}) computational work, where pp is the degree of basis polynomials used, and dd is the spatial dimension. Our SVD-based tensor-product preconditioner requires O(pd+1)\mathcal{O}(p^{d+1}) storage, O(pd+1)\mathcal{O}(p^{d+1}) work in two spatial dimensions, and O(pd+2)\mathcal{O}(p^{d+2}) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in pp per degree of freedom in 2D, and reduce the computational complexity from O(p9)\mathcal{O}(p^9) to O(p5)\mathcal{O}(p^5) in 3D. Numerical results are shown in 2D and 3D for the advection and Euler equations, using polynomials of degree up to p=15p=15. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees pp.Comment: 40 pages, 15 figure

    Relative perturbation theory for diagonally dominant matrices

    Get PDF
    In this paper, strong relative perturbation bounds are developed for a number of linear algebra problems involving diagonally dominant matrices. The key point is to parameterize diagonally dominant matrices using their off-diagonal entries and diagonally dominant parts and to consider small relative componentwise perturbations of these parameters. This allows us to obtain new relative perturbation bounds for the inverse, the solution to linear systems, the symmetric indefinite eigenvalue problem, the singular value problem, and the nonsymmetric eigenvalue problem. These bounds are much stronger than traditional perturbation results, since they are independent of either the standard condition number or the magnitude of eigenvalues/singular values. Together with previously derived perturbation bounds for the LDU factorization and the symmetric positive definite eigenvalue problem, this paper presents a complete and detailed account of relative structured perturbation theory for diagonally dominant matrices.This research was partially supported by the Ministerio de Economía y Competitividad of Spain under grant MTM2012-32542.Publicad

    Quantitative electron microscopy for microstructural characterisation

    Get PDF
    Development of materials for high-performance applications requires accurate and useful analysis tools. In parallel with advances in electron microscopy hardware, we require analysis approaches to better understand microstructural behaviour. Such improvements in characterisation capability permit informed alloy design. New approaches to the characterisation of metallic materials are presented, primarily using signals collected from electron microscopy experiments. Electron backscatter diffraction is regularly used to investigate crystallography in the scanning electron microscope, and combined with energy-dispersive X-ray spectroscopy to simultaneusly investigate chemistry. New algorithms and analysis pipelines are developed to permit accurate and routine microstructural evaluation, leveraging a variety of machine learning approaches. This thesis investigates the structure and behaviour of Co/Ni-base superalloys, derived from V208C. Use of the presently developed techniques permits informed development of a new generation of advanced gas turbine engine materials.Open Acces

    Applications of low-rank approximation: complex networks and inverse problems

    Get PDF
    The use of low-rank approximation is crucial when one is interested in solving problems of large dimension. In this case, the matrix with reduced rank can be obtained starting from the singular value decomposition considering only the largest components. This thesis describes how the use of the low-rank approximation can be applied both in the analysis of complex networks and in the solution of inverse problems. In the first case, it will be explained how to identify the most important nodes or how to determine the ease of traveling between them in large-scale networks that arise in many applications. The use of low-rank approximation is presented both for undirected and directed networks, whose adjacency matrices are symmetric and nonsymmetric, respectively. As a second application, we propose how to identify inhomogeneities in the ground or the presence of conductive substances. This survey is addressed with the aid of electromagnetic induction measurements taken with a ground conductivity meter. Starting from electromagnetic data collected by this device, the electrical conductivity profile of the soil is reconstructed with the aid of a regularized damped Gauss{Newton method. The inversion method is based on the low-rank approximation of the Jacobian of the function to be inverted

    Perception-motivated parallel algorithms for haptics

    Get PDF
    Negli ultimi anni l\u2019utilizzo di dispositivi aptici, atti cio\ue8 a riprodurre l\u2019interazione fisica con l\u2019ambiente remoto o virtuale, si sta diffondendo in vari ambiti della robotica e dell\u2019informatica, dai videogiochi alla chirurgia robotizzata eseguita in teleoperazione, dai cellulari alla riabilitazione. In questo lavoro di tesi abbiamo voluto considerare nuovi punti di vista sull\u2019argomento, allo scopo di comprendere meglio come riportare l\u2019essere umano, che \ue8 l\u2019unico fruitore del ritorno di forza, tattile e di telepresenza, al centro della ricerca sui dispositivi aptici. Allo scopo ci siamo focalizzati su due aspetti: una manipolazione del segnale di forza mutuata dalla percezione umana e l\u2019utilizzo di architetture multicore per l\u2019implementazione di algoritmi aptici e robotici. Con l\u2019aiuto di un setup sperimentale creato ad hoc e attraverso l\u2019utilizzo di un joystick con ritorno di forza a 6 gradi di libert\ue0, abbiamo progettato degli esperimenti psicofisici atti all\u2019identificazione di soglie differenziali di forze/coppie nel sistema mano-braccio. Sulla base dei risultati ottenuti abbiamo determinato una serie di funzioni di scalatura del segnale di forza, una per ogni grado di libert\ue0, che permettono di aumentare l\u2019abilit\ue0 umana nel discriminare stimoli differenti. L\u2019utilizzo di tali funzioni, ad esempio in teleoperazione, richiede la possibilit\ue0 di variare il segnale di feedback e il controllo del dispositivo sia in relazione al lavoro da svolgere, sia alle peculiari capacit\ue0 dell\u2019utilizzatore. La gestione del dispositivo deve quindi essere in grado di soddisfare due obbiettivi tendenzialmente in contrasto, e cio\ue8 il raggiungimento di alte prestazioni in termini di velocit\ue0, stabilit\ue0 e precisione, abbinato alla flessibilit\ue0 tipica del software. Una soluzione consiste nell\u2019affidare il controllo del dispositivo ai nuovi sistemi multicore che si stanno sempre pi\uf9 prepotentemente affacciando sul panorama informatico. Per far ci\uf2 una serie di algoritmi consolidati deve essere portata su sistemi paralleli. In questo lavoro abbiamo dimostrato che \ue8 possibile convertire facilmente vecchi algoritmi gi\ue0 implementati in hardware, e quindi intrinsecamente paralleli. Un punto da definire rimane per\uf2 quanto costa portare degli algoritmi solitamente descritti in VLSI e schemi in un linguaggio di programmazione ad alto livello. Focalizzando la nostra attenzione su un problema specifico, la pseudoinversione di matrici che \ue8 presente in molti algoritmi di dinamica e cinematica, abbiamo mostrato che un\u2019attenta progettazione e decomposizione del problema permette una mappatura diretta sulle unit\ue0 di calcolo disponibili. In aggiunta, l\u2019uso di parallelismo a livello di dati su macchine SIMD permette di ottenere buone prestazioni utilizzando semplici operazioni vettoriali come addizioni e shift. Dato che di solito tali istruzioni fanno parte delle implementazioni hardware la migrazione del codice risulta agevole. Abbiamo testato il nostro approccio su una Sony PlayStation 3 equipaggiata con un processore IBM Cell Broadband Engine.In the last years the use of haptic feedback has been used in several applications, from mobile phones to rehabilitation, from video games to robotic aided surgery. The haptic devices, that are the interfaces that create the stimulation and reproduce the physical interaction with virtual or remote environments, have been studied, analyzed and developed in many ways. Every innovation in the mechanics, electronics and technical design of the device it is valuable, however it is important to maintain the focus of the haptic interaction on the human being, who is the only user of force feedback. In this thesis we worked on two main topics that are relevant to this aim: a perception based force signal manipulation and the use of modern multicore architectures for the implementation of the haptic controller. With the help of a specific experimental setup and using a 6 dof haptic device we designed a psychophysical experiment aimed at identifying of the force/torque differential thresholds applied to the hand-arm system. On the basis of the results obtained we determined a set of task dependent scaling functions, one for each degree of freedom of the three-dimensional space, that can be used to enhance the human abilities in discriminating different stimuli. The perception based manipulation of the force feedback requires a fast, stable and configurable controller of the haptic interface. Thus a solution is to use new available multicore architectures for the implementation of the controller, but many consolidated algorithms have to be ported to these parallel systems. Focusing on specific problem, i.e. the matrix pseudoinversion, that is part of the robotics dynamic and kinematic computation, we showed that it is possible to migrate code that was already implemented in hardware, and in particular old algorithms that were inherently parallel and thus not competitive on sequential processors. The main question that still lies open is how much effort is required in order to write these algorithms, usually described in VLSI or schematics, in a modern programming language. We show that a careful task decomposition and design permit a mapping of the code on the available cores. In addition, the use of data parallelism on SIMD machines can give good performance when simple vector instructions such as add and shift operations are used. Since these instructions are present also in hardware implementations the migration can be easily performed. We tested our approach on a Sony PlayStation 3 game console equipped with IBM Cell Broadband Engine processor

    Fractal analyses of some natural systems

    Get PDF
    Fractal dimensions are estimated by the box-counting method for real world data sets and for mathematical models of three natural systems. 1 he natural systems are nearshore sea wave profiles, the topography of Shei-pa National Park in Taiwan, and the normalised difference vegetation index (NDV1) image of a fresh fern. I he mathematical models which represent the natural systems utilise multi-frequency sinusoids for the sea waves, a synthetic digital elevation model constructed by the mid-point displacement method for the topography and the Iterated Function System (IFS) codes for the fern leaf. The results show that similar fractal dimensions are obtained for discrete sub-sections of the real and synthetic one-dimensional wave data, whilst different fractal dimensions are obtained for discrete sections of the real and synthetic topographical and fern data. The similarities and differences are interpreted in the context of system evolution which was introduced by Mandelbrot (1977). Finally, the results for the fern images show that use of fractal dimensions can successfully separate void and filled elements of the two-dimensional series
    corecore