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Partial Least Squares (PLS) is an important statistical technique with multi-
ple and diverse applications, used as an effective regression method for correlated or
collinear datasets or for datasets that are not full rank for other reasons. A short
history of PLS is followed by a review of the publications where the issues with the
application PLS that have been discussed. The theoretical basis of PLS is developed
from the single value decomposition of the covariance, so that the strong links between
principal components analysis and within the various PLS algorithms appear as a nat-
ural consequence.

Latent variable selection by crossvalidation, permutation and information criteria
are examined. A method for plotting crossvalidation results is proposed that makes
latent variable selection less ambiguous than conventional plots. Novel and practical
methods are proposed to extend published methods for latent variable selection by
both permutation and information criteria from univariate PLS1 models to PLS2 mul-
tivariate cases. The numerical method proposed for information criteria is also more
general than the algebraic methods for PLS1 that have been recently published as it
does not assume any particular form for the PLS regression coefficients. All of these
methods have been critically assessed using a number of datasets, selected specifically
to represent a diverse set of dimensions and covariance structures.

Methods for simulating multivariate datasets were developed that allow control
of correlation and collinearity in both regressors and responses independently. This
development also allows control over the variate distributions. Statistical design of
experiments was used to generate plans for the simulation that allowed the factors
that influence PLS model fit and latent variable selection. It was found that all the
latent variable selection methods in the simulation tend to overfit and the feature in
the simulation that causes overfitting has been identified.
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Chapter 1

Introduction

After using partial least squares analysis in a number of successful industrial projects

it became clear to me that it is a powerful technique for analysing unstructured

datasets. For studies where there the amount of available information is small, de-

signed experiments with multiple regression and optimization are very efficient tools.

Where there was already a collection of experimental data it was found that PLS

could usually produce effective models for optimization without further experimenta-

tion even though the dataset contained some collinearity or partial correlations. So

how was PLS achieving this? Even after some background reading I was left with no

clear understanding of how the method actually worked. Also, the algorithmic nature

of the fitting does tend to promote a “black box” view of the analysis. As the purpose

of these industrial experiments was the product development of safety critical com-

ponents, it was essential to have a thorough understanding of all the methods that

are used. So rather than abandon such a successful technique, I started a systematic

review of the PLS literature with the aim of identifying then adopting best practice.

But instead of identifying an optimal method, the conclusions from this review were

that as there was considerable variation in the way the PLS was being applied and

interpreted. So an overall optimal method that we could call “best practice” probably

does not exist. The desire for a more fundamental and rigorous approach to resolving

these issues lead to continuing this work as an academic study. Understanding the

mathematical and statistical framework behind PLS has clarified many aspects of its

application. During the course of this work a number of improvements to PLS meth-

ods have been identified, which are the subject of this thesis. To set the context for

14



CHAPTER 1. INTRODUCTION 15

describing these improvements, this introduction continues with a brief history of PLS

followed by some comments on the apparent problems and finishes with a statement

of the specific objectives of this work.

1.1 A Brief History of Partial Least Squares

As statistical techniques evolve, it is often difficult to identify any single publication

as the original source of a method. For such a wide field as PLS, any brief history

cannot be comprehensive so the objective here is to trace the themes that lead to PLS

and to identify only the key sources.

PLS was developed from principal components analysis (PCA) and principal com-

ponents regression (PCR). Jolliffe[58] gives a review of the origins of PCA and puts the

original source for PCA as a statistical method as Pearson[87] in 1901. But Cauchy’s

eigen analysis was published around 1829 and the singular value decomposition (SVD)

was from Beltrami in 1873. The use of principal component scores as regressors was

first published in 1957 independently by Hotelling[53] and Kendall[60]. This origi-

nal form of PCA and PCR requires the complete evaluation of all eigenvectors and

eigenvalues, but this was not feasible for high dimensional data until computing power

became readily available. Geladi[37] describes development of iterative methods such

as PCA NIPALS by Hermann Wold in the 1930s as a practical numerical method for

evaluating the first few latent variables.

In 1961, Horst[49] describes an iterative method for orthogonal regression that

would be described as a PLS method if published today. The basis for this paper is

Hotelling’s original paper from 1936[51] on canonical analysis that also contains the

essential principles of PLS. In a review of the development of PLS methods, Geladi[37]

describes the evolution of iterative PCA into PLS and gives the the first open publica-

tion of the PLS NIPALS method by Hermann Wold in 1975[111]. This is considered to

be the source of PLS because the NIPALS algorithm was the first practical calculation

method. The application for this 1975 publication was as a path modelling method for

econometric models. The acronym NIPALS stands for ”Non-linear Iterative Partial



CHAPTER 1. INTRODUCTION 16

Least Squares”, with the “partial” to indicate that the score vectors are considered

fixed at each iteration.

Geladi[37] points to a symposium in 1979 as the apex of the wide and rapid ex-

pansion of PLS applications in both natural and social sciences in the 1980s. During

the 1980s, the first paper on PLS2 methods for multivariate responses by Svante Wold

et al[115] was published. In particular, the 1983 publication of Wold, Martens and

Wold[114] for the first application of PLS to multivariate calibration was very signifi-

cant for analytical chemistry. Also during this period, two journals for ”Chemometrics”

appeared supported in the early days at least by the chemical applications of PLS.

Herman Wold’s son Svante Wold gives a interesting personal insight as a chemist into

this development period of PLS methods[118]. In 1982, Herman Wold[113] published

the application of PLS methods to multiblock analysis, which lead to methods that

became known as path modelling and structural equation modelling. It is apparent in

the literature that the applications of PLS in the chemical and other natural sciences

use PLS as a predictive regression method diverged from path modelling and struc-

tural equation modelling which are nearly exclusive to econometrics and the other

social sciences.

These early PLS publications are characterised by concentrating on the algorithms

and only describing the fitting in terms of scores and loadings. The focus for the de-

velopment of this method had been to develop a practical tool for analysing complex

data, rather than for statistical rigour. At the end of the 1980s, papers examining the

statistical aspects of PLS began to appear. In particular Helland’s 1988 paper[47],

Stone and Brooks in 1990[100] and Garthwaite in 1994[36] are key publications that

identified objective functions, model forms and what was actually being optimized in

PLS models. While considerable efforts have been made by the mathematical and

statistical community to establish a rigorous foundation to PLS, this basic work has

been nearly entirely on PLS1 univariate responses while basis for the important ap-

plications of PLS2 multivariate responses or multi-block PLS has been neglected.

The SIMPLS algorithm for PLS based on the direct deflation of the covariance
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matrix was published by de Jong in 1993[16]. This algorithm is applicable to both

PLS1 and PLS2 and is numerically more efficient for large datasets than NIPALS.

The statistical aspects of PLS are generally clearer in the SIMPLS representation of

PLS than in the earlier NIPALS method. Phatak and de Jong in 1997[90] made clear

the geometrical aspects of PLS. A version of PLS based on bidiagonalization was first

published by Manne[74] in 1987, but a later paper[122] in 2000 makes clear the com-

putational advantage over NIPALS and SIMPLS for very large datasets.

Other developments of PLS during the 1990s and 2000s generally increased the

range of applications for PLS, rather than extending the understanding. Quantitative

Structure-Activity Relationships dominated the chemometrics literature in the 1990s.

This is essentially PLS applied to identifying features of molecular structure related to

chemical or pharmaceutical activity and became an important tool for drug discovery

during this time. In 1998 Svante Wold et al[117] published orthogonal signal correc-

tion for spectroscopic data to remove systematic variation from the response matrix

that is orthogonal and so unrelated to the property matrix. This filtering method was

later incorporated directly into a PLS algorithm as orthogonal-pls (”O-PLS”)[103].

This version of PLS is behind the emergence of genomics as a science in the 2000s as

reviewed by Fonville et al in 2010[33]. Applications of PLS reach far beyond the orig-

inal spectroscopic applications for analytical chemistry. PLS was used in almost one

third of the structural path models reported in the top three management information

systems journals between 2000 and 2003[42].

Although PLS was not developed as an analysis for categorical responses, it has

become an important classification methods for collinear data. Barker and Rayen’s pa-

per in 2003[5] is perhaps typical of PLS publications in that it cites ten prior references

to applications of PLS-discriminant analysis yet is the first publication to derive the

theoretical basis behind the method. For the theoretical development of PLS during

the 2000s, probably the key publication was by Pell, Ramos and Manne in 2007[88].

It’s publication generated strong debate and comment by all the leading authors that

clarified many subtle aspects of PLS methods.
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A good explanation for the success of PLS in practice comes as some comments

from Martens and Martens[79] on p385

“If X has clear structure then PLSR will use this to stabilise the regression model

against noise in Y. ...On the other hand, if X has no correlations between it’s variables,

but Y has, then the PLSR model will reveal this factor structure in Y.”

1.2 How PLS Relates to Other Multivariate

Regression Methods

There are many ways that the various multivariate methods are can be related to

each other. The connections between PLS and other regressions fall into two sets,

according to univariate responses or multivariate responses. So in this respect, PLS

forms a key link between regressions methods.

As methods for univariate responses, the brief history of PLS has described how

both PCA and PLS became practical statistical methods with the development of

NIPALS as simple computational method for extracting the first few latent variables.

Lorber, Wangen and Kowalski [71] was an early paper that showed the strong connec-

tion between PCR and PLS by relating both to the singular value decomposition that

is at the core of each method. Stone and Brooks[100] linked PCR, PLS and multiple

linear regression (MLR) together by proposing a generalised regression criterion they

called continuum regression. Here a controlling parameter determines the nature of

the regression, with PCR, PLS and MLR appearing at specific parameter values. This

approach recognised that these were fundamentally similar regression techniques but

with different objectives, where MLR maximized correlation, PLS maximized covari-

ance and PCR maximized variance. Sundberg[101] extended continuum regression to

include ridge regression.

For regressions with multivariate responses, Tso [102] showed the strong connection

between canonical analysis and reduced rank regression, (RRR). Burnham, Viveros
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and MacGregor[11] applied a similar strategy as Stone and Brooks to make a contin-

uum regression for multivariate responses. This linked canonical coordinate regres-

sion(CCR) to reduced rank regression and PLS. Again the framework of continuum

regression showed that these were fundamentally similar regressions with different ob-

jectives. CCR maximizes correlation, PLS maximizes covariance while RRR has an

intermediate objective.

1.3 Some Problems with PLS

From the brief history of PLS, it is clear that it has become a key part of many

existing and emerging technologies. Perhaps because of the range of algorithms and

diversity of applications and algorithms, PLS does not appear to have a clear, consis-

tent and reliable methodology for model fitting and diagnostics. The text by Martens

and Martens from 2001[79] is probably the most complete methodology to date. But in

another publication from 2001[78], the same authors identified some of the unresolved

aspects of PLS as a regression method and stated

“It is important that the statistical properties of the PLSR method are studied

from a theoretical point of view; otherwise, it will not be accepted in mainstream

science.”

From their chemometrics perspective, these authors gave a summary of the tools

required at that time for PLS modelling, shown here as Table 1.1 which is taken

directly from[78].

(a) Estimates of the optimal model complexity
(its ranks = # of PCs, AOpt).

(b) Estimates of the model’s predictive uncertainty
its Root Mean Error of Prediction RMSEP in X and in Y.

(c) Automatic identification of outliers.
(d) Estimates of the uncertainty of the RMSEP estimate itself.
(e) Estimates of the reliability/statistical significance of the linear

and bi-linear mode parameters T, P, Q, B, etc.
(f) Simple identification and elimination of unreliable input variables.

Table 1.1: Validation and Optimization Tools Needed in PLS Modelling
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The issue of latent variable selection is the first item on this list and is a criti-

cal step in developing any multivariate regression model. Selecting too few and the

model is under fitted, so that information about the response remains in the residuals

and model fit is reduced. Selecting too many latent variables and the model is over

fitted, so that some portion of the random error is included in the model and predic-

tive performance is reduced. Based on their practical experience Wold, Sjöström and

Eriksson[119] warn that with numerous and correlated regressors there is substantial

risk of over-fitting so a reliable test for the significance of each consecutive latent vari-

able is necessary. Clark and Cramer[14] have shown that PLS is capable of identifying

correlations between scores even for random data, particularly when the number of

latent variables approaches the number of trials, as is typical for small datasets. Con-

sequently, rigorous methods for latent variable selection are essential as the primary

guard against this type of over-fitting.

Since 2001 there have been many important developments in PLS. Due to the

commercial significance of many of the PLS applications, it could well be that a lot

more is really known about PLS than has been openly published. But comments in

publications since 2001 show that these fundamental issues with PLS modelling and

diagnostics are not being resolved. In 2006, Marcoulides and Saunders[75] used the

Editor’s Comments in an information science journal to warn authors about the dan-

gers of applying PLS to small sample size datasets. This warning was repeated by the

same authors in 2009[76].

The theoretical advances in PLS before and after 2001 have mainly concerned

PLS1, not the multivariate PLS2 that is important for practical applications. In 2010

and from a statistical perspective, Chun and Keles[13] stated

“There are limited or virtually no results on the theoretical properties of PLS re-

gression within the context of a multivariate response.”

In 2010 as part of the Springer Handbooks of Computational Statistics series Vinzi

et al edited a comprehensive “Handbook of Partial Least Squares”[107] . Even though

140 pages are dedicated to PLS tutorials, one reviewer[121] stated that
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“... the book lacks sufficient guidelines to alert readers what “not to do” when

using PLS in their research projects.”

A paper by Kvalheim[66] on chemometrics also from 2010 starts with the words

“Interpretation of PLS regression models has become a major task over the past

decade”.

So even though PLS methods has been has been used extensively, it is clear that

many of the practical aspects of fitting PLS models, fit diagnostics and model inter-

pretation have been uncertain for many years.

1.4 The Objective and Structure

The objective of this thesis is to propose some improvements of the current method-

ology for PLS regression in model fitting and model diagnostics. In particular to

identify reliable methods for latent variable selection that are applicable to datasets

with either univariate or multivariate responses and that are also robust across a wide

range of dataset dimensions and characteristics. In order to do this thoroughly, path

modelling, multi-block PLS and other extensions to the core form of PLS such as or-

thogonal filters for O-PLS have been excluded. Six example datasets have been used

to provide evidence for the effectiveness of the methods proposed as improvements.

Particular attention is given to how the nature of the dataset may influence the selec-

tion of PLS methods. Original work has only been included where it may be relevant

as best practice.

The following chapter on the PLS Algorithms develops PLS from the point of view

of single value decomposition of the covariance. This approach makes clear how the

various algorithms are related, rather than trying to infer the relationships between

algorithms from their common properties. After the example datasets have been de-

scribed, latent variable selection methods are examined in detail. The traditional

method for PLS latent variable selection is crossvalidation, which has had many ad

hoc variations and test methods often assuming multivariate normality. Permutation
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tests have been proposed as improvements as these hypothesis tests do not assume

any specific underlying distribution. More recently, developments in calculating the

degrees of freedom involved in PLS regressions has lead to the use of information cri-

teria for latent variable selection. These three different methods are examined and

compared. An extensive simulation study is reported that shows how dataset struc-

ture is related to PLS model performance. In particular, how PLS model coefficients

and predictions are related to latent variable selection. The latent variable selection

methods are also compared as part of this simulation. As a conclusion, the final chap-

ter proposes a method of latent variable selection that may be considered as ”best

practice”. It also contains a summary of the original work and concludes with some

comments on how this work might be extended.

For consistency and to ensure that any part of this work may be easily reproduced,

all the results presented here have used PLS calculations from the pls R library by

Mevik, Wehrens and Liland[82]. All datasets, R code and results tables are available

on request. During the development of this work, most the analysis was also made

with code written in MATLAB direct from the original sources. The function of this

code was verified against example datasets with some commercial software packages

and against the pls R library. Where other R libraries have been used for specific

calculations this is made clear in the text.

PLS publications can be confusing because they use a variety of notations that

appear at first sight to be very similar, but actually contain subtle differences. I have

tried to make the notation shown in Table A the simplest form that does not require a

lot of unnecessary transposes. This is very close to the style used by Burnham, Viveros

and MacGregor[11].



Chapter 2

The PLS Algorithms

Before examining the methodology of fitting and interpreting PLS models, it is nec-

essary to establish the mathematical and statistical foundations for the method. The

purpose of this chapter is to show what PLS is actually doing, to prove the relevant

properties and show the implications for the data and model spaces that are referred

to later. The PLS style has been used where scores are column vectors and loadings

are row vectors. All notation used is summarised as an appendix.

As PLS methods have evolved over the years, the theoretical basis now forms a

collection of related algorithms. Consequently, the literature contains a lot of fairly

complex proofs that show equivalence or establish relation between the various algo-

rithms. With the great benefit of hindsight, this review starts from the basic definition

and simplest form of PLS, then proceeds to show how the main algorithms are related

to this. The development of PCA/PCR into PLS was mentioned in the introduction.

The dimension reduction aspect of PCA is examined first as an introduction to the

basic form of PLS. To simplify the notation in this chapter, all observation/regressor

matrices X and responses Y are assumed to be centred. They may or may not be

scaled without loss of generality. The standard forms of covariance matrices are shown

here to avoid ambiguity with so specific terms. The notation here implies that these

variances and covariances refer to sample statistics not populations as this is more

relevant to the PLS algorithms.

23
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Let SX be the variance-covariance of a matrix X defined by

SX = E
[
(X− E[X])(X− E[X])T

]
(2.1)

If X ∈ Rn×k then SX ∈ Rk×k.

Let SX,Y be the cross-covariance matrix between two matrices X ∈ Rn×k and

Y ∈ Rn×m be defined by

SX,Y = E
[
(X− E[X])(Y − E[Y])T

]
(2.2)

and SX,Y ∈ (k ×m).

The covariance matrix for the regression between the two matrices X and Y is

defined as

S =

∣∣∣∣∣∣ SX SX,Y

STX,Y SY

∣∣∣∣∣∣ (2.3)

so S ∈ R(k+m)×(k+m) and whose elements are the scalar variances and covariances

within and between the columns of X and Y.

2.1 Principal Components Analysis

At the core of both PCA and the PLS algorithms is the same orthogonal projection

of the original data into a reduced rank subspace. The standard derivation of PCA

is well known, for example Jolliffe[58]. This starts with a column centred observation

matrix X ∈ Rn×k. The projection of X onto a line by any vector u ∈ Rk×1 is the

scores vector Xu. If X is mean centred, the variance of the projection along the line is

uTSXu where SX is the variance-covariance of X. Constraining the projecting vector

u to unit length so that it only represents the projecting direction forms the method

as an optimization problem. This projection is illustrated as Figure 2.1.

Maximize

f(u) = uTSXu (2.4)
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Figure 2.1: Orthogonal Projection onto a Line

With respect to u, subject to

uTu = 1 (2.5)

As there is a single constraint, the multiplier is a single scalar. So the Lagrangian

function with a single multiplier is

L(u, λ) = uTSXu− λ(uTu− 1) (2.6)

Setting

∂L(u, λ)

∂u
= 0 (2.7)

gives

SXu = λu (2.8)

or

uTSXu = λ (2.9)

The objective f(u) is a scalar function with a vector argument u ∈ Rn×1. So the

partial derivative in equation (2.7) is a vector differential. This final form as equation



CHAPTER 2. THE PLS ALGORITHMS 26

(2.9) shows that the maximum variance along the projection line must be equal to

the largest eigenvalue of SX , so the optimal value of u for maximizing the projection

variance must be the corresponding eigenvector.

Another important consequence of the orthogonal projection is that the projection

residuals are also minimized. So this projection simultaneously optimizes the sums

of squares along the line and the sums of squares between the data points and the

line. This shows how maximizing the variance of projections, Lagrange’s functions,

eigenvalues and eigenvectors are all related within PCA.

The links between eigenvalues and singular value decomposition is well known,

see for example Gentle[38]. An efficient way of computing the scores vector u from

equation (2.9) is by a SVD on the variance-covariance as USVT = SX so that the scores

u associated with the maximum eigenvalue and singular value is the first column of U .

Further, the maximum number of principal components is equal to k, the number of

columns in X and the number of non-zero principal components is equal to the rank

of SX .

2.2 Basic PLS

By definition, PLS seeks to maximize the covariance between the regressor matrix

and response. As this covariance is the cross-covariance matrix, a projection onto a

lower dimension subspace is implied so that the scalar objective function of the cross-

covariance that is be maximized. So the primary difference between PCA and PLS is

that PCA finds vectors to project the X matrix, while PLS finds vectors to project the

cross-covariance SXY between regressor matrix X and the response matrix Y. The

general case for multivariate responses is presented here and is equally applicable to

univariate responses.

In order to make the cross-covariance function scalar, the PLS algorithm starts

by using weights vectors to project the (centred) regressor and response matrices into

scores vectors, t = XwT and u = Yc where the weights vectors w and c are unit
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length. The PLS algorithm can now be stated as an optimization problem, just as

PCA in equation (2.4). This approach to PLS is from Phatak and de Jong[90].

That is, maximize

f(w, c) = tTu (2.10)

with respect to w and c, where

t = XwT (2.11)

u = Yc (2.12)

subject to

wTw = 1 (2.13)

cTc = 1 (2.14)

Since tTu = wTXTYc, the Langangian function is

L(w, c) = wTXTYc + λ1(1−wTw) + λ2(1− cTc) (2.15)

The solution to the maximum cross-covariance function problem is the point where all

four differentials are zero.

∂L

∂w
= XTYc− 2λ1w = 0 (2.16)

∂L

∂c
= YTXw − 2λ2c = 0 (2.17)

∂L

∂λ1

= 1−wTw = 0 (2.18)

∂L

∂λ2

= 1− cTc = 0 (2.19)

The partial differentials equations (2.16) and (2.17) are vector differentials. Comparing

these equations shows that apart from the transpose, they are the same and so the

multipliers are equal λ1 = λ2. This turns the solution into a SVD form.

cYTXw = wXTYc = s (2.20)

where s is singular value associated with YTX or equivalently XTY. Since the opti-

mization function from equation (2.10) to be maximized is f(w, c) = tTu = wTXTYc,
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the unique solution for s is the maximal singular value of XTY or YTX. Further, the

w, c vectors that are the solution to the optimization are the left and right vectors of

the SVD form.

So to calculate the weights vectors, compute the SVD of the cross-covariance matrix

USVT = SV D(XTY) (2.21)

The weights vectors w and c are then the first columns of U and V . The other opti-

mization constraints of unit length on both weights vectors w and c are also consistent

with this SVD solution as the columns of U and V from a singular value decomposition

are all orthonormal by definition.

For PCA, the variance-covariance matrix decomposed in equation (2.9) is square,

so only a single score vector is required. By comparison, the cross-covariance decom-

posed for the general form of PLS for multivariate responses as equation (2.20) is

generally not square, so two weights vectors and consequently two scores vectors are

required. Many of the properties of the scores and loadings vectors in both PCA and

PLS are related to the properties of the SVD that is behind both methods.

Deflation is a common feature to all the PLS algorithms. Here, deflation means

that the variance explained for each latent variable is subtracted from the X regressor

matrix, Y responses or their cross-covariances. After A latent variable iterations and

for the general case of PLS2 multivariate responses, the fitted values of X and Y are

X̂A =
A∑
a=1

tap
T
a (2.22)

ŶA =
A∑
a=1

uaq
T
a (2.23)

where the X and Y loadings p and q are row vectors defined by

pa =
tTaXa

tTa ta
(2.24)

qa =
tTaYa

tTa ta
(2.25)
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so the deflation for this Basic PLS is

Xa+1 = Xa − X̂a = Xa − tap
T
a (2.26)

Ya+1 = Ya − Ŷa = Ya − taq
T
a (2.27)

The same deflation scheme also applies to PLS1 univariate responses, except that the

y loadings q is a scalar and the y weights u in equation(2.23) is replaced by the X

scores t, that is Ŷa = taq
T
a . After deflation, the calculation starts again using the

deflated X and Y matrices.

For the the PLS algorithm, deflating both X and Y matrices is not required[50],

since

XT
i+1Yi+1 = XT

i Yi+1 = XT
i+1Yi (2.28)

Further, since X can be updated as a function of the scores t, the cross-covariance

matrix deflation can also be expressed as a function of t. Hence, alternative PLS

algorithms by deflating X, Y or the cross-covariance would give identical results[20].

2.2.1 Basic PLS and PLS1 NIPALS

The standard form of Wold’s[111] PLS1 NIPALS algorithm, as shown in Martens

and Næs[80] for example is

w1 = XT
0 y/||XT

0 y|| (2.29)

t1 = X0w1 (2.30)

p1 = XT
0 t1/t

T
1 t1 (2.31)

q1 = yT0 t1/t
T
1 t1 (2.32)

X1 = X0 − t1p
T
1 (2.33)

y1 = y0 − t1q1 (2.34)

then repeated for the next latent variable.

Since USVT = XTy, the maximum singular value of the cross-covariance decom-

position is s1, the 1st diagonal element in S, then

||XTy|| = s1 (2.35)
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So

(XTY)V = USVTV = US (2.36)

since V is orthogonal from the SVD. For PLS1, XTY is a vector, so V is scalar and

always ±1, so the Y weights c in the original Lagrangian equation (2.15) are not

required for PLS1. Given the first left hand vector of U is υ1 then

υ1 = XTy/S1 (2.37)

= XTy/||XTy|| = w (2.38)

which is the way the weights are calculated in the first step of the NIPALS algorithm.

Since each iteration of NIPALS starts with the calculation of the weights vector w

then calculates all the other scores and loadings in sequence from the weights, the

PLS1 NIPALS algorithm must be equivalent to this Basic form.

2.2.2 Basic PLS and PLS2 NIPALS

The original PLS2 NIPALS algorithm by Wold, Martens and Wold[114] calculates

the weights, scores and loadings vectors iteratively. The scores vector u is initialised

to some arbitrary value, usually the first column of the response matrix.

Then

w = XTu/||XTu|| (2.39)

t = Xw (2.40)

q = tTY/||(tTY) (2.41)

u = YqT (2.42)

Equations (2.39) to (2.42) are iterated until convergence as tested by the weights w

is achieved. At the ath latent variable, the scalar inner regression coefficient ca is then

calculated followed by the deflation steps as

ca = uT t/tT t (2.43)

Xa+1 = Xa − tap
T
a (2.44)

Ya+1 = Ya − cataq (2.45)
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Manne[74] noted that when this algorithm is applied to PLS1 univariate responses,

q in equation (2.41) is one, u becomes y and convergence is always achieved in one

step. In practice, convergence is usually obtained with PLS2 multivariate responses

but may be slow. Lyttkens[72] gives a general proof of convergence for NIPALS algo-

rithms. Even if this is proved algebraically, Hensler[48] makes some valuable comments

on how convergence can be made robust numerically.

On convergence, the weights w are equivalent to left singular vector from the SVD

of XTY, which is proved by Manne[74]. The Y loadings q on convergence are related

to the Y weights c by

q = s1c
T/(tT t) (2.46)

where s1 is the largest singular value of XTY. This is proved in Di Ruscio[20]. As

the weights and the loadings are the same, this shows that this Basic PLS and PLS2

NIPALS are equivalent.

2.2.3 Basic PLS and PLS NIPALS Kernel Methods

These algorithms were originally developed by Lindgren, Geladi and Wold[69] just

to improve the computational speed of the NIPALS algorithms for datasets with large

numbers of observations. The improvement in speed comes from avoiding computing

the large scores matrices T ∈ Rn×A by using the smaller “kernel” matrix XTYYTX ∈
Rk×k combined with XTX, XTY and YTY. These are the algorithms that are often

used for calculation when NIPALS algorithms are specifically required. The original

paper by Lindgren, Geladi and Wold[69] proves that these kernel algorithms give

identical results to PLS1 NIPALS and PLS2 NIPALS, so these algorithms not discussed

specifically any further here.

2.2.4 Basic PLS and SIMPLS

Unlike NIPALS, de Jong[16] derived SIMPLS specifically to maximize a covariance

measure. Each iteration of the SIMPLS algorithm starts with the SVD decomposition
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of the (deflated) covariance matrix. In outline, the algorithm starts with

S = XTY (2.47)

USVT = S (2.48)

r = υ1 (2.49)

t = Xr/||Xr|| (2.50)

p = XT t (2.51)

q = tTY (2.52)

where equation(2.48) represents the SVD decomposition of the covariance matrix S

and υ1 ∈ Rk×1 in equation(2.49) is the left singular vector of U , not the response

first scores vector u1 ∈ Rn×1. Up to this point, this is the same method as Basic PLS

expect for the normalisation. The PLS method has been presented here as constrained

optimization. In NIPALS and Basic PLS the constraint is that the regressor weights

w are scaled to unit length. SIMPLS does not require weight vectors directly, so it

is the regressor scores vectors t that is scaled to unit length. Since the regressor and

loadings p are calculated from the scores, their products as fitted values X̂a = tpT are

independent of whether it is the weights of scores that have been normalised.

The principal difference between Basic PLS or NIPALS and SIMPLS is that the

deflation for each latent variable in SIMPLS is performed on the covariance matrix

SXY, not the regressor and response matrices X and Y. To update the covariance, we

need an orthonormal basis of all the X-block loadings P, say V. For the second and

subsequent latent variables at say a latent variables, initialise va as u1,

va = va −V1..a(V
T
1..ap) (2.53)

ua = ua −T1..a(T
T
1..au) (2.54)

This Gram-Schmidt procedure forces the loadings v to be orthogonal to all the previ-

ous loadings V1..a and the scores u to be orthogonal to all the previous scores T1..a.

The next step is to deflate the covariance by first removing projections along the
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current basis vector

va = va/||va|| (2.55)

SXY = SXY − va(v
T
a SXY) (2.56)

The next latent variable is calculated in turn by calculating the SVD as in equation

(2.48).

SIMPLS does not require the calculation of the weights wi. For comparison with

other PLS algorithms or diagnostic purposes, these can be calculated by

wi = ri/||Xri|| (2.57)

so wi ∈ Rk×1.

But there is a difference between SIMPLS and NIPALS due to the way the orthog-

onality constraint is applied. Phatak and de Jong[90] showed that for NIPALS, the

deflated X matrix after A latent variables have been extracted is

X̂A = [IA −TATT ]X0 (2.58)

so the projection of the columns of X onto the space orthogonal to the scores already

extracted. For SIMPLS they showed that

X̂A = [IA −TA(TT
AT)−1TT ]X0 (2.59)

In the original SIMPLS paper by de Jong[16], there is a proof that there is no differ-

ence for PLS1 univariate responses. For PLS2 multivariate responses, only the scores

and loadings vectors from the first latent variable will be identical for NIPALS and

SIMPLS, all the other vectors will be slightly different. Phatak and de Jong[90] state

“Only in pathological cases will the difference be of any practical consequence.”

As NIPALS and SIMPLS use different sets of vectors internally, the simplest direct

comparison is through the model fits in the regressor and response spaces. As an

example, these fits are shown for the OliveOil PLS2 dataset for scaled regressors and

responses as Figure 2.2, where the differences in the fit are minor.
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Figure 2.2: Example Comparing NIPALS and SIMPLS Model Fits

2.2.5 Basic PLS and BIDIAG

The 1987 paper by Manne[74] also introduced a diagonalization method for univari-

ate PLS1, based on a numerical method originally from Golub and Kahan [40]. This

version of bidiagonalization is an iterative algorithm that uses a Lancos process and

was called BIDIAG2 by Paige and Saunders[86]. Originally proposed as a fast calcula-

tion method for large datasets. Also, as small eigenvalues due to noise may give large

contributions to the regression coefficients in all forms of latent variable regression,

the diagonalization approach uses a limiting threshold so that these small eigenvalues

are excluded. Consequently, it should also improve the stability of PLS models.

The BIDIAG algorithm decomposes the regressor matrix according to

X = U

 B

0

VT (2.60)

where X ∈ Rn×k. U = (u1, ...,un) and V = (v1, ...,vn) are square orthogonal matrices

and B ∈ R(k+1)×k is a bidiagonal matrix. Since V is orthogonal then

XV = U

 B

0

 (2.61)
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For PLS, the BIDIAG algorithm for A latent variables is

v1 = XT
0 y/||XTy|| (2.62)

α1u1 = XT
0 v1 (2.63)

for a = 2 to A

γa−1va = XT
0 ua−1 − αa−1va−1 (2.64)

αaua = X0va − γa−1ua−1 (2.65)

All of the coefficients α and γ are calculated so that all of the vectors u and v are unit

length. For A latent variables, the bidiagonal matrix B is

B =



α1 γ1

α2 γ2

. . . . . .

αA−1 γA−1

αA


(2.66)

From equations (2.62) and (2.63) at the start of the PLS BIDIAG algorithm, it is

clear that v1 and u1 are the first weights and scores vectors w1 and t1 from NIPALS.

By considering the span of the weights and scores as Krylov sequences, Eldén[24]

proved equality between u and t and between v and w for all latent variables. So

from equation(2.60) and using the weights and scores notation for clarity, after A

latent variables the regressor matrix is approximated by

X ≈ TABAWT
A (2.67)

As an example comparing NIPALS and BIDIAG pls, regressor and response space

distances for the Wine Aroma dataset with scaled variates is shown as Figure 2.3.

This shows that there is no difference in the response fit and so response residuals but

there is a difference in the regressor fitted values.

The paper by Pell, Ramos and Manne[88] in 2007 concerning the validity of the

NIPALS compared to the BIDIAG approach caused some controversy in the literature.

These issues were resolved by Bro and Eldén[9] who give a good explanation of this,
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Figure 2.3: Example Comparing NIPALS and BIDIAG Model Fits

in that both approaches are equally valid but represent different projections. This

difference in projections is apparent in the regressor distance plots shown as Figure

2.3. As this explanation and contributions by others [25],[26],[32],[120] revealed a lot

about the nature of PLS methods these details are examined next.

PLS NIPALS Regressor Residuals

In the standard form of PLS NIPALS, the loadings vector pa at a latent variables

are calculated from the scores ta,

pa = XT
a−1ta (2.68)

or in a cumulative matrix form for the 1st to the Ath latent variable

PA = XT
0 TA (2.69)

PT
A = TT

AX0 (2.70)

where PA = [p1, ...,pA] and TA = [t1, ..., tA] are the matrices formed by combining

the column vectors and X0 is the original undeflated regressor matrix.
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With the notation Xa for the regressor matrix and X̂a for the fitted matrix after

a latent variables, the residuals used as the regressor matrix in the next iteration are

Xa+1 = X̂a − tap
T
a (2.71)

or in a cumulative matrix form for A latent variable is

X̂A = X0 −TAPT
A (2.72)

So

X0 − X̂A = TATT
AX0 (2.73)

From equation (2.73) it is apparent that the the regressor residuals are in the column

space of the scores. Further proof of this is in Höskuldsson[50], where it is also proved

that the row space of the regressor residuals are also orthogonal to the loadings p.

Equation (2.71) shows that at each iteration, the variation in Xa in the direction of the

scores vector ta is removed entirely during the deflation. So an important consequence

is that for PLS NIPALS, regressor space outliers can be detected through their scores

and response fit outliers from their residuals, because the scores and residuals are

orthogonal and so independent.

PLS BIDIAG Regressor Residuals

So after A latent variable, the regressor residuals corresponding to equation(2.73) are

X̂A = X0 −TABAWT
A (2.74)

From equation (2.61) XW = TB then

X̂A = X0 −X0WAWT
A (2.75)

X̂A = (IA −WAWT
A)X0 (2.76)

Comparing equations (2.71) and (2.76) shows that the regressor residuals for PLS

BIDIAG are in the column space of the weights W and orthogonal to them, but are

not orthogonal to the scores T and loadings P. This is opposite to the properties of

the regressor residuals for the PLS1 NIPALS derived from equation (2.73). So the im-

portant model diagnostics are weaker for PLS BIDIAG, because the the model space
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part of the model is not orthogonal to the residuals[120]. In a study of PLS regressor

residuals in the context of a process control study, Ergon, Halstensen and Esbensen[26]

continue to support PLS BIDIAG even though there is little practical difference be-

tween the analyses of their datasets. Wise[110] showed that for PLS BIDIAG the

correlation was always between the regressor errors and last scores vector and that

this level of correlation is variable but can be large. A further conclusion was that

the regressor residuals from PLS BIDIAG will always be greater than those from PLS

NIPALS. Consequently, the BIDIAG version of PLS will not be considered further here.

2.3 The PLS Regression Coefficients

It is quite possible to fit PLS models and examine the characteristics of the fit, then

go on to use this for prediction without calculating any coefficients for the regression.

But these coefficients are important for interpreting PLS models and can simplify the

statistical aspects of model fitting and diagnostics. This section shows how coefficients

β can be calculated from the scores and loadings vectors which can then be used for

equivalent prediction calculations. As might be anticipated for PLS, these coefficients

can be defined and derived in a number of different ways.

In this section the ”hat” on β̂ implies that this is in some way an estimated best fit

value. Similarly, X̂ and Ŷ are the fitted X and Y residuals after A latent variables have

been extracted. The A subscript is implied throughout but is omitted for clarity. The

other scores, weights and loadings vectors are considered as internal model parameters

and so are not best fit in any way. The coefficients and their derivatives are important

calculations, used in degrees of freedom calculations, estimating the effects of variables

and prediction intervals.
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2.3.1 Martens and Naes Original Derivation

The most accessible source for the coefficients for PLS1 univariate regression is

Martens and Næs[80], where it is stated without proof

β̂ = W(PTW)−1q (2.77)

Helland[47] said that this could be proved in a number of ways and provides this

as an example

X̂ = TPT (2.78)

X̂W = TPTW (2.79)

T = X̂W(PTW)−1 (2.80)

Ŷ = Tq (2.81)

= X̂W(PTW)−1q (2.82)

As Ŷ = X̂β̂ then

β̂ = W(PTW)−1q (2.83)

Manne[74] proved that PTW is lower triangular with ones on the diagonal. As

such it is easily invertible and Manne gives an efficient formula for this. Equation

(2.81) is specific to PLS1 univariate regressions. The equivalent equation in matrix

form for PLS2 multivariate responses from equation (2.45) is

Ŷ = TCQ (2.84)

where T ∈ Rn×A is the matrix of column vector scores, C ∈ RA×A is a of diagonal

matrix of the inner regression coefficients from equation (2.43) and Q ∈ RA×m is

the matrix of row vector loadings. So the equivalent form for the PLS2 regression

coefficients is

β̂ = W(PTW)−1CQ (2.85)

2.3.2 Pell, Ramos and Manne Pseudoinverse Derivation

This alternative derivation from Pell, Ramos and Manne[88] is interesting as it shows

a pseudoinverse form direct from scores and loadings so is applicable to NIPALS and
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SIMPLS algorithms with PLS1 univariate responses. While the construction of pseu-

doinverses normally uses SVD decompositions, this alternative way is shown below

using results from Barnet[6]

Assume A does not have full rank, i.e. A ∈ Rn×m and rank(A) = r < min(n,m).

There does always exists two matrices C ∈ Rn×r and D ∈ Rr×m of rank r such that

A = CD. Then

A+ = D+C+ (2.86)

A+ = DT (DDT )−1(CTC)−1CT (2.87)

For PLS, X̂ = TPT which leads directly to the form used in Pell, Ramos and Manne

X̂+ = P(PTP)−1(TTT)−1TT (2.88)

Since Ŷ = Tq then

β̂ = X̂+Ŷ (2.89)

= P(PTP)−1(TTT)−1TTTq (2.90)

= P(PTP)−1q (2.91)

which is not equivalent to equation (2.83). While this coefficient derivation using

pseudoinverses is from the Pell,Ramos and Manne paper[88] that mainly concerned the

BIDIAG algorithm, this derivation is not specific to any particular algorithm. Figure

2.4 compares the coefficients for the WineAroma example dataset, which shows that

the differences are not negligible. This issue is discussed by Ergon et al[25],[26] which

showed that this difference in the coefficients calculation is another aspect of the model

space issue.

2.4 Conclusions on the PLS Algorithms

The conventional presentation of PLS presents the development as the evolution of

the various algorithms. This requires fairly complex proofs to show equivalence or to

reveal where the algorithms differ. Starting from the underlying singular value decom-

position makes the relation between the methods clear while avoiding the necessity for
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Figure 2.4: Example Comparing Alternative Coefficient Calculations

most of the proofs.

This controversy concerning the regressor space residuals started by Pell, Ramos

and Manne[88] has made the relations between the PLS vectors and their spaces a

lot clearer. The overall conclusion from Wold et al [120] is that the NIPALS and

BIDIAG approaches represent different models so slightly different results should be

anticipated. While it is now clear that NIPALS should support stronger diagnostic

tests than BIDIAG, the issues raised concerning the appropriate column space of

the regression coefficients by Ergon, Halstensen and Esbensen[26] remain unresolved.

Apart from a short comment by Ergon[25] the PLS2 multivariate case has not been

considered in these discussions. How these properties for the SIMPLS algorithm relate

to NIPALS and BIDIAG has also not been discussed in the literature. The regressor

residual space has been proved in equation 2.73. Similarly, rearranging equation (2.59)

for SIMPLS gives the residuals as

X̂A = [IA −TA(TT
AT)−1TT ]X0 (2.92)

X0 − X̂A = TA(TT
AT)−1TT (2.93)
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which shows that the NIPALS and SIMPLS regressor fitted values residuals projec-

tions and the residuals are within the same column space. The equivalence of NIPALS

and SIMPLS for univariate responses yet the differences although generally minor for

multivariate responses was clear from the original paper by de Jong[16], so any assump-

tions about PLS1 univariate models spaces may not be valid for PLS2 multivariate

case. To date, nothing further specific to this controversy has been published by the

main protagonists since Ergon, Halstensen and Esbensen[26] in 2011. But it may well

be that our understanding of PLS spaces is not yet complete.

For the purposes of the rest of this work, the standard NIPALS algorithm has

been used as it’s properties are at least well established. PLS coefficients and their

derivatives appear later in the discussion on latent variable selection by information

criteria. In view of the issues raised here, methods for calculating information criteria

are presented in Chapter 6 that avoid the use of coefficients.



Chapter 3

The Example Datasets

Publications of PLS developments generally contain examples to illustrate the tech-

nique. In this work six datasets have been used to compare and develop PLS methods.

Some of these datasets have already been used in the previous chapter on PLS algo-

rithms, In this chapter the example datasets are examined in detail and their structure

and characteristics discussed. Most of these are from the chemometrics literature, but

have been selected so that their characteristics form a factorial plan. These features are

“portrait”, that is more trials than regressor variables and with correlated or collinear

regressor variables, but full rank. “Landscape” as more regressor variables than trials

so not full rank. These two landscape datasets are both spectroscopy data, which is

a typical application for PLS. This data is analysed in the “calibration” sense where

the absorptions at each of many wavelengths are the regressors and the chemical as-

says are the responses. A characteristic of this type of data is the strong correlation

across small subsets of wavelengths against a low background of random noise for all

of the other wavelengths. The third pair of datasets are physical mixtures where the

regressor variables represent the composition of a physical mixture, so the sum of the

variables in each data row is 1.0. Consequently, the portrait correlated or collinear not

full rank. Each of these three types of dataset is examined in both univariate response

PLS1 and multivariate response PLS2 forms, making six datasets in total.

43
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3.1 Wine Aroma : “PLS1 & Portrait”

Univariate response with more data rows than regressor variables. This example

is the WineAroma dataset from Kowalski[63], a study of the effects of trace elements

in pinot noir wine on the aroma. The response is the scores on the wine aroma from

a panel of judges. The original paper has 40 observations, but 3 are strong outliers

so the reduced dataset of 37 observations by 17 variables is used here. This reduced

dataset is also used as a MINITAB example.

Even though the regressor variables represent the same physical quantity, the val-

ues range from 0.094 to 990 so are very different. the largest range is 990, the next

5 variables range from 36 to 36 with the other 11 between 0.1 and 61. This extreme

variation is scale suggests that scaling may be a the only rational approach. The first

principal component accounts for only 24% of the regressor variation and it requires

11 principal components to account for 95% of the variation. The response is approx-

imately normally distributed.

The correlation between the 7th and 9th variables is high and these are also both

highly correlated with the response. These variables are Barium and Strontium, as

alkali metals they have similar chemical properties and are often occur together in

natural deposits which explains their correlation. As their salts have no appreciable

odour they probably have an effect on wine aroma by neutralising sugar acid astrin-

gency.

As a dataset for a model with linear terms estimated by OLS regression, the regres-

sor design is rather poor with G-efficiency of 13% and an average prediction variance

of 7.1. The condition number is 14.4 and the mean absolute correlation coefficient is

0.2179, which indicates a medium level of correlation.

In the summary of the collinearity diagnostics for the WineAroma dataset as Ta-

ble 3.1, the high VIFs indicate that OLS MLR is not appropriate due to collinearity.

The appearance of pairs rather than triples shows that the problem here is simply



CHAPTER 3. THE EXAMPLE DATASETS 45

correlation and not more complex collinear structures. The strongest dependency is

between X15 and X17 where this dependecy accounts for 78% and 93% of the coef-

ficients variation. But the correlation between X2 and X10 accounts for the highest

variance inflation factors. The third correlation between X9 and X12 explains where

the high variance inflation on the β9 coefficient is coming from.

Cond’Idx X2 X9 X10 X12 X15 X17
40 [0.34] 0.64
59 0.72 0.89
84 4 0.78 0.93

VIF 21.0 14.8 24.4 5.2 9.2 9.8

Table 3.1: WineAroma Dataset : Collinearity Diagnostics

3.2 Gasoline : “PLS1 & Landscape”

Univariate response with far more regressor variables then data rows. Near infra-

red spectroscopy of gasoline is a classical application for PLS. This dataset recurs in

the literature, but was originally described by Kalivas[59]. The regressors are 60 ob-

servations by 401 variables and is massively correlated. The regressor variables range

from 0.012 to 0.281 which is not extreme, so does not indicate if scaling is required.

The first principal component alone accounts for 71% of the variation. The response

if far from normally distributed. With more regressor variables than data rows, the

experimental design characteristics of ”Landscape” datasets cannot be assessed with

respect to OLS regression. The condition number is 1.3× 108 and the mean absolute

correlation coefficient is 0.6905, which indicates a high level of correlation.

The regressor variables represent the same physical measurement - the absorption of

infrared radiation at a characteristic set of wavelengths. Scaling the regressor variables

here would tend to sink the relevant responses into the inflated background noise. For

this dataset, scaling the regressor variables is not a sensible approach.

3.3 Waste Glass : “PLS1 & Mixture”

Univariate response with more data rows than regressor variables. Each variable row

sums to 1.0. This WasteGlass dataset represents the composition of a glass designed
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for nuclear waste encapsulation, the single response is the spinel liquidus temperature

which is the highest temperature that crystals can exist in the melt. This dataset is

from Piepel et al[93]. As a mixtures dataset, the overall negative correlation between

variables is inevitable even though this is a statistically designed experiment.

The regressor variables range in scale from 0.00097 to 0.22, which is a ratio of

227:1 and so may indicate that scaling is appropriate before analysis. The first prin-

cipal component accounts for only 17% of the regressor variance and it requires 10

principal components to accumulate 95% of the regressor variance. The response is

approximately normally distributed.

The condition number is 1.42 and the mean absolute correlation coefficient is

0.0892, which indicates a low level of correlation. The four regressor variables are

highly correlated with the response. As a experimental design for a linear term OLS

mixture model, G-efficiency is 23%, the prediction variance is 2.3 average and 5.0

maximum. These poor design statistics are similar to the PLS2 & Mixture example

and are both typical of mixture experiments in practice, where the design parameters

are degraded by individual component constraints and the overall component sum.

3.4 Olive Oil : “PLS2 & Portrait”

Multivariate response with more data rows than regressor variables. The five re-

gressor variables are all quality measures, the six responses are all sensory measures.

This dataset is an example in the R pls library[82], originally from Massart et al[81].

The condition number is 1.68 and the mean absolute correlation coefficient is 0.4633,

which indicates a medium to low level of correlation. As an experimental design for an

OLS regression with linear terms, the G-efficiency is 15%, with an average prediction

variance around 2.

The regressor variables range in scale from 0.008 to 1.25. This ratio of 1400:1 may

indicate that scaling the regressors may be appropriate before analysis. The response

variable ranges are from 10.05 to 63.7, which is not a concern. The first principal
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component accounts for 59% of the regressor variance and only 3 principal componets

are required to accumulate 95% of the variance. The response variables have similar

strong structure with 3 principal components also accumulating 95% of the variance.

The collinearity diagnostics for the OliveOil dataset in Table 3.2 show no apparent

strong collinearity between these regressors. But the diagnostics from the multivariate

responses shown in Table 3.3 show that these are highly collinear. This indicates that

PLS2 may be the most appropriate analysis.

Cond’Idx X2 X3 X4
20 0.55 0.52
30 0.43 0.98 0.48

VIF 4.4 10.1 5.3

Table 3.2: OliveOil Dataset : Regressor Collinearity Diagnostics

Cond’Idx Y1 Y2 Y4 Y5 Y6
81 0.93 0.97 0.55
203 0.98 0.97
VIF 125.2 117.7 25.8 28.1 4.7

Table 3.3: OliveOil Dataset : Response Collinearity Diagnostics

3.5 Biscuits : “PLS2 & Landscape”

Multivariate response with far more regressor variables then data rows. This is

another near infra-red spectroscopy dataset, this time of biscuit dough. This is a

well-known PLS dataset originally from Osbourne et al.[85]. Other analysis with this

dataset are Brown et al[10], Goutis and Fearn[43] and KondylisWhittaker2012[62].

The regressors are 40 observations as data rows by 600 regressor variables as columns.

The responses are measures of fat, sucrose, dry flour and water content.

The range of the regressor variable is from 0.0028 to 0.1285, which as a ratio of

46:1 is not excessive. Both data blocks show some correlation in that the first principal

component explains 45% and 71% of the regressor and response variation respectively.

The condition number is 16.17 and the mean absolute correlation coefficient is 0.4248,

which indicates a medium level of correlation. As the observations are at sequential
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infra-red wavelengths, the regressor correlation has a strong blocked structure. The

regressor variables represent spectroscopic measurements, just as the Gasoline dataset.

So for the same reasons, scaling the regressor variables would destroy the structure in

the variations and so is not a sensible approach.

3.6 Abrasives : “PLS2 & Mixture”

Multivariate response with more data rows than regressor variables. This dataset

represents a study of effects of various abrasives in friction material formulations. The

regressors comprise 28 observations as rows by 9 component variables as columns. The

14 responses represent friction coefficients taken during a dynamometer performance

test running an industry standard test procedure. For this study, only these 9 compo-

nents were variable components, with the rest of the formulation fixed for each trial.

Consequently, these component variables have been rescaled to 100% for this analysis,

which is mainly why the design characteristics are better than the PLS1 & Mixtures

WasteGlass dataset.

The regressor variables range from 0.03 to 0.10 and the response variables range

from 0.08 to 0.28 neither of which is excessive. The regressors require 7 principal

components to accumulate 95% of the variation while the reponses reqiure 8 principal

components.The condition number is 8.3 × 107 and the mean absolute correlation

coefficient is 0.1798, which is unusual in that it shows high collinearity combined with

a low level of correlation. As a linear term ordinary least squares model, the G-

efficiency is 60%, and the average prediction variance is 0.23, with a maximum around

6. This is a proprietary dataset, consequently it has not been published in the public

domain.

3.7 Data Pre-Processing

It is taken for granted here that any rational approach to analysis will start by

examining row and column minima and maxima, viewing column value distributions

as histograms and scatter plots between columns to identify typing or transcription
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errors in the data table. Beyond this, datasets for PLS analysis should clearly be

centred prior to analysis so that cross products between X regressor and Y response

represent covariance matrices. But should datasets be scaled? In principal, scaling

can be applied to either the X matrix or Y matrix, or both. Scaling the X regressor

matrix will change the relative covariance between each individual regressor and the

response. For PLS1 univariate responses, scaling the response values will only change

the overall magnitude of the covariance between X and Y , but will not change the

relative covariance between individual regressors. Consequently, only scaling the re-

gressor matrix will influence a PLS1 regression but not scaling the response vector. For

PLS2, scaling either regressor or response matrix will change the pattern of covariance

between these matrices, so will influence the PLS2 regression.

Wold, Sjostrom and Eriksson[119] recommend log transforms for variables with

ranges that span more than one decade. If zero values are present then the fourth root

is a good approximation for the log transform. They also take a pragmatic approach

to using experience and knowledge to increase the scales for more informative X re-

gressor variables, or reduce them if measurement variation issues are apparent. Their

view is that it is better to make variables “passive” than to exclude them altogether.

Scaling does not always mean normalisation so that the column variances are unity.

The data might be adjusted to account for specific calibration issues. For this aspect,

Wehrens[108] gives a good description of how spectroscopic data can be improved

by peak matching and baseline adjustment. Knowledge of the physical nature of the

dataset variables can suggest if the variables should be scaled or not. Arneberg at al[3]

gives a detailed description of how a square root scaling came to be used in a mass

spectroscopy application. In this study heteroscedastic noise induced false negative

correlations between major peaks and false positive correlation between minor peaks.

Using a log transform destroyed the known linear correlation within the data, so a nth

root was preferred as it preserved perfect correlation while reducing partial correlation.

The optimal transform of square root was identified by examining the replicates in the

data. Without this specific scaling, false biomarkers were identified in the spectra.
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The study datasets Gasoline and Biscuits are both from spectroscopic data, analysing

these as centred not scaled is expected as simply normalising all columns of spectro-

scopic data tends to depress the data columns that contain the strongest signal and

elevate those columns that are mainly background noise. Specific domain knowledge

of these spectroscopic datasets is not available here, so more complex scaling has not

been considered.

In the literature, scaling is something that is really only considered in detail for

regressor matrices. For PLS2 multivariate response datasets there is no reason why

both regressor and response matrices must be scaled in the same way. As each combi-

nation of regressor and response scaling leads to a different covariance structure and

so PLS model, scaling regressors and responses should be considered independently

to achieve the strongest model. Scaling permutations for the multivariate response

example datasets are reported in the analysis reported later.

For ordinary least squares regression from scaled variates the residuals, coefficients

and other statistics can be corrected by the scaling factors to recover the equivalent

statistics from unscaled variates, within the limits of numerical rounding. PLS regres-

sion has a more nonlinear structure that cannot be represented by a linear function

involving a hat matrix as OLS, so any form of scaling produces a distinctly different

regression.

Transforming coefficients and residuals back to unscaled form is appropriate for

interpreting the PLS model effects. PLS diagnostics and model structure are probably

clearer in a scaled form. So the issue here is not about how the final model is inter-

preted, but is how to assess the effect of decisions on scaling may influence the PLS

regression.



Chapter 4

Latent Variable Selection by

Crossvalidation

When PLS is used in a calibration context, for example in the analysis of spec-

troscopy data, there is generally a large dataset that is used as “training data” prior

to running any analysis of actual “test data”. Augmenting the training dataset as

required to stabilise the calibration leads to unambiguous estimates of the optimum

number of latent variables. Where large datasets are being analysed, for example in

observational data, the dataset can be split into typically 2/3 training and 1/3 test in

order to identify the optimal number of latent variables, As selection of split can have

a large influence on the structure of the model, specific methods for subset selection

have been developed such as the DUPLEX method described by Snee[99]. Generally,

insufficient data is available to support splitting the data into training and test sets

so alternative methods derived from the whole dataset are required.

When datasets contain large number of replicated trials or observations, comparing

the replicate error variation to the fit variation can be a useful check for over-fitting

during latent variable selection. As reliable significance tests for variance require large

number of samples to resolve small differences, using comparisons between fit and

replicate errors for latent variable selection is not usually practical.

”Leave-one-out” crossvalidation is the latent variable method used in the early

PLS literature. The Prediction Residual Error Sum of Squares (PRESS) statistic is

51
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defined here for the general PLS2 case with m responses as the prediction error sum

of squares

PRESS =
n∑
i=1

m∑
j=1

(yi,j − ŷ∗i,j,A)2 (4.1)

where ŷ∗i,j,A is the predicted response for trial i response j from a model with A latent

variables that excludes this trial i entirely from the model for all responses. Then the

Root Mean Square Error of Cross Validation (RMSECV ) is simply

RMSECV =
√
PRESS/(n×m) (4.2)

where n is the number of trials and m the number of responses. In the typical notation

of PLS, the fit residual variation is usually given by RMSE

RMSE =

(
n∑
i=1

m∑
j=1

(yi,j − ŷi,,j,A)2

)
/(n×m) (4.3)

where ŷi,j,A is the predicted response for trial i and response j from a model with A

latent variables that includes all trials. The acronym MSEP for Mean Square Error of

Prediction is often used in this context in the PLS literature. RMSECV is used here

to show that this relates specifically to crossvalidation.

As excluding single or subsets of trials will change any centring or scaling, this is

generally reset for each crossvalidation sample. A strategy of selecting the number of

latent variables from the minimum values of these statistics is appealing, but awkward

in practice as a clear minimum does not often appear. In these cases, softer criteria

such as “The First Minimum” or “Start of the Plateau” have been proposed[112].

In the context of segmented crossvalidation, Martens et al[78] comment that there

can be considerable uncertainty in the estimation of RMSEP. They show evidence

of this from dissimilarity of RMSEP estimates across CV segments. This may be

a particular problem with small datasets, as shown by Martens and Dardenne[77].

Hastie, Tibshirani and Freidman[46] recognised that ”Leave-One-Out” crossvalidation

tends to select a number of latent variables that overfits the data, so propose ”K-

fold” crossvalidation as an improvement. Xu and Liang[123] review the application of

resampling for latent variable selection and propose Monte-Carlo Crossvalidation as a

method between K-fold and full bootstrap resampling specifically for latent variable
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selection in PLS. Any segmentation resampling method risks disrupting the collinearity

structure or even reducing the rank of the resampled matrices compared to their

original forms, with unknown consequences for the selection of the optimal number of

latent variables. This issue has been referred to by Gouvénec at al[44] and by Wiklund

et al[109], but remains an open question.

4.1 Crossvalidation against Fit Residuals Plots

The practical difficulty in choosing between the first or absolute minimum from

either plots or tables of RMSECV against the number of latent variables was mentioned

previously. Both the fit residual RMSE and the crossvalidated residual RMSECV

should generally decrease as the number of latent variables increases up to the optimal

selection. Beyond this point, RMSE will continue to decrease but RMSECV will

diverge and increase due to overfitting. Consequently, the selection of the number of

latent variables is generally much easier to identify visually from the ”corner” in a plot

of RMSE against RMSECV.
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Figure 4.1: Plots for Latent Variable Selection from RMSE and RMSECV
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Examples of this are shown in Figure 4.1. In the Wine Aroma RMSECV plot in

the top left pane, the actual minimum RMSECV of 0.7731 at two latent variables

cannot be distinguished from the RMSECV of 0.7757 at four latent variables. But

the sharp corner at four latent variables is clear in the RMSE against RMSECV plot.

In the bottom panes for the PLS2 Olive Oil dataset, the dotted lines are for the six

individual responses and the solid line for the overall averages. Four of the responses

have RMSECV minima at four latent variables, the other two minima are at one latent

variable. The overall RMSECV minima at two latent variables is fairly clear in the

bottom left pane. The corner at two latent variables is also clear in the RMSE against

RMSECV plots for the overall mean and four from six of the individual responses. In

this centred dataset, it is clear that the two responses with the largest variation are

controlling the regression.

For WineAroma, Gasoline, Olive Oil and Biscuits example datasets, RMSE against

RMSECV plots showed strong corners for latent variable location. The scaled Wine

Aroma dataset used as an example plot does shows a clear corner at 4 latent variables,

but the centred plot is very erratic which could indicate model instability. These plots

are compared as Figure 4.2. Waste Glass and Abrasives, the two mixtures datasets

did not show any obvious corners for latent variable location. These plots are shown

as Figure 4.3. The centred line for the Waste Glass dataset in the top left pane shows

a possible inflection at 3 latent variables, but both scaling options lines are monotoni-

cally decreasing. The structure of these datasets is described on pages 45 and 48. Both

these mixtures datasets are based on experimental designs, so the only collinearity is

that induced by the mixture component sum being constant. Consequently, selecting

one less than the number of regressor variables for the number of latent variables might

be reasonable. So in this case, the fact that neither plot selects a low number of latent

variables is consistent with the structure of these datasets.
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Figure 4.2: Wine Aroma Centred and Scaled RMSE and RMSECV Plots
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4.2 Confidence Intervals for Crossvalidation

For PLS it is not clear how random variation in the regressors and responses is

translated into uncertainty in the latent variable selection. As any RMSECV value

is a statistical estimate and so a random variable, it follows that examination of the

confidence intervals may lead to more reliable methods. Breiman et al[8] give an

approximate confidence interval with a scaling factor of 1/
√

2n where n is the number

of trials. A study of PLS RMSECV simulations by Faber[31] found that RMSECV is

approximately χ2 distributed, from which the same conclusion follows

σRMSECV /RMSECV ≈ 1/
√

2n (4.4)

Under the usual assumptions of independent and identically normally distributed

residuals with zero mean, the confidence interval for the population standard deviation

σ is from the sample standard deviation s is given by

(n− 1)s2/χ2(1− α/2, n− 1) ≤ σ2 ≤ (n− 1)s2/χ2(α/2, n− 1) (4.5)

Under the same assumptions, the confidence interval for an estimate of RMSECV

from a sample is

(n−1)RMSECV/χ2(1−α/2, n−1) ≤ RMSECV ≤ (n−1)RMSECV/χ2(α/2, n−1)

(4.6)

since

s =
√
PRESS)/(n− 1) (4.7)

= RMSECV ×
√
n/(n− 1) (4.8)

As a confidence interval calculation for RMSECV, all these assumptions are in-

valid. The crossvalidated residuals do not necessarily have a mean of zero. Further,

the way that crossvalidation residuals are always derived from the same n samples

also makes the ”independent” assumption questionable. In particular, strong outliers

can make the residuals measured by resampling non-random. For PLS, the sequence

of residual matrices that are deflated after each latent variable are certainly not in-

dependent. Because of these issues, any probabilistic interpretation and significance

levels of crossvalidated residuals for PLS latent variable selection is hard to justify.
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This is well recognised in the PLS literature. For example, Martens et al[78] use the

term “Reliability Range” rather than “Confidence Interval” for RMSEP statistics and

propose this as a “rule of thumb”. Even though the problems with crossvalidation are

accepted, it remains the default method in most current PLS software.

4.3 Crossvalidation and the Example Datasets

The number of latent variables selected by the various RMSECV methods for the

PLS1 univariate response datasets are shown in Table 4.1.First and absolute RMSECV

minima location methods give fairly consistent selections. The RMSE vs. RMSECV

plots generally showed strong corners to select a specific number of latent variables.

This plot for the centred Wine Aroma dataset is very erratic, as is the RMSECV

against latent variable plot for this dataset but 9 latent variables selection appears to

be reasonable. The features of the Waste Glass mixtures dataset RMSE vs. RMSECV

plot have been discussed previously in section 4.1 on page 53. In all cases, the K-fold

crossvalidation prediction residuals were monotonically decreasing with increasing la-

tent variables, so select the maximum number of latent variables by default.

Wine Aroma Gasoline Waste Glass
PLS1 n > k PLS1 n < k PLS1 mix’

Centred Scaled Centred Scaled Centred Scaled
First Minimum 3 2 7 5 10 5
Abs. Minimum 8 2 7 5 10 5

RMSE vs. RMSECV 2 or 8? 4 5 4 11 11
5 Fold CV 17 17 30 30 11 11
10 Fold CV 17 17 30 30 11 11

First LV < χ2 CI 1 1 3 6 5 8
First LV < Breiman CI 7 1 3 4 3 4

Table 4.1: Numbers of Latent Variables Selected from RMSECV PLS1 Datasets.

In Table 4.1, the latent variables selected by confidence interval are the lowest

latent variable whose interval contains the absolute minimum RMSECV value. The

RMSECV plots with their confidence intervals are shown as Figure 4.4. In these

plots the filled marker points indicate the first and absolute RMSECV minima. The

confidence intervals from Breiman’s[8] approximation are about half the range of the

intervals calculated from the χ2 distribution, but lead to similar conclusions for la-

tent variable selection here. Each individual confidence interval for the Wine Aroma
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Figure 4.4: PLS1 Minimum Values in RMSECV

and Waste Glass datasets contains a good proportion of the other mean values, so

the actual number of latent variables selected here is sensitive to way the interval is

calculated. The confidence interval plots look more consistent for the Gasoline dataset

which has the largest number of observations. For this dataset, only the confidence

interval plots select 3 latent variables which is intuitively obvious from the RMSECV

mean value plots.

RMSECV results for the PLS2 multivariate response example datasets overall are

shown as Table 4.2. Apart from the K-Fold crossvalidation methods which again se-

lect the maximum number of latent variables, the selections are reasonably consistent

within one latent variable. Generally, the number of latent variables selected by the

most common occurrence in the individual responses is in agreement with the mini-

mum in the combined RMSECV. The differences in the individual response RMSECV

minima tabulated for the Biscuits dataset are caused by the first response RMSECV

plot having a different shape than the other three responses. This is shown as Figure

4.5, where it is clear that the selection should be around 3 not 15 latent variables. The

tabulated selected latent variables also look erratic for the WasteGlass dataset. The

individual response plots are not shown, but the characteristic shape is a small rise in
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Figure 4.5: PLS2 Biscuits Individual Response RMSECV Plots

RMSECV for the first few latent variables followed by a sharp decrease with all higher

latent variables having similar RMSECV values. This is not unexpected, considering

that this dataset is from a designed mixtures experiment.

The multivariate PLS2 datasets appear to give clearer definition of the minimum

RMSECV points than the univariate PLS1 datasets. This may be more due to the

response averaging stabilising the latent variable selection for multivariate datasets

than the increase in the overall number of individual observations. The variations is

data scaling also appears to have less of an effect on latent variable selection for the

PLS2 datasets than PLS1.

While the PLS literature does include apparently successful applications of K-fold

and other variation on resampling crossvalidation, K-fold defaults to the maximum

number of latent variables for all these datasets. Successful application may depend

on larger datasets. A number of issues concerning this method were discussed in the

introduction to this Chapter, overall it is concluded that this K-fold crossvalidation is

not a viable method. There no strong evidence in favour of any of these crossvalidation
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Olive Oil
PLS2 n > k

XC YC XC YS XS YC XS YS
First Minimum Range 1-2 1-3 1-2 1-3

Individual First Minimum Median 2 2 1 2
Responses Abs. Minimum Range 1-2 1-3 1-3 1-3

Abs. Minimum Median 2 2 1 2
First Minimum 2 2 1 2
Abs. Minimum 2 2 1 2

Combined RMSE vs. RMSECV 2 2 2 2
Responses 5 Fold CV 5 5 5 5

10 Fold CV 5 5 5 5
First LV < χ2 CI 2 1 1 1

First LV < Breiman CI 2 1 1 1
Biscuits

PLS2 n < k
XC YC XC YS XS YC XS YS

First Minimum Range 2-15 3-9 2-13 2-6
Individual First Minimum Median 2 3 2 2
Responses Abs. Minimum Range 2-15 3-15 2-13 2-15

Abs. Minimum Median 4 4 3 3
First Minimum 4 4 3 3
Abs. Minimum 4 4 3 3

Combined RMSE vs. RMSECV ? 4 4 4
Responses 5 Fold CV 30 30 30 30

10 Fold CV 30 30 30 30
First LV < χ2 CI 3 4 2 3

First LV < Breiman CI 3 4 3 3
Abrasive

PLS2 mixture
XC YC XC YS XS YC XS YS

First Minimum Range 1-2 1-8 1-7 1-7
Individual First Minimum Median 1 4 3.5 1
Responses Abs. Minimum Range 1-7 1-8 1-8 1-7

Abs. Minimum Median 7 4 4 5
First Minimum 1 1 2 1
Abs. Minimum 7 6 4 5

Combined RMSE vs. RMSECV 4 7 4 5
Responses 5 Fold CV 8 8 8 8

10 Fold CV 8 8 8 8
First LV < χ2 CI 3 3 2 1

First LV < Breiman CI 3 2 2 4

Table 4.2: Numbers of Latent Variables Selected from RMSECV PLS2 Datasets.
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Figure 4.6: PLS2 Minimum Values in RMSECV - Combined Responses

method. The methods based on confidence intervals perform just as parsimonious ver-

sions of selection by absolute minimum RMSECV. So the Wold[112] rule of selecting

the latent variable when the ratio of successive RMSECV values drops below say 95%

is a viable alternative that avoids the dubious statistical assumptions.

The performance of the crossvalidation vs. fit residual plots proposed in section 4.1

is encouraging. For both mixtures datasets from designed experiments, all six plots

showed monotonic changes towards the maximum number of latent variables as should

be expected from the nature of these datasets. From the twelve plots for the other

datasets, ten clearly identified a specific number of latent variables that is consistent

with that of other methods. The other two plots were very erratic, a characteristic

which was also apparent in the other crossvalidation methods.

Overall, it is fairly clear from the RMSECV tables how many latent variables

should be selected for each dataset prior to further analysis. But the evidence against

selecting one less or one more is weak.



Chapter 5

Latent Variable Selection by

Permutations

A permutation or randomisation test is a hypothesis test where the reference distri-

bution is obtained by the calculated test statistic under all possible permutations or

as sample of all possible perms of the rows of the observations.

5.1 Randomised F-tests and t-Tests

Van der Voet[104] outlines a number of variations on t-test and F-tests by resampling

data permutations. His proposed method for PLS is based on testing the differences

between sample sums of squares and so is equivalent to a t-test.

Ordinary fit errors for two competing models A and B are given by

ei,A = yi − ŷi,A (5.1)

ei,B = yi − ŷi,B (5.2)

A test statistic d is then calculated as the mean difference between these errors.

di = e2
i,A − e2

i,B (5.3)

d =
∑

di/n (5.4)

As a randomisation test, the null hypothesis in this case is that the sum of the squares

of the crossvalidation errors are equal, so that signs of the differences can be randomised

62
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to generate the sampling distribution d under the null hypothesis. The pvalue for the

test is obtained directly from proportion of calculated permutations that exceed the

test value. As a method for determining the number of latent variables, crossvalidated

residual variation at each latent variable increment are tested against the crossvali-

dated residual variation for the following increment. If the randomisation test shows

no significant difference, then it is concluded that the any improvement in the residuals

would be due to random chance, so no further latent variables are added.

The second example in van der Voet’s paper concerns latent variable selection in

PLS where the mean squared error in prediction crossvalidation in a reference set is

compared to that of an evaluation set. Generating this sampling distribution under

the null hypothesis by randomising signs assumes that the population means are equal.

While the mean of the fit residuals for the reference set will be zero, it is unlikely that

this will be so for the evaluation set. This difference in the means could have been

corrected for, but the analysis as presented is not valid.

This issue is referred to “permutation unbiasedness” by Pesarin and Salmaso[89],

p84. Testing crossvalidated residuals in this way is a particular problem, because the

residual mean will be different for each permutation sample. Good[41] section 3.7.2

p58 presents a possible solution by comparing the variation about the sample medians

based on a rank test by Aly[2].

5.2 Randomised Covariance Tests

Wiklund at al[109] gives an alternate form of the resampling test from van der Voet

[104] that is more specific to PLS. As each iteration step, PLS minimizes the covariance

between scores and responses. Consequently, they proposed a randomisation test based

on this covariance. After A latent variables have been extracted, the test statistic is

the covariance between the regressor X scores tA and the response vector y, S0 =
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Cov[tA,y] = tTAy. The null hypothesis being tested is

H0 : {yA d
= yA+1} = {S = S0 = tTAy} (5.5)

H1 : {yA
d
> yA+1} = {S > S0 = tTAy} (5.6)

where
d
= means equal in distribution. This notation implies that the orders of the val-

ues in the y vector are exchangeable and that the reference distribution of S under the

null hypothesis is generated by permuting the response rows y and recalculating the

covariance. Wiklund et al state the importance of making the covariance permutation

test on the deflated regressors and responses. While deflating either the regressors

or responses is only necessary for calculating the PLS algorithm, deflating both is re-

quired for this permutation test as the noise values are inflated if they are not removed.

So the specific method for testing a specific latent variable is to calculate the model

with this number of latent variables, the compare the covariance between the deflated

regressor and responses against their permutation distribution generated by permuting

the deflated response rows. This covariance can either be calculated directly from the

deflated regressors and responses or equivalently extracted from another PLS iteration

with one latent variable.

Wiklund et al[109] only mention PLS1 with univariate responses. Using the equiv-

alent tTu scores covariance in a permutation tests for PLS2 multivariate responses

is an obvious extension as tTu remains a scalar for multivariate responses. For the

permutations, it is important that it is only the row order of the responses that is

permuted so that the response values for each row are kept together. This ensures

that any correlation or collinearity structure within the response matrix is preserved.

Wiklund et al go on to consider the form of the reference distribution to derive a

probability estimate, but this is not necessary as an estimate of this can be obtained

directly from the permutation test. With q random permutations, the number greater

than or equal to some probability point p will have a binomial distribution B(q, p) with

mean qp and variance qp(1−p). This gives an approximate 95% confidence interval of

p± 1.96[p(1− p)/q]1/2 (5.7)

Around a critical pvalue of 0.05, 100,000 permutation samples are sufficient to deter-

mine the pvalue to around ±0.001. For an exact permutation test for n observations,
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100,000 permutation samples would be sufficient for 8 observations only, but not 9.

For practical purposes 10,000 permutation samples gives a 95% confidence interval of

±0.004 which is sufficient resolution around a critical pvalue of 0.05.

Other forms of null hypothesis are feasible here. The same paper comments that

”in practice, any scrambling of Y data leaves some correlation between scrambled

and un-scrambled data”, so testing for zero covariance would not be effective. A

more parsimonious test would be to compare the actual covariance for against the

null distribution for the following latent variable - which is how van der Voet[104]

structured his test.

Ho : {y1
d
= y2} = {S = S0 = tti−1y} (5.8)

HA : {y1

d
> y2} = {S > S0 = tti−1y} (5.9)

This would test if the change in the covariance due to the additional latent variable

exceeded that due to random noise in the residuals.
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Figure 5.1: PLS1 WineAroma Covariance Tests

An illustration of covariance permutation tests for the PLS1 scaled WineAroma

dataset is shown as Figure 5.1. The histograms are the null hypothesis distributions
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generated by the permutation samples calculating the covariance for each permutation.

The vertical blue lines show the tTu covariance test statistic for each latent variable.

It might be anticipated that the covariance test statistic would start by exceeding the

permutation distribution and gradually reduce with each additional latent variable

until the test statistic moved into the permutation distribution. This covariance re-

duction into the permutation distribution is shown for the first three latent variables.

For fourth, fifth and sixth latent variables, the covariance test statistic is less than the

permutation distribution. This shows a particular ”feature” of PLS in that it can de-

tect some covariance even from random data. This is mentioned in Wiklund et al[109]

and by Clark and Cramer[14] who found that this was a particular problem with small

datasets in their simulation study. It is proposed here that the latent variable selection

should either be the largest latent variable that exceeds the permutation distribution,

or else the smallest latent variable thats is just less than the permutation distribution

should there be none higher. Consequently, for practical purposes covariance permu-

tations methods can be used in two ways. Either to identify specifically the smallest

latent variable that is not representative of its permutation distribution, or as a more

general method to identify ranges of plausible latent variables for comparison with

other methods.

5.3 R2 and Q2 Permutation Plots

As an alternative to covariance permutations, Wiklund et al[109] and Eriksson,

Trygg and Wold[29] extended earlier work by Lindgren at al[70] on R2 permutation

tests to include crossvalidated Q2 permutation plots. The reasoning behind including

crossvalidation into these plots is that as the Q2 statistic calculated from crossvalida-

tion is an estimate of the predictive power of a PLS model, then a permutation test of

Q2 would assess the statistical significant of this estimate. These plots were propsed

as an improvement on covariance permutation histograms as they provide a warning

of increasing chance correlations with increasing numbers of latent variables. An ex-

ample of this plot for the centred Waste Glass example dataset is shown as Figure 5.2.

In this plot the ordinate is the correlation coefficient between the response vector
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Figure 5.2: Waste Glass centred R2 and Q2 Permutation Plots

and it’s permuted values and the abscissa is the reference and permuted R2 and Q2.

Where the latent value is for a valid model, the R2 and Q2 are well outside of the

range of their permuted values. In the plot shown here, the values on the right hand

are the un-permuted values and the dotted lines are at the 95% limits of the permuted

values for comparison. The comparison on the Y-abscissa is similar to the covariance

permutation test. This plot adds further resolution along the X-ordinate where the

permutation tests can generate spurious large correlations.

The R2 and Q2 permutation plots calculations, plots and examples given by Wik-

lund et al[109] and Eriksson,Trygg and Wold[29] are only for PLS1 univariate re-

sponses. For PLS2 multivariate responses, these plots can be applied to individual

responses to identify which responses may be predictable from those which may not

be. As R2 and Q2 are both based on ratios of sums of squares, the method can easily

be extended to multivariate responses by simply accumulating the fit and total sums

of squares across all responses so that their ratio is the overall response average. While

permuting the row order, it is important that the values for each row are kept together

as mentioned for the covariance permutations.
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5.4 Permutation Tests and the Example Datasets

In the following discussion, a pvalue of 0.05 has been treated as a guide line rather

than an absolute selection criterion. The pvalues for the permutation tests on the tTy

covariance for the PLS1 datasets is shown in Table 5.1.

Wine Aroma Gasoline Waste Glass
PLS1 n > k PLS1 n < k PLS1 mix’

Centred Scaled Centred Scaled Centred Scaled
1 Latent Variable 0.0051 0 0 0.0012 0.0277 0.0014
2 Latent Variables 0.0411 0.2916 0 0 0.0026 0.0120
3 Latent Variables 0.0651 0.4103 0 0 0.3782 0.0989
4 Latent Variables 0.0308 0.0439 0 0.0409 0.2118 0
5 Latent Variables 0.2164 0.0015 0.0107 0.0005 0.0574 0
6 Latent Variables 0.0089 0.0033 0.0635 0.1081 0.0952 0
7 Latent Variables 0.4744 0.0028 0.0310 0.4416 0.2471 0
8 Latent Variables 0.0184 0.0008 0.0732 0.1348 0.0333 0
9 Latent Variables 0.0579 0.0002 0.1673 0.3301 0.4541 0
10 Latent Variables 0.3916 0.0010 0.0386 0.4212 0.4758 0
Valid 1-4,6,8,9... 1,4-17 1-7, 9-10+ 1-5 1,2,5,6,8 1,2,4-11
Select 2 1 6 5 2 2

Table 5.1: tTy Covariance Permutation Tests : PLS1 Datasets

For these univariate response PLS1 datasets the range of valid latent variables is

generally split into two parts where the covariance is either above of below the permu-

tation distribution. Even though these test statistics are quite erratic, selecting the

largest latent variable that is significantly higher than its permutation distribution was

not difficult. The results of the R2,Q2 have not been tabulated as all latent variables

appear to be valid for these PLS1 datasets.

The covariance permutation pvalues for the PLS2 datasets shown in Table 5.2 show

that the permutation tests based on tTu do not always identify a clear selection for

the number of latent variables. Where a clear selection is possible, the permutation

statistics for these PLS2 datasets appears to be less erratic than that of the PLS1

datasets. The R2,Q2 plots for the Biscuits dataset did not find any invalid latent

variables. The OliveOil dataset found the valid latent variable range to be 2 to 3, or

2 to 4 depending on scaling. The plots for the Abrasives dataset found a valid latent

variable range of 3 to 8. These ranges are consistent with the latent variables selected

from the covariance permutation tests. During this analysis, it was sometimes difficult

to decide on latent variable selection directly from the R2,Q2 plots, so the underlying
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Olive Oil
PLS2 n > k

XC YC XC YS XS YC XS YS
1 Latent Variable 0.4625 0.1722 0.0562 0.0200
2 Latent Variables 0.2935 0.3472 0.3523 0.0501
3 Latent Variables 0.2408 0.1400 0.1198 0.0531
4 Latent Variables 0.3274 0.4217 0.2574 0.3568
5 Latent Variables 0.1090 0.2485 0.1263 0.3120
Valid None None 1 1,2,3
Select ? ? 1 3

Biscuits
PLS2 n < k

XC YC XC YS XS YC XS YS
1 Latent Variable 0.1482 0.1006 0.0170 0.0055
2 Latent Variables 0.0432 0.0803 0.0100 0.0618
3 Latent Variables 0.0565 0.0553 0 0
4 Latent Variables 0.0003 0.0010 0.1016 0.0688
5 Latent Variables 0.4300 0.2842 0.3476 0.2962
6 Latent Variables 0.4805 0.0682 0.0584 0.0672
7 Latent Variables 0.0280 0.2126 0.1055 0.2234
8 Latent Variables 0.2455 0.1486 0.3471 0.3692
9 Latent Variables 0.3836 0.4963 0.4130 0.3344
10 Latent Variables 0.4669 0.3869 0.0272 0.0545
Valid 2,3,4,7 3,4,6 1,2,3,6,10... 1,2,3,4,6,10...
Select 4 4 3 4

Abrasive
PLS2 mixture

XC YC XC YS XS YC XS YS
1 Latent Variable 0.4388 0.4604 0.3990 0.1300
2 Latent Variables 0.2198 0.4295 0.3580 0.2602
3 Latent Variables 0.2531 0.3738 0.4246 0.4696
4 Latent Variables 0.0889 0.0888 0.2678 0.1805
5 Latent Variables 0.0514 0.0040 0.1262 0.2190
6 Latent Variables 0.3745 0.3354 0.1710 0.2605
7 Latent Variables 0.0600 0.4774 0.4631 0.3587
8 Latent Variables 0.2955 0.4938 0.4819 0.1468
Valid 5,7 5 None None
Select 5 5 ? ?

Table 5.2: tTu Covariance Permutation Tests : PLS2 Datasets
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data tables were also used.

For both PLS1 and PLS2 datasets, the difference between the number of latent

variables selected for the centred and normalised datasets is also apparent here in the

covariance permutation tests, which shows that these differences are associated with

more than one method for selecting the number of latent variables.

As a test method, it is a concern that permutation methods could not locate a

specific number of latent variables in all cases. This erratic behaviour was also noted

by Wiklund et al[109] in their study of tTy permutations. Perhaps the most impor-

tant statement concerning permutation tests in this paper is ”... the components are

assumed to enter the model in the natural order of decreasing relevance.” The erratic

behaviour of the permutation tests are explained here and in Faber and Rajko[30] by

poor data pre-processing and subtle non-linearity in the spectra. The non-monotonic

nature of the tTy or tTu covariance is not considered. This issue is examined in detail

in Chapter 7.



Chapter 6

Latent Variable Selection by

Information Criteria

Akaike’s Information CriteriaAIC[1] or the more conservative Schwartz[96] Bayesian

Information Criteria BIC are generally used to select between multiple regression or

time series univariate models containing different sets of terms. This is not a hypoth-

esis test, but by selecting the model with the lowest AIC or BIC number the model

that is the most likely fit to the data with the minimum number of parameters is

selected.

For multiple regression, these information criteria are considered reliable and ro-

bust in that the minimum values are generally clearly defined - unlike RMSECV ,

so this approach is worth consideration for selecting the number of latent variables

for PLS and other multivariate regressions. As model selection depends only on the

difference in these values, information criteria like AIC and BIC are generally defined

up to an additive or multiplicative constant.

The basic derivation of AIC from a linear least squares regression model’s log-

likelihood function with normally distributed errors is

AIC = n log(RSS/n) + 2p (6.1)

where p is the number of parameters in the model, n the number of observations

and RSS is the residual sum of squares. From Venables and Ripley[106] for example,

71
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expanding this about the residual sum of squares around an initial model and taking

the first term as an approximation to the model specific part gives the form more

generally used for calculation.

AIC =
RSS

σ̂2
+ 2p (6.2)

Where σ̂ is the estimate of the error variance RSS/(DoF−1). For ordinary regression,

the number of degrees of freedom DoF is n− p. Estimation of the σ̂ and RSS terms

in the context of PLS latent variable selection is considered in the following section on

degrees of freedom.

But this derivation is for linear regression. It could be applied to reduced rank

regressions by interpreting the number of parameters p as the number of degrees of

freedom. This generalisation is implied in the derivation of AICc by Hurvich and

Tsai[55] for univariate responses. For the following analysis, the uncorrected forms

proposed by Krämer and Braun[64] specifically for PLS have been used.

AIC =
RSS

n
+

2DoFσ̂2

n
(6.3)

BIC =
RSS

n
+
log(n)DoFσ̂2

n
(6.4)

where DoF is the degrees of freedom for the PLS regression.

6.1 The Degrees of Freedom in PLS

Any calculation of information criteria depends critically upon the degrees of free-

dom, but the value of this quantity for PLS is far from clear. For ordinary regression,

n− p is used for the number of degrees of freedom. But Martens and Næs[80], Frank

and Friedman1993[35] and others since argue that PLS uses more than this because it

is a nonlinear function of the response. Further, this does not address the application

of PLS to spectroscopic and other ”landscape” datasets where p > n. As the error

variance σ̂ is estimated from RSS/(DoF − 1), it is clear that estimating the degrees

of freedom has importance apart from latent variable selection. If no estimate of the

degrees of freedom is available, then in practice the error variance must be estimated
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by a resampling method.

Van der Voet[105] addresses this specific issue in the context of PLS and from

an analysis of mean leverage in linear models proposed a pseudo-degrees of freedom

calculated from ordinary and crossvalidated residuals.

PDoF = n(1−RMSE/RMSECV ) (6.5)

where n is the number of observations and RMSE and RMSECV are from crossval-

idated “Leave-One-Out” residuals as previously defined.

Both Phatak, Reilly and Penlidis[91] and Denham[17] propose using

DoF = trace(In − JTXT )(In −XJ) (6.6)

where In is the identity matrix of order n and J is the PLS coefficients Jacobian

∂β̂(y)
∂y

. In a later paper Phatak, Reilly and Penlidis[92] point out that the term

(In − JTXT )(In −XJ) is analogous to the hat matrix in ordinary regression.

A more fundamental definition of degrees of freedom comes from the structure of

linear models

Ŷλ = HλY (6.7)

where Hλ ∈ Rp×] is the hat matrix independent of Y and λ is a fitting parameter.

So

Hλ =
∂Ŷλ
∂Y

(6.8)

By definition

DoFs(λ) = trace(Hλ) (6.9)

= E

[
trace(

∂Ŷλ
∂Y

)

]
(6.10)

Efron[23] gave this as the fundamental definition of degrees of freedom for generalised

linear models. Based on this, Krämer and Sugiyama[65] used this specifically for PLS,
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where the issue is that PLS is not a linear model that can be reduced to a hat matrix

PLS deflation can be written as a projection matrix PT,a based on the score vectors

t1...ta, Höskuldsson[50] . This matrix PT,a is considered as a ”Euclidean orthogonal

projection” by Boulet and Roger[7].

X̂a = X0 − PT,aX0 (6.11)

Ŷa = Ȳ 1n + PT,aY0 (6.12)

where PT,a = T1..aT
T
1..a. So

∂Ŷa
∂Y

= 1 +
∂PT,aY0

∂Y
(6.13)

since PT,a is a function of Y .

Hence, the number of degrees of freedom in a PLS regression with A latent variables

is

D̂oF (A) = 1 + trace

(
∂PTy

∂y

)
(6.14)

Since

Ŷa = X0β̂a (6.15)

= Ȳ 1n + PT,aY0 (6.16)

Then

∂Ŷa
∂Y

= X0
∂β̂a
∂Y

(6.17)

=
∂PTy

∂y
(6.18)

The paper by Krämer and Sugiyama[65] on degrees of freedom in PLS also includes

estimates of upper and lower bounds on the degrees of freedom. They prove that for

PLS1, the lower bound on the degrees of freedom of the first latent variable is

DoF (A = 1) = 1 + trace(S)/λmax (6.19)
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where S is the regressor correlation matrix and λmax its largest eigenvalue. This is

appropriate for centred and scaled regressors, for centred only regressors the equivalent

form using the covariance matrix and its largest eigenvalue can be used. This covari-

ance matrix is XTX/(n − 1) for either ”portrait” or ”landscape” datasets. A naive

estimate of the number of degrees of freedom is one for each latent variable plus one for

the constant term, which gives a further lower bound. Krämer and Sugiyama give the

upper bound on the number of degrees of freedom as the minimum of [n− 1, k+ 1] for

PLS1. This is not quite correct as for k > n ”landscape” datasets there are sufficient

degrees of freedom to account for the constant, in which case the upper bound is n

not n− 1.

For PLS2, where there are n trials as rows of observations for each of m responses.

So the upper bound on the number of degrees of freedom is then m(n− 1) for n >= k

else mn. minimum of [m(n− 1)]. Also for PLS2 there are m constants and as a naive

estimate each latent variable would require m variables for each latent variable, that

is m(A+ 1) at A latent variables. The derivation of equation (6.19) is specifically for

PLS1, but by taking the response vector as the first response scores vector u1 it is

apparent that it is also applicable to PLS2.

For mixtures datasets the regressor variables have constant sum, which in effect

reduces the number of independent variables by one. For ordinary least squares anal-

ysis of mixtures models without a constant term are the norm. Consequently, the

mixtures constraint reduces the maximum number of degrees of freedom by one of

PLS1 datasets or by m for PLS2 datasets where m is the number of responses.

So overall the rule for the upper bound on the number of degrees of freedom for

should be

If (n >= k) DoFs = min[m ∗ (n− 1),m ∗ (k + 1)] (6.20)

If (n < k) DoFs = min[m ∗ n,m ∗ (k + 1)] (6.21)

If mixtures DoFs = DoFs−m (6.22)
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6.2 Extending the PLS Degrees of Freedom

Calculation to PLS2

For PLS1, the projection matrix PT,A defined in equation 6.12 comes from the

definition of PLS1 NIPALS

q1 = tT1 y/tT1 t1 (6.23)

ŷA = T1..AQ1..A =
A∑
i=1

tiqi (6.24)

=
A∑
i=1

tit
T
i /(t

T
i ti)y (6.25)

= PT,Ay (6.26)

This method for calculating degrees of freedom in PLS1 is shown as Figure (6.1)

y

nx1

= X

nxk

× β̂

kx1

+ ê

nx1

∂ β̂
∂y

kxn

X∂ β̂
∂y

nxn

ŷ

nx1

= X

nxk

× β̂

kx1

∂ ŷ
∂y

nxn
Figure 6.1: PLS1 dbeta/dy dydy diagram

So for PLS1, y and ŷA are ∈ Rn×1, so PT,A is ∈ Rn×n.
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The equivalent form for the Y response matrix deflation for PLS2 is

q1 = tT1 y/tT1 t1 (6.27)

ŶA =
A∑
i=1

citiqi (6.28)

=
A∑
i=1

citit
T
i /(t

T
i ti)Y (6.29)

= PT,AY (6.30)

So for PLS2, Y and ŶA are ∈ Rn×m, so PT,A apparently remains ∈ Rn×n. But as

part of the derivation of the PLS degrees of freedom, equation (6.18) uses the partial

derivative of the coefficients β with respect to the original y matrix. But this derivative

is only defined if β and y are vectors, not matrices as is the case for PLS2. See for

example Magnus and Neudecker[73], p82. For PLS2, equation (6.18) can be written

in a vectorised form by sequentially stacking the columns.

For PLS1 y and yA is ∈ Rn×1, so in equation (6.18)

∂ŶA

∂Y
= X0

∂β̂A
∂Y

(6.31)

∂ŶA

∂Y
∈ Rn×n, X0 ∈ Rn×k. β̂A ∈ Rk×1, so ∂β̂A

∂Y
∈ Rk×n.

For PLS2, both β and Y are matrices, so their partial derivatives are not so straight-

forward. For A latent variables, the basic PLS2 fit equation is

ŶA(Y ) = Xβ̂A(Y ) (6.32)

The Jacobian between two matrices is given in Magnus and Neudecker[73] p173, from

which

∂ŶA(Y )

∂Y
=
∂vec(Xβ̂A)

∂vec(YA)T
(6.33)

= Im ⊗X
∂vec(β̂A)

∂vec(YA)T
(6.34)

The expansion of a product within the vec operator is also from Magnus and Neudecker[73]

p31.
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Here vec(Y) and vec(YA) are ∈ Rnm×1, so ∂vec(Ŷa)
∂vec(Y )

∈ Rnm×nm. The Kronecker

product Im⊗X is the ”outer” product so ∈ Rnm×km . vec(β̂A) ∈ Rkm×1 and vec(Y) ∈
Rnm×1, so ∂vec(β̂)

∂vec(Y )
∈ Rkm×nm, so the dimensions are consistent.

This method for calculating degrees of freedom in PLS2 is shown as Figure (6.2)

Y

nxm

= X

nxk

× β̂

kxm

+ Ê

nxm

vecY

nmx1

vec β̂

kmx1

∂ vec β̂
∂ vecY

kmxnm

I⊗X ∂ vec β̂
∂ vecY

nmxnm

Ŷ

nxm

= X

nxk

× β̂

kxm

vecŶ

nmx1

∂ vecŶ
∂ vecY

nmxnm
Figure 6.2: PLS2 dbeta/dy dydy diagram

Vectorising the matrices and their derivatives in this way is consistent with Efron

[23] original definition of a generalised degrees of freedom, where the degrees of free-

dom are defined in terms of the number of observations. For PLS2 there are n trials

but n×m observations. Just to be clear, vectorising the PLS2 calculation in this way

is intended only for calculating the degrees of freedom after the the PLS deflation has

been done. Vectorising X and Y prior to calculating PLS2 would destroy the collinear

structure between the responses and so turn the calculation into PLS1.

Evaluating Efron’s definition of generalised degrees of freedom shown as equation

(6.10) would require deriving this as a function of the weights, loadings and scores.
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This has been derived for NIPALS or Lanczos decompositions versions of PLS in

Krämer and Sugiyama[65]. This derivation is valid for both n < k narrow ”portrait”

datasets and n > k wide ”landscape” datasets as they use use examples of both. But

as stated in the methodological background their derivation is limited to regressor

matrices scaled to unit variance. The plsdof R library also automatically centres and

scales all regressor matrices to unit variance. This derivation is also limited to PLS1

univariate responses as the partial derivative in equation 6.14 which is their equation

11 and only defined for vector responses. A further issue is that if the PLS regression

coefficients are used in any derivation then the derivation is not general but specific

to the specific to the coefficient definition used. So it is clear that extending their

derivations to more general cases is not straightforward.

A practical solution here is to estimating these partial derivative elements in equa-

tion equation (6.10) directly using numerical methods. This has been found quite

feasible and removes the constraints that are in the way of an algebraic solution. Nu-

merical derivatives are directly applicable to ”portrait” or ”landscape” datasets. As

this partial derivative is of the fitted response values against the observed values, any

scaling factors cancel out, leaving the derivative to only detect the effect scaling on the

way the changes in covariance influence the structure of the PLS model. Further, by

stacking matrix responses into vectors as described above, numerical derivatives are

also applicable to PLS2 multivariate response datasets. In short, they offer a complete

solution. Details on these calculations are given later in the discussion of the example

datasets.

6.3 Centring, Scaling and the Degrees of Freedom

Calculation

Consider the centred and the scaled versions of OLS regression. Let Xc and Xz be

the column centred and column centred then scaled forms of the regressors. Then

Xc,ij = Xz,ijσX,j (6.35)

The centred and scaled versions of the regression coefficients can be given by the
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generalised inverse

βcc = Xc/Yc (6.36)

βzc = Xz/Yc (6.37)

So

βcc,j = βzc,j/σX,jXc,j (6.38)

∂βcc,j
∂Yci

=
∂βzc,j
∂Yci

/σX,jXc,j (6.39)

And

Xc,ij
∂βcc,j
∂Yi

= Xz,ijσX,j (6.40)

=
∂βzc,j
∂Yci

/σX,jXc,j (6.41)

= Xz,ij
∂βzc,j
∂Yci

(6.42)

So the trace function in the degrees of freedom calculation is invariant to the X

scaling, and it is clear how to rescale scaled coefficients and their derivatives back

into the original dimensions and units. For OLS regression these relations are exact

within calculation error. For PLS regression the coefficients, derivatives and degrees

of freedom will be different between scaling and centring because scaling changes the

collinear structures between the variates. By rescaling back to the original dimensions

and units gives a basis for comparing the effects of scaling on the collinear structures.

6.4 Numerical Derivatives and Degrees of Freedom

Calculation

The numerical derivatives for the degrees of freedom results presented here have

been calculated by a high accuracy numerical method from the numDeriv R library

by Gilbert[39]. The high accuracy ”Richardson” default option was used in all cases.

This was combined with PLS calculations from the pls R library by Mevik. Wehrens

and Liland[82]. Degrees of freedom for PLS were also calculated using the plsdof R

library by Krämer and Braun[64]. During the development of this work numerical

derivatives were also calculated in MATLAB using generalised Romberg extrapolation
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by D’Errico2006[18]. The version of PLS used was NIPALS written directly from the

original source publications. No differences beyond minor rounding error effects where

found.

6.5 Information Criteria and the Example Datasets

Comparing the analytical solution for the degrees of freedom from the plsdof library

to that of the numerical derivatives is only possible for the scaled datasets. Further, it

was found that these library routines failed to find a solution for the Gasoline dataset.

Where comparisons were possible for the scaled Wine Aroma and WasteGlass datasets,

the values from the library agreed with the numerical derivatives to at least 4 decimal

places over most of the data range. Near the theoretical maximum number of degrees

of freedom both methods showed minor instability and the close numerical match be-

tween the methods was lost.

The theoretical lower and upper bounds on the numbers of degrees of freedom

shown in section 6.1 on page 72 are tabulated with actual minimum and maximum de-

grees of freedom as Table 6.1 for the PLS1 example datasets and as Table 6.2 for PLS2.

Wine Aroma Gasoline Waste Glass
PLS1 n > k PLS1 n < k PLS1 mix’

n Trials 37 60 35
k Regressors 17 401 12
m Responses 1 1 1

Centred Scaled Centred Scaled Centred Scaled
Min DoFs 1st LV 2.06 5.10 2.38 2.39 2.90 6.79
Max DoFs any LV 18 18 60 60 12 12
Deriv’ DoFs 1st LV 2.05 5.64 2.26 2.27 5.71 12.31
Deriv’ DoFs < naive 2 0 0 0 0 0

Deriv’ DoFs max any LV 21.22 10.29 60.06 60.01 12.02 12.31

Table 6.1: PLS1 Limits on Degrees Of Freedom

The numbers of degrees of freedom from numerical derivatives for the Wine Aroma

and Gasoline PLS1 are close to or beyond the theoretical limits. The maximum num-

ber of degrees of freedom for the Gasoline dataset given by Krämer and Sugiyama for

PLS1 as a minimum of [n− 1, k+ 1] would give a value of 59. But the degrees of free-

dom from derivatives shows that the maximum is 60, which is why the correction was

shown on 74. The values for the first latent variable are very close to the theoretical
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lower bound, while the maximum degrees of freedom are well beyond the theoretical

maximum for the centred Wine Aroma dataset. This dataset also showed two points

where the number of degrees of freedom was less than the naive limit of one plus the

number of latent variables.

Olive Oil
PLS2 n > k
XC YC XC YS XS YC XS YS

Min DoFs 1st LV 2.00 2.00 2.71 2.71
Max DoFs any LV 36 36 36 36
Deriv’ DoFs 1st LV 12.00 12.77 12.00 12.54
Deriv’ DoFs < naive 0 0 0 0

Deriv’ DoFs max any LV 36.00 36.00 36.00 36.00
Biscuits

PLS2 n < k
XC YC XC YS XS YC XS YS

Min DoFs 1st LV 2.61 2.61 3.22 3.22
Max DoFs any LV 160 160 160 160
Deriv’ DoFs 1st LV 8.69 8.70 9.45 9.46
Deriv’ DoFs < naive 0 0 0 0

Deriv’ DoFs max any LV 161.08 161.41 159.96 160.09
Abrasive
PLS2 mix
XC YC XC YS XS YC XS YS

Min DoFs 1st LV 3.43 3.43 5.21 5.21
Max DoFs any LV 126 126 126 126
Deriv’ DoFs 1st LV 31.41 31.12 34.74 33.33
Deriv’ DoFs < naive 0 0 0 0

Deriv’ DoFs max any LV 126.00 126.00 126.00 126.00

Table 6.2: PLS2 Limits on Degrees Of Freedom

The comparison between the degrees of freedom from numerical derivatives and the

theoretical lower and upper bounds is much more consistent for the PLS2 datasets,

showing only slight deviations above the theoretical maximum.

The degrees of freedom for the PLS1 example datasets are plotted as Figure 6.3. In

these plots the green lines represent the minimum and maximum degrees of freedom

limits and the naive estimate as the diagonal as mentioned previously at the end

section 6.1 on page 72. For the PLS1 datasets, it is clear that the number of degrees

of freedom for the centred datasets does not increase monotonically, while these scaled

datasets are very nearly monotonic. The spike in the WineAroma centred plot at

6 latent variables is very curious, particularly as the RMSE against RMSECV plot

shown as Figure 4.2 on page 55 also shows strong erratic behaviour. Apart from this

single spike, the calculated degrees of freedom do not go outside of the theoretical

limits. The Gasoline dataset is spectroscopic data where the maximum number of
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Figure 6.3: PLS1 Degrees of Freedom Plots, from Numerical Derivatives

degrees of freedom is 59. So from the asymptote in is plot it is apparent that the

informative part of the response must be contained in about 20 to 30 wavelengths.

As the Waste Glass dataset is from a statistically balanced experimental design for a

mixtures dataset with 12 independent component variables and one overall component

sum constraint, the 11 degrees of freedom or clear from the scaled dataset.

By comparison, in the degrees of freedom plots for the PLS2 multivariate response

datasets for centred and scaled datasets are very similar, Figure 6.4. This apparent

stability for PLS2 methods was also seen in the other latent variable selection meth-

ods. The asymptotic behaviour degrees of freedom for the n < k ”landscape” is also

seen in the plot for the Biscuits dataset.

6.5.1 Van der Voet’s Pseudo-Degrees of Freedom

In section 6.1 on page 72, a method for estimating the degrees of freedom from

comparing fitted and crossvalidated residuals from van der Voet[105] was described.

These pseudo degrees of freedom have been plotted against those from the numerical
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Figure 6.4: PLS2 Degrees of Freedom Plots, from Numerical Derivatives

partial derivatives in Figure 6.5 for the PLS1 datasets.

For the Wine Aroma and Gasoline datasets, this plot shows that the pseudo-degrees

of freedom estimate is a good approximation to the true degrees of freedom. The er-

ratic behaviour of the degrees of freedom for the centred WineAroma dataset is present

in both pseudo and numerical derivative degrees of freedom, as indicated by the spike

at 6 latent variables. This correspondence between pseudo and numerical derivative

degrees of freedom breaks down for the Waste Glass mixtures datasets. The points

where there is the largest difference are for the scaled Wine Aroma and both Cen-

tred and scaled Waste Glass. In all these cases the pseudo degrees of freedom exceed

the upper bound. This only reason for this can be that the crossvalidated residuals

RMSECV are high compared to the RMSE fit residuals. The cause could be that the

leave-one-out resampling is making significant changes to the collinearity or predictive

power of the models from these small datasets.

This comparison plot for the PLS2 datasets is shown as Figure 6.6, where the cor-

respondence is again clear. Comparing the plots across both PLS1 and PLS2 datasets,

it is apparent that there is a tendency for the pseudo-degrees of freedom to be slightly
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Figure 6.5: PLS1 Datasets Comparing Pseudo- to Derivative Degrees of Freedom
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Figure 6.6: PLS2 Datasets Comparing Pseudo- to Derivative Degrees of Freedom
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higher than that from the numerical derivatives. The plots for the Abrasive dataset

show the largest difference at low latent variable numbers. Again, this is a small

dataset that has one strong constraint as the physical mixture component sum, so

resampling here may also be having an adverse effect of the model structures.

At this point it is clear that the PLS2 regressions appear to be much more stable

than the PLS1 regressions. The PLS models for the centred Wine Aroma seem to be

particularly unstable. So the comparison between the degrees of freedom and the the-

oretical lower and upper bounds shown in Tables 6.1 and 6.2 now appears to be more

reasonable. Without the centred Wine Aroma dataset, the discrepancies between the

degrees of freedom calculated from numerical derivatives and the theoretical bounds

are small and might be explained as calculation error. The PLS1 examples shown by

Krämer and Sugiyama[65] are entirely consistent with the calculated bounds. Conse-

quently it is concluded that the bounds calculations shown in section 6.1 on page 72

are consistent with the example datasets.

6.5.2 Overall Conclusions about Information Criteria

The AIC and BIC information criteria have been calculated from equation (6.4) on

page 72 using degrees of freedom derived from the numerical partial derivatives and

from pseudo degrees of freedom. While there is no difference between the degrees of

freedom estimates from the numerical derivatives and those calculated from the al-

gebraic solution in the in plsdof library, the value of the residual variance σ̂2 in the

plsdof library can calculated within a kernel algorithm which results in different val-

ues to those calculated simply from RSS/(DoF − 1). The differences found for these

example datasets were small and have no impact on latent variable selection.

The AIC and BIC information criteria based on the degrees of freedom derived

from the numerical partial derivatives are shown as Figure 6.7 and Table 6.3 for the

PLS1 datasets. In these plots the dashed vertical lines are at the minima, blue for

AIC and red for BIC. For WasteGlass, there is little difference between the minimum

AIC and BIC points from pseudo degrees of freedom, so the latent variable selection

is not well resolved which is why the number of latent values selected by AIC is higher
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than that by BIC. It is also interesting that the spike at 6 latent variables is not seen

in the AIC or BIC plot from pseudo degrees of freedom, even though it is there in the

degrees of freedom against latent variables plot shown as figure 6.3. This is a good

indication to the cause. Both centred and scaled plots from the Gasoline dataset show

an initial sharp decrease in AIC and BIC from the first to second latent variable and

a smaller decrease for the third. After this the incremental change is very small up to

the absolute minimum value at or near the maximum number of latent variables. This

feature was also reported by Krämer and Sugiyama[65] in a simulation study. The

Waste Glass mixtures dataset also shows similar asymptotic behaviour.
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Figure 6.7: PLS1 Information CriteriaPlot

Wine Aroma Gasoline Waste Glass
PLS1 n > k PLS1 n < k PLS1 mix’

Centred Scaled Centred Scaled Centred Scaled
min AIC Deriv’ DoFs 13 6 32 29 10 4?
min AIC Pseudo’ DoFs 9 9 58 59 11 5
min BIC Deriv’ DoFs 13 6 32 29 10 4?
min BIC Pseudo’ DoFs 4 4 58 59 11 5

Select 13 6 3 3 10 4

Table 6.3: PLS1 Latent Variable Selection By Information Criteria

Figure 6.8 and Table 6.4 show the corresponding AIC and BIC plots for the PLS2

datasets. The Olive Oil dataset shows clear minima in the plots, and selection by
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AIC or BIC and numerical derivative or pseudo degrees of freedom all coincide at 2

latent variables. The n < k ”landscape” Biscuits dataset shows the same asymptotic

behaviour as the PLS1 ”landscape” dataset Gasoline, without showing such a clear

location to select the number of latent variables. From inspection of the AIC and BIC

data, there are no indications of stability or corners to indicate any particular latent

variable selection. Stability and numerical minima in the information criteria occur

around 30 to 25 latent variables, which is clearly overfitted as 100% fit to the response

is achieved around 20 latent variables. From their simulation study, Krämer and

Sugiyama[65] concluded that in those cases of PLS where information criteria plateau,

the more complex models can have comparable predictive performance, which suggests

that this failure to identify a specific number of latent variables may not be important

in practice. For this Biscuits dataset and depending on the scaling combination, the

response variance explained increases from around 50% to 99% across the first 10

latent variables. So this dataset does not have any information criteria plateau. The

Abrasive mixtures dataset does shows clear information criteria minima, but with some

difference between the various scaling and information criteria for number of latent

variable selected.
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Figure 6.8: PLS2 Information CriteriaPlot

Form the tabulated values of latent variables selected, it is apparent that there
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Olive Oil
PLS2 n > k

XC YC XC YS XS YC XS YS
min AIC Deriv’ DoFs 2 2 1 2
min AIC Pseudo’ DoFs 2 2 1 2
minBIC Deriv’ DoFs 2 2 1 2
min BIC Pseudo’ DoFs 2 2 1 2

Select 2 2 1 2
Biscuits

PLS2 n < k
XC YC XC YS XS YC XS YS

min AIC Deriv’ DoFs 31 32 35 35
min AIC Pseudo’ DoFs 38 38 38 38
min BIC Deriv’ DoFs 31 32 35 35
min BIC Pseudo’ DoFs 38 38 38 38

Select ? ? ? ?
Abrasive
PLS2 mix
XC YC XC YS XS YC XS YS

min AIC Deriv’ DoFs 4 6 2 5
min AIC Pseudo’ DoFs 7 7 6 5
min BIC Deriv’ DoFs 4 6 2 5
min BIC Pseudo’ DoFs 7 7 4 5

Select 4 6 2 5

Table 6.4: PLS2 Latent Variable Selection By Information Criteria

is some variation is in those derived from pseudo degrees of freedom for the Wine

Aroma dataset. The pseudo degrees of freedom method also failed to identify any

rational values for the Biscuits dataset. Even though there is a close correspondence

between pseudo and derivative degrees of freedom and their functions, there is a clear

tendency for pseudo degrees of freedom to be higher than those from derivatives to the

point where they can exceed the theoretical maximum. This difference does not lead

to conservative estimates as the increase in degrees of freedom increases the number

of latent variables selected. This may be only by one or two increments for most of

these these dataset examples but as this this could lead to overfitting the conclusion

here is that pseudo degrees of freedom are not a viable alternative to those based on

numerical derivatives.

For the information criteria based on numerical derivatives, there are differences

in latent variable selection between the various scalings as each scaling represents a

different model structure. But in all these examples, the number of latent variables

selected by AIC and BIC criteria are an exact match. This equivalence between AIC

and BIC was also reported by Krämer and Sugiyama[65]. In OLS stepwise regression,

the fine detail of the optimum model curvature is generally decided by the choice of

AIC, AICc or BIC for term selection, which is one of the strongest criticisms of stepwise
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regression. For these PLS examples, AIC and BIC based on numerical derivatives

are selecting the same number of latent variables, suggesting that this application is

more robust. The difference between AIC and BIC is in the terms accounting for the

numbers of observations. But some of these example datasets are not large compared

to those used for stepwise regression where selecting a particular information criteria

is critical. So it is concluded that the robust aspects of applying information criteria

to PLS latent variable selection must be something more fundamentally related to the

increments in fit that are causing AIC and BIC to coincide. From equation (6.4) on

page 72.

AIC =
RSS

n
+

2DoFσ̂2

n
(6.43)

and σ̂2 ≈ RSS/(n−DoF ), then

AIC ≈ RSS

(
n+DoF

n−DoF

)
(6.44)

The (n + DoF )/(n − DoF ) factor will increase rapidly once the degrees of freedom

become more than a small proportion of the number of observations, so this apparent

robustness must be due to the way PLS has a strong effect on the incremental change

if fit residuals with each additional latent variable. It also suggests that the degrees

of freedom may have diagnostic applications for PLS.



Chapter 7

Covariance Explained Plots

The objective function of PLS is to minimize the covariance between regressors and

responses, or more specifically between the X and Y scores tTu. So it was anticipated

that this covariance would be a strongly decreasing monotonic function with the num-

ber of latent variables. This covariance for the example datasets is show as Figure 7.1

where a logarithmic scale is used to show the detail of the covariance changes over the

entire range. In this plot, the Y centred and Y scaled covariances for the Olive Oil

and Abrasive are nearly coincident. In all these plots the filled data points are those

where the covariance has increased from the previous latent variable.

In Figure 7.1 there are instances where the incremental covariance between latent

variables increases in 5 out of 6 of the example datasets. These increases in covariance

occur in both centred and scaled datasets. The strongest apparent increase in covari-

ance is in the analysis of centred WineAroma variates where the strongest deviations

are at 4, 5 and 13 latent variables. These points correspond to the anomalies in the

covariance permutation tests and degrees of freedom plots.

The issue here is not that PLS is failing to extract the maximum covariance be-

tween tTu score vectors. This covariance maximization is apparent numerically and

has been proved algebraically either from the SVD decomposition of XTY or by it’s

Lagrangian multipliers. But this covariance maximization is only ”within” each latent

variable and shows nothing about previous or subsequent latent variables. This makes

PLS different to PCR regression where the variance explained is monotonic due to

91



CHAPTER 7. COVARIANCE EXPLAINED PLOTS 92

0 10 20
10

−2

10
0

10
2

10
4

WineAroma

tT
y
 C

o
v
a

ri
a

n
c
e

0 20 40
10

−5

10
0

10
5

Gasoline

0 10 20
10

−10

10
−5

10
0

10
5

WasteGlass

 

 Centred

Scaled

0 5
10

−5

10
0

10
5

tT
u

 C
o

v
a

ri
a

n
c
e

OliveOil

0 20 40
10

−5

10
0

10
5

Number of Latent Variables

Biscuits

0 5 10
10

0

10
1

10
2

10
3

Abrasive

 

 XC YC

XC YS

XS YC

XS YS

Figure 7.1: PLS Covariance Explained

the ordering of the eigenvalues. This non-monotonic behaviour for PLS covariance ex-

plained only relates to the step changes for individual latent variables. The cumulative

variance explained will always be monotonic, as will be the (cumulative) regressor and

response residuals.

For PLS, the X and Y variance explained generally both decrease with increasing

latent variables. Figure 7.2 shows the X and Y covariance explained for the centred

WineAroma dataset where the variance generally decreases, but occasionally increases

are apparent. It is clear that for 4,5 and 6 latent variables weighted covariance maxi-

mization is reducing the X variance but increasing the Y variance. Patterns like this

in the variance explained coincide with the incremental increase in scores covariance.

The reason for this is clearer in the linear variance explained plot Figure 7.3. After

about 3,4 or 5 latent variables there is very little covariance left. This causes the

weights vector calculation to become noise-sensitive and numerically unstable. This

can result in the apparent increase in the residual covariance or covariance explained

and as such is a clear indication of over-fitting. Martens and Martens[79] infer that

this numerical instability is related to the weights wnDoFs
being the first eigenvector
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Figure 7.2: WineAroma Centred X and Y Incremental log Variance Explained
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of (EFTFET )nDoFs−1. They suggest using the first eigenvalue of (ETE)A−1 as the

weights in these circumstances, but the practical conclusion is that this indication of

over fitting should set the limit for the number of latent variables examined. So from

tabulated values of the variances explained, the maximum number of latent variables

is taken as the point at which either the X or Y cumulative variance explained first

exceed 99% to prevent over-fitting.

Wine Aroma Gasoline Waste Glass
PLS1 n > k PLS1 n < k PLS1 mix’

Centred Scaled Centred Scaled Centred Scaled
X Variance Explained 99.87% 99.78% 97.32% 98.81% 99.29% 47.59%
Y Variance Explained 40.52% 83.91% 99.06% 99.05% 93.85% 94.18%
Covariance Explained 97.91% 99.97% 98.58% 99.11% 99.63% 99.95%
Max Latent Variables 5 16 7 7 9 5

Table 7.1: PLS1 Maximum Numbers of Latent Variables from Over-fitting Criteria

Olive Oil
PLS2 n > k

XC YC XC YS XS YC XS YS
X Variance Explained 99.59% 99.59% 100.00% 100.00%
Y Variance Explained 17.99% 37.92% 51.64% 57.12%
Covariance Explained 99.60% 99.60% 100.00% 100.00%
Max Latent Variables 1 1 5 5

Biscuits
PLS2 n < k

XC YC XC YS XS YC XS YS
X Variance Explained 94.24% 94.61% 86.68% 86.86%
Y Variance Explained 99.25% 99.44% 99.21% 99.07%
Covariance Explained 94.50% 94.84% 86.94% 86.99%
Max Latent Variables 10 11 9 9

Abrasive
PLS2 mix

XC YC XC YS XS YC XS YS
X Variance Explained 99.29% 99.26% 100.00% 100.00%
Y Variance Explained 57.74% 51.14% 55.39% 53.31%
Covariance Explained 99.16.% 99.14% 100.00% 100.00%
Max Latent Variables 7 7 8 8

Table 7.2: PLS2 Maximum Numbers of Latent Variables from Over-fitting Criteria

The maximum of 5 latent variables before overfitting for centred WineAroma is

now reasonable as this accounts for nearly all the X variation. This dataset is domi-

nated by the scale of a single variable as was mentioned in Section 3.1, so this limit of

high X fit and low X fit is explained. Fitting the scaled dataset is an improvement as

the response variance explained reaches 83.9% for 99.78% X compared to 40.52% Y for

99.87%X for the centred dataset. The maximum of 5 latent variables for other ”por-

trait” landscape OliveOil is also reasonable as this accounts for all of the X variation

for both centred and scaled datasets. This overfitting criteria does not appear to have
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much effect on latent variable selection for the ”landscape” datasets, Gasoline and

Biscuits. This is also reasonable as these datasets have far more degrees of freedom

available as is apparent from Figures 6.3 and 6.4. The centred WasteGlass dataset

has a peak in the number of degrees of freedom plot, shown as Figure 6.3 on page

83. This peak is much weaker than the peak in the centred Wine Aroma plots, so not

restricting the number of latent variables before overfitting to 3 or 4 latent variables is

also reasonable here. This overfitting criteria does not make any strong restrictions on

the mixtures datasets. The Abrasives PLS2 mixtures dataset has maxima at 7 or 8,

where the maximum possible number of latent variables is 8. The maximum number

of latent variables for Waste Glass is 11, so restricting the number of latent variables

to 9 for the centred dataset is also reasonable. The scaled Waste Glass dataset is the

exception here as 5 latent variables account for 99.95% of the X variation.

So it is now clear that applying this simple overfitting criterion has explained many

of the anomalies that have appeared during the the latent variable selection for the

example datasets. The use of a 99% limit was a quite arbitrary choice, but the actual

value is not that important as any limit between 95% and 99.5% would give very

similar results for these datasets. From these examples, it is clearly important to

consider overfitting for both X and Y when selecting the number of latent variables

for PLS.



Chapter 8

A PLS Simulation Study

8.1 Introduction and Background to PLS Simula-

tion

The primary objective of this PLS simulation is to compare the performance of

the various latent variable selection methods. But the question of identifying a best

method leads to deeper questions about latent variable selection. How sensitive is the

performance of a PLS model to selecting the optimal number of latent variables? Is

it even sensible to look for an optimal number of latent variables, or are the require-

ments of model effects and model prediction so different that different PLS models

with different numbers of latent variables are required?

Specific open questions concerning overall performance are ...

• How does PLS model fit performance in terms of residual RMSE, variance and

bias relate to the structure of the dataset. Or equivalently, are there are combina-

tions of dataset structure that are particularly good or bad for PLS performance?

• How do PLS factor effect measures like coefficients or VIPs relate directly to the

responses or to the correlation structures? Or equivalently, how reliable is PLS

for identifying the controlling regressors?

• How sensitive is PLS model prediction (with confidence intervals) to the charac-

teristics of the dataset?

96
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Open questions concerning LV selection are ...

• In practical terms, is there really an optimal number of latent variables where

maximum model predictive performance and interpretive power coincide? Or

should different PLS models be fitted from the same dataset depending on their

purpose?

• Or equivalently, how sensitive is the performance of PLS models to mis-specification

of the number of latent variables?

• How sensitive are the LV selection methods to the characteristics of the dataset?

• What is the strongest method for latent variable selection?

• Are there any specific circumstances where this strongest method is unreliable ?

In essence, all these questions concern sensitivity. The existence of an optimal

number of latent variables is really about how sensitive is prediction and effect inter-

pretation from PLS models to selecting a specific number of latent variables. Clearly,

this sensitivity will be dependent on the characteristics of the data being modelled.

Comparing alternative latent variable selection methods becomes much easier if the

”‘true”’ number of latent variables in the dataset is known. But it is quite possible

that selecting the best method may also depend on the characteristics of the data.

These questions are investigated here by a simulation study. It follows that the

simulation needs to generate a set of PLS models with controlled structures and known

response expectations and coefficients, to provide a basis for assessing the accuracy

and reliability of the fitted PLS models. With many possible options for generating

the sample datasets with different characteristics for a simulation, the settings for each

simulation trial have been arranged as a statistically balanced experimental design, so

that regression methods can be used to resolve how sensitive latent variable selection

and PLS model performance is to specific aspects of the simulated datasets.

Many PLS publications use simulation to investigate some specific aspect of PLS

behaviour, but investigations into the overall behaviour of PLS using simulation are
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much less common. Næs and Martens[84] is a comparison of PLS1 and PCR by simu-

lation where the data dimensions and true number of latent variables was fixed while

the regressor and response error levels were varied. Their conclusions only concern

prediction and were that PLS performs better than PCR with models up to the fixed

number of latent variables with no difference after this.

Li, Morris and Martin[68] extended this simulation method to PLS2 datasets for

a comparison of latent variable selection by crossvalidation and information criteria.

The difference between the number of observations and regressors was taken as the

degrees of freedom for the information criteria calculation, which is now know to be

an overestimate. In this simulation the regressor dimensions was variable while the

response structure, random error levels and collinearity structure was fixed. Conclu-

sions are restricted to comments on variations on crossvalidation.

Kiers and Smilde[61] compare MLR, PCR, PLS, RR and other more specialised

methods in a set of 5 simulation studies of multivariate reduced rank regression. The

regressor collinearity structure, coefficient structure and response error levels were all

systematically varied in the simulations. The true number of latent variables were ei-

ther 1 or 2. No variation to the regressor matrix was introduced. Concludes that PLS

and PCR typically recover the coefficients better than other methods when there is

high collinearity, typically worse than other methods with low collinearity. Recovering

the coefficients is often poor by all methods unless the coefficients lie in the subspace

of the first few PCs of the predictor variables. Prediction less effected by collinearity

than the coefficients. Latent variable selection methods were not considered.

Hulland, Ryan and Rayner[54] report a study of PLS1 path modelling by simu-

lation. The number of regressors was fixed while the number of latent variables and

correlation structure were variables. Coefficient identification was the only aspect con-

sidered. This study is explicit in that it structures the simulation as an experimental

design. It is also unusual in that it includes response distribution as a factor, which

was found to have no strong effect on coefficient identification.
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This short review of PLS simulation does not claim to be comprehensive, but

does illustrate how all the factors that may be relevant for PLS performance have

been studied, but not all in the same simulation. So potentially strong synergistic or

antagonistic interaction between factors cannot be identified.

8.2 PLS Simulation Methods

The published PLS simulations are studies of specific aspects of PLS and so cover a

restricted number of of the possible factors that could influence a PLS regression. The

intention here is to include a comprehensive range of PLS factors, so that particular

characteristics of datasets that lead to specific sensitivities of a LV fitting method or

overall PLS model performance may be identified.

As PLS1 univariate response datasets require different algorithms to PLS2 multi-

variate responses, these have also been investigated using separate simulations.

The simulation method presented here is based on the reduced rank multivariate

regression methods from Naes and Martens [84] and from Li, Morris and Martin [68].

These methods have been extended to give more control over the regressor correla-

tion and collinearity structure and in particular the relation between regressor and

response collinearity structures. Further extensions were required to include response

distributions as a simulation factor. The simulation strategy used here is to use a

common method to first fix the regressor matrix structure, then to fix the coefficient

structure and use this to calculate the responses.

8.2.1 Regressor Matrix Simulation

Let v be a vector of length A∗, then σ = diag(v).

Let R be a matrix of size n×A∗ with independent columns of a specific distribution

and variances equal to the elements of v, that is covariance σ.
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Then let ξ be a random orthonormal matrix of size k × A∗.

Then the regressor matrix is given by X = RξT . Consequently the properties of

X are

• Dimensions n× k.

• Reduced rank, A∗. This fixes the degree of collinearity between the regressors.

• Is a linear function of R so inherits the distribution from R.

• Has covariance σ irrespective of the inherited distribution. This is dependant on

the way R is generated.

• The eigenvalues of the covariance of X is v.

• The sequence of eigenvalues of the covariance of X is V DRX - the Regressor

Variance Decay Rate. This is explained in detail later in section 8.2.3.

• This sequence of eigenvalues determines the level of correlation and collinearity

between the columns in X. This fixes the degree of correlation between the

regressors, independently from the degree of collinearity.

• The eigenvectors of the covariance of X is ξ.

8.2.2 The Regressor and Response Distributions

There is nothing in the PLS method that uses any assumptions on the data distri-

bution.

But a number of references state that for practical purposes, PLS ”works better” if

the data is normal or else transformed into something like normal. Evidence in support

of this is anecdotal. Probably the strongest reference is ”Megavariate and Multivariate

Data Analysis” [27], [28] which is a 2 volume guide to the practical aspects of PLS by

Eriksson, Johansson, Kettaneh-Wold, Trygg, Wikstrom and Svante Wold which does

go into some detail on data transforms.
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PLS simulation with normal variates is possible because linear transforms matri-

ces with normally distributed columns produce other matrices that are also normally

distributed. For multivariate data, these linear transforms do not change the correla-

tion between the variates. But distributions other than normal are usually changed

by linear transforms. Also multivariate normal distributions are changed by nonlin-

ear transforms which tend to reduce the (absolute) correlation between the variates [4].

While nonlinear transforms of multivariate normal data may change the covariance

between variates, they do this is a determinate way. Johnson, Ramberg and Wang [57]

show how the multivariate means, variances and correlation change on lognormal and

hyperbolic sine transforms. They also give the following inverse formulae, which give

then multivariate normal means, variances and correlations required to produce spe-

cific means, variances and correlations on lognormal or hyperbolic sine transforms.

If X has a multivariate lognormal distribution with k variates, means µ
′
, variances

σ
′2 and correlations ρ

′
and X = exp(Y). Then Y is multivariate normal with means

µ, variances σ2 and correlations ρ given by

µi = log(µ
′2
i )/
√
σ
′2
i + µ

′2
i i = 1, . . . , k (8.1)

σ2
i = log(1 + σ

′2/µ
′2) i = 1, . . . , k (8.2)

ρi,j = (1/(σiσj))log
[
1 + (ρ

′

i,jσ
′

iσ
′

j)/(µ
′

iµ
′

j)
]

i, j = 1, . . . , k (8.3)

Similarly, if X has a multivariate hyperbolic sine distribution with k variates, means

µ
′
, variances σ

′2 and correlations ρ
′
and X = sinh(Y). Then Y is multivariate normal

with means µ, variances σ2 and correlations ρ given by
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µi = (1/2)cosh−1

[
1 + 2µ

′2
i /

(
1− µ′2i +

√
µ
′4
i + 2µ

′2
i + 2σ

′2
i

)]
i = 1, . . . , k (8.4)

σ2
i =

 2log(µ
′
i/sinh(µi)) µ

′
i 6= 0

(1/2)log(2σ
′2
i + 1) µ

′
i = 0

i = 1, . . . , k (8.5)

ρi,j = (1/(σiσj)) log
(

(B +
√
B2 + 4AC)/2A

)
i, j = 1, . . . , k (8.6)

where

A = cosh(µi + µj) (8.7)

B = 2ρ
′

i,jσ
′

iσ
′

jexp
[
−(σ

′2
i + σ

′2
j )/2

]
+ 2sinh(µi)sinh(µi) (8.8)

C = cosh(µi − µj) (8.9)

As logarithmic transforms of normally distributed data produce negative skewed

and hyperbolic sine transforms produce positive skewed and kurtotic distributions,

these equations are a practical solution to the problem of simulating data with very

different distributions and the same covariance structure. The simulation reported

by Hulland, Ryan and Rayner [54] for structural equation modelling by PLS does

include distribution as a factor by transforming the data. The transformation used

was a univariate power method from Fleishmann [34] which does not account for the

change in the multivariate covariance structure from the transform. This simulation

concluded that the form of the data distribution had no effect on the PSL model, but

it is not clear how valid this conclusion might be due to confounding of distribution

and covariance factors. Further, it is also not clear if the anecdotal evidence for nor-

malising PLS data is really due to the change in the distribution or the change in the

covariance. Distribution and covariance are arranged as independent factors within

this simulation, so that these issues may be resolved.
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8.2.3 The Regressor Factors in the Simulation

n - Number of observations, k - Number of regressors, m - Number of

responses

Published PLS studies cover a wide range of numbers of variables and observations.

But these ranges are not really continuous in that the datasets tend to be either

”‘portrait”’ or ”‘landscape”’. The ranges used are n observations25 to 100, with k

regressors 6 to 20 for the portrait/mixtures simulation and k regressors 200 to 500 for

the landscape simulations. For PLS2, m responses 5 to 20.

A∗ - Number of Latent Variables for perfect fit

So (k − A∗) is a measure of the collinearity. The number of latent variables used in

the simulation 2 to 8 for portrait and landscape, 2 to k-1 for mixtures.

V DRX - The Regressor Variance Decay Rate

This is the decay rate in the eigenvalues of the regressor matrix X, to fix the degree

of correlation between the factors. If all k regressors were in a full factorial plan then

they would have equal variances of 1. So the variances are scaled so that their sum

is always equal to k. It was decided to arrange the simulation plan with three levels

of decay rate, fast, medium and slow. Due to the random nature of the simulation,

this categorical factor does not create three specific and unique levels of collinearity

as measured by the regressor condition number, so condition number or correlation

coefficients could be used as an alternative variable in the subsequent analysis.

Medium decay is linear over the first A∗ terms with sum k. The scaling factor for

the remaining k − A∗ terms is set to zero.

vscale = k/(A∗ × (A∗ + 1)) (8.10)

MediumScaleV DRX = vscale× (A∗ : 1) otherwise 0 (8.11)

So with k = 6 regressor variables and A∗ = 4 latent variables, vscale = 0.3 and

the medium decay rate scaling factors are [2.4, 1.8, 1.2, 0.6, 0.0, 0.0].
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Fast and slow decay rate mean an increasing or decreasing change in variances

between latent variables. Having a fixed ratio in the incremental variance implies

that the variances are a geometric series. Fast decay is a geometric series where the

variance reduces by a third with each LV. The sum of the series 1,3,9,27,... for A∗

terms is (3A
∗ − 1)/2. So reversing the series order and multiplying by a scale factor of

2k/(3A
∗ − 1) gives a rapidly decreasing sequence of A∗ terms with sum k.

vscale = 2k/(3A
∗ − 1) (8.12)

FastScaleV DRX = vscale× 3(A∗−1:0) otherwise 0 (8.13)

So with k = 6 regressor variables and A∗ = 4 latent variables again, vscale = 0.15

and the fast decay rate scaling factors are [4.05, 1.35, 0.45, 0.15, 0.0, 0.0] which sum to 6.
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Figure 8.1: Regressor Variance Decays Rates for 6 Regressors and 4 Latent Variables

Slow decay is a geometric series where the difference in the variances reduces by a

third between each latent variable, again with sum k.

vseqi = 3(A∗−1) − Σi=A∗−2
i=0 3i (8.14)

vscalej = k/Σi=j
i=1vseqi (8.15)

SlowScaleV DRX = vscale× 3(A∗−1:0) otherwise 0 (8.16)

So with k = 6 regressor variables and A∗ = 4 latent variables again, vseq =

[27, 26, 23, 14] and vscale = 6/90 and the fast decay rate scaling factors are [1.8, 1.7333, 1.5333, 0.9333, 0.0, 0.0]
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which sum to 6. These Regressor Variance Decay Rates are compared as Figure 8.2.3.

SNRX - The Regressor Error Levels

SNRX and SNRY as degree of fit errors in regressors and responses. Due to the

random basis of the simulation samples, the degree of regressor and response variation

between samples is not constant. So to maintain the independence of the regressor

and response error levels from the other factors the error levels have been defined in

terms of signal to noise levels.

For SNRX let σX be the overall standard deviation of the regressor matrix X

expressed as a vector. Then

σEX
= σX/SNRX (8.17)

EX = Nk(0, diag(σEX
)) (8.18)

WhereNk refers a multivariate normal distribution of k dimensions. So the columns

of EX are all independent and identically distributed. The range of both SNRX and

SNRY in the simulation 10 to 100.

One way of looking at this (Kiers and Smilde’s [61]) is that X and Y represent the

population values, X + EX and Y + EY represent the sample.

8.2.4 Internal Regression Coefficients in the Simulation

PLS1 Regression Coefficients

For PLS1 univariate responses and with the response vector as any linear function of

R, such as

Y = Rb (8.19)

where b ∈ RA∗×1 then Y will be in the row space of R and so X. So Y must be an

exact solution for PLS at A∗ latent variables.
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Since

β = X+Y (8.20)

= (RξT )+Rb (8.21)

then

RξTβ = Rb (8.22)

so

b = ξTβ (8.23)

The coefficients in the PLS regression β are related to the ”internal coefficients” b

by b = ξTβ. As b is of length A∗ and β of length k and k > A∗ then b can be calculated

directly from β but in generally not β from b.

These internal regression coefficients in PLS1 are generated sequentially so are

uniformly distributed. This means that the Y response samples are essentially linear

transforms of the regressors X so inherit their distribution directly without influence

from the internal coefficient distribution. For PLS1 the internal regression samples are

characterised by a single factor - PIR, the Pattern in the Internal Regression defined

later in section 8.2.5.

PLS2 Regression Coefficients

For PLS2 there are 3 sets of correlations/covariances - within-X, within-Y and between

X and Y. But these cannot be fixed independently for simulation as fixing within-X

and between X and Y fixes within-Y. The simulation method used here for PLS2

follows the PLS1 method of fixing X and the internal regression coefficients with some

the following additional factors.

The regressor simulation samples for PLS2 are generated exactly as those for PLS1.

For PLS2, the multivariate nature of the response introduces additional factors for

collinearity and correlation within the responses.



CHAPTER 8. A PLS SIMULATION STUDY 107

The requirement for uniformly distributed columns presents a particular difficulty

for the PLS2 simulation. While normally distributed columns maintain their distribu-

tion under the linear transforms required to set specific correlations and collinearity,

in general uniform distributed columns do not maintain their distribution under linear

transforms. Unlike the lognormal and sinh transforms used for the regressor simula-

tion samples, no closed form for a uniform transform is known that also preserves the

covariance. Hotelling and Pabst [52] give a transform that preserves the Spearman cor-

relation. The covariance matrix and (Pearson) correlation matrix are the same apart

from the scaling of the columns. In practice, the Pearson and Spearman correlation

are generally quite close, but there is no direct relation between the two as Spearman

correlation is a nonparametric method based on rank. More complex methods that

preserve the Pearson correlation or covariance are known such as the iterative method

of Li and Hammond[67]. While the set covariance generates the samples, the actual

sample covariance for each sample is used in the analysis. So small differences due

to from Hotelling Pabst transformation method make no practical difference for the

simulation.

Transformations for Multivariate Uniform Samples

Let Σ be a covariance matrix from standardised random variables with normal

distributions. As these variables are standardised, the elements of Σ are also the cor-

relation coefficients.

If Σ are the Spearman correlation coefficients between the standardised random

variables, then from Hotelling and Pabst [52].

Σadj = 2sin(
π

6
Σ) (8.24)

Z = N (0,Σadj
i,j ) (8.25)

U = Φ(Z) (8.26)

where the columns of U are uniformly distributed with Pearson correlation coefficients

Σ.

The only problem with this transformation is that it starts from the Spearman not
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Pearson correlation coefficients that could then be directly related to the covariance.

But it can be shown[19] that the maximum absolute difference between Pearson and

Spearman correlation coefficients after the transformation is less than 0.02.

8.2.5 The Response Factors in the Simulation

PIR - The Pattern in the Internal Regression

The PIR factor in the simulation determines the ”Pattern in the Internal Regres-

sion”, which is essentially a weighting factor to determine how the response is related

to the high variance and low variance regressors.

The vector b can be thought of as a weighting for the columns of R that fix the

response Y. In the simulation, the columns of R are ordered from high variance to low

variance. So high values at the start of the vector b are related to these high variance

columns. In effect, this is changing the relation of the response from highly correlated

regressors towards less highly correlated regressors. A 3 level weighting scheme has

been used, based on a linear weighting with sum(abs(b))=A∗ and sum(b)=0.

For High level of PIR, the internal coefficients b are weighted towards the high

variance regressor columns.

bseqi = (A∗ + 1− i)(−1)(i−1) (8.27)

bseq = bseq −mean(bseq) (8.28)

bscale = A∗/sum(abs(bseq)) (8.29)

HighScalePIR = bscale ∗ bseq (8.30)

So for A∗ = 4 then PIR = [1.4,−1.4, 0.6,−0.6] and sum is zero.

For Medium level of PIR, equal weights given to all regressor columns.

bseqi = (−1)i (8.31)

MediumScalePIR = bseq −mean(bseq) (8.32)

(8.33)



CHAPTER 8. A PLS SIMULATION STUDY 109

So for A∗ = 4 then PIR = [1,−1, 1,−1] and sum is zero.

For Low level of PIR, the internal coefficients b are weighted against the high

variance regressor columns.

bseqi = (i)(−1)(i−1) (8.34)

bseq = bseq −mean(bseq) (8.35)

bscale = A∗/sum(abs(bseq)) (8.36)

LowScalePIR = bscale× bseq (8.37)

So for A∗ = 4 then PIR = [−0.6, 0.6,−1.4, 1.4] and sum is zero.

For the PLS1 simulation, the elements of the internal regression coefficient vector

b are ordered by scale so that the PIR (Pattern in Internal Regression) controls how

the response is related to the highly correlated or weakly correlated regressors. The

same basic method has been used for PLS2 where the rows of the internal regression

coefficient matrix B are ordered by absolute size with or against the highly correlated

regressors.

V DRY - The Response Variance Decay Rate

This is only applicable for the PLS2 simulation and is analogous to V DRX , the

Regressor Variance Decay Rate. V DRY determines the decay rate in the eigenvalues

of the response matrix Y, to fix the degree of correlation between the factors. If all m

responses were in a full factorial plan then they would have equal variances of 1. So

the variances are scaled so that their sum is always equal to m. Just as V DRX , V DRY

is arranged in the simulation plan with three levels of decay rate fast, medium and slow.

Medium decay is linear decay over m terms with sum m.

vscale = 2m/(m(m+ 1))) (8.38)

MediumScaleV DRY = vscale× (m : 1) (8.39)

So with m = 4 response variables, vscale = 0.4 and the medium decay rate scaling

factors are [1.6, 1.2, 0.8, 0.4].
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Fast and slow decay rate mean an increasing or decreasing change in variances

between latent variables, so are generated from geometric series that sum to m. For

the Fast decay rate

vscale = 2m/(3m − 1) (8.40)

FastScaleV DRY = vscale× 3(m−1:0) (8.41)

So with m = 4 response variables again, vscale = 0.1 and the fast decay rate

scaling factors are [2.7, 0.9, 0.3, 0.1] which sum to 4.

For the Slow decay rate

vseqi = 3(m−1) − Σi=m−2
i=0 3i (8.42)

vscalej = k/Σi=j
i=1vseqi (8.43)

SlowScaleV DRY = vscale× 3(m−1:0) (8.44)

So with m = 4 response variables again, vseq = [27, 26, 23, 14] and vscale = 0.0444

and the fast decay rate scaling factors are [1.2000, 1.1556, 1.0222, 0.6222] which sum

to 4. These Response Variance Decay Rates are compared as Figure 8.2.5.
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Figure 8.2: Response Variance Decays Rates for 4 Responses
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RCF - The Response Correlation Factor

This is only applicable for the PLS2 simulation. The RCF is a three level categor-

ical factor in the simulation that determines the degree of the correlation within the

internal coefficient covariance matrix. For High levels of RCF , the off diagonal ele-

ments of the internal coefficient covariance matrix are uniformly distributed between

-0.75 and +0.75. For Medium levels of RCF the elements are distributed between

-0.50 and +0.50 and between -0.25 and +0.25 for Low levels of RCF .

The diagonal elements of the internal coefficient matrix are the scaling vector

determined by the V DRY factor. While this is sufficient to form a symmetric matrix

it is not necessarily positive definite, so the nearest positive definite matrix used for

the simulation sample calculation.

s - The Response matrix rank

This is only applicable for the PLS2 simulation. The positive definite matrix from

the RCF calculation is of full rank. This is reduced to rank s by SVD transforms. Let

Udiag(S)VT = SV D(Bcov) (8.45)

where Bcov is the full rank covariance matrix of the internal correlation coefficients of

dimension m ×m. To reduce the rank from m to s, set the elements of the vector S
from s+ 1 to m to zero. Then

B
′

cov = Udiag(S)VT (8.46)

and B
′
cov is an approximation to the original covariance matrix with rank s.

SNRY - The Response Error Levels

For PLS1 simply added to the response vector. For PLS2 structured identically to

the Regressor Error Levels from equations 8.17 and 8.18 so that the response errors

are also independent and identically distributed.

8.2.6 Summary of the Simulation Calculation

Starting from the regressor factors n,k,A∗,V DRX ,SNRX and Distribution.
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• Calculate the regressor variance decay scaling vector v from k, A∗ and the cate-

gorical factor V DRX , using equations 8.10 to 8.16.

• Generate a sample matrix R with n rows and A∗ independent columns of the

specified distribution. The variance of the columns of R is given by v.

For a sample matrix R with columns with normal distributions, let

R = (N)k(0,Σ = diag(V DR)) (8.47)

where (N)k is the multivariate normal distribution.

For a sample matrix R with columns with lognormal distributions, let

R = (LN)k(0,Σ = diag(V DR)) (8.48)

where (LN)k is defined by equations 8.1 to 8.3.

For a sample matrix R with columns with sinh distributions, let

R = (Sinh)k(0,Σ = diag(V DR)) (8.49)

where (Sinh)k is defined by equations 8.4 to 8.9.

• Generate a random orthonormal matrix η with k rows and A∗ columns. There

are various ways to do this. The method used in the simulation is to calculate

the covariance af a matrix of k uniformly distributed columns. The first A∗

eigenvectors of this covariance matrix are a random orthonormal matrix of k

rows by k columns.

• The base regressor matrix Xbase is then RηT

• Calculate the regressor random error level σX from the overall variance the el-

ements of Xbase and the specified signal to noise ratio SNRX , using equation

8.17.
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• Calculate the regressor random error values EX with n columns and k columns

as independent multivariate normal samples with standard deviation σX , using

equation 8.18.

• Calculate the sample regressor matrix Xsample from Xbase + EX .

For PLS1 univariate responses

• Using the Pattern in the Internal Regression factor PIR, calculate the scaling

factor vector using equations 8.27 to 8.37.

• From A∗ and PIR calculate the internal regression vector b. For PLS1 the

internal regression vector is the PIR scaling factor from equations 8.27 to 8.37.

• Rescale b so that the responses are in the range -1 to +1.

• Calculate the base response vector ybase from Xbaseb.

For PLS2 multivariate responses

• Calculate the response variance decay scaling vector v from m and the categorical

factor V DRY using equations 8.38 to 8.44.

• Calculate the range of the elements of the coefficient covariance matrix from

RCF as described in section 8.2.5.

• Generate a sample coefficient covariance matrix Bcov of dimension m ×m with

the off-diagonal elements uniformly distributed within the specified range and

diagonal elements v from V DRY .

• Find the nearest positive definitive matrix to Bcov. The simulation uses the

nearPD function in the R Matrix package.

• Calculate the corresponding correlation matrix Bcorr. This is a straightforward

scaling.

• Transform Bcorr for generating uniform variates using equations 8.24 to 8.26.

• Generate a sample matrix B of size k rows by m columns with uniformly dis-

tributed elements and correlation matrix Bcorr.
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• Scale the range of the uniformly distributed columns of B to match the standard

deviations associated with Bcov.

• Reduce rank of B from m to s by singular value decomposition, equations 8.45

to 8.46.

• Sort the rows of B according to the PIR factor. The actual scaling vector used

for the row sort is calculated from equations 8.27 to 8.37.

• Calculate the base response matrix Ybase from XbaseB.

• Calculate the response random error level σY from the overall variance the ele-

ments of Ybase and the specified signal to noise ratio SNRY .

• Calculate the regressor random error values EY with n columns and m columns

as independent multivariate normal samples with standard deviation σY

• Calculate the sample regressor matrix Ysample from Ybase + EY .

8.2.7 Summary of the Properties of the Internal Regression

Coefficients and Responses

The properties of the internal regression coefficients B are then

• Dimensions A∗ ×m

• Column means are zero.

• The columns are uniformly distributed.

• Rank s in the range 1 to min(A∗,m)

• The covariance is approximately Bcov.

The properties of the response matrix Y are then

• Dimensions n×m

• Column means are zero.

• The distribution of the columns of Y are that of the columns of X.
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• Rank s in the range 1 to min(A∗,m)

• The columns of Y are all in the columns space of X.

8.3 Experimental Designs for the Simulation

A thorough assessment of the performance of latent variable selection methods or

more generally the overall performance of PLS as an algorithm implies that any partic-

ular sensitivity to any design factor can be identified. The literature on PLS does not

generally identify any specific sensitivity. But it is quite possible that some combina-

tions of factors in PLS could have particularly advantageous or adverse effects that are

not generally recognised. If so, these should be apparent as interactions between design

factors. Consequently, the details of the experimental design are important here as

the experimental design should be particularly powerful for identifying interactions.

If this was a physical experiment response surface designs would be appropriate as

they can be in some way optimal for both main linear effects and quadratic curvature.

Computer experiment have no issues with trial blocking or replication that are so im-

portant for physical experiments, so space filling designs are often used as they are

particularly efficient at identifying the nature of response curvature. Consequently,

an combination of response surface and space filling designs called a hybrid design by

Johnson, Montgomery and Kennedy[56] has been used for this simulation.

8.3.1 The Simulation Factors and Ranges

From the previous section on the simulation methods, it follows that there are 8

design factors in the PLS1 simulation and an additional 4 to characterise the response

the response for PLS2. These factors and the ranges selected for this simulation are

shown as Table 8.1.

8.3.2 Design Generation

As PLS1 and PLS2 involve different sets of factors and generally different algorithms,

these different cases have been studied in two separate but comparable simulations. In

both PLS1 and PLS2 simulations, portrait and mixture datasets have the same factors
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Factor Simulation Minimum Maximum
1 Number of Observations, n PLS1+PLS2 25 100
2 Number of Regressors, k PLS1+PLS2 6 512

Portrait and Mixture PLS1+PLS2 6 25
Landscape PLS1+PLS2 25 512

3 Number of Responses, m PLS2 4 15
4 ”True” number of Latent Variables, A∗ PLS1+PLS2 2 9
5 Regressor Signal-to-Noise ratio, SNRX PLS1+PLS2 10 100
6 Response Signal-to-Noise ratio, SNRY PLS2 10 100
7 Regressor Variance Decay Rate, V DRX PLS1+PLS2 Slow Medium Fast
8 Response Variance Decay Rate, V DRY PLS2 Slow Medium Fast
9 Pattern in Internal Regression PLS1+PLS2 Low Medium High
10 Data Distribution PLS1+PLS2 Normal LogNormal Sinh
11 Response Matrix Rank, s PLS2 2 9
12 Response Correlation Factor, RCF PLS2 Slow Medium Fast

Table 8.1: PLS Simulation Design Factors and Ranges

but different ranges to Landscape datasets so these variations have been combined into

the same simulation.

The simulation designs were both developed by combining and augmenting a series

of designs for specific characteristics of datasets used for PLS models. Apart from the

number of regressors, the space for the the portrait design is enclosed within that

of the landscape dataset. Consequently, it was arranged that the portrait design be

developed first then augmented to a landscape design so that the simulation datasets

could be analysed separately or in combination.

The design started with an algorithmic D-optimal (quadratic) response surface

design over the factors and ranges shown in Table 8.1. This base design was intended

to cover the portrait design space and not landscape so was constrained to n > k + 1.

One other constraint was applied to the PLS1 design and two further for PLS2 to

ensure that all trials were logically consistent for multivariate datasets.

For PLS1

n > k + 1 (8.50)

A∗ ≤ k (8.51)

(8.52)
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Additional constraints for PLS2

s ≤ m (8.53)

s ≤ A∗ (8.54)

For the PLS1 designs with 8 factors, there are 69 terms in the full model and it

was found that a 100 trial design could give a design with high G-efficiency but was

not that strong for prediction variance or coefficient power. For the PLS2 designs with

12 factors, there are 156 terms in the full model and it was found that 200 trials were

required to give a comparably efficient design.

The second stage was to add an independent space filling design with the same

number of trials over the same portrait/mixture design space. These space filling de-

signs were also subject to the relevant constraints in equations 8.50 to 8.54. These

space filling designs were generated as latin hypercube designs across the entire design

space by exclusion sampling, with the total number of trials adjusted by trial and

error until the required number of trials was achieved within the constrained design

region. The categorical factors in the design were set by mapping the levels to equal

regions in the design space. As the response surface designs were generated to a D-

optimal criterion, all the trial points were located at corners or on edges of the design

space. Consequently, adding the space filling trials that are all inside the design space

boundaries makes no change to the design space determinant. So it makes no practi-

cal difference if the D-optimal response surface design is generated first or augmented

from the space filling design.

The third stage was to extend the design space to higher numbers of regressors to

simulate landscape datasets. It was found that an additional 50 trials was sufficient for

PLS1 and 100 additional trails were required for PLS2. Finally an additional number

of trials equal to the D-optimal augmentation were included as a space filling design

over the landscape extension region. This strategy produced a 300 trial design for

PLS1 and a 600 trial design for PLS2 that were strong in both landscape and portrait

spaces. Table 8.2 shows the final characteristics of the designs have good prediction

variance. and coefficient resolution power. During the sequential development of these
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designs, it is apparent that the numerical G-efficiency and D-efficiency of the designs

decreased. As prediction variance and coefficient power was increasing, this reduction

in efficiency must be due to more trials being included in the design than are strictly

necessary.

Design n Prediction Var G-Efficiency D-efficiency
Max Avg

PLS1 300 0.65 0.19 69.1% 54.2%
PLS2 600 0.67 0.24 72.0% 49.6%

Table 8.2: PLS1 and PLS2 Design Efficiency Summary

As each design trial setting is used to generate a randomised PLS model, every

design trial was replicated so that an assessment of within-trial variation was available

for the analysis. Thirty replicates were used for every trial PLS1 trial, giving 9000

samples in the PLS1 simulation. Twenty replicates were used for every PLS2 trial,

giving 12000 samples in the PLS2 simulation.

The simulation methods described previously in section 8.2.6 were coded in R with

the pls model fitting from the R pls package[82]. This uses the kernel PLS method

which is numerically equivalent to NIPALS. Multiple computers with concurrent R

sessions were used for the simulation calculations. The total computing time was

equivalent to around 8,500 hours for a single R session.

8.3.3 Validating the Simulation Factor Settings to the Exam-

ple Datasets

The simulation designs have been set up with some factor levels apparently fixed

arbitarily or simply what might appear to be reasonable values. Tables 8.3 and 8.4

compare the parameters of the example datasets discussed in previous chapters to the

ranges of those parameters that occur in the simulation samples. These statistics

for the example datasets are from centred and scaled versions. Statistics for the

simulation samples are for fit datasets including added random errors as these are

equivalent scaling to the simulation datasets.. Clearly it is not possible to determine
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absolutely parameters such as variance decay rate or signal to noise ratio for the

example datasets. But the set of parameters chosen for these comparisons are closely

related to and characterise the multivariate structure of both example and simulation

datasets.

WineAroma Gasoline WasteGlass Simulation Samples
5% Median 95%

Quartile Quartile
X Median Correlation Coefficient 0.19 0.77 0.05 0.17 0.40 0.76
X ADTest Fail Rate 47% 14% 100% 0% 30% 100%
PC1 X Variation 24% 35% 17% 8% 19% 38%
nPCs for 95% X Variation 11 29 10 6 18 87
Median Skewness X Columns 0.82 0.19 1.95 -2.29 -0.07 0.67
Median Kurtosis X Columns 3.40 2.99 14.30 2.55 3.89 18.26
Y ADTest P-value 0.45 pass 3.86e-6 fail 0.048 (just) fail 0.00 0.06 0.88
Response Skewness 0.68 -0.61 0.97 -2.85 0.00 2.69
Response Kurtosis 3.05 2.13 4.06 2.29 4.23 27.96

Table 8.3: PLS1 Simulation and Example Datasets Matrix Comparison

OliveOil Biscuits Abrasives Simulation Samples
5% Median 95%

Quartile Quartile
X Median Correlation Coefficient 0.54 0.41 0.18 0.14 0.33 0.72
X ADTest Fail Rate 80% 22% 0% 0% 17.6% 100.0%
PC1 X Variation 59% 16% 24% 7% 17% 35%
nPCs for 95% X Variation 3 34 6 4 18 90
Median Skewness X Columns 0.62 0.16 0.39 -0.99 -0.04 0.26
Median Kurtosis X Columns 2.48 2.71 1.77 2.65 3.44 10.24
Y Median Correlation Coefficient 0.60 0.80 0.54 0.33 0.59 0.90
Y ADTest Fail Rate 50% 0% 29% 0% 4% 66%
PC1 Y Variation 64% 71% 56% 25% 42% 65%
nPCs for 95% Y Variation 3 2 8 3 8 13
Median Skewness Y Columns -0.64 -0.08 -0.75 -1.02 0.01 1.93
Median Kurtosis Y Columns 2.05 1.95 4.56 2.48 3.74 22.01

Table 8.4: PLS2 Simulation and Example Datasets Matrix Comparison

From Tables 8.3 and 8.4 it is apparent that all the characteristic parameters of the

example datasets are either within or not far outside of the 5%-95% interval of the

simulation samples. Most of the exceptions concern the skewness and kurtosis. There

is a suggestion from these tables that response skewness and kurtosis is more closely

related to regressor matrix values in the PLS1 than PLS2 datasets.

In the simulation, the distribution factor for the samples has been set through a se-

lection of normal, lognormal or sinh distribution for the regressor elements rather than

specifically for skewness and kurtosis. Figures 8.3 and 8.4 shows how these categorical

distribution factors in the simulation map to specific regions in skewness-kurtosis space.
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Figure 8.3: PLS1 Skewness vs. Kurtosis Plots
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Figure 8.4: PLS2 Skewness vs. Kurtosis Plots
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Consequently, it is reasonable to conclude that the distribution factor in the sim-

ulation does fulfil its objective of introducing systematic variation into the simulation

distributions. If the categorical distribution factor is significant in the subsequent

analysis then this is (only) evidence that PLS is sensitive to some aspect of regressor

or response distribution. Identifying which aspects of the distribution that cause this

sensitivity in PLS is a secondary issue and may prove problematic from from this sim-

ulation data set. From this, it is concluded that the way a small part of the example

dataset skewness and kurtosis characteristics are outside of the simulation ranges is

not important. Overall, it is concluded that the two experimental designs cover design

spaces that are typical of PLS datasets such as the example datasets.

8.4 Simulation Analysis Methods

In order to assess the structure of the simulation data, the analysis starts with a

series of plots to show the structure is related to the number of latent variables in the

simulation samples. In the following sections on latent variable selection method an

analysis is made to determine if the performance of any of these methods is particularly

sensitive to some aspect of the simulation sample structure. The regression analysis is

more concerned with comparing the relative size of the effects of the design parameters,

not so much whether the probability of any small effect may be zero or not. With

a strong design and many observations, even small changes could have significant

p-values.

8.5 Simulation Data Model Fit Analysis

As described previously, each simulation sample has Xbase and Ybase matrices that

are a solution to the PLS model for the specific characteristics of the sample such as

number of observations, number of regressor variables and so on. This is a solution to

the PLS model in the sense that both X and Y residuals are numerically zero at the

number of latent variables specified for the sample, A∗. Clearly, these residuals will

not be zero for PLS models with these matrices and other numbers of latent variables.
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In these base PLS models, the Xbase and Ybase matrices have not been scaled. Scaling

does not stop these matrices being a PLS solution for A∗ latent variables, but would

change the correlation structures that have been set up in the simulation samples.

As an overall summary for the simulation, box plots of the residuals RMSE and

the variance and bias components for all simulation trials are shown in Figures 8.5 to

8.12 on pages 124 to 131. In this analysis each simulation trial has a specific number of

latent variables fixed in the base model. To generate these plots, every sample dataset

from each of the simulation trials has been fitted with a sequence of numbers of la-

tent variables to determine how latent variable selection may influence model fit. The

pivotal nature of the number of latent variables in the base model is clearly evident

in most of these plots. This difference between the number of latent variables in the

base model and the number of latent variables in the fitted model is shown to be an

important factor in the analysis reported later in this chapter.

For the PLS1 simulation, box plots of the residuals RMSE and the variance and

bias components for all simulation trials are shown in Figures 8.5 and 8.6. Residuals

plots from these base matrices for individual simulation trials all show similar patterns

before and after the A∗ number of latent variables. So the residuals in these figures

are plotted against the difference in LVs from the sample A∗. With 3000 data items,

the plots in Figure 8.5 are visually dominated by the outliers so Figure 8.6 is the same

data plotted on a log scale.

The observations from these plots are that the RMSE error levels are low for base

models with numbers of latent variables less than the solution value A∗. Over fitted

models with numbers of latent variables greater than A∗ show increasing median of

Xbase residuals and approximately constant median of Ybase residuals with increasing

latent variables. The linear plots in Figure 8.5 show that over fitting these base models

can lead to very high levels of residuals. Residual standard deviation and bias compo-

nents of RMSE both show similar patterns to RMSE. The last two plots in Figure 8.6

show the response residual bias on a log scale, it is clear here that bias prior to Astar

is minimal and jumps after A∗.
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For each simulation sample, a normally distributed random error is added to each

of the base matrices Xbase and Ybase. Analogous linear and log plots for model fits are

shown as Figures 8.7 and 8.8. It is immediately apparent that the pivotal nature of

A∗ in the base model plots has changed. Comparable plots for the PLS2 simulation

are shown as Figures 8.10 to 8.12.

Many of the individual plots in Figures 8.5 to 8.12 show strong patterns in the

outliers. For the PLS1 simulation, these patterns are most obvious in the lines of

outliers in the Base RMSE X and Base Resid SD X plots in the left hand column of

Figure 8.5. In the Base RMSE X plot, the three highest points at each latent variable

number greater than A∗ refer to the same three trials in the simulation. The same

trials are outliers in the Base Resid SD X plot but are not outliers in the Base Resid

Bias X plot. These three trials all have 512 regressors, 2 latent variables in the base

models and distributions based on the sinh transform. Two further trials have the

same combination of levels for these three factors but appear to have more typical

levels of residuals.

These three outlier trials apparent in the regressor base residual have more typical

residuals in the PLS1 regressor fitted residuals plots shown in the left hand column of

Figure 8.7. The two lines of outliers apparent for latent variables greater than A∗ in

the Fit RMSE X plot and the Fit Resid X plot refer to two trials that both have low

PIR and lognormal distributions. These two trials are not outliers in the Fit Resid

Bias X plot. Thirty five other trials in the simulation have the same combination of

levels for these two factors but have more typical levels of residuals.

Any patterns in the outliers are not so apparent in the PLS1 response residuals

plots in the right hand columns of Figures 8.5 to 8.8. Only the base response residual

plots in Figure 8.5 shows any strong outliers where all the maximum points in three

Base RMSE Y, Base Resid SD Y and Base Resid Bias Y plots correspond to the same

trial. This trial is otherwise typical and does not appear as an outlier in any of the

regressor plots.
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Figure 8.5: PLS1 Base Model Residuals against LV Discrepancy
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Figure 8.6: PLS1 Base Model log10 Residuals against LV Discrepancy
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Figure 8.7: PLS1 Fitted Model Residuals against LV Discrepancy
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Figure 8.8: PLS1Fitted Model log Residuals against LV Discrepancy
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Figure 8.9: PLS2 Base Model Residuals against LV Discrepancy
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Figure 8.10: PLS2 Base Model log Residuals against LV Discrepancy
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Figure 8.11: PLS2 Fitted Model Residuals against LV Discrepancy
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Figure 8.12: PLS2 Fitted Model log Residuals against LV Discrepancy
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Lines of residual outliers are also apparent in the PLS2 regressor base residuals

plots in the left hand column of Figure 8.9. The top three lines of outliers in the Base

RMSE X and Base Resid SD X plots correspond to the same three simulation trials,

but these three trials do not appear as outliers in the Base Resid Bias X plot. The top

two outliers trials here have 512 regressor variables and 2 latent variables in the base

models just as the PLS1 regressor base outliers, but the third highest outlier in this

PLS2 plot has only 25 regressor variables. All three outliers in this PLS2 plot have 2

latent variables in the base models and response matrices with 4 variables of rank 2.

Out of all 600 simulation trails, 41 share the same levels for these three factors but do

not appear to be atypical in their regressor residuals.

The PLS2 regressor residuals fit plots on the left hand column of Figure 8.11 and

all three sets of PLS2 response residuals plots in the right hand columns of Figures

8.9 to 8.12 do not show any systematic patterns involving more than one trial. None

of the trials that are are maximum value outliers in these plots are also outliers in any

of the PLS2 regressor base residuals plots.

From this inspection of the patterns in the residuals it is noted that while the

outliers may have some factor settings in common, other simulation trials with the

same factor settings do not appear as outliers. Consequently, these patterns in the

outliers do not show any diagnostic potential for subsequent analysis. This may be a

consequence of the statistically balanced design used for the simulation plan.

PLS1 PLS2
Fit Statistic Base Fit Base Fit

nLV < A∗ RMSEX , ResidSDX ≈ 0 Decreasing ≈ 0 Decreasing
RMSEY , ResidSDY Decreasing Decreasing Decreasing Decreasing
ResidualBiasX ≈ 0 Very Low ≈ 0 Very Low
ResidualBiasY ≈ 0 Constant ≈ 0 Constant

nLV = A∗ RMSEX , ResidSDX Clear minimum Minimum at A∗ + 1? No clear Minimum No clear minimum
RMSEY , ResidSDY Clear minimum No clear minimum No clear Minimum No clear minimum
ResidualBiasX ≈ 0 Very Low ≈ 0 Very Low
ResidualBiasy ≈ 0 Constant ≈ 0 Constant

nLV > A∗ RMSEX , ResidSDX Increasing Decreasing Increasing Decreasing
RMSEY , ResidSDY ≈ Constant Decreasing ≈ Constant Decreasing
ResidualBiasX Increasing Very Low Increasing Very Low
ResidualBiasY ≈ Constant Very Low ≈ Constant Very Low

Table 8.5: Data Inspection Summary Table
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The data inspection summary Table 8.5 shows that adding random errors to the

regressors and responses makes selecting a specific number of latent variables for the

best fit much less clear. While a minimum in the fit errors is more or less apparent in

the PLS1 simulation, no clear fit error minimum appears in the PLS2 simulation. In

Figure 8.12 there is a suggestion that the variation in the fit errors may change around

A∗ latent variables, but this is the only indication of an optimal latent variable model

in the PLS2 simulation data inspection of these residuals plots.

8.6 Latent Variable Selection Methods Analysis

From Tables 8.6 and 8.7 for PLS1 and PLS2 simulations, it is apparent that all the

latent variable selection methods have their selection maximum at nLV=A∗ for both

PLS1 and PLS2. It also appears that all these methods have a tendency towards se-

lecting numbers of latent variables higher than A∗. This tendency towards overfitting

is stronger in the PLS1 datasets than PLS2 and for the permutation and information

criteria than the crossvalidation selection methods.

nLV-A∗ 1st Min RMSECV abs Min RMSECV Permulations Info’ Criteria BIC LV Occurence
-10 0 6 0 84 55.3%
-9 1 20 0 116 62.0%
-8 5 14 0 152 75.0%
-7 4 29 0 171 79.0%
-6 8 62 1 393 100.0%
-5 6 34 1 362 100.0%
-4 17 45 3 402 100.0%
-3 41 152 7 501 100.0%
-2 133 202 27 438 100.0%
-1 419 529 421 373 100.0%

LV=A∗ 2426 2455 2074 1521 100.0%
1 1341 1287 1110 1040 100.0%
2 1007 947 1033 777 76.7%
3 961 904 923 652 70.0%
4 948 897 851 715 58.0%
5 714 649 731 453 44.7%
6 608 523 608 399 38.0%
7 240 205 671 221 25.0%
8 25 15 479 20 21.0%
9 0 0 35 0 0.0%
10 0 0 0 0 0.0%

nLV < A∗ 7.1% 12.2% 5.1% 34.0%
nLV = A∗ 27.2% 27.4% 23.1% 17.3%
nLV > A∗ 65.6% 60.5% 71.8% 48.7%

Table 8.6: PLS1 Simulation Latent Variable Selection Summary Table
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nLV-A∗ 1st Min RMSECV abs Min RMSECV Permulations Info’ Criteria BIC LV Occurence
-10 1 16 8 20 29.7%
-9 1 18 21 11 43.0%
-8 3 34 57 17 58.7%
-7 5 39 44 10 70.5%
-6 12 137 83 51 100.0%
-5 17 91 104 39 100.0%
-4 31 115 100 51 100.0%
-3 84 194 104 238 100.0%
-2 242 362 133 554 100.0%
-1 977 1012 240 1357 100.0%

LV=A∗ 4614 4347 2543 955 100.0%
1 1112 1364 709 1377 100.0%
2 820 806 844 983 84.3%
3 788 734 1014 1017 84.2%
4 671 627 1107 1276 80.5%
5 591 500 978 986 70.3%
6 309 242 880 451 57.0%
7 146 97 745 453 41.3%
8 67 39 666 926 29.5%
9 0 0 56 0 0.0%
10 0 0 0 0 0.0%

nLV < A∗ 13.1% 18.7% 8.6% 21.8%
nLV = A∗ 44.0% 40.3% 24.4% 8.9%
nLV > A∗ 42.9% 40.9% 67.1% 69.3%

e

Table 8.7: PLS2 Simulation Latent Variable Selection Summary Table

In the following analysis, the tendency for overfitting has been analysed by using

the difference between the sample base ”exact solution” number of latent variables

A∗ and the best number of latent variables selected in any other way. This gives a

comparable basis for comparing all the simulation samples for overfitting. The over-

fitting tendency as this difference in the numbers of latent variables is then treated as

an ordinal response in a logistic regression analysis that includes all the factors in the

simulation including A∗. So (functions of) A∗ appear are in both the model regres-

sors and response and A∗ generally reported as a strong factor in the regression. An

alternative approach would be to use A∗ only as a regressor and use the best number

of latent variables directly as the response. In this approach A∗ appears as a very

strong factor that tends to reduce the resolution of the other factors. Consequently,

the difference between the latent variable numbers has been used as the response. To

be clear, the reason why A∗ is often reported as a strong factor in these regressions

is because it effects overfitting and is not an artefact of the way it has been used to

bring the response to a comparable basis.

This difference in the latent variable numbers is not a continuous response, it is at

integer levels and is ordered. Consequently, the regression analysis was ordinal logistic
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using the ”‘ordinal”’ R package [12]. The purpose of this analysis is to compare the

relative strengths of all the simulation factors on the tendency to overfitting. Conse-

quently prior to the analysis, all the continuous simulation factors were normalised to

bring their effects reported by the regression onto a more comparable basis with the

categorical factors. So the regression coefficients represent the relative strength of each

factor. Rescaling the continuous factors was not done prior to the PLS model build-

ing in the simulation, because this would change the covariance and cross-covariance

within and between regressor and response matrices. The normalisation here has been

done after the PLS model building so can have no influence on the simulation models.

The ordinal logistic regressions on each of the latent variable selection criteria were run

in two stages. First a factor screening model with all factors as linear terms, followed

by a best fit quadratic model generated by forward stepwise selection from all possible

factor combinations up to second order. BIC was used as the stopping rule for the

stepwise regression. Details of all these ordinal logistic regression models and their

confidence interval calculations for the latent variable methods overfitting are shown

in Appendix B.

There is no direct analog of the R2 coefficient of determination from multiple re-

gression in logistic regression.A simple alternative that is applicable to ordinal data

is McFadden’s pseudo R2[83] which is defined from a comparison of the log likelihood

of the full model against a models with the intercept term only. The levels of overall

model fit for these ordinal logistic model fits are compared in Table 8.8.

R2
McFadden = 1− log(Lfull)

log(Lintercept)
(8.55)

Model RMSECV 1st Min. RMSECV Abs Min Permutations Info Criteria BIC
PLS1 Linear 0.4067 0.2723 0.4273 0.1244
PLS1 Quadratic 0.4334 0.2901 0.4792 0.1618
PLS2 Linear 0.1916 0.1417 0.0925 0.2745
PLS2 Quadratic 0.2678 0.2068 0.1100 0.3729

Table 8.8: Latent Variable Selection Methods Logistic Model Fit Summary
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Low R2 values are a characteristic of logistic regressions, so the values shown in

this table do not indicate particularly poor models. The observation here concerns the

small differences between the fits for linear screening models and stepwise quadratic

models, which indicates that the added higher order terms do not have strong effects.

The adverse behaviour of stepwise regression, in particular the tendency to overfit

are well known. See Harrell[45] for example. Even though stepwise methods tend to

overfit, no strong second order terms appear in the models. Consequently, the use of

stepwise regression here appears to be reasonable.

Due to the large number of trials in the simulation, every term with even a small

effect in the regressions is likely to have a very low p-value and so appear as highly

significant in the regression tables. In this analysis, the strength of factor effects in

logistic models have been assessed using their odd’s ratio or directly from the coeffi-

cients which are the log of the odd’s ratios. The effect sizes of the simulation factors for

the overfitting tendency for the main four latent variable selection methods from the

linear screening models are ranked in Table 8.9. The ranking here is from the absolute

value of the regression coefficient. Comparison plots for these coefficients are shown as

Figure 8.13. In these plots the coefficients from the linear screening models are plotted

directly. The effects for the quadratic stepwise models are represented by the values of

the linear factors only. As the continuous factors in these regressions have zero means,

any interaction terms will have no contribution to the response at the mean point of

the dataset. So the subset of linear terms from the quadratic model approximates

the gradient of the response surface at the mean point of the dataset. Points in these

plots represent the coefficient estimates with error bars for their 95% confidence inter-

vals. The close match between linear screening and quadratic stepwise points in these

plots is further evidence that the effects of any second order effects must be quite small.

The conclusion from the overfitting effects Table 8.9 is that the crossvalidation,

permutation and information criteria latent variable selection methods have different

sensitivities to the structure of the simulation samples. The appearance of High A∗ and

Slow or Medium V DRX is interpreted as measures of complexity of the correlations

and collinearity within the simulation samples. So finding an overfitting tendency to
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Figure 8.13: Latent Variable Selection Methods Overfitting Effects Plots
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Rank RMSECV 1st Min. RMSECV Abs Min Permutations Info’ Criteria BIC
PLS1 1 High A∗ High A∗ High A∗ High A∗

2 Low PIR[Medium] Low PIR[Medium] High V DRX [Low] Low k
3 High V DRX [Low] Low PIR[Low] High V DRX [Medium] Low PIR[Medium]
4 Low PIR[Low] High V DRX [Low] Low k Low PIR[Low]
5 Low SNRX Low SNRX Low PIR[Low] High Nobs
6 Low SNRY Low k Low Nobs Low V DRX [Medium]
7 Low k Low SNRY Low PIR[Medium] Low SNRX

8 High Dist’[Normal] High Dist’[Normal] Low SNRY High V DRX [Low]
9 Low Nobs Low V DRX [Medium] Low SNRX Low SNRY

10 Low V DRX [Medium] Low Dist’[logNormal] High Dist’[logNormal] High Dist’[logNormal]
11 Low Dist’[logNormal] Low Nobs High Dist’[Normal] Low Dist’[Normal]

PLS2 1 Low V DRX [Slow] Low V DRX [Slow] High A∗ High A∗

2 High A∗ Low V DRX [Medium] Low PIR[Slow] Low Nobs
3 Low V DRX [Medium] High A∗ Low Dist’[Normal] High m
4 Low s Low k Low Dist’[Sinh] High PIR[medium]
5 Low V DRY [Slow] Low s High V DRX [Medium] Low Dist’[Normal]
6 High RCF[Medium] Low V DRY [Slow] Low V DRX [Slow] High k
7 Low k High Dist’[Normal] Low k Low Dist’[Sinh]
8 High RCF[Slow] High RCF[Medium] Low Nobs High V DRX [Slow]
9 Low PIR[Slow] Low PIR[Slow] Low s Low SNRX

10 High PIR[medium] High Dist’[Sinh] Low V DRY [Slow] High V DRX [Medium]
11 Low Nobs High RCF[Slow] High PIR[medium] High s
12 Low SNRX Low SNRY High m High PIR[Slow]
13 Low SNRY High Nobs High RCF[Slow] High RCF[Medium]
14 Low Dist’[Sinh] High PIR[medium] Low SNRY Low V DRY [Slow]
15 Low V DRY [Medium] Low SNRX High V DRY [Medium] HighV DRY [Medium]
16 Low Dist’[Normal] Low V DRY [Medium] Low SNRX High SNRY

17 Low m Low m Low RCF[Medium] Low RCF[Slow]

Table 8.9: Latent Variable Selection Methods Overfitting Effects Summary

be associated with multivariate complexity might be expected. Less apparent is that

regressor and response signal to noise ratios SNRX and SNRY do not appear as strong

factors for overfitting. So the conclusion must be that the overfitting tendency of PLS

latent variable selection methods must be more closely associated with the detail of the

correlation and collinear structure rather than overall error level as typical for ordinary

multiple regression methods. The role of the number of regressor variables k in this

table is not very consistent. So the simulation datasets were split into portrait and

landscape subsets and the analysis repeated. No systematic differences were apparent

in the PLS1 dataset but in the PLS2 dataset, lower values of k have increase overfitting

in the portrait subset while higher values of k have increase overfitting in the landscape

subset.
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8.7 Model Coefficients Analysis

The sensitivity of the PLS coefficients to latent variable selection has been assessed

in two ways. For each simulation sample the coefficients from the base models at the

”true” values at A∗ latent variables and coefficients from the simulation samples at

a range of latent variables was calculated. The correlation between these two sets of

coefficients was used to assess simulation samples. As an alternative to assessment

by correlation, the second method is an assessment of wether the base coefficients are

the same or different to the coefficients from the simulation samples. This second

method tests if the coefficients from the base models at A∗ latent variables is within

the sample coefficient confidence intervals at all latent variable numbers. The coeffi-

cient confidence intervals here have been calculated by local linearization.

Figures 8.14 and 8.15 show box plots of the correlation between the sample coeffi-

cients and the underlying base PLS1 and PLS2 model. Each box plot is for a subset

of samples with a specific number of base latent variables A∗ and shows how the dis-

tribution of the sample correlations for this subset changes with the number of latent

variables in the sample models. The box plots from the PLS1 simulations include

all 9000 samples but the box plots from the PLS2 simulations are from a reduced

subset of 2400 from 12000 samples. Both sets of plots show that the correlations are

maximized at a latent variable number around A∗ with the location of the maximum

increasing with A∗. But the location of the maximum tends to lag behind A∗, which

is more evident in the median correlation coefficient values shown as Tables 8.10 and

8.12. The difference between the maximum median correlation values and the values

at A∗ is generally quite small, only becoming of practical importance at high numbers

of latent variables.
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Figure 8.14: PLS1 Coefficient Correlation vs. Latent Variables
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Figure 8.15: PLS2 Coefficient Correlations
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LV A∗ = 2 A∗ = 3 A∗ = 4 A∗ = 5 A∗ = 6 A∗ = 7 A∗ = 8 A∗ = 9
1 0.9794 0.9955 0.9937 0.9926 0.9778 0.9885 0.9848 0.9915
2 0.9896 0.9987 0.9981 0.9988 0.9987 0.9964 0.9973 0.9970
3 0.6674 0.9893 0.9907 0.9992 0.9987 0.9971 0.9975 0.9971
4 0.5761 0.8220 0.9812 0.9974 0.9977 0.9947 0.9971 0.9958
5 0.5311 0.7229 0.8759 0.9832 0.9898 0.9897 0.9905 0.9928
6 0.4104 0.5780 0.7876 0.8875 0.9505 0.9645 0.9793 0.9894
7 0.3962 0.5415 0.7663 0.8671 0.8802 0.9143 0.9604 0.9839
8 0.3906 0.5293 0.7564 0.8615 0.8732 0.9008 0.9491 0.9807
9 0.3852 0.5215 0.7522 0.8602 0.8698 0.8891 0.9456 0.9792
10 0.3794 0.4998 0.7241 0.8402 0.849 0.8752 0.9281 0.8733
11 0.3761 0.4942 0.7012 0.8312 0.6977 0.8185 0.8208 0.8142
12 0.3744 0.4502 0.6826 0.7974 0.6544 0.8035 0.7105 0.7417
13 0.3717 0.4489 0.6740 0.7809 0.6485 0.8020 0.7072 0.7218
14 0.3716 0.4393 0.6624 0.7685 0.6458 0.7967 0.7014 0.7129
15 0.3712 0.4375 0.6516 0.7652 0.6451 0.7867 0.6981 0.7104

Best 2 2 2 3 3 3 3 3

Table 8.10: PLS1 Median Coefficient Correlation Table

LV A∗ = 2 A∗ = 3 A∗ = 4 A∗ = 5 A∗ = 6 A∗ = 7 A∗ = 8 A∗ = 9
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 0.96 1 1 1 1 1 1 1
5 0.96 1 1 1 1 1 1 1
6 0.52 1 1 1 1 1 1 1
7 0.48 1 1 1 1 1 1 1
8 0.40 0.8636 1 1 1 1 1 1
9 0.36 0.5164 1 1 1 1 1 1
10 0.32 0.0598 0 0 0 0.0022 0 0
11 0.28 0.0272 0 0 0 0 0 0
12 0.24 0.0075 0 0 0 0 0 0
13 0.24 0 0 0 0 0 0 0
14 0.20 0 0 0 0 0 0 0
15 0.16 0 0 0 0 0 0 0

Best 3 7 8 8 8 8 8 8
Best 2 3 4 4 5 5 7 8

Table 8.11: PLS1 Coefficient Median Inclusion CoverageTable

LV A∗ = 2 A∗ = 3 A∗ = 4 A∗ = 5 A∗ = 6 A∗ = 7 A∗ = 8 A∗ = 9
1 0.8382 0.7542 0.7650 0.7193 0.6811 0.6310 0.5707 0.5761
2 0.9857 0.8789 0.9573 0.9510 0.9417 0.9046 0.8503 0.8834
3 0.8052 0.9924 0.9949 0.9923 0.9916 0.9776 0.9672 0.9795
4 0.7271 0.9416 0.9963 0.9965 0.9949 0.9931 0.9843 0.9899
5 0.6697 0.9144 0.9652 0.9947 0.9956 0.9949 0.9911 0.9931
6 0.5959 0.8916 0.9325 0.9627 0.9943 0.9941 0.9917 0.9937
7 0.5606 0.8764 0.9119 0.9417 0.9665 0.9923 0.9924 0.9941
8 0.5272 0.8627 0.8955 0.9222 0.9479 0.9656 0.9912 0.9945
9 0.5059 0.8533 0.8868 0.9092 0.9302 0.9450 0.9608 0.9918
10 0.4868 0.8452 0.8748 0.8824 0.9104 0.9267 0.9398 0.9488
11 0.4679 0.8394 0.8471 0.8661 0.8898 0.9095 0.9251 0.9261
12 0.4539 0.8316 0.8447 0.8428 0.8564 0.8751 0.9073 0.9079
13 0.4345 0.7447 0.8042 0.8172 0.8536 0.8860 0.8909
14 0.4182 0.7336 0.7900 0.8025 0.8366 0.8705 0.8787
15 0.4110 0.7247 0.7754 0.7936 0.8247 0.8554 0.8683

Best 2 3 4 4 5 5 7 8

Table 8.12: PLS2 Median Coefficient Correlation Table
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Coefficient Estimate Intervals by Local Linearization

Confidence intervals for PLS by local linearization were originally from Denham [17],

then improved by Serneels, Lemberge and Van Espen [97]. The basic prediction equa-

tion assumes normally distributed errors, with the variance of the coefficient estimates

given by

var[β] = JJT σ̂2 (8.56)

so that the prediction interval at a point x0 and at the α significance level is

β̂ ± tα/2,dof
√
diag(var[β]) (8.57)

where dof is the degrees of freedom, J0 is the coefficient Jacobian ∂β/∂y and

σ̂2 = RSS/dof . For this simulation, the degrees of freedom and the coefficient Ja-

cobian were calculated using the numerical methods described in section 6.4. While

the regressor and so response values in the base PLS model are not all normally dis-

tributed, the additional random errors added to response and regressor matrix are

normally distributed, so this assumption of normally distributed prediction errors is

not unreasonable here.

8.7.1 Effect of the Number of Latent Variables on Simulated

Coefficients

Figures 8.16 and 8.17 shows box plots of the coverage probabilities for the coefficients

from the base model at A∗ latent variables appearing between the coefficient confi-

dence intervals from subsets of the simulation samples at specific numbers of base

latent variables A∗. These sets of plots show similar patterns with the location of the

maximum coverage starting near A∗ but lagging behind A∗ as the number of latent

variables in the model increases. The tabulated median coverage values shown as Ta-

ble 8.11 for the PLS1 simulation are not so informative as the median values do not

resolve the differences, Median coverage values for the PLS2 simulation are not shown

because they are either 1 or 0.
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Figure 8.16: PLS1 Coefficient Median Inclusion
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Figure 8.17: PLS2 Coefficient Median Inclusion
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8.7.2 Effects of Simulation Factors on Coefficient Identifica-

tion

The effects of the simulation factors on the tendency to select numbers of latent

variables that under fit or overfit the best values for coefficient correlation or cover-

age has also been analysed by ordinal logistic regression. The response here is the

difference between the best number of latent variables that maximize correlation or

confidence interval inclusion between the base and fitted simulation models and the

number of latent variables in the base model, A∗. The methods used for the ordinal

logistic regression here were the same as that for the latent variable selection method

described previously is Section 8.6. Details of these ordinal logistic regression models

and their confidence interval calculations for the latent variable methods overfitting

are shown in Appendix C.

Table 8.13 shows a summary of the analysis of the simulation factors on the over-

fitting tendency to overfitting of the number of latent variables identified by coefficient

correlation and coverage. The factors are ranked by the absolute value of their corre-

lation coefficient in this table. In Figure 8.18, the coefficients for the linear terms in

both linear screening and quadratic stepwise models are plotted.

PLS1 PLS1 PLS2
Rank Coefficient Correlation Coefficient Coverage Coefficient Correlation

1 High A∗ High A∗ High A∗

2 High V DRX [Slow] High V DRX [Slow] Low V DRX [medium]
3 Low PIR[Low] High V DR[Medium] Low V DRX [slow]
4 High V DR[Medium] Low PIR[Low] Low s
5 Low PIR[Medium] Low PIR[Medium] Low PIR[Low]
6 Low SNRX Low k Low N
7 Low N High Distribution[Normal] Low Distribution[Sinh]
8 Low SNRY Low Distribution[Skew] High V DRY [slow]
9 High Distribution[Skew] Low SNRY High RCF [Medium]
10 High k Low SNRX Low PIR[Medium]
11 High Distribution[Normal] High N Low SNRX

12 Low k
13 Low m
14 High V DRY [medium]
15 Low Distribution[Normal]
16 High RCF [Low]
17 Low SNRY

Table 8.13: Coefficient Identification Underfitting or Overfitting Factors Table

In Table 8.14, the differences in fit between linear screening and quadratic stepwise

models are larger than those observed for the latent variable selection analysis, but this
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Figure 8.18: Coefficient Effects Plots

Response Model McFadden’s R2

PLS1 Coefficient Correlation Linear Screening 0.4534
Quadratic Stepwise 0.5075

PLS1 Coefficient Coverage Linear Screening 0.3154
Quadratic Stepwise 0.3856

PLS2 Coefficient Correlation Linear Screening 0.3079
Quadratic Stepwise 0.3996

Table 8.14: Coefficient Identification Logistic Model Fit Summary
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difference is not so apparent in the coefficient plots. The largest difference between

linear and quadratic models is in the PLS2 Coefficient Correlation analysis and is due

to a strong interaction between A∗ and s, the response matrix rank.

8.7.3 Conclusions on Coefficient Analysis by Simulation

Overall, coefficient correlation appears to be a more sensitive indicator of the differ-

ences between the simulation models than coefficient coverage from the examination

of the fit box plots Figures 8.14 and 8.15. The base number of latent variables A∗

does not appear to be a clear optimum here. The optima number of latent variables

for coefficient correlation can be a lot less than A∗. But the difference between the

optimal and A∗ values of the correlation coefficients can be small and may be of no

practical significance. The detrimental effect on both coefficient correlation and inclu-

sion coverage from overfilling with numbers of latent variables greater than A∗ is clear

in all these plots and data tables.

The factor in the simulation that is having the strongest effect on the under or

overfitting tendency is again the number of latent variables in the base model A∗,

as observed in the analysis of the latent variable selection methods. After this, the

same structural factors in the regressor matrix are again found to have the strongest

effects. These as the regressors variance decay rate V DRX and the pattern in the

internal regression, PIR. Response distributions and overall regressors and response

error levels have weaker effects. The effects for PLS1 and PLS2 appear very similar,

apart from the rank of the response matrix s having a relatively strong effect. There

is also a strong interaction here between s and A∗, so the mechanism must be complex.

8.8 Model Prediction Analysis

The strategy here is to use the same base model as the simulation PLS base model then

generate a different alternative dataset that has the same perfect fit. This method is

more complex than that used for assessing coefficients, but it was considered that the

prediction set should be as independent as possible from the base model for a thorough
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assessment of prediction performance. A sample of 100 predictions were generated for

each simulation sample to give a consistent estimate of coverage probabilities. The

details of the method are

• Starting from the set of simulation sample factors n,k,A∗... calculate the base

regressor and response matrices and base PLS model using the methods described

previously.

• Use the same set of simulation sample factors to generate an second base regressor

with 100 observations and the same correlation and covariance structures as the

base regressor matrix but different randomisation. These are the ”true” regressor

values for assessing the prediction performance.

• Use this true regressor matrix and the base PLS model to predict the ”true”

response values.

• Add the relevant level of regressor and response error levels to make the predic-

tion simulation samples.

• Calculate the fitted response values and their corresponding confidence intervals

by local linearization.

As a comparison to the previous section on coefficients, this analysis of predictions

in the simulation uses the two methods. Fit between the fitted values from the base

models at A∗ latent variables with predictions from the simulation samples over a range

of numbers of latent variables has been assessed by RMSE. Coverage was assessed by

comparing these fitted values to the prediction interval from the simulation samples,

where the prediction interval was calculated by local linearization. Only prediction

analysis from the PLS1 simulation is reported here.

Prediction Intervals by Local Linearization

Prediction intervals for PLS by local linearization were originally from Denham [17],

then improved by Serneels, Lemberge and Van Espen [97] and by Romera [94]. The

basic prediction equation assumes normally distributed errors, so that the prediction
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LV A∗ = 2 A∗ = 3 A∗ = 4 A∗ = 5 A∗ = 6 A∗ = 7 A∗ = 8 A∗ = 9
1 0.0414 0.0102 0.0034 0.0012 0.0030 0.0030 0.0028 0.0027
2 0.0308 0.0031 0.0020 0.0013 0.0016 0.0017 0.0017 0.0012
3 0.0572 0.0046 0.0025 0.0011 0.0017 0.0016 0.0012 0.0013
4 0.0724 0.0140 0.0040 0.0014 0.0019 0.0026 0.0024 0.0018
5 0.0801 0.0204 0.0078 0.0023 0.0023 0.0040 0.0036 0.0026
6 0.0727 0.0230 0.0086 0.0027 0.0039 0.0080 0.0058 0.0035
7 0.0773 0.0250 0.0091 0.0028 0.0049 0.0105 0.0059 0.0042
8 0.0781 0.0259 0.0100 0.0028 0.0053 0.0116 0.0064 0.0054
9 0.0791 0.0262 0.0101 0.0028 0.0054 0.0116 0.0064 0.0059
10 0.0799 0.0259 0.0087 0.0026 0.0054 0.0118 0.0065 0.0055
11 0.0808 0.0263 0.0078 0.0024 0.0053 0.0119 0.0066 0.0055
12 0.0815 0.0248 0.0077 0.0022 0.0053 0.0118 0.0062 0.0055
13 0.0822 0.0248 0.0069 0.0020 0.0053 0.0114 0.0062 0.0054
14 0.0826 0.0247 0.0069 0.0019 0.0053 0.0111 0.0061 0.0054
15 0.0828 0.0247 0.0067 0.0019 0.0053 0.0094 0.0059 0.0054

Best 2 2 2 3 2 3 3 2

Table 8.15: PLS1 Prediction Median RMSE Table

interval at a point x0 and at the α significance level is

ŷ ± tα/2,dof σ̂
[n+ 1

n
+ xT0 J0J

T
0 x0

]1/2
(8.58)

where dof is the degrees of freedom, J0 is the coefficient Jacobian ∂β/∂y at y0

and σ̂2 = RSS/dof . For this simulation, the degrees of freedom and the coefficient

Jacobian were calculated using the numerical methods described in section 6.4.

8.8.1 Effect of the Number of Latent Variables on Simulated

Prediction

Sets of box plots for prediction fit RMSE and prediction interval coverage are shown

as Figures 8.19 and 8.20. The number of latent variables for the minimum values of

RMSE start at A∗ for two latent variables and increase with increasing A∗ but appear

to lag behind just as the coefficient analysis in the previous section. Median values of

the prediction RMSE values are shown in Table 8.15. The number of latent variables

for the minimum RMSE in this PLS1 simulation is very similar to the number of latent

variables for maximum coefficient correlation shown in Table 8.10. But the difference

is that the median correlation values at A∗ latent variables and their maximum values

is quite small, but the corresponding differences in prediction RMSE in Table 8.15 can

be more than four times larger.
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Figure 8.19: PLS1 Prediction RMSE
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Figure 8.20: PLS1 Prediction Inclusion
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LV A∗ = 2 A∗ = 3 A∗ = 4 A∗ = 5 A∗ = 6 A∗ = 7 A∗ = 8 A∗ = 9
1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 0.9900 1 1 1 1 1 1 1
5 0.9800 1 1 1 1 1 1 1
6 0.5800 1 1 1 1 1 1 1
7 0.5150 1 1 1 1 1 1 1
8 0.4500 0.9800 1 1 1 1 1 1
9 0.4000 0.8900 1 1 1 1 1 1
10 0.3400 0.1014
11 0.3100 0.0500
12 0.2800 0.0100
13 0.2600 0.0100
14 0.2200
15 0.1800

Table 8.16: PLS1 Prediction Interval Median Coverage Table

8.8.2 Effect of Simulation Factors on Simulated Prediction

Analysis of the effects of the simulation factors on the effects on the number of la-

tent variables on performance of the predictions has also been made by ordinal logistic

regression, using the same methods as described previously. These models are shown

in detail in Appendix D. Table 8.17 shows a summary of the analysis of the simulation

factors with the strongest effects on the under or overfitting tendency on the number

of latent variables identified by prediction RMSE and coverage over the prediction

intervals. Figure 8.21 shows a comparison of the effects between linear screening and

quadratic stepwise models.

The PLS1 prediction coverage analysis is unusual in that the stepwise regression

did not add any terms beyond those in the linear screening model. In this model, the

number of latent variables in the simulation base model A∗ has an overwhelming effect.

The prediction performance model fits shown in Table 8.18 do not show any large

changes from the inclusion of second order effects. This is also apparent in the co-

efficient plots, Figure 8.21. The factor effect ranking for PLS1 and PLS2 prediction

RMSE are in a very similar order, with the structural factors of the regressors matrix

V DRX and PIR having high ranking. The main difference is the strong effect of s, the

response matrix rank in the PLS2 prediction RMSE latent variable difference model.

This factor also appears in the coefficient identification model where there is a strong

interaction between s and A∗. This interaction is also strong in this prediction model,
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Figure 8.21: Prediction Effects Plots
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PLS1 PLS1 PLS2
Rank Prediction RMSE Prediction Coverage Prediction RMSE

1 High A∗ HighA∗ HighA∗

2 Low PIR[Low] Low Distribution[Sinh] Low V DRX [Medium]
3 High V DRX [Slow] High N Low V DRX [Slow]
4 Low SNRX High Distribution[Normal] Low s
5 Low PIR[Medium] Low SNRX Low N
6 High Distribution[Sinh] High PIR[Medium] Low PIR[Low]
7 Low N High k Low V DRY [Slow]
8 Low SNRY LowV DRX [Slow] Low SNRX

9 High Distribution[Normal] Low PIR[Low] Low k
10 High V DRX [Medium] Low SNRY Low HighRCF [Medium]
11 High k Low V DRX [Medium] HighRCF [Low]
12 Low PIR[Medium]
13 Low V DRY [Medium]
14 Low Distribution[Sinh]
15 Low m
16 Low SNRY

17 High Distribution[Normal]

Table 8.17: Prediction Identification Overfitting Factors Table

but is not the strongest interaction as the interactions between s and V DRX are also

of comparable strength.

Response Model McFadden’s R2

PLS1 Prediction RMSE Linear Screening 0.3427
Quadratic Stepwise 0.3572

PLS1 Prediction Coverage Linear Screening 0.9029
Quadratic Stepwise As Linear

PLS2 Prediction RMSE Linear Screening 0.2124
Quadratic Stepwise 0.2511

Table 8.18: Prediction Performance Logistic Model Fit Summary
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8.9 Overall Conclusions from the Simulation

• The choice of latent variable number for the strongest effect interpretation by

coefficients and for maximum prediction performance appears to be the same

number of latent variables.

• This optimum number of latent variables can be quite low. In the simulation, it

is generally lower than the number of latent variables A∗ in the base simulation

sample where there is an exact solution between regressors and response.

• Overfitting by selecting a number of latent variables higher than the optimal

number will have an adverse effect on both coefficient interpretation and predic-

tion performance, even though this optimal number may be less than A∗.

• All the latent variable selection methods in the simulation study tend to overfit

by selecting latent variable numbers greater than A∗.

• The latent variable selection method in the simulation study with the least ten-

dency towards overfitting uses the first minimum in the RMSECV plot.

• The different performance of these latent variable selection methods have has

some dependence on the structure of the simulation sample.

• The degree of overfitting common to all these latent variable selection methods

is mainly associated with factors related to the structure of the regressor ma-

trix. Factors related to the internal regression coefficients, the structure of the

response matrix for PLS2 or for the overall error levels appear to have secondary

or minor effects on overfitting.

• The distribution of the regressors or responses does not appear to have any

strong effect on PLS coefficients or prediction performance in the simulation.

It follows that when transforming regressors or responses prior to building PLS

models changes the fit or predictions, it is more likely that the transforms have

changed the cross-covariance between X and Y that have resulted in a different

PLS model rather than the nature of the distribution having any direct effect.
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• In the overfitting analysis, some response curvature effects were detected and are

reported in the effect summary tables. No particularly strong curvature effects

were detected in that they only appeared late in the stepwise factor selection

after the strongest factors had been included. The inclusion of second order for

curvature did not result in large changes in the effects of other factors.

The original objective of this simulation was to compare the performance of the

latent variable selection methods and to determine how the structure of simulation

sample datasets influenced this performance. These objectives were explicit in the

series of questions posed at the start of this chapter, which in the main have been

answered in theses conclusions.



Chapter 9

Discussion and Conclusions

9.1 The Consequences of the Simulation

The unexpected conclusion from the simulation was that all the latent variable se-

lection methods in the study had a tendency towards overfitting, to the detriment of

model interpretation and prediction performance. The finding here that overfitting

in the simulation is more related to the structure of the regressor matrix rather than

the response or overall random error levels may not be intuitive. In the simulation,

A∗ latent variables represent the exact solution to the base PLS model before random

errors are added to form the simulation samples. But a number of cases in the sim-

ulation shows that the optimal number of latent variables may be less than A∗. For

the PLS1 prediction RMSE simulation the optimal numbers of latent variables is far

less than A∗. The simulation factors effects analysis consistently shows that the scale

of the random errors is not an strong factor for overfitting. The significance of these

effects tables is not in what they contain, it is in what they are missing. As this differ-

ence in the optimal number of latent variables with and without the random errors is

associated with the structure of the regressor matrix, it must be that the effect of the

random errors must be by acting specifically on the fit within the space of the model

rather than having a more general effect on the overall information content.

This conclusion is consistent with other studies. Control of the variation within

and outside of the model space in PLS is known to influence overfitting. In the

original orthogonalised variation on PLS known as O-PLS from Trygg and Wold[103]

158
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the variation in the regressor that is orthogonal to the response is removed to reduce

model complexity. The review on orthogonal versions of PLS by Fonville et al.[33]

claims that the success of this specific version of PLS in genomics applications is due

to its reduced tendency to overfitting. A recent paper by Cloarec[15] on overfitting

in univariate PLS1 shows how random error terms influence the scores calculations

by contributing to the diagonal of the regressor covariance matrix. The conclusion

from this paper was that the inflation of these diagonal elements leads directly to

overfitting. This simulation starting from the widest credible range of datasets and

covered all combinations of structural factors has come to the same conclusion that

overfitting in PLS is somehow associated with variation within the model space. This

conclusion is consistent for all PLS1 structures and for PLS2 over the restricted range

of samples in the simulation.

9.2 The Latent Variable Selection Methods

The conclusion that overfitting may have more to do with the regressor structure

and PLS algorithm than the latent variable selection method has reduced the impor-

tance of the selection method study as a comparison. The first minimum in RMSECV

has the best overall performance in the simulation, but this is probably simply due to

the crossvalidation consistently selecting lower latent variable numbers than the other

methods and not any enhanced ability at latent variable identification. However, a

latent variable selection method is required for any PLS algorithm so the work pre-

sented here to to improve selection methods overall and extend them to PLS2 is still

of value.

The comparison of the latent variable selection methods applied to the example

datasets should be viewed in terms of how consistent are the methods for real datasets

rather than the idealised datasets from the simulation. The overall selections are

summarised as Table 9.1, but before examining this in detail consider what might be

expected here. Each latent variable selection method has used a different criteria,so in

terms of “Null Hypothesis Significance Tests” different answers might be anticipated.
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But the simulation shows that different aspects of coefficient correlation and predic-

tion RMSE for PLS1 identify the same number of latent variables. In their study

of permutation methods, Wiklund et al[109] comment “... indeed it is important to

remember that an exact number does not exist, but rather an appropriate interval”.

In this respect the appropriate interval may depend on the dataset structure rather

than the latent variable selection method.

Dataset Scaling Max Equivalent Cov’ Overfit RMSECV Covariance R2Q2 Information
LVs Scaling max LVs Corner Permutations Permutations Criteria

WineAroma Centred 17 OK max 5 2 or 8? 2 1-17 OK 13
Scaled 17 NOK max 16 4 1 1-17 OK 6

Gasoline Centred 59 OK? max 7 4 6 1-10+ OK 3
Scaled 59 NOK? max 7 5 5 1-10+ OK 3

WasteGlass Centred 11 NOK max 9 11 2 1-11 OK 10
Scaled 11 OK max 5 11 2 1-11 OK 10

OliveOil XC YC 5 OK max 1 2 ? 2,3,4 OK 2
XC YS 5 NOK max 1 2 ? 2,3 OK 2
XS YC 5 OK max 5 2 1 2,3 OK 1
XS YS 5 OK max 5 2 3 2,3,4 OK 2

Biscuits XC YC 39 OK max 10 4 4 1-12 OK ?
XC YS 39 OK max 11 4 4 1-12 OK ?
XS YC 39 NOK max 9 3 3 1-12 OK ?
XS YS 39 NOK max 9 3 4 1-12 OK ?

Abrasive XC YC 8 OK max 7 4 5 3-8 OK 4
XC YS 8 OK max 7 7 5 3-8 OK 6
XS YC 8 NOK max 8 4 ? 3-8 OK 2
XS YS 8 NOK max 8 5 ? 2-8 OK 5

Table 9.1: Latent Variable Selection Summary

The crossvalidation against residual plots clearly identified specific latent variables

in all cases, except for the centred Wine Aroma dataset where there are two corners

in the plot at 2 and 8 latent variables. The first minimum in RMSECV is at 3 latent

variables and the overall RMSECV minimum is at 8 latent variables. The cause of the

problem here has been identified, so the conclusion is that the method has functioned

as well as might be expected. The crossvalidation method shows reasonable consis-

tency in that only the latent variable selection for the Waste Glass dataset exceeds

the over-fitted covariance criterion.

The covariance permutation method failed to select any latent variables for the

Olive Oil dataset where the regressor variables are centred but not scaled and for the

Abrasives dataset where the regressors are centred and scaled. In both cases, the co-

variance test statistics are within the permutation distributions for all latent variables.

The R2Q2 plots do not identify specific latent variables, for most of the datasets and
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scalings they do not even identify ranges of latent variables. Where covariance permu-

tations select latent variables, they are all within the over-fitted covariance criterion

for these example datasets. Wiklund et al[109] found good agreement between latent

variable selection by RMSECV and covariance permutations for their example dataset,

which is also observed with these examples. But the way PLS tends to find and in-

flate spurious covariances makes the application of permutation methods for latent

variable selection questionable. The fact that covariance permutations succeed or fail

to identify latent variables depending on the scaling is strong evidence for covariance

permutation methods being influenced by this spurious covariance effect.

The information criteria have problems selecting the number of latent variables

with both landscape datasets. For Gasoline, there is a sharp corner in the BIC values

at 3 latent variables followed by a gradual decrease with increasing latent variables.

So selecting 3 latent variables is at least reasonable. The Biscuits dataset information

criteria plot in Figure 6.8 on page 88 selects very high numbers of latent variables

with are clear overfitted. With the exception of the centred Wine Aroma dataset, all

the latent variable selections by information criteria are within the over-fitted covari-

ance criterion. If the over-fitted covariance limit of 5 latent variables is applied to

this dataset then 2 latent variables are selected, which is the same as the selection

by RMSECV and covariance permutations. The section of 2 latent variables for the

regressor scaled and response centred Abrasives dataset is also an apparent anomaly.

Inspection of the tabulated values here shows that 4 latent variables is also credible

as it is the absolute minimum for AIC and a secondary minimum for BIC.

The overall conclusion from the example datasets must be that no single method of

latent variable selection has proved to be completely reliable across all these datasets.

The spurious covariance effect makes covariance permutations an unreliable method

for PLS latent variable selection, because the scale of this effect is uncertain and any

influence it may have cannot be detected. The traditional PLS method of crossvalida-

tion has performed well when crossvalidation against residual plots are used to select

the number of latent variables. The use of the plots does not make latent variable

selection “foolproof”, but it is a lot less subjective than selection from inspection of
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RMSECV against latent variable plots. Latent variable selection by RMSECV and

information criteria has produced very similar selections. Any variations by more

than one latent variable have been easily accounted for. Considering how close van

der Voet’s pseudo degrees of freedom are to those from numerical derivatives, this

apparent close correspondence between latent variable selection from crossvalidation

and information criteria may well be due to this connection. This may go some way to

explain why the traditional method of crossvalidation is considered reliable in practice

when there many good theoretical reasons to suggest that it should not be.

From the comparison of latent variable selection methods in the simulation, Tables

8.6 and 8.7 on pages 133 and 134 show that RMSECV minima methods have lower

tendency to overfit than permutation methods. The information criteria method is

best overall for PLS1 but worst for PLS2. A comparison of latent variable selection

methods for the example datasets is summarized in Table 9.1 on page 160 shows that

only latent variable selection for the PLS1 gasoline dataset is entirely consistent with

the conclusions from the simulation. The three PLS2 example datasets do not show

strong differences between the four latent variable selection methods, so do not provide

evidence in support or against the conclusions from the simulation. Retrospectively,

the waste glass PLS1 dataset is not typical of PLS datasets in that the regressor matrix

is reduced rank only due to the mixtures constant row sum constraint. Otherwise, the

regressor columns form a statistically balanced experimental design. This may be the

reason why latent variable selection by RMSECV and Information Criteria methods

overfit so badly here. The PLS2 mixtures abrasives dataset are also from a designed

experiment but does not show this overfitting tendency, possibly because the strong

correlations in the response matrix restricts the maximum number of latent variables.

Latent variable selection for the wine aroma dataset remains an anomaly when com-

pared to the conclusions of the simulation. Tables 8.6 and 8.7 show that differences

between the latent variable selection methods, but there is considerable scope for under

or overfitting within each method. Consequently, no conclusion can be inferred from

the apparent anomolous behaviour of the wine aroma dataset. To obtain consistent

conclusions from a comparison of latent variable selection methods between this simu-

lation and example datasets, many mor samples of example datasets would be required.
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Without referring to latent variable selection specifically, it is an open question

wether an overall optimal PLS model exists where optimal coefficient identification

and prediction performance coincide. The alternative is that PLS models need to be

developed with prior knowledge of its application. The evidence from the simulation is

that PLS1 coefficient identification and prediction RMSE suggest that the same model

is optimal. It is accepted that this single study cannot prove the case, but a single

example that shows the opposite would be conclusive.

9.3 Summary of Original Work and Discoveries

9.3.1 Informative Plots

• Crossvalidated Residuals against Fit Residuals Plots

Plots of crossvalidated residuals deviation against the number of latent variables

generally do not show a clear minimum point for selecting the best number of

latent variables. Plots of crossvalidated residuals against fit residuals show a

definite corner which indicates the best number of latent variables. These plots

also have diagnostic value in identifying datasets where latent variable selection

is unstable, or where the dataset is well balanced as an experimental design.

Introduced in section 4.1 on page 53. Discussion with positive conclusions on

page 61.

• Covariance Explained Plots

The simulation suggests that overfitting may be a serious issue in developing

PLS models. The Covariance Explained Plots described in section 7 on page 91

are a diagnostic plot that can detect overfitting. It is not a universal solution in

that it can detect overfitting in all cases, but could well be a useful diagnostic

tool for some datasets.
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9.3.2 Latent Variable Selection Methods

• Randomised F and t-tests for Latent Variable Selection.

These permutation tests based on crossvalidated sampling need to take the dif-

ferent means for each permutation sample into account, if not then the test is

not valid. In section 5.1 on page 62.

• Extension of Permutation Test Methods for PLS2 Multivariate Responses.

Details of the methods are given for covariance permutation tests in section 5.2

on page 63 and for R2 and Q2 permutation plots in section 5.3 on page 66.

The conclusions from these tests for PLS2 example datasets on page 62 were

that these multivariate results appeared to be more stable than the univariate

results.

• Extension of Degrees of Freedom Calculation Methods

The methods published to date are limited to PLS1 univariate responses with

variates scaled to unit variance. These methods have been extended and gener-

alised in a number of ways.

– In section 6.1 on page 74 a minor correction to the published calculation

for the upper bound on degrees of freedom in PLS1 is made.

– Section 6.2 on page 76 shows the general form for extending the PLS1

univariate response methods to PLS2 multivariate responses.

– In section 6.3 on page 79, the methods have been extended to any scaling

method.

– In section 6.5 on page 81 these calculated bounds are compared to the de-

grees of freedom calculated for the example sets. These results are reviewed

later on page 86 after the degrees of freedom results have been examined in

detail. The conclusion is that these bounds calculations are consistent with

the example datasets. These theoretical limits are derived independently

from any specific method for estimating the degrees of freedom.

• Estimates of pseudo-degrees of freedom calculated from fit and crossvalidated

residuals by van der Voet’s method can be very close to the degrees of freedom



CHAPTER 9. DISCUSSION AND CONCLUSIONS 165

calculated the numerical derivatives. Comparison between the two methods in

section 6.5.2 on page 86 shows that the degrees of freedom from van der Voets’s

method tends to be an overestimate. As this could lead to overfitting it was

concluded that using van der Voet’s pseudo degrees of freedom for information

criteria is not reliable. This conclusion is on page 88.

• Using numerical derivatives from fitted values for estimating degrees of freedom.

Introduced in Section 6.4 on page 80. Algebraic solutions for degrees of freedom

calculations are not available for most classes of PLS model. Numerical solution

are proposed as a general solution for all classes of PLS model. For the example

datasets where the algebraic solution can be calculated, numerical methods gave

the same values as the algebraic solution within rounding error. The results

for the example datasets are compared in section 6.5 on page 81 and found to

be equivalent. Having a general solution to estimate degrees of freedom for all

classes of PLS model allows information criteria to be applied to latent variable

selection.

• In practice, the information criteria AIC and BIC appear to be equivalent mea-

sures for determining the number of latent variables through degrees of freedom.

This suggests that PLS latent variable selection is a fairly coarse procedure com-

pared to selecting terms in OLS stepwise regression for example.

• The best latent variable selection method for practical applications is probably

to use the first minimum in RMSECV, due to the increased risk of adverse

consequences from overfitting with other methods.

9.3.3 The PLS Simulation

• The methods presented to generate multivariate reduced rank datasets sam-

ples are more extensive than any previous published method. These methods

have extended published univariate response methods to include more factors to

define sample datasets. Dataset correlation and collinearity can be varied inde-

pendently. The further extension to multivariate responses allows independent

control of the structure of the regressor and response matrices. The distribution
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of the regressor variables can be changed between three different categories, with-

out changing their covariance matrices. As transforms that change regressor or

response distributions usually also change the covariance, the methods presented

here mean that regressor distribution is an independent factor. The sample ma-

trices generated could be applied to a wide range of multivariate simulations as

there is nothing specific to PLS in their structure.

• The important conclusion from the simulation is that overfitting in PLS is re-

lated to the structure of the dataset, specifically how the random errors relate

to the space of the PLS model. This has also been concluded by some previous

publications on PLS1 that use different approaches. The novel aspect here is that

this conclusion comes from a simulation that covers a wide range of dataset char-

acteristics over both PLS1 univariate and PLS2 multivariate response datasets.

So this study provides new evidence that this conclusion may be universal to all

conventional PLS models based the NIPALS algorithm and is not dependent on

any subset of PLS structures.

• The distribution of the regressors and responses does not appear to have influence

on the PLS model. This conclusion is contrary to published practice.

9.4 Open Questions and Further Work

Precisely what it is about the relation between the errors and model spaces that is

the fundamental cause of overfitting needs to be identified. The paper by Cloarec[15] is

a good start but is not a complete solution. Any solution here needs to include PLS2.

This could also be investigated be extending this simulation to include the effects of

random errors that are either within the model space or orthogonal to it.

Knowledge of the structural cause of over fitting could identify a specific PLS

algorithm without the problem of overfitting, and so should replace algorithms like

NIPALS as the standard. This is likely to be one of the variations on orthogonal PLS.

Unfortunately, it is not possible to select an orthogonal method directly. Comments by

Ergon[25] after examining a number of orthogonalization options are that it may not
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be possible to combine all positive aspects within the same algorithm. So a ”standard”

PLS algorithm will have to be a compromise. So understanding the structural cause

of overfitting may resolve this issue.
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α scalar diagonal terms in diagonalization matrix B
A scalar number of latent variables.
B (k + 1× k) diagonalisation matrix.
β (k ×m) regression coefficient matrix between

the X-block predictors and Y-block responses.
c (A× 1) column vector containing the inner regression coefficients

between the scores and response in PLS2.
C (A×A) diagonal matrix of inner regression coefficients

between the scores and response in PLS2.
DoF scalar number of degrees of freedom.
E (n× k) X-block error matrix.
F (n×m) Y-block error matrix.
γ scalar off diagonal terms in diagonalization matrix B
k scalar number of predictor variable columns in the X matrix.
λ scalar Lagrange’s multiplier
m scalar number of response variable columns in the Y matrix.

MSEP scalar Mean squared error of prediction.
n scalar number of observation rows in both X and Y matrices.
P (k ×A) X-block loadings matrix.
pi (k × 1) X-block loadings column vector for the ith latent variable.

PRESS scalar Prediction error sum of squares.
Q (A×m) Y-block loadings matrix.
Q2 scalar Regression coefficient, from response crossvalidated fit residuals.
qi (1×m) Y-block loadings row vector for the ith latent variable.
R2 scalar Regression coefficient, from response fit residuals.
r (k × 1) from SIMPLS, left hand singular vector from SVD.

RMSECV scalar Root mean square error of crossvalidation.
RMSEX scalar Regressor residuals root mean square .
RMSEY scalar Response residuals root mean square.
RSS scalar response fit residuals sum of squares.
SXY (k ×m) Sample covariance, XT Y
T (n×A) X-block predictor scores matrix.
ti (n× 1) X-block predictor scores column vector

for the ith latent variable.
U (n×A) Y-block response scores matrix.
ui (n× 1) Y-block response scores column vector for the ith latent variable.
υ1 (k × 1) from SIMPLS, left hand column vector from SVD.
VA (k ×A) set of orthonormal basis vectors vi for LVs 1 to A.
vi (k × 1) orthonormal basis of the X-block loadings pi

V IP scalar Variable importance in projection factor.
W (k ×A) X-block weighting matrix.
wi (k × 1) X-block weighting column vector for the ith latent variable.
X (n× k) predictor variables matrix.
Y (n×m) response variables matrix.
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Latent Variable Selection Logistic

Models

B.1 PLS1 RMSECV 1st minimum Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(RMSECV_first_min_LVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC.DATA)

> fmnull$logLik

[1] -18952.65

> fm1 <- clm(ordered(RMSECV_first_min_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,

link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm1)

formula:

ordered(RMSECV_first_min_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 8905 -11245.11 22548.21 9(0) 6.16e-13 3.9e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.11236 0.02055 5.466 4.59e-08 ***

zk 0.30150 0.02073 14.545 < 2e-16 ***

zAstar -4.48393 0.05370 -83.498 < 2e-16 ***

zSNR_X 0.35466 0.02077 17.076 < 2e-16 ***

zSNR_Y 0.30868 0.02075 14.878 < 2e-16 ***

VDRMedium 0.05346 0.04953 1.079 0.28040
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VDRSlow -0.67138 0.05022 -13.369 < 2e-16 ***

PIRLow 0.97337 0.05102 19.080 < 2e-16 ***

PIRMedium 0.64751 0.05010 12.926 < 2e-16 ***

DistributionNormal -0.14376 0.04920 -2.922 0.00348 **

DistributionSkew 0.04776 0.04982 0.959 0.33774

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -10.73820 0.22099 -48.59

-7|-6 -8.14401 0.11019 -73.91

-6|-5 -6.33522 0.09261 -68.41

-5|-4 -4.87946 0.08335 -58.54

-4|-3 -3.09767 0.07206 -42.99

-3|-2 -1.24957 0.06574 -19.01

-2|-1 0.73902 0.06391 11.56

-1|0 3.09164 0.07228 42.77

0|1 7.21234 0.09927 72.65

1|2 8.46816 0.11403 74.27

2|3 9.48019 0.14300 66.29

3|4 10.17600 0.17947 56.70

4|5 10.70036 0.22000 48.64

5|6 10.97643 0.24704 44.43

6|7 11.52528 0.31513 36.57

7|8 11.97878 0.38891 30.80

8|9 13.23408 0.71302 18.56

9|11 13.92799 1.00419 13.87

(95 observations deleted due to missingness)

> ci1 <- confint(fm1)

2.5 % 97.5 %

zNobs 0.07209052 0.15266625

zk 0.26091175 0.34216848

zAstar -4.58999290 -4.37947848

zSNR_X 0.31400792 0.39542441

zSNR_Y 0.26806214 0.34939302

VDRMedium -0.04360885 0.15053778

VDRSlow -0.76989980 -0.57303574

PIRLow 0.87350455 1.07348977

PIRMedium 0.54941338 0.74579050

DistributionNormal -0.24020988 -0.04733826

DistributionSkew -0.04988216 0.14540704

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.4066735

sum(is.na(SIM_DATA_ABC.DATA$RMSECV_first_min_LVlessAstar)==FALSE)

[1] 8095

> klogn <- log(8905)
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> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm2)

formula:

ordered(RMSECV_first_min_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution + VDR:Distribution + zk:zAstar

+ zAstar:VDR + VDR:PIR + zAstar:zSNR_X + zAstar:Distribution + zNobs:zk + PIR:Distribution

+ zAstar:PIR + zAstar:zSNR_Y + zk:zSNR_X + zSNR_X:PIR + zk:VDR + zNobs:zAstar + zk:PIR

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 8905 -10739.34 21596.68 9(0) 4.08e-12 6.6e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.137364 0.021194 6.481 9.10e-11 ***

zk 0.409447 0.046922 8.726 < 2e-16 ***

zAstar -4.963549 0.079883 -62.135 < 2e-16 ***

zSNR_X 0.213625 0.036197 5.902 3.60e-09 ***

zSNR_Y 0.333417 0.021277 15.670 < 2e-16 ***

VDRMedium -0.408340 0.116713 -3.499 0.000468 ***

VDRSlow -0.389297 0.115391 -3.374 0.000742 ***

PIRLow 1.603747 0.119818 13.385 < 2e-16 ***

PIRMedium 0.756911 0.111416 6.794 1.09e-11 ***

DistributionNormal 0.024665 0.109613 0.225 0.821968

DistributionSkew -0.353602 0.119193 -2.967 0.003011 **

VDRMedium:DistributionNormal 0.284565 0.125742 2.263 0.023630 *

VDRSlow:DistributionNormal -0.885677 0.123163 -7.191 6.43e-13 ***

VDRMedium:DistributionSkew 0.976406 0.127034 7.686 1.52e-14 ***

VDRSlow:DistributionSkew 1.440886 0.130068 11.078 < 2e-16 ***

zk:zAstar 0.257871 0.019815 13.014 < 2e-16 ***

zAstar:VDRMedium 0.310766 0.053003 5.863 4.54e-09 ***

zAstar:VDRSlow -0.174642 0.051968 -3.361 0.000778 ***

VDRMedium:PIRLow -0.237093 0.125434 -1.890 0.058734 .

VDRSlow:PIRLow -1.025000 0.126158 -8.125 4.48e-16 ***

VDRMedium:PIRMedium 0.393231 0.125523 3.133 0.001732 **

VDRSlow:PIRMedium -0.311375 0.124157 -2.508 0.012145 *

zAstar:zSNR_X 0.172647 0.020274 8.516 < 2e-16 ***

zAstar:DistributionNormal -0.262258 0.051303 -5.112 3.19e-07 ***

zAstar:DistributionSkew 0.086706 0.053818 1.611 0.107159

zNobs:zk -0.147177 0.020356 -7.230 4.83e-13 ***

PIRLow:DistributionNormal 0.294715 0.125168 2.355 0.018545 *

PIRMedium:DistributionNormal 0.003564 0.122545 0.029 0.976796

PIRLow:DistributionSkew -0.715467 0.128380 -5.573 2.50e-08 ***

PIRMedium:DistributionSkew -0.367126 0.127307 -2.884 0.003929 **

zAstar:PIRLow 0.390593 0.053839 7.255 4.02e-13 ***

zAstar:PIRMedium 0.157907 0.052071 3.033 0.002425 **

zAstar:zSNR_Y 0.127560 0.020197 6.316 2.69e-10 ***
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zk:zSNR_X -0.104556 0.020311 -5.148 2.64e-07 ***

zSNR_X:PIRLow 0.130473 0.052240 2.498 0.012504 *

zSNR_X:PIRMedium 0.256349 0.050294 5.097 3.45e-07 ***

zk:VDRMedium 0.107325 0.053109 2.021 0.043293 *

zk:VDRSlow -0.163099 0.051391 -3.174 0.001505 **

zNobs:zAstar 0.077282 0.019805 3.902 9.53e-05 ***

zk:PIRLow -0.229666 0.052003 -4.416 1.00e-05 ***

zk:PIRMedium -0.101124 0.051946 -1.947 0.051571 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -11.6845 0.2429 -48.102

-7|-6 -8.9310 0.1447 -61.720

-6|-5 -6.8004 0.1274 -53.397

-5|-4 -5.0869 0.1176 -43.270

-4|-3 -3.1672 0.1081 -29.298

-3|-2 -1.2094 0.1029 -11.757

-2|-1 0.9172 0.1019 9.005

-1|0 3.4318 0.1091 31.462

0|1 7.6521 0.1297 59.010

1|2 8.9136 0.1414 63.023

2|3 9.9263 0.1658 59.886

3|4 10.6228 0.1981 53.618

4|5 11.1473 0.2355 47.341

5|6 11.4234 0.2609 43.782

6|7 11.9721 0.3261 36.711

7|8 12.4255 0.3979 31.230

8|9 13.6808 0.7179 19.056

9|11 14.3745 1.0077 14.265

(95 observations deleted due to missingness)

> ci2 <- confint(fm2)

2.5 % 97.5 %

zNobs 0.095838838 0.1789226601

zk 0.317435326 0.5013785906

zAstar -5.120877049 -4.8077254258

zSNR_X 0.142711589 0.2846081938

zSNR_Y 0.291760435 0.3751686134

VDRMedium -0.637165154 -0.1796355391

VDRSlow -0.615558118 -0.1632066578

PIRLow 1.369005425 1.8387150134

PIRMedium 0.538607351 0.9753765049

DistributionNormal -0.190217215 0.2394871747

DistributionSkew -0.587375803 -0.1201263188

VDRMedium:DistributionNormal 0.038126391 0.5310476438

VDRSlow:DistributionNormal -1.127221900 -0.6444096622

VDRMedium:DistributionSkew 0.727593881 1.2255789839

VDRSlow:DistributionSkew 1.186185398 1.6960653643
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zk:zAstar 0.219108707 0.2967883695

zAstar:VDRMedium 0.206934068 0.4147151621

zAstar:VDRSlow -0.276532792 -0.0728094057

VDRMedium:PIRLow -0.483000361 0.0087146894

VDRSlow:PIRLow -1.272416517 -0.7778624777

VDRMedium:PIRMedium 0.147239848 0.6393021957

VDRSlow:PIRMedium -0.554797321 -0.0680895031

zAstar:zSNR_X 0.132936596 0.2124140277

zAstar:DistributionNormal -0.362899971 -0.1617855521

zAstar:DistributionSkew -0.018764457 0.1922118508

zNobs:zk -0.187105560 -0.1073058632

PIRLow:DistributionNormal 0.049453463 0.5401239046

PIRMedium:DistributionNormal -0.236637541 0.2437516949

PIRLow:DistributionSkew -0.967189571 -0.4639286265

PIRMedium:DistributionSkew -0.616702767 -0.1176448259

zAstar:PIRLow 0.285074137 0.4961333096

zAstar:PIRMedium 0.055822921 0.2599483577

zAstar:zSNR_Y 0.087993327 0.1671682543

zk:zSNR_X -0.144372868 -0.0647499553

zSNR_X:PIRLow 0.028102523 0.2328870664

zSNR_X:PIRMedium 0.157804367 0.3549625549

zk:VDRMedium 0.003258043 0.2114555199

zk:VDRSlow -0.263849379 -0.0623897915

zNobs:zAstar 0.038476231 0.1161140105

zk:PIRLow -0.331634370 -0.1277769189

zk:PIRMedium -0.202997605 0.0006391721

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.4333595
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B.2 PLS1 RMSECV Absolute minimum Logistic

Model

> require(ordinal)

> fmnull <- clm(ordered(RMSECV_abs_min_LVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC.DATA)

> fmnull$logLik

[1] -20253.54

> fm1 <- clm(ordered(RMSECV_abs_min_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,

link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm1)

formula:

ordered(RMSECV_abs_min_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -14737.90 29539.80 10(2) 1.33e-12 7.3e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.04226 0.01905 2.218 0.02656 *

zk 0.26208 0.01941 13.503 < 2e-16 ***

zAstar -3.11003 0.03869 -80.391 < 2e-16 ***

zSNR_X 0.27973 0.01917 14.591 < 2e-16 ***

zSNR_Y 0.22379 0.01912 11.707 < 2e-16 ***

VDRMedium 0.14667 0.04619 3.175 0.00150 **

VDRSlow -0.39238 0.04643 -8.452 < 2e-16 ***

PIRLow 0.69036 0.04720 14.625 < 2e-16 ***

PIRMedium 0.45837 0.04653 9.850 < 2e-16 ***

DistributionNormal -0.19169 0.04613 -4.155 3.25e-05 ***

DistributionSkew 0.13661 0.04653 2.936 0.00333 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -9.31155 0.26812 -34.730

-7|-6 -6.46913 0.09761 -66.276

-6|-5 -4.83747 0.07642 -63.302

-5|-4 -3.64417 0.06829 -53.364

-4|-3 -2.30287 0.06127 -37.586

-3|-2 -1.01664 0.05728 -17.749

-2|-1 0.30883 0.05622 5.493
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-1|0 1.95139 0.06039 32.314

0|1 4.76923 0.07443 64.077

1|2 5.57005 0.08010 69.535

2|3 6.04596 0.08565 70.590

3|4 6.57965 0.09501 69.251

4|5 6.79983 0.10019 67.868

5|6 7.00216 0.10577 66.201

6|7 7.51963 0.12418 60.553

7|8 7.89497 0.14203 55.587

8|9 8.14072 0.15620 52.119

9|10 8.64333 0.19248 44.905

10|11 8.86001 0.21164 41.864

11|12 8.98859 0.22415 40.100

12|13 9.44289 0.27607 34.204

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.004918429 0.07960691

zk 0.224081697 0.30016563

zAstar -3.186323276 -3.03466986

zSNR_X 0.242185416 0.31734144

zSNR_Y 0.186346617 0.26128183

VDRMedium 0.056141683 0.23722565

VDRSlow -0.483401932 -0.30141020

PIRLow 0.597901753 0.78294006

PIRMedium 0.367214908 0.54962832

DistributionNormal -0.282134066 -0.10128282

DistributionSkew 0.045415835 0.22782555

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.2723297

> sum(is.na(SIM_DATA_ABC.DATA$RMSECV_abs_min_LVlessAstar)==FALSE)

[1] 9000

> klogn <- log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm2)

formula:

ordered(RMSECV_abs_min_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

+ zk:zAstar + VDR:Distribution + zAstar:zSNR_X + zAstar:VDR + zAstar:PIR + zAstar:zSNR_Y

+ zk:zSNR_X + zAstar:Distribution + VDR:PIR + zNobs:zk + PIR:Distribution + zNobs:zAstar

+ zk:VDR + zk:PIR

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -14377.30 28874.60 10(2) 8.57e-13 1.7e+03
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.05957 0.01942 3.068 0.002155 **

zk 0.35522 0.04300 8.261 < 2e-16 ***

zAstar -3.47266 0.06458 -53.773 < 2e-16 ***

zSNR_X 0.28538 0.01953 14.616 < 2e-16 ***

zSNR_Y 0.24766 0.01939 12.772 < 2e-16 ***

VDRMedium -0.04416 0.10798 -0.409 0.682545

VDRSlow -0.12108 0.10699 -1.132 0.257771

PIRLow 1.10253 0.10993 10.029 < 2e-16 ***

PIRMedium 0.66752 0.10270 6.500 8.05e-11 ***

DistributionNormal -0.05263 0.10134 -0.519 0.603526

DistributionSkew -0.07292 0.10910 -0.668 0.503909

zk:zAstar 0.25761 0.01800 14.313 < 2e-16 ***

VDRMedium:DistributionNormal 0.13955 0.11638 1.199 0.230483

VDRSlow:DistributionNormal -0.52784 0.11415 -4.624 3.77e-06 ***

VDRMedium:DistributionSkew 0.57265 0.11688 4.899 9.61e-07 ***

VDRSlow:DistributionSkew 0.87667 0.11876 7.382 1.56e-13 ***

zAstar:zSNR_X 0.16827 0.01854 9.077 < 2e-16 ***

zAstar:VDRMedium 0.23350 0.04820 4.844 1.27e-06 ***

zAstar:VDRSlow -0.16656 0.04743 -3.512 0.000445 ***

zAstar:PIRLow 0.37468 0.04909 7.632 2.31e-14 ***

zAstar:PIRMedium 0.14146 0.04743 2.982 0.002859 **

zAstar:zSNR_Y 0.10688 0.01840 5.807 6.35e-09 ***

zk:zSNR_X -0.10646 0.01891 -5.629 1.81e-08 ***

zAstar:DistributionNormal -0.13343 0.04703 -2.837 0.004551 **

zAstar:DistributionSkew 0.10851 0.04886 2.221 0.026358 *

VDRMedium:PIRLow -0.16447 0.11623 -1.415 0.157064

VDRSlow:PIRLow -0.75785 0.11680 -6.489 8.66e-11 ***

VDRMedium:PIRMedium 0.13021 0.11649 1.118 0.263677

VDRSlow:PIRMedium -0.41123 0.11522 -3.569 0.000358 ***

zNobs:zk -0.08386 0.01896 -4.422 9.76e-06 ***

PIRLow:DistributionNormal 0.23335 0.11724 1.990 0.046539 *

PIRMedium:DistributionNormal -0.16297 0.11428 -1.426 0.153850

PIRLow:DistributionSkew -0.43742 0.11930 -3.667 0.000246 ***

PIRMedium:DistributionSkew -0.21591 0.11700 -1.845 0.064972 .

zNobs:zAstar 0.06180 0.01807 3.420 0.000627 ***

zk:VDRMedium 0.14098 0.04926 2.862 0.004212 **

zk:VDRSlow -0.08599 0.04732 -1.817 0.069189 .

zk:PIRLow -0.20680 0.04879 -4.238 2.25e-05 ***

zk:PIRMedium -0.12773 0.04785 -2.669 0.007599 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -9.86316 0.28181 -34.999

-7|-6 -6.89777 0.12723 -54.216



APPENDIX B. LATENT VARIABLE SELECTION LOGISTIC MODELS 178

-6|-5 -5.03854 0.10851 -46.432

-5|-4 -3.67464 0.10115 -36.329

-4|-3 -2.23089 0.09527 -23.417

-3|-2 -0.87436 0.09221 -9.482

-2|-1 0.51555 0.09181 5.615

-1|0 2.22984 0.09538 23.379

0|1 5.08150 0.10532 48.248

1|2 5.88620 0.10941 53.799

2|3 6.36411 0.11351 56.066

3|4 6.89903 0.12071 57.155

4|5 7.11889 0.12481 57.036

5|6 7.32096 0.12932 56.609

6|7 7.83778 0.14475 54.147

7|8 8.21265 0.16031 51.229

8|9 8.45813 0.17298 48.895

9|10 8.96044 0.20633 43.428

10|11 9.17712 0.22430 40.914

11|12 9.30580 0.23615 39.407

12|13 9.76068 0.28589 34.141

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.021516687 0.097628260

zk 0.270978097 0.439545041

zAstar -3.599609972 -3.346447336

zSNR_X 0.247143303 0.323684524

zSNR_Y 0.209681830 0.285692316

VDRMedium -0.255831813 0.167475241

VDRSlow -0.330832641 0.088602788

PIRLow 0.887093515 1.318038114

PIRMedium 0.466215491 0.868815637

DistributionNormal -0.251344868 0.145916385

DistributionSkew -0.286867526 0.140836409

zk:zAstar 0.222385083 0.292943035

VDRMedium:DistributionNormal -0.088557634 0.367644251

VDRSlow:DistributionNormal -0.751659424 -0.304164513

VDRMedium:DistributionSkew 0.343641783 0.801823523

VDRSlow:DistributionSkew 0.643983546 1.109542787

zAstar:zSNR_X 0.131962731 0.204630510

zAstar:VDRMedium 0.139035503 0.327995460

zAstar:VDRSlow -0.259552010 -0.073637717

zAstar:PIRLow 0.278498365 0.470946423

zAstar:PIRMedium 0.048494052 0.234426425

zAstar:zSNR_Y 0.070821804 0.142967705

zk:zSNR_X -0.143543937 -0.069404551

zAstar:DistributionNormal -0.225629984 -0.041276959

zAstar:DistributionSkew 0.012758330 0.204291121

VDRMedium:PIRLow -0.392323550 0.063306048
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VDRSlow:PIRLow -0.986849841 -0.528998605

VDRMedium:PIRMedium -0.098138064 0.358524573

VDRSlow:PIRMedium -0.637127247 -0.185457029

zNobs:zk -0.121032902 -0.046697825

PIRLow:DistributionNormal 0.003617685 0.463193222

PIRMedium:DistributionNormal -0.386983893 0.061007830

PIRLow:DistributionSkew -0.671291297 -0.203635060

PIRMedium:DistributionSkew -0.445249619 0.013394109

zNobs:zAstar 0.026384451 0.097224194

zk:VDRMedium 0.044474831 0.237591802

zk:VDRSlow -0.178741533 0.006761162

zk:PIRLow -0.302461913 -0.111182876

zk:PIRMedium -0.221557382 -0.033972102

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.290134
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B.3 PLS1 Permutation minimum Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(perms_best_LVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC.DATA)

> fmnull$logLik

[1] -20040.99

> fm1 <- clm(ordered(perms_best_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,

link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm1)

formula:

ordered(perms_best_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 8975 -11478.19 23008.38 9(0) 4.26e-13 4.0e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.58279 0.02102 27.730 < 2e-16 ***

zk 0.72018 0.02302 31.280 < 2e-16 ***

zAstar -4.88730 0.05618 -86.991 < 2e-16 ***

zSNR_X 0.24279 0.02020 12.020 < 2e-16 ***

zSNR_Y 0.26060 0.02023 12.883 < 2e-16 ***

VDRMedium -1.43766 0.05126 -28.045 < 2e-16 ***

VDRSlow -1.83783 0.05306 -34.638 < 2e-16 ***

PIRLow 0.55193 0.04896 11.273 < 2e-16 ***

PIRMedium 0.64185 0.04844 13.250 < 2e-16 ***

DistributionNormal -0.05449 0.04811 -1.132 0.257452

DistributionSkew -0.17511 0.04872 -3.594 0.000325 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-9|-8 -12.56901 0.20488 -61.349

-8|-7 -9.22382 0.11734 -78.607

-7|-6 -7.35380 0.10255 -71.709

-6|-5 -5.92724 0.09109 -65.069

-5|-4 -4.31141 0.07918 -54.451

-4|-3 -2.48147 0.06902 -35.952

-3|-2 -0.62357 0.06374 -9.784

-2|-1 1.23229 0.06452 19.099

-1|0 3.27169 0.07493 43.662

0|1 7.43459 0.10211 72.807

1|2 10.12239 0.18549 54.571
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2|3 11.30308 0.30347 37.246

3|4 12.17857 0.45690 26.655

4|5 13.09487 0.71328 18.359

5|6 13.78804 1.00437 13.728

(25 observations deleted due to missingness)

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.5416772 0.62406408

zk 0.6751846 0.76544106

zAstar -4.9981988 -4.77796266

zSNR_X 0.2032292 0.28240813

zSNR_Y 0.2209877 0.30028225

VDRMedium -1.5383374 -1.33738067

VDRSlow -1.9420807 -1.73408890

PIRLow 0.4560377 0.64796027

PIRMedium 0.5469884 0.73688060

DistributionNormal -0.1487875 0.03982164

DistributionSkew -0.2706262 -0.07963713

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.4272643

> sum(is.na(SIM_DATA_ABC.DATA$perms_best_LVlessAstar)==FALSE)

[1] 8975

> klogn <- log(8975)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm2)

formula:

ordered(perms_best_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

+ zAstar:VDR + VDR:Distribution + zk:zAstar + zNobs:zAstar + VDR:PIR + zk:VDR + zk:zSNR_X + zk:PIR

+ zk:Distribution + zAstar:Distribution + zAstar:zSNR_X + zAstar:zSNR_Y + zSNR_X:Distribution

+ zNobs:zk + zNobs:Distribution + zk:zSNR_Y + zAstar:PIR + zNobs:zSNR_X

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 8975 -10437.32 20990.63 9(0) 3.88e-13 6.1e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.63831 0.03853 16.567 < 2e-16 ***

zk 1.11946 0.06406 17.476 < 2e-16 ***

zAstar -4.68450 0.07849 -59.686 < 2e-16 ***

zSNR_X 0.12793 0.03667 3.488 0.000486 ***

zSNR_Y 0.31398 0.02145 14.638 < 2e-16 ***

VDRMedium -1.63405 0.12075 -13.533 < 2e-16 ***
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VDRSlow -1.81282 0.11954 -15.164 < 2e-16 ***

PIRLow 1.63955 0.09515 17.231 < 2e-16 ***

PIRMedium 1.15142 0.09089 12.668 < 2e-16 ***

DistributionNormal 0.13841 0.09081 1.524 0.127470

DistributionSkew -1.53225 0.09625 -15.919 < 2e-16 ***

zAstar:VDRMedium -0.98818 0.05607 -17.625 < 2e-16 ***

zAstar:VDRSlow -1.32901 0.05651 -23.516 < 2e-16 ***

VDRMedium:DistributionNormal -0.13004 0.12670 -1.026 0.304744

VDRSlow:DistributionNormal -0.62779 0.12444 -5.045 4.54e-07 ***

VDRMedium:DistributionSkew 1.39475 0.12800 10.897 < 2e-16 ***

VDRSlow:DistributionSkew 2.29518 0.13317 17.235 < 2e-16 ***

zk:zAstar 0.45003 0.02157 20.864 < 2e-16 ***

zNobs:zAstar 0.29650 0.02068 14.338 < 2e-16 ***

VDRMedium:PIRLow -1.07150 0.12698 -8.438 < 2e-16 ***

VDRSlow:PIRLow -1.66756 0.13008 -12.820 < 2e-16 ***

VDRMedium:PIRMedium -0.27528 0.12519 -2.199 0.027884 *

VDRSlow:PIRMedium -0.90322 0.12660 -7.134 9.74e-13 ***

zk:VDRMedium -0.52637 0.05971 -8.815 < 2e-16 ***

zk:VDRSlow -0.53208 0.05693 -9.346 < 2e-16 ***

zk:zSNR_X -0.19191 0.02176 -8.820 < 2e-16 ***

zk:PIRLow 0.09345 0.05483 1.704 0.088312 .

zk:PIRMedium 0.39048 0.05640 6.923 4.42e-12 ***

zk:DistributionNormal -0.29396 0.05316 -5.530 3.20e-08 ***

zk:DistributionSkew 0.03467 0.05691 0.609 0.542373

zAstar:DistributionNormal -0.23031 0.05216 -4.415 1.01e-05 ***

zAstar:DistributionSkew 0.11631 0.05466 2.128 0.033360 *

zAstar:zSNR_X 0.12266 0.02044 6.001 1.96e-09 ***

zAstar:zSNR_Y 0.11045 0.02067 5.343 9.16e-08 ***

zSNR_X:DistributionNormal 0.26284 0.05070 5.184 2.17e-07 ***

zSNR_X:DistributionSkew 0.04210 0.05251 0.802 0.422744

zNobs:zk 0.10629 0.02190 4.853 1.21e-06 ***

zNobs:DistributionNormal -0.12617 0.05110 -2.469 0.013550 *

zNobs:DistributionSkew 0.16060 0.05388 2.981 0.002874 **

zk:zSNR_Y 0.08330 0.02259 3.687 0.000227 ***

zAstar:PIRLow -0.15516 0.05475 -2.834 0.004598 **

zAstar:PIRMedium 0.09191 0.05262 1.747 0.080716 .

zNobs:zSNR_X -0.06072 0.02003 -3.031 0.002435 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-9|-8 -14.92436 0.24156 -61.783

-8|-7 -10.95353 0.15805 -69.306

-7|-6 -8.38229 0.13564 -61.799

-6|-5 -6.60076 0.12266 -53.815

-5|-4 -4.71443 0.11159 -42.249

-4|-3 -2.61308 0.09964 -26.226

-3|-2 -0.54166 0.09494 -5.706
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-2|-1 1.62122 0.09607 16.875

-1|0 4.01244 0.10660 37.639

0|1 8.01990 0.12787 62.719

1|2 10.70672 0.20121 53.211

2|3 11.88829 0.31333 37.942

3|4 12.76377 0.46351 27.537

4|5 13.68008 0.71752 19.066

5|6 14.37325 1.00739 14.268

(25 observations deleted due to missingness)

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.562899631 0.71394038

zk 0.994382152 1.24546974

zAstar -4.839037509 -4.53136630

zSNR_X 0.056056833 0.19982656

zSNR_Y 0.271985357 0.35607150

VDRMedium -1.871033107 -1.39768108

VDRSlow -2.047523169 -1.57889690

PIRLow 1.453230751 1.82623272

PIRMedium 0.973429609 1.32974277

DistributionNormal -0.039599262 0.31640413

DistributionSkew -1.721114065 -1.34379386

zAstar:VDRMedium -1.098197052 -0.87840426

zAstar:VDRSlow -1.439966998 -1.21842323

VDRMedium:DistributionNormal -0.378401456 0.11829344

VDRSlow:DistributionNormal -0.871775566 -0.38395867

VDRMedium:DistributionSkew 1.144054377 1.64582254

VDRSlow:DistributionSkew 2.034464766 2.55650657

zk:zAstar 0.407804229 0.49235874

zNobs:zAstar 0.256011793 0.33708002

VDRMedium:PIRLow -1.320514338 -0.82273081

VDRSlow:PIRLow -1.922726181 -1.41280342

VDRMedium:PIRMedium -0.520687342 -0.02993741

VDRSlow:PIRMedium -1.151511250 -0.65521143

zk:VDRMedium -0.643592562 -0.40950690

zk:VDRSlow -0.643848753 -0.42066763

zk:zSNR_X -0.234576840 -0.14928344

zk:PIRLow -0.014008021 0.20093604

zk:PIRMedium 0.279973857 0.50108248

zk:DistributionNormal -0.398211433 -0.18982502

zk:DistributionSkew -0.076834404 0.14625384

zAstar:DistributionNormal -0.332610188 -0.12811797

zAstar:DistributionSkew 0.009187442 0.22347282

zAstar:zSNR_X 0.082632959 0.16275785

zAstar:zSNR_Y 0.069956294 0.15099489

zSNR_X:DistributionNormal 0.163506376 0.36226985

zSNR_X:DistributionSkew -0.060816690 0.14504073
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zNobs:zk 0.063384982 0.14923766

zNobs:DistributionNormal -0.226347865 -0.02602908

zNobs:DistributionSkew 0.055008075 0.26620661

zk:zSNR_Y 0.039041571 0.12761707

zAstar:PIRLow -0.262542467 -0.04790917

zAstar:PIRMedium -0.011258530 0.19503432

zNobs:zSNR_X -0.099989638 -0.02146699

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.4792014
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B.4 PLS1 Information Criteria Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(Info_BIC_min_LVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC.DATA)

> fmnull$logLik

[1] -24726.88

> fm1 <- clm(ordered(Info_BIC_min_LVlessAstar)) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,

link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm1)

formula:

ordered(Info_BIC_min_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -21651.17 43366.34 7(0) 2.71e-09 8.5e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.17527 0.01857 -9.436 < 2e-16 ***

zk 1.32924 0.02403 55.311 < 2e-16 ***

zAstar -1.36357 0.02475 -55.097 < 2e-16 ***

zSNR_X 0.08978 0.01837 4.886 1.03e-06 ***

zSNR_Y 0.06817 0.01834 3.717 0.000202 ***

VDRMedium 0.17177 0.04446 3.864 0.000112 ***

VDRSlow -0.07882 0.04459 -1.768 0.077113 .

PIRLow 0.49743 0.04514 11.018 < 2e-16 ***

PIRMedium 0.31070 0.04481 6.934 4.09e-12 ***

DistributionNormal 0.00837 0.04452 0.188 0.850876

DistributionSkew -0.04221 0.04454 -0.948 0.343292

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -7.27447 0.23057 -31.550

-7|-6 -4.66903 0.08475 -55.094

-6|-5 -3.45335 0.06615 -52.202

-5|-4 -2.64582 0.05926 -44.646

-4|-3 -1.73560 0.05424 -31.999

-3|-2 -1.05790 0.05195 -20.365

-2|-1 -0.37094 0.05082 -7.300

-1|0 0.44128 0.05132 8.599

0|1 1.57735 0.05397 29.227

1|2 1.87543 0.05502 34.086

2|3 2.23200 0.05642 39.559



APPENDIX B. LATENT VARIABLE SELECTION LOGISTIC MODELS 186

3|4 2.65380 0.05828 45.536

4|5 3.01840 0.06012 50.209

5|6 3.39314 0.06239 54.385

6|7 3.92825 0.06672 58.876

7|8 4.24355 0.07005 60.576

8|9 4.60311 0.07490 61.459

9|10 4.97217 0.08136 61.112

10|11 5.33485 0.08953 59.585

11|12 5.68022 0.09949 57.095

12|13 6.24998 0.12171 51.351

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs -0.21169677 -0.138884940

zk 1.28234471 1.376552045

zAstar -1.41225301 -1.315237690

zSNR_X 0.05377384 0.125801983

zSNR_Y 0.03222945 0.104119510

VDRMedium 0.08464695 0.258926236

VDRSlow -0.16621897 0.008580214

PIRLow 0.40897590 0.585946821

PIRMedium 0.22289943 0.398551584

DistributionNormal -0.07888706 0.095629915

DistributionSkew -0.12951203 0.045091552

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.1243873

> sum(is.na(SIM_DATA_ABC.DATA$Info_BIC_min_LVlessAstar)==FALSE)

[1] 9000

> klogn <- log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC.DATA)

> summary(fm2)

formula:

ordered(Info_BIC_min_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

+ zk:zAstar + zNobs:zk + zAstar:VDR + zAstar:zSNR_X + zNobs:zAstar + zSNR_Y:Distribution

+ zAstar:Distribution + zk:zSNR_X + zk:VDR + zNobs:VDR + zAstar:PIR

data: SIM_DATA_ABC.DATA

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -20726.67 41551.33 7(0) 1.83e-08 9.1e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.08541 0.03307 -2.583 0.00979 **
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zk 1.33748 0.03466 38.589 < 2e-16 ***

zAstar -2.13325 0.05748 -37.111 < 2e-16 ***

zSNR_X 0.14788 0.01874 7.891 3.01e-15 ***

zSNR_Y -0.02961 0.03246 -0.912 0.36163

VDRMedium 0.26032 0.04567 5.701 1.19e-08 ***

VDRSlow -0.06370 0.04569 -1.394 0.16328

PIRLow 0.56433 0.04592 12.288 < 2e-16 ***

PIRMedium 0.39501 0.04561 8.661 < 2e-16 ***

DistributionNormal 0.02459 0.04525 0.543 0.58685

DistributionSkew -0.01610 0.04521 -0.356 0.72176

zk:zAstar 0.58240 0.01961 29.701 < 2e-16 ***

zNobs:zk 0.43939 0.01867 23.539 < 2e-16 ***

zAstar:VDRMedium 0.43734 0.04814 9.084 < 2e-16 ***

zAstar:VDRSlow 0.09810 0.04727 2.075 0.03796 *

zAstar:zSNR_X 0.16040 0.01833 8.749 < 2e-16 ***

zNobs:zAstar -0.15368 0.01904 -8.072 6.92e-16 ***

zSNR_Y:DistributionNormal 0.27879 0.04548 6.129 8.83e-10 ***

zSNR_Y:DistributionSkew 0.06147 0.04642 1.324 0.18545

zAstar:DistributionNormal 0.18488 0.04688 3.943 8.03e-05 ***

zAstar:DistributionSkew 0.34005 0.04784 7.108 1.18e-12 ***

zk:zSNR_X -0.11342 0.01810 -6.267 3.67e-10 ***

zk:VDRMedium 0.17896 0.04593 3.897 9.76e-05 ***

zk:VDRSlow 0.22189 0.04499 4.932 8.13e-07 ***

zNobs:VDRMedium -0.10351 0.04685 -2.209 0.02714 *

zNobs:VDRSlow -0.22685 0.04669 -4.859 1.18e-06 ***

zAstar:PIRLow 0.21493 0.04834 4.446 8.74e-06 ***

zAstar:PIRMedium 0.12492 0.04717 2.649 0.00808 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -8.37384 0.23729 -35.290

-7|-6 -5.62648 0.09761 -57.644

-6|-5 -4.12689 0.07543 -54.712

-5|-4 -3.08330 0.06514 -47.333

-4|-3 -1.91075 0.05764 -33.148

-3|-2 -1.02958 0.05427 -18.972

-2|-1 -0.17113 0.05308 -3.224

-1|0 0.79515 0.05441 14.615

0|1 2.00578 0.05715 35.100

1|2 2.29458 0.05797 39.582

2|3 2.64246 0.05915 44.677

3|4 3.05963 0.06082 50.309

4|5 3.42641 0.06257 54.759

5|6 3.80599 0.06478 58.755

6|7 4.33918 0.06884 63.037

7|8 4.64933 0.07193 64.638

8|9 5.00381 0.07650 65.412
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9|10 5.36841 0.08267 64.936

10|11 5.72895 0.09061 63.227

11|12 6.07494 0.10040 60.505

12|13 6.64449 0.12236 54.301

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs -0.150257572 -0.02063276

zk 1.269795590 1.40567487

zAstar -2.246114434 -2.02077267

zSNR_X 0.111163936 0.18463111

zSNR_Y -0.093233912 0.03399792

VDRMedium 0.170843250 0.34985295

VDRSlow -0.153255110 0.02586687

PIRLow 0.474350749 0.65437443

PIRMedium 0.305644052 0.48443056

DistributionNormal -0.064104746 0.11329485

DistributionSkew -0.104700227 0.07251646

zk:zAstar 0.544017789 0.62088737

zNobs:zk 0.402879960 0.47605661

zAstar:VDRMedium 0.343041602 0.53177040

zAstar:VDRSlow 0.005466906 0.19076752

zAstar:zSNR_X 0.124502795 0.19637377

zNobs:zAstar -0.191042515 -0.11641003

zSNR_Y:DistributionNormal 0.189678448 0.36798180

zSNR_Y:DistributionSkew -0.029510215 0.15247738

zAstar:DistributionNormal 0.093006792 0.27679689

zAstar:DistributionSkew 0.246322314 0.43386033

zk:zSNR_X -0.148918221 -0.07797098

zk:VDRMedium 0.088996091 0.26904280

zk:VDRSlow 0.133709473 0.31006958

zNobs:VDRMedium -0.195354773 -0.01171178

zNobs:VDRSlow -0.318408460 -0.13539064

zAstar:PIRLow 0.120190811 0.30968734

zAstar:PIRMedium 0.032488974 0.21738176

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.1617758
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B.5 PLS2 RMSECV 1st minimum Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(RMSECV_first_min_LVlessAstar) ~ 1,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> fmnull$logLik

[1] -22359.62

> fm1 <- clm(ordered(RMSECV_first_min_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> summary(fm1)

formula:

ordered(RMSECV_first_min_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 11662 -18075.94 36225.88 9(0) 3.17e-11 1.0e+04

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.14583 0.01783 8.178 2.89e-16 ***

zk 0.52802 0.01856 28.446 < 2e-16 ***

zAstar -1.90031 0.02678 -70.966 < 2e-16 ***

zSNR_X 0.13276 0.01768 7.507 6.05e-14 ***

zSNR_Y 0.13216 0.01776 7.440 1.01e-13 ***

zm 0.02120 0.01749 1.212 0.225530

zs 0.85770 0.02305 37.214 < 2e-16 ***

VDR_XMedium 1.55122 0.04629 33.510 < 2e-16 ***

VDR_XSlow 1.93677 0.04407 43.948 < 2e-16 ***

VDR_YMedium 0.08405 0.04346 1.934 0.053133 .

VDR_YSlow 0.68053 0.04105 16.577 < 2e-16 ***

PIRLow 0.31430 0.04064 7.734 1.04e-14 ***

PIRMedium -0.15211 0.04362 -3.487 0.000488 ***

RCFLow -0.35587 0.04106 -8.667 < 2e-16 ***

RCFMedium -0.53375 0.04389 -12.160 < 2e-16 ***

DistributionNormal 0.03470 0.04374 0.793 0.427576

DistributionSinh 0.11355 0.04503 2.522 0.011673 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -5.68707 0.13025 -43.663

-7|-6 -4.46290 0.08818 -50.610
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-6|-5 -3.38382 0.07203 -46.979

-5|-4 -2.31477 0.06440 -35.945

-4|-3 -1.49082 0.06114 -24.385

-3|-2 -0.71522 0.05945 -12.032

-2|-1 0.01690 0.05896 0.287

-1|0 0.89800 0.05993 14.983

0|1 4.34885 0.07300 59.575

1|2 5.88265 0.08484 69.335

2|3 6.93417 0.10534 65.829

3|4 7.71935 0.13469 57.313

4|5 8.29902 0.16811 49.367

5|6 8.88821 0.21607 41.135

6|7 9.58360 0.29724 32.242

7|8 10.12420 0.38455 26.327

8|9 10.68465 0.50500 21.158

9|10 10.97246 0.58168 18.863

10|12 11.37809 0.71065 16.011

12|13 12.07143 1.00251 12.041

(338 observations deleted due to missingness)

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.1915811

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.110891930 0.18079901

zk 0.491713688 0.56447852

zAstar -1.953002971 -1.84803313

zSNR_X 0.098106490 0.16743050

zSNR_Y 0.097361616 0.16699619

zm -0.013080726 0.05548982

zs 0.812658259 0.90300830

VDR_XMedium 1.460644970 1.64210941

VDR_XSlow 1.850603413 2.02335746

VDR_YMedium -0.001120361 0.16924732

VDR_YSlow 0.600132083 0.76106428

PIRLow 0.234674185 0.39397794

PIRMedium -0.237615309 -0.06661220

RCFLow -0.436381606 -0.27542545

RCFMedium -0.619825126 -0.44775519

DistributionNormal -0.051047794 0.12042454

DistributionSinh 0.025296673 0.20180181

> sum(is.na(SIM2_DATA_AtoS_DOE_04March2015$RMSECV_first_min_LVlessAstar)==FALSE)

[1] 11662

> klogn <- log(11662)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)
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> summary(fm2)

formula:

ordered(RMSECV_first_min_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs

+ VDR_X + VDR_Y + PIR + RCF + Distribution + zs:VDR_X + zAstar:zs + zk:zAstar + zNobs:zAstar

+ zAstar:VDR_X + zNobs:zk + zm:zs + zSNR_X:RCF + zAstar:VDR_Y + zAstar:zSNR_X + zk:VDR_X

+ zk:zSNR_X + zNobs:Distribution + zSNR_X:PIR + zNobs:VDR_X + zAstar:PIR + zAstar:zSNR_Y

+ zk:zs + zNobs:VDR_Y + VDR_X:VDR_Y + PIR:Distribution + zs:PIR + zm:RCF + zSNR_Y:RCF

+ zSNR_X:zSNR_Y

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 11662 -16373.31 32908.62 9(0) 1.26e-10 1.4e+04

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.361664 0.047295 7.647 2.06e-14 ***

zk 0.857005 0.030541 28.061 < 2e-16 ***

zAstar -4.066915 0.072749 -55.904 < 2e-16 ***

zSNR_X 0.298175 0.040637 7.338 2.18e-13 ***

zSNR_Y 0.116447 0.032610 3.571 0.000356 ***

zm 0.257148 0.033915 7.582 3.40e-14 ***

zs 1.711548 0.060851 28.127 < 2e-16 ***

VDR_XMedium 2.245603 0.078541 28.591 < 2e-16 ***

VDR_XSlow 2.356931 0.072121 32.680 < 2e-16 ***

VDR_YMedium 0.414753 0.067840 6.114 9.73e-10 ***

VDR_YSlow 0.712188 0.063836 11.157 < 2e-16 ***

PIRLow 0.020226 0.084416 0.240 0.810637

PIRMedium -0.376525 0.087589 -4.299 1.72e-05 ***

RCFLow -0.377094 0.042179 -8.940 < 2e-16 ***

RCFMedium -0.447078 0.045821 -9.757 < 2e-16 ***

DistributionNormal -0.453534 0.074491 -6.088 1.14e-09 ***

DistributionSinh -0.258992 0.077289 -3.351 0.000805 ***

zs:VDR_XMedium 0.955316 0.051810 18.439 < 2e-16 ***

zs:VDR_XSlow 1.315319 0.054602 24.089 < 2e-16 ***

zAstar:zs -1.352652 0.044414 -30.456 < 2e-16 ***

zk:zAstar 0.240988 0.017723 13.598 < 2e-16 ***

zNobs:zAstar 0.166259 0.015146 10.977 < 2e-16 ***

zAstar:VDR_XMedium 0.640319 0.050823 12.599 < 2e-16 ***

zAstar:VDR_XSlow 0.466586 0.050618 9.218 < 2e-16 ***

zNobs:zk -0.168473 0.016030 -10.510 < 2e-16 ***

zm:zs 0.214657 0.022557 9.516 < 2e-16 ***

zSNR_X:RCFLow -0.364451 0.044184 -8.248 < 2e-16 ***

zSNR_X:RCFMedium -0.100678 0.045069 -2.234 0.025491 *

zAstar:VDR_YMedium 0.173356 0.045062 3.847 0.000120 ***

zAstar:VDR_YSlow 0.299918 0.045190 6.637 3.21e-11 ***

zAstar:zSNR_X 0.099892 0.014947 6.683 2.34e-11 ***

zk:VDR_XMedium -0.287396 0.044754 -6.422 1.35e-10 ***
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zk:VDR_XSlow -0.234562 0.044449 -5.277 1.31e-07 ***

zk:zSNR_X -0.091711 0.015886 -5.773 7.79e-09 ***

zNobs:DistributionNormal -0.173680 0.044491 -3.904 9.47e-05 ***

zNobs:DistributionSinh -0.278126 0.045720 -6.083 1.18e-09 ***

zSNR_X:PIRLow 0.157306 0.045106 3.487 0.000488 ***

zSNR_X:PIRMedium -0.079248 0.044492 -1.781 0.074883 .

zNobs:VDR_XMedium 0.220039 0.044999 4.890 1.01e-06 ***

zNobs:VDR_XSlow -0.033062 0.044320 -0.746 0.455685

zAstar:PIRLow 0.240225 0.050236 4.782 1.74e-06 ***

zAstar:PIRMedium -0.089333 0.050338 -1.775 0.075953 .

zAstar:zSNR_Y 0.062187 0.014847 4.189 2.81e-05 ***

zk:zs 0.077689 0.018002 4.316 1.59e-05 ***

zNobs:VDR_YMedium 0.003524 0.045674 0.077 0.938502

zNobs:VDR_YSlow -0.219673 0.044467 -4.940 7.80e-07 ***

VDR_XMedium:VDR_YMedium -0.647294 0.116411 -5.560 2.69e-08 ***

VDR_XSlow:VDR_YMedium 0.155024 0.106007 1.462 0.143632

VDR_XMedium:VDR_YSlow -0.046070 0.106523 -0.432 0.665382

VDR_XSlow:VDR_YSlow 0.044897 0.098066 0.458 0.647076

PIRLow:DistributionNormal 0.621676 0.107263 5.796 6.80e-09 ***

PIRMedium:DistributionNormal 0.584286 0.113094 5.166 2.39e-07 ***

PIRLow:DistributionSinh 0.470827 0.111807 4.211 2.54e-05 ***

PIRMedium:DistributionSinh 0.468053 0.115980 4.036 5.45e-05 ***

zs:PIRLow -0.225559 0.051476 -4.382 1.18e-05 ***

zs:PIRMedium 0.029934 0.051011 0.587 0.557329

zm:RCFLow -0.174639 0.043966 -3.972 7.12e-05 ***

zm:RCFMedium -0.013452 0.044508 -0.302 0.762474

zSNR_Y:RCFLow 0.178787 0.045205 3.955 7.65e-05 ***

zSNR_Y:RCFMedium 0.006380 0.045666 0.140 0.888891

zSNR_X:zSNR_Y 0.047111 0.015258 3.088 0.002018 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -7.56604 0.14942 -50.635

-7|-6 -6.30433 0.11394 -55.329

-6|-5 -5.12555 0.10018 -51.164

-5|-4 -3.83326 0.09164 -41.831

-4|-3 -2.72515 0.08650 -31.503

-3|-2 -1.61867 0.08325 -19.444

-2|-1 -0.57011 0.08171 -6.977

-1|0 0.61388 0.08219 7.469

0|1 4.31834 0.09106 47.425

1|2 5.87788 0.10049 58.490

2|3 6.94126 0.11832 58.664

3|4 7.73460 0.14515 53.287

4|5 8.31586 0.17662 47.084

5|6 8.90594 0.22277 39.978

6|7 9.60395 0.30216 31.784
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7|8 10.14542 0.38837 26.123

8|9 10.70582 0.50791 21.078

9|10 10.99378 0.58421 18.818

10|12 11.39968 0.71272 15.995

12|13 12.09340 1.00398 12.045

(338 observations deleted due to missingness)

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.26900123 0.454401802

zk 0.79727627 0.917003709

zAstar -4.20994886 -3.924770113

zSNR_X 0.21852678 0.377827519

zSNR_Y 0.05255407 0.180388114

zm 0.19068785 0.323637727

zs 1.59247364 1.831015458

VDR_XMedium 2.09190507 2.399794757

VDR_XSlow 2.21583446 2.498555489

VDR_YMedium 0.28183384 0.547771824

VDR_YSlow 0.58714391 0.837386143

PIRLow -0.14524987 0.185670153

PIRMedium -0.54829461 -0.204935992

RCFLow -0.45980696 -0.294463419

RCFMedium -0.53692812 -0.357309490

DistributionNormal -0.59958773 -0.307577244

DistributionSinh -0.41050389 -0.107524668

zs:VDR_XMedium 0.85385862 1.056958176

zs:VDR_XSlow 1.20842949 1.422475414

zAstar:zs -1.43988498 -1.265778793

zk:zAstar 0.20630276 0.275776895

zNobs:zAstar 0.13659459 0.195967081

zAstar:VDR_XMedium 0.54076683 0.739995740

zAstar:VDR_XSlow 0.36742628 0.565853341

zNobs:zk -0.19991837 -0.137080941

zm:zs 0.17046869 0.258894140

zSNR_X:RCFLow -0.45109592 -0.277890427

zSNR_X:RCFMedium -0.18902539 -0.012353746

zAstar:VDR_YMedium 0.08504728 0.261694748

zAstar:VDR_YSlow 0.21135776 0.388507267

zAstar:zSNR_X 0.07060265 0.129196850

zk:VDR_XMedium -0.37518204 -0.199742495

zk:VDR_XSlow -0.32170952 -0.147464162

zk:zSNR_X -0.12285719 -0.060582300

zNobs:DistributionNormal -0.26089939 -0.086493010

zNobs:DistributionSinh -0.36776799 -0.188540534

zSNR_X:PIRLow 0.06892225 0.245741835

zSNR_X:PIRMedium -0.16644524 0.007966726

zNobs:VDR_XMedium 0.13186888 0.308266824
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zNobs:VDR_XSlow -0.11991954 0.053818693

zAstar:PIRLow 0.14177416 0.338704415

zAstar:PIRMedium -0.18801239 0.009316110

zAstar:zSNR_Y 0.03308888 0.091289200

zk:zs 0.04239594 0.112965748

zNobs:VDR_YMedium -0.08599392 0.093049401

zNobs:VDR_YSlow -0.30684063 -0.132528540

VDR_XMedium:VDR_YMedium -0.87553134 -0.419189452

VDR_XSlow:VDR_YMedium -0.05274141 0.362811701

VDR_XMedium:VDR_YSlow -0.25487484 0.162700940

VDR_XSlow:VDR_YSlow -0.14727614 0.237147123

PIRLow:DistributionNormal 0.41150324 0.831981429

PIRMedium:DistributionNormal 0.36270285 0.806039862

PIRLow:DistributionSinh 0.25173438 0.690024513

PIRMedium:DistributionSinh 0.24080150 0.695452508

zs:PIRLow -0.32648241 -0.124689300

zs:PIRMedium -0.07002967 0.129939782

zm:RCFLow -0.26083285 -0.088481643

zm:RCFMedium -0.10069717 0.073778549

zSNR_Y:RCFLow 0.09019120 0.267396705

zSNR_Y:RCFMedium -0.08312616 0.095887861

zSNR_X:zSNR_Y 0.01720955 0.077022292

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.2677286
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B.6 PLS2 RMSECV Absolute minimum Logistic

Model

> require(ordinal)

> fmnull <- clm(ordered(RMSECV_abs_min_LVlessAstar) ~ 1,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> fmnull$logLik

[1] -24992.35

> fm1 <- clm(ordered(RMSECV_abs_min_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> summary(fm1)

formula:

ordered(RMSECV_abs_min_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -21450.46 42976.92 9(1) 1.67e-11 1.2e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.10535 0.01711 -6.159 7.31e-10 ***

zk 0.77510 0.01921 40.343 < 2e-16 ***

zAstar -1.38518 0.02361 -58.660 < 2e-16 ***

zSNR_X 0.06919 0.01700 4.070 4.70e-05 ***

zSNR_Y 0.12398 0.01701 7.288 3.15e-13 ***

zm 0.01107 0.01716 0.645 0.5189

zs 0.60619 0.02097 28.908 < 2e-16 ***

VDR_XMedium 1.50154 0.04448 33.757 < 2e-16 ***

VDR_XSlow 1.75133 0.04206 41.639 < 2e-16 ***

VDR_YMedium 0.01762 0.04196 0.420 0.6746

VDR_YSlow 0.46821 0.03941 11.881 < 2e-16 ***

PIRLow 0.36079 0.03911 9.225 < 2e-16 ***

PIRMedium -0.10502 0.04209 -2.495 0.0126 *

RCFLow -0.20760 0.03952 -5.252 1.50e-07 ***

RCFMedium -0.38793 0.04195 -9.247 < 2e-16 ***

DistributionNormal -0.39802 0.04250 -9.364 < 2e-16 ***

DistributionSinh -0.29242 0.04343 -6.732 1.67e-11 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:
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Estimate Std. Error z value

-8|-7 -6.23515 0.16981 -36.718

-7|-6 -4.90217 0.10065 -48.705

-6|-5 -3.73349 0.07435 -50.215

-5|-4 -2.66720 0.06385 -41.770

-4|-3 -1.86665 0.05992 -31.155

-3|-2 -1.16243 0.05814 -19.994

-2|-1 -0.50314 0.05766 -8.725

-1|0 0.44409 0.05829 7.619

0|1 3.10208 0.06436 48.198

1|2 4.03148 0.06806 59.237

2|3 4.56753 0.07181 63.609

3|4 4.95686 0.07572 65.464

4|5 5.25827 0.07966 66.011

5|6 5.59614 0.08529 65.612

6|7 6.33542 0.10364 61.131

7|8 6.71971 0.11739 57.242

8|9 7.19143 0.13934 51.610

9|10 7.57367 0.16215 46.707

10|11 8.06393 0.19959 40.403

11|12 8.26674 0.21822 37.882

12|13 8.77351 0.27497 31.907

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs -0.13889174 -0.07183822

zk 0.73754255 0.81285821

zAstar -1.43157810 -1.33901208

zSNR_X 0.03587461 0.10251288

zSNR_Y 0.09064570 0.15733287

zm -0.02256769 0.04471638

zs 0.56514782 0.64735043

VDR_XMedium 1.41448868 1.58885679

VDR_XSlow 1.66905185 1.83392698

VDR_YMedium -0.06462141 0.09987353

VDR_YSlow 0.39100422 0.54549059

PIRLow 0.28416343 0.43747881

PIRMedium -0.18752787 -0.02251637

RCFLow -0.28508904 -0.13015065

RCFMedium -0.47018176 -0.30572316

DistributionNormal -0.48137678 -0.31475710

DistributionSinh -0.37758848 -0.20732562

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.141719

> sum(is.na(SIM2_DATA_AtoS_DOE_04March2015$RMSECV_abs_min_LVlessAstar)==FALSE)

[1] 12000
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> klogn <- log(12000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> summary(fm2)

formula:

ordered(RMSECV_abs_min_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X

+ VDR_Y + PIR + RCF + Distribution + zAstar:VDR_X + zk:zAstar + zAstar:zs + zNobs:zk + zs:VDR_X

+ zk:Distribution + zSNR_X:VDR_X + zm:RCF + zSNR_X:zm + zAstar:zSNR_X + zAstar:PIR + zs:PIR

+ zm:zs + VDR_X:VDR_Y + zk:zSNR_X + zAstar:VDR_Y + zk:PIR + zAstar:zSNR_Y + zk:zs

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -19824.61 39787.23 9(1) 1.43e-10 2.0e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.08682 0.01727 -5.027 4.98e-07 ***

zk 1.18736 0.04099 28.966 < 2e-16 ***

zAstar -3.21598 0.06595 -48.761 < 2e-16 ***

zSNR_X 0.19122 0.02821 6.779 1.21e-11 ***

zSNR_Y 0.13769 0.01703 8.087 6.12e-16 ***

zm 0.19848 0.03179 6.244 4.26e-10 ***

zs 1.32938 0.05622 23.647 < 2e-16 ***

VDR_XMedium 2.25176 0.07487 30.075 < 2e-16 ***

VDR_XSlow 2.30864 0.06882 33.546 < 2e-16 ***

VDR_YMedium 0.48160 0.06605 7.291 3.07e-13 ***

VDR_YSlow 0.69754 0.06258 11.147 < 2e-16 ***

PIRLow 0.48679 0.03999 12.174 < 2e-16 ***

PIRMedium 0.06498 0.04313 1.507 0.131914

RCFLow -0.21102 0.03989 -5.290 1.23e-07 ***

RCFMedium -0.28430 0.04328 -6.569 5.05e-11 ***

DistributionNormal -0.59207 0.04333 -13.663 < 2e-16 ***

DistributionSinh -0.43204 0.04415 -9.786 < 2e-16 ***

zAstar:VDR_XMedium 0.89580 0.04927 18.180 < 2e-16 ***

zAstar:VDR_XSlow 0.75919 0.04968 15.281 < 2e-16 ***

zk:zAstar 0.45754 0.01800 25.419 < 2e-16 ***

zAstar:zs -0.94384 0.03913 -24.120 < 2e-16 ***

zNobs:zk -0.31225 0.01574 -19.842 < 2e-16 ***

zs:VDR_XMedium 0.45718 0.04712 9.702 < 2e-16 ***

zs:VDR_XSlow 0.63295 0.04957 12.768 < 2e-16 ***

zk:DistributionNormal -0.56880 0.04385 -12.973 < 2e-16 ***

zk:DistributionSinh -0.30694 0.04435 -6.921 4.50e-12 ***

zSNR_X:VDR_XMedium -0.10651 0.04150 -2.566 0.010280 *

zSNR_X:VDR_XSlow -0.25098 0.04172 -6.016 1.79e-09 ***

zm:RCFLow -0.24144 0.04185 -5.769 7.98e-09 ***

zm:RCFMedium -0.01891 0.04273 -0.443 0.658105

zSNR_X:zm -0.10357 0.01446 -7.163 7.90e-13 ***
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zAstar:zSNR_X 0.08226 0.01395 5.896 3.73e-09 ***

zAstar:PIRLow 0.36434 0.04888 7.454 9.02e-14 ***

zAstar:PIRMedium -0.05817 0.04941 -1.177 0.239085

zs:PIRLow -0.33263 0.04770 -6.973 3.10e-12 ***

zs:PIRMedium 0.01342 0.04822 0.278 0.780833

zm:zs 0.10350 0.01950 5.309 1.10e-07 ***

VDR_XMedium:VDR_YMedium -0.67020 0.10746 -6.237 4.47e-10 ***

VDR_XSlow:VDR_YMedium -0.30749 0.09927 -3.098 0.001951 **

VDR_XMedium:VDR_YSlow -0.37037 0.10103 -3.666 0.000246 ***

VDR_XSlow:VDR_YSlow -0.33881 0.09293 -3.646 0.000267 ***

zk:zSNR_X -0.07532 0.01524 -4.944 7.66e-07 ***

zAstar:VDR_YMedium 0.08228 0.04152 1.982 0.047518 *

zAstar:VDR_YSlow 0.21850 0.04209 5.191 2.09e-07 ***

zk:PIRLow 0.20524 0.04238 4.843 1.28e-06 ***

zk:PIRMedium 0.07808 0.04489 1.739 0.081962 .

zAstar:zSNR_Y 0.05174 0.01367 3.783 0.000155 ***

zk:zs -0.05699 0.01727 -3.300 0.000967 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -7.50239 0.17816 -42.111

-7|-6 -6.13732 0.11353 -54.058

-6|-5 -4.86232 0.08899 -54.639

-5|-4 -3.57465 0.07718 -46.314

-4|-3 -2.52124 0.07107 -35.477

-3|-2 -1.56167 0.06786 -23.013

-2|-1 -0.67065 0.06690 -10.025

-1|0 0.52768 0.06770 7.794

0|1 3.42710 0.07271 47.132

1|2 4.44474 0.07651 58.093

2|3 5.04011 0.08055 62.568

3|4 5.47680 0.08477 64.608

4|5 5.81405 0.08890 65.397

5|6 6.18584 0.09457 65.410

6|7 6.96141 0.11197 62.174

7|8 7.34696 0.12483 58.856

8|9 7.81747 0.14568 53.662

9|10 8.20025 0.16769 48.900

10|11 8.69002 0.20417 42.563

11|12 8.89123 0.22242 39.975

12|13 9.39498 0.27831 33.758

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs -0.1206837901 -0.05297869

zk 1.1071324930 1.26782785
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zAstar -3.3455725991 -3.08703051

zSNR_X 0.1359467450 0.24652385

zSNR_Y 0.1043290793 0.17107275

zm 0.1361947982 0.26079659

zs 1.2193378190 1.43971989

VDR_XMedium 2.1051870028 2.39868917

VDR_XSlow 2.1739608119 2.44374422

VDR_YMedium 0.3521895670 0.61111570

VDR_YSlow 0.5749455035 0.82026120

PIRLow 0.4084510252 0.56520242

PIRMedium -0.0195476779 0.14952389

RCFLow -0.2892339397 -0.13285110

RCFMedium -0.3691419289 -0.19949754

DistributionNormal -0.6770537769 -0.50718922

DistributionSinh -0.5186089997 -0.34554472

zAstar:VDR_XMedium 0.7993044040 0.99246366

zAstar:VDR_XSlow 0.6619070626 0.85666798

zk:zAstar 0.4223129207 0.49287350

zAstar:zs -1.0206895901 -0.86729157

zNobs:zk -0.3431299324 -0.28143949

zs:VDR_XMedium 0.3648648048 0.54959273

zs:VDR_XSlow 0.5358427281 0.73017181

zk:DistributionNormal -0.6547807546 -0.48290445

zk:DistributionSinh -0.3939005081 -0.22003486

zSNR_X:VDR_XMedium -0.1878684647 -0.02517577

zSNR_X:VDR_XSlow -0.3327758333 -0.16922197

zm:RCFLow -0.3234851201 -0.15942542

zm:RCFMedium -0.1026612865 0.06483403

zSNR_X:zm -0.1319154054 -0.07523705

zAstar:zSNR_X 0.0549194223 0.10961313

zAstar:PIRLow 0.2685769964 0.46017442

zAstar:PIRMedium -0.1550065689 0.03867323

zs:PIRLow -0.4261564124 -0.23915374

zs:PIRMedium -0.0810796319 0.10793294

zm:zs 0.0652998297 0.14172566

VDR_XMedium:VDR_YMedium -0.8808841278 -0.45962837

VDR_XSlow:VDR_YMedium -0.5020809512 -0.11294497

VDR_XMedium:VDR_YSlow -0.5684223087 -0.17238583

VDR_XSlow:VDR_YSlow -0.5209763498 -0.15667225

zk:zSNR_X -0.1051936031 -0.04546866

zAstar:VDR_YMedium 0.0009031504 0.16367528

zAstar:VDR_YSlow 0.1360188349 0.30100911

zk:PIRLow 0.1221794534 0.28830496

zk:PIRMedium -0.0099044777 0.16605369

zAstar:zSNR_Y 0.0249350404 0.07854033

zk:zs -0.0908510637 -0.02315774

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.2067729
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B.7 PLS2 Permutation minimum Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(perms_best_LVlessAstar) ~ 1,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> fmnull$logLik

[1] -29189.31

> fm1 <- clm(ordered(perms_best_LVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> summary(fm1)

formula:

ordered(perms_best_LVlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -26488.09 53052.17 8(0) 8.14e-09 1.7e+04

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.087505 0.016091 5.438 5.38e-08 ***

zk 0.114934 0.016374 7.019 2.23e-12 ***

zAstar -1.316023 0.022059 -59.659 < 2e-16 ***

zSNR_X 0.004144 0.016072 0.258 0.7965

zSNR_Y 0.010773 0.016070 0.670 0.5026

zm -0.032071 0.016272 -1.971 0.0487 *

zs 0.077991 0.019632 3.973 7.11e-05 ***

VDR_XMedium -0.235396 0.040494 -5.813 6.13e-09 ***

VDR_XSlow 0.210124 0.037785 5.561 2.68e-08 ***

VDR_YMedium -0.008991 0.040557 -0.222 0.8246

VDR_YSlow 0.076867 0.037754 2.036 0.0417 *

PIRLow 0.474041 0.038061 12.455 < 2e-16 ***

PIRMedium -0.075819 0.039940 -1.898 0.0577 .

RCFLow -0.014532 0.037875 -0.384 0.7012

RCFMedium 0.001592 0.040393 0.039 0.9686

DistributionNormal 0.387645 0.040184 9.647 < 2e-16 ***

DistributionSinh 0.244010 0.040801 5.980 2.23e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-9|-8 -4.46812 0.09206 -48.537

-8|-7 -2.59937 0.06178 -42.073
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-7|-6 -1.73728 0.05719 -30.376

-6|-5 -1.04822 0.05515 -19.006

-5|-4 -0.44060 0.05416 -8.135

-4|-3 0.15736 0.05388 2.921

-3|-2 0.68639 0.05423 12.656

-2|-1 1.17506 0.05503 21.352

-1|0 1.62389 0.05622 28.886

0|1 3.71190 0.06582 56.394

1|2 4.04605 0.06854 59.029

2|3 4.28018 0.07100 60.284

3|4 4.50638 0.07389 60.989

4|5 4.78696 0.07830 61.139

5|6 5.17000 0.08608 60.061

6|7 5.68301 0.10050 56.547

7|8 6.10845 0.11684 52.280

8|9 7.16067 0.18098 39.566

9|10 8.29108 0.30700 27.006

10|12 9.59165 0.58024 16.531

12|13 10.69079 1.00167 10.673

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.055973842 0.1190500586

zk 0.082853985 0.1470426918

zAstar -1.359356420 -1.2728837012

zSNR_X -0.027355907 0.0356457796

zSNR_Y -0.020723793 0.0422695620

zm -0.063967950 -0.0001806509

zs 0.039513854 0.1164722900

VDR_XMedium -0.314761629 -0.1560226913

VDR_XSlow 0.136094273 0.2842122831

VDR_YMedium -0.088481790 0.0705023026

VDR_YSlow 0.002871556 0.1508657850

PIRLow 0.399478480 0.5486772994

PIRMedium -0.154095130 0.0024696722

RCFLow -0.088767015 0.0597026608

RCFMedium -0.077575619 0.0807655298

DistributionNormal 0.308903783 0.4664267917

DistributionSinh 0.164052804 0.3239943386

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.0925414

> sum(is.na(SIM2_DATA_AtoS_DOE_04March2015$perms_best_LVlessAstar)==FALSE)

[1] 12000

> klogn <- log(12000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)
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> summary(fm2)

formula:

ordered(perms_best_LVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs

+ VDR_X + VDR_Y + PIR + RCF + Distribution + VDR_X:PIR + zk:VDR_X + zAstar:PIR + PIR:Distribution

+ zk:zs + zm:VDR_X + zs:PIR + zAstar:zs + zNobs:VDR_X + VDR_X:VDR_Y + zAstar:VDR_X

+ zAstar:Distribution + zNobs:zk + zSNR_X:RCF + zs:VDR_X + zk:zSNR_X + zNobs:zSNR_X

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -25978.32 52102.65 8(0) 1.02e-08 1.6e+04

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.206232 0.026677 7.731 1.07e-14 ***

zk 0.377023 0.026916 14.008 < 2e-16 ***

zAstar -1.965864 0.056193 -34.984 < 2e-16 ***

zSNR_X 0.032998 0.028052 1.176 0.239475

zSNR_Y 0.008477 0.016254 0.522 0.601991

zm 0.108210 0.027157 3.985 6.76e-05 ***

zs 0.522990 0.051730 10.110 < 2e-16 ***

VDR_XMedium -0.339144 0.085648 -3.960 7.50e-05 ***

VDR_XSlow 0.162734 0.079401 2.050 0.040412 *

VDR_YMedium 0.252246 0.062597 4.030 5.58e-05 ***

VDR_YSlow 0.402316 0.059227 6.793 1.10e-11 ***

PIRLow -0.483170 0.090349 -5.348 8.90e-08 ***

PIRMedium 0.021938 0.091047 0.241 0.809590

RCFLow -0.027426 0.038395 -0.714 0.475041

RCFMedium -0.001639 0.041320 -0.040 0.968364

DistributionNormal 0.270602 0.065960 4.103 4.09e-05 ***

DistributionSinh 0.125975 0.067669 1.862 0.062656 .

VDR_XMedium:PIRLow 1.242773 0.097637 12.728 < 2e-16 ***

VDR_XSlow:PIRLow 1.043601 0.091683 11.383 < 2e-16 ***

VDR_XMedium:PIRMedium -0.134337 0.099006 -1.357 0.174829

VDR_XSlow:PIRMedium 0.214819 0.096432 2.228 0.025902 *

zk:VDR_XMedium -0.231847 0.039445 -5.878 4.16e-09 ***

zk:VDR_XSlow -0.490901 0.040068 -12.252 < 2e-16 ***

zAstar:PIRLow 0.556800 0.047339 11.762 < 2e-16 ***

zAstar:PIRMedium -0.001121 0.045831 -0.024 0.980491

PIRLow:DistributionNormal 0.748738 0.097389 7.688 1.49e-14 ***

PIRMedium:DistributionNormal -0.272480 0.099789 -2.731 0.006322 **

PIRLow:DistributionSinh 0.370057 0.099273 3.728 0.000193 ***

PIRMedium:DistributionSinh -0.001623 0.102647 -0.016 0.987386

zk:zs 0.116040 0.014333 8.096 5.67e-16 ***

zm:VDR_XMedium -0.205806 0.040009 -5.144 2.69e-07 ***

zm:VDR_XSlow -0.223547 0.040529 -5.516 3.47e-08 ***

zs:PIRLow -0.312093 0.048093 -6.489 8.62e-11 ***

zs:PIRMedium -0.005243 0.046460 -0.113 0.910154
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zAstar:zs -0.242779 0.034638 -7.009 2.40e-12 ***

zNobs:VDR_XMedium -0.171739 0.039563 -4.341 1.42e-05 ***

zNobs:VDR_XSlow -0.237366 0.039962 -5.940 2.85e-09 ***

VDR_XMedium:VDR_YMedium -0.432736 0.101850 -4.249 2.15e-05 ***

VDR_XSlow:VDR_YMedium -0.420607 0.096952 -4.338 1.44e-05 ***

VDR_XMedium:VDR_YSlow -0.407949 0.095657 -4.265 2.00e-05 ***

VDR_XSlow:VDR_YSlow -0.607293 0.090675 -6.697 2.12e-11 ***

zAstar:VDR_XMedium 0.055454 0.045731 1.213 0.225280

zAstar:VDR_XSlow 0.280782 0.046577 6.028 1.66e-09 ***

zAstar:DistributionNormal 0.210254 0.039281 5.353 8.67e-08 ***

zAstar:DistributionSinh 0.062180 0.039288 1.583 0.113497

zNobs:zk 0.056830 0.014117 4.026 5.68e-05 ***

zSNR_X:RCFLow 0.034800 0.039731 0.876 0.381087

zSNR_X:RCFMedium -0.156742 0.040464 -3.874 0.000107 ***

zs:VDR_XMedium -0.176047 0.046311 -3.801 0.000144 ***

zs:VDR_XSlow -0.235757 0.049092 -4.802 1.57e-06 ***

zk:zSNR_X -0.048019 0.014179 -3.387 0.000708 ***

zNobs:zSNR_X -0.045851 0.013632 -3.364 0.000769 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-9|-8 -4.95365 0.10822 -45.774

-8|-7 -3.03694 0.08334 -36.442

-7|-6 -2.11025 0.07922 -26.639

-6|-5 -1.35548 0.07705 -17.593

-5|-4 -0.69503 0.07581 -9.169

-4|-3 -0.05343 0.07528 -0.710

-3|-2 0.50631 0.07542 6.713

-2|-1 1.01473 0.07601 13.350

-1|0 1.47385 0.07703 19.135

0|1 3.57286 0.08461 42.226

1|2 3.91228 0.08672 45.114

2|3 4.14944 0.08866 46.801

3|4 4.37802 0.09098 48.121

4|5 4.66095 0.09459 49.277

5|6 5.04664 0.10112 49.909

6|7 5.56247 0.11364 48.947

7|8 5.98980 0.12832 46.678

8|9 7.04460 0.18859 37.353

9|10 8.17616 0.31156 26.243

10|12 9.47733 0.58266 16.266

12|13 10.57668 1.00308 10.544

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.153951929 0.25852791
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zk 0.324317790 0.42983298

zAstar -2.076166080 -1.85588319

zSNR_X -0.021975657 0.08799189

zSNR_Y -0.023379812 0.04033506

zm 0.054989445 0.16145021

zs 0.421667782 0.62445578

VDR_XMedium -0.506949792 -0.17119865

VDR_XSlow 0.007209051 0.31846963

VDR_YMedium 0.129560122 0.37494628

VDR_YSlow 0.286244775 0.51842176

PIRLow -0.660382988 -0.30620592

PIRMedium -0.156543010 0.20037482

RCFLow -0.102681348 0.04782912

RCFMedium -0.082621462 0.07935540

DistributionNormal 0.141320447 0.39989070

DistributionSinh -0.006658152 0.25861230

VDR_XMedium:PIRLow 1.051491016 1.43423323

VDR_XSlow:PIRLow 0.863989399 1.22338901

VDR_XMedium:PIRMedium -0.328392231 0.05971875

VDR_XSlow:PIRMedium 0.025860515 0.40387604

zk:VDR_XMedium -0.309182863 -0.15455362

zk:VDR_XSlow -0.569474901 -0.41240718

zAstar:PIRLow 0.464068819 0.64964300

zAstar:PIRMedium -0.090945669 0.08871754

PIRLow:DistributionNormal 0.557924865 0.93969414

PIRMedium:DistributionNormal -0.468080783 -0.07690444

PIRLow:DistributionSinh 0.175523638 0.56467647

PIRMedium:DistributionSinh -0.202809754 0.19957192

zk:zs 0.087966104 0.14415336

zm:VDR_XMedium -0.284244615 -0.12740724

zm:VDR_XSlow -0.303008408 -0.14413240

zs:PIRLow -0.406414341 -0.21788362

zs:PIRMedium -0.096313581 0.08581829

zAstar:zs -0.310728416 -0.17494446

zNobs:VDR_XMedium -0.249293166 -0.09420392

zNobs:VDR_XSlow -0.315705402 -0.15905278

VDR_XMedium:VDR_YMedium -0.632387639 -0.23312941

VDR_XSlow:VDR_YMedium -0.610657583 -0.23060172

VDR_XMedium:VDR_YSlow -0.595471096 -0.22048972

VDR_XSlow:VDR_YSlow -0.785070524 -0.42962233

zAstar:VDR_XMedium -0.034160633 0.14511103

zAstar:VDR_XSlow 0.189514825 0.37210054

zAstar:DistributionNormal 0.133276008 0.28726135

zAstar:DistributionSinh -0.014828561 0.13918420

zNobs:zk 0.029165930 0.08450573

zSNR_X:RCFLow -0.043072477 0.11267439

zSNR_X:RCFMedium -0.236068956 -0.07744848

zs:VDR_XMedium -0.266838318 -0.08529079

zs:VDR_XSlow -0.332009825 -0.13956491
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zk:zSNR_X -0.075815991 -0.02023286

zNobs:zSNR_X -0.072572814 -0.01913559

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.1100057
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B.8 PLS2 Information Criteria Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(Info_BIC_min_Lvless.Astar) ~ 1,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> fmnull$logLik

[1] -29834.41

> fm1 <- clm(ordered(Info_BIC_min_LvlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,

link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)

> summary(fm1)

formula:

ordered(Info_BIC_min_LvlessAstar) ~

zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -21644.18 43364.36 8(0) 8.15e-11 2.2e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 1.761244 0.023931 73.597 < 2e-16 ***

zk -0.299391 0.016630 -18.003 < 2e-16 ***

zAstar -2.564086 0.030489 -84.097 < 2e-16 ***

zSNR_X 0.181833 0.016865 10.782 < 2e-16 ***

zSNR_Y -0.023786 0.016753 -1.420 0.155664

zm -1.327031 0.021266 -62.403 < 2e-16 ***

zs -0.108107 0.020029 -5.398 6.76e-08 ***

VDR_XMedium -0.138410 0.041402 -3.343 0.000829 ***

VDR_XSlow -0.183034 0.037136 -4.929 8.28e-07 ***

VDR_YMedium -0.045410 0.040667 -1.117 0.264153

VDR_YSlow 0.059315 0.037362 1.588 0.112384

PIRLow -0.105998 0.037377 -2.836 0.004569 **

PIRMedium -0.431424 0.040269 -10.714 < 2e-16 ***

RCFLow 0.005615 0.037656 0.149 0.881462

RCFMedium -0.081147 0.040143 -2.021 0.043232 *

DistributionNormal 0.339359 0.040272 8.427 < 2e-16 ***

DistributionSinh 0.239582 0.040248 5.953 2.64e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -5.60431 0.08238 -68.026

-7|-6 -4.55482 0.07232 -62.983

-6|-5 -3.80658 0.06661 -57.150
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-5|-4 -2.65478 0.06070 -43.734

-4|-3 -1.43743 0.05695 -25.241

-3|-2 -0.49956 0.05572 -8.965

-2|-1 0.42359 0.05605 7.558

-1|0 1.77419 0.05906 30.042

0|1 2.82407 0.06297 44.851

1|2 4.77470 0.07452 64.075

2|3 6.10426 0.08660 70.485

3|4 7.12725 0.10283 69.314

4|5 7.50826 0.11254 66.719

5|6 7.90720 0.12501 63.253

6|7 8.87383 0.15905 55.793

7|8 9.15829 0.16711 54.803

8|9 9.64474 0.17997 53.592

9|10 9.99115 0.19018 52.536

10|11 10.78072 0.22414 48.098

11|12 12.21481 0.35921 34.005

12|13 13.07013 0.51755 25.254

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 1.71450797 1.808316800

zk -0.33202147 -0.266830668

zAstar -2.62408412 -2.504564783

zSNR_X 0.14879026 0.214900557

zSNR_Y -0.05662451 0.009046405

zm -1.36883312 -1.285471816

zs -0.14737820 -0.068862763

VDR_XMedium -0.21958814 -0.057290562

VDR_XSlow -0.25582962 -0.110256034

VDR_YMedium -0.12512982 0.034285496

VDR_YSlow -0.01390933 0.132551475

PIRLow -0.17926697 -0.032749535

PIRMedium -0.51039576 -0.352540236

RCFLow -0.06819317 0.079418260

RCFMedium -0.15984252 -0.002482188

DistributionNormal 0.26045361 0.418319812

DistributionSinh 0.16071899 0.318490607

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.2745229

> sum(is.na(SIM2_DATA_AtoS_DOE_04March2015$Info_BIC_min_LvlessAstar)==FALSE)

[1] 12000

> klogn <- log(12000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn) % This k factor is for BIC

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_DATA_AtoS_DOE_04March2015)
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> summary(fm2)

formula:

ordered(Info_BIC_min_LvlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs

+ VDR_X + VDR_Y + PIR + RCF + Distribution + zNobs:zAstar + zAstar:zs + zAstar:zm + zk:zm

+ zNobs:VDR_X + zNobs:zSNR_X + zm:Distribution + zNobs:Distribution + zm:PIR + zNobs:PIR

+ zNobs:zm + zk:zs + zAstar:VDR_X + zSNR_X:zm + VDR_X:VDR_Y + zk:zAstar + zm:VDR_X

+ zNobs:zs + VDR_Y:RCF + zm:RCF + zNobs:RCF + zs:Distribution + zm:VDR_Y + zk:Distribution

+ zSNR_X:Distribution + zSNR_Y:RCF + zSNR_Y:VDR_X + zSNR_X:PIR + VDR_Y:PIR

+ zSNR_X:RCF + zAstar:zSNR_Y + zm:zs + zs:PIR + zAstar:PIR + zs:VDR_X + PIR:RCF

+ zSNR_X:zs + zk:PIR + zk:RCF + zAstar:RCF + zSNR_Y:PIR + zk:VDR_Y + zSNR_Y:VDR_Y

data: SIM2_DATA_AtoS_DOE_04March2015

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -18709.71 37657.43 9(2) 4.17e-11 4.9e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 2.307667 0.060052 38.428 < 2e-16 ***

zk -0.691540 0.054585 -12.669 < 2e-16 ***

zAstar -4.648916 0.075239 -61.789 < 2e-16 ***

zSNR_X 0.789000 0.046930 16.812 < 2e-16 ***

zSNR_Y -0.037957 0.053910 -0.704 0.481380

zm -1.449825 0.065403 -22.168 < 2e-16 ***

zs 2.050037 0.068569 29.898 < 2e-16 ***

VDR_XMedium 0.249418 0.074295 3.357 0.000788 ***

VDR_XSlow -0.012637 0.065279 -0.194 0.846506

VDR_YMedium 0.642724 0.104440 6.154 7.56e-10 ***

VDR_YSlow 0.293080 0.102001 2.873 0.004062 **

PIRLow 0.164434 0.085107 1.932 0.053349 .

PIRMedium -0.273106 0.095315 -2.865 0.004166 **

RCFLow 0.347964 0.081013 4.295 1.75e-05 ***

RCFMedium -0.406419 0.089726 -4.530 5.91e-06 ***

DistributionNormal 0.232589 0.043799 5.310 1.09e-07 ***

DistributionSinh 0.115605 0.043448 2.661 0.007796 **

zNobs:zAstar 1.132378 0.022394 50.566 < 2e-16 ***

zAstar:zs -1.793825 0.044386 -40.414 < 2e-16 ***

zAstar:zm -0.647027 0.019546 -33.103 < 2e-16 ***

zk:zm 0.116709 0.016238 7.187 6.60e-13 ***

zNobs:VDR_XMedium 0.313165 0.047463 6.598 4.17e-11 ***

zNobs:VDR_XSlow 0.599575 0.045304 13.234 < 2e-16 ***

zNobs:zSNR_X 0.298119 0.016598 17.961 < 2e-16 ***

zm:DistributionNormal -0.693619 0.047456 -14.616 < 2e-16 ***

zm:DistributionSinh -0.378676 0.045749 -8.277 < 2e-16 ***

zNobs:DistributionNormal 0.466842 0.047513 9.826 < 2e-16 ***

zNobs:DistributionSinh 0.406058 0.046326 8.765 < 2e-16 ***

zm:PIRLow -0.150201 0.045751 -3.283 0.001027 **

zm:PIRMedium 0.615541 0.046997 13.098 < 2e-16 ***

zNobs:PIRLow -0.122517 0.045340 -2.702 0.006888 **



APPENDIX B. LATENT VARIABLE SELECTION LOGISTIC MODELS 209

zNobs:PIRMedium -0.513081 0.048477 -10.584 < 2e-16 ***

zNobs:zm 0.256314 0.017869 14.344 < 2e-16 ***

zk:zs 0.324388 0.019753 16.422 < 2e-16 ***

zAstar:VDR_XMedium -0.106560 0.051408 -2.073 0.038187 *

zAstar:VDR_XSlow -0.457189 0.053070 -8.615 < 2e-16 ***

zSNR_X:zm -0.220570 0.016283 -13.546 < 2e-16 ***

VDR_XMedium:VDR_YMedium -0.951558 0.114029 -8.345 < 2e-16 ***

VDR_XSlow:VDR_YMedium -0.136406 0.099218 -1.375 0.169190

VDR_XMedium:VDR_YSlow -0.578644 0.102796 -5.629 1.81e-08 ***

VDR_XSlow:VDR_YSlow -0.875855 0.093780 -9.340 < 2e-16 ***

zk:zAstar -0.187893 0.017906 -10.493 < 2e-16 ***

zm:VDR_XMedium -0.275811 0.046270 -5.961 2.51e-09 ***

zm:VDR_XSlow -0.287674 0.045734 -6.290 3.17e-10 ***

zNobs:zs -0.229374 0.023559 -9.736 < 2e-16 ***

VDR_YMedium:RCFLow -0.352668 0.101955 -3.459 0.000542 ***

VDR_YSlow:RCFLow -0.083040 0.095088 -0.873 0.382503

VDR_YMedium:RCFMedium -0.205770 0.110598 -1.861 0.062810 .

VDR_YSlow:RCFMedium 0.691091 0.102405 6.749 1.49e-11 ***

zm:RCFLow -0.321524 0.045576 -7.055 1.73e-12 ***

zm:RCFMedium -0.006657 0.046198 -0.144 0.885430

zNobs:RCFLow 0.110420 0.045821 2.410 0.015960 *

zNobs:RCFMedium -0.415661 0.047456 -8.759 < 2e-16 ***

zs:DistributionNormal -0.311053 0.048896 -6.362 2.00e-10 ***

zs:DistributionSinh -0.311709 0.046961 -6.638 3.19e-11 ***

zm:VDR_YMedium 0.251673 0.044321 5.678 1.36e-08 ***

zm:VDR_YSlow -0.062689 0.045071 -1.391 0.164255

zk:DistributionNormal 0.317123 0.043310 7.322 2.44e-13 ***

zk:DistributionSinh 0.232781 0.044471 5.234 1.66e-07 ***

zSNR_X:DistributionNormal -0.251084 0.045359 -5.535 3.10e-08 ***

zSNR_X:DistributionSinh -0.250841 0.044524 -5.634 1.76e-08 ***

zSNR_Y:RCFLow 0.360687 0.045853 7.866 3.66e-15 ***

zSNR_Y:RCFMedium 0.229934 0.045633 5.039 4.68e-07 ***

zSNR_Y:VDR_XMedium -0.170390 0.046086 -3.697 0.000218 ***

zSNR_Y:VDR_XSlow -0.291103 0.045661 -6.375 1.83e-10 ***

zSNR_X:PIRLow -0.345624 0.044067 -7.843 4.40e-15 ***

zSNR_X:PIRMedium -0.216637 0.044580 -4.860 1.18e-06 ***

VDR_YMedium:PIRLow -0.811244 0.102989 -7.877 3.35e-15 ***

VDR_YSlow:PIRLow -0.115989 0.094210 -1.231 0.218258

VDR_YMedium:PIRMedium -0.154194 0.109417 -1.409 0.158769

VDR_YSlow:PIRMedium 0.055179 0.103138 0.535 0.592652

zSNR_X:RCFLow -0.296612 0.044783 -6.623 3.51e-11 ***

zSNR_X:RCFMedium -0.186299 0.044355 -4.200 2.67e-05 ***

zAstar:zSNR_Y -0.091322 0.015208 -6.005 1.92e-09 ***

zm:zs 0.201645 0.029729 6.783 1.18e-11 ***

zs:PIRLow -0.318981 0.057523 -5.545 2.93e-08 ***

zs:PIRMedium -0.531289 0.059305 -8.959 < 2e-16 ***

zAstar:PIRLow 0.221169 0.052623 4.203 2.64e-05 ***

zAstar:PIRMedium 0.429118 0.052763 8.133 4.19e-16 ***

zs:VDR_XMedium -0.336898 0.056366 -5.977 2.27e-09 ***
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zs:VDR_XSlow -0.079946 0.059974 -1.333 0.182531

PIRLow:RCFLow -0.117224 0.093866 -1.249 0.211724

PIRMedium:RCFLow -0.565450 0.103140 -5.482 4.20e-08 ***

PIRLow:RCFMedium 0.037822 0.101129 0.374 0.708408

PIRMedium:RCFMedium 0.064216 0.113766 0.564 0.572444

zSNR_X:zs 0.061193 0.016190 3.780 0.000157 ***

zk:PIRLow -0.149505 0.041999 -3.560 0.000371 ***

zk:PIRMedium 0.070242 0.043647 1.609 0.107549

zk:RCFLow -0.027663 0.042425 -0.652 0.514364

zk:RCFMedium 0.172617 0.043434 3.974 7.06e-05 ***

zAstar:RCFLow -0.070027 0.043435 -1.612 0.106910

zAstar:RCFMedium 0.168977 0.044110 3.831 0.000128 ***

zSNR_Y:PIRLow 0.198590 0.044691 4.444 8.85e-06 ***

zSNR_Y:PIRMedium -0.014378 0.045406 -0.317 0.751499

zk:VDR_YMedium 0.170703 0.044132 3.868 0.000110 ***

zk:VDR_YSlow 0.198184 0.042905 4.619 3.85e-06 ***

zSNR_Y:VDR_YMedium -0.189104 0.044808 -4.220 2.44e-05 ***

zSNR_Y:VDR_YSlow -0.189152 0.045804 -4.130 3.63e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -9.03257 0.14074 -64.178

-7|-6 -7.03822 0.11758 -59.859

-6|-5 -5.72381 0.10502 -54.500

-5|-4 -3.91094 0.09428 -41.483

-4|-3 -2.05567 0.08822 -23.302

-3|-2 -0.69040 0.08610 -8.018

-2|-1 0.55926 0.08607 6.498

-1|0 2.15876 0.08803 24.523

0|1 3.26730 0.09068 36.030

1|2 5.17001 0.09816 52.669

2|3 6.55899 0.10971 59.784

3|4 7.79449 0.12791 60.937

4|5 8.21296 0.13629 60.262

5|6 8.60573 0.14581 59.021

6|7 9.43048 0.17070 55.245

7|8 9.65386 0.17802 54.228

8|9 10.04596 0.19143 52.477

9|10 10.34036 0.20257 51.045

10|11 11.06073 0.23766 46.541

11|12 12.43220 0.36970 33.628

12|13 13.26910 0.52523 25.263

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 2.190144846 2.42555511
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zk -0.798703066 -0.58471759

zAstar -4.796839298 -4.50189775

zSNR_X 0.697115298 0.88108599

zSNR_Y -0.143618248 0.06771454

zm -1.578136188 -1.32175136

zs 1.915958597 2.18475818

VDR_XMedium 0.103783622 0.39503022

VDR_XSlow -0.140574782 0.11532445

VDR_YMedium 0.438148837 0.84756955

VDR_YSlow 0.093161992 0.49301523

PIRLow -0.002407431 0.33122149

PIRMedium -0.459919892 -0.08627242

RCFLow 0.189225136 0.50680504

RCFMedium -0.582258752 -0.23052183

DistributionNormal 0.146759915 0.31845398

DistributionSinh 0.030453841 0.20077145

zNobs:zAstar 1.088591123 1.17637679

zAstar:zs -1.881051343 -1.70705383

zAstar:zm -0.685413507 -0.60879314

zk:zm 0.084886501 0.14854091

zNobs:VDR_XMedium 0.220186742 0.40624639

zNobs:VDR_XSlow 0.510837454 0.68843385

zNobs:zSNR_X 0.265616405 0.33068260

zm:DistributionNormal -0.786712935 -0.60068155

zm:DistributionSinh -0.468380563 -0.28903949

zNobs:DistributionNormal 0.373778538 0.56003370

zNobs:DistributionSinh 0.315310832 0.49691231

zm:PIRLow -0.239870821 -0.06052166

zm:PIRMedium 0.523492260 0.70772410

zNobs:PIRLow -0.211389406 -0.03365592

zNobs:PIRMedium -0.608124735 -0.41809285

zNobs:zm 0.221331510 0.29138137

zk:zs 0.285706511 0.36314197

zAstar:VDR_XMedium -0.207323441 -0.00579870

zAstar:VDR_XSlow -0.561200654 -0.35315784

zSNR_X:zm -0.252508983 -0.18867886

VDR_XMedium:VDR_YMedium -1.175184551 -0.72818113

VDR_XSlow:VDR_YMedium -0.330874139 0.05806528

VDR_XMedium:VDR_YSlow -0.780182875 -0.37721431

VDR_XSlow:VDR_YSlow -1.059759924 -0.69214019

zk:zAstar -0.222999376 -0.15280647

zm:VDR_XMedium -0.366556023 -0.18517497

zm:VDR_XSlow -0.377360475 -0.19807843

zNobs:zs -0.275602303 -0.18325031

VDR_YMedium:RCFLow -0.552542477 -0.15287314

VDR_YSlow:RCFLow -0.269417462 0.10333214

VDR_YMedium:RCFMedium -0.422596501 0.01095477

VDR_YSlow:RCFMedium 0.490471887 0.89190447

zm:RCFLow -0.410877575 -0.23221746
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zm:RCFMedium -0.097167605 0.08393210

zNobs:RCFLow 0.020625424 0.20024583

zNobs:RCFMedium -0.508727192 -0.32269549

zs:DistributionNormal -0.407050873 -0.21537392

zs:DistributionSinh -0.403807255 -0.21971063

zm:VDR_YMedium 0.164844978 0.33858882

zm:VDR_YSlow -0.151046014 0.02563606

zk:DistributionNormal 0.232253333 0.40203152

zk:DistributionSinh 0.145650893 0.31998307

zSNR_X:DistributionNormal -0.340010074 -0.16219860

zSNR_X:DistributionSinh -0.338130471 -0.16359489

zSNR_Y:RCFLow 0.270838479 0.45058423

zSNR_Y:RCFMedium 0.140523386 0.31940620

zSNR_Y:VDR_XMedium -0.260744894 -0.08008550

zSNR_Y:VDR_XSlow -0.380614145 -0.20161926

zSNR_X:PIRLow -0.432026946 -0.25928088

zSNR_X:PIRMedium -0.304032882 -0.12927790

VDR_YMedium:PIRLow -1.013178767 -0.60945397

VDR_YSlow:PIRLow -0.300634969 0.06867262

VDR_YMedium:PIRMedium -0.368704364 0.06021985

VDR_YSlow:PIRMedium -0.146952839 0.25735525

zSNR_X:RCFLow -0.384401577 -0.20884898

zSNR_X:RCFMedium -0.273269218 -0.09939344

zAstar:zSNR_Y -0.121141767 -0.06152431

zm:zs 0.143293081 0.25982832

zs:PIRLow -0.431752877 -0.20625357

zs:PIRMedium -0.647637202 -0.41515379

zAstar:PIRLow 0.118029679 0.32431755

zAstar:PIRMedium 0.325730832 0.53256699

zs:VDR_XMedium -0.447482782 -0.22652089

zs:VDR_XSlow -0.197633306 0.03747493

PIRLow:RCFLow -0.301210759 0.06674862

PIRMedium:RCFLow -0.767696095 -0.36338012

PIRLow:RCFMedium -0.160388988 0.23604324

PIRMedium:RCFMedium -0.158853866 0.28711618

zSNR_X:zs 0.029462384 0.09292953

zk:PIRLow -0.231824539 -0.06718592

zk:PIRMedium -0.015297499 0.15580375

zk:RCFLow -0.110812901 0.05549672

zk:RCFMedium 0.087513337 0.25778058

zAstar:RCFLow -0.155164143 0.01510404

zAstar:RCFMedium 0.082537766 0.25545356

zSNR_Y:PIRLow 0.111002353 0.28619526

zSNR_Y:PIRMedium -0.103380446 0.07461210

zk:VDR_YMedium 0.084218077 0.25722096

zk:VDR_YSlow 0.114110422 0.28230070

zSNR_Y:VDR_YMedium -0.276945412 -0.10129716

zSNR_Y:VDR_YSlow -0.278951781 -0.09939772
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> 1-fm2$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.3728815



Appendix C

Coefficient Identification Logistic

Models

C.1 PLS1 Coefficient Correlation Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(COEF_COR_BestLVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC_COEFS)

> fmnull$logLik

[1] -18094.54

> fm1 <- clm(ordered(COEF_COR_BestLVlessAstar) ~ zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,link="logit",data=SIM_DATA_ABC_COEFS)

> summary(fm1)

formula:

ordered(COEF_COR_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC_COEFS

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -9818.12 19686.24 11(0) 1.73e-09 4.5e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.41823 0.02195 19.057 < 2e-16 ***

zk -0.15895 0.02085 -7.623 2.48e-14 ***

zAstar -4.77891 0.05689 -84.005 < 2e-16 ***

zSNR_X 0.41923 0.02172 19.305 < 2e-16 ***

zSNR_Y 0.34229 0.02170 15.770 < 2e-16 ***

VDRMedium -1.23773 0.05367 -23.064 < 2e-16 ***

VDRSlow -2.41833 0.05801 -41.686 < 2e-16 ***

PIRLow 1.73308 0.05504 31.488 < 2e-16 ***

PIRMedium 1.12373 0.05155 21.797 < 2e-16 ***

DistributionNormal -0.11806 0.05111 -2.310 0.0209 *

214
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DistributionSkew -0.33569 0.05112 -6.566 5.16e-11 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -10.98079 0.15620 -70.30

-7|-6 -8.62676 0.11460 -75.28

-6|-5 -6.94488 0.10042 -69.16

-5|-4 -5.27624 0.08827 -59.78

-4|-3 -3.34424 0.07544 -44.33

-3|-2 -1.18447 0.06745 -17.56

-2|-1 0.93004 0.06551 14.20

-1|0 4.05929 0.07851 51.70

0|1 11.35130 0.26390 43.01

1|2 11.78743 0.31895 36.96

2|3 12.57675 0.45915 27.39

3|5 13.08759 0.58665 22.31

5|6 13.49305 0.71472 18.88

6|8 14.18620 1.00540 14.11

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.3752741 0.4613047

zk -0.1998091 -0.1180695

zAstar -4.8912761 -4.6682688

zSNR_X 0.3767303 0.4618575

zSNR_Y 0.2997912 0.3848766

VDRMedium -1.3431217 -1.1327496

VDRSlow -2.5324282 -2.3050121

PIRLow 1.6254659 1.8412267

PIRMedium 1.0228536 1.2249469

DistributionNormal -0.2182381 -0.0178948

DistributionSkew -0.4359508 -0.2355414

> 1-fm1$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.4573988

> sum(is.na(SIM_DATA_ABC_COEFS$COEF_COR_BestLVlessAstar)==FALSE)

[1] 9000

> klogn<-log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC_COEFS)

> summary(fm2)

formula:

ordered(COEF_COR_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution + VDR:Distribution + zAstar:Distribution + VDR:PIR + zk:VDR + zAstar:PIR + zAstar:VDR + zk:Distribution + zk:zSNR_Y + zSNR_X:PIR + zk:PIR + zAstar:zSNR_Y + zAstar:zSNR_X + zNobs:zAstar + PIR:Distribution + zSNR_X:VDR + zSNR_Y:Distribution + zk:zAstar

data: SIM_DATA_ABC_COEFS
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link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -8912.05 17944.09 11(0) 2.18e-08 8.5e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.470408 0.023554 19.971 < 2e-16 ***

zk -0.260437 0.058458 -4.455 8.38e-06 ***

zAstar -5.266719 0.089595 -58.783 < 2e-16 ***

zSNR_X 0.205771 0.051224 4.017 5.89e-05 ***

zSNR_Y 0.287995 0.040294 7.147 8.84e-13 ***

VDRMedium -1.617600 0.123954 -13.050 < 2e-16 ***

VDRSlow -2.018637 0.124092 -16.267 < 2e-16 ***

PIRLow 3.040020 0.135402 22.452 < 2e-16 ***

PIRMedium 1.344616 0.120684 11.142 < 2e-16 ***

DistributionNormal 0.190986 0.123209 1.550 0.121119

DistributionSkew -1.190774 0.123310 -9.657 < 2e-16 ***

VDRMedium:DistributionNormal 0.406071 0.141903 2.862 0.004215 **

VDRSlow:DistributionNormal -1.175365 0.138262 -8.501 < 2e-16 ***

VDRMedium:DistributionSkew 1.047474 0.132588 7.900 2.78e-15 ***

VDRSlow:DistributionSkew 2.043758 0.135572 15.075 < 2e-16 ***

zAstar:DistributionNormal -0.932666 0.063258 -14.744 < 2e-16 ***

zAstar:DistributionSkew 0.375452 0.057094 6.576 4.83e-11 ***

VDRMedium:PIRLow -0.989878 0.137434 -7.203 5.91e-13 ***

VDRSlow:PIRLow -2.301467 0.137435 -16.746 < 2e-16 ***

VDRMedium:PIRMedium 0.280255 0.136190 2.058 0.039608 *

VDRSlow:PIRMedium -0.647137 0.133821 -4.836 1.33e-06 ***

zk:VDRMedium 0.476014 0.057406 8.292 < 2e-16 ***

zk:VDRSlow 0.599232 0.055954 10.709 < 2e-16 ***

zAstar:PIRLow 0.586187 0.060837 9.635 < 2e-16 ***

zAstar:PIRMedium 0.172392 0.058470 2.948 0.003194 **

zAstar:VDRMedium -0.033113 0.064149 -0.516 0.605719

zAstar:VDRSlow -0.448183 0.063067 -7.107 1.19e-12 ***

zk:DistributionNormal 0.083238 0.056825 1.465 0.142968

zk:DistributionSkew -0.301005 0.051618 -5.831 5.50e-09 ***

zk:zSNR_Y 0.149801 0.022737 6.588 4.45e-11 ***

zSNR_X:PIRLow 0.273750 0.055826 4.904 9.41e-07 ***

zSNR_X:PIRMedium 0.409658 0.053637 7.638 2.21e-14 ***

zk:PIRLow -0.412504 0.054808 -7.526 5.22e-14 ***

zk:PIRMedium -0.295309 0.054803 -5.389 7.10e-08 ***

zAstar:zSNR_Y 0.141672 0.023005 6.158 7.36e-10 ***

zAstar:zSNR_X 0.126851 0.022646 5.602 2.12e-08 ***

zNobs:zAstar 0.143655 0.022510 6.382 1.75e-10 ***

PIRLow:DistributionNormal 0.496627 0.134786 3.685 0.000229 ***

PIRMedium:DistributionNormal 0.391971 0.134953 2.904 0.003678 **

PIRLow:DistributionSkew -0.472256 0.131652 -3.587 0.000334 ***

PIRMedium:DistributionSkew -0.341681 0.128942 -2.650 0.008052 **

zSNR_X:VDRMedium 0.100619 0.056983 1.766 0.077432 .

zSNR_X:VDRSlow -0.197180 0.056203 -3.508 0.000451 ***
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zSNR_Y:DistributionNormal 0.233854 0.057163 4.091 4.29e-05 ***

zSNR_Y:DistributionSkew -0.007391 0.056516 -0.131 0.895946

zk:zAstar 0.081534 0.022815 3.574 0.000352 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -12.6372 0.2013 -62.776

-7|-6 -9.7180 0.1565 -62.111

-6|-5 -7.6548 0.1406 -54.436

-5|-4 -5.6233 0.1284 -43.786

-4|-3 -3.4067 0.1170 -29.127

-3|-2 -1.0547 0.1107 -9.529

-2|-1 1.2989 0.1081 12.018

-1|0 4.8565 0.1218 39.884

0|1 13.0809 0.3102 42.164

1|2 13.5178 0.3582 37.734

2|3 14.3080 0.4873 29.363

3|5 14.8189 0.6089 24.337

5|6 15.2243 0.7331 20.767

6|8 15.9175 1.0185 15.628

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.42432918 0.51666508

zk -0.37490134 -0.14573008

zAstar -5.44344055 -5.09221272

zSNR_X 0.10537970 0.30619001

zSNR_Y 0.20906678 0.36702848

VDRMedium -1.86091109 -1.37497994

VDRSlow -2.26233822 -1.77586799

PIRLow 2.77518255 3.30599501

PIRMedium 1.10831280 1.58142845

DistributionNormal -0.05037858 0.43263974

DistributionSkew -1.43272740 -0.94931879

VDRMedium:DistributionNormal 0.12788079 0.68416913

VDRSlow:DistributionNormal -1.44679647 -0.90477927

VDRMedium:DistributionSkew 0.78769596 1.30745963

VDRSlow:DistributionSkew 1.77833516 2.30979703

zAstar:DistributionNormal -1.05714416 -0.80915134

zAstar:DistributionSkew 0.26365240 0.48747011

VDRMedium:PIRLow -1.25948201 -0.72071939

VDRSlow:PIRLow -2.57128298 -2.03251843

VDRMedium:PIRMedium 0.01328222 0.54716704

VDRSlow:PIRMedium -0.90968200 -0.38508534

zk:VDRMedium 0.36354257 0.58858329

zk:VDRSlow 0.48955613 0.70890329
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zAstar:PIRLow 0.46701592 0.70550658

zAstar:PIRMedium 0.05774775 0.28696248

zAstar:VDRMedium -0.15868098 0.09279937

zAstar:VDRSlow -0.57171992 -0.32448208

zk:DistributionNormal -0.02800861 0.19475618

zk:DistributionSkew -0.40229842 -0.19994660

zk:zSNR_Y 0.10531808 0.19445369

zSNR_X:PIRLow 0.16438559 0.38323019

zSNR_X:PIRMedium 0.30458994 0.51485453

zk:PIRLow -0.51996549 -0.30510587

zk:PIRMedium -0.40276990 -0.18793220

zAstar:zSNR_Y 0.09660398 0.18679004

zAstar:zSNR_X 0.08249818 0.17127387

zNobs:zAstar 0.09954748 0.18779418

PIRLow:DistributionNormal 0.23249606 0.76087910

PIRMedium:DistributionNormal 0.12772172 0.65676146

PIRLow:DistributionSkew -0.73041698 -0.21432050

PIRMedium:DistributionSkew -0.59450447 -0.08903336

zSNR_X:VDRMedium -0.01103230 0.21234784

zSNR_X:VDRSlow -0.30736087 -0.08703503

zSNR_Y:DistributionNormal 0.12187116 0.34595887

zSNR_Y:DistributionSkew -0.11814790 0.10340319

zk:zAstar 0.03671873 0.12615768

> 1-fm2$logLik/fmnull$logLik #McFadden’s pseudo Rsquared

[1] 0.5074733
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C.2 PLS1 Coefficient Coverage Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(COEF_inCI_BestLVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC_COEFS)

> fmnull$logLik

[1] -19049.4

> fm1 <- clm(ordered(COEF_inCI_BestLVlessAstar) ~

zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,link="logit",data=SIM_DATA_ABC_COEFS)

> summary(fm1)

formula:

ordered(COEF_inCI_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC_COEFS

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -13040.99 26135.98 9(0) 6.37e-13 4.7e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.007802 0.019519 -0.400 0.689375

zk 0.363553 0.020742 17.527 < 2e-16 ***

zAstar -3.106558 0.037457 -82.937 < 2e-16 ***

zSNR_X 0.091376 0.019433 4.702 2.57e-06 ***

zSNR_Y 0.167262 0.019641 8.516 < 2e-16 ***

VDRMedium -1.787941 0.051426 -34.767 < 2e-16 ***

VDRSlow -2.229677 0.052873 -42.170 < 2e-16 ***

PIRLow 0.952256 0.048338 19.700 < 2e-16 ***

PIRMedium 0.770102 0.047221 16.308 < 2e-16 ***

DistributionNormal -0.264416 0.047051 -5.620 1.91e-08 ***

DistributionSkew 0.183906 0.048248 3.812 0.000138 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -6.73852 0.09233 -72.98

-7|-6 -5.78079 0.08426 -68.60

-6|-5 -4.67622 0.07599 -61.54

-5|-4 -3.41728 0.06832 -50.02

-4|-3 -1.89687 0.06039 -31.41

-3|-2 -0.41841 0.05662 -7.39

-2|-1 1.08594 0.05854 18.55

-1|0 4.11998 0.07196 57.26

0|1 6.95321 0.12509 55.59

1|2 7.45885 0.15113 49.35

2|3 8.00061 0.18949 42.22

3|4 8.57609 0.24538 34.95
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4|5 9.26932 0.34025 27.24

5|6 10.36794 0.58137 17.83

6|7 10.77341 0.71039 15.16

7|8 11.46656 1.00233 11.44

> ci1

2.5 % 97.5 %

zNobs -0.04606461 0.03045169

zk 0.32296957 0.40428128

zAstar -3.18039890 -3.03356691

zSNR_X 0.05329919 0.12947559

zSNR_Y 0.12878830 0.20578081

VDRMedium -1.88894401 -1.68735224

VDRSlow -2.33357381 -2.12630837

PIRLow 0.85762454 1.04711059

PIRMedium 0.67763206 0.86274227

DistributionNormal -0.35667180 -0.17222915

DistributionSkew 0.08935867 0.27849296

> 1-fm1$logLik/fmnull$logLik # McFadden’s pseudo Rsquared

[1] 0.3154122

> sum(is.na(SIM_DATA_ABC_COEFS$COEF_inCI_BestLVlessAstar)==FALSE)

[1] 9000

> klogn<-log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC_COEFS)

> summary(fm2)

formula:

ordered(COEF_inCI_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

+ zAstar:VDR + zk:VDR + VDR:PIR + zNobs:zk + VDR:Distribution + zAstar:PIR + zSNR_Y:VDR + zk:zAstar

+ zk:PIR + zSNR_X:PIR + zk:Distribution + zAstar:zSNR_X + zSNR_X:VDR + zSNR_Y:Distribution

+ zk:zSNR_Y + PIR:Distribution + zAstar:zSNR_Y

data: SIM_DATA_ABC_COEFS

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -11704.41 23532.82 9(0) 1.38e-12 7.1e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.04673 0.02047 2.283 0.022446 *

zk 0.01086 0.05513 0.197 0.843766

zAstar -3.24738 0.05787 -56.114 < 2e-16 ***

zSNR_X 0.11873 0.04464 2.660 0.007824 **

zSNR_Y 0.36170 0.04795 7.543 4.59e-14 ***

VDRMedium -1.91767 0.11554 -16.598 < 2e-16 ***

VDRSlow -1.81368 0.11358 -15.969 < 2e-16 ***
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PIRLow 2.93679 0.12598 23.312 < 2e-16 ***

PIRMedium 1.77840 0.10985 16.189 < 2e-16 ***

DistributionNormal 0.08404 0.10706 0.785 0.432458

DistributionSkew -0.26614 0.11470 -2.320 0.020328 *

zAstar:VDRMedium -1.05341 0.05509 -19.121 < 2e-16 ***

zAstar:VDRSlow -1.40050 0.05533 -25.312 < 2e-16 ***

zk:VDRMedium 1.14427 0.05590 20.471 < 2e-16 ***

zk:VDRSlow 1.26156 0.05260 23.983 < 2e-16 ***

VDRMedium:PIRLow -1.55167 0.12755 -12.165 < 2e-16 ***

VDRSlow:PIRLow -2.57941 0.12702 -20.307 < 2e-16 ***

VDRMedium:PIRMedium -0.34754 0.12157 -2.859 0.004252 **

VDRSlow:PIRMedium -1.35825 0.12048 -11.273 < 2e-16 ***

zNobs:zk 0.41386 0.02091 19.791 < 2e-16 ***

VDRMedium:DistributionNormal 0.29574 0.12574 2.352 0.018674 *

VDRSlow:DistributionNormal -0.22742 0.12136 -1.874 0.060931 .

VDRMedium:DistributionSkew 0.87107 0.12487 6.976 3.04e-12 ***

VDRSlow:DistributionSkew 1.66402 0.12699 13.103 < 2e-16 ***

zAstar:PIRLow 0.61661 0.05267 11.707 < 2e-16 ***

zAstar:PIRMedium 0.53535 0.05121 10.453 < 2e-16 ***

zSNR_Y:VDRMedium -0.36190 0.05117 -7.072 1.53e-12 ***

zSNR_Y:VDRSlow -0.48015 0.05171 -9.285 < 2e-16 ***

zk:zAstar -0.19449 0.01995 -9.751 < 2e-16 ***

zk:PIRLow -0.53518 0.05295 -10.107 < 2e-16 ***

zk:PIRMedium -0.37202 0.05190 -7.168 7.61e-13 ***

zSNR_X:PIRLow 0.37038 0.05135 7.213 5.47e-13 ***

zSNR_X:PIRMedium 0.20128 0.04808 4.187 2.83e-05 ***

zk:DistributionNormal -0.02191 0.05207 -0.421 0.673889

zk:DistributionSkew -0.37077 0.05217 -7.107 1.18e-12 ***

zAstar:zSNR_X 0.14651 0.01947 7.526 5.25e-14 ***

zSNR_X:VDRMedium -0.27530 0.05055 -5.446 5.14e-08 ***

zSNR_X:VDRSlow -0.32735 0.05033 -6.505 7.79e-11 ***

zSNR_Y:DistributionNormal 0.13620 0.05011 2.718 0.006565 **

zSNR_Y:DistributionSkew 0.30231 0.05187 5.829 5.59e-09 ***

zk:zSNR_Y -0.07738 0.02146 -3.606 0.000311 ***

PIRLow:DistributionNormal -0.34877 0.12452 -2.801 0.005096 **

PIRMedium:DistributionNormal -0.53030 0.12020 -4.412 1.03e-05 ***

PIRLow:DistributionSkew -0.62468 0.12665 -4.932 8.13e-07 ***

PIRMedium:DistributionSkew -0.57039 0.12118 -4.707 2.52e-06 ***

zAstar:zSNR_Y 0.06060 0.01971 3.074 0.002112 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -7.74752 0.13253 -58.459

-7|-6 -6.53215 0.12312 -53.054

-6|-5 -5.10589 0.11378 -44.876

-5|-4 -3.43047 0.10557 -32.494

-4|-3 -1.52150 0.09921 -15.337
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-3|-2 0.19831 0.09741 2.036

-2|-1 1.97034 0.09984 19.735

-1|0 5.30554 0.11259 47.122

0|1 8.30948 0.15855 52.409

1|2 8.81581 0.17981 49.029

2|3 9.35776 0.21306 43.920

3|4 9.93335 0.26401 37.625

4|5 10.62664 0.35391 30.026

5|6 11.72532 0.58947 19.891

6|7 12.13081 0.71704 16.918

7|8 12.82398 1.00705 12.734

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.006605809 0.08685005

zk -0.097287660 0.11881998

zAstar -3.361189224 -3.13432576

zSNR_X 0.031240405 0.20624711

zSNR_Y 0.267802655 0.45577422

VDRMedium -2.144387900 -1.69146331

VDRSlow -2.036575978 -1.59133809

PIRLow 2.690380066 3.18421407

PIRMedium 1.563302677 1.99393844

DistributionNormal -0.125850023 0.29384037

DistributionSkew -0.491034879 -0.04137238

zAstar:VDRMedium -1.161562365 -0.94559642

zAstar:VDRSlow -1.509186278 -1.29228706

zk:VDRMedium 1.034992923 1.25411536

zk:VDRSlow 1.158645353 1.36485473

VDRMedium:PIRLow -1.801960708 -1.30194935

VDRSlow:PIRLow -2.828735587 -2.33081391

VDRMedium:PIRMedium -0.585829728 -0.10927413

VDRSlow:PIRMedium -1.594582027 -1.12227157

zNobs:zk 0.372915146 0.45489144

VDRMedium:DistributionNormal 0.049316748 0.54222838

VDRSlow:DistributionNormal -0.465335003 0.01039877

VDRMedium:DistributionSkew 0.626441592 1.11593818

VDRSlow:DistributionSkew 1.415327252 1.91315308

zAstar:PIRLow 0.513461679 0.71994301

zAstar:PIRMedium 0.435027523 0.63579433

zSNR_Y:VDRMedium -0.462253743 -0.26165492

zSNR_Y:VDRSlow -0.581577150 -0.37885539

zk:zAstar -0.233636088 -0.15543942

zk:PIRLow -0.639027696 -0.43144055

zk:PIRMedium -0.473765882 -0.27030760

zSNR_X:PIRLow 0.269797772 0.47108405

zSNR_X:PIRMedium 0.107075772 0.29553751

zk:DistributionNormal -0.123921526 0.08020500
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zk:DistributionSkew -0.473085807 -0.26857722

zAstar:zSNR_X 0.108375397 0.18469516

zSNR_X:VDRMedium -0.374410803 -0.17626075

zSNR_X:VDRSlow -0.426024396 -0.22874122

zSNR_Y:DistributionNormal 0.038002371 0.23442751

zSNR_Y:DistributionSkew 0.200695388 0.40401760

zk:zSNR_Y -0.119439108 -0.03530729

PIRLow:DistributionNormal -0.592924255 -0.10478987

PIRMedium:DistributionNormal -0.766000563 -0.29478669

PIRLow:DistributionSkew -0.873060828 -0.37656913

PIRMedium:DistributionSkew -0.808011479 -0.33296167

zAstar:zSNR_Y 0.021971877 0.09924493

> 1-fm2$logLik/fmnull$logLik # McFadden’s pseudo Rsquared

[1] 0.3855761
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C.3 PLS2 Coefficient Correlation Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(COEF_COR_BestLVlessAstar) ~ 1,link="logit",data=SIM2_COEF_DATA_AtoT)

> fmnull$logLik

[1] -17947.28

> fm1 <- clm(ordered(COEF_COR_BestLVlessAstar) ~ zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,link="logit",data=SIM2_COEF_DATA_AtoT)

> summary(fm1)

formula:

ordered(COEF_COR_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_COEF_DATA_AtoT

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -12420.99 24901.98 11(0) 7.11e-09 4.8e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.47609 0.02089 22.790 < 2e-16 ***

zk 0.29705 0.02056 14.448 < 2e-16 ***

zAstar -3.23798 0.04593 -70.501 < 2e-16 ***

zSNR_X 0.31408 0.02049 15.330 < 2e-16 ***

zSNR_Y 0.05848 0.02030 2.881 0.00396 **

zm 0.17072 0.02135 7.995 1.30e-15 ***

zs 1.01833 0.02300 44.273 < 2e-16 ***

VDR_XMedium 2.43750 0.05649 43.152 < 2e-16 ***

VDR_XSlow 1.34291 0.04663 28.796 < 2e-16 ***

VDR_YMedium -0.11504 0.04899 -2.348 0.01885 *

VDR_YSlow 0.36209 0.04578 7.910 2.58e-15 ***

PIRLow 0.95341 0.04679 20.377 < 2e-16 ***

PIRMedium 0.32215 0.04883 6.597 4.19e-11 ***

RCFLow -0.09134 0.04625 -1.975 0.04828 *

RCFMedium -0.32935 0.04910 -6.708 1.98e-11 ***

DistributionNormal 0.10798 0.04867 2.219 0.02651 *

DistributionSinh 0.38004 0.05034 7.550 4.37e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -11.05451 1.00310 -11.020

-7|-6 -7.65014 0.20143 -37.980

-6|-5 -5.56970 0.10397 -53.569

-5|-4 -3.67150 0.07898 -46.484

-4|-3 -2.49862 0.07149 -34.949

-3|-2 -1.34381 0.06711 -20.025

-2|-1 -0.23088 0.06563 -3.518

-1|0 1.54523 0.06681 23.129
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0|1 11.29928 0.19256 58.679

1|2 12.06658 0.24017 50.241

2|3 13.12747 0.36102 36.363

3|4 13.93841 0.51886 26.863

4|5 14.63156 0.72057 20.306

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.43521343 0.5171040063

zk 0.25682869 0.3374271014

zAstar -3.32865159 -3.1486162098

zSNR_X 0.27396905 0.3542849319

zSNR_Y 0.01870702 0.0982689072

zm 0.12889789 0.2126060931

zs 0.97341668 1.0635849143

VDR_XMedium 2.32716218 2.5485920501

VDR_XSlow 1.25168590 1.4344962408

VDR_YMedium -0.21104443 -0.0190155378

VDR_YSlow 0.27240429 0.4518576334

PIRLow 0.86183494 1.0452526597

PIRMedium 0.22651686 0.4179404156

RCFLow -0.18200532 -0.0007003298

RCFMedium -0.42560987 -0.2331301175

DistributionNormal 0.01255865 0.2033473571

DistributionSinh 0.28139274 0.4787251420

> 1-fm1$logLik/fmnull$logLik

[1] 0.3079182

> sum(is.na(SIM2_COEF_DATA_AtoT$COEF_COR_BestLVlessAstar)==FALSE)

[1] 12000

> klogn<-log(12000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_COEF_DATA_AtoT)

> summary(fm2)

formula:

ordered(COEF_COR_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution + zs:VDR_X + zAstar:zs + VDR_X:Distribution + VDR_X:PIR + zk:zs + zk:Distribution + zAstar:VDR_X + zk:VDR_X + zAstar:Distribution + zAstar:PIR + zk:VDR_Y + zs:PIR + zNobs:VDR_Y + zk:zSNR_X + zNobs:zk + zm:RCF + zSNR_X:VDR_X + zm:Distribution + zm:zs + zSNR_Y:zm + zSNR_X:RCF + zNobs:Distribution

data: SIM2_COEF_DATA_AtoT

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -10774.97 21693.93 11(0) 6.78e-09 7.4e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.891572 0.048697 18.309 < 2e-16 ***

zk 0.028908 0.055312 0.523 0.601228
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zAstar -5.043175 0.097742 -51.597 < 2e-16 ***

zSNR_X 0.539447 0.048260 11.178 < 2e-16 ***

zSNR_Y 0.118520 0.021459 5.523 3.33e-08 ***

zm 0.546637 0.051573 10.599 < 2e-16 ***

zs 2.031082 0.074738 27.176 < 2e-16 ***

VDR_XMedium 2.314404 0.125712 18.410 < 2e-16 ***

VDR_XSlow 2.555504 0.115089 22.204 < 2e-16 ***

VDR_YMedium -0.022448 0.051589 -0.435 0.663461

VDR_YSlow 0.390171 0.048412 8.059 7.67e-16 ***

PIRLow 1.845726 0.078236 23.592 < 2e-16 ***

PIRMedium 0.661412 0.085312 7.753 8.99e-15 ***

RCFLow -0.085987 0.048558 -1.771 0.076594 .

RCFMedium -0.136130 0.052166 -2.610 0.009066 **

DistributionNormal 0.111433 0.085479 1.304 0.192360

DistributionSinh 0.274333 0.089502 3.065 0.002176 **

zs:VDR_XMedium 1.034007 0.052567 19.670 < 2e-16 ***

zs:VDR_XSlow 1.824027 0.057115 31.936 < 2e-16 ***

zAstar:zs -1.526507 0.061360 -24.878 < 2e-16 ***

VDR_XMedium:DistributionNormal 1.483913 0.135329 10.965 < 2e-16 ***

VDR_XSlow:DistributionNormal -1.126078 0.120646 -9.334 < 2e-16 ***

VDR_XMedium:DistributionSinh 1.259404 0.136641 9.217 < 2e-16 ***

VDR_XSlow:DistributionSinh -0.396003 0.126316 -3.135 0.001719 **

VDR_XMedium:PIRLow -1.512837 0.129466 -11.685 < 2e-16 ***

VDR_XSlow:PIRLow -1.555295 0.111223 -13.984 < 2e-16 ***

VDR_XMedium:PIRMedium -0.337382 0.134311 -2.512 0.012006 *

VDR_XSlow:PIRMedium -0.084255 0.120895 -0.697 0.485849

zk:zs 0.220375 0.018497 11.914 < 2e-16 ***

zk:DistributionNormal 0.570876 0.052000 10.978 < 2e-16 ***

zk:DistributionSinh 0.690467 0.053809 12.832 < 2e-16 ***

zAstar:VDR_XMedium 0.969348 0.079942 12.126 < 2e-16 ***

zAstar:VDR_XSlow 0.353000 0.073801 4.783 1.73e-06 ***

zk:VDR_XMedium -0.356265 0.053952 -6.603 4.02e-11 ***

zk:VDR_XSlow 0.019040 0.053841 0.354 0.723615

zAstar:DistributionNormal -0.432440 0.071930 -6.012 1.83e-09 ***

zAstar:DistributionSinh -0.423255 0.072891 -5.807 6.37e-09 ***

zAstar:PIRLow 0.588733 0.074836 7.867 3.63e-15 ***

zAstar:PIRMedium -0.087976 0.076810 -1.145 0.252060

zk:VDR_YMedium -0.121220 0.052653 -2.302 0.021322 *

zk:VDR_YSlow 0.231546 0.052547 4.406 1.05e-05 ***

zs:PIRLow -0.421089 0.052892 -7.961 1.70e-15 ***

zs:PIRMedium -0.069734 0.052025 -1.340 0.180113

zNobs:VDR_YMedium -0.270715 0.053437 -5.066 4.06e-07 ***

zNobs:VDR_YSlow -0.353425 0.052873 -6.684 2.32e-11 ***

zk:zSNR_X 0.106992 0.018883 5.666 1.46e-08 ***

zNobs:zk 0.102091 0.018761 5.442 5.28e-08 ***

zm:RCFLow -0.339869 0.055194 -6.158 7.38e-10 ***

zm:RCFMedium -0.089156 0.055020 -1.620 0.105144

zSNR_X:VDR_XMedium -0.009139 0.052213 -0.175 0.861049

zSNR_X:VDR_XSlow -0.291520 0.052419 -5.561 2.68e-08 ***
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zm:DistributionNormal -0.283927 0.054392 -5.220 1.79e-07 ***

zm:DistributionSinh -0.187354 0.053320 -3.514 0.000442 ***

zm:zs 0.081208 0.023686 3.429 0.000607 ***

zSNR_Y:zm -0.066302 0.018577 -3.569 0.000358 ***

zSNR_X:RCFLow -0.234852 0.052622 -4.463 8.08e-06 ***

zSNR_X:RCFMedium -0.015537 0.054008 -0.288 0.773587

zNobs:DistributionNormal -0.239751 0.053199 -4.507 6.58e-06 ***

zNobs:DistributionSinh -0.176795 0.054090 -3.269 0.001081 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -12.84686 1.00713 -12.756

-7|-6 -9.43214 0.22051 -42.774

-6|-5 -7.28653 0.13572 -53.689

-5|-4 -5.13949 0.11322 -45.395

-4|-3 -3.60702 0.10356 -34.831

-3|-2 -1.99904 0.09625 -20.769

-2|-1 -0.47497 0.09274 -5.121

-1|0 1.79520 0.09347 19.205

0|1 10.77083 0.20676 52.094

1|2 11.53834 0.25168 45.845

2|3 12.59925 0.36877 34.165

3|4 13.41020 0.52429 25.578

4|5 14.10334 0.72449 19.467

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.79625652 0.987155719

zk -0.07954517 0.137297909

zAstar -5.23573598 -4.852575554

zSNR_X 0.44489270 0.634082902

zSNR_Y 0.07648361 0.160607261

zm 0.44563553 0.647815530

zs 1.88473385 2.177726311

VDR_XMedium 2.06864556 2.561478408

VDR_XSlow 2.33045553 2.781642374

VDR_YMedium -0.12353869 0.078693897

VDR_YSlow 0.29533969 0.485119189

PIRLow 1.69276478 1.999464216

PIRMedium 0.49441963 0.828862012

RCFLow -0.18117796 0.009174205

RCFMedium -0.23836352 -0.033866954

DistributionNormal -0.05631937 0.278778805

DistributionSinh 0.09878888 0.449654298

zs:VDR_XMedium 0.93124943 1.137324289

zs:VDR_XSlow 1.71245755 1.936360448
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zAstar:zs -1.64674480 -1.406187985

VDR_XMedium:DistributionNormal 1.21903393 1.749551126

VDR_XSlow:DistributionNormal -1.36282508 -0.889873406

VDR_XMedium:DistributionSinh 0.99190466 1.527565400

VDR_XSlow:DistributionSinh -0.64368188 -0.148499945

VDR_XMedium:PIRLow -1.76674700 -1.259214986

VDR_XSlow:PIRLow -1.77354557 -1.337537330

VDR_XMedium:PIRMedium -0.60067234 -0.074145695

VDR_XSlow:PIRMedium -0.32119521 0.152727913

zk:zs 0.18427803 0.256794797

zk:DistributionNormal 0.46907296 0.672921348

zk:DistributionSinh 0.58515627 0.796098845

zAstar:VDR_XMedium 0.81253010 1.125977487

zAstar:VDR_XSlow 0.20842022 0.497752689

zk:VDR_XMedium -0.46193970 -0.250439090

zk:VDR_XSlow -0.08635677 0.124711467

zAstar:DistributionNormal -0.57373818 -0.291758284

zAstar:DistributionSinh -0.56667826 -0.280906967

zAstar:PIRLow 0.44213523 0.735517282

zAstar:PIRMedium -0.23887172 0.062262750

zk:VDR_YMedium -0.22442459 -0.018015050

zk:VDR_YSlow 0.12864400 0.334640652

zs:PIRLow -0.52482442 -0.317474794

zs:PIRMedium -0.17171861 0.032230410

zNobs:VDR_YMedium -0.37551041 -0.166029685

zNobs:VDR_YSlow -0.45712176 -0.249853400

zk:zSNR_X 0.07001119 0.144036714

zNobs:zk 0.06533836 0.138885372

zm:RCFLow -0.44807759 -0.231708294

zm:RCFMedium -0.19701641 0.018673318

zSNR_X:VDR_XMedium -0.11144960 0.093234184

zSNR_X:VDR_XSlow -0.39429061 -0.188799436

zm:DistributionNormal -0.39060807 -0.177381247

zm:DistributionSinh -0.29190687 -0.082881440

zm:zs 0.03483408 0.127688051

zSNR_Y:zm -0.10274554 -0.029919039

zSNR_X:RCFLow -0.33802305 -0.131737160

zSNR_X:RCFMedium -0.12139054 0.090328250

zNobs:DistributionNormal -0.34408812 -0.135542105

zNobs:DistributionSinh -0.28288858 -0.070848662

> 1-fm2$logLik/fmnull$logLik

[1] 0.3996325



Appendix D

Prediction RMSE Logistic Models

D.1 PLS1 Prediction RMSE Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(PRED_RMSE_BestLVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC_PRED)

> fmnull$logLik

[1] -20052.88

> fm1 <- clm(ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,link="logit",data=SIM_DATA_ABC_PRED)

> summary(fm1)

formula:

ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC_PRED

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -13181.21 26422.42 9(0) 2.36e-12 2.0e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.147797 0.019621 7.533 4.98e-14 ***

zk -0.005655 0.019529 -0.290 0.77212

zAstar -3.747262 0.043584 -85.978 < 2e-16 ***

zSNR_X 0.377115 0.019845 19.003 < 2e-16 ***

zSNR_Y 0.132185 0.019616 6.739 1.60e-11 ***

VDRMedium -0.103835 0.048006 -2.163 0.03054 *

VDRSlow -0.515323 0.047582 -10.830 < 2e-16 ***

PIRLow 0.546079 0.048220 11.325 < 2e-16 ***

PIRMedium 0.258494 0.046654 5.541 3.01e-08 ***

DistributionNormal -0.129605 0.047277 -2.741 0.00612 **

DistributionSkew -0.210925 0.047632 -4.428 9.50e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Threshold coefficients:

Estimate Std. Error z value

-8|-7 -6.79335 0.09214 -73.73

-7|-6 -5.28341 0.08097 -65.25

-6|-5 -4.04557 0.07332 -55.18

-5|-4 -2.71237 0.06590 -41.16

-4|-3 -1.09720 0.06090 -18.02

-3|-2 0.39323 0.05976 6.58

-2|-1 1.94033 0.06279 30.90

-1|0 3.91756 0.07216 54.29

0|1 7.17236 0.09949 72.09

1|2 7.85422 0.11797 66.58

2|3 8.32593 0.13727 60.65

3|4 8.79925 0.16367 53.76

4|5 9.18680 0.19174 47.91

5|6 9.65925 0.23561 41.00

6|7 9.94802 0.26866 37.03

7|8 10.17195 0.29807 34.13

8|9 10.57864 0.36127 29.28

9|10 10.86714 0.41495 26.19

10|13 11.27375 0.50549 22.30

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.10935706 0.186272752

zk -0.04391619 0.032638171

zAstar -3.83322332 -3.662371453

zSNR_X 0.33826337 0.416057159

zSNR_Y 0.09375472 0.170649640

VDRMedium -0.19794002 -0.009754233

VDRSlow -0.60864694 -0.422123185

PIRLow 0.45163511 0.640658457

PIRMedium 0.16707907 0.349963514

DistributionNormal -0.22228419 -0.036953953

DistributionSkew -0.30431071 -0.117588956

> 1-fm1$logLik/fmnull$logLik

[1] 0.3426775

> sum(is.na(SIM_DATA_ABC_PRED$PRED_RMSE_BestLVlessAstar)==FALSE)

[1] 9000

> klogn<-log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC_PRED)

> summary(fm2)

formula:
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ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution + zAstar:zSNR_X + VDR:PIR + zNobs:zAstar + zAstar:Distribution + zk:Distribution + zAstar:VDR + zAstar:PIR + zNobs:zk + zSNR_X:PIR + zk:zAstar + zk:PIR + VDR:Distribution + zSNR_Y:Distribution + zk:zSNR_X + zk:VDR

data: SIM_DATA_ABC_PRED

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -12889.83 25897.67 9(0) 5.03e-12 3.5e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.16855 0.02001 8.423 < 2e-16 ***

zk 0.05449 0.05177 1.052 0.292594

zAstar -3.91071 0.06889 -56.771 < 2e-16 ***

zSNR_X 0.17326 0.03381 5.125 2.97e-07 ***

zSNR_Y 0.02202 0.03552 0.620 0.535281

VDRMedium -0.26265 0.11093 -2.368 0.017893 *

VDRSlow -0.13986 0.10943 -1.278 0.201232

PIRLow 0.92500 0.08800 10.512 < 2e-16 ***

PIRMedium 0.37890 0.08267 4.584 4.57e-06 ***

DistributionNormal -0.03602 0.08511 -0.423 0.672146

DistributionSkew -0.50864 0.08842 -5.752 8.80e-09 ***

zAstar:zSNR_X 0.18061 0.01925 9.384 < 2e-16 ***

VDRMedium:PIRLow -0.03124 0.12112 -0.258 0.796438

VDRSlow:PIRLow -0.94939 0.12084 -7.856 3.95e-15 ***

VDRMedium:PIRMedium -0.01291 0.11746 -0.110 0.912490

VDRSlow:PIRMedium -0.37014 0.11624 -3.184 0.001451 **

zNobs:zAstar 0.13745 0.01900 7.236 4.63e-13 ***

zAstar:DistributionNormal -0.17084 0.04967 -3.439 0.000583 ***

zAstar:DistributionSkew 0.22971 0.05084 4.519 6.23e-06 ***

zk:DistributionNormal 0.13281 0.04863 2.731 0.006309 **

zk:DistributionSkew -0.22957 0.04892 -4.693 2.69e-06 ***

zAstar:VDRMedium -0.08434 0.05112 -1.650 0.098953 .

zAstar:VDRSlow -0.35534 0.04997 -7.112 1.15e-12 ***

zAstar:PIRLow 0.36588 0.05102 7.171 7.46e-13 ***

zAstar:PIRMedium 0.24769 0.04877 5.079 3.79e-07 ***

zNobs:zk -0.09998 0.01953 -5.119 3.08e-07 ***

zSNR_X:PIRLow 0.36605 0.05033 7.273 3.52e-13 ***

zSNR_X:PIRMedium 0.27518 0.04797 5.736 9.69e-09 ***

zk:zAstar -0.08235 0.01877 -4.387 1.15e-05 ***

zk:PIRLow -0.31825 0.04909 -6.483 8.97e-11 ***

zk:PIRMedium -0.10151 0.04838 -2.098 0.035874 *

VDRMedium:DistributionNormal 0.12245 0.12127 1.010 0.312632

VDRSlow:DistributionNormal -0.26784 0.11861 -2.258 0.023930 *

VDRMedium:DistributionSkew 0.38022 0.12079 3.148 0.001645 **

VDRSlow:DistributionSkew 0.48497 0.12181 3.981 6.85e-05 ***

zSNR_Y:DistributionNormal 0.22166 0.04894 4.529 5.93e-06 ***

zSNR_Y:DistributionSkew 0.12321 0.05064 2.433 0.014971 *

zk:zSNR_X -0.06888 0.01929 -3.571 0.000356 ***

zk:VDRMedium 0.10604 0.05086 2.085 0.037073 *

zk:VDRSlow 0.21955 0.04885 4.494 6.99e-06 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -7.06809 0.11382 -62.101

-7|-6 -5.41316 0.10320 -52.452

-6|-5 -4.04516 0.09647 -41.930

-5|-4 -2.63963 0.09060 -29.135

-4|-3 -0.98559 0.08612 -11.445

-3|-2 0.53096 0.08486 6.257

-2|-1 2.10547 0.08761 24.033

-1|0 4.12570 0.09555 43.181

0|1 7.43972 0.11839 62.840

1|2 8.12540 0.13446 60.428

2|3 8.59952 0.15174 56.671

3|4 9.07450 0.17601 51.558

4|5 9.46356 0.20239 46.758

5|6 9.93770 0.24439 40.663

6|7 10.22739 0.27641 37.001

7|8 10.45175 0.30507 34.260

8|9 10.85873 0.36707 29.582

9|10 11.14739 0.42001 26.541

10|13 11.55397 0.50965 22.670

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.129348911 0.207794831

zk -0.046898373 0.156072482

zAstar -4.046199611 -3.776159852

zSNR_X 0.107017918 0.239542492

zSNR_Y -0.047580812 0.091651974

VDRMedium -0.480109674 -0.045260895

VDRSlow -0.354363784 0.074618838

PIRLow 0.752678903 1.097647865

PIRMedium 0.216924828 0.540989776

DistributionNormal -0.202857260 0.130806671

DistributionSkew -0.682014266 -0.335377590

zAstar:zSNR_X 0.142913873 0.218366119

VDRMedium:PIRLow -0.268684930 0.206121849

VDRSlow:PIRLow -1.186384180 -0.712669773

VDRMedium:PIRMedium -0.243141256 0.217310959

VDRSlow:PIRMedium -0.598022543 -0.142365183

zNobs:zAstar 0.100242294 0.174710841

zAstar:DistributionNormal -0.268222299 -0.073495733

zAstar:DistributionSkew 0.130108745 0.329397097

zk:DistributionNormal 0.037506811 0.228123979

zk:DistributionSkew -0.325470683 -0.133714885

zAstar:VDRMedium -0.184557529 0.015833265
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zAstar:VDRSlow -0.453320686 -0.257449748

zAstar:PIRLow 0.265895499 0.465917709

zAstar:PIRMedium 0.152141147 0.343310345

zNobs:zk -0.138282183 -0.061710761

zSNR_X:PIRLow 0.267444676 0.464746450

zSNR_X:PIRMedium 0.181177559 0.369235658

zk:zAstar -0.119191376 -0.045601801

zk:PIRLow -0.414498010 -0.222069093

zk:PIRMedium -0.196355095 -0.006708676

VDRMedium:DistributionNormal -0.115237075 0.360158750

VDRSlow:DistributionNormal -0.500348691 -0.035405933

VDRMedium:DistributionSkew 0.143491970 0.616999239

VDRSlow:DistributionSkew 0.246263235 0.723781311

zSNR_Y:DistributionNormal 0.125759215 0.317621838

zSNR_Y:DistributionSkew 0.023964731 0.222474029

zk:zSNR_X -0.106695236 -0.031075125

zk:VDRMedium 0.006365779 0.205744454

zk:VDRSlow 0.123784122 0.315301709

> 1-fm2$logLik/fmnull$logLik

[1] 0.3572079

D.2 PLS1 Prediction Coverage Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(PRED_InCI_BestLVlessAstar) ~ 1,link="logit",data=SIM_DATA_ABC_PRED)

> fmnull$logLik

[1] -17638.6

> fm1 <- clm(ordered(PRED_InCI_BestLVlessAstar) ~ zNobs+zk+zAstar+zSNR_X+zSNR_Y+VDR+PIR+Distribution,link="logit",data=SIM_DATA_ABC_PRED)

> summary(fm1)

formula:

ordered(PRED_InCI_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC_PRED

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -1712.41 3468.82 11(0) 8.98e-07 6.0e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.13569 0.05912 -2.295 0.0217 *

zk -0.05175 0.05881 -0.880 0.3789

zAstar -18.60456 0.28420 -65.463 <2e-16 ***

zSNR_X 0.07464 0.05865 1.273 0.2032

zSNR_Y 0.01655 0.05845 0.283 0.7771

VDRMedium 0.01272 0.13290 0.096 0.9237
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VDRSlow 0.04187 0.13246 0.316 0.7519

PIRLow 0.02768 0.13331 0.208 0.8355

PIRMedium -0.06264 0.13335 -0.470 0.6386

DistributionNormal -0.08484 0.13697 -0.619 0.5356

DistributionSkew 0.29990 0.13546 2.214 0.0268 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -21.9632 0.4040 -54.359

-7|-6 -16.2025 0.3191 -50.780

-6|-5 -8.1212 0.2337 -34.755

-5|-4 -1.5910 0.2065 -7.706

-4|-3 6.0761 0.2039 29.806

-3|-2 13.5154 0.2848 47.459

-2|-1 19.7296 0.3622 54.471

-1|0 28.7493 0.4557 63.088

0|6 29.6656 0.5317 55.798

6|7 30.3587 0.6385 47.548

7|8 31.7450 1.0759 29.504

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs -0.25204396 -0.02014037

zk -0.16742870 0.06311389

zAstar -19.17216624 -18.05771335

zSNR_X -0.04016491 0.18991524

zSNR_Y -0.09800991 0.13126065

VDRMedium -0.24782793 0.27342281

VDRSlow -0.21776166 0.30176787

PIRLow -0.23352464 0.28935771

PIRMedium -0.32417679 0.19884263

DistributionNormal -0.35349050 0.18372588

DistributionSkew 0.03498069 0.56631000

> 1-fm1$logLik/fmnull$logLik

[1] 0.902917

> sum(is.na(SIM_DATA_ABC_PRED$PRED_InCI_BestLVlessAstar)==FALSE)

[1] 9000

> klogn<-log(9000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM_DATA_ABC_PRED)

> summary(fm2)

formula:

ordered(PRED_InCI_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + VDR + PIR + Distribution

data: SIM_DATA_ABC_PRED
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link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 9000 -1712.41 3468.82 11(0) 8.98e-07 6.0e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs -0.13569 0.05912 -2.295 0.0217 *

zk -0.05175 0.05881 -0.880 0.3789

zAstar -18.60456 0.28420 -65.463 <2e-16 ***

zSNR_X 0.07464 0.05865 1.273 0.2032

zSNR_Y 0.01655 0.05845 0.283 0.7771

VDRMedium 0.01272 0.13290 0.096 0.9237

VDRSlow 0.04187 0.13246 0.316 0.7519

PIRLow 0.02768 0.13331 0.208 0.8355

PIRMedium -0.06264 0.13335 -0.470 0.6386

DistributionNormal -0.08484 0.13697 -0.619 0.5356

DistributionSkew 0.29990 0.13546 2.214 0.0268 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -21.9632 0.4040 -54.359

-7|-6 -16.2025 0.3191 -50.780

-6|-5 -8.1212 0.2337 -34.755

-5|-4 -1.5910 0.2065 -7.706

-4|-3 6.0761 0.2039 29.806

-3|-2 13.5154 0.2848 47.459

-2|-1 19.7296 0.3622 54.471

-1|0 28.7493 0.4557 63.088

0|6 29.6656 0.5317 55.798

6|7 30.3587 0.6385 47.548

7|8 31.7450 1.0759 29.504

# Same as linear screening model!
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D.3 PLS2 Prediction RMSE Logistic Model

> require(ordinal)

> fmnull <- clm(ordered(PRED_RMSE_BestLVlessAstar) ~ 1,link="logit",data=SIM2_PRED_DATA_AtoT)

> fmnull$logLik

[1] -22948.88

> fm1 <- clm(ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs+zk+zAstar+zSNR_X+zSNR_Y+zm+zs+VDR_X+VDR_Y+PIR+RCF+Distribution,link="logit",data=SIM2_PRED_DATA_AtoT)

> summary(fm1)

formula:

ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution

data: SIM2_PRED_DATA_AtoT

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -18074.65 36223.30 10(1) 5.46e-09 3.1e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.50968 0.01821 27.989 < 2e-16 ***

zk 0.32810 0.01833 17.900 < 2e-16 ***

zAstar -2.24578 0.02932 -76.597 < 2e-16 ***

zSNR_X 0.33258 0.01780 18.682 < 2e-16 ***

zSNR_Y 0.06985 0.01758 3.974 7.08e-05 ***

zm 0.07184 0.01792 4.009 6.10e-05 ***

zs 0.91597 0.02132 42.959 < 2e-16 ***

VDR_XMedium 1.66360 0.04661 35.695 < 2e-16 ***

VDR_XSlow 1.40978 0.04173 33.787 < 2e-16 ***

VDR_YMedium 0.08685 0.04328 2.007 0.0448 *

VDR_YSlow 0.40611 0.04050 10.026 < 2e-16 ***

PIRLow 0.47211 0.04064 11.616 < 2e-16 ***

PIRMedium 0.09792 0.04300 2.277 0.0228 *

RCFLow -0.20081 0.04050 -4.958 7.13e-07 ***

RCFMedium -0.21634 0.04344 -4.981 6.33e-07 ***

DistributionNormal -0.03165 0.04321 -0.732 0.4639

DistributionSinh 0.07990 0.04406 1.813 0.0698 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -5.61670 0.11827 -47.492

-7|-6 -3.95218 0.07785 -50.767

-6|-5 -2.82788 0.06714 -42.121

-5|-4 -1.86971 0.06210 -30.109

-4|-3 -1.06409 0.05966 -17.836

-3|-2 -0.30050 0.05878 -5.113

-2|-1 0.68009 0.05927 11.474

-1|0 2.11866 0.06186 34.247
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0|1 6.98939 0.10259 68.132

1|2 7.71389 0.11758 65.608

2|3 8.20368 0.13358 61.416

3|4 8.59914 0.15113 56.898

4|5 8.89348 0.16750 53.094

5|6 9.30553 0.19616 47.440

6|7 9.73187 0.23418 41.556

7|8 10.00743 0.26405 37.900

8|10 10.21807 0.29008 35.225

10|11 10.38735 0.31326 33.159

11|12 10.84392 0.38741 27.991

12|13 11.18215 0.45523 24.564

> 1-fm1$logLik/fmnull$logLik

[1] 0.212395

> ci1 <- confint(fm1)

> ci1

2.5 % 97.5 %

zNobs 0.474042916 0.54542603

zk 0.292229894 0.36408381

zAstar -2.303534775 -2.18860006

zSNR_X 0.297724463 0.36750868

zSNR_Y 0.035403583 0.10430697

zm 0.036730365 0.10698573

zs 0.874289213 0.95787374

VDR_XMedium 1.572421549 1.75511618

VDR_XSlow 1.328124446 1.49168813

VDR_YMedium 0.002045352 0.17169567

VDR_YSlow 0.326760038 0.48553690

PIRLow 0.392488434 0.55181029

PIRMedium 0.013664104 0.18221865

RCFLow -0.280213638 -0.12143701

RCFMedium -0.301479922 -0.13121124

DistributionNormal -0.116368848 0.05302668

DistributionSinh -0.006468624 0.16624661

> sum(is.na(SIM2_PRED_DATA_AtoT$PRED_RMSE_BestLVlessAstar)==FALSE)

[1] 12000

> klogn<-log(12000)

> fmstep <- step(fm1,scope=~.^2, direction="forward", k=klogn)

> fm2 <- clm(formula=fmstep$formula,link="logit",data=SIM2_PRED_DATA_AtoT)

> summary(fm2)

formula:

ordered(PRED_RMSE_BestLVlessAstar) ~ zNobs + zk + zAstar + zSNR_X + zSNR_Y + zm + zs + VDR_X + VDR_Y + PIR + RCF + Distribution + zs:VDR_X + zAstar:zs + zNobs:zk + VDR_X:Distribution + zAstar:zSNR_X + zNobs:zAstar + zAstar:VDR_X + VDR_X:PIR + zm:zs + zAstar:VDR_Y + zk:zSNR_X + zk:Distribution + zNobs:zSNR_X + zSNR_X:VDR_Y + zNobs:VDR_X + zAstar:zm

data: SIM2_PRED_DATA_AtoT

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 12000 -17185.35 34500.70 10(1) 1.81e-09 5.0e+03
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

zNobs 0.611283 0.030783 19.858 < 2e-16 ***

zk 0.332352 0.033802 9.832 < 2e-16 ***

zAstar -3.354674 0.061970 -54.134 < 2e-16 ***

zSNR_X 0.344370 0.030981 11.115 < 2e-16 ***

zSNR_Y 0.076290 0.017854 4.273 1.93e-05 ***

zm 0.148141 0.020562 7.205 5.82e-13 ***

zs 1.127889 0.052333 21.552 < 2e-16 ***

VDR_XMedium 1.361435 0.104490 13.029 < 2e-16 ***

VDR_XSlow 1.483647 0.095249 15.577 < 2e-16 ***

VDR_YMedium 0.168668 0.044815 3.764 0.000167 ***

VDR_YSlow 0.400193 0.041635 9.612 < 2e-16 ***

PIRLow 0.935639 0.065985 14.179 < 2e-16 ***

PIRMedium 0.147010 0.071378 2.060 0.039438 *

RCFLow -0.174020 0.041297 -4.214 2.51e-05 ***

RCFMedium -0.159707 0.044545 -3.585 0.000337 ***

DistributionNormal -0.598398 0.072686 -8.233 < 2e-16 ***

DistributionSinh -0.291011 0.074859 -3.887 0.000101 ***

zs:VDR_XMedium 0.884491 0.047320 18.692 < 2e-16 ***

zs:VDR_XSlow 1.134884 0.048717 23.295 < 2e-16 ***

zAstar:zs -0.787182 0.042363 -18.582 < 2e-16 ***

zNobs:zk 0.179877 0.015963 11.268 < 2e-16 ***

VDR_XMedium:DistributionNormal 1.131414 0.113291 9.987 < 2e-16 ***

VDR_XSlow:DistributionNormal 0.514416 0.103002 4.994 5.91e-07 ***

VDR_XMedium:DistributionSinh 0.941346 0.114339 8.233 < 2e-16 ***

VDR_XSlow:DistributionSinh 0.205281 0.105589 1.944 0.051877 .

zAstar:zSNR_X 0.148215 0.015868 9.341 < 2e-16 ***

zNobs:zAstar 0.123416 0.016041 7.694 1.43e-14 ***

zAstar:VDR_XMedium 0.457758 0.052492 8.721 < 2e-16 ***

zAstar:VDR_XSlow 0.181977 0.051887 3.507 0.000453 ***

VDR_XMedium:PIRLow -0.670940 0.105824 -6.340 2.30e-10 ***

VDR_XSlow:PIRLow -0.575016 0.095488 -6.022 1.72e-09 ***

VDR_XMedium:PIRMedium -0.003717 0.111291 -0.033 0.973359

VDR_XSlow:PIRMedium 0.107969 0.101657 1.062 0.288195

zm:zs 0.127804 0.020986 6.090 1.13e-09 ***

zAstar:VDR_YMedium 0.035841 0.046471 0.771 0.440561

zAstar:VDR_YSlow 0.242356 0.046851 5.173 2.30e-07 ***

zk:zSNR_X -0.070231 0.015831 -4.436 9.15e-06 ***

zk:DistributionNormal -0.060244 0.045214 -1.332 0.182719

zk:DistributionSinh 0.173009 0.045789 3.778 0.000158 ***

zNobs:zSNR_X -0.059224 0.014870 -3.983 6.81e-05 ***

zSNR_X:VDR_YMedium -0.146699 0.043575 -3.367 0.000761 ***

zSNR_X:VDR_YSlow 0.088417 0.043924 2.013 0.044120 *

zNobs:VDR_XMedium -0.075466 0.043967 -1.716 0.086088 .

zNobs:VDR_XSlow -0.206907 0.043304 -4.778 1.77e-06 ***

zAstar:zm -0.057413 0.015892 -3.613 0.000303 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Threshold coefficients:

Estimate Std. Error z value

-8|-7 -6.67580 0.13455 -49.616

-7|-6 -4.93991 0.09934 -49.726

-6|-5 -3.72281 0.08966 -41.522

-5|-4 -2.63438 0.08436 -31.229

-4|-3 -1.66539 0.08115 -20.522

-3|-2 -0.72671 0.07956 -9.134

-2|-1 0.43640 0.07941 5.496

-1|0 2.01597 0.08124 24.814

0|1 6.46199 0.10799 59.841

1|2 7.19251 0.12241 58.756

2|3 7.68490 0.13786 55.744

3|4 8.08096 0.15492 52.164

4|5 8.37551 0.17092 49.003

5|6 8.78856 0.19909 44.143

6|7 9.21687 0.23668 38.942

7|8 9.49340 0.26629 35.651

8|10 9.70422 0.29213 33.219

10|11 9.87321 0.31516 31.327

11|12 10.32869 0.38895 26.555

12|13 10.66654 0.45654 23.364

> ci2 <- confint(fm2)

> ci2

2.5 % 97.5 %

zNobs 0.551021256 0.67169259

zk 0.266189870 0.39869887

zAstar -3.476509864 -3.23358551

zSNR_X 0.283684884 0.40513324

zSNR_Y 0.041303956 0.11129291

zm 0.107857104 0.18846159

zs 1.025441221 1.23058819

VDR_XMedium 1.156821539 1.56643488

VDR_XSlow 1.297098574 1.67048554

VDR_YMedium 0.080865658 0.25654219

VDR_YSlow 0.318623575 0.48183377

PIRLow 0.806395141 1.06506451

PIRMedium 0.007153148 0.28696578

RCFLow -0.254978306 -0.09309317

RCFMedium -0.247019680 -0.07239959

DistributionNormal -0.740967909 -0.45602851

DistributionSinh -0.437800494 -0.14434275

zs:VDR_XMedium 0.791842326 0.97734354

zs:VDR_XSlow 1.039520954 1.23049967

zAstar:zs -0.870260353 -0.70419624

zNobs:zk 0.148599512 0.21117730



APPENDIX D. PREDICTION RMSE LOGISTIC MODELS 240

VDR_XMedium:DistributionNormal 0.909463462 1.35357393

VDR_XSlow:DistributionNormal 0.312570758 0.71634554

VDR_XMedium:DistributionSinh 0.717320887 1.16554035

VDR_XSlow:DistributionSinh -0.001667591 0.41224703

zAstar:zSNR_X 0.117113385 0.17931826

zNobs:zAstar 0.091943685 0.15482878

zAstar:VDR_XMedium 0.354876018 0.56065087

zAstar:VDR_XSlow 0.080284183 0.28368563

VDR_XMedium:PIRLow -0.878425559 -0.46358897

VDR_XSlow:PIRLow -0.762216586 -0.38790156

VDR_XMedium:PIRMedium -0.221834317 0.21443421

VDR_XSlow:PIRMedium -0.091272714 0.30722788

zm:zs 0.086695114 0.16896108

zAstar:VDR_YMedium -0.055252298 0.12691989

zAstar:VDR_YSlow 0.150526823 0.33418820

zk:zSNR_X -0.101265301 -0.03920808

zk:DistributionNormal -0.148879949 0.02836215

zk:DistributionSinh 0.083265299 0.26276146

zNobs:zSNR_X -0.088374568 -0.03008282

zSNR_X:VDR_YMedium -0.232113470 -0.06129764

zSNR_X:VDR_YSlow 0.002332019 0.17451681

zNobs:VDR_XMedium -0.161646137 0.01070928

zNobs:VDR_XSlow -0.291813010 -0.12205975

zAstar:zm -0.088565587 -0.02626807

> 1-fm2$logLik/fmnull$logLik

[1] 0.2511463
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