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Abstract 

Development of materials for high-performance applications requires accurate and useful analysis tools. 

In parallel with advances in electron microscopy hardware, we require analysis approaches to better 

understand microstructural behaviour. Such improvements in characterisation capability permit 

informed alloy design.  

New approaches to the characterisation of metallic materials are presented, primarily using signals 

collected from electron microscopy experiments. Electron backscatter diffraction is regularly used to 

investigate crystallography in the scanning electron microscope, and combined with energy-dispersive 

X-ray spectroscopy to simultaneusly investigate chemistry. New algorithms and analysis pipelines are 

developed to permit accurate and routine microstructural evaluation, leveraging a variety of machine 

learning approaches.  

This thesis investigates the structure and behaviour of Co/Ni-base superalloys, derived from V208C. 

Use of the presently developed techniques permits informed development of a new generation of 

advanced gas turbine engine materials.  

 



 2 T P McAuliffe 

Preamble 

1. Introduction & Thesis Summary 

The mission of this thesis is development and application of new data-driven electron microscopy characterisation 

techniques to solve challenging materials science problems. Specifically, one desires accurate knowledge of metal alloy 

precipitate phases’ crystallography and chemistry, and quick, statistically representative assessments of microstructure. 

Machine learning driven approaches to correlative analysis are well suited to this purpose. Armed with accurate, precise, 

and fast characterisation of the microstructure, candidate development alloys can be rapidly screened. This in turn 

permits efficient development of a new generation of Co/Ni-base superalloys for high temperature (gas turbine jet 

engine) applications, which possess properties notoriously sensitive to microstructural constituents’ chemistry and 

structure. Physical understanding of the alloys’ microstructure provided by the techniques presently developed informs 

alloy design, with an aim to improving high temperature strength, oxidation resistance, thermal processability over 

current generation superalloys.  

The dual objectives of this work are thus: 

1. To develop approaches to rapidly and accurately assess precipitates and microstructure. 

2. To leverage these approaches to design superalloys with superior thermomechanical capability. 

Supplementary to developing electron microscopy characterisation and superalloys, statistical electron backscatter 

diffraction indexing has been advanced, and lattice strain localisation is characterised in TWIP steel nanotwins. This 

work is presented in the appendices.  

A summary of this thesis’ chapters follows: 

• A Literature Review discusses superalloy physical metallurgy, deformation mechanisms, and the associated 

requirements for gas turbine jet engines. The state-of-the-art in characterisation-driven alloy development and 

electron microscopy (with a focus on EBSD) is presented and reviewed. Developments in machine learning, with a 

focus on computer vision and materials science applications, are set out, and opportunities explored. 

• Chapter 1 presents a new method for correlative scanning electron microscopy, using unsupervised machine 

learning (principal component analysis, PCA) to extract significant, latent features in a multimodal dataset. The 

effect of varying the variance weighting of the variable types is investigated. Scan points in the area of interest can 

subsequently be assigned to a representative, ‘characteristic’ signals (typically one per grain). Refined template 

matching (RTM) of these latent signals to dynamical simulations yields structural and orientation solutions to the 

characteristic features, with correlated, quantified chemistry. 

• Chapter 2 uses the PCA method presented in Chapter 1 to investigate C, B, Zr and Ti additions to the V208 series 

of Co/Ni-base superalloys. Chemical and structural fingerprints for grain boundary phases are identified, and the 

presence of the M2B, M6C, ZrC and B2 phases mapped across the composition space. This is compared to 

predictions from thermodynamic ‘calculation of phase diagrams’ (CALPHAD) modelling. The influence of these 

alloying additions on grain boundary serration is also investigated. 

• Chapter 3 addresses segmentation of matrix and superlattice in a Co/Ni-base superalloy, using three machine 

learning approaches: PCA, non-negative matrix factorisation (NMF) and an autoencoder neural network. Scan 
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points are separable in the latent space, and subtle features are further characterised with an inverse gnomonic 

projection onto the diffraction sphere, where cross-sectional band profiles can be evaluated. This permits 

quantification and imaging of specific band features, which are used to develop ‘spherical-angular dark field’ 

microscopy. 

• Chapter 4 develops the Co/Ni-base superalloys with optimal grain boundary character (thoroughly evaluated in 

Chapter 2) for improved strength, oxidation resistance and density, while maintaining the low solvus advantage of 

Co-base superalloys, via additions of Nb and Ti. The effect of these elements on physical properties is investigated.  

• A Discussion follows and Conclusions are drawn from the development of new methods, experimental results, and 

impact on the state-of-the-art in characterisation and materials science. Future research avenues building upon the 

findings of this thesis are suggested. 

 

The appendices include supplementary work on characterisation with electron diffraction: 

• Appendix 1 validates a pattern centre (PC) and orientation refinement routine used in Chapter 3.  

• Appendix 2 discusses a novel normalisation method for cross-correlation in the RTM approach, used to evaluate 

acceptability of candidate structure/orientation solutions. 

• Appendix 3 investigates the lattice stress and strain state surrounding a TWIP steel nanotwin, using 4D-STEM. 

Using the diffraction patterns to map spatial resolution of elastic strain, and comparison to an analytical model of 

the stress field, provides insight into twin thickening, to inform future alloy design. 
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2. Publications 

• A version of Chapter 1 has been published in Ultramicroscopy:  

T. P. McAuliffe, A. Foden, C. Bilsland, D. Daskalaki-Mountanou, D. Dye, and T. B. Britton, “Advancing 

characterisation with statistics from correlative electron diffraction and X-ray spectroscopy, in the scanning electron 

microscope,” Ultramicroscopy, no. c, p. 112944, Jan. 2020. 

• A version of Chapter 2 has been accepted for publication in Metallurgical and Materials Transactions A. A pre-

print is available at:  

T. P. McAuliffe, I. Bantounas, L. R. Reynolds, A. Foden, M. C. Hardy, T. B. Britton, and D. Dye, “Quantitative 

precipitate classification and grain boundary property control in Co/Ni-base superalloys,” September 2020. ArXiv 

ID: 2009.00948. 

• Aspects of preliminary work for Chapter 2 were presented at Microscopy & Microanalysis 2019, and published in 

the conference proceedings: 

T. McAuliffe, L. Reynolds, I. Bantounas, T. Britton, and D. Dye, “The Use of Scanning Electron Beam-based Phase 

Classification as a Crucial Tool in Alloy Development for Gas Turbine Engine Applications,” Microsc. Microanal., 

vol. 25, no. S2, pp. 2402–2403, 2019. 

• A version of Chapter 3 has been published in Ultramicroscopy:  

T. P. McAuliffe, D. Dye, and T. Ben Britton, “Spherical-angular dark field imaging and sensitive microstructural 

phase clustering with unsupervised machine learning,” Ultramicroscopy, vol 219, p. 113132, Dec. 2020.  

• The alloys developed in Chapter 4 have been protected with a patent. At the time of writing, the application has 

been submitted to the Greek patent office under number GR20200100502, and UK patent office under 

GB2015106.4. 

• A pre-print of Appendix 3 is available at: 

T. P. McAuliffe, A. K. Ackerman, B. H. Savitzky, T. W. J. Kwok, M. Danaie, C. Ophus, D. Dye, “4D-STEM elastic 

stress state characterisation of a TWIP steel nanotwin,” April 2020. ArXiv ID: 2004.03982. 
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3. Open Source Software 

Most of the anlalysis methods presented in this thesis are generally available on the author’s Github page: 

www.github.com/tmcaul. Additionally, specific packages have been developed and are available open source: 

The PCA correlative EBSD/EDS analysis pipeline has been incorporated into AstroEBSD, written in MATLAB, and 

available open source at www.github.com/benjaminbritton/AstroEBSD. Example datasets are listed there, hosted on 

Zenodo.  

The spherical-angular dark field analysis approach is available at www.github.com/tmcaul/SphericalAngularDF, written 

in MATLAB. 

A data handling, background correction, and machine learning preparation package for EBSD data, ebspy, is available 

at www.github.com/tmcaul/ebspy, written in Python 3. This also contains example scripts for unsupervised learning of 

latent features in EBSD datasets. 
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7. Glossary 

A non-exhaustive list of acronyms and abbreviations used throughout this work is provided here. In each chapter they 

are additionally defined at their first point of use.  

4D-STEM Four-dimensional scanning transmission electron microscopy 

AOI Area of interest 

CALPHAD Calculation of phase diagrams 

CPU Central processing unit 

EBSD Electron backscatter diffraction 

EDS Energy-dispersive X-ray spectroscopy 

FCC Face centred cubic 

GPU Graphical processing unit 

ML Machine learning 

NMF Non-negative matrix factorisation 

PC Pattern centre 

PCA Principal component analysis 

SEM Scanning electron microscope/microscopy 

TEM Transmission electron microscope/microscopy 

XCF Cross-correlation function 

  

Mathematical terms are defined as presented through the document. Notation is reused where possible, but in some 

cases the same symbols are used to represent different quantities. Lower-case, non-bold letters are used to represent 

scalar quantities; lower-case, bold letters are used to represent vectors; upper-case, bold letters are used to represent 

matrices and tensors. If a specific component of a vector or tensor is being referenced, the symbol will include a 

subscript. 
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Literature Review 

1. Introduction 

Micro- and nano-scale analysis of microstructure can broadly be split into (linked) discussions of spatial distributions 

of crystallography and chemistry. Progress towards rapid, accurate and statistically robust characterisation of 

microstructures has been made in recent years with developments in both experimental techniques and data processing. 

There has been interest in ‘correlative’ microscopy, where multiple techniques are employed to access independent 

information channels sampled from the same area of interest (AOI) [1]–[5]. Successful use of correlative microscopy 

yields superior characterisation capability (as limitations of individual techniques may be mitigated) and provides better 

confidence in phase assignment if independent classifications are mutually inclusive. This thesis explores new 

opportunities for microstructural characterisation.  

Accurate phase identification requires knowledge of precipitate crystal structure as well as chemistry. Here, phase 

classification is described in terms of assigning a crystal with specific structure and chemistry to a common label or 

class. In many cases, classification can be performed with only chemistry or only structure if the domain of the problem 

is constrained (e.g. there is knowledge of the thermodynamics and kinetics for microstructural formation). This is 

different to phase identification, where the structure and chemistry of the phase is unknown. To perform accurate 

classification, one must sample both the chemistry and structure. 

Data science exists at the intersection of statistics and computer science. As a discipline it is rapidly evolving, driven by 

the desire to fully utilise the richness of information contained within the ever-increasing modality and quantity of data 

we collect. Machine learning (ML) is very broad terminology for statistical techniques that in some way ‘learn’ from 

data. Such techniques are usually divided into ‘supervised’ and ‘unsupervised’ approaches. In supervised learning a 

relationship between independent and dependent variables is established, then the trained model is used for evaluation 

of unseen independent variables to predict a response. Generally, this is performed in a regression (real-valued numeric 

response) or classification (categorical response) setting. Supervised learning covers a wide range of techniques, 

including straightforward linear regression, support vector machines, and many neural networks, with plenty of variants 

on each of these. Unsupervised learning does not involve a specific dependent variable, but rather aims to explore the 

underlying structure of data. In some ways this is a more challenging task, because there is no ‘answer’ with which one 

can validate a model. Such techniques often attempt to establish a new representation of the data, perhaps encoding a 

more interpretable, relevant, or interesting feature space. A major component of this thesis is the application of 

unsupervised learning approaches to microscopy data for superior microstructural insight in order to aid alloy design. 

In the subsequent literature review unique challenges presented in gas turbine alloy development are discussed. The 

state-of-the-art in characterisation-driven alloy development is established, and advances in electron microscopy (with 

a focus on EBSD) are presented. Developments in ML, with scope generally limited to focus on computer vision and 

application in materials science, are discussed. 
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2. Unique requirements for gas turbine engine superalloys 

Jet engine thermal efficiency is strongly dependent on the gas stream’s ‘turbine entry temperature’ (TET). Over a 70 

year period, materials scientists have driven up the TET by over 300 ̊C [1]–[6]. The demand for better efficiency of 

natural and financial resources is greater than ever, and there is a constant motivation to increase operating temperature 

further. Ni-base superalloys have been the de facto choice for high temperature applications since the development of 

the very first jet engines. They maintain their strength up to very high temperatures, often up to 90% of their melting 

temeprature [6]. Superalloys also exhibit excellent creep resistance, and can be alloyed to imbue good oxidation 

resistance. Their outstanding high temperature mechanical properties are the result of the interaction between the face-

centred cubic (FCC) ɣ and primitive L12 ɣʹ phases, a phenomenon discussed extensively in the literature [6], [7]. 

In 2006 Sato et al [8] discovered that the Co-Al-W ternary includes an L12  phase. It was shown that this phase field is 

continuous with Ni3Al ɣʹ, permitting the inception of novel Co-base superalloys [9]. Due to a slightly higher melting 

temperature and competitive mechanical properties, Co-base polycrystalline alloys have since emerged as competitors 

to Ni [1], [10]–[15]. Additions of Ni have been found to improve high temperature strength, by stabilising ɣʹ and raising 

the solvus [16], [17]. These additions are necessary for microstructural stability (and inhibition of decomposition into 

DO19 and other products) upon addition of further alloying elements, such as Cr [18], [19]. However, one of the potential 

advantages of the Co system is a low solvus (and wide processing temperature window). This is reduced with addition 

of Ni. 

The mechanisms controlling high temperature thermomechanical capability are an essential consideration for 

optimisation of alloy microstructure and performance. Chemistry and microstructure play a critical role in determining 

which mechanisms operate, acting for example through grain boundary precipitation and stacking fault energy (SFE). 

2.1 High temperature creep strength 

In the context of L12 strengthened superalloys, creep has historically only been a significant issue for (high pressure) 

turbine blades, which experience temperatures of up to 1200˚C: roughly 90% of the absolute melting point [6]. Turbine 

blades are investment cast as single crystals in order to eliminate grain boundaries: features prone to sliding and 

cavitation. As the TET is raised, creep is of increasing concern for polycrystalline disc alloys, as thermally activated 

(diffusion-driven) creep mechanisms initiate [20]. Behaviour has been divided into three types: primary (strain 

hardening due to dislocation propagation and generation), secondary (achievement of a steady state), and tertiary (strain 

softening to failure). This is schematically shown in Figure LR-1. 

Superalloys exhibit three principal creep regimes, named after the types of creep extensively exhibited: ‘primary’ (low 

temperature, high stress), ‘tertiary’ (intermediate temperature, low stress) and ‘rafting’ (high temperature, very low 

stress). These have been extensively reviewed [6], [21]. Typical behaviours for these regimes are shown in Figure 

LR-2. The creep mechanisms that operate are very sensitive to stress, temperature, composition and orientation. Tertiary 

creep is accepted to occur by the movement of a/2<110> dislocations through the ɣ-channels, for the most part leaving 

the ɣʹ untouched. The mechanisms for ɣʹ shearing during primary creep are more numerous and complex. Directional 

coarsening in the rafting regime generally occurs only at the highest temperatures, in conditions only subjected to single 

crystal blade alloys. Rafting will not be significantly discussed further. While many historical accounts are focussed on 

Ni-base superalloys, the discussion is applicable to Co-base alloys due to the fundamental and extensive similarities in 

microstructure. 
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A short period of approximately zero strain rate commonly precedes primary creep. The incubation period is  accepted 

to occur due to the generation of ɣ-channel dislocations [6]. Dislocations grow out with the same Burgers’ vector from 

‘grown-in’ networks in the ɣ-channels, working against a solid solution resistance [21]. In a negatively misfitting alloy 

(where the ɣʹ lattice parameter is less than that of the ɣ) , a/2<110> dislocations glide preferentially through the 

horizontal channels due to superposition of misfit stresses. Co-base superalloys generally have a positive misfit, so it is 

expected and observed that the dislocations glide in the vertical channels [1], [15]. Change of ɣ-channel requires cross-

slip of the leading screw segment. It is therefore not surprising that incubation time increases with decreasing 

temperature and stress [21]. Greater thermal activation and resolved shear stress will drive cross-slip limited dislocation 

propagation.  

2.1.1 Mechanisms of primary creep 

After incubation, if the dislocations are able to enter the precipitates primary creep begins. The a/2<110> reactions that 

take place at the precipitate interfaces determine the subsequent deformation behaviour. The principle mechanisms 

observed are stacking fault (SF) shear, twinning, and antiphase boundary (APB) shear. Unsurprisingly they are 

intimately related.  

Most commonly during primary creep (at lower temperature and higher stress), the ɣʹ is sheared via the progression of 

net a<112> Burgers vector dislocation ribbons through the microstructure [22], [23], [25]–[28]. These are observed to 

consist of alternating intrinsic and extrinsic stacking faults. Kear et al [24] proposed reaction of two different a/2<110> 

dislocations for the ribbon’s formation. For example, a/2[011] and a/2[1(01] forming a/3[1(12] and a/6[1(12]. There is 

experimental evidence for this dissociation [26].  

 

Figure LR-1: Archetypal creep regimes in a polycrystalline superalloy, after Reed [6]. 
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Movement of the a/3[1(12] (dislocation 1, d1) into the ɣ is glissile, though a SISF is left in its wake. Further reactions 

lead to the first a/6[1(12] (d2), a further a/6[1(12] (d3) and a second a/3[1(12] (d4) entering the ɣ. A SISF separates (d1) 

and (d2), an APB (d2) and (d3), and a SESF (d3) and (d4) [23], [28]. The collective ‘ribbon’ shears the ɣʹ in a glissile 

fashion, though as pointed out by Leverant & Kear [29] and acknowledged by Rae & Reed [28], a rationalisation of the 

stacking sequence requires atomic adjustments subsequent to the passage of (d1). The balance between SESFs and SISFs 

that are produced depends on the loading direction, and therefore the resolved shear stress on stacking fault shear slip 

systems that favour the production of one or the other [26]. 

Alternative mechanisms for SF shear have been proposed, particularly with regard to production of a single SISF rather 

than a full ribbon. For example, several authors have suggested that the a/3<112> dislocation forms via the dissociation 

Figure LR-2: General creep behaviours, after Reed [6]. 



 20 T P McAuliffe 

of a single a/2<1(01> into a/3<211> and a/6<12(1> [27]. The passage of the a/3<211> leaves behind a SISF, with the 

a/6<11(2> Shockley partial pinned at the interface, as its passage would create a high energy APB. However, the stacking 

fault ribbon idea coined by Rae et al [30], utilising the Kear mechanism, has been shown to be dominant [26], [27].  

In this picture, the single ɣ SISF is observed (rather than the full ribbon) due to only the a/3[1(12] having entered the 

precipitate at this point [28]. The details of the mechanism by which the first a/6[1(12], d2, is able to enter the ɣ by 

reaction with d3 and d4 yet remain to be clarified.  

In addition to nucleation of a<112> ribbons, Rae et al [28] note that extensive primary creep requires a suitable degree 

of work hardening such that the ribbons have sufficient time to propagate before the ɣ-channels saturate. This raises an 

interesting question of why the ribbons propagate viscously in ɣʹ if their net Burgers vector is a superlattice vector. It 

has been suggested that achievement of the steady state is due to a balance between SF shear strain and work hardening 

resulting from the filling of the γ-channels with a/2<110>{111} dislocations [28]. Thus, inhibition of a/2<110>{111} 

dislocations in the matrix leads to extended primary creep.  

Primary creep also progresses under certain conditions by the propagation of deformation twins. Unocic et al [32] and 

Kovarik et al [33] have extensively reviewed the variety of proposed mechanisms for twin propagation. Like stacking 

faults, twins have been observed both isolated to the ɣʹ [9], [34], and extended across the matrix [34]–[40].  

Early mechanisms postulate that micro and deformation twins build up via passage of subsequent SISFs on consecutive 

planes [23]. A build-up of Shockley partials at the interface creates a high stress network, which recovers into continuous 

microtwins [41]. Dissociation of a single a/2<110> dislocation was suggested, occurring despite being energetically 

unfavourable due to the presence of the ɣ/ɣʹ interface. The newly formed a/3<121> shears the particle, while the 

a/6<112> is pinned at the interface. The twins grow by successive a/3<112> dislocations passing on adjacent {111} 

planes [41]. Chen & Knowles [26] suggest a similar mechanism, except that two different a/3<112> dislocations (each 

formed from the combination of two different superpartial dislocations) pass on subsequent {111} planes [26]. It is 

effectively the direct creation of a SESF and thickening of the altered (twinned) stacking sequence. The opposite sense 

of shear leads to an equivalent process with a SISF. Notably, microtwins were only observed in orientations where 

SESFs are also observed.  

Segregation of alloying elements to stacking fault interfaces (including twin boundaries) has been observed in both Ni-

base and Co-base superalloys [35], [36], [38], [42], [43]. An example is shown in Figure LR-3. Twin boundaries locally 

create an HCP structure, so attract low SFE elements. Ni and Al, which raise the SFE, are locally depleted, while Co 

and Cr, which lower it, are enriched [35], [36], [43]. Freund et al [38] propose that in the precipitates these ɣ stabilising 

elements create a region of greater disorder. This in turn reduces stacking fault energies, such that both phases may be 

more easily cut by passing dislocations. Propagation of the fault therefore requires diffusion of the segregating elements, 

which act as Cottrell atmospheres around the twinning dislocations. Thus their motion is inhibited [38]. This introduces 

further time dependency to microtwinning, in addition to the atomic reordering required by Kovarik et al [41]. Notably 

for the Freund mechanism in Co-base superalloys, atomic adjustments are necessary but not as critical as in the Kolbe 

mechanism, due to locally reduced complex fault energy in the disordered region [38].  

The mechanism that is observed to operate will be the lowest energy deformation mode, determined by a balance of 

the variety of influencing factors already discussed. Rationalising dislocations’ behaviours into general schemes is a 

complex task. There is a consensus in the literature that creep resistance is obtained by finer secondary ɣʹ size, narrow 
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Figure LR-3: Stacking fault segregation in a series of Co-base superalloys [38]. 

 

ɣ-channel width and smaller volume fraction of tertiary ɣʹ [32]. All of these factors promote primary creep by restricting 

the movement of a/2<110> dislocations in the ɣ-channels. It seems likely that SF shear and microtwinning modes will 

be favoured when dislocation reactions and dissociations are easier. Kovarik et al [41] set forth important influencing 

factors for dissociation of a/2<110> dislocations into Shockley partials (which may then form microtwins) at a 

secondary ɣʹ interface. Firstly, as discussed, a low matrix SFE promotes decorrelation. Secondly, below the Orowan 

bowing stress for a/2<110> dislocations, dissociation is favoured for smaller secondary ɣʹ spacing. Finally, if the 

resolved shear stress is greater for the trailing partial, decorrelation is favoured. Above the Orowan bowing stress, matrix 

dislocations remain undissociated regardless of SFE. 

It has been experimentally verified that isolated fault formation is observed for coarse precipitates, while microtwinning 

is favoured for finer ɣʹ [32], [41]. If the dispersion is fine, too high a stress will lead to Orowan looping of a/2<110> 

dislocations around precipitates, with little microtwinning [41]. This general behaviour has been confirmed in René 

88DT by Viswanathan et al [36], who reported microtwinning at 50 ̊C and 838MPa, but Orowan looping around ɣʹ 

precipitates at 650 ̊C and 976 MPa. APB shearing is typically observed for high creep stress and low temperatures, 

closer to yield conditions [32]. Its occurrence at high stress is likely due to the significant activation penalty the APB 

formation presents. At low temperatures many other mechanisms may not operate, due to the thermal activation 

requirement of many required dissociations. APB shearing occurs by the passage of matrix dislocations in the 

precipitates, so no dissociations or reactions are required.  

Questions remain regarding the process by which a steady state is achieved. Does it occur due to balance between 

dislocation generation and recovery, or are primary creep mechanisms inherently viscous? In the latter case, deformation 

would be limited by a rate determining mechanism, most likely diffusion of some kind. During stacking fault shear, it 

has been suggested that the activation of a second shear system leads to work hardening [44]. In microtwinning, based 

upon experimental observations it has been suggested that the rate limiting process is atomic reordering within the ɣʹ 

precipitates [33], [41]. Kovarik et al [41] suggests that microtwinning shares a rate limiting mechanism with SF shear, 
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namely thermally activated reordering required for Shockley partial propagation through ɣʹ. SISF formation upon 

passage of a/3[112] is suggested in practice to not be as straightforward as in theory. Rather, the diffuse nature of a real 

dislocation core requires atomic reordering in order to correct the crystal into a perfect SISF [41]. In the microtwinning 

regime the kinetics are shown from first principles to be comparable to self-diffusion of Ni in simplified binary, ordered 

ɣʹ. Unfortunately a similar comparison would not be helpful for SF shear in order to determine the rate limiting 

mechanism, as the most likely competitor is dislocation recovery, also controlled by Ni self-diffusion. As previously 

discussed, segregation of certain elements to stacking faults (including twin boundaries) will introduce further time 

dependency due to a Cottrell atmosphere effect, where the segregated elements must diffuse and catch up to the 

boundary in order to lower its energy [35], [38]. However, it has been shown that the kinetics of the steady state are 

associated with an activation energy comparable to that of Ni [41]. This excludes this mechanism from being rate 

controlling, because several elements besides Ni segregate [35], [36], [43]. Nonetheless, this effect would benefit the 

alloy’s strength and creep resistance.  

The creep strength of Co-base superalloys is comparable to early Ni-base [1], [10], [12], [15]–[17], [35], [38], [45], 

[46]. Their intermediate temperature (primary) creep resistance is particularly good. Neumeier et al [10] demonstrate a 

creep resistance at 750 ̊C superior to that of Udimet 720Li and Waspaloy. It is suggested that this is due to either a high 

content of W limiting diffusion, as also suggested by Knop et al [1], [12], less primary ɣʹ (and therefore a higher volume 

fraction of intragranular precipitate), or a difference in creep mechanism. Considerable variety in deformation behaviour 

has already been observed: Titus et al [35] report stacking fault shear at 900 ̊C and 275 - 345 MPa, Eggeler et al [43] 

describe an APB shearing mechanism being dominant at the same temperature and stress, while Freund et al [38] 

observe microtwins and SF shear at 750 ̊C and 530 MPa. Optimisation of alloy composition for creep strength clearly 

requires further work. 

2.1.2 Mechanisms of tertiary creep 

If the applied stress is insufficient to induce the required reactions, a/2<110> dislocations remain in the ɣ. Tertiary creep 

will progress if the temperature is high enough or the precipitates small enough for them to cross-slip into a new channel 

[28], [32]. In their seminal work on CMSX-3, Pollock & Argon [21] reported extensive creep in the ɣ-channels via 

a/2<110> dislocations. Rae et al [28] ascribe an insufficient stress as explanation of Pollock & Argon’s observed lack 

of ɣʹ penetration (and therefore any true primary creep). Prior to failure, L12 strengthened superalloys exhibit a tertiary 

creep regime associated with strain softening, as depicted in Figure LR-1. As discussed, strain is accumulated from 

dislocations confined to ɣ-channels. This has been repeatedly experimentally verified [21], [44], [47]. Failure after 

extensive creep is often due to cavitation, thought to be induced by the combined effect of stress and grain boundary 

sliding (GBS). Edington et al [48] set forth GBS as a necessary but not sufficient requirement for cavitation, as cavities 

geometrically cannot form from vacancy clustering alone. SEM studies have shown that cavity nucleation is intimately 

related to grain boundary behaviours [49], [50]. As such, design of creep resistant polycrystalline alloys has been 

focussed on the strengthening of grain boundaries. Tolerable creep strains in engine components are generally in the 

region of less than 5%. This is the reason for a historical focus on plastic strain mitigation rather than cavitation 

characterisation.  

If a threshold stress for dislocation entry into ɣʹ precipitates is not reached, tertiary creep operates via a/2<110>{111} 

dislocation propagation in the superalloy ɣ-channels [6], [21]. Dislocation density rises with increasing creep strain, and 

cross-slip is required for precipitate circumvention. Factors such as a higher SFE increase the ease of cross-slip [2]. The 
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creep rate has been shown to be proportional to an increasing dislocation density as strain is accumulated, leading to 

exponential strain softening behaviour [44], [51]. Coakley et al [47] have investigated lattice strain evolution during 

tertiary and primary creep regimes in CMSX-4, and found that matrix deformation releases the misfit stress, resulting 

in elastic compression of ɣ in the loading direction. Results were indicative of a load transfer from the ɣ to the ɣʹ in the 

transverse direction, corresponding to a significant amount of ɣ-channel creep, in accordance with Pollock & Argon 

[21].  

GBS is a deformation mechanism exhibited in a wide variety of polycrystalline materials. Experiments have shown that 

it can contribute to upwards of 70% of macroscopic strain during superplasticity [52], corresponding to tertiary creep in 

superalloys. In general, GBS may be divided into two behavioural regimes: those of Lifshitz [53], and Rachinger [54]. 

In the former, the grains’ shape change accommodates diffusional creep, and there is no net increase in their number 

lying along the tensile axis. In the latter, dislocations are required to accommodate the strain, such that there is no net 

grain shape change, but an increase in number along the tensile axis. Very little of the GBS literature focusses on 

superalloy systems. Due to the mechanism’s importance in superplasticity, the vast majority of previous work is 

focussed around such (often binary) alloys.  

GBS accommodated by diffusional creep (Lifshitz sliding) is well established and reviewed [52], [53], [55], [56]. In 

their seminal work, Ashby & Verrall [57] present a thorough analysis of GBS in superplasticity accommodated by 

diffusional creep. The mechanism differs from straightforward Nabarro-Herring or Coble creep (occurring up to ten 

times faster than these at high strains) in that grains switch neighbours without significant elongation, schematically 

shown in Figure LR-4. The process is limited either by diffusion (bulk or grain boundary), or the capacity for a grain 

boundary to act as a source or sink for point defects. Ashby & Verrall’s diffusional accommodation is presented in 

Figure LR-5. The work done on a unit group of four hexagonal grains by four constituent processes is used to consider 

a quasi-analytical model. These are: the diffusive current required to accommodate shape change; the chemical potential 

activation penalty for the ‘interface reaction’, where boundaries source/sink defects; shear displacements of grains 

sliding past one another; fluctuations in boundary area over the course of the mechanism.  

Langdon et al [58] have proposed a unified Rachinger sliding model for superplasticity and creep. In this scheme GBS 

occurs by the propagation of dislocations, with their motion principally diffusion controlled. A variety of strain 

accumulation mechanisms exist. These include glide and climb in adjacent grains after Gifkins [59], groups of grains 

sliding with stress accumulations driving climb after Ball & Hutchinson [60], and production of dislocations at 

protrusions after Mukherjee et al [61]. Differences in mechanism empirically manifest as variety in the numerical 

prefactor and choice of diffusivity constant. The transition between regimes is due to variation in the details of the rate 

limiting step [58]. In fine grained superplastic samples it is the climb of dislocations across grain boundaries. In coarse 

grains undergoing creep it is annihilation and interaction at sub-grain boundaries. This is schematically shown in Figure 

LR-6.  

GBS may act as a nucleation mechanism for cavities, which are commonly the source of creep failure [62], [63]. 

Mitigation of sliding and boundary strengthening is employed to maximise tertiary creep life. A variety of cavitation 

nucleation and growth mechanisms have been suggested. These include an agglomeration of spherical cavities at triple 

junctions, or by void growth at transverse boundaries [63]. GBS may lead to accelerated cavitation by raising the local 

stress state at transverse boundaries. Additionally, cavities may nucleate and grow due to dislocation pile up at grain 

boundaries or hard particles, or because of vacancy diffusion under a stress induced chemical potential gradient. 
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Figure LR-4: Lifshitz grain boundary sliding, redrawn from [57]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure LR-5: Ashby mechanism for Lifshitz 
sliding, redrawn from [57]. 

Figure LR-6:  Langdon mechanism for Rachinger 
sliding, redrawn from [58] 
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2.2 Grain boundary engineering 

B, C and Zr are commonly alloyed to improve grain boundary cohesion [1], [10], [12]. Such elements are used due to 

their tendency to segregate to the boundaries, forming monolayers and precipitates that increase the work of cohesion. 

This inhibits grain growth and GBS, acting as a useful tool in microstructure development and extending both creep and 

fatigue life. It has been demonstrated that maximisation of benefit from B additions requires elemental segregation. 

Precipitation of borides occurs after additions greater than the solubility limit of B; upon their formation no further gains 

in strength or life are achieved [64], [65].  

2.2.1 Intergranular precipitation 

Of particular concern is precipitation of minor phases either during heat treatment or in-service. Engineering a desirable 

grain boundary character is essential to the optimisation of superalloy microstructure and performance. Toward this 

endeavour we require precise knowledge of chemistry, distribution, and structure of intra/intergranular precipitates, 

particularly carbides and borides. These phases form through all stages of alloy processing, from initial casting through 

to final ageing treatments. In the literature, refractory-rich grain boundary precipitates may be referred to as a ‘carbide’ 

without any effort to differentiate between M23C6, M6C or boride structures. Due to preferential elemental segregation 

of high Z-number elements, these all exhibit high backscatter scanning electron microscope (SEM) contrast. There is 

significant evidence that these precipitates’ exact character has a significant effect on mechanical and environmental 

stability, especially in high temperature applications, despite their small volume fraction [64], [66]–[68]. A secondary 

effect of grain boundary precipitate interactions is the ability to facilitate grain boundary serration mechanisms, also an 

essential consideration in modern superalloy grain boundary engineering [69], [70].  

A wide variety of carbide and boride structures are known to precipitate in superalloys, including but not limited to MC, 

M23C6, M6C, M2C, M2B, M3B2 and M5B3, where M is a dominant metallic enrichment, generally a refractory element. 

A selection of prior studies within superalloys and steels with similar refractory contents are presented in Table LR-1. 

Current thinking is that a significant mismatch between solute atomic radii to the average of the pseudo-FCC (ɣ / ɣʹ) 

matrix (smaller for C and B, larger for refractories) leads to a driving force for these elements to migrate to grain 

boundaries. Here the strain dipoles accommodating lattice parameter mismatch from interstitial or substitutional solutes 

can be relieved. The migrated elements tend to combine, forming intermetallic and ceramic compounds such as 

topologically close packed (TCP) phases, carbides and borides. 

MC carbides generally precipitate at high temperatures (for example over 1100˚C in Udimet-520 [71]), during casting 

(‘primary’ MC carbides) or homogenisation treatments (‘secondary’). These are stable at high temperature, and are 

difficult to dissolve once formed without risking incipient melting. MC carbides may exhibit significant variation in 

composition due to forming over a wide temperature range during solidification [72]. Their relative stability also means 

they are a common decomposition product of other carbides, such as M2C [72]–[75], with the associated refractory 

rejection possibly also leading to TCP phase precipitation [76]. In superalloys their presence is generally welcomed, 

with certain systems utilising them during supersolvus forging, providing hot ductility, or for the prevention of hot zone 

cracking [77]. 
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Type System ‘M’ Enrichment Material Technique Ref 

MC Superalloy Ti René 88DT XRD [90] 

  Nb Inconel 718 TEM-EDS [91] 

  Ti, Mo Udimet 520 EDS [71] 

  Ta STAL-15CC APT [65] 

  Ti, Ta, Nb, Mo ME3 STEM-EDS [92] 

  Zr, Ta Co/Ni superalloy EBSD+EDS [93] 

 Steel Mo, V AISI M2 HSS variants APFIM [94] 

  Mo, V, W AISI M2 HSS variants TEM-EDS [73] 

  Nb, Ta, V Ferritic/Martensitic Steel STEM-EDS [95] 

  V, Cr, Mo AISI M2 HSS variants EDS [74] 

M23C6 Superalloy Cr, Mo RR1000 STEM-EDS [96] 

  Cr, Mo Udimet 720 TEM-EDS [97] 

  Cr, Mo Udimet 520 EDS [71] 

  Cr Inconel 738 STEM-EDS [98] 

  Cr, Mo STAL-15CC APT [65] 

  Cr, Mo, W ME3 TEM-EDS [92] 

 Steel Cr, Co Ferritic/Martensitic Steel STEM-EDS [95] 

  Cr CrMnFeCoNi HEA STEM-EDS [99] 

M6C Superalloy W, Mo K465 superalloy STEM-EDS [100] 

 Steel W, Mo AISI M2 HSS variants STEM-EDS [72] 

  Mo, W AISI M2 HSS variants STEM-EDS [73] 

  Fe, Co Ferritic/Martensitic Steel STEM-EDS [95] 

M2C  Mo, Cr Hastelloy N EDS [78] 

  Mo, Cr AISI M2 HSS variants APFIM [94] 

M3C Steel Co Ferritic/Martensitic Steel STEM-EDS [95] 

M5B3 Superalloy Cr, Mo, W René 88DT XRD [90] 

  Cr, Mo, W STAL-15CC APT [64] 

  Cr, Mo In 738 STEM-EDS [101] 

  Cr, Mo STAL-15CC APT [65] 

  Cr, Mo, W ME3 TEM-EDS [92] 

M3B2 Superalloy Cr, Mo, W René 88DT XRD [90] 

  Nb, Mo, Cr Inconel 718 EDS [102] 

M2B Steel Cr, Fe Austenitic stainless steel STEM-EDS/EELS [103] 

  Cr, Fe AISI 1045 steel TEM-EDS [104] 

  Cr, Fe 18/20 Ni/Cr stainless steel XRD [105] 

Table LR-1: Carbides and borides commonly observed in superalloys, with the corresponding refractory affinities 
measured with a variety of characterisation techniques. 
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M23C6 and M6C phases often form on grain boundaries at intermediate temperatures (700 – 1000˚C), coinciding with 

optimum ɣʹ ageing regimes. They may also form from the decomposition of other carbides such as M2C or MC, and on 

occasion precipitate intragranularly [78], [79]. As presented in Table LR-1, M6C tends to exhibit a greater W affinity 

than M23C6, so is observed in Co-base superalloys that require high atomic fractions of W [79]–[81].  

2.2.2 Boundary serration 

GBS can further be inhibited by serration of grain boundaries. Development of such morphologies increases resistance 

to creep crack growth for mechanical reasons, as well as due to an increase in length of diffusion paths [69], [82], [83]. 

Serrations develop due to strain induced movement of primary ɣʹ (or other pinning phases) during cooling. Carter et al 

[84] have characterised the effect of grain boundary serration on strain localisation and accumulation in René 104. The 

study showed that strain tended to accumulate at triple junctions and low symmetry boundaries in a standard 

microstructure, with multiple slip systems active. Sliding boundaries tended to have a single slip system active. There 

was less correlation at serrated boundaries, which were shown to be more resistant to sliding. Furthermore, regions of 

strain localisation around serrated boundaries tend to be more diffuse, extending further into the grain interiors.  

Heat treatments designed to mechanically lock grain boundaries together have been used since first being reported for 

superalloys in 1976 by Miyagawa et al [85] and Larson [86], though the morphology was reported in austenitic stainless 

steels 10 years prior [87]. They universally involve slow cooling through an intergranular phase solvus temperature. 

There is significant evidence that engineering such microstructures improves creep ductility and life, where intergranular 

cracking and cavitation modes are exhibited [70], [85]–[87]. Serrations directly affect the character of strain evolution 

in high temperature deformation regimes. In-situ digital image correlation (DIC) studies on René-104 have shown that 

serrations reduce strain concentration around microstructural features such as annealing twin (Σ3) boundaries, and 

plasticity is distributed more evenly across the microstructure [88], [89]. This is as originally suggested by Larson [86] 

and later validated by Carter et al [88] who showed that strain concentration fields at serrated grains boundaries are 

smaller in magnitude and extend further into grain interiors than for non-serrated. This is likely due to a reduction in the 

accommodation of strain through GBS, which reduces the onset of tertiary creep.  

The processes by which grain boundaries serrate during heat treatment are still the subject of some debate. The dominant 

mechanism varies between alloy systems as a function of ɣʹ and intergranular phase solvus temperatures. Larson [86] 

showed that an air cool through the ɣʹ solvus develops a serrated microstructure in Inconel 792, with the mechanism 

attributed to ɣʹ intergranular nucleation followed by subsequent boundary migration. Highly serrated boundaries are 

observed to only exhibit large, globular carbides. This is attributed to a preference for this morphology to precipitate at 

serration nodes during intermediate temperature ageing. Lower temperature ageing prior to air cooling produced 

smoother grain boundaries with film-like M23C6 carbides. The inference drawn at the time was that serrated boundaries 

promoted globular M23C6. An alternative, non-mutually exclusive interpretation is that the film-like M23C6 carbides, if 

aged in to the microstructure at intermediate temperature (even if above the ɣʹ solvus), prevent serration. Miyagawa et 

al  [85] explain their similar observations (after comparable heat treatments to Larson) through nucleation and resulting 

preferential growth of M23C6 precipitates during cooling. In this alternative scheme, carbide growth into the grain bulk 

along a preferred crystallographic direction provides a lower interfacial energy plane for the grain boundary to migrate 

to.  

The ɣʹ-driven mechanism proposed by Koul & Gessinger [69] involves preferential intergranular precipitation due to 

superlattice misfit relief. They argue that the strain energy difference between the boundary and matrix facing sides of 
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the ɣʹ particle provides a driving force for its migration in the direction of the boundary normal, until this energy is 

matched by the boundary line tension. For this mechanism to operate effectively the grain boundary carbide (M23C6 in 

their study) solvus temperature should to be lower than that of ɣʹ. The key requirement is that grain boundary segments 

between ɣʹ particles must be mobile during the extended nucleation period. Consequently ɣʹ and carbide-driven 

mechanisms cannot operate simultaneously: if a precipitate is already pinning the boundaries, slow precipitation of a 

lower temperature phase will not successfully serrate the boundaries (regardless of whether this is ɣʹ or carbide). This 

effect is presented in Nimonic 105, where M23C6 precipitation precedes ɣʹ and does not itself serrate the boundaries. The 

pinning precipitates then prevent ɣʹ from subsequently doing so. 
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3. Developments in electron microscopy 

Here simple diffraction physics and the formation of both ‘spot’ and Kikuchi diffraction patterns are outlined. Advances 

in orientation microscopy and phase-ID are presented, with a focus on the scanning electron microscope (SEM) and 

electron backscatter diffraction (EBSD). Additionally, advances in chemical analysis using energy-dispersive X-ray 

spectroscopy (EDS) and the capabilities of scanning transmission electron microscopy (STEM) are discussed. 

3.1 Electron diffraction: spot and Kikuchi pattern formation 

High magnification and diffraction imaging modes of the transmission electron microscope are presented in Figure 

LR-7. Conventional analysis usually involves employing the electron beam in one of three operational modes: bright or 

dark field (BF, DF) imaging (differentiated by the position of the objective aperture), selected area electron diffraction 

(SAED), or scanning transmission electron microscopy (STEM). In STEM, a converged probe is employed, 

schematically shown in Figure LR-8. 

  

Figure LR-7: Diffraction (a) and sample (b) imaging from a parallel beam, redrawn from [107] 

 

Figure LR-8: Converged (a) and parallel (b) probe formation, redrawn from [107] 
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Figure LR-9: Schematic of Bragg’s law, redrawn from [106]. 

 

3.1.1 Bragg’s law and (near) elastic diffraction 

Illumination of a periodic crystal with long-range order and regularly spaced atomic planes will lead to constructive 

interference and far-field (Fraunhofer) diffraction for the incoming / outgoing angle θ, in scheme with Bragg’s law. This 

is presented in Figure LR-9. A derivation after Phillips [106] is presented.  

For an incoming plane wave with wavevector k0 diffracting first off electron density at O, then again at O’ separated by 

real space vector r. We define the magnitude of the wavevectors k and k0 to be 1 / λ .The difference in path length 

between these two outgoing vectors is given by the distance AO’ + O’B. This path difference is given as:  
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There is therefore a phase difference between radiation diffracted at O and O’ of magnitude 27	. ∙ 6, with difference in 

magnitude given by: 

 8

8#
∝ :$%&'	(*∙,)   LR-2 

Where the exit wavefunction is given by 8 , and the incident wavefunction as 8#. Constructive interference occurs 

when (. ∙ 6) is an integer: the complex exponent is a multiple of	27. It can be shown that the length of s is given by: 

 |6| = 2	|0|	sin(>)	

=
2	sin(>)

2
 

  LR-3 

Such that upon constructive interference: 
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For integers n, which is Bragg’s law [106], [107].  

In a TEM or SEM, where sufficient incoming angles are sampled, this results in coherent, elastic scattering at angles θ 

to all possible diffracting Miller planes {hkl}, with spacings dhkl. The intensity of an elastically scattered beam from 

plane (hkl) is proportional to the magnitude of the corresponding ‘structure factor’ @./0 , which accounts for the 

possibility of destructive interference due to symmetries of the crystallographic unit cell.  

The structure factor is given by the Fourier transform of the electron density function A(.) over the crystal [106]: 

 B(6) = CA(.)	:$%&'	(*∙,)	?.   LR-5 

Which upon substitution of s for reciprocal lattice vector (h,k,l), and r for unit cell normalised position vector (x, y, z), 

and evaluated at all atomic locations a gives the complex B./0: 

 
B./0 =	DA1	:%&'	(.2!3/4!305!)

6

178

   LR-6 

With xa, ya, za corresponding to the atomic sites positions within the unit cell of the ath atom, and fa the ‘atomic structure 

factor’, a property that describes the propensity for a given element to scatter a kind of radiation (X-ray, electron, etc). 

Finally:  

 Intensity	 ∝ |B./0|%  LR-7 

The electron density function is dependent on incident angle and beam energy amongst other things, but is considered 

as a constant for the purposes of determining systematic diffracting beam absences due to intra-cell destructive 

interference (especially as the structure factor only provides proportionality to total intensity rather than an absolute 

determination) [108]. Subsequently in this thesis, diffraction as described will be referred to as ‘Bragg’ or ‘elastic’ 

interchangeably.  

Notably, the symmetry of the face-centred cubic (FCC) unit cell is such that Miller planes with mixed odd and even 

indices (such as {101}, {112}) do not constructively interfere and have @./0 = 0 for such conditions. The primitive 

system does not have such a restriction. This is extremely useful for discriminating for example L12 (primitive) and 

FCC structures in dark-field TEM, as the objective aperture on the diffraction plane can be used to isolate and re-

interfere intensity from diffraction spots forbidden in the FCC structure [6], [30], [107].  

SAED is the traditional method for structure determination in electron microscopy. Spatial resolution of this approach 

is limited by the size of the selected area aperture employed, unless overlapping diffraction patterns can be successfully 

deconvolved. In practice, after (usually challenging) sample preparation a nearby zone axis is located and a two-

dimensional projection of the sampled region’s reciprocal lattice is measured. These can be compared to (evenly 

sampled in orientation space) libraries of kinematically or dynamically simulated spot patterns for candidate crystal 

structures, but there may be cases of pseudosymmetry and strong pattern similarity, especially between phases with near 

identical structure. This is confounded by the fact that upon rotation to a zone axis one only ever samples two coplanar 
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Figure LR-10: Scanning electron microscope imaging schematic. 

 

Figure LR-11: Typical setup for an EBSD measurement. 
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reciprocal lattice dimensions. This leads to a 180˚ ambiguity in crystal orientation: three non-coplanar vectors are 

required for a full description [109]. However, spot diffraction patterns are extremely difficult to interpret and index if 

the electron beam is not aligned to a high symmetry zone, unless the full 3D reciprocal lattice is measured with a 

tomographic approach [110]. Furthermore, dynamical effects can lead to activation of disallowed reflections, which can 

confuse structural analyses.  

3.1.2 Kikuchi diffraction and EBSD 

The SEM is maybe a more convenient instrument than the TEM, permitting analysis of bulk samples across areas of 

interest (AOIs) up to mm-scale, with spatial electron beam position resolution of 100s of μm down to a few nm. A 

schematic is presented in Figure LR-10. Upon electron incidence in a material (typically the first few 1 - 10 μm of 

depth), inelastic backscattering occurs [107], [111]. Electrons are scattered in all directions, generating a full, new set 

of uncorrelated incident angles to the lattice planes. Subsequent Bragg diffraction of the inelastically scattered beams 

generates so-called ‘Kossel cones’ of electron intensity. Such cones form for every diffraction condition. Intersection 

of these with a planar detector (forming a gnomonic projection of the full backscatter-diffraction sphere) allows the 

capture of ‘Kikuchi’ or ‘electron backscatter’ patterns (EBSPs); they present as a series of crossing bands of raised 

intensity [112]. A typical experimental setup is presented in Figure LR-11. When a sample is 15-20˚ from the optic 

axis of the microscope patterns are reasonably intense [113]. EBSPs are formed from a relatively large solid angle of 

diffracted electrons, so more than three geometrical conditions (in this case Kikuchi bands corresponding to lattice 

planes) are normally sampled, as required to determine a unique orientation solution. Conventionally a Hough (Radon) 

transform and set of interplanar angle lookup tables are employed to index crystallographic planes to determine phase 

and orientation [112], [114]. Collection of EBSPs across a wide AOI by electron beam rastering in an SEM is known 

as electron backscatter diffraction (EBSD), usually performed for the purposes of orientation mapping. Kikuchi patterns 

also appear in transmission diffraction, though the smaller volume of material sampled generally leads to weaker 

patterns. Transmission Kikuchi diffraction (TKD) is seeing increased use in the SEM due to the much finer probe size 

that is achievable, while maintaining the relatively large solid angle of incident electron intensity provided by the SEM 

(as supposed to the TEM) [109], [115], [116].  

3.2 Advances in EBSD post-processing 

Indexing of EBSPs (assignment of orientation and crystal structure to the scan location) is generally performed online 

(at the time of measurement) with a fast interplanar angle lookup table (LUT) approach. Such methods are briefly 

reviewed, then advances in slower offline approaches such as template matching are discussed. 

3.2.1 Kikuchi band analysis for orientation and structure 

With good knowledge of detector, sample, and scanning geometry a full set of Euler angles can be obtained for each 

scan point. These are used for the generation of pole figures, inverse pole figures (IPFs), and IPF maps. Britton et al 

[117] highlight the importance of correct geometry calibration for the calculation of accurate orientation solutions. Upon 

measurement, patterns’ Hough (discrete Radon) transforms are calculated, as suggested by Krieger-Lassen et al [118]: 

 I = J cos⍵ + N sin⍵ 

−O < I < O		

0 < ⍵ < 7 

  LR-8 
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Where ⍵ is the angle of any given line with respect to the x-axis, I the distance to the image centre, and 2R the diameter 

of the pattern. “Hough-space” is parameterised by the basis (⍵, I). This is visualised in Figure LR-12. In practice, it is 

discretised into steps ∆⍵  of for exampe 1˚, and steps ∆I  of √2  px [109]. Maxima/minima in the Hough space 

correspond to straight lines of raised/lowered intensity in the EBSPs, which can be easily computed and the Kikuchi 

bands identified by convolution with an appropriate (for example Sobel) kernel. Given a band centre identified by (⍵, 

I) in the Hough transform, with appropriate treatment of the pattern centre a plane normal can be identified: 
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For screen size Sx-by-Sy in px and pattern centre co-ordinates (PCx,y,z) in fractions of EBSP width, height and height 

respectively1, and the cross-product Z[ gives the plane normal [119]. The PC is a critical parameter, corresponding to the 

position on the detector with shortest Euclidean distance to the scan point. The vector Z[  is inverse-gnomonically 

projected back into the microscope frame of reference to derive the orientation of the considered plane. If sufficient 

 
1 As a convention, in this thesis PCx is measured from the left edge of the pattern, parallel to the sample tilt axis (normalised by 
pattern width). PCy is measured from the top edge (normalised by pattern height), and PCz is the detector distance (normalised by 
pattern height). 

Figure LR-12: Operation of the Radon transform. 
 



 35 T P McAuliffe 

planes’ orientations are well identified for a given EBSP, calculation of interplanar angles and comparison to possible 

structures allows phase and orientation determination [109]. Straightforwardly: 

 cos(b) = |Z[8 ∙ Z[%|  LR-13 

For crystallographic planes with normals Z[8and Z[%, and b the interplanar angle. The procedure of Wright & Adams 

[120] compares identified plane normals’ interplanar angles b: to the corresponding set a given crystal symmetry. They 

did not directly Hough transform measured patterns, instead convolving a kernel with the Hough transform of pixels 

clustered according to the direction of their intensity gradient. After interplanar angle identification, the set is compared 

to geometrically expected pairings for candidate structures. For example in the FCC structure 25.94˚ separates (200) 

and (311) ; 29.50˚ separates (111) and (131), etc [120]. All possible triplets of measured interplanar angles  for each 

candidate phase are identified, and (geometrically) possible solutions identified for each band, agreeing with the lookup 

tables to within a specified precision. The most likely {hkl}and phase assignment for each band is accordingly identified, 

by voting across all triplets. At this point the pattern is indexed, and crystal orientation and phase are determined. This 

led to the first presentations of (now ubiquitous) automatically indexed orientation images [111], [121]. A confidence 

index (CI) in the assignment is often employed, equal to the difference in votes between the two most popular candidates 

divided by total number of votes [122]. 

Further developments in LUT indexing of EBSPs include treating the problem as an analogue of identifying stars in the 

night sky [119]. Generation of an interplanar angle LUT for each given triplet of Z[' and candidate structure is performed, 

and a ‘characteristic triangle’ with sides c' = Z[; − Z[/ inferred. The ratios of the side lengths, |c'|	/	|c;| are stored and 

compared to those calculated for triplets of experimentally identified bands to obtain a solution. In such a scheme, the 

pattern centre accuracy can be determined via the mean angular error between bands {hkl} and their locations in the 

best matching solution.  

There is rarely a unique orientation solution, especially in metallurgy where highly symmetric crystals are typically of 

interest. A cubic orientation for example has 24 equivalent orientations. Dingley & Wright [123] further developed 

phase identification in EBSD via analysis of zone axis symmetries. Potential symmetry axes (PSAs) are identified by 

measuring orientations with respect to all possible pairs of orientation solution to an identified triclinic unit cell. The 

PSA type is identified: one of 60˚, 90˚, 120˚, 180˚ rotations. All possible triplets of PSA are identified, and the 

corresponding crystal structure type voted on (eg. tetragonal structures only exhibit 90˚ and 180˚ PSA types) and a 

candidate unit cell  determined.  

The richness of information in EBSPs is not limited to band locations and symmetry. If the pattern centre is accurately 

known, lattice parameter ratios and angles between basis vectors can be determined [114]. The angular width of the 

Kikuchi bands is approximately twice the Bragg angle for any given plane, but the gnomonic projection destroys inter-

band proportionalities in the detector frame. Dingley & Wright suggested an accuracy limit of approximately 5% for 

band-width determined lattice parameter observations [123]. By correcting gnomonic distortions and fitting zone axis 

locations and manually measured band widths, Li & Han [124] surpassed this limit, determining the Bravais structure 

and unit cell parameters to within 4%, intentionally without any a priori knowledge of the material they were 

characterising. As pointed out by Nolze & Winkelmann [114], band width measurements are extremely sensitive to 

accuracy in knowledge of the pattern centre, due to the inverse gnomonic transform that must be employed. Sensitive 

analysis of high quality and correctly treated EBSPs permits mapping of for example c/a ratio in steel martensites at 
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very high spatial resolution, making no assumptions about the stress state and relying solely on the properties of the 

projective transformation that is the gnomonic projection [125]. 

3.2.2 Improving pattern fidelity 

When signal-to-noise is poor, data reduction or pattern averaging approaches can be immensely useful to obtain more 

confident and accurate orientation and phase solutions. Kikuchi bands may be weak due to very short exposure times, 

extensive plastic strain (such that lattice rotation gradients within the sampling volume disrupt elastic diffraction), or a 

material/phase-specific tendency to weakly diffract (due to a low atomic scattering factor). This is the case in many Zr 

and Ti alloys, for example [126], [127]. Microstructural AOIs that can be scanned with EBSD are typically limited in 

size/resolution by the time taken to expose so many patterns. Wright et al [128] introduce two new methodologies that 

leverage locality of measurements to improve confidence in indexing when patterns are noisy. The ‘extra solutions 

clean-up’ approach examines the CI of an orientation solution and its runners up (from the triplet method [120]), and if 

below a given threshold its neighbours are examined. If a less popular orientation in the voting scheme matches its 

neighbours to within a tolerance, this is selected over the (low confidence) most popular triplet solution. Additionally 

neighbour pattern averaging and re-indexing (NPAR) is presented, in which any one measured pattern is kernel averaged 

with its neighbours (with equal weighting). The remarkable results of this approach on improving indexing with 

simulated pattern noise are presented in Figure LR-13, with noise levels 0, 0.5, 0.8, 1. The noise levels correspond to 

the standard deviation of a normalised and mean centred Gaussian probability density function. The orientation map 

with NPAR is fully recovered, even at extremely high artificial noise levels. As the authors point out, errors in indexing 

are particularly prevalent at grain boundaries when using this naïve averaging due to the enforced pattern overlap and 

blurring, especially at higher step sizes [128]. Spatial resolution drops, preventing observation of fine features, even 

when including a similarity-based weighting into the averaging kernel.  

An improved version of NPAR, non-local pattern averaging and re-indexing (NLPAR), has recently been presented by 

Brewick et al [129]. For a test EBSP, the corresponding NLPAR pattern is a weighted average of all patterns in a given 

window (which could be the entire dataset), and weighted by a function of the L2 norm of the separating vector in 

feature space. The approach includes normalisation for the effect of expected noise in the dataset, which is calculated 

with the variation of individual pixels. An NLPAR-corrected pattern e[' is given by: 
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For measured (flattened) pattern vectors e; in a search window W. The weighting coefficient f'; is given as: 
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Figure LR-13: The NPAR approach, with noise levels at (a) 0, (b) 0.5, (c) 0.8, (d) 1. Reproduced from [128]. 
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Figure LR-14: The NLPAR approach, operating with noise levels of 0, 2.25, and 5. Reproduced from [129]. 
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Where g' is employed for normalisation, and tuning parameter 2 used. The expectation and variance of the L2 norm of 

the feature difference vector are straightforwardly: 

 l m	ne' − e;n%
%
	o = 	ne' − e;n%

%
+ #	(	p'

% + p;
%	)	   LR-17 

 Var m	ne' − e;n%
%
	o = 4	t	p'

% + p;
%	u	ne' − e;n%

%
+ 2#	(	p'

% + p;
%	)	   LR-18 

For n the length of pattern vectors e', and p' the standard deviation of the (Gaussian, mean-centred) noise in the ith 

pattern. Assuming dominance of the second term in the variance, the normalised distance metric ?∗ is then given by: 
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Figure LR-15: A geometrical comparison between the operation of NPAR, NLPAR, and PCA. 
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The standard deviations in the noise are calculated pattern-specifically by assuming that neighbouring patterns should 

have zero feature space Euclidean separation and equal noise Gaussian variance. Accordingly, the 	p'% are selected to be 

equal to 2n times the minimum L2 Euclidean separation of the ith pattern’s nearest neighbours.  

The comparison presented by Brewick et al [129] between NLPAR, NPAR and conventional pattern treatment (all 

Hough/triplet indexed) is shown in Figure LR-14. Noise is added to the EBSPs with standard deviation proportional to 

the overall standard deviation of the patterns themselves, with scalar multiple equal to the noise ratio. Both NPAR and 

NLPAR present a vast improvement over conventional indexing at high noise levels.  

Brewer et al [130] and Wilkinson et al [131] have developed an approach to EBSP clustering based on principal 

component analysis (PCA), which is developed further in this thesis. A detailed exploration of PCA is presented in 

Section LR.4.2.1, and the approach makes up a substantive part of this thesis. Briefly, a new orthogonal basis is sought 

for the data, onto which the original measurements are projected. The new basis necessarily explains the greatest amount 

of dataset variance for a given data matrix rank. A rotation of the set of principal component EBSD patterns that 

maximises the variance between each member of the set effectively reduces a full EBSD dataset down to a single 

representative, or ‘characteristic’ EBSD pattern for each commonly labelled domain. If the number of components is 

well selected, prior to VARIMAX rotation, then these can correspond to a single pattern per grain, and for oversampled 

or deformed grains the domains may also correlate with sub-grains [131]. This approach (in its basic form) completely 

discards spatial information, unlike NLPAR which retains a small amount in the form of limiting the search window. 

PCA fully reduces the dataset to representative patterns with minimised L2 Euclidean feature difference vectors to the 

new basis.  

NLPAR does not calculate such a basis or reduce the dataset, but in the limit of considering the full map as the search 

window a similar solution could be obtained by a PCA reconstruction (taking each scan point as the sum of the PCA 

projections and basis vectors). The difference between the approaches would then lie in the fact that the output pattern 

in the NLPAR scheme is an exponential sum of all patterns in the dataset, with weighting equal to the dot product of 

difference vectors with themselves, while the PCA reconstruction sees a linear sum of the first k de-noised representative 

patterns, with weighting equal to the dot product of the test pattern and the representative pattern. The effect in both 

cases is to reduce the noise: in the NLPAR case this is by decaying the random variations by averaging a negative 

exponential, and in the PCA case it is by throwing away higher order latent signals that contribute minimally to total 

dataset variance (arguably the definition of noise). A 2D (ie. n=2) graphical comparison between NPAR, NLPAR, and 

PCA is presented in Figure LR-15. In this illustrative schematic the noise standard deviations in NLPAR are assumed 

to be one.  

3.2.3 Simulation & template matching 

Due to advancements in feasibility of data transfer and storage, full sets of EBSPs can now be captured and stored at 

high resolution for offline analysis. This permits more computationally heavy indexing approaches [129]. Combined 

with data reduction approaches such as PCA, very swift and accurate microstructural phase analysis becomes 

achievable. ‘Template matching’ or ‘dictionary indexing’ approaches compare experimental patterns to libraries of 

(dynamically) simulated candidates at known orientation, for a given, calibrated microscope setting.  

Accurate template matching relies on well simulated candidate EBSPs. Kinematical simulations are able to provide 

expected band presence / absence, but in order to accurately model intensities dynamical simulations must be performed 
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[122]. Dynamical diffraction modelling is challenging enough for elastic, TEM spot patterns, and the prospect of 

including prior inelastic scattering is a daunting challenge [107], [132]. 

Signal in a simulated pattern is treated as proportional to the square of the intensity of the superposed Bloch wave field 

for a given exit point on the phosphor screen [133]. A point within a simulated crystal can be treated as a virtual 

incoherent source, with the backscattering event randomising the phase difference between the point source and the 

incident Bloch wave. This assumption effectively separates the inelastic scattering process from the subsequent elastic 

diffraction, such that no coherence to the incident electron beam is left [132]. The problem is not sensitive to assumptions 

on the prior distribution of inelastically scattered electron density (before elastic diffraction), as of greater interest than 

absolute intensities are the relative differences between bands and features on a diffuse inelastic background.  

The reciprocity principle states equivalence between starting a plane Bloch wave at the detector and tracing it back to 

the scattering unit cell, and the reverse. The former is employed in dynamical simulations, as it permits the use of a 

single plane wave to infer intensities at the scattering atoms. After Callahan & de Graef [134], intensity I for a 

wavevector k is given: 

 
v(0, l, w#(l)) =D

1

w#
C 2(l, w)	|Ψ(.')|%	?w
5"(>)

#

6

'

  LR-20 

Where Ψ	is the electron Bloch wavefunction at atom position .' in the unit cell, z is sample thickness up to w#, E is 

electron energy, N is the number of atoms in the unit cell. The modification presented by Callahan & de Graef [134] is 

to include the function 2, accounting for variation in electron yield with energy and depth. Additionally, the Bloch 

wavefunction is corrected for thermal excitations using the Debye-Waller factor, and weighted proportionally to the 

atomic number to account for propensity for inelastic scattering. Typically, one specifies a set of lattice planes to 

contribute to the solution, for example all reflectors within 50˚ of the [001] zone axis with minimum spacing 0.35 Å. 

The strongest beams are usually directly accounted for, with a larger number included according to the Bethe 

perturbation, which transforms the strong reflectors’ calculated periodic potential (which is an important parameter of 

the wavefunction) by an excitation error due to the presence of the weaker reflectors [135]. 

Once a suitable library of accurate EBSPs has been generated, it can be sampled for candidate orientations (for example 

evenly in the SO(3) rotation group) and gnomonically projected into the detector frame. Thus a set of templates for 

varied crystal unit cell orientation is obtained, and the most similar template to the measured pattern provides the 

orientation of the unit cell, to within sampling precision.  

For a template library of vectorised patterns, The normalised dot product (NDP) comparison metric presented by Chen 

et al [136] is given:  

 
Y =

1

?

y?z

y?y	 ×	z?z
  LR-21 

For (vectorised) template pattern y and experimental pattern e, and d the length of the pattern vectors (the number of 

pixels). The NDP is used to determine an experimental pattern’s k nearest neighbour dictionary patterns in orientation 

space. Given these, the average orientation of the experimental pattern is inferred using a maximum likelihood 
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optimisation procedure. The nearest k orientations form the set {{;}k, for {; each a vector of Euler angles. The ML 

estimate of {, the experimental orientation is given by the estimate {|: 

 
{| = argmax@�A(

/

;78
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Such that the {A	are independent and identically distributed with an underlying marginal probability density A({A	; 	{) 

that operates on the orientation sphere. This formulation identifies the { for which the product of probabilities of 

obtaining {A with a given { is maximised. The probability density f is taken as the Von Mises-Fisher  density, which 

evaluates onto a unit sphere in quaternion space with a given mean location and spread.   

As discussed by Foden et al [137], the NDP metric is translationally sensitive, such that semantically similar patterns 

translated by a few pixels may seem to have total dissimilarity, when there is in fact a great degree of shared information. 

The NDP is a special case of the normalised cross correlation function (XCF), specifically its value at zero lag in the 

horizontal and vertical direction. Fourier cross-correlation sees many applications requiring registration of images and 

interpretation of translations in signals [138]. In the formalism of Foden et al [137]:  

 Y1B =DÅ231,43B
2,4

l2,4∗ 	

Y1B = F$8[	F[Å231,43B] ∘ FÑl2,4Ö
∗
	] 

 LR-23 

The XCF determines how well reference and test EBSPs align at lag i and j in the horizontal and vertical directions 

respectively, and F denotes the 2D discrete Fourier transform (DFT), calculated for example with the Cooley-Tukey 

fast Fourier transform (FFT) algorithm [139]. 
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For image dimensions (X,Y). The inverse is given: 

 Å(x, y) = F$8[	Ü(á, à)	] LR-26 
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Such that: 
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The maximum value of the XCF determines absolutely how well images can align with translational freedom (which 

could be attributed to an incorrectly simulated pattern centre, or misorientation). Using the FFT and an appropriate sub-

pixel registration algorithm, resolved image shifts can very quickly be determined [138]. Similar approaches have been 

successfully used to infer the elastic strain state within a crystal by tracking EBSP sub-regions of interest [127], [140], 

[141]. By permitting translational freedom in the comparison metric far fewer templates need to be sampled to obtain 

the same orientation resolution. This provides massive computational speedup, as the FFT leverages computational 

complexity of O( n log n ) [139]. In order to achieve subpixel registration (i.e. efficiently upsample and interpolate in 

the frequency domain), Foden et al [137] employ the cross-correlation registration algorithm developed by Guizar-

Sicairos et al [142]. This avoids the computationally expensive procedure of embedding Ü(á, à)	:∗(á, à) into an 

upsampled grid of zeros.  

In an upsampled DFT, the need for zero-embedding is alleviated if the peak is expected to be close to autocorrelation. 

Guizar-Sicairos et al [142] implement this as the product of three matrices, with dimensions (1.5ê, Y), (Y, X), and (X, 

1.5ê), after translating the registration to be close to an initial estimate in peak location from a non-upsampled cross-

correlation. Subsequently, the XCF is computed for an upsampled square array of dimension 1.5ê [142]. This presents 

computational complexity O(MN√ê), much faster than the zero-embedding and inverse transform approach, which 

requires complexity *(âä	log	(αâ) + α log(ê ä)), for ä ≤ â. 

Foden et al [137] efficiently compare a set of templates to an experimental pattern. The translational insensitivity of the 

XCF permits the sampling frequency of the SO(3) rotation group to be fairly large, for example 8˚, much higher than 

required by the NDP approach. This permits a swift pass through the library. SO(3) is split into U% × U8, with U% the set 

spanning the surface of a sphere (the polar angle split being equidistantly and azimuthally sampled) and U8 (rotation 

around points on the sphere). The best matching template has its orientation refined.  

Small rotations (misorientations between template and measured EBSP) about the sample x and y axes correspond to 

translations in the EBSP, which can efficiently be detected in the XCF, provided the PC is well known. The 

corresponding misorientation (about x, y axes) is given  simply as shift / detector distance. The rotation about z is inferred 

upon translation to log polar space, parameterised by log(î)	(with r the distance from the image centre) and ï the 

anticlockwise angle from the horizontal axis. Rotations about z then correspond to translations in ï. A full misorientation 

between template and measured EBSP can thus be inferred by iteration of these calculations while optimising the pattern 

centre, and the absolute orientation of the measured pattern determined. This is presented in Figure LR-16. 

Both the NDP and FFT approaches to template matching yield substantive improvement in orientation precision than 

the standard Hough-based method [136], [137], [143], [144]. The FFT approach yields accuracy of < 0.2˚ for 128-by-

128 px EBSPs [137]. The NDP approach yields accuracy of approximately 0.2˚ for 120-by-120 px EBSPs [143]. These 

are vast improvements over the conventional Hough transform approach, which is typically on the order of 0.7˚ for 120-

by-120 px EBSPs [143]. 

3.2.4 Spherical EBSD 

A major caveat in analysis of the gnomonic projection of the diffraction sphere onto an inclined planar screen leads to 

hyperbolic band edges rather than straight lines [109], [119], [145]. A more natural basis in which to conduct EBSP 

analysis is the inverse gnomonic projection of the measured patterns back onto the diffraction sphere. The subject has  
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Figure LR-16: Log-polar refinement after and reproduced from Foden et al [137]. 

been reviewed and opportunities for the field discussed by Day [146]. An illustration of the problem is presented in 

Figure LR-17. Of particular note is the overlap of this problem with the field of robotics; a spherical Hough transform 

has been developed in order to assist robots navigating through straight lines in an office space. Kikuchi bands ‘on-the-

sphere’ are inverted to discs centred at the plane normal, with diameter equal to the band width. Analysis ‘on-the-sphere’ 

permits spherical cross-correlation and accurate analysis of Kikuchi band cross-sectional profiles, as the hyperbolic 

divergence is removed. These problems have been presented and solved by Hielscher et al [145]. This inverse gnomonic 

projection is achieved by calculating a function f with respect to diffraction directions ξ. This follows the expansion: 
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Figure LR-17: A spherical visualisation of the diffraction sphere, reproduced from Day [146]. 

Where ä1B are the spherical harmonic functions, and Aó(ç, é) are the Fourier coefficients of f. N corresponds to the degree 

of harmonic employed for the expansion. The spherical harmonics replace the basis of the clasical Fourier expansion. 

Hielscher et al [145] discuss several approaches for calculating the Fourier coefficients from diffraction intensities, 

including estimating using quadrature (exploiting the orthogonality of the spherical harmonic basis), directly 

interpolating from the measured values, or approximation by fitting a hyperplane to minimise a square error loss function 

in an overdetermined system of equations. Once the inverse projection has been mapped, spherical Fourier and Radon 

transforms as well as cross-correlation can be achieved.  

If the pattern centre and corresponding orientation are well known, crystallographically expected band traces can be 

mapped onto a spherical inverse-gnomonically projected EBSP. This permits integration along all the small circles 

Figure LR-18: (a) the 2D projection of the spherical Radon transform, and (b) integrated band profiles of a 
diffraction sphere, reproduced from [145]. 
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following the surface of the sphere outwards from the band centre, to calculate an average band cross-sectional profile. 

Such an analysis on a dynamically simulated pattern is presented in Figure LR-18. 

The shapes of these profiles are characteristic to the projecting bands. Leveraging this for new crystallographic imaging 

is explored further in Chapter 3. 

3.3 4D-STEM analysis 

Four dimensional scanning transmission electron microscopy (4D-STEM) is a relatively new technique in which an 

electron spot diffraction pattern is acquired at every point of a scan grid in a TEM. In this regard it is similar to electron 

backscatter diffraction (EBSD), now a routine method for microscale structural analysis [109], [117], but a much finer 

‘pencil-beam’ probe permits sub-nm spatial resolution. The trade-off is that a zone-axis generally must be identified and 

aligned with the transmitted beam, inherently limiting knowledge of the reciprocal lattice to two coplanar vectors. A 

comprehensive review of 4D-STEM and its applications in strain mapping, imaging, and ptychography is available in 

ref [147]. In this work we employ the py4DSTEM open source software package, developed by Savitzky et al [148]. 

Lattice strain measurement with this approach is becoming fairly routine. It has been used to investigate resistivity in 

semiconductors [149], [150], and more recently begun to be applied to polycrystalline materials [151]. Pekin et al [152], 

[153] have measured the strain field around austenitic (FCC) stainless steel features. They observed a ~4% variation in 

strain across their area of interest, which included dislocations and an annealing twin boundary. 

3.3.1 Bragg disc location 

As discussed by Pekin et al [153], an extension to cross-correlation (extensively discussed in Section LR.3.2.3) is phase 

correlation, in which only the frequencies of the Fourier components (and not their magnitudes) are allowed to influence 

the measure: 
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In which r is the power to which the Fourier coefficients are weighted. Cross-correlation corresponds to r = 0, and 

phase-correlation when r = 1. Such an approach can be useful when edges and other high frequency components are of 

interest, in their case when aligning a circular probe with TEM discs, for example. This is not of particular concern in 

EBSD analysis, in which the alignment of centres of mass of images is of primary concern (the low frequency terms are 

more important). In 4D-STEM strain analysis, for example, a hybrid cross-correlation with 0 < r < 1 is often employed 

[154]. 

3.3.2 Measuring strain 

After Bragg discs have been identified for each diffraction pattern, a relative in-plane lattice strain map can be produced 

by comparing their locations in reciprocal space to a reference lattice. This reference lattice is usually taken to be a 

partial average, or reference portion of the area of interest [148]. In the scheme of Béché et al [155]: 

ô = ö
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Where the vector component õ8,'  for example refers to the i (row) component of the first reference vector in the 

diffraction pattern, tracking the position of one (hkl) spot. The components õ%,' and õ%,; track a second location2. Given 

an ‘unstrained’ set of basis vectors: 

ô" = \	
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The distortion, D, strain ù, and rotation Ω can be obtained, using an infinitesimal decomposition:  
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A more detailed derivation, and procedures for correcting elliptical distrotions, has been presented in Appendix F of the 

recent work of Savitzky et al [148], and included in the open source py4DSTEM software package. This approach to 

strain mapping is very sensitive to spot location, and improvements in precision thereof directly translate to higher 

resolution strain mapping. Béché et al [155] perform an analysis of SiGe thin films, and determine a strain precision of 

6 × 10$L at 2.3 nm step size, though they acknowledge in reality that in practice accuracy is limited by stress relaxation 

of samples. An improvement in spatial resolution was presented by Ozdol et al [156], measuring at 10 × 10$L and 1 

nm step size, using modern direct electron detection and fast scan times. 

 Recently, Zeltmann et al [157] have proposed an improved approach for identifying Bragg discs to high precision, by 

including a mask in the objective aperture to produce a specific shape (such as a bullseye) with sharp edges that track 

 
2 The positions tracked by these vectors may be linear combinations of spots, in order to maintain the required orthogonality in 
crystal systems or diffraction patterns without four-fold (90˚) symmetry. 

Figure LR-19: Novel aperture designs for better registration of Bragg discs, after and reproduced from [157]. 
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well in hybrid cross-correlation. Unfortunately the probe size diverges with these modifications, resulting in a loss of 

scanning spatial resolution. The apertures employed are presented in Figure LR-19. Of particular note is that an 

improvement in strain mapping precision of thick samples (in which there is considerable dynamical electron scattering 

and uneven disc illumination) of up to 29 times can be achieved through use of these apertures. This vastly offsets the 

trade-off in spatial resolution. 
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4. Machine learning for materials science  

Especially in the last decade, the remarkable successes of machine learning have inevitably led to its application in a 

wide range of fields, and materials science is of course no exception. In fact, a variety of classic metallurgical problems 

perhaps lend themselves very well to ML approaches: alloy design [158], microstructural defect identification [159], 

and property prediction [160], [161] are natural applications of supervised models. Application of such approaches to 

explore the very wide range of compositional possibilities in multi-principle element alloys is perhaps another exciting 

domain [162].  

In this chapter, the nomenclature ‘model’ refers to a computationally implemented approximation to a function, rather 

than a set of physical rules. On a related note, ‘parameters’ are said to be optimised during learning, while 

‘hyperparameters’ are fixed constants that define the model’s structure and properties, for example the number of layers 

in a neural network or a regularisaiton coefficient. 

Understanding the structure of data with unsupervised learning methods is becoming an important consideration with 

developments in data capture and storage, especially in electron microscopy and X-ray / neutron diffraction experiments 

[130], [131]. In this thesis such approaches are developed further, and unsupervised ML is used to better understand 

electron microscopy measurements of microstructure. In this section algorithm development and training, neural 

network structure, and relevant unsupervised methods are reviewed. Subsequently, applications of such approaches in 

materials science, with a focus on metallurgy and electron microscopy, shall be discussed. 

4.1 Learning from data 

In order to train a model to accurately perform a specific task, within a given framework, the model must evaluate its 

‘success’ on training examples. This is quantified through use of an objective (or ‘loss’) function, in a simple case this 

can be the squared difference between the predicted and true value [163]. If a problem is convex there is a single global 

minimum in the loss function. Equivalently, the second derivative of the function must be positive everywhere. In the 

multivariate case this is a statement of the Hessian matrix being positive semidefinite. In convex optimisation, the 

presence of a global minimum means that eventual convergence is guaranteed [164]. Machine learning approaches 

usually attempt to tackle non-convex problems, and as such cannot rely on loss function convergence to determine when 

the problem has been solved. Instead, the model is fed ‘training’ examples, and parameters adjusted algorithmically to 

iteratively improve performance. Subsequently the model is evaluated on unseen ‘validation’ data, the performance on 

which gives an indication on how well the trained model can generalise [163], [165], [166]. The phenomenon of 

‘overfitting’ refers to when a model is fed too much training data, such that it learns the labels from specifically those 

examples. The training error rate and loss function are low, but the model is completely useless when asked to evaluate 

unseen data. For example, there are sufficient degrees of freedom to exactly fit a 5th order polynomial to three data 

points, but such a model is very unlikely to accurately represent the actual relationship. Such a case is easily be identified 

when the model is evaluated on validation data, as the error rate and loss will be extremely high.  

This is the paradigm in which supervised machine learning models are usually developed. By dividing known, labelled 

data into training and validation sets the model can be both fitted and accurately evaluated. In the case of deep learning 

with neural networks, the model is usually continuously trained through many ‘epochs’ (rounds of seeing the training 

data), with parameters adjusted to reduce the loss function at each step, until the validation error doesn’t reduce any 
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further. If the validation error starts to rise the model is overfitting, and the ‘learning rate’ at which parameters are 

updated should be decreased [165], [167]. 

Most machine learning models are trained using some form of gradient descent, first presented by Cauchy [168]. In this 

scheme a function’s minimum is simply identified by continuously following the gradient. The gradient is zero at a local 

(or global) minimum. In the multivariable case this takes the following form [164] : 

 {: = {:$8 − ê	¢:$8  LR-36 
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For a loss function L, parameter vector {, iteration n, and learning rate ê. In this scheme the learning rate determines 

how quickly the function approaches the minimum. If set too low, the optimisation will be very slow. If set too high, 

the algorithm can quickly diverge, depending on the shape of the loss surface. With knowledge of the gradient, this 

process is quick and simple to numerically evaluate. Computationally more complicated approaches include a line 

search, in which the learning rate r itself is optimised, and Newton’s method, which considers the loss function as a 

Taylor series and leverages the Hessian / second derivative to achieve convergence in quadratic time [169], [170]. In 

most ML applications a modified version of the vanilla gradient descent is employed, as it is very expensive to calculate 

second derivatives and there are a lot of parameters to optimise. Furthermore, a less-than-optimal step size can actually 

lead to improvement in generalisation (and prevention of overfitting) [171].  

Usually this procedure is slightly modified, as it is expensive to calculate derivatives and adjust parameters after 

evaluating loss at each and every training example. In the extreme, ‘batch’ gradient descent evaluates the expected value 

of the gradient over all the training data. This single average gradient is used to update all the model parameters. 

However, this is very inefficient and can easily lead to overfitting as the model sees every training example in every 

iteration. To introduce more variance into the parameters, a ‘minibatch’ is randomly sampled from the training data, 

and an expected gradient calculated. This is known as stochastic gradient descent (SGD) [171]–[173]. ‘True’ SGD 

involves randomly sampling a minibatch of size 1, with replacement, at each training step [170]. In practice, the dataset 

is randomly split into large minibatches, without replacement, at the onset of training. These are then reused every epoch 

[164]. As such, SGD in common parlance is something of a misnomer, and the process is sometimes referred to as 

‘minibatch gradient descent’. Choice of batch size becomes a very important training parameter, and is usually limited 

by a balance between data type (images are very large, for example) and GPU memory [167]. An additional practical 

caveat lies in ‘learning rate annealing’ – the enforced decay of the learning rate over time, which can in practice help 

improve accuracy while descending into a minimum of the loss surface [171].  

A common modification (and vital to current levels of neural network performance) to learning algorithms is the 

inclusion of so-called ‘momentum’. In this scheme, the (expected) gradient from the previous epoch is allowed to 

influence the current parameter update direction [165]: 
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In which • is an update parameter. This has benefits when the current parameters are migrating across ridges in the loss 

surface, for example. A rationalisation lies in that directions in which the parameter set should be moving accrue over 

iterations, and oscillations either side of the ridge tend to cancel out [174]. Of course, the same scheme is beneficial to 
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training when the loss surface is fairly flat, and progress can quickly be made despite low gradient magnitude. This was 

expanded by Nesterov [174] to incorporate momentum into the parameter values themselves, and an updated gradient 

expectation calculated from the average position of these in parameter space. This is known as ‘Nesterov’s Accelerated 

Gradient’ (NAG). Duchi et al [175] have presented AdaGrad (adaptive gradient algorithm), which emphasises the 

importance of rarely seen input features. In their scheme, the optimiser is required to ‘take notice’ when an infrequent 

feature is parsed. Its update rule takes the form: 
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In which the matrix G is the sum of self-outer products of gradients from all previous time steps. The ¶ and identity are 

included for numerical stability. As presented here, the term preceding the gradient in Equation LR-39 is a slight abuse 

of notation, but the inverse square root of a diagonal matrix can be computed elementwise. This scheme was developed 

upon by Kingma & Ba [176] with their ‘adaptive moment estimation’ algorithm, ADAM, which has seen huge 

popularity. This approach employs a statistics-driven rationalisation, attempting to combine the good behaviour for 

sparse gradients enjoyed by AdaGrad with an update parameter de-biasing, and suitability for loss functions that don’t 

necessarily see any minimum: 
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Where y[ :  and c[:  are de-biased exponentially weighted moving averages of the mean of the gradient, and the 

uncentered variance of the gradient (first and second moments). Again the denominator of the second term is an abuse 

of notation, and refers to an element-wise division (with ¶ included for numerical stability). The de-biasing is performed 

as follows: 
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Where ©8 and ©% are exponential weighting parameters, and ⨀ is the pointwise (Hadamard) product. Kingma & Ba 

[176] set out that the de-biasing is necessary in order to correct for the fact that the variance and mean exponential 

averages start off as vectors of zeros. The advantages of this algorithm include that the step sizes are approximately 

bounded in magnitude by the learning rate, ê, the updates are independent of the scaling of the gradient, and a form of 

learning rate annealing occurs automatically. Furthermore, it was shown that AdaGrad is in fact a special case of ADAM 

for ©8 equal to zero [176]. 
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Of course, many, many, learning algorithms have been developed in the literature. In terms of applied ML, it seems to 

be the case that ADAM, with suitable choices of hyperparameters, leads to good results in a wide range of domains 

[177]–[181]. Optimisation routines of the kinds discussed in this section are by no means only applicable to neural 

networks or even supervised settings, and see application in problems such as linear least squares [163], logistic 

regression [165], [176], and non-negative matrix factorisation [182].  

4.1.1 Neural networks for supervised learning 

Probably the most ubiquitous (and important) machine learning approach in the 21st century is the artificial neural 

network. Very generally inspired by the operation of the human brain, though the analogy is perhaps somewhat 

contrived, they have been able to achieve unprecedented classification and regression accuracy in a wide range of 

domains [183], [184]. Schematically, vanilla versions are simply a sequence of matrix/tensor multiplications, additions, 

and kernel operations (such as convolution and averaging across certain dimensions), combined with application of 

pointwise ‘activation functions’. There is a considerable amount of obfuscating language surrounding these relatively 

straightforward concepts. They have been shown in fact to be a universal approximator: with a non-linear activation 

function a sufficiently ‘deep’ network (many layers of operations) can replicate the output of any function, which could 

be numerical, like predicting future rainfall levels, or very abstract, such as determining whether an image is a cat or a 

dog [185]. These of course are not necessarily convex functions. Despite possessing the ability to represent the form of 

any function that returns real values, there is no guarantee a neural network can be trained well enough to accurately 

replicate it [164]. The surge in popularity began in 2006, when Hinton et al [186] presented a breakthrough in ease of 

network training, difficulty in which had previously plagued the community. 

Neural networks usually appear in a supervised setting, where there is a large amount of training data which must be 

used to predict a response for test data. After a good choice of initial parameters, the network is fed examples and the 

response predicted. This is used to calculate a value of a loss function, quantifying the difference between predicted 

output and true output. Differentiation of the loss function with respect to the many thousands (probably millions) of 

parameters in the model, inferred through a process called backpropagation, allows each parameter to be updated to be 

closer to an optimum value, such that the loss function is minimised. This is further discussed in Section LR.4.1.2. 

Knowledge of the parameter gradients allows the model to be optimised through (stochastic) gradient descent , often 

with modifications [183], [187], or with an alternative optimiser such as ADAM [176]. Development of object-oriented 

and easy to implement (Python) libraries for deep learning, especially TensorFlow [178], [179] and PyTorch [177] have 

drastically improved accessibility to the field. 

In the following sections a brief introduction to the basic structure and operation of neural networks is presented, 

followed by common modifications for optimum performance in computer vision settings (which is of particular interest 

for analysis of EBSPs).  

4.1.2 Network structure  

A simple ‘feedforward’ neural network (alternatively ‘multilayer perceptron’) is a series (set of layers) of matrix 

multiplications and additions (an affine transformation of the input), followed by application of a pointwise, 

differentiable, activation function to each output. The outputs of each layer are known as a vector of ‘neurons’. For an 

input vector J(:), with superscript denoting the layer number, the vector (neurons) fed through to the subsequent (n+1)th 

layer is given by: 
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 J(:38) = A(	´(:)	¨(:) 	+ ≠(:)	) LR-45 

Where the matrices Æ(:) and ,(:) are known as the weights and biases of the nth layer , and f is the activation function 

(applied to each element of its vector elements), whose presence introduces non-linearity. The most common activation 

function is the rectified linear unit (ReLU) [188], defined elementwise simply as: 

 AQRSF(	J' 	) = max	(J' , 0) LR-46 

If the argument is negative the output of the function (known as the ‘activation’) is zero. This has been shown to be 

empirically an extremely effective choice, and is thought to be somewhat responsible for the surge in popularity and 

accuracy of deep learning in the past few years [183]. Historically, functions such as tanh and logistic sigmoid were 

employed [164].  

Dimensions of the weights and biases are chosen to engineer the size of the activations, such that the final layer has 

dimensions of the required number of outputs. In a classification setting this may be the number of possible classes, and 

the outputs interpreted as probabilities after applying an alternative activation function to the final layer, the softmax 

function: 

 
õ9TUNV12(	J' 	) =
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For an output vector x with length k. Applying this function pointwise to a vector x produces a vector of outputs whose 

elements all lie in the range (0,1) and sum to one. It is fairly common to apply a different activation function, g, to the 

final layer than to the middle ‘hidden’ layers, as the range of one’s problem may not align with that of f, which is (0,∞) 

in the case of the ReLU. 

In summary: the affine transformation / non-linear function process is repeated over many layers, multiplying by weights 

and adding biases, which need not have constant dimensionality across the layers. In the simple case of three layers, for 

example, the predicted response point estimate N∞ is given: 

 N∞ = õ(	´(W)	A(	´(X)	A(	´(8)	¨ +	≠(8)	) +	≠(X)	) 	+ ≠(W)	) LR-48 

Figure LR-20: A simple neural network architecture. Circles are ‘neurons’, holding ‘activations’. Connections 
represent operations performed on the network (such adding biases, participating in a matrix multiplication, etc). 
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The dimensionality of predicted response N∞ (and the true y) in a classification setting will be equal to the number of 

possible classes (usually a binary true/false specification for the true y) [164]. In a regression setting a number, vector, 

or tensor is predicted. The overall operation of this simple network is schematically presented in Figure LR-20. Neural 

networks are ubiquitously trained by updating their weights and biases through backpropagation. Many descriptions are 

Figure LR-21: L2 and L1 regularisation. For a given set of parameters, constrained by their norm, the shape of 
the L1 unit ball means such regularisation tends to gives sparse solutions [163]. 

Figure LR-22: A visualisation of the features identified in sequential layers of an Imagenet trained model for 
individual input images. Reproduced from [193]. 
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available; Goodfellow et al [164] provide a detailed discussion and review. Briefly, the chain rule is employed to 

calculate the (tensor) derivatives of a loss function with respect to the neural network’s parameter matrices. Accordingly, 

each weight and bias matrix can be updated (as a function of the loss function’s gradient with respect to that matrix, 

depending on the optimisation routine employed). 

4.1.3 Improving accuracy 

Common approaches to improve generalisability involve the concept of ‘regularisation’. This is usually achieved by 

imposing additional constraints to model architecture or optimisation routine. The most basic kind, and probably the 

most widely used across a variety of ML approaches, is L2-regularisaiton, also known as weight decay [163], [166], 

[189]. In this scheme, the sum of the squares of the model weights (a scalar) are simply added to the loss function [163]. 

This has the effect of penalising large parameter values, which otherwise could lead to sharp gradients in a fitted 

function. It is closely related to L1-regularisation, in which the sum of the absolute values of the weights are added to 

the loss function [165]. In the case of linear least-squares, an L2-regularised model is known as ‘ridge regression’, and 

an L1-regularised model is called the ‘lasso’ [190]. Functionally, L1-regularisation tends to lead to a sparse set of 

parameters (it is said to perform ‘feature selection’), a concept often rationalised by considering the proximity of the 

loss surface to an expanding unit ball constrained by the L1 (a diamond at the origin) or L2 (a circle) norm. This is 

schematically shown in Figure LR-21. An alternative explanation lies in that the posterior distribution of parameters, 

±({|?ç≤ç) , tends towards a zero-centred Gaussian in the case of L2 regularisation, and a zero-centred double 

exponential distribution (with a large probability mass at zero) in the L1 case [165]. An L2-regularised neural network 

loss function usually takes the form:  
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Where 	´(Z)	are the weights of layer c, for n total layers, and λ is an adjustable hyperparameter. Here { refers to all of 

the model parameters, including weights, biases, learning rate, momentum parameters, etc. Krogh & Hertz [189] 

emphasise the value of L2 regularisation in terms of its reduction in model complexity, and suppression of noise in the 

labels during training.  

Dropout is a very widely employed method for regularisation, specific to neural networks, first presented by Srivastava 

et al [187]. This approach prevents a model from overfitting by simply turning off a random selection of neurons during 

each training epoch. It can be regarded as an approximation to averaging all possible sets of acceptable parameters, with 

each weighted by its posterior probability given the training data, ±({|?ç≤ç). This approach has proved very successful, 

is implemented in the common deep learning frameworks [177]–[179], and is consistently seen in state-of-the-art models 

for a wide range of tasks [167], [183].  

Convolutional neural networks (CNNs) are particularly well suited to, and have seen fantastic success on image analysis 

problems. The introduction of a convolutional layer, in which a group of pixels in the input are summed within kernels, 

spaced with regular ‘stride’, introduces locality to the information contained within an array of otherwise independent 

pixel array values [183]. Despite the name, the order in which elements are multiplied and summed (kernels are scanned 

top left to bottom right) means that these layers actually perform cross-correlation, but the common nomenclature will 

be retained here. Such operations can easily be represented as matrix multiplications, so the network can retain the form 

of Equation LR-48 [191]. Images are often represented as a 3D RGB multi-dimensional array, so the ‘convolutions’ 
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are commonly extended into three dimensions (and summing performed in a 3D kernel). These layers are usually 

combined with some sort of pooling operation, the combination of which reduces the dimensionality of the network, 

and has been shown to compress information down to latent features [164]. Combinations of ‘convolution’ and pooling 

were historically developed in similar models to represent the human visual system [192]. Implementations of this 

approach tend to identify very high level features in the early layers, (parallel lines, criss-crossing patterns, circles), and 

combine these to highlight the presence of traits (perhaps eyes, whiskers, legs) and finally combine these into an abstract 

classification (‘cat-ness’, ‘dog-ness’, ‘strawberry-ness’) [193]. This is represented in Figure LR-22. Application of this 

approach has reached the point of accurate ‘semantic segmentation’, in which images can be quantitatively divided into 

regions of multiple labels. Shelhamer et al [194] are able to segment horse, rider, and cars in a single image, for example.  

Generally, the field is moving towards the concept of ‘transfer learning’, in which models are extensively pre-trained 

on a related problem before ‘fine-tuning’ to suit specific objectives [164], [167], [195], [196].  

4.2 Unsupervised learning 

When there is no training or labelled data from which to construct a classifier or regression model, but instead we wish 

to learn about the structure of the data, unsupervised learning is of great importance. Schematically, we may wish to 

identify the latent features of a dataset, and how much each observation correlates with each of these features. If the 

relationship is linear, this can be understood as a matrix decomposition of a observation-by-variable matrix (‘data 

matrix’). This is the basis for principal component analysis (PCA) and non-negative matrix factorisation (NMF), which 

are of particular concern in this thesis. PCA was formulated by Pearson [197] as a method of resolving the discrepancy 

in ‘line of best fit’ when regressing y on x as supposed to x on y. If the relationship is non-linear then a neural network 

based approach may be employed. This was first presented by Hinton & Salakhutdinov [198] as the ‘autoencoder’ neural 

network.  

4.2.1 PCA 

In order to extract the directions of maximal variance within the dataset, PCA extracts the sequence of linear 

combinations of feature-space variables that sequentially maximise variance, while remaining (linearly) uncorrelated 

with one another [199]. That is to say, for a data matrix X, the first principal component (PC1) describes the linear 

combination of its columns (a vector of features) that has maximal variance. The second component is the linear 

combination of columns of (X-PC1) that has maximal variance, while being orthogonal to PC1. PC3 must be orthogonal 

to PC1 and PC2, etc. In order to describe the full dimensionality of the dataset there must in the limit exist as many 

components as the rank of the data matrix. The principal components are conventionally ranked by contribution to 

overall dataset variance, so one usually takes the first few. A geometric interpretation is presented in Figure LR-23.  

Calculation of principal components is equivalent to the singular value decomposition  (SVD) of the (n-by-m) data 

matrix, X. This matrix has n rows of variables (EBSP pixels) and m columns of observations (scan points). Principal 

components are stored in the columns of the orthogonal matrix U (the left singular vectors), and ‘scores’, descriptors of 

the extent to which a data point is represented by that vector, are given by ∑	∏O (with VT orthonormal and ∑ diagonal): 

 π = ∫	∑	∏O  LR-50 

This SVD is equivalent to the eigen-decomposition of the sample covariance matrix, S = X XT / (n - 1), leading to 

eigenvectors in the columns of U and eigenvalues ∑2. As such, the principal components are an orthonormal set of  
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Figure LR-23: A geometrical representation of PCA in 3D, with 2 PCs highlighted.  

Figure LR-24: Identification of a subjective cut-off point for component retention using a Scree plot.  
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vectors in variable space, with each minimising square distance between itself and the data in the orthogonal directions. 

When ordered by eigenvalue (or singular value), the principal components correspond to the directions that contribute 

the most variance (elements of the diagonal matrix Σ2) to the dataset, and the data matrix can efficiently approximated 

by a reduced number of principal component vectors (k): 
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This reduction allows us to retain the k most significant features, which in an EBSD decomposition, for example, will  

correspond to k representative Kikuchi patterns, for example one per grain, sub-grain, or precipitate [131]. This is 

extremely useful when the full rank of the dataset is equal to the number of scan points (and there could be hundreds of 

thousands of scan points). A reduction of this type is a natural fit for problems where a priori we know that the AOI 

will only exhibit a few archetypes of Kikuchi pattern and we are not interested in intra-class variation (e.g. corresponding 

to crystal disorientation).  

The number of components to retain is often a subjective choice. The contributions to dataset variance of each of the 

PCs are known from the singular values, given the orthonormality of both Ω' and c': 

 
var(	Ω' 	) = Ω'

? 	ø		Ω' =
1

# − 1
tΩ'

? 	π	utπ[	Ω'u	

=
1

# − 1
tp' 	c'

? 	u(p' 	c')	

=
p'
%

# − 1
 

LR-52 

Sometimes these variances are scaled to be proportions of the overall dataset variance (which can be found from the 

trace of ∑). Plotting var(	Ω' 	) as a function of i yields a ‘Scree’ plot, which is often used by a human interpreter to 

determine a cut-off point, at which the important information has been extracted and further components are just 

contributing noise [200]. This procedure is presented in Figure LR-24. The set of remaining components may then be 

interpreted as-is or after some orthogonal rotation, such as VARIMAX [131]. Alternative approaches to component 

selection have been developed, including calculating the ‘Scree test optimal co-ordinate’, and ‘Scree test acceleration 

factor’ [200]. In this thesis it was found that simply providing a cutoff for the amount of variance the final component 

must contribute worked well, and is discussed further in Chapter 1.   

The difference between PCA and straightforward least squares linear regression (eg. regressing y on x) can be understood 

by considering what is being minimised. Considering a 2D example, in the former case, the square perpendicular 

distances, in fact along the second principal component are minimised in PCA. In a conventional linear regression, the 

differences between data and model only in the response variable(s)-direction are minimised.  

A recent review by Jolliffe & Cadima [199] sets out historical developments in application of PCA to a wide range of 

problems. Of particular modern note is the development of so-called ‘Robust’ PCA, in which a dataset is decomposed 

into a low-rank component (as conventional PCA does) as well as a sparse component. The sparse matrix is designed 

to account for secondary disturbances (for example identifying a moving person in the foreground of CCTV footage) 

[201].  
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Inferring principal components can be performed with the same approaches as calculating singular vectors and 

eigenvectors. Efficiently computing these is unsurprisingly the subject of significant research. By default, MATLAB, 

numpy, and SciKit-Learn software packages return all the principal components of a data matrix, in which case the 

problem is identical to getting the full set of singular vectors. This never involves directly computing the covariance 

matrix itself, which alone requires O(nm2 (for m<n) ; (mn2 (for m>n)  ) operations [202]. Even with knowledge of the 

covariance matrix, computing the solution to the eigenvector equations |¿ − 2ü| = 0 is completely intractable, and is 

not how eigenvectors are computed in practicality. 

MATLAB’s implementations of eig() and svd() are proprietary, there is no transparency to the algorithms used to perform 

these decompositions. In the case of open-source numpy, it is evident that the svd() function is a wrapper around the 

corresponding LAPACK (Fortran Linear Algebra Package) routine [203]. This is not the case in MATLAB, which instead 

has LAPACK implementations specified as different functions, such as svd_lapack(). LAPACK includes several 

algorithms to compute the SVD of an array (and computing an eigendecomposition is the SVD of a square matrix). The 

most widely used, xGESVD, implements the approach first presented by Golub & Kahan [204]. In this scheme, a series 

of Household transformations are successively applied, reducing the matrix to a bidiagonal representation. These are 

followed by a QR factorisation3, reducing the matrix to a diagonal array of singular values [205]. This has computational 

and stability advantages when using floating point arithmetic. A modern ‘divide-and-conquer’ approach, xGESDD was 

implemented in version 3.0 of LAPACK, and is significantly faster for large arrays [203], [206].  

If fewer components are requested than the full set, alternative algorithms discussed by Nash & Shlien [207] may be 

more efficient. If a posterior distribution of component scores is desired, the ‘expectation-maximisation’ algorithm 

developed by Roweis [202] can be employed to quickly gather the most significant vectors. This has complexity O(nmk), 

and generalises to account for a prior distribution of input data, which can account for arbitrary noise distributions. 

4.2.2 NMF 

When a system must (for example physically) be the sum of positive or zero elements, NMF is helpful and can lead to 

easily interpretable latent features. First popularised by Lee & Seung [208], this procedure identifies a dataset linear 

decomposition with all elements strictly positive: 

 π	 ≈ ¿	ø  LR-53 

Where A and S are (n-by-k) and (k-by-m) matrices, corresponding to components and scores respectively. Note that X 

can never fully be represented by A and S as the rank of their product is at most k. This is always an approximate 

factorisation and inherently a less accurate one than that provided by the SVD (for the same k) by the Eckart-Young-

Mirsky theorem [209]. A simple rationalisation is that the boundary condition imposed by element non-negativity is 

such that degrees of freedom that would otherwise allow a closer solution are lost. This boundary condition can be 

extremely helpful as a necessary condition that the noise-filtered solution must fulfil. Unlike PCA/SVD, there is not  

exact analytical solution to an NMF factorisation (even though in reality as discussed in the previous section PCA is not 

calculated through the covariance matrix), so parameters have to be learned through an optimisation [182].  

 
3 The QR factorisation decomposes a rectangular matrix into orthogonal (Q) and upper triangular (R) matrices. This in turn can be 
computed for example through the Gram-Schmidt approach..  
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In gradient descent approaches, A and S are randomly initialised, and a loss function L involving the Frobenius norm is 

used to alternately minimise A and S: 
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This is the simplest and probably the most instructive description of the procedure. Other algorithms exist, and are well 

reviewed by Berry et al [182]. The solution is dependent on the number of components one asks the algorithm to return. 

Components in NMF are not orthogonal, and a unique solution is not guaranteed due to the non-convexity of L (there 

will be local minima) in both A and S [182]. There is not an obvious geometrical analogue. Additional regularisation 

terms can be added to the loss function in order to encourage smoothness, etc [210].  

As discussed by Lee & Seung [208], NMF tends to learn a ‘parts-based’ representation, as supposed to the ‘holistic’ 

representations learned by PCA. This is evident in Figure LR-25. This is what leads to more intuitive human 

interpretability of the factorisation. Intrinsic sparsity in the factorisation (many latent scores tend to zero, as they would 

otherwise be negative) leads to input features easily being modelled by a subset of the latent features. This is converse 

to PCA, in which generally all the latents contribute to each solution unless some form of regularisation is employed. 

The sparsely activated latents thus can more intuitively represent a ‘part’ [208].  

 

 

Figure LR-25: An illustrative example of the ‘parts-based’ basis that NMF tends to learn, reproduced from [208]. 
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4.2.3 Autoencoders 

As previously discussed, neural networks have the advantage of being able to approximate the form of broadly any 

function, regardless of convexity and complication. Upon training, layer tends to encode a latent or ‘hidden’ feature 

[193]. Hinton & Salakhutdinov [198] present an autoencoder neural network, which takes advantage of this to 

intentionally learn the latent feature space of a dataset for subsequent interpretation. This is achieved by combining an 

‘encoder’, which combines conventional fully-connected or convolutional layers to reduce the dimensionality of the 

input tensors, with a ‘decoder’, which upsamples the latent feature space to provide an output of the same dimensionality 

as the input. The autoencoder is trained to learn the identity function for all of the measurements (which are tensors – 

usually vectors or matrices), minimising a loss function such as the mean squared error. The structure is schematically 

shown in Figure LR-26 for a shallow network with logistic encoder activation function. 

As pointed out by Valpola [211] in 2015, supervised learning with neural networks had seen much more success in 

recent years than developments in neural unsupervised learning. This was especially in the context of the latter informing 

pre-training for supervised learning, in a context helpfully known as ‘semi-supervised learning’. They suggest this is 

because (despite much more obvious success metrics being present in the supervised case) supervised procedures aim 

to filter out all irrelevant (latent) features for a given task, while the objective of an unsupervised approach is to 

accurately represent as much of the input information as possible. Higgins et al [212] suggest that leveraging 

autoencoders to accurately pre-train neural networks to represent the ‘objectness’ of features in datasets, which can 

subsequently be used in deeper parts of a network, is critical to developing artificial intelligence operating with human-

like reasoning. This is in effect a process of learning a ‘disentangled’ posterior distribution of generative factors.  

Using a neural network in this way for unsupervised learning permits exact engineering of the probability distributions 

surrounding latent activations. PCA, for example, returns orthogonal latent feature vectors, which are linearly 

independent [213]. This is potentially a considerable downside to one of the approach’s most useful features: there are 

no guarantees that feature vectors are not correlated in some higher degree. In contrast, a highly customisable neural 

network architecture permits visibility and loss function penalties in a very controllable manner [198]. Hidden layer 

(latent) activations can be sampled, and the loss function can penalise deviation from the desired distributions. This is 

the basis of modern ‘variational’ autoencoders (VAEs) [212]. Including Kullback-Leibler (KL) divergence, applied to 

the hidden layer activations, encourages the network to learn a sparse representation, whereby there is a loss penalty if 

a training set produces too inhomogeneous a probability distribution of hidden neuron activations. Goodfellow et al 

Figure LR-26: Schematic of a shallow autoencoder for learning latent features of an input vector. 
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[164] provide a good description of the derivation of KL divergence between activation distributions with respect to 

information theory.  

The KL-divergence is as: 
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Where I# is the desired sparsity proportion and I̅'  is the average likelihood of observing activating the ith hidden neuron: 
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The full loss function for the variational autoencoder becomes: 
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Where x is the function input, y the output, W is a L2-regularisation term and K is the Kullback-Leibler divergence. 

These are modulated by hyperparameters λ and ⍵. VAEs have seen successful application in a range of standard 

validation datasets, such as MNIST number recognition and the ‘Frey face’ facial recognition challenge [214]. 

4.3 ML for predicting material properties 

Occurrences of ML in materials science tend to fall into one of two camps. Firstly, directly predicting material properties 

is an obvious, extremely challenging, and financially lucrative challenge. Such approaches often treat composition, 

temperature, and occasionally processing parameters as independent variables, and properties as dependent. ML 

techniques may seem attractive for modelling complicated processes, as they do not require a physical interpretation for 

their form. Much work treats ML techniques as impenetrable black boxes, and consideration of what the algorithm has 

learned can be somewhat lacking. This is confounded by one of the major drawbacks of neural networks (which are by 

far the most popular choice of model) – the sheer number of parameters makes the networks extremely difficult to 

interpret. This is likely more attractive for industrial materials scientists and engineers, perhaps wishing to make accurate 

predictions about behaviour without concern for underlying mechanisms. Secondly, ML techniques can be used (usually 

but not always in an unsupervised setting) to improve understanding of physical phenomena and aid interpretation of 

experimental measurements in the context of current literature or theory. The work in this thesis primarily falls into the 

second camp; ML technologies can be used to better understand the relationships between crystal structure, chemistry, 

and microstructure. This is further discussed in the subsequent section. 

Leveraging the techniques discussed in the previous sections to better understand, predict, and develop material 

properties is an area of ongoing research. Algorithmic materials design is complicated: there are many factors at play, 

with differing degrees of uncertainty in both their value and validity of measurement. Many variables are strongly 

covarying (grain size, oxidation resistance, and hardness for example) and processing/temperature exposure plays a 

critical role. There are perhaps far more trade-offs in different aspects of performance. Fatigue life, creep resistance, 

strength, are all opposing functions of grain size, itself a dependent variable, for example. Moreover, there are vast 
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regions of parameter space that are completely unexplored [215]. The key limitation for the field is the significant cost 

in obtaining a single data point for a material property. Obtaining an expected value and variance for this property, in 

completely independent instances of a composition / processing pipeline, is prohibitively expensive. As discussed by 

Kuehmann & Olson [216], probabilistic models that can accurately characterise variability, in the presence of limited 

data, must be the way forward. Accordingly, linear dependence in material properties has been explored by Toda-

Caraballo et al [217] using PCA, who show that 80% of dataset variance in ten important material properties (heat 

capacity, density, melting point, yield strength, heat of fusion, thermal expansion, thermal conductivity, electrical 

resistivity, Young’s modulus, yield strength, fracture toughness, ductility) was explainable by three PCs. This may not 

be particularly surprising, as many of these properties are clearly related and driven by the same physical mechanisms. 

This somewhat lends credence to the use of neural networks in property prediction, as circumventing the obvious 

correlations between properties and learning the important non-linear relationships between latent factors is their key 

strength [164]. 

As discussed by Ramprasad et al [218] in their recent review of ML approaches to materials problems, quantifying and 

evaluating models with respect to the domain of prior data is critical to development of the field. To this end, Joo et al 

[219] present a neural network trained with a genetic algorithm, in which the best performing of individual seed sets of 

parameters are ‘selected’ to source the next generation. The probability of selecting an individual is proportional to its 

relative suitability compared to its siblings This work was performed before modern advances in optimisation with 

stochastic gradient descent, ReLUs, and deep learning became mainstream. Even so, the model was able to learn a well-

rationalised latent space for the influence of C, Mn, Si, etc on the elongation and strength of transformation-induced 

plasticity (TRIP)  steels. 

A related approach to maintaining statistical validity has been presented by Conduit et al [158]. A neural network was 

used to refine a nickel-base superalloy composition with optimal strength, fatigue life, density, cost and oxidation 

resistance. Furthermore, processing parameters were included as alloy properties – an absolutely essential consideration 

often overlooked. The authors’ approach combined three streams of models: a network to predict each property 

separately was first trained, followed by a Bayesian bootstrap model (after Papadopolous et al [220]) to predict the 

probability that a proposed composition satisfies all design criteria, and finally a model to search composition space for 

the best solution (most likely to satisfy all design criteria). The advantage of such an approach is that when the model 

explores composition space far from any experimental measurements, it is reflected in the overall pipeline maximisation 

metric. The chosen alloy experimentally performs better than the baseline RR1000, and simultaneously satisfies all the 

design criteria, which no competitor alloy was able to do. This scheme is sophisticated and well thought through, in 

contrast to pipelines that aim to explicitly predict the composition that will best maximise properties without any thought 

to uncertainty or covariance [160], [221].  

In recent years there has been a push for open availability to materials property data to facilitate development and 

training of the types of models discussed in this section. Of particular note are AirFlow [222], The Materials Project 

[223], and NOMAD [224], databases for (usually density functional theory) simulated physical properties such as elastic 

modulus and band structure. Towards a similar aim, the international crystal structure database (ICSD) hosts an 

extremely extensive collection of experimentally measured structure types, unit cell parameters etc for organic and 

inorganic crystals [225]. The Crystallography Open Database (COD) hosts similar information, with the ability to query 

standard ‘crystallographic information files’ (CIFs) using structured query language [226]. Repositories such as these 
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are absolutely essential to ongoing research in data-driven materials science, and their continued open-access is 

extremely welcome. 

Sophisticated interpolation and model fitting is obviously not new to materials science. Calculation of phase diagrams 

(CALPHAD) approaches have been employing Bayesian statistical methods for assessing phase stability (which in 

modern parlance would certainly be referred to as ML) since the early 2000s [227], [228]. Ramprasad et al [218] point 

out that relationships such as Hall-Petch and the Hume-Rothery rules, absolutely fundamental to materials engineering, 

are effectively classes of the same problem. This analogy summarises probably the best case for future ML applications 

to materials design. Extracted relationships are empirical, but can function extremely well. They can then accurately 

Figure LR-27: Latent factors (bottom right) and scores (top left three maps) for the NMF spectral decomposition, 
and atomically-resolved structure showing supposed chemistry. Reproduced from [236]. 
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and helpfully inform research directions into underlying mechanisms, to subsequently generate even better models and 

improve material performance.  

4.4 ML for improving analysis  

Using ML tools to enhance understanding of physical processes by improving materials characterisation pipelines is a 

focus of this thesis. This is generally performed using unsupervised learning, but applying well trained supervised 

models to new data can also yield novel insight.  

4.4.1 Hyperspectral decomposition 

PCA and NMF have historically seen extensive use in analyses of chemical spectra (for example X-ray [229], Raman 

[230], mass [231]). This generally involves background removal, or separation of signal components. Watanabe et al 

[229] show that this can greatly improve precision of chemical quantification in STEM-EDS datasets. If the signals 

from independent contributors are additive (and separation is desirable), such as in X-ray spectra, NMF may be 

particularly suitable. There seems to be an excess of terminology in the literature referring to essentially the scheme of 

decomposition: ‘linear mixture models’, ‘multivariate curve resolution’, and ‘hyperspectral unmixing’ describe very 

similar concepts. 

PCA has been used by Parish et al [232] to develop ‘quantitative spectral imaging’. In this work the authors de-noise 

STEM-EDS datasets by retaining only the first six principal components. These reconstructed spectra, in the form of a 

lower rank approximation to the original data matrix (discussed previously in Section LR.4.2.1, Equation LR-51), are 

least-squares fitted with reference spectra for accurate quantification. This approach is developed to account for Poisson 

noise and develop confidence intervals in a multiphase PLZT thin film [233]. Scores are calculated for each PC, and 

phases segmented on their histograms. It was observed that the phase separation computed from PC1 gives generally 

the same segmentation as directly on the HAADF intensity histogram. Separating on higher order components appeared 

to give physically sensible results. Averaging the raw spectra associated with each segmentation permits straightforward 

treatment of Poisson noise, such as previously performed by Kotula & Keenan [234]. The uncertainty (standard 

deviation) in cation composition ratio (Ca:Cb) can be computed: 
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Where v2 is the (averaged) intensity of the peak for cation a, and ≈1B the Cliff-Lorimer sensitivity factor. ∆≈1B is the 

uncertainty (standard deviation) in sensitivity factor, which can be obtained from a t-statistic analysis [233].  

Li et al [235] present a novel method for NMF spectral signal separation. Their primary concern is in selecting the 

correct number of non-negative factors, and develop a pipeline called Robust Collaborative NMF (R-CONMF). The 

motivation for this derives from the fact that unlike in PCA, NMF solutions are a function of the number of components 

selected. In the scheme of Equation LR-39, they adjust the conventional NMF loss function to include additional 

regularisation: 
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Where ø',: denotes the ith row of score matrix S, k is the number of retained components, and ê, © are hyperparameters. 

P is a matrix of constraint spectra, and the third term of L ‘pushes’ the solution for A, the component spectra, towards 

the constraints. For example, P can be a repeated array of the average spectrum in the dataset, or specified as the limits 

of the convex hull of the data space. The approach is applied to a standard Airborne Visible Infra-Red Imaging 

Spectrometer (AVIRIS) Cuprite mineral dataset, and shows good performance and accurate signal separation.  

Spiegelberg et al [236] point out that in the context of identifying additive source spectra, of primary concern should be 

the generation of a unique solution for the dataset, independent of initialisation parameters. Here, the NMF solution is 

made unique (which isn’t generally the case, as discussed in Section LR.4.2.2) by resampling the data points such that 

a ‘pure pixel assumption’ holds. This corresponds to a sparse, orthogonal solution for the NMF expansion (see Equation 

LR-39): the score matrix A has elements=0 for all but one of its columns. This translates to an orthogonality condition 

for the non-negative factor spectra, S (which is usually not the case for raw, experimental data). Resampling the NMF-

derived spectra is achieved by computing the PCA of the original data matrix, and picking random, positive, linear 

combinations of the basis vectors. The sample is only retained if the reconstructed spectrum is fully non-negative. This 

interesting, well though through approach yields excellent separation of spectral signals, and as presented in Figure 

LR-27, is able to spatially resolve chemical differences in atomic resolution EELS. 

4.4.2 Quantitative analysis of electron diffraction patterns 

In addition to the analysis of 1D chemical spectra, unsupervised learning techniques have been successfully applied to 

electron diffraction (conventionally 2D image) problems. Applying PCA for factorisation of EBSD datasets was first 

presented by Brewer et al [130]. This is achieved by edge filtering (Sobel convolution), possibly Hough transforming 

the filtered images, and then reshaping the resulting raw or transformed patterns into 1D vectors of intensity. This is 

schematically presented in Figure LR-28.  

A VARIMAX rotation is applied to the PCs in order to ‘maximise their mutual simplicity’, in other words more equally 

distribute the variance. This has been previously discussed in Section LR.3.2.2, and shown schematically in Figure 

LR-15. This approach recovers characteristic patterns well, and was validated with simulated mixing of measured 

patterns as well as a small grid (10-by-10, 20-by-20) of aluminium EBSPs. The authors effectively compare the 

confidence in assignment to a given class by plotting a composite map of the weighted assignment number, and compare 

decompositions of raw patterns, Hough transformed patterns, and Sobel filtered then Hough transformed patterns. It 

was found that the Sobel filtered and Hough transformed decomposition was the most robust. This is effectively 

separating the dataset along the pure kinematic diffraction information: no band contrast or background contributes to 

variance after the Sobel filtering. It seems likely that the strong, diffuse background present in their raw EBSPs, and its 

variation across the field of view with pattern centre, contributed significantly to variance. Hough transforming 

improved band contrast in the inverse Radon transformed component EBSPs. As the Hough transform is itself a linear 

parameterisation of the dataset, and therefore will not directly affect variance, the improvement in separation compared 

to decomposing the raw patterns is likely due to the transform extracting information on top of the diffuse background. 

It is effectively performing a background correction. This work was performed in 2008, and the authors discuss 
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difficulties in taking their analysis further due to memory limitations. Despite this, the approach was shown to be 

extremely useful in separating dissimilar patterns for crystallographic phase identification.  

Ten years later (with significantly more memory and computing power available), Wilkinson et al [131] reviewed the 

PCA/VARIMAX approach and presented a comparison to a k-means clustering ML routine. Their analysis is performed 

directly on the measured patterns, after dividing by a Gaussian kernel filter. This does an excellent job at removing the 

diffuse background that likely caused issues in the analysis of Brewer et al [130]. After applying the VARIMAX 

transformation, the scores and components represent a reasonable segmentation of the microstructure, as presented in 

Figure LR-29. Grains are segmented by assigning the index of the highest scoring rotated component. 

The approach occasionally yields multiple components for the same grain, in which case there is sufficient 

misorientation between intragranular regions to generate substantively different gnomonic projections of EBSPs. The 

PCA approach is contrasted with k-means clustering, in which k centroids in variable space are seeded, and iteratively 

refined to reduce the Mahalanobis distance between cluster centres and data points. The cluster centres are used for 

characteristic patterns. The authors subsequently index the diffraction patterns, using a normalised dot product approach 

for the correlation quality. It was found that both clustering approaches yielded great improvement in the signal-to-noise 

of the characteristic patterns as compared to the raw data. This permits quantitative analysis of relatively weak 

diffraction patterns, such as those obtained in TKD. Both k-means and PCA were found to be useful. However, the 

VARIMAX rotation applied to a subset of the PCs is much faster in iterating the choice of number of characteristic 

signals than re-running the full k-means analysis. Additionally, choosing k in the context of PCA has a direct statistical 

interpretation as the contribution to total dataset variance is present in the singular values. This makes automatic 

selection of k far easier and more systematic in the context of PCA than k-means, as is discussed further in this thesis. 

Figure LR-28: A schematic of the approach adopted in, and reproduced from, [130].  
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Generally, the challenge with a PCA approach is that the components returned represent the statistical dominance of 

each characteristic signal within the data set, and they are not intrinsically physical. A VARIMAX rotation results in an 

easier to interpret label, where each label can be uniquely applied to each point within the map. This works for an EBSD 

pattern, as the variance between two Kikuchi-based diffraction patterns for different phases is relatively small. For a 

TEM spot-based diffraction pattern, rotating the data according to a variance model may not be reasonable, because the 

spot patterns for different phases may have a stronger variation in variance (e.g. due to a different number of reflectors 

that create spots within the pattern). Accordingly, Eggeman et al [110] use NMF to separate superposed diffraction 

patterns in a precession electron diffraction (PED) tilt series for tomography of a Ni-base superalloy. This is a 

particularly challenging problem due to the coherence of the precipitates with the matrix. A related approach was 

employed by Einsle et al [237]  to analyse spinodal decomposition in a meteorite microstructure. Signals were first 

denoised using PCA, then non-negative factors calculated. Subsequently, characteristic diffraction patterns were 

calculated from cluster centres from a fuzzy c-means algorithm. This is a variation on k-means in which members are 

permitted to influence and be assigned to more than one class. The subsequent cluster centre patterns saw better 

distinction between subtle features than the NMF factors themselves.  

Figure LR-29: Grain segmentations, scores, and latent feature EBSPs after PCA and VARIMAX segmentation, 
reproduced from [131]. 
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4.4.3 Neural networks in EBSD 

Alongside increased usability of neural network implementations, a trend is emerging in using trained CNNs for 

indexing and interpretation of diffraction patterns, especially in EBSD. The first implementation of a CNN for EBSD 

analysis was presented by Liu et al [238]. In this scheme, a CNN was trained to perform an orientation regression, 

separately predicting three Euler angles for a given input pattern. A significant contribution of their paper is to propose 

an intuitive loss function with the correct periodicity: 

 ≥ = arccos(cos(	|N' − NJ[|	)) 
 LR-61 

In which N' and NJ[  are one of the three Euler angles describing crystal orientation (the authors’ model predicts each 

separately). The employed model is composed of four convolutional layers (some with max pooling) and two fully 

connected layers. ReLU activation functions, dropout regularisation, and momentum are used. The model gives good 

accuracy, with validation mean angular error reaching (2.5˚, 1.8˚, 4.8˚) for (»8, Φ, »%) after 300 epochs of training.  

As has previously been discussed in Section LR.4.1.1, transfer learning is seeing ever-increasing popularity in the data 

science community, especially given the scale and depth of modern models. Shen et al [239] realise this concept, training 

an orientation regression model first on simulated EBSPs, then transfer learning to an experimental paradigm. The first 

stage of their approach uses a conventional CNN architecture to predict four quaternion components simultaneously, 

and accordingly is able to use a simple mean absolute error loss function. The quaternion vector should of course have 

unit norm, and this is not specifically expressed in the model (though the authors acknowledge it could be included as 

an additional boundary condition). Instead, it is left up to the model to train this condition, and the quaternion norm is 

used as a kind of sensibility metric. After pre-training on simulated data, the model is transferred to an experimental  

context. The first approach uses a ‘domain transform’, in which experimental patterns are transformed into ‘simulated’  

patterns using a U-net structure [240]. This includes skip connections between the innermost and outermost layers of 

the network. It is an architecture known to mitigate the so-called ‘vanishing gradient’ problem, in which loss function 

Figure LR-30: Feature visualisations for three simulated candidate structures, reproduced from [241].  
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gradient components, especially for early layers, can become very small due to the depth of the network. The outputs 

of the U-net are then fed into the orientation regression model. The second approach, transfer learning, partially retrains 

the original orientation regression CNN with new, experimental EBSPs. It was found that the transfer learning approach 

performed slightly better. The trained model is very robust to experimental noise, and very noisy (short exposure) 

patterns can quickly (< 1 ms per EBSP) be characterised. This has the potential to vastly speed up on-line orientation 

analysis and indexing.  

Focussing on a structure classification task, Foden et al [241] have adapted the AlexNet CNN [183] using transfer 

learning for classification of simulated EBSPs to the correct phase (including FCC, BCC, diamond, and HCP structures). 

Visualising layer activations (similarly to Figure LR-22) shows that the network has learned to generally identify 

Kikuchi bands, then ‘major’ bands, and finally zone axes. This is sequentially the same process as human indexing of 

an EBSP, and is presented in Figure LR-30.  

Kaufman et al [242] present an ambitious CNN model trained to absolutely the classify space group of input EBSPs. 

Using Resnet50 [243] and XCeption [244] architectures yielded similar results, with accuracies of 93.5% and 91.2% 

respectively. Visualising the important input features, similar to the model of Foden et al [241], showed that the network 

learned to assign high importance to zone axes. Interestingly, the network had difficulty in assigning structure when 

only one high symmetry zone axis was present in the EBSP. This makes sense, as traditional indexing of a diffraction 

pattern typically requires three identified zone axes to find a unique solution. Even considering the dynamical band 

features that the network has likely learned to classify with, patterns with just one zone axis are a reasonable stumbling 

block. Arguably, if the model had learned to accurately identify such patterns it could be a case of overfitting. Applying 

this network to a wide range of materials, such as quartz, a meteorite, Ni80.0B13.6Si5.4Fe0.2 blended with 40wt% WC, 430 

stainless steel, and an Fe-Al intermetallic laminate all showed excellent results [245]. Using problem specific fine 

tuning, the CNN is able to give good performance on even the most challenging of tasks, such as differentiating ferrite 

from martensite in the 430 stainless steel sample. 

The ultimate advantage of CNNs in EBSD seems to be the speed at which a well trained model can classify structure or 

regress orientation. Given modern advances in data transfer and storage, this is likely to only be of considerable 

advantage in industry, where a neural network could function as an enhanced ‘black box’ over the Hough transform 

method. Despite rationalisations in layer-wise activation, neural networks do not seem to be particularly useful for 

improving understanding of physical diffraction, metallurgical, or geological processes. Perhaps a sensible 

implementation would be for a neural network to index and locate bands, including phase ID, but then a more traditional 

method (such as triplet indexing discussed in Section LR.3.2.1) used for orientation determination. In terms of accurate, 

interpretable phase ID and orientation analysis, the template matching approaches discussed in Section 3.2.3 remain the 

most suitable.   
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Chapter 1 - Advancing characterisation with statistics from correlative 
electron diffraction and X-ray spectroscopy  

1. Chapter Summary 

The routine and unique determination of minor phases in microstructures is critical to materials science. In metallurgy 

alone, applications include alloy and process development and the understanding of degradation in service. Here a 

correlative method is developed, exploring superalloy microstructures which are examined in the scanning electron 

microscope (SEM) using simultaneous energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction 

(EBSD). This is performed at an appropriate length scale for characterisation of carbide phases’ shape, size, location, 

and distribution. EDS and EBSD data are generated using two different physical processes, but each provide a signature 

of the material interacting with the incoming electron beam. Recent advances in post-processing, driven by ‘big data’ 

approaches, include use of principal component analysis (PCA). Components are subsequently characterised to assign 

labels to a mapped region. To provide physically meaningful signals, the principal components may be rotated to control 

the distribution of variance. In this work, this method is developed further through a weighted PCA approach. The EDS 

and EBSD signals are used concurrently, thereby labelling each region using both EDS (chemistry) and EBSD (mainly 

crystal structure) information. This provides a new method of amplifying signal-to-noise for very small phases in 

mapped regions, especially where the EDS or EBSD signal is not uniquely sufficient for classification. 

2. Introduction 

Confidently assessing microstructure is of significant concern in materials science and engineering, as well as in the 

earth and planetary sciences. In the present work, a new approach is developed using an example in Co/Ni-base 

superalloys. In these alloys, there are carbide precipitates that are known to strongly influence fatigue and tertiary creep 

performance, as discussed in Section LR.2.2 [32], [65], [68], [70], [246]. The precipitates are thought to increase 

boundary cohesivity and to mitigate sliding. However, their high temperature oxidation reduces grain boundary strength 

and permits easier intergranular crack propagation. Some precipitate phases are thought to exhibit better oxidation 

properties than others, conferring superior enviro-mechanical stability across deformation regimes [64]. To assist in 

understanding these phases, we can use EBSD and EDS analysis for characterisation. With EDS alone, it can be difficult 

to distinguish two phases of similar chemistry but different structure, for example M23C6 and M6C carbides. Similarly, 

using EBSD alone it can be difficult to distinguish two phases of similar structure but different chemistry, for example 

the pseudo-FCC matrix and MC carbide. Applying correlative EBSD and EDS offers a solution to this problem.  

Very briefly, the 2D EBSD pattern captured using conventional EBSD is created from near surface (< 20 nm) scattering 

and diffraction events [247]. The raw signal within the EBSD pattern is semi-quantitative, due to the many transfer 

processes and image processing stages required to generate useful patterns for analysis. These patterns can be indexed 

to reveal the orientation and structure of the crystal, provided the signal-to-noise ratio is high enough and a series of 

input phases are used as input ‘classifiers’ which the indexing algorithm is tested against. Further details are discussed 

in Section LR.3.1. EBSD analysis is challenging if two phases have similar crystal structures (e.g. only slight changes 

in lattice parameter or subtle differences between symmetrically-related structures, particularly if an orientation 

relationship is present) or the signal strength is poor (e.g. a small phase). Signal classification can be improved through 

the use of template matching [126], [131], [137], [143], [144] against simulated patterns using dynamical diffraction 

theory [132], [134], [247], [248]. This is discussed in Section LR.3.1.2. 
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To amplify signal-to-noise for poor quality patterns, principal component analysis (PCA) can be used. PCA is a data 

processing approach used to reduce and project measured variables of a group of objects onto an orthogonal set of basis 

vectors: the principal components. The PCA method is described in detail in Section LR.4.2. This approach is useful, 

as it can amplify signal-to-noise in data, especially where the data at each point is oversampled and noisy (e.g. a 

diffraction pattern or a highly resolved energy dispersive X-ray spectrum) and these measurements can be used as the 

PCA ‘variables’. The dimensions of these variables are the diffraction vectors (the intensities of each pixel in a 

vectorised EBSD pattern) and the counts for each EDS spectrum energy bin. When a scan is performed on a sample in 

a scanning electron microscope one ‘object’ (a full set of measurements) is collected per measurement ‘point’. 

For the present work, we can apply PCA, but we note that the principal components of diffraction data may be difficult 

to interpret. This is because PCA extracts and ranks principal component vectors by the strength of each component 

signal, and many signals will contribute to each point in our map. From the physics of our problem, we know (broadly) 

that the variance of the signal between one phase and another should be similar, and that we would like (typically) only 

one signal type to label each point in the map. This motivates us to develop the work of Wilkinson et al [131] and 

Brewer et al [130], who have shown that the rotation of the principal component EBSD patterns which maximises the 

variance between each member of the set reduces a full EBSD dataset down to representative, or ‘characteristic’ EBSD 

patterns. For a well selected choice in number of components to retain, these can correspond to a single pattern per 

grain. For oversampled or deformed grains the domains may also correlate with sub-grains. In this work, we refer to the 

VARIMAX rotated components as ‘rotated characteristic components’ (RCCs). Each RCC contains a characteristic 

electron backscatter diffraction pattern (RC-EBSP).  

In this work, the Wilkinson et al [131] method is used as the starting point, and now the challenge of including EDS 

spectra is addressed. Each EDS spectrum contains chemical information related to the interaction volume associated 

with the generation and escape of X-rays, which are counted by a detector. The number of X-rays generated for each 

energy is a function of the electron transitions. Characteristic X-rays are generated from the primary beam promoting a 

core electron, and that core electron subsequently ‘falling down’ to a lower energy level to generate the radiation. These 

peaks are superposed on the Bremsstrahlung. The spectra contain digitised signals of the number of counts per energy 

level, as detected (in this case) using a silicon drift detector (SDD). The signal also contains a broadening function 

related to the detector and instrument noise [249]. 

In the first instance the EDS spectra can be appended onto the end of the diffraction pattern vector. However, in practice 

the variance in the EDS and EBSD signals may be significantly different, and the number of channels in each can vary 

significantly. These properties are important for statistical analysis. Finally, the interaction volume of the electron beam 

(and the scattering to generate the X-ray signal) may be substantively different to the volume that generates the bands 

within the diffraction signal. For the same map point the information within each data type may represent different 

volumes of matter. To address these challenges, in the present work a weighted PCA approach is explored, prior to 

VARIMAX rotation, using appropriately prepared and standard deviation normalised EDS and EBSD data. 

In this new approach, there are three critical aspects to select in the weighted PCA and VARIMAX rotation method: (1) 

background correction and data normalisation prior to statistical treatment; (2) the number of RCCs to retain and rotate, 

corresponding to under- or oversampling of the data, and the variation in the signal for each phase and orientation; (3) 

the weighting of the signals, dependent on the variance of the EBSD and EDS information, as well as the number of 

channels in each data set. 
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In addition to amplification of signal-to-noise, this statistical approach has computational advantage. Instead of 

characterising each signal independently, the weighted PCA with VARIMAX rotation can be used to select a reduced 

set of characteristic signals to quantify. There are a few options; each characteristic label can be directly quantified, but 

this has to be performed with care as the normalisation and statistical reduction may induce uncertainty (especially 

where discrete peaks are being quantified in data associated with EDS spectra). The labelled regions can also be used 

to re-generate amplified means, using averaging, to group together physical data that represents similar phases. Here 

these two approaches are explored. 

Upon classification of scan points to an RC-EBSP and a RC-spectrum, computationally expensive analyses can be 

applied to a reduced dataset. A ~40,000 point map can be reduced to a few hundred RC-EBSPs and RC-spectra each 

with a superior signal-to-noise ratio than a single EBSD pattern or EDS spectrum. In this chapter the EBSD patterns are 

analysed using the refined template matching approach developed by Foden et al [137] with a selection of possible 

candidate structures. Similar methods have been developed by Ram et al [143], [144]. Adopting a template matching 

approach allows utilisation of the fine detail in RC-EBSPs (weakly reflecting bands, band widths, etc) that PCA is able 

to extract. A Hough/Radon-based method would not see significant benefit from this approach, as it is based on 

comparing angles between the most prominent Kikuchi bands to an interplanar angle lookup table for candidate phases. 

More structures may be template matched to the reduced set of RC-EBSPs than would be viable for matching to the full 

experimental dataset, permitting greater confidence in the phase assignment. Characteristic spectra can then be used to 

quantitatively probe the chemistry of the classifications, and statistically robust comparisons between structure and 

chemistry can be made. The average and RCC EDS spectra are analysed with commercial EDS analysis software. 

3. Materials & Methods 

3.1 Experimental 

The alloy characterised in this work, V208C, is part of a development series of Co/Ni-base superalloys, engineered for 

high temperature gas turbine applications. Its composition is 36 Co – 34 Ni – 15Cr – 10.5 Al – 3 W – 1 Ta – 0.150 C – 

0.200 B – 0.040 Zr (at.%). This alloy was arc melted, vacuum homogenised at 1250˚C for 48 h, then hot rolled at 

nominally 1250 ̊C, with 10-15% reductions from 23 mm square cross-section down to 14 mm. Finally, a sample was 

solution heat treated at 1100˚C for 1 h, followed by ageing at 800˚C for 4 h. This is the same as HT1 in Chapter 2.  

V208C is intraganularly dual-phase, with approximately 55% L12 ɣʹ volume fraction in a face-centred cubic (FCC) ɣ 

matrix. These two phases have very similar chemistry at the SEM length scale. The EBSD patterns are also extremely 

similar and can both be indexed with the FCC phase. Refractory element precipitates, a priori believed to be carbides, 

decorate the grain boundaries. A variety of alloying elements are used: Al, Ta and W for ɣʹ stabilisation; Cr for oxidation 

resistance; Mo for solid solution strength; small additions of C, B, and Zr for grain boundary precipitation. Further 

details of alloy development have previously been provided elsewhere [1], [12], [13]. 

Samples were prepared with standard metallographic grinding procedures, finishing with a neutralised colloidal silica 

polish for 1 h. A Zeiss Gemini Sigma300 FEGSEM equipped with Bruker e-FlashHD EBSD detector and XFlash 6160 

EDS detector was used for this work.  A dataset was captured with 20 kV accelerating voltage at ~ 10 nA and 21.5 mm 

working distance, with the sample tilted to 70° with respect to the sample being perpendicular to the incident beam. A 

step size of 100 nm was employed with a pixel time of 8.3 ms. 200-by-150 px EBSD patterns were collected at 16 bit 
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depth, and EDS spectra were captured with 2048 energy channels at 100 eV resolution. The captured data was extracted 

and stored in a HDF5 file for processing and analysis. 

EBSD patterns for each point were processed in MATLAB, with background correction, radial cropping, and hot-

pixel/split-chip fixes performed using the AstroEBSD package developed and presented by Britton et al [119]. EBSD 

patterns were originally captured with an aspect ratio of 4:3, but these were cropped to squares to simplify the refined 

template matching indexing (as discussed by Foden et al [137]) prior to creation of the data matrix. EDS spectra were 

processed in MATLAB. The only pre-processing performed on the spectra was background subtraction and standard 

deviation normalisation, which we discuss further.  

3.2 Data treatment and PCA operation 

At each map point the corrected EBSD patterns were vectorised and EDS spectra appended, presented in Figure 1-1. 

EBSD patterns were background corrected using the AstroEBSD MATLAB package, in which each pattern is divided by 

a 2D fitted gaussian. Patterns are then centered (mean set to zero and standard deviation set to one). EDS spectra were 

background corrected using eSprit 2.1 to remove the Bremsstrahlung, then divided by their standard deviation similarly 

to the EBSD patterns. In the Data Matrix, D, each column of data then contains the background corrected and variance 

normalised EBSD and EDS signals for each measurement point. Each row is the signal for a particular pixel in the 

binned EBSD pattern or a particular energy in the EDS signal. This data matrix follows the formulation of Wilkinson et 

Figure 1-1:  The work flow for construction of the data matrix, D, used for the weighted PCA method.  
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al [131]. The (square cropped) EBSD vector consists of p2 pixels. The EDS signal consists of q bins. D therefore contains 

p2 + q rows. The data matrix contains measurements from a-by-b points now populating each row, and accordingly the 

matrix has ab columns. Each column is a PCA ‘object’: a full set of EBSD and EDS measurements (‘variables’).  

The action of PCA and the geometric interpretation of variance (or standard deviation) weighting are presented in Figure 

1-2. A specified number (n) of orthogonal principal components are calculated via singular value decomposition (SVD). 

These high-dimensionality vectors (in measured variable space) represent the directions in the dataset that explain the 

most variance. ‘Scores’ of the components are calculated for each object, corresponding to projections of the principal 

Figure 1-2: Action of PCA for a schematic dataset with many objects and three variables. (a) shows how the PCA 
reduces the data set to show strong variation along one principal axis, which may not be an axis of the initial data 
set; (b) shows how varying the weighting of two combined data sets, which present as information along different 
axes, can change the variance and therefore the separation of the data sets. Note that this is a simplified schematic 
for the purposes of visualisation, as the present datasets contain tens of thousands of variables.  
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components onto the position vector of an object in (high-dimensional) variable space. They represent how strongly a 

set of measurements is represented by a principal component. Each object (scan point) has a score for each principal 

component. In the case of Figure 1-2b, we scale up variables 2 and 3 to new variables 2a and 3a. This increases the 

variance in these directions. The dataset is extended in the direction of PC1a, and the object is proportionally loaded 

more by PC1a than it is by the unscaled PC1. 

As previously described, each EBSD pattern and EDS spectrum is normalised with respect to its standard deviation 

before concatenation and insertion into the data matrix as a column. This is required in order to retain meaningful 

principal components, and is known to be an important aspect of data pre-treatment due to the variance seeking nature 

of the principal component fitting process [213]. Variables with high variance across their observations will dominate 

the principal components, with large corresponding scores for many objects. This is depicted in Figure 1-2b. To control 

the weighting of the principal components with respect to EBSD or EDS, it is essential to normalise the variance of the 

different variable types upon the data matrix’s construction. Without this normalisation of variance for the EBSD pattern 

and EDS spectrum separately, the weighting parameter would act statistically non-uniformly on each column of 

 D ∈ ℜ^&3_	×	1B, leading to a confused scoring output4.  

The matrix of principal components, C 	∈ ℜ^&3_	×	:, and that of their scores at each point, S ∈ ℜ1B	×	: are given by: 

 D = C	SO 1-1 

The parameter n is the number of principal components to be fitted, and takes a maximal value of p2+q. C and ST are 

calculated from the singular value decomposition of D, equivalent to the eigendecomposition of the covariance matrix 

DDT/(r-1), where r is the data matrix’s rank. The variance is contained (singular values of the SVD) in S, leaving the 

principal components themselves with unit length. After Wilkinson et al [131] a VARIMAX rotation, R ∈ ℜ:	×	:, is 

then employed, such that: 

 D = C	R	RO	SO	 1-2 

The matrices C, S and R are numerically calculable in MATLAB using the Statistics & Machine Learning toolbox. The 

VARIMAX rotated characteristic components (RCCs) are held in the rows of the matrix CR, with the corresponding 

scores for every point given by the rows of SR. RC-EBSPs and RC-spectra may then be re-constructed from the first p2 

and final q rows of CR respectively. An a-by-b assignment map can be constructed with the same spatial dimensions 

as the original scan grid. Each point is assigned a number, m, corresponding to the RCC with the highest score. For each 

scan point’s corresponding row in SR, m is the number of the column that takes the greatest value. Each point is thus 

classified to one of n labels to construct an assignment map. Each label is associated with a characteristic EBSP (RC-

EBSP) and spectrum (RC-spectrum).  

As this algorithm has been constructed, the weighting term introduced acts to reduce the variance of the EBSD variables, 

magnifying the relative standard deviation observed for each EDS variable (across all points in the map, columns of the 

 
4 Note that we do not normalise each row of the data matrix with respect to the variance of the row, as we do not want to treat each 
channel and pixel number as totally independent measurements. Normalising the variance of each individual measurement across 
all scan points would reduce or completely eliminate the prominence of features such as EDS peaks and Kikuchi bands in the 
principal components. 
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data matrix) by a factor w. This has the effect of increasing the influence of the EDS variables on the principal 

components through the action of Figure 1-2b. In practice, this means that there is an observable transition from EBSD-

dominated through to EDS-dominated behaviour as w is decreased, this is presented and discussed in Sections 1.3.2 and 

1.3.3. 

Upon construction of the data matrix D, the PCA algorithm employed has two parameters that require selection. These 

are: the number of components that we choose to retain for the VARIMAX rotation, n, and the EBSD standard deviation 

weighting, w. Selection of these will be discussed subsequently. To make the processing tractable on a reasonable 

computer, there is a requirement to divide the full region of interest into smaller tiles so that there is sufficient memory 

available for the SVD algorithm (we need to hold in memory a rank r square matrix). 3-by-3 tiling was employed for 

the datasets presented in this chapter. The RAM requirement for processing each tile of the dataset considered in this 

work is 58 gigabytes. Principal components and RCCs are calculated for each tile fully independently, with slight 

consequence discussed in Section 1.3.3. 

3.3 Analysis of PCA output 

Reshaping the first p2 rows in all n columns of CR into p-by-p images reconstructs n RC-EBSPs. The final q rows for 

all n columns correspond to RC-spectra. These are separately analysed and quantified. The reduced dataset of 

characteristic patterns and spectra has a superior signal-to-noise ratio to the experimental measurements. The data in the 

form recovered from the weighted PCA and VARIMAX rotation can be analysed, but there may issues for instance 

where two carbides have the same chemistry and phase (i.e. similar EDS spectra) but different crystal orientations 

(varying EBSD data). Therefore it is useful to analyse the labels in more detail. 

The data are labelled first using EBSD pattern analysis. In this work the refined template matching (RTM) approach 

developed by Foden et al [137] is applied to assign phase and orientation to each of the point labels. This method 

involves cross-correlation of test EBSPs (in this case the RC-EBSPs) with a database of library patterns, sampled with 

the fundamental zone of SO(3) space for each crystal structure at a specified angular frequency. The master patterns 

were dynamically simulated using Bruker DynamicS [132], [247] and reprojected in MATLAB using the pattern centre 

calibrated from the Ni-rich matrix. Sampling of SO(3) was performed with a frequency of 7° and refinement was used 

to upsample the orientations. Templates were generated using five input candidate crystal structures were considered 

for RTM template matching: FCC Co, M23C6, M2C, M6C and MC selected from the literature [2], [68], [250], [251]. 

The RC-EBSPs in these datasets were indexed as FCC Co, M6C or MC (selecting each phase based upon the highest 

ranked cross correlation value and scrutiny of pattern matching).  

For EDS, the data is exported in a format that can be analysed directly in Bruker eSPRIT 2.1, and quantify RC-spectra 

using a ‘ZAF’ correction algorithm that accommodates the 70˚ sample tilt required for EBSD. We additionally compute 

and compare the average measured EDS spectra from all points assigned to a given RCC label. 

4. Optimising weighting and VARIMAX rotation 

Here the effect of two important input parameters, n and w, will each be discussed. These correspond to the number of 

principal components we retain and the weighting factor for EBSD information that leverages PCA in favour of either 

EBSD of EDS. 
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4.1 Retention of components 

While the number of principal components worth retaining, n, can be selected by hand based upon a qualitative 

assessment of the appearance of our final micrographs, it is also useful to explore whether there are quantitative, or 

semi-quantitative assessment processes that can guide the selection. This is a problem that has been considered 

extensively [200], [213], [230], [231], [252].  

Here, a VARIMAX rotation is performed on the first n principal components. A single label is expected to represent 

structural and chemical information contributed from one grain. If n is greater than the number of grains in the AOI, the 

additional labels will correspond to sub-grains (which may be advantageous but will reduce the signal to noise ratio of 

the RCCs). If n is too large, the calculated scores of nearby (and similar) points will be high for multiple labels and there 

will be noise in the assignment map. If n is too low, the grains will not be properly segmented and information will be 

lost as the dataset is over-reduced. This work presents two approaches for selecting n. The first involves counting the 

number of grains in the measured EBSD-based Radon quality map. The second imposes a limit on the contribution of 

the first n principal components to the total variance of the dataset. 

4.1.1 Counting grains to select n 

A reasonable value of n is an estimate of the number of grains in the EBSD-based Radon quality map, L. This was 

calculated with Bruker eSPRIT 2.1 and is an essentially ‘free’ microstructural image that is spatially consistent with the 

EBSD and EDS measurements. Several approaches have been reported for counting the number of grains in a 

microstructural image. These include the application of an H-concave transformation to channelling contrast forescatter 

electron images (with subsequent refinement) developed by Tong et al [253]. This grain counting step is employed to 

select the locations of a dramatically reduced number of EBSD patterns for an orientation map. The 24-bit information 

depth of the RGB colour image constructed from the forescatter diode intensities allows segmentation of scan points 

into labels of similar colour and contrast. A subsequent refinement step where each point is compared to the labels of 

its neighbours leads to a very accurate image reconstruction. Campbell et al [254] utilise a Watershed transform to 

identify and distinguish phase fractions and morphology in grayscale SEM images of Ti-6Al-4V. This algorithm treats 

an image as a topographic region of intensity basins. A labelled source is placed at each local minimum and allowed to 

flood the image. Image segmentations are delineated where floods from different sources meet [254]–[256]. When 

applied to the local gradient of a microstructural image (in order to highlight boundaries and leave grain interiors with 

low intensity), reasonably accurate intensity classification can be achieved. However, the algorithm has a tendency to 

over-segregate and assign too many labels.  

Figure 1-3: Filtering and watershed transform of Radon quality map to determine a value of L for VARIMAX 
rotation.  
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For its speed and simplicity the Watershed algorithm was selected to quickly identify a value of L. The image processing 

steps are presented in Figure 1-3a. Starting from the EBSD-based Radon quality map (Figure 1-3a) a series of local 

averaging filters, ending with the image complement of a standard deviation filtered image and local minima flattening, 

are used to highlight boundaries (3b) A watershed transform then assigns labels to different regions (3c) following the 

topographical method of Meyer [255]. We then select n equal to L principal components, and then we perform the 

VARIMAX rotation.  

This approach is fast and provides a reasonable estimation of n for an area of interest. As will be shown subsequently 

the watershed algorithm significantly oversamples the subsets, especially where coherent intergranular precipitates with 

similar orientation and chemistry are counted separately by the watershed algorithm. This leads to too great a value of 

n being selected and the signal-to-noise ratio of the characteristic patterns and spectra are not optimised. 

Care should be taken, as the ability for the Watershed algorithm to determine the number of components will depend 

on the types of features presented. In this example, an annealed Co/Ni matrix is explored and so there is minimal contrast 

in that region, despite the desired focus being on the number of signals from the carbides. In noisier Radon quality maps 

it seems likely that the watershed algorithm would perform significantly worse. This could potentially be somewhat 

mitigated for a wider variety of datasets by further ad hoc filtering and image pre-processing.  

4.1.2 Limiting variance contribution of the nth principal component. 

Conventional PCA relies on the relatively subjective identification of an inflection in a Scree plot (for an example, see 

Figure 1-4) to estimate the number of components that significantly and sufficiently describe the variance of the dataset 

[200], [213]. The Scree plot describes the explained variance contribution to the dataset as a function of principal 

component, derived from the corresponding eigenvalues of the covariance matrix (singular values of the data matrix). 

Figure 1-4: Selection of n based on applying a cut-off tolerance, t, for percentage contribution to total dataset 
variance of the nth principal component. The third PC contributes < 1% of the total dataset variance. The 18th PC 
contributes < 0.02%. The watershed algorithm discussed in Section 1.3.1 selected seven components for this AOI. 
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In this plot the principal components are ordered by their contribution to the variance, with the first being the highest 

contributor (largest eigenvalue). The inflection point in a Scree plot may indicate where the principal components cease 

to add new substantive value to a description of the data, but often the inflection is unclear. Alternatively, the total 

explained variance for a certain number of retained principal components itself provides a metric for the utility of the 

retained components. This idea can aid in selection of n, the number of principal components to retain for VARIMAX 

rotation and generation of characteristic patterns (RC-EBSPs) and spectra (RC-spectra). The parameter n can be chosen 

as the integer for which explained variance of the (n+1)th principal component falls below a certain threshold, t, for 

example 0.2%. All n principal components then contribute a variance proportion greater than t to the dataset. Information 

contained in the remaining principal components is discarded (i.e. this is considered as noise). The short circuit caveat 

around this selection rule is that n must be greater than or equal to 2 for VARIMAX rotation, so in some cases (with 

high initial t) we are forced to select n with variance contributions greater than t. Then to choose n: 

 –çîãç#—:Y“#≤îãéá≤ã“#{	(# + 1)N.	XY	} < ≤ 

vA	# < 2, ’:≤	# = 2.	 
1-3 

This is a relatively crude selection algorithm, but it is demonstrated that it works. More sophisticated methods  discussed 

by Raîche et al [200] using non-graphical metrics such as the Scree test optimal co-ordinate or Scree test acceleration 

factor could be employed. These values of n correspond to analyses of the gradient of the explained variance 

(equivalently the eigenvalues of the covariance matrix) as a function of n. These criteria are not guaranteed to be entirely 

suitable for our datasets, and they systematically select the maximum statistically allowable number of components as 

described by Kaiser’s rule, which stipulates that the eigenvalue of the nth retained component must not be less than one 

[257]. As per Equation LR-52, the eigenvalues are a rescaling of the corresponding variance contributions. 

Considering the first tile of the full AOI, Figure 1-4 shows the Scree plot for a PCA with EBSD weighting parameter 

(discussed further in section 3.1), w, equal to one, and the resulting assignment maps after VARIMAX rotation for 

values of n selected with varying variance tolerance criteria, as well as the Watershed algorithm. The variance tolerance 

limit, t, is selected to vary between 1% (leaving two principal components) and 0.02% (leaving 17 principal 

components).  

The quality of the label assignment to each point can be quantified by normalised cross-correlation of measured EBSD 

patterns and EDS spectra with a point’s corresponding characteristic RC-EBSP and RC-spectrum. Maps of these 

correlation values are helpful to visualise how this varies across the AOI, and how well different precipitates and grains 

match to their corresponding RC-EBSPs and RC-spectra.  Maps of these correlation qualities (normalised correlogram 

peak heights, χEDS and χEBSD) are presented in Figure 1-5a. In the presented case for w = 1 there is little variation in χEDS 

as dataset variance is dominated by EBSD information. A quadrature combination of EBSD and EDS correlogram peak 

heights, χcomb, is also considered:  

 
"ZTVB =	◊">abc
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Four possible metrics for the classification quality of an analysis are suggested. These are each plotted as a function of 

the variance of the final, nth, component in Figure 1-5: 
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Figure 1-5: (a) Effect of varying variance rejection percentage on measured EBSD pattern and spectrum cross-
correlation peak height with corresponding RC-EBSPs and RC-spectra. Colour is cross-correlation peak height. (b) 
and (c) show percentage of these EBSD and EDS cross-correlation peak heights greater or less than cut-off 
proportions of maximal correlation in that analysis. (d) and (e) show mean and standard deviation of the cross-
correlation peak heights for EBSD, EDS and the quadrature combination of the two.  
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• Metric 1: The proportion of points that satisfy χ > 0.95 χmax (for χEBSD and χEDS) - to be maximised, Figure 1-5b. 

• Metric 2: The proportion of points that satisfy χEBSD < 0.7 χEBSD,max or χEDS < 0.9 χEDS,max - to be minimised, Figure 

1-5c. 

• Metric 3: Mean value of χEBSD, χEDS or χcomb – to be maximised, Figure 1-5d. 

• Metric 4: Standard deviation in χEBSD, χEDS or χcomb – to be minimised, Figure 1-5e. 

Selecting the ‘best’ value of n for an AOI can be made less subjective by choosing a variance tolerance limit that 

maximises or minimises one of these metrics. When the tolerance limit is relaxed (low t, high n, with nth component 

contributing only a small amount of variance) the AOI is oversampled with principal components. This leads to a noisy 

assignment map (observed for the assignment map in Figure 1-5a with n = 17), as nearby (and similar) points have 

similar scores for several RCCs. As the tolerance limit is tightened (moving to the right in the graphs of Figure 1-5b-

e), the assignment initially improves across most of the metrics. Percentage of correlogram peak heights close to the 

maximal values increases (Figure 1-5b), and percentage much less than the maximal decreases (Figure 1-5c). The mean 

increases (Figure 1-5d) and standard deviation falls (Figure 1-5e). This initial improvement is attributed to improving 

the signal to noise ratio of the RCCs, as superfluous principal components are rejected. As the tolerance limit is tightened 

further and n is reduced, the assignment moves past an optimal position. Beyond this point insufficient principal 

components are included in the VARIMAX rotation. This leads to insufficient (and inaccurate) RC-EBSPs and RC-

spectra. Accordingly the cross-correlation peak heights for this dataset fall – the mean decreases and standard-deviation 

rises. It is also observed that the Watershed algorithm oversamples the dataset. 

For the analysis presented in Figure 1-5  a choice of t = 0.2% provides a good assignment. This was selected as the 

minimum in the standard deviation based metric 4. This t also performs best in metric 2 (Figure 1-5c) and second best 

in metric 3 (Figure 1-5d). Metric 4 appears to be a good choice for deciding the optimal value of t (and therefore 

selecting n in independent datasets). A choice of t = 0.5 % (n = 3) leads to superior metrics 1 and 3 than t = 0.2% (n = 

5). However, the assignment map in Figure 1-5a shows better correlation (both EBSD and EDS) for t = 0.2% (n = 5). 

Evidently the matrix regions correlate slightly better for t = 0.5% than for t = 0.2%, raising the mean peak height despite 

an observed poorer correlation for the precipitate regions. An approach of minimising poor correlation, by either of 

metrics 2 and 4, is less sensitive to this effect, and t = 0.2% (n = 5) exhibits obvious minima. Furthermore, the percentage 

difference between measurements of mean χcomb is far smaller than that for standard deviation of χcomb, providing a more 

justifiable minimum.  

It was found that metrics 1 and 2 are sensitive to the choice of proximity parameters (here 95% maximal for EBSD and 

EDS, 70% minimal for EBSD and 90% minimal for EDS). In contrast, it is observed that trends in standard deviation 

of χcomb as a function of nth component variance are stable between datasets, choice of w, and the specific values of n 

that the tolerance limits correspond to, shown in Figure 1-6. Based on the stability of the standard deviations in χcomb, a 

variance tolerance t = 0.2% was selected for selection of n in subsequent analysis of the effect of the EBSD weighting 

parameter w.  

4.2 Leveraging relative EDS variance 

The dataset variance contribution of the EDS energy bins, the final q rows of D, is altered via a scaling factor in order 

to bias the PCA in favour of EBSD or EDS information. Without any weighting, the far greater number pixels in an 

EBSD pattern compared to energy bins in an EDS spectrum (65,536 for a 256-by-256 pixel EBSD pattern, and 2048 

channels for our energy-binned spectra) dominate the variance of the dataset unless the former is dramatically scaled 
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down. This is  achieved by multiplying the EBSD and EDS rows of D by w and one respectively [199]. The variance 

normalisation step employed during the construction of D separately reduces the standard deviation of the input EBSPs 

and EDS spectra to one. The weighting multiplication therefore reduces the standard deviations of the input EBSPs to 

w, while that of the input spectra remains equal to one.  

The tile AOI presented in Figure 1-5 was processed with weighting parameter, w, varied between 0.001 and 1. A 

variance tolerance limit, t, was used to select the number of components to retain, n, varied between 0.02% and 1%. 

Maps of standard deviation and mean of χcomb as a function of t and w are presented in Figure 1-7. A local minimum in 

standard deviation is identified. The corresponding assignment map is included (Figure 1-7c), along with maps of χEBSD 

(Figure 1-7d) and χEDS (Figure 1-7e).  

The same trends in variance tolerance limit are observed as in Figure 1-5 and Figure 1-6, which present χcomb as a 

function of the variance contribution of the nth component for a single w. As the tolerance limit is tightened and the nth 

component has to contribute more variance (left to right in 7a, 7b), the standard deviation in χcomb falls and the mean 

rises. As in Figure 1-5, a local minimum in standard deviation is observed as t is varied. Beyond this limit insufficient 

principal components are retained. As w is increased (tending towards EBSD weighting, upwards in Figure 1-7a, Figure 

1-7b), standard deviation in χcomb generally decreases. The mean value of χcomb increases as w increases for loose variance 

tolerance limits (AOI oversampling), but at higher t (smaller n) there appears to be less of a correlation between mean 

χcomb and w. Considering the standard deviation in χcomb (metric 4 of Section 4.1.2) as a measure of assignment quality 

identifies a seemingly  optimal combination of w and t. Associated label assignment, χEBSD and χEDS maps are presented 

(Figure 1-7c-e).  

Figure 1-6: Standard deviation of normalised cross-correlation between measured EBSPs and spectra with their 
associated characteristic EBSPs and spectra, combined in quadrature. Shown for three alloys and three EBSD 
weighting parameters. As more principal components are retained, correlation initially improves as AOIs are better 
matched. After reaching the optimal level correlation degrades as principal components corresponding to noise are 
included in the VARIMAX rotation. The trend is stable (the minimum occurs in approximately the same place) 
across independent datasets and weighting parameters. n corresponding to t = 0.2% is circled in each case.  
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4.3 Full dataset processing and assignment artefacts 

The PCA approach achieves the desired signal-to-noise improvement for poorly diffracting particles such as M6C 

carbides. Example measured, label (RCC), and matched simulation patterns for the pseudo-FCC matrix and M6C carbide 

are presented in Figure 1-8.  

Considering the full AOI of nine tiles, Figure 1-9 presents the dataset processed with w = 1 (EBSD weighting) and w = 

0.1 (EDS weighting, identified as the local minimum in standard deviation of χcomb in section 3.2). RC-EBSPs were 

indexed using the RTM procedure [137], and RC-spectra were quantified with Bruker eSprit 2.1. 

When the EDS weighting is high (Figure 1-9b,d,f,h), label assignment is dominated by the magnified variance of the 

EDS spectrum energy bins. To qualify this, we explore the interaction volume using Monte Carlo simulations and the 

continuous slowing down approximation, this provides an indication of the interaction volume of the electron beam and 

X-ray generation. It is noted that the generation of the background signal for EBSD is likely to be smaller than predicted 

from the CSDA-approximation as the energy of the electrons that form the Kikuchi bands is constrained to be closer to 

the primary beam than the CSDA predicts [258]. The interaction volume of backscattered electrons in this system, 

simulated with CASINO at 70˚ sample tilt, is at most 100 nm. That for secondary (X-ray generating) electrons is 

Figure 1-7: Standard deviation (a) and mean (b) of combined EBSD and EDS RCC/measurement cross-correlation 
peak heights, χcomb, defined in Section 1.4.1.2. The ‘best’ assignment map is presented in (c), along with correlation 
peak height maps for EBSD, χEBSD (d) and EDS, χEDS (e). 36 data points are included in the t / w parameter space 
maps.  
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significantly larger. The Monte-Carlo simulation suggests that secondary electrons from the FCC matrix are generated 

up to perpendicular depths of 1 μm. Carbides exhibit even larger volumes, with Cr6C and ZrC carbides interacting up 

to 1.4 μm and 1.7 μm respectively.  

The consequence of large EDS interaction volumes is that at high magnification (where scan step is much less than the 

coarser technique resolution) two adjacent scan positions with measurably different crystal structure may exhibit very 

similar EDS spectra. The position vectors of these observation sets in variable space are very similar, despite differences 

in the measured EBSD pattern, due to the demagnification of EBSD pattern variance in this analysis. Effectively this 

leads to a loss of spatial resolution in label assignment, and as highlighted at position A, the possibility of missing fine 

precipitates from the classification. It can be seen in the EDS weighted assignment map Figure 1-9d, that  an elongated 

characteristic region of C enrichment and different chemistry, starting at point A, follows the grain boundary. The greater 

number of matrix points in this region dominate the principal component-EBSP, and the RC-EBSP for this region 

indexes as FCC Co. 

Another artefact we observe in the assignment is highlighted at position B. In the EDS-weighted PCA it is observed that 

the upper region of a precipitate (MC carbide) grain is assigned a different orientation to the remainder below. This 

artefact is the coincidence of two method limitations. The need to tile the dataset due to the significant memory 

requirement of the SVD algorithm means the upper and lower regions have to be assigned labels independently. This is 

not an issue for matrix regions, as there is a sufficient population (and therefore dataset variance contribution) to assign 

noise free and appropriate RC-EBSPs and RC-spectra.  However, when the PCA is EDS-weighted there is insufficient 

EBSD variance (due to a small population of points in the upper half of the mis-assigned precipitate) to provide a label 

that contains sufficient orientation data for this region to be separated from the nearby second grain of chemically similar 

MC carbide. This results in the upper region of the split precipitate being assigned the correct chemistry and phase, but 

Figure 1-8: Comparisons of example raw, rotated characteristic component (RCC), and template matched 
dynamically-simulated EBSPs for the pseudo-FCC Ni/Co matrix and the M6C carbide phase. This demonstrates how 
the method amplifies the quality of the minor phase substantially, which assists in unambiguous classification.  
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an incorrect orientation. This could be compensated for by relaxing the variance tolerance limit imposed on this analysis 

or an alternative sampling strategy to retile for small segments towards the tile edge. 

A third artefact is highlighted at position C. In the EBSD weighted Figure 1-9f, one MC carbide precipitate is identified 

and labelled. Two are assigned in EDS weighted Figure 1-9e. In this case the applied variance tolerance limit of 0.2% 

is insufficient to separate this region from the surrounding matrix. The region is highlighted in Figure 1-10, and score 

maps for the first six calculated principal components and the VARIMAX rotated RCCs are presented. The precipitate 

is mis-indexed in this analysis due to insufficient sampling of principal components. No PC strongly contributes to the 

precipitate grain (Figure 1-10, highlighted in 1-6), and little signal from this region is included in the VARIMAX 

rotation and calculation of the six RCCs. This results in the precipitate being labelled with an FCC Co matrix dominated 

RC-EBSP, and eventually indexed as such.  

5. Discussion 

Easy access to advanced statistical treatments enable us to treat microscopy data as a ‘big data’ problem and the 

community is likely to see increased use of these approaches. This work has illustrated that consideration of the data 

modality (e.g. physical processes to generate the signal, combined with the statistical variance of each data type) 

provides improved confidence in their use to reasonably, and usefully, segment large data sets. 

The present work presents a limited size of region with only a few domains, but testing using a number of other (lower 

magnification) maps indicates that the variance tolerance limit is a good indicator of the number of domains - grains, 

sub-grains, and precipitates - within Ni-based maps containing many more of these features.  

The combination of EDS and EBSD signals together using a weighted PCA approach, with subsequent label 

identification and characterisation, improves phase characterisation within the scanning electron microscope. To 

combine these modalities, one has to select an appropriate data processing pipeline to provide robust data mixing, with 

subsequent selection of an appropriate number of components for retention prior to VARIMAX rotation. This is required 

to inform correct identification of the labelled regions. This is achieved through selection of suitable values for the two 

independent parameters w and n (the latter varied through t, the variance tolerance limit). Here the presented approach 

is reviewed, then applications and potential utility of the technique discussed. 

5.1 Parameter choice and data-type leverage 

It has been shown that a PCA approach may be biased towards obtaining RCCs through identifying the strongest signals 

in either EBSD or EDS information. An EBSD-weighted PCA exhibits a finer effective spatial resolution in label 

assignment, due to the smaller interaction volume for electron backscattering than for X-ray generation. From this one 

obtains RC-EBSPs and RC-spectra identified from structurally contrasting points in an AOI. PCA can also be leveraged 

in favour of EDS spectrum dissimilarity and identify RC-EBSPs and RC-spectra accordingly. In this case a coarser 

assignment resolution is observed, but by slightly weighting towards their EDS signal the label assignment improves on 

several metrics. 

Two approaches have been presented for selection of the number of principal components to retain for an AOI. Counting 

the number of grains in an EBSD quality map, for example with a Watershed algorithm, may be susceptible to  
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Figure 1-9: Comparison between phase assignment (a-b), label assignment, with arbitrary colouring (c-d), IPF-Z – 
out of plane (e-f), and C at.% from the RC-spectra quantified with Bruker eSprit 2.1 (g-h), after processing with w 
= 1 (EBSD weighted) and w = 0.1 (EDS weighted). Both analyses were performed with a variance tolerance limit t 
= 0.2 %. 
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oversampling. This can be due to the fact that coherent and chemically similar boundary precipitates will be counted 

separately but ideally should share a label. Slight oversampling is not a problem, but significant oversampling may make 

the components recovered after the VARIMAX rotation difficult to interpret. Furthermore it will reduce the ability of 

the method to amplify weak signals. A more systematic approach for selecting n is to consider the contributions of 

retained principal components to total dataset variance and impose a limit beyond which we discard residual information 

as noise. A small t (eg. 0.02%) corresponds to retaining many principal components as even those contributing relatively 

little signal are permitted to participate in the analysis. Increasing t restricts the number of principal components, as we 

impose a low pass filter on the proportional variance contribution to the dataset required. This improves the signal-to-

noise ratio in the RC-EBSPs and RC-spectra. This leads to an increase in the mean and reduction in standard deviation 

of correlogram peak heights for cross correlation of measured and characteristic EBSD patterns and EDS spectra. When 

t gets too high, the mean and standard deviation of correlation peak heights falls as the number principal components 

required to segment an AOI is undersampled.  

Optimal choice of parameters will depend on what dataset insight is required from an analysis. If one wishes to reduce 

a dataset to as few RCCs as possible then a fairly tight tolerance limit provides a mechanism for quantitatively limiting 

the significance requirement of features in an AOI. If precipitates/grains of interest are small, reducing the tolerance 

limit permits weaker dataset signals to be assigned their own component. This may lead to oversampling of the dataset, 

reducing signal to noise.  

Weighting PCA in favour of EBSD yields a finer effective spatial resolution in assignment than EDS weighting. This is 

advantageous if spatial precision is required, and especially when analysing phase presence in an AOI. Leveraging 

towards EDS can improve RCC assignment by several metrics. In some cases assigning chemically similar but 

structurally different regions (due to overlap in EDS interaction volume) to the same label may be compensated for by 

relaxing the variance tolerance limit and encouraging dataset oversampling. It may be the case that an EDS-weighted 

PCA would prove useful in situations where crystal pseudosymmetry or other similarity in Kikuchi bands reduces EBSD 

pattern contrast between two regions. 

5.2 Chemical analysis of labelled phases 

Label chemistry can be quantified from RC-spectra independently of structure-ID from RC-EBSPs. Comparisons 

between chemistry and crystallography may then be made, with the benefit of a reduced signal to noise ratio of RC-

spectra and RC-EBSPs than the raw measurements. RC-EBSPs and RC-spectra are simultaneously calculated and 

assigned to regions of an AOI. They are not independent, and reflect the most significant structural and chemical signals 

of points that they strongly load. 

Figure 1-11 presents chemical maps (quantified RC-spectra) of a dataset for both directly quantified RC-spectra (a) and 

average spectra for a given RCC label (b). The same PCA parameters were employed as the results shown in Figure 

1-9(a,c,e,g). They are almost identical. It is observed that all precipitates exhibit Ni and Al depletion. The intergranular 

M6C carbides (Figure 1-9) show Mo enrichment, while the intragranular MC carbides exhibit Mo depletion.  

Figure 1-12 shows elemental quantification of chemistry for each phase, along with standard deviations. This is 

performed for both directly quantified RC-spectra (Figure 1-12a) and quantified average spectra for a given label 

(Figure 1-12b). It is noted that the trend in refractory element segregation between the carbides. In this system the MC 

carbide is strongly Ta and Zr enriched. Mo, Cr and W segregate to the M6C phase. 
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Similar observations of Ta and Zr enrichment in superalloy MC carbides has been reported by atom probe tomography 

studies [64], [65]. The technique presented in this work provides a means of confirming trends in precipitate composition 

between alloys, as well as where elements tend to segregate upon nominal enrichment of the bulk composition.  

5.3  Qualitative comparison to state-of-the art post-processing approaches 

The PCA approach is a method to amplify signal to noise, where any knowledge of the co-location of measurement 

points and sum similar signals is removed. In the limit, the EBSD pattern based neighbour pattern average method 

(NPAR) [128] improves signal to noise via a summation patterns within a local neighbourhood. This ignores extraction 

of the similarity of the signal obtained from each neighbouring pattern and could lead to adding of signals from two 

phases or grains which can affect interpretation of the average signal. The non-local pattern averaging reindexing 

(NLPAR) approach [129] provides delocalised smoothing, using a weighting function based upon the similarity of the 

pattern information in a moving window centred around a candidate point. Similar approaches have been adopted in the 

TEM community, particularly using the Hyperspy Python package, to obtain characteristic spot diffraction patterns for 

example with a cluster analysis approach [237]. So-called ‘cluster-centre’ diffraction patterns are calculated by grouping  

  

Figure 1-10: Second tile AOI (with arbitrary label colouring) of Figure 1-9 with EBSD weighting, w = 1. The mis-
labelled precipitate grain (point C in Figure 1-9) is highlighted. PC scores and VARIMAX rotated RCC scores are 
presented. Principal components are ordered by their contribution to dataset variance, but RCCs are calculated to 
contribute equal variance. Score colour map is unnormalised between maps to show contrast1 . No principal 
component strongly contributes to the highlighted grain (1-6), and the VARIMAX rotated component with the 
highest score (f) includes significant signal from several other precipitates and matrix. This results in the 
corresponding RC-EBSP being dominated by FCC Co signal, and indexing accordingly (point C in Figure 1-9). 
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Figure 1-11: Chemical maps (at.%) of quantified RC-spectra. Only Ni, Al, Mo and C are shown for brevity. This 
analysis was performed with variance tolerance, t, of 0.2% and EBSD weighting, w, of 1. Maps are shown for directly 
quantified RC-spectra (a) and average spectra assigned to the same given label (b).  
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and calculating the average of DPs transformed into variable space. Both cluster-centre analysis and PCA can be 

considered extreme cases of NLPAR, where the spatial location is discarded and instead only applied statistics are relied 

on to denoise, label, and index data. Einsle et al [237] note that raw PCA is not suitable for spot diffraction analysis due 

to strong similarity in many reflections observed across the area of interest. 

Generally, the challenge with a PCA approach is that the components returned represent the statistical dominance of 

each characteristic signal within the data set, and they are not physical. A VARIMAX rotation for the combined EBSD 

pattern and EDS spectra results in an easier to interpret label, where each label can be uniquely applied to each point 

within the map. This works for an EBSD pattern, as the variance between two Kikuchi-based diffraction patterns for 

different phases is relatively small. For a TEM spot-based diffraction pattern, rotating the data according to a variance 

model may not be reasonable, because the spot patterns for different phases may have a stronger variation in variance 

(e.g. due to a different number of reflectors that create spots within the pattern). In practice, this may impact how the 

diffraction data is pre-processed before putting into the data matrix, as well as a selection of an appropriate weighting 

scheme when joining the diffraction-based structure data with the EDS-based chemical data.  

Keenan and Kotula [259], [260] have explored scaling for multivariate statistical analysis for time of flight secondary 

ion mass spectrometry (TOF-SIMS) data. They focussed on how count-dependent pre-scaling impacts the distribution 

of variance and show that many scaling methods hinder multivariate statistical analysis. Their work highlights that 

variance scaling can be improved   when the Poisson probability distribution of the   raw data is accounted for, especially 

with regard to chemically significant minor features in the TOF-SIMS spectra. In contrast, the present work combines 

two data types with different noise and scaling methods, using the output signals in separate characterisation processes.  

Figure 1-12: Average chemistry of the three identified phases in the dataset presented through this work. As with 
Figure 9a,c,e,g; Figure 10 and Figure 11, this analysis was performed with a variance tolerance, t, of 0.2% and an 
EBSD weighting, w, of 1. Filled regions plot average composition, dotted lines show +/- a standard deviation from 
the mean. This is shown for directly quantified RC-spectra (a) and average spectra assigned to the same given label 
(b).  
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In considering the EDS signal, the heteroscedasticity of noise/error in the measurements is not just a function of the 

magnitude of the peak (which could be rectified by dividing by a Poisson correction factor for each energy bin, 

independent of the bin’s energy) but also uncertainty in beam energy, sample elemental fluorescence and absorption, 

etc. Accounting for this could lead to formal normalisation of expected variance for a given energy bin, and would be a 

function of spectrum bin energy, identity of the chemical species, and intensity. The presented method works well for 

alloy EDS datasets as the X-ray spectra contain many interacting (and covarying) signals. In a dataset there may for 

example be a majority of scan points with intense Ni and weak Mo peaks, producing a principal component with that 

self-same pattern of intensity (intense Ni and weak Mo). An improved noise function would be useful where the EDS 

signal is less distinctly clustered. However, note that in the present workflow the final phase classification is performed 

on the EBSD signal, with the EDS data used for chemical quantification (interpreted as a function of structure). A similar 

but different noise model could be applied to each pixel within the EBSD pattern, dependent on the anisotropic spatial 

distribution of (near elastic) backscatter electrons that can be modulated in counts by Kikuchi diffraction. For example, 

this could be implemented through inclusion of a pixel and energy bin specific weighting function prior to operation of 

the ‘macro’ weighting term we have applied to mix the signals prior to applying the PCA that we have fairly extensively 

discussed. 

In the absence of advanced noise models, this work employs a simpler method. This is focussed on (1) maximisation of 

the likelihood of successful segmentation of similar domains and the generation of appropriate characteristic signals; 

(2) the ability to register those domains against the EBSD signal for phase classification (which is augmented by the 

rotation of components to create uniform variance, as per Wilkinson et al [131]); (3) the subsequent EDS chemical 

signature analysis. This approach is simple and sufficiently successful, and has been made available open source via 

AstroEBSD [119].  

Improvements to this methodology could be motivated by the discussed prior work of Keenan and Kotula [259], 

provided noise and variance models of the EBSD signal and EDS signal can be determined and validated. At present, 

these are limited and the origins of the signals are still somewhat disputed [134], [143], [247], [258]. While this method 

has a significant grasp of the EBSD signal it is limited in analysis of EDS information, and currently uses standard 

proprietary software such as Bruker eSprit 2.1. Further method development could involve implementing open source 

quantification (accounting for discussed effects), including better accounting for Poisson noise within our processing 

toolbox. 

6. Conclusions 

This chapter develops an analysis pipeline to provide robust correlative microscopy, mixing chemical information 

obtained using EDS and structural information obtained using EBSD. This enables us to observe small carbides and 

optimise signal-to-noise for the different phases present. PCA is an effective data processing technique for identifying 

regions of strong similarity in a dataset (microstructure), while remaining spatially unbiased (two adjacent points share 

the same propensity to be assigned the same principal component and RCC as two far-field points). Inclusion of both 

EBSPs and EDS spectra into the data matrix, D, provides a mechanism for obtaining simultaneous structural and 

chemical fingerprints of features in an AOI. It is possible to weight the identification of these characteristic EBSPs and 

spectra (RC-EBSPs and RC-spectra) in favour of similarity in crystallography or chemistry between points. The 

following observations are presented: 
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1. Selection of the number of principal components to retain for VARIMAX rotation and subsequent analysis can be 

made less subjective by counting grains in a Radon transform EBSP quality map, for example by a Watershed 

transform, or by selecting a tolerance limit (low pass filter) for the proportional explained variance of the retained 

principal components. Oversampling reduces signal to noise ratio in RCCs but reduces the risk of missing fine 

precipitates from the analysis. 

2. An EBSD weighted PCA exhibits a finer effective spatial resolution in label assignment due to the smaller 

interaction volume of backscattered than secondary electrons, and therefore for EBSP than EDS-spectra generation.  

3. Leveraging the PCA slightly towards EDS measurements can improve segmentation (lower standard deviation in 

cross-correlation peak height) of characteristic EBSPs and spectra. 

4. Structural phase-ID of an AOI, for example by a refined template matching algorithm, can be enhanced via data 

reduction of a 40,000 point map to (in the case of the dataset presented in this work) 35 RC-EBSPs. This drives a 

significant processing speedup, and permits the trialling of many candidate structure libraries, improving confidence 

in assignment.  

5. Quantification of RC-spectra, assigned a structure label by RC-EBSP refined template matching, permits 

measurements of average chemical segregation between phases. 
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Chapter 2 - Quantitative precipitate classification and grain boundary 
property control in Co/Ni base superalloys  

1. Chapter Summary 

A correlative approach is employed to simultaneously assess structure and chemistry of (carbide and boride) precipitates 

in a set of novel Co/Ni-base superalloys. Structure is derived from electron backscatter diffraction (EBSD) with pattern 

template matching, and chemistry obtained with energy dispersive X-ray spectroscopy (EDS). It is found that the 

principal carbide in these alloys is Mo and W rich with the M6C structure. An M2B boride, also exhibiting Mo and W 

segregation is observed at B levels above approximately 0.085 at.%. These phases are challenging to distinguish in an 

SEM with chemical information (EDS or backscatter Z-contrast) alone, without the structural information provided by 

EBSD. Only correlative chemical and structural fingerprinting is necessary and sufficient to fully define a phase. The 

identified phases are dissimilar to those predicted using ThermoCalc. An assessment of the grain boundary serratability 

in these alloys is performed, and it is observed that significant amplitude is only obtained in the absence of pinning 

intergranular precipitates. 

2. Introduction 

Engineering grain boundary character is essential to optimisation of superalloy microstructure and performance. Toward 

this endeavour we require precise knowledge of chemistry, distribution, and structure of intra/intergranular precipitates, 

particularly carbides and borides. These phases form through all stages of alloy processing, from initial casting through 

to final ageing treatments. In the literature, refractory-rich grain boundary precipitates may be referred to as a ‘carbide’ 

without any effort to differentiate between M23C6, M6C or boride structures. Due to preferential elemental segregation 

of high Z-number elements, these all exhibit high backscatter SEM contrast. There is significant evidence that these 

precipitates’ exact character has a significant effect on mechanical and environmental stability, especially in high 

temperature applications, despite their small volume fraction [64], [66]–[68]. A secondary effect of grain boundary 

precipitate interactions is the ability to facilitate grain boundary serration mechanisms, also an essential consideration 

in modern superalloy grain boundary engineering [69], [70].  

This work develops the V208 series first presented by Knop et al [1], [12], [261]. A set of Co/Ni-base superalloys based 

on V208C are presented, with Mo additions (for solid solution strength) and varied C, B, Zr, and Ti content for grain 

boundary chemistry adjustment. As-received coarse-grained RR1000 is also characterised, as well as cast and wrought 

V208C for comparison. Intergranular precipitates are quickly and accurately classified using a correlative electron 

backscatter diffraction (EBSD) / energy dispersive X-ray spectroscopy (EDS) approach [93]. The robustness of the 

classification is examined, chemical statistics as a function of precipitate structure are presented, and a comparison of 

observations to thermodynamic modelling is considered. The effect of intergranular phase morphology on grain 

boundary control is also briefly investigated. It is shown that in this alloy series boundaries may only be serrated in the 

absence of spatially dense precipitate boundary coverage, regardless of cooling rate from solution. 

3. Background 

In this study a new series of Co/Ni-base superalloys with varied C, B, Zr and Ti compositions are developed, with an 

aim to adjusting grain boundary chemistry. The formation of various intergranular phases are observed and discussed, 
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Figure 2-1: The EBSD/EDS PCA approach. Chemical and structural information is combined and corresponding 
relationships are extracted using statistical methods from the dataset. 
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and grain boundary morphologies investigated upon independently varied heat treatment. As-received coarse-grained 

RR1000 and cast V208C are also characterised and compared.  

A correlative EBSD and EDS method is employed, together with statistical methods, to enable analysis of large area 

data sets. EBSD involves the measurement of electron backscatter diffraction patterns (EBSPs). These are formed from 

near elastic diffraction scattered electrons, and correspond to projections of the lattice planes [114], [117]. EBSPs are 

formed from a relatively large solid angle of diffracted electrons, so more than three geometrical conditions (in this case 

Kikuchi bands corresponding to lattice planes) are normally sampled, as required to determine a unique orientation 

solution. Conventionally a Hough (Radon) transform and set of interplanar angle lookup tables are employed to index 

crystallographic planes to determine phase and orientation.  

An informatics-type approach is adopted, combining EBSD and EDS information into large data matrices from which 

we extract the strongest (correlated) structural and chemical signals using unsupervised machine learning (principal 

component analysis, PCA). These signals are the principal components of the data matrix. A VARIMAX rotation is 

performed on the principal components and corresponding (spatial) scores, as per Wilkinson et al [131] and including 

the EDS signal as per Chapter 1 (McAuliffe et al [93]). This rotation acts to maximise and equalise the variance of the 

principal components. Positivity can then be enforced on the rotated components, mimicking statistics of experimentally  

measured EBSPs to obtain physically meaningful results. The procedure generates rotated characteristic components 

(RCCs), in turn containing rotated characteristic EBSPs (RC-EBSPs) and spectra (RC-spectra). These can be 

 

Alloy Co Ni Mo Cr Al W Ta C B Zr Ti 

1 ~36 ~36 2 12 10 2.75 1.25 0.300 0.085 0.040 0 

2 ~36 ~36 2 12 10 2.75 1.25 0.296 0.043 0.040 0 

3 ~36 ~36 2 12 10 2.75 1.25 0.224 0.041 0.040 0 

4 ~36 ~36 2 12 10 2.75 1.25 0.100 0.042 0.040 0 

5 ~36 ~36 2 12 10 2.75 1.25 0.100 0.020 0.040 0 

6 ~36 ~36 2 12 10 2.75 1.25 0.180 0.085 0.040 0 

7 ~36 ~36 2 12 10 2.75 1.25 0.250 0.125 0.040 0 

8 ~36 ~36 2 12 10 2.75 1.25 0.250 0.200 0.040 0 

9 ~36 ~36 2 12 10 2.75 1.25 0.300 0.110 0.040 0 

10 ~36 ~36 2 12 10 2.75 1.25 0.100 0.042 0.020 0.1 

11 ~36 ~36 2 12 10 2.75 1.25 0.100 0.042 0.020 0.2 

12 ~36 ~36 2 12 10 2.75 1.25 0.100 0.042 0.020 0.3 

13 ~36 ~36 2 12 10 2.75 1.25 0.100 0.042 0.040 0.3 

            

V208C 
[261] ~36 ~34 0 15 10.5 3 1 0.150 0.200 0.040 0 

L1 ~34 ~35 2 13 12 2.75 1.25 0.300 0.110 0.040 0 

L2 ~34 ~35 2 13 12 2.75 1.25 0.300 0.440 0.040 0 

 
 
Table 2-1: Nominal compositions (in at.%) for the alloys developed in this study, as well as V208C [261]. Alloys 1-
9 alter C and B content. Alloys 10-13 adjust Zr and Ti composition.  
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independently indexed and quantified with higher confidence as they have enhanced signal to noise as compared to the 

raw data. The approach allows reduction of a (for example) 40,000 scan point map, each with 200-by-200 EBSP pixels 

and 2048 EDS energy bins down to as few RCCs as there are grains (or sub-grains if oversampling is permitted) in an 

area of interest (AOI). At intermediate magnification this value is usually 50 – 100 in these relatively coarse grained 

materials. This approach is presented and validated in further detail in Chapter 1 and is schematically presented in 

Figure 2-1. 

Combining structure assignment and chemical measurement permits classifying the phase of a labelled region (usually 

corresponding to a single precipitate grain). Statistics of chemistry and structure as a function of the other, for example, 

can then be gathered. In this work, structure is classified via the refined template matching (RTM) procedure developed 

by Foden et al [137] using dynamically simulated libraries of template EBSPs for each candidate phase, also depicted 

in Figure 2-1. The candidate phases may be selected from observations in previous studies, or via computational 

predictions (e.g. with ThermoCalc). The simulated library EBSPs are cross-correlated in Fourier space with the RC-

EBSPs. A scan point is assigned to the structure and candidate orientation with the highest cross-correlation peak height. 

Subsequent iterative refinement determines the precise misorientation of the measured pattern to that of its best matching 

template. This approach allows us to distinguish phases of similar structure that share many Kikuchi band features, 

especially since many Radon transform based indexing approaches only consider up to a dozen interplanar angles, which 

for similarly symmetric structures may be shared. Distinguishing pseudo-FCC (ɣ / ɣʹ) matrix from MC carbide with 

conventional EBSD, for example, is challenging. 

4. Experimental methods 

Sixteen approximately 415 g ingots were fabricated by vacuum arc melting. Compositions are presented in Table 2-1 

and Figure 2-2. Each was vacuum homogenised for 48 h at 1250˚C. Ingots were then hot rolled at nominally 1250˚C, 

with 10-15% reductions from 23 mm square cross-section down to 14 mm. Samples for heat treatment and 

microstructural characterisation were extracted from the rolled bar. Alloy samples were encapsulated in quartz tube 

backfilled with Ar for heat treatment; times and temperatures are presented in Figure 2-3. The solution stage aims to 

dissolve all the ɣʹ precipitated during hot rolling and uncontrolled cooling, in order to ‘reset’ the alloy and generate a 

controlled ɣʹ distribution upon ageing. Three different cooling rates were trialled for a subset of the alloys in order to 

investigate the effect of intergranular precipitation on boundary serratability, discussed in Section 2.5.4. As-received 

coarse grained RR1000 was also characterised. A standard metallographic polishing procedure was used to prepare 

samples for microscopy: 400 to 4000 SiC grit grinding, followed by a 1 h H2O2 neutralised colloidal silica polish. 

SEM, EBSD and EDS were performed on a Zeiss Gemini Sigma 300 FEGSEM, equipped with Bruker e-FlashHD and 

XFlash 6160 EBSD and EDS detectors respectively. Bruker DynamicS was used to dynamically simulate library EBSPs 

for each candidate structure [132], [247]. From within the fundamental zone for each phase, a SO(3) sampling frequency 

of 7˚ was employed for generation of an EBSP template library in the detector reference frame (pattern centre selected 

with Bruker Esprit 2.1 from the well-indexed matrix regions and simulated patterns sampled as 200 by 200 px). RC-

spectra were quantified with Bruker Esprit 2.1 using a P/B ZAF correction algorithm accommodating the 70˚ sample 

tilt required for EBSD.  

ThermoCalc was used to model the alloys’ predicted phase composition. The TCNi-8 database was used. 
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Figure 2-2: Nominal compositions (in at.%) for the alloys developed in this study. Alloys 1-9 and V208C (a) have 
constant 0.040 at.% Zr and 0 at.% Ti. Alloys 4, 10-13 (b) have constant 0.1 at.% C and 0.042 at.% B. (c)-(h) present 
representative BSE images of grain boundary morphology for a highlighted sub-selection of the alloys. 
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5. Results 

5.1 Grain boundary precipitation 

Combinatorial PCA-EBSD/EDS was used to classify precipitates that nucleated on grain boundaries. EBSP template 

libraries for candidate structures were generated with Bruker DynamicS: FCC Co/Ni matrix; NiAl and Co3W 

intermetallics; M6C, M23C6 and MC carbides;  MB, M3B2 and M5B3 borides; eta (Ni3Ti), sigma, mu and P topologically 

close packed phases. The PCA approach then reduces large scans (often with over 40,000 points) down to representative 

patterns and spectra, with one corresponding to each grain (or sub-grain depending on the extent of oversampling). 

These are cross-correlated with template libraries for each candidate structure to identify crystallographic phase. The 

template with the largest correlogram peak height out of all structures’ libraries is identified as the best match. Example 

RCC, phase assignment, and phase specific chemical distribution radar plots are presented for alloy 7, L2 and RR1000 

in Figure 2-4. Alloy 7 exhibits precipitation of the MC and M6C carbides and the M2B boride. The MC carbide is mainly 

enriched in Ta and Zr, while the M6C carbide is W and Mo rich. The M2B boride is also Mo and W rich, making it 

difficult to distinguish from the carbide using conventional EDS chemical mapping. This intergranular morphology is 

typical of alloys 1 -13,. Alloy L2 additionally sees precipitation of the B2 NiAl intermetallic structure on the grain 

boundaries, which is (unsurprisingly) identified as being enriched in Ni and Al, and relatively depleted in other elements. 

An RR1000 dataset is also presented, seeing precipitation of the MC carbide and M3B2 boride, as thermodynamically 

simulated by Hardy et al [2]. The MC carbide sees Ta and Ti segregation, while the boride draws Ta and Mo. 

The same analysis is conducted for all of the alloys investigated. The main alloy set (Alloys 1-13) shows varied 

precipitation of M6C and M2B across C, B, Zr and Ti composition space, with no observations of NiAl or any of the 

other eleven candidate phases. The majority of alloys exhibited MC carbides. Observations of M6C carbide and M2B 

boride precipitation are presented in Figure 2-5.  

Figure 2-3: Post rolling heat treatments trialled in this study. The solution condition was 1100˚C for 1 h, 
followed by one of: CR1 (20˚C/min), CR2 (5˚C/min) or CR3 (1˚C/min). From 700˚C alloys were air cooled, or 
water quenched at 950˚C. All samples were aged at 800˚C for ɣʹ nucleation and growth. 
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Each RCC we extract from the dataset contains an RC-EBSP and RC-spectrum. Having classified each scan point to 

one of the candidate structures (using the EBSP), the average EDS spectrum for each scan point assigned to a given 

phase label, or independently the RC-spectrum itself, can then be quantified. As previously shown in Chapter 1, these 

give very similar results, as the VARIMAX rotation applied to make the principal component EBSPs physical has a 

similar effect on the EDS spectra [93]. Presently the average spectrum for each label is quantified using Bruker Esprit 

2.1. Subsequently the at% chemistries of each phase is numerically averaged by alloy, and presented in Figure 2-6 are 

trends in phase chemistry across the alloy series. 

All observations of M2B boride and M6C carbide see enrichment in Mo and W. The MC carbide and ‘matrix’ are 

generally depleted in these elements. The boride is depleted in Cr and Al, while the M6C carbide appears to have greater 

tolerance for these elements.  

5.2 Confidence in phase assignment 

The utility of the statistical chemistry-by-phase approach is dependent on accurate phase classification. The Fourier 

space cross-correlation peak height (‘RTM peak height’) provides a metric for this assignment quality. Higher values 

imply stronger similarity between test (RC-EBSP) and reference (library) patterns. The template matching process 

assigns phase and (unrefined) orientation based on the highest RTM peak height across the template libraries. Figure 

2-7 shows average peak height by assigned phase across the alloy series. It is observed that in almost every case the 

assigned phase is significantly higher than the second closest template structure, and outside of standard errors (error in 

Figure 2-4: Pseudo-backscatter image (a), IPF-Z, Z out of plane (b), phase map (c) and chemical distribution (d) 
for three selected alloys. 
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the mean value of RTM peak height for all labels in an area of interest). Whenever a matrix label is assigned, the runner-

up most prevalent phase is consistently the MC carbide. When an M6C label is assigned, the runner-up template is 

always the M23C6 structure. To further characterise the accuracy of the phase assignment and demonstrate the viability 

of the RTM procedure, presented in Figure 2-8 are examples of a matrix and M6C assigned RC-EBSPs. Best, second-

best and poorly matching template patterns, with corresponding RTM peak heights, demonstrate the separability of the 

assigned phase from the alternatives.  

MC carbide templates are always runner-up to matrix assignments due to strong similarity in crystal structure 

Conventional Hough (Radon) transform EBSP indexing does not account for intra-pattern intensity variation, or 

presence of minor Kikuchi bands, especially in strongly diffracting crystals which often satisfy the common maximum 

number to consider for the interplanar angle lookup (often 12). The Fourier cross-correlation handles this well [137], 

and is able to distinguish the FCC label pattern in Figure 2-8 from the very similar (in major band trace) MC carbide, 

with an approximately 32% difference in peak height. Distinguishing the M23C6 and M6C carbides presents a similar 

case. There is similarity in the crystal structures leading to systematic relative proximity in peak height. Conventional 

Figure 2-5: Phase diagram of precipitate observations across investigated composition space for alloys 1- 13. 
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indexing of this area of interest does not robustly distinguish M23C6 from M6C structure, and completely misses MC 

carbides. This issue together with the previously discussed similarity in EDS measured chemistry between M6C carbide 

and M2B boride demonstrates the advantages of a combined approach with independent and accurate quantification / 

indexing.  

5.3 Comparison to CALPHAD thermodynamic modelling 

Using ThermoCalc with the TCNI8 database, initially with no structures suspended, predicted phase fractions were 

calculated for each alloy in the main set. M2B borides, M23C6 carbides, Ni3Ti and TCP mu were predicted (along with 

an FCC matrix and various populations of L12 ɣʹ, not plotted). Phase proportions as a function of temperature for alloy 

7, whose characterisation is highlighted in Figure 2-4, are presented in Figure 2-9. 

There is a discrepancy between phases predicted by ThermoCalc: M2B, M23C6, mu and eta (Ni3Ti), and those we observe 

(MC, M6C, M2B). The unobserved phases M23C6, mu and eta were included in the template matching procedure; their 

template libraries were dynamically simulated and cross-correlated with the label RC-EBSPs but were never matched. 

Figure 2-6: Average composition of the M2B boride, M6C carbide, ɣ + ɣʹ ‘matrix’ and the MC carbide across the 
main alloy series. Cr (c), Al (b), Mo (c) and W (d) are plotted here. 
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As discussed in Section 2.4.2 the RTM phase identification procedure is robust, so we have confidence precipitates 

have not been mis-identified (for example the M23C6 RTI peak height is consistently lower than that of M6C for carbide 

assignment, and there are observable Kikuchi band discrepancies, see Figure 2-7 and Figure 2-8). 

In Figure 2-10a and b ThermoCalc predicted solvus temperatures are presented for the M2B boride, this allows inference 

of how these precipitates are stabilised by variations in C, B, Zr and Ti across the alloy set. Also included are the solvuses 

for the unobserved M23C6 carbide, Figure 2-10c and d. From Figures 10a and b it is observed that the boride is 

destabilised (the solvus temperature is lowered) by additions of C, Zr and Ti. Additions of B raise its solvus temperature. 

A different trend is observed for M23C6. Additions of Ti reduce the carbide’s solvus temperature, while Zr appears to 

raise it (it is not predicted to precipitate at all for alloys with low Zr content). Additions of B do not have a pronounced 

effect on the predicted stability of M23C6. Comparison to the phase diagram of precipitate observations, Figure 2-5, 

partially agrees with the ThermoCalc predictions. In the Zr and Ti enriched alloys the boride is not observed; it is only 

observed after about 0.085 at.% B addition.  

Figure 2-7: Average RTM peak heights (cross-correlation quality) for labels assigned to each of the identified phases, 
across the main alloy series, with standard-error errorbars. (a) presents the pseudo-FCC ‘matrix’, (b) the M6C carbide, 
(c) the MC carbide, and (d) the M2B boride. In each case the second best matching phase is also plotted with standard-
error errorbars. This is consistently an MC template for matrix labels, and an M23C6 template for M6C labels. There 
is no consistent runner-up for the MC carbide or M2B boride. 
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5.4 Grain boundary serration 

Heat treating to produce serrated grain boundaries is known to improve superalloy mechanical performance, especially 

in deformation regimes where boundary sliding mechanisms are believed to be the principal contributor to strain 

accumulation [84], [86], [88], [89]. 

In addition to the standard HT1 employed before characterisation, three further heat treatments were applied to a 

selection of the alloys in order to promote grain boundary serration. HT2 involved a slow cool through the ɣʹ solvus of 

Figure 2-8: RC-EBSPs and the best, second-best and poorly matched simulated template EBSPs. For the FCC 
‘matrix’, the best match (FCC) has an RTM peak height of 0.832. The second closest match, the MC carbide, has a 
peak height of 0.564 and the ‘correct’ assignment has a 32% advantage.  
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5˚C / min followed by an air cool from 800˚C. HT3 employed an even slower cooling rate of 1˚C / min, followed by the 

same air cool from 800˚C. HT4 saw the same 5˚C / min cool from solution, but was followed by a water quench at 

950˚C. All alloys were subsequently aged at 800˚C for 4 h to produce an optimal ɣʹ distribution. Examination of the 

heat treated microstructures showed that serrations were possible in this alloy series, albeit of a smaller amplitude than 

what is often observed, but are completely inhibited by grain boundary coverage of even the finest precipitates. In the 

scheme of Koul & Gessinger [69], the presence of fine boundary particles pins the boundaries, such that upon ɣʹ 

migration there is sufficient line tension to pull back the boundary and prevent extensive serration. In alloy 7, Figure 2-

11e and i, precipitates are sparse (though with greater volume), and serration is readily achievable on many boundaries.  

6. Discussion 

Across an even sampling of C, B, Zr, and (low) Ti space, thirteen alloys were processed (as well as the additional L1, 

L2, V208C, and RR1000) and the distribution and chemistry of phases within their microstructures were characterised 

with a combinatorial EBSD/EDS approach. In this alloy series there is precipitation of intergranular M6C and MC 

carbides, and M2B borides. In alloys with a lower Cr:Al ratio there is extensive precipitation of the NiAl intermetallic. 

The observed structures are relatively exotic, with the majority of commercial superalloys exhibiting M23C6 carbides as  

  

Figure 2-9: Phase proportions of thermodynamically predicted phases (matrix and ɣʹ distributions not plotted). 
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well as M5B3 and M3B2 borides. These structures were all included in the phase-ID stage of our method: evenly SO(3) 

sampled EBSPs were dynamically simulated for them and compared to the extracted representative patterns. The greater 

Mo and W content of our alloys might favour the M6C carbide and M2B boride as opposed to M23C6, M5B3, M3B2, etc. 

These structures consistently exhibit strong measured enrichment in these two elements. The consensus from the 

literature is that M23C6 generally has a greater affinity for Cr than M6C [65], [96]. Significant enrichment of Cr in M6C 

relative to the matrix has not been measured. Similarly, the M5B3 and M3B2 borides have been observed to exhibit 

greater affinity for Cr than what is seen for M2B [64], [90], [102]. This likely has significant implications on oxide scale 

formation and possible ɣʹ depletion during high temperature (atmosphere exposed) deformation. Mo and W are not 

known to be beneficial to stable oxide formation, so precipitates rich in these elements may not be optimal for significant 

grain boundary coverage. Additionally, Mo and W are known to be slow diffusing elements, which may be an additional 

factor in the precipitates’ ability to inhibit grain boundary serration that is observed. 

Our experimental observations are compared to thermodynamic simulations, revealing a stark difference. ThermoCalc 

predicts precipitation of M23C6, M2B, TCP mu and eta (Ni3Ti). The M2B boride is observed in this system, but M23C6, 

mu or eta were not once observed. These phase structures were included in the EBSP template matching. It may be that 

Figure 2-10: Modelled solvus temperatures for the (observed) M2B boride and (not observed) M23C6 carbide. 
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there are insufficient accurate observations of these phases in the database we used (TCNi8) for ThermoCalc to 

successfully interpolate to our composition and accurately predict stability. A potentially useful conclusion we draw 

from the simulations is that M2B precipitation appears to be inhibited by C, Zr and Ti, while C, B and Zr additions raise 

the solvus (stabilising) the M23C6 carbide.   

This work demonstrates the utility of the PCA-EBSD/EDS method in extracting representative EBSPs and EDS spectra 

from combined and simultaneous datasets for the purposes of phase classification and observing trends in chemistry. 

Included within the spatial maps is information on the location, size and shape of each phase. In the present work these 

observations are not quantitatively analysed, but we note that this is likely important for the relative contributions to 

high temperature creep performance of these engineering alloys.  

This study used a high SEM voltage and a coarse step size (100 nm) which limits our ability to classify ultra-fine 

precipitates that are occasionally observed. Adjustment to the sampling geometry, or use of alternative techniques such 

as TEM or transmission Kikuchi diffraction (TKD), may be required for greater spatial resolution. A combinatorial PCA 

approach, using VARIMAX, could be used for a TEM diffraction and EDS experiment, but care should especially be 

taken when considering a VARIMAX rotation for TEM spot diffraction classification as the experimental intra-pattern 

variance may not necessarily be equal across different structures. Furthermore, even at the relatively loose variance 

tolerance limit we have used in this work, if a unique signal is only coming from one or two scan points the PCA 

Figure 2-11: Grain boundary observations for four alloys and three heat treatments (varied cooling rate, see Fig. 3). 
Serrations are highlighted in orange circles. They are only observed when boundary coverage of precipitates is not 
dense. Backscatter imaging, 20 kV, 10 mm working distance.  
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approach may not see sufficient inter-pattern variance to extract a unique component. We have previously discussed 

this effect and other PCA artefacts in Chapter 1. 

7. Conclusions 

From the present study the following conclusions may be drawn: 

1. Thirteen alloys across C, B, Zr and (low) Ti composition space have been characterised, as well as two alloys 

with lower Cr:Al ratio, V208C, and RR1000, to investigate intergranular precipitation. The main alloy series 

exhibits M6C and (intragranular) MC carbide precipitation, as well as M2B borides. A NiAl phase is observed 

in the reduced Cr:Al alloys, but only MC and M3B2 in RR1000. 

2. Interrogation of the chemistries of the grain boundary precipitates in the main alloy reveal them all to be 

enriched in Mo and W. M6C draws less Mo than M2B, and appears to see a greater solubility for other elements. 

The NiAl phase is rich in Ni and Al. 

3. Thermodynamic simulations inaccurately predict the precipitation we experimentally observe. M23C6, TCP mu 

and eta are all predicted but never observed. The modelling predicts the M2B boride that is observed, and that 

it is destabilised by additions of C, Zr and Ti. This agrees with the lack of boride observation in Zr and Ti 

enriched alloys. 

4. Grain boundary serrations were only achievable at slow cooling rates where grain boundaries did not see 

spatially dense coverage of M6C or M2B.   
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Chapter 3 - Spherical-angular dark field imaging and sensitive 
microstructural phase clustering with unsupervised machine learning  

1. Chapter Summary 

Electron backscatter diffraction is a widely used technique for nano- to micro-scale analysis of crystal structure and 

orientation. Backscatter patterns produced by an alloy solid solution matrix and its ordered superlattice exhibit only 

extremely subtle differences, due to the inelastic scattering that precedes coherent diffraction. This chapter shows that 

unsupervised machine learning (with PCA, NMF, and an autoencoder neural network) is well suited to fine feature 

extraction and superlattice/matrix classification. Remapping cluster average patterns onto the diffraction sphere lets us 

compare Kikuchi band profiles to dynamical simulations, confirm the superlattice stoichiometry, and facilitate virtual 

imaging with a spherical solid angle aperture.  

2. Introduction 

Electron backscatter diffraction (EBSD) is a common method for analysis of crystal structure and orientation in 

engineering materials. Typically, many thousands of electron backscatter patterns (EBSPs) are produced in a single scan 

of an area of interest (AOI), and there is strong motivation to develop understanding by taking advantage of the wealth 

of information contained within each pattern. Unsupervised machine learning allows exploration of the structure of 

EBSD datasets and idenficiation of latent features. In this chapter segmentations performed with principal component 

analysis (PCA), non-negative matrix factorisation (NMF), and an autoencoder neural network are compared. Performing 

post-segmentation analysis ‘on the sphere’ using a spherical harmonics approach allows comparison of Kikuchi band 

profiles for different latent patterns and class averages to dynamical simulations. It is found that the {100} and {111} 

crystallographic planes exhibit greater superlattice Kikuchi diffraction contrast than {110} and {131}. There is 

significant difference between simulated diffraction profiles of CoNi-Co3(Al,W) and Ni-Ni3Al ɣ - ɣʹ pairings, and it is 

confirmed that the V208C Co/Ni-base superalloy matches the former. These data driven techniques enable resolution 

and quantitative analysis of of ɣ - ɣʹ structures in the scanning electron microscope. 

Superalloys enable modern engineering systems such as the high temperature gas turbine engine. To develop these 

alloys further, new tools are required to routinely analyse atomic scale ordering in microstructures. This presents a 

challenge at the micro-scale using EBSD, as existing analysis methods do not enable the separation of a parent crystal 

from its (ordered) superlattice. Often, more complicated and expensive TEM analysis using dark field imaging must be 

employed. 

In a superalloy ɣ - ɣʹ system the ɣ matrix exhibits a face-centred cubic (FCC) structure, and ɣʹ superlattice precipitates 

with a primitive L12 structure form intragranularly below a solvus of usually 1000-1200˚C. The symmetry of the FCC 

matrix is such that elastic (Bragg) diffraction is not observed as coming from crystallographic planes with mixed-odd-

and-even Miller indices. This is not the case for ɣʹ, and so-called ‘superlattice spots’ are observed in transmission 

electron microscope (TEM) diffraction. These are widely used to differentiate matrix from precipitate in dark field 

imaging. Furthermore, dark field imaging can be used to image dislocations, as the Burgers vector of a dislocation 

locally transforms the crystal, systematically altering the Bragg condition, and creating strong contrast for known foil 

normal / Burgers vector combinations. These methods have revolutionised materials science, especially in the 

characterisation of industrially relevant alloy deformation mechanisms, and have lead to vast improvements in creep 
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and fatigue life of (for example) aerospace gas turbines [30], [262], [263]. However, transmission methods require thin 

foils, limiting the area that can be routinely studied. This motivates development of new approaches. 

EBSD is performed in the SEM on the surface of well-polished ‘bulk’ materials. The method involves serial capture of 

2D wide angle diffraction patterns, which contain rich structural information as they are produced from an incident 

electron beam scattering, diffracting, and escaping from the sample. A map can be formed when the beam is scanned in 

a controlled manner across the surface of the sample, and large areas at a range of step sizes can be interrogated easily.  

In the superalloys, existing EBSD analysis methods index the ɣʹ  and ɣ as the same (usually ɣ) phase, as unfortunately 

Kikuchi diffraction and the formation of EBSPs derives from extensive inelastic electron diffraction prior to elastic 

scattering and the formation of Kossel cones [109], [114], [123]. This means that the differences in electron scattering 

Figure 3-1: Similarity of EBSPs from diffracting ɣ and ɣʹ. (a) and (b) show the (identical to the eye) upper halves 
of simulated diffraction spheres, and (c) presents a typical pattern quality map from an EBSD scan (Hough-indexed 
with Bruker eSprit 2.1). 
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behaviour of ɣʹ and ɣ is extremely subtle and difficult to detect [107], [112]. Diffraction patterns for the two phases, 

calculated using dynamical diffraction theory, are presented in Figure 3-1. Global EBSP simulations of ɣ and ɣʹ are 

performed to highlight their similarity, as well as a typical band image quality (IQ) image. The IQ map corresponds to 

average peak height of the Hough transformed EBSP, and is often used as a pseudo-backscatter mode in conventional 

EBSD-based imaging.  

In this work, new, and now accessible, machine learning (ML) based-approaches are used to tackle this challenging 

segmentation problem in a Co/Ni-base superalloy.  

PCA is a powerful tool in identifying (scan) points of self-similarity and can be used to reduce EBSD data in an 

observation-by-variable matrix (‘data matrix’) down to a handful of high quality patterns. These can then be efficiently 

indexed [130], [131]. Using PCA, Chapters 1 and 2 have previously combined structural information from EBSD with 

chemical fingerprints from simultaneous energy-dispersive X-ray spectroscopy (EDS) to characterise the phase of a 

microstructural constituent and separate carbide types [93], [264].  

NMF has seen extensive use in analysis of maps made up of (usually 1D) X-ray spectra, as the strictly positive nature 

of signal ‘hit’ counting provides an excellent boundary condition for decomposing a data matrix into its latent factors 

[182], [236], [265].  

Autoencoder neural networks have not seen significant application in electron microscopy, and here the applicability is 

evaluated [198], [211], [266]. They come in many flavours: deep (many-layered) or shallow, linear or convolutional. 

All are based on the idea of training the identify function, with information channelled through a ‘bottleneck’ layer 

containing only a few nodes. This forces the network to learn the structure of the data, with bottleneck activations 

representing the ‘firing’ of latent features. A shallow (single hidden layer) autoencoder, employed in this work, can be 

thought of as performing a non-linear matrix decomposition. This is regularised with the L2 norm of the weights and a 

Kullback-Leibler divergence penalty to the hidden layer latents. Deep (convolutional) neural networks are starting to 

see deployment to supervised EBSD classification problems [242], but there has been little discussion of what 

crystallographic features neural networks are capable of learning. This is a secondary motivation for the present study. 

These data science-based approaches have been performed through clustering of the captured diffraction patterns (which 

are 2D images captured in direct space). To provide evidence of their success, and reveal more about the microstructure 

of a Co/Ni-base superalloy, clustered patterns are analysed ‘on the sphere’. This analysis is used to drive development 

of an EBSD-focussed angular resolved segmentation, and presented here is ‘spherical-angular dark field imaging’. 

3. Methods 

3.1 Experimental 

A sample of V208C Co/Ni-base superalloy, as developed by Knop et al [1], [261], was fabricated by vacuum arc melting 

and casting, then homogenised and hot rolled at 1200˚C. It was solution heat treated at 1100˚C, and aged at 800˚C for 

4 h. The sample was prepared by standard metallographic grinding and polishing. EBSD was performed on a Zeiss 

Sigma300 FEGSEM, equipped with Bruker e-FlashHD detector at 20 kV with an 120 μm aperture and high current mode, 

resulting in a probe current of ~10 nA. The sample was tilted to nominally 70˚. For the map analysed in this work, a 

step size of 30 nm was used in scanning of a 2.85 μm by 2.16 μm AOI, with patterns captured at a resolution of 600-by-

800 pixels. EBSPs were simulated using Bruker DynamicS [132], [247], using a cut-off diffraction condition intensity 
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of 5.0% of the maximally scattering reflector, and minimum plane spacing of 0.1Å. These simulations were performed 

for CoNi (FCC solid solution), Co3(Al,W) (L12 ordered), Ni (FCC), and Ni3Al (L12 ordered), structures.  

3.2 Data preparation 

To eliminate systematic error from the analysis we normalise the EBSPs. Usually this entails subtracting the mean pixel 

value from each pattern and dividing by the standard deviation, which is the operation we perform for our PCA and 

autoencoder analysis. For NMF, as all data must be positive, we subtract the minimum value from each observation 

(EBSP) and divide by its standard deviation. Consequently there is an inhomogeneity in the mean value of NMF-

normalised data, which is known to manifest in one of the calculated non-negative factors [182].   

Without data adjustment the presented methods are intrinsically non-local. This means that the EBSPs could be 

unpacked and factorised in any order and there would be no difference to the calculated principal components (PCs), 

non-negative factors or autoencoder weights and biases. This has advantages, but when identifying very fine differences 

in latent variables it is useful to leverage localisation as additional input information to our problem. As discussed in 

Chapter 1 this brings the PCA analysis closer to the NLPAR approach set forth by Brewick et al [129]. In the present 

work, a spatial weighting kernel is introduced to the pipeline, which clusters patterns from local spatial neighbourhoods. 

This weighting kernel is applied directly to the data, and the maps can be used with the non-local algorithms as 

previously introduced. For the autoencoder a convolutional layer could have been introduced to achieve a similar effect. 

The spatial weighting kernel is described based upon the work of Guo et al [267], where for each EBSP X'; in the ith 

row and jth column of the AOI, the locality-corrected pattern, X';0TZ10, is introduced as: 
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This algorithm imposes a Gaussian-like kernel onto the AOI: patterns are averaged with weights decaying on their 

square separation within a kernel of consideration. Alternative kernel functions are of course possible, but it is found 

that this one is functional and useful. In this work a kernel size r is employed, equal to three steps within the map. 
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3.3 Algorithms for learning latent factors 

The methods employed in this chapter have previously been discussed in Section LR.4.2. Briefly, PCA acts to extract 

the dataset directions that maximise contribution to dataset variance in orthogonal (independently uncorrelated) 

directions. This is equivalent to the SVD of the data matrix, as presented in Figure 3-2a.  NMF similarly finds a dataset 

decomposition, Figure 3-2b, but all the scores and loadings are greater than or equal to zero. As an approach to 

unsupervised ML, it is therefore particularly suited to signals that are intrinsically additive, such as counting electrons. 

The (fully-connected) autoencoder neural network Figure 3-2c employed has three layers: an input (of dimension n), a 

single hidden layer (of dimension k) and the output, with the same shape as the first. A logistic sigmoid activation 

function is applied for the sole hidden layer, with the network’s outputs left unscaled after the second set of weight 

multiplication and bias addition. Because the output has the same shape as the input, the network’s loss function can be 

calculated point-wise as the mean-squared-error, combined with some regularisation terms to prevent inflation of 

weights and encourage sparsity. L2-weight regularisation is used (a penalty to the magnitude of the weights and biases) 

along with a Kullback-Leibler (KL) divergence term (which penalises deviation of a set of activations from a chosen 

distribution). Labelled are m observations (scan points) and hidden activations z. In the autoencoder I# is selected as 

0.05, with λ and ⍵ as 0.15. The network is randomly initialised then trained with scaled conjugate gradient descent for 

300 epochs (full cycles through every dataset EBSP). Scores were calculated as the values of z for each example. Latent 

patterns are taken as the columns of the encoder matrix. 

The analysis presented in this work was performed on a 64-bit Windows 2019 Server PC, with an Intel ® Xeon ® Gold 

6138 CPU and 256 GB of RAM. The SciKit-Learn Python 3.7 package was used for PCA and NMF decompositions, 

and the autoencoder developed in MATLAB 2019b with the Statistics & Machine Learning toolbox.  

NMF and PCA EBSP dataset decomposition routines have been implemented in the ebspy Python package. The pattern 

centre refinement algorithm is available in AstroEBSD, written in MATLAB. These repositories are available open 

Figure 3-2: Visualisations of the matrix algebra involved in PCA (a), NMF (b), and the autoencoder (c). 
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access and can be found at github.com/tmcaul and github.com/benjaminbritton respectively. Band analysis workflows 

are presented at github.com/tmcaul/SphericalAngularDF, and will be incorporated into AstroEBSD. The data and 

analysis pipeline has been made available open access at DOI: 10.5281/zenodo.3837276.  

3.4 Spherical EBSP analysis 

Analysis of the profiles of Kikuchi bands in EBSPs is inherently better suited to a spherical co-ordinate system than the 

gnomonic projection. In the spherical projection, the band centre is a great circle which is the plane perpendicular to the 

plane diffracting normal. The band can be sampled by examining subsequent small circles, each perpendicular to the 

diffracting plane normal. Each band profile is calculated through integration ‘on-the-sphere’, where Kikuchi bands have 

parallel edges, as opposed to integration along hyperbolic lines in the gnomonic projection [145], [146] 

Here the formulation of Hielscher et al [145] is adopted, and the measured EBSPs are re-projected onto a calibrated 

sphere. In order to do this, precise knowledge of the crystal orientation at the scan point is required, coupled with a 

precise measurement of the pattern centre. To simultaneously achieve this, a simple gradient ascent algorithm is 

implemented. This uses the peak height of the cross correlation function (XCF) of a candidate EBSP and an orientation 

refined, simulated template from the evenly SO(3) sampled library. Starting with an initial estimate of the pattern centre 

and crystal Euler angles (from Bruker Esprit 2.1), we simulate templates with increments in PCX, PCY and detector 

distance (DD), following conventions of Britton et al [117]. The gradient in XCF peak height with respect to PCX, PCY 

and DD is used to generate an updated centre, and template matching used to get an updated orientation. This procedure 

is implemented in MATLAB and iterated with decreasing step size in PCX, PCY and DD to generate a highly accurate 

pattern centre and orientation. This algorithm is discussed further in Appendix 1. 

This geometry and crystal orientation is used to re-project candidate EBSPs onto the sphere for subsequent analysis. 

This is achieved by calculating a function f with respect to diffraction directions ξ that maps the inverse gnomonic 

projection. This follows the expansion: 

Figure 3-3: EBSPs are re-projected onto the diffraction sphere using precise knowledge of the pattern centre and 
crystal orientation. 
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Where ä1B are the spherical harmonic functions, and Aó(ç, é) are the Fourier coefficients of f. N corresponds to the degree 

of harmonic employed for the expansion. Several approaches for calculation of the Fourier coefficients have been 

discussed by Hielscher et al [145], and in this work the ‘quadrature’ method is employed with N = 256. 

The diffraction pattern, now on the sphere, can be analysed. The band profiles can be extracted through projections of 

relevant crystallographic planes using the MTEX orientation analysis MATLAB package. This pipeline is presented in 

Figure 3-3.  

With this calculated projection and the Kikuchi band profiles, the intensity can be integrated in spherical co-ordinates. 

This corresponds to summing the path-normalised sums of the small circles of the diffraction sphere, varied along the 

opening angle around a plane projection. Specifically, this is an integration with respect to all the possible rotations 

around the plane normal, R about angles θ [145]: 
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With ɸ(ñ) the resultant band profile and › the spherically projected pattern. This analysis is performed for both global 

simulations (in which the full ›	 is calculated) and re-projected patterns in experimental co-ordinates, for which 

 › = A(X), with P a single (square) pattern. In this work, if multiple {hkl} plane projections are present in the field of 

view the profiles are mean-averaged.   

4. Results & Discussion 

In a Co/Ni-base superalloy sample known to contain a high ɣʹ volume fraction, EBSPs are collected across an area of 

interest of 2.85-by-2.16 μm, employing a scanning step size of 30 nm.   

4.1 Decomposition evaluation 

The latent factors uncovered by unsupervised learning of our AOI are compared, coefficients (latent pseudo-EBSPs) are 

evaluated and corresponding scores are uncovered by PCA, NMF and the autoencoder neural network. All three 

approaches are able to extract subtle, physically significant features. 

The first two principal components (PCs) (Figure 3-4-1,2; b-1,2) represent information specific to ɣ and ɣʹ. PCs 1 and 

2 provide reasonable distinction between precipitate and matrix, and we attribute contrast in the higher order components 

to sample topography (and subsequent impact on electron exit angle). This appears to be the case especially for PC 5, 

where there is a horizontal spatial mode. Such influence is not insignificant, as reflected in the magnitude of the scores 
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of the higher order (topography-driven) components being of a similar magnitude to the structure-derived differences 

for PCs 1 and 2. 

The solution identified by NMF appears physical in origin, as compared to the statistical solution from PCA. These 

factors are not ordered by dataset contribution (as the PCs are). Human based analysis of the NMF solutions reveals 

high contrast segmention of ɣ and ɣʹ in Factor 3 (Figure 3-4c-3; d-3), with signal from the ɣ regions  positively aligning  

to a vector from ɣʹ to ɣ clusters in variable space. Factor 1 is attributed to variation in background (as discussed our 

positivity condition necessitates a roaming EBSP mean), and the remaining factors to a combination of weak variations 

in topological mode as in PCA. The factor aligned with precipitate difference (Factor 3) concentrates intensity in the 

band interiors, which is where the band contrast lies as observed in Figure 3-5.  

Finally, the decomposition identified by the autoencoder neural network appears as heavily binarised versions of those 

seen in the matrix decompositions. Human based analysis of the autoencoder solution can be used to attribute Latent 1 

to our expected deviation between precipitate and matrix, with the others not being so easily interpretable. Binarisation 

in Latent 1 is desirable, as the model attempts to separate two very similar crystal structures. For further insight into the 

network output we present in Table 1 the covariances of the latent factor scores. As requested the variance in each factor 

(the diagonal components) are approximately 0.2, with the off-diagonal components smaller. There remains a fairly 

substantial degree of covariance (for example Factors 4 and 5), even after significant KL-divergence regularisation. As 

most notably comparable with NMF (PCA does not present a single latent factor solely attributable to ɣʹ) contrast 

between matrix and precipitate is mostly contained to the band interiors, observed in Latent 1(Figure 3-4e-1; f-1). The 

sense of this vector is opposite to that in the NMF, despite similar sense in ɣ / ɣʹ separation in scores. This is likely due 

to the difference in normalisation required by NMF and which side of the mean the vector is operating from. The latent 

signals are much noisier than those identified with the linear methods, despite a low ultimate error rate and very accurate 

reconstruction.  

4.2 Superlattice segmentation 

All three approaches are able to identify subtle differences between ɣ and ɣʹ. Firstly, analysing the PCA-reduced dataset, 

the components are binarised at the 0.38 quantile point (subjectively identified) on the sum of the first three PCs (which 

we interpret to contain significant matrix / precipitate contrast). For the NMF and autoencoder separations, the 

binarisation is performed at the 0.38 quantile on Factor 3 and Latent 1 respectively. The segmentations are presented in  

  

Factor 1 2 3 4 5 

1 0.2036 0.0595 0.0392 0.0630 0.0064 

2 0.0595 0.1930 0.0509 -0.0179 0.0301 

3 0.0392 0.0509 0.1917 0.0205 0.0605 

4 0.0630 -0.0179 0.0205 0.2010 0.0945 

5 0.0064 0.0301 0.0605 0.0945 0.2043 

 

Table 3-1: Covariances of autoencoder latent factor scores. Shown in bold are the intra-factor variances. 
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Figure 3-4: Latent factors identified by our three unsupervised machine learning algorithms. PCA - (a,b), NMF – 
(c,d), and the autoencoder (e,f). Kikuchi bands are labelled in (g) to show corresponding plane projections. 
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Figure 3-5: Comparison between Kikuchi band profiles obtained from (a) averages of the PCA-identified clusters, 
and (b) differences between profiles for simulated CoNi-Co3(Al,W) and Ni-Ni3Al, and PCA-cluster ɣ - ɣʹ systems. 
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Figure 3-6. All three lead to reasonable and spatially consistent classification. Subsequently, the average measured 

EBSPs from each of the classified regions are compared to dynamical simulations ‘on-the-sphere’ after Hielscher et al 

[145] in order to correct for hyperbolic divergence of as-measured (gnomonically projected) Kikuchi patterns. The 

spherically integrated profiles, ɸ';./0, of crystal plane families {hkl} for each of the ɣ - ɣʹ class-average EBSPs are plotted 

in Figure 3-9. These are directly compared with dynamical simulations (for a replica of the crystal orientation and 

camera geometry). Due to the similarly good performance  in classification, the cluster-average patterns are extremely 

similar for PCA, NMF and autoencoder approaches. This can clearly be seen in Figure 3-7. 

Figure 3-5a shows the same pattern in ɣ and ɣʹ intensities for the clustered experimental EBSPs as for the dynamical 

simulations of the CoNi-Co3(AlW) system: ɣʹ generally diffracts less at small opening angles than ɣ, as was qualitatively 

observed in the latent factor backscatter patterns (Figure 3-4). This is the case across the AOI for the {100}, {110}, 

{131}, and {111} band profiles. The differences between matrix and precipitate profile, presented in Figure 3-5b, shows 

the experimental (clustered) EBSPs retain consistently the same sign in profile difference as the Co pairing, and are 

opposite in sign to the Ni pairing. In order to confirm that this observation is not an artefact of our detector 

undersampling the diffraction sphere, global simulations are performed in addition to the inverse-gnomonically 

projected single templates analysed in Figure 3-5. Global simulations of the full diffraction sphere, presented in Figure 

3-8, show the same fingerprint.  

The difference in scattering behaviour between Ni and Co-base systems is attributed to chemical segregation between 

matrix and precipitate. In Co-base superalloys the ɣʹ precipitates require stabilisation with W to prevent formation of 

extraneous microstructural phases such as B2 CoAl and DO19. This necessitates segregation of W to the precipitates, 

and will result in a greater tendency for inelastic electron scattering [107], [135], [268]. This in turn reduces the 

elastically diffracted signal for the ɣʹ relative to the ɣ. The lack of heavy element segregation to ɣʹ in the Ni / Ni3Al 

system leads to a reversal in contrast, which is not observed the experimental patterns. Winkelmann & Vos [133] have 

previously established the importance of the atomic species and degree of localisation of the scattering inelastic source 

in Kikuchi band formation. These results, and attribution of the segregation of W to the ɣʹ system, agree with their 

conclusion that eventual measured intensity distributions are sensitive to scattering of the incoherent point source in the 

unit cell.  

  

Figure 3-6: Clustering performed on the PCA (a), NMF (b), and autoencoder (c) decompositions, in order to identify 
ɣ (black) and ɣʹ (coloured). 
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Figure 3-7: Comparison between Kikuchi band profiles obtained from (a) averages of the NMF-identified clusters, 
and (b) averages of the Autoencoder-identified clusters. 
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Figure 3-8: Comparison between Kikuchi band profiles obtained from (a) the global simulation (full diffraction 
sphere) and (b) a re-projected single template, for both a CoNi-Co3(Al,W) and Ni-Ni3Al ɣ - ɣʹ simulated systems. 
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4.3 Spherical-angular dark field imaging 

In order to directly observe the ɣ - ɣʹ intensity polarisation seen in the cluster-average EBSPs, the profile sums within 

one Bragg angle of the plane projection (integrating +/- the Bragg angle from 0˚ in the profile scheme of Figure 3-5) 

are calculated for every scan point and plane family. Specifically: 

 
U';
./0 = C ɸ';

./0 	?>
m7#3m'(!))

m7#$m'(!))
 3-7 

This is evaluated at scan point i,j, with spherically projected profile ɸ';./0, plane family{hkl}, and band opening angle 

>. This enables generation of virtual 2D microstructural images based from specific diffraction conditions, similarly to 

‘virtual dark field’ analyses commonly performed in the TEM community [147], [148], [269]. This is a more advanced 

approach than previous dark field EBSD-based methods [270], [271]. Analysis ‘on-the-sphere’, accounting for 

hyperbolic divergence of the Kikuchi bands in the gnomonic projection, enables windowing of specific diffraction based 

contrast variations. This is only possible as the profiles from all integrated {hkl} Kikuchi bands are included to increase 

signal to noise, and improving confidence in the crystallographic origin of the contrast. This contrast is verified through 

analysis of the dynamical simulations.  

Analysis of the {100}, {110}, {131}, and {111} conditions is presented in Figure 3-9. There is a wider spread in 

intensity for the {100} and {111} integrations. Correspondingly, the magnitudes of the peaks in Figure 3-5 (b-1, b-4) 

are greater than those in (b-2, b-3), in turn agreeing with dynamical simulation. The probability density function, Figure 

3-9e, accordingly displaying a greater spread of intensities for these high-contrast conditions than {110} and {131}. In 

Figure 3-9: Spherical-angular dark field imaging (Bragg summations) of the dataset: (a-d) integrated intensities of 
the corresponding band profiles , and (e) probability density distribution (histogram normalised by number of 
observations and bin width) of the calculated intensities for each of the diffraction conditions. 
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Figure 3-9e there are two superposed intensity distributions (which are not resolved here) for each diffraction condition, 

corresponding to signals from the matrix and precipitate. The wider spread in intensity for {100} and {111} virtual 

crystallographic images is a result of better separated average intensities, as observed in the cluster-average profiles of 

Figure 3-5. 

4.4 Consistency and discussion of clustering approaches 

In order to compare our clustering approaches for separation of precipitate from matrix, a simple ɣ - ɣʹ normalised 

contrast metric, C, is calculated for each diffraction condition family and clustering approach: 

 
Y =

Uɣʹ
./0 − Uɣ./0

Uɣʹ
./0 + Uɣ./0

 3-8 

For U^.19R./0 in the first instance corresponding to the mean value of ɣ and ɣʹ segmented regions of U';./0. C is calculated 

for each of the segmentation approaches (spatially resolved in Figure 3-6). C is also calculated for the simulated CoNi-

Co3(Al,W) and Ni-Ni3Al ɣ - ɣʹ pairings. These, along with errors propagated from standard error in the means of the 

corresponding plane-specific integrated intensities, are presented in Figure 3-10. These contrast metrics show that all 

three dataset segmentations capture the negative contrast predicted for the CoNi-Co3(Al,W) system. It can be concluded 

Figure 3-10: Normalised contrast metrics calculated for each of the diffraction conditions observed, compared to 
CoNi-Co3(Al,W) and Ni-Ni3Al ɣ - ɣʹ pairing dynamical simulations. 
 



 124 T P McAuliffe 

that the ɣʹ in this alloy has crystallographic behaviour closer to the Co3(Al,W) archetype than Ni3Al, a characteristic that 

has historically required TEM to observe.  

Of the presented approaches, NMF seems to achieve the best consistency in segmentation (resulting in smaller error-

bars in Figure 3-10), and broadly the only approach able to present consistently negative contrast across all diffraction 

conditions fully within error. This is due to the algorithm’s convergence to a basis that explicitly includes a factor 

corresponding to a ɣ - ɣʹ vector in variable space. This was not the case for PCA, which did not identify a component 

as well aligned to this crystallographic difference.  

The autoencoder identified a similar latent factor to NMF, well aligned to a crystallographic difference vector. However, 

the segmentation was not as well spatially resolved. This is likely due to the activation function we employ, which due 

to the extreme similarity between matrix and precipitate EBSPs experienced a challenging task in where to correctly 

assign the domain of the logistic sigmoid function to observe the necessitated (Kullback-Leibler regularised) variation 

in latent score. The autoencoder implementation with one hidden layer and no convolutional filters compares favourably 

to PCA and NMF. With supervised structure classification using deep neural networks beginning to see application to 

EBSD data, it is valuable to investigate specifically what can be learned by simpler architectures. After 300 epochs of 

(over-) training the latent representation the simple network has learned is noisy, despite very accurate reconstructions. 

The ability of the network to learn EBSP-specific features (such as zone axis contrast, band intensity profiles) likely 

further diminishes with max-pooling and convolution operations.  

Spherical-angular dark field imaging presents exciting possibilities for microstructural analysis. Conventional micro-

scale SEM imaging modes (usually backscatter or secondary electron) are naïve to detected electron energy and 

geometry. Superalloys, due to their structural and chemical similarity in total inelastic scattering propensity, therefore 

often require chemical etching and surface modification to generate suitable contrast for evaluation. This results in 

highly subjective analysis, as knowledge of how the surface is modified can be extremely complicated and vary. Direct 

use of scattering and diffraction data reduces this uncertainty and it has been shown that collecting intensity ‘on-the-

sphere’ generates contrast between precipitate and matrix at specific diffraction conditions. This contrast is due to 

intensity differences derived from chemical segregation. Averaging over ML-derived segmentations of the dataset 

amplifies the signal to noise for these subtle variations and provide a comparison metric between microstructural 

constituents. Such an approach may prove useful for similarly challenging crystallographic similarity problems in 

EBSD, such as martensite characterisation and carbide type differentiation. 

5. Conclusions 

In this work segmentation of ɣ matrix from ɣʹ precipitate in a Co/Ni-base superalloy has been investigated, using 

unsupervised machine learning. EBSPs were successfully clustered using principal component analysis, non-negative 

matrix factorisation, and an autoencoder neural network. The following conclusions are drawn: 

• All three approaches are suitable for identification of very subtle differences in EBSP band contrast resulting from 

superlattice ordering. NMF provides the most physically justifiable basis, including a factor that explicitly aligns 

with region ordering. The autoencoder finds a similar feature, but with worse spatial fidelity and noisy latents. PCA 

finds a basis that includes reasonable superlattice contrast in the strongest principal components, with higher order 

terms appearing to represent sample topography.   
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• Segmentations from all three approaches explicitly show less intense diffraction at the band cores in superlattice 

(L12) ɣʹ than in matrix (FCC) ɣ. This agrees with simulations of a CoNi-Co3(Al,W) system, and is opposite in sense 

to simulations of a Ni-Ni3Al system. This behaviour is attributed to reduced elastic scattering in ɣʹ where heavier 

elements (such as W) tend to segregate. 

• Virtual crystallographic imaging of the area of interest (summing intensity within one Bragg angle of the plane 

projection, accounting for hyperbolic band divergence) shows greater normalised superlattice/matrix contrast for 

{100} and {111} diffraction conditions than {110} and {131} for all three segmentation approaches. NMF provides 

consistently the lowest standard error in this contrast metric for the bands that were integrated.  
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Chapter 4 - Variation in physical properties with Nb and Ti additions to a 
Co/Ni-base superalloy  

1. Chapter Summary 

Additions of Nb and Ti to a series of Co/Ni-base superalloys derived from previous work were found to improve room 

and high temperature strength. Ti was observed to have a stronger strengthening effect than Nb. Both alloying additions 

raised the ɣʹ solvus, but even +2at.% Ti maintained a solvus of < 1100˚C. Ti reduced the density while Nb raised it. Nb 

was found to be beneficial to oxidation performance, in agreement with previous findings in Ni-base superalloys, while 

Ti was shown to be deleterious. In this the physical properties of these alloys are compared to the state-of-the-art in gas 

turbine (polycrystalline) disc materials, and it is shown that they are competitive.  

2. Introduction 

The V208 alloy series [1], [12], [261] has seen improvements in yield strength, creep resistance, oxidation resistance 

and microstructural stability in the past 6 years [13], [272], [273]. Novel characterisation methods have been built to 

facilitate rapid phase identification for alloy development [93]. In this work, years of research into Co/Ni-base 

superalloys is leveraged to achieve unprecedented strength, oxidation resistance, and density reductions, while 

maintaining a low solvus (seen to be the principal advantage of Co-superalloys as compared to their typically stronger 

Ni-base cousins. To facilitate this, the alloy series presented by Reynolds [272] (which builds upon V208C by including 

Mo for creep resistance) is improved by including additions of Nb and Ti. These additions are expected to stabilise ɣʹ 

and improve strength, via raising the antiphase-boundary (APB) energy and lowering the stacking fault energy (SFE) 

[251], [274], [275]. APB creation and stabilisation by successive a/2<110> superpartial dislocations in the ɣʹ is a well 

known phenomenon [6], [21], [32]. It is typically a yield mechanism, but has been observed during creep [32]. It is only 

observed in ɣʹ, because only here will APBs be created and require dislocation pairing. Thus, segregation of Nb and Ti 

to the ɣʹ phase, and interaction with propagating Shockley partial dislocations, has capacity to improve yield strength 

through inhibition of dislocation motion.  

 

Alloy Co Ni Mo Cr Al W Ta C B Zr Ti Nb 

(0Ti, 0Nb) ~36 ~36 2 12 10 2.75 1.25 0.3 0.085 0.04 0 0 

Base: (0.3Ti, 0Nb) ~36 ~36 2 12 10 2.75 1.25 0.1 0.042 0.04 0.3 0 

Base + 0.5Nb ~36 ~36 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 0.5 

Base + 1Nb ~35 ~35 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 1 

Base + 2Nb ~35 ~36 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 2 

Base + 1 Ti ~35 ~35 2 12 10 2.75 1.25 0.1 0.042 0.02 1.3 0 

Base + 2Ti ~35 ~36 2 12 10 2.75 1.25 0.1 0.042 0.02 2.3 0 

 

Table 4-1: Alloy compositions discussed in this chapter (all at.%). 
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3. Methods 

Seven approximately 415 g ingots were made by vacuum arc melting under a back-filled argon atmosphere. 

Compositions are presented in Table 4-1: Nb and Ti additions were made by substituting for equal parts Co and Ni. The 

alloy labelled (0Ti, 0Nb) is the same as that labelled Alloy 1 in Chapter 2. ‘Base’ is the same as Alloy 13. Each was 

vacuum homogenised for 48 h at 1200 ̊C. Ingots were then hot rolled at nominally 1200 ̊C, above the solvus temperature, 

from an initial thickness of 23 mm to 12 mm, using successive 12-15% reductions. Samples for testing were electrical 

discharge machined from the rolled bars, and encapsulated in back-filled argon quartz tubes for heat treatment.  They 

were brought to the solution heat treatment temperature of 1100˚C at 4˚C/min (above 500˚C), soaked for 1 hour; cooled 

at 20˚C/min to 800˚C, and aged for 4 h; cooled at 20˚C/min to 500˚C, and finally air cooled. The solution stage aims to 

dissolve all the ɣʹ precipitated during hot rolling and uncontrolled cooling, in order to ‘reset’ the alloy and generate a 

controlled ɣʹ distribution upon ageing. 

Tensile testing was performed using a Zwick-Roell 5kN rig, with ‘dogbone’ shaped samples of 19 mm gauge section 

and approximately 2-by-1.5 mm (varying but measured) cross-section. Crosshead displacement was used for measuring 

extension. All stresses and strains reported are engineering-type. Yield stress was taken as 0.2% offset, and ultimate 

tensile strength was taken as the maximum achieved stress. A METTLER-TOLEDO differential scanning calorimeter 

(DSC) was employed to determine Tsolvus at a 10°C/minute scan rate under argon atmosphere. A Zeiss-Auriga scanning 

electron microscope (SEM), equipped with a focussed ion beam (FIB) was used to examine oxide-cross sections. 

Average oxide depths were inferred from sampling 20 points across the tilt-corrected micrograph, observing the total 

damage depth, and taking the mean. 

Electron backscatter diffraction (EBSD) using a Zeiss Gemini Sigma300 SEM, with a Bruker e-FlashHD EBSD detector 

was used to determine grain size. An accelerating voltage of 20 kV, step size of 3 μm, and pattern resolution of 160-by-

120 pixels was used to measure crystallographic orientation. Grain boundaries were defined where a pixel-neighbour 

misorientation of over 5˚ was measured. EBSD was combined with energy-dispersive X-ray spectroscopy (EDS) using 

an XFlash 6160 detector for Phase-ID, as discussed in Chapters 1 and 2. Bruker DynamicS was used to dynamically 

simulate library EBSPs for each candidate structure [132], [247]. From within the fundamental zone for each phase, a 

SO(3) sampling frequency of 7˚ was employed for generation of an EBSP template library in the detector reference 

frame (pattern centre selected with Bruker Esprit 2.1 from the well-indexed matrix regions and simulated patterns 

sampled as 200 by 200 px). RC-spectra were quantified with Bruker Esprit 2.1 using a P/B ZAF correction algorithm 

accommodating the 70˚ sample tilt required for EBSD.  

Density measurements were taken using the Archimedes method, by comparing the measured weight both in air and 

suspended in deionised water.   

4. Results 

All melted alloys except for +2Nb were successfully hot rolled above the ɣʹ solvus. The +2Nb alloy exhibited 

‘alligatoring’ upon the final pass through the hot rolls. This is likely due to its high solvus, which may have been 

transitioned through due to heat flow from the hot ingot to the cold rolls. Backscatter SEM images of 0Ti, 0Nb and the 

Base+ 1 Ti alloys are presented in Figure 4-1, with the latter representative of others’ microstructures. For further 

comparison see Appendix 4, Figure Ap4-1. 
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Figure 4-2 presents high temperature tensile testing results from the characterised alloys. It is observed that additions 

of both Nb and Ti increase substantively increase the room temperature strength of the developed alloys, permitting 

over 1 GPa in yield strength at room temperature in the +2Ti alloy. Nb appears to have less of a strengthening effect 

than Ti. Furthermore, Ti additions raise the high temperature yield stress more substantially than Nb. Neither Nb nor Ti 

appear to have a certain effect on ultimate (peak) strength, but the +2Ti alloy exhibits the highest ultimate strength at 

700˚C, exceeding 1.2 GPa. In Table 4-2 grain sizes, lognormal distribution parameters, and phse presence are presented. 

The natural log of the grain size is fitted to a Gaussian distribution, with sample mean Ü[  and sample variance ’̂%. 

Formally: 

 log(fl)~	·(Ü, ’%) 7-1 

Where G is grain size, m and s are the true population mean and standard deviations, and N is the normal distribution. 

Comparisons of the observed distributions both with and without  twins shows strong similarity. The values of Ü[  lie 

within much less than a single ’̂; it can be concluded that there is no evidence that the grain sizes are strongly affected   

 

  
Alloy Median / μm !"  / log(μm) #$ / log(μm) Precipitates 

W
ithout tw

ins  

0 Ti, 0 Nb  13.74 2.72 0.630 M2B, M6C, MC 

Base  64.4 3.99 0.746 MC 

Base + 1 Ti  107.7 4.48 1.07 MC 

Base + 2 Ti  72.4 4.10 0.865 MC 

Base + 0.5 Nb  54.6 3.81 0.830 MC 

Base + 1 Nb  59.4 3.91 0.753 MC 

W
ith tw

ins 

0 Ti, 0 Nb  16.8 2.93 0.752 M2B, M6C, MC 

Base  28.7 3.28 0.754 MC 

Base + 1 Ti  45.7 3.71 1.00 MC 

Base + 2 Ti  29.5 3.31 0.820 MC 

Base + 0.5 Nb  21.8 3.07 0.747 MC 

Base + 1 Nb  25.5 3.21 0.783 MC 

 

Table 4-2: Grain sizes and distribution parameters after Nb and Ti additions to the alloys.  

  

Figure 4-1: Backscatter SEM imagse from 0Ti, 0Nb and Base + 1 Ti alloys. The latter is representative of all 
other alloy microstructures, for further comparison see Appendix 4. 
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by the alloying additions. Instead, it seems that the strength improvements observed across temperature regimes are 

derived from chemical interaction with dislocation propagation mechanisms.  

As presented in Figure 4-3, additions of Nb and Ti both act to raise the ɣʹ solvus. Fitting a linear trend to the measured 

values gives an increase of 33˚C / at.% for Ti additions (with an R2 of 0.96), and 16˚C / at.% for Nb additions (R2 of 

0.97). This is expected – Nb [251] and Ti [276] are both known to be ɣʹ stabilisers, and their addition will permit the 

superlattice to be more stable at higher temperatures, implicitly raising the solvus.  

The oxidation performance of the considered alloys is examined by measuring the damage penetration depth after 

exposure at 800˚C for 100 h. Oxide cross-section micrographs are presented in Figure 4-4, obtained by slowly polishing 

the surface at tilt with a FIB. It is observed that Ti additions appear detrimental to oxide performance, and lead to 

significant increases in damage depth, especially with regard to ingress depth of Al2O3 ‘fingers’. Nb improves oxidation 

performance in our alloys, similarly to in Ni-base superalloys as discussed by Christofidou et al [251].  

Finally, the density of each of the alloys was measured, and results are presented in Table 4-3. Additions of Ti reduce 

the density, while Nb raises it. This agrees with expectation, as equal parts of (heavier than Ti, lighter than Nb) Ni and 

Co were replaced in the nominal atomic compositions examined. All physical properties are tabulated in Table Ap4-2. 

  

Figure 4-2: Yield and ultimate stress variation with temperature, for each of the candidate alloys. 
 



 130 T P McAuliffe 

 

  

Figure 4-3: Solvus measurements from DSC cooling curves for each of the candidate alloys, with comparison to 
previously published V208C [1] and coarse grained RR1000 [2]. 
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Figure 4-4: Cross-sections of oxide scale after 100 h exposure at 800˚C. 
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5. Discussion 

Figure 4-5 presents a comparison to the evaluated physical properties of this alloys series in comparison to state of the 

art superalloys used in gas turbine applications, by various engine manufacturers. The compositions presented in this 

work maintain a low solvus (< 1100˚C), significantly lower than RR1000 and the candidate replacements Alloys A and 

B [251]. The densities we observe are comparable to previous Co-base alloys, such as the CoWAlloy series [10] and 

V208C [1], but typically higher than the Ni-base alloys such as RR1000 [2] and LSHR [277].  The oxidation resistance 

of the alloys appears to be comparable, and in the case of the Nb-containing alloys slightly better than, the competitor 

alloys. As shown by Ismail et al [273], Co is known to detriment the oxidation properties of superalloys as it has been 

shown to promote the formation of a Co3O4 outermost layer, which is mechanically unstable and non-protective, as it 

spalls off the surface. Additions of Ti, as observed here, tend to detriment oxidation performance of superalloys. This 

is usually attributed to a destabilisation and/or addition of vacancies to stable, protective Cr2O3 layers [278], which have 

Alloy: (0 Ti, 0 Nb) Base (0.3 Ti, 0 Nb) Base + 0.5 Nb Base + 1 Nb Base + 2 Nb Base + 1 Ti Base + 2 Ti 

Density: 

/ g cm-3 
8.67 8.61 8.69 8.74 8.79 8.61 8.53 

Table 4-3: Measured densities for each of the compared alloys.  

  

Figure 4-5: High-temperature tensile (HTT) testing of candidate alloys (a), solvus and solidus (b), density (c) and 
oxide damage depth at 100 h / 800˚C (d), referenced with respect to literature where comparable measurements 
are available. 
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been shown to be present in the V208 series of Co-base superalloys [272], [273]. In contrast, this work verifies that the 

unexpected improvement in oxidation resistance provided by Nb, as observed by Christofidou et al [251], holds true for 

the V208 Co/Ni-base superalloy series. This was attributed to stabilisation of the Cr2O3 protective layer, and a 

hypothesised reduction in the solubility of O in the matrix. Limited diffusion of O at the metal/oxide interface in this 

way was used to rationalise the much reduced ingress depth of Al2O3 ‘fingers’, an observation observed in the results 

presented here as well.    

Finally, the room and high temperature yield strengths of the presented alloys are comapred to the state-of-the-art. As 

previously discussed, additions of Nb and Ti improve the yield and ultimate strengths at both room and high temperature, 

with the +2Ti alloy achieving > 1 GPa RT yield strength. The comparison to the CoWAlloy series, in which compression 

testing was published, was performed by using compression/tension asymmetry ratio from equivalent temperature 

comparisons of Udimet720-Li polycrystalline superalloy, published in the same paper [10].  

The results presented here agree with the findings of Shang et al [279], who adopt a first-principles approach to compute 

the influence of 26 alloying elements to Ni-base superalloys at finite temperature. All decrease the SFE, which will lead 

to improved forest strengthening of the matrix phase. Additions of Ti are predicted to have the greatest effect, and the 

effect of Ti is observed to be greater than that of Nb. After Collins & Stone [280] the gains in strength can be considered 

to be a function of enhanced weak/strong pair coupling between propagating dislocations and ɣʹ precipitates. An increase 

in APB energy corresponds to more strongly coupled superpartial dislocation pairs, and a subsequent increase in the 

required critical resolved shear stress (CRSS) to propagate the system. Chandran & Sondhi [281] have shown using 

density functional theory methods that both Nb and Ti raise the APB energy on the {111} plane. In the pure Ni3Al case, 

an APB energy of 181 mJ m-2 was calculated, rising to over 600 mJ m-2 for a 0.5 Ti occupation of the atomic site. Nb 

saw similar, but slightly lower, enhancements. Notably, it appears that the rate of increase in APB energy for Ti additions 

is greater than for Nb at low (< 0.2) Al site fractional occupancies. As presented in Table 4-4, the addition of +2X to 

the Al site, all else remaining equal, leads to an occupancy of 0.13. At this level Ti is expected to have a greater effect 

than Nb on the {100} APB energy, at 0K. Correspondingly the +2Ti alloy sees the greatest strength improvements. At 

higher temperature it is known that the {100} slip system begins to activate, initially leading to Kear-Wilsdorf locking 

but eventually strength loss. It seems likely that a similar trend exists for increased APB energy in Ti and Nb containing 

systems, given the trends in strength improvements at high temperature that have been observed. 

  

 

Addition: (0 Ti, 0 Nb) Base (0.3 Ti, 0 Nb) Base + 0.5 Nb Base + 1 Nb Base + 2 Nb Base + 1 Ti Base + 2 Ti 

Al 0.71 0.70 0.69 0.67 0.63 0.67 0.63 

W 0.20 0.19 0.19 0.18 0.17 0.18 0.17 

Ti 0.00 0.02 0.00 0.00 0.00 0.07 0.13 

Nb 0.00 0.00 0.03 0.07 0.13 0.00 0.00 

Ta 0.09 0.09 0.09 0.08 0.08 0.08 0.08 

 

Table 4-4: Nominal ɣʹ Al site occupancies for the considered alloys, given full partitioning to the preferred phase. 
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6. Conclusions 

In this work seven new V208-derivative Co/Ni-base superalloys are presented, with systematically varied Nb and Ti 

content. Their physical properties have been characterised: ɣʹ solvus, density, oxidation resistance, and room/high-

temperature yield strength. The alloys are comparable to state-of-the-art gas turbine Ni-base superalloys, but with a 

substantially lower ɣʹ solvus. Specifically: 

• Nb and Ti improve the room and high-temperature yield strength. The alloy with +2Ti achieved > 1 GPa for 

room temperature yield. Ti appears to raise the strength to a greater extent than Nb, likely due to its stronger 

effect on APB energy. 

• Nb and Ti raise the ɣʹ solvus temperature, but even the most significant additions maintain the desirable 

processing window provided by Co-base superalloys (< 1100˚C). 

• Ti is detrimental to oxidation performance, while Nb improves it. There is much reduced Al2O3 intrusion in the 

Nb-containing alloys. 

• Ti additions reduce the density, while Nb additions increase it. 
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Thesis discussion 
This thesis had dual primary objectives, as introduced in the Preamble: (1) to develop and validate modern, correlative 

approaches to microstructural characterisation, and (2) to employ them to develop materials with improved thermal 

capability. Chapters 1 and 3 focus on (1), while 2 and 4 mainly consider (2). The microstructural optimisations 

presented in Chapters 2 and 4 would not have been possible without the rapid and robust characterisation developed 

earlier in the thesis. A detailed discussion follows. 

Using modern electron microscopy techniques, such as EBSD and EDS, we are able to collect large amounts of data 

over wide AOIs that detail the structural and chemical properties of microstructural constituents. Such techniques allow 

rapid validation of alloy design strategies, and can be compared to thermodynamic modelling to adjust nominal 

composition, heat treatment, and processing conditions to achieve the desired microstructure. This thesis has focussed 

on the development of post-processing methodologies to facilitate rapid phase identification (in Chapters 1, 3, as well 

as Appendices 1, 2), as well as employing them to optimise grain boundary character (Chapter 2), and screen the 

microstructure of a new set of high strength alloys (Chapter 4).  

Unsupervised machine learning is invaluable for efficient access to latent features in microscopy data. Regardless of the 

specific signals that have been measured, indpendent microstructural constituents interact differently with the rastered 

electron beam. A latent information space contains the identity and engineering-relevant characteristics (structure, 

chemistry) of these features. The methods in this work demonstrate how to access this latent space, and how it can be 

leveraged for data reduction and efficient composition screening. The information channels of particular interest in this 

work are of course the electron backscatter diffraction pattern, a function of structure and orientation (see Section 

LR.3.1), and stimulated X-ray spectra. These are correlated to each other due to both being functions of the latent space 

(structure, orientation, chemistry) that we with to access. For this reason, PCA is a natural approach to identifying 

uncorrelated (to first order) factors. As discussed in Section LR.4.2 and Chapter 1, this approach infers the unit 

eigenvectors of the (symmetric) covariance matrix, which are necessarily orthogonal, which is equivalent to the SVD 

of an observation-by-feature data matrix. When combining EBSD and EDS signals, careful treatment of the intra-

observation variance is essential, otherwise the EBSD signal (due to having many more EBSP pixels than EDS energy 

bins) will dominate the covariance matrix and EDS will be essentially irrelevant. This effect can be further leveraged to 

bias the decomposition in favour of EDS information, which can lead to improved signal to noise. In Chapter 1 this is 

explored in depth, and it is observed that spatial resolution is lost as the decomposition is biased in favour of EDS due 

to the larger interaction volume of electrons for this measurement than EBSP formation. Subsequently, a VARIMAX 

rotation is employed as a boundary condition for which set of orthogonal EBSP vectors should be regarded 

‘characteristic’ of the microstructure. Rather than taking the set which lead to maximal variance for a given 

reconstruction rank (after the Eckart-Young theorem, see Section LR.4.2), finding the set which are most similar in 

variance to each other yields physically meaningful results, as this is condition is expected. This is because all EBSPs 

have many (and approximately similar numbers) of overlapping band, and measured patterns are normalised to unit 

variance. For a visual comparison of PCA, PCA+VARIMAX, and the NLPAR approach of Brewick et al [129], see 

Figure LR-19.  

Having identified these rotated characteristic EBSPs (RC-EBSPs), each representative of a microstructural domain and 

coupled with a characteristic spectrum (RC-Spectra), modern post-processing methods for structure and orientation 
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determination can be employed. The data reduction performed by PCA facilitates faster refined template matching, as 

developed by Foden et al [137], but with a smaller set of patterns to index. The compute time gained by reducing the 

set of patterns to index can be repurposed to template matching with a much greater number of phases. In Chapter 2, 

the RC-EBSPs are template matched with : FCC Co/Ni matrix; NiAl and Co3W intermetallics; M6C, M23C6 and MC 

carbides;  MB, M3B2 and M5B3 borides; eta (Ni3Ti), sigma, mu and P topologically close packed phases. Template 

matching to such a range of structures (some of very low symmetry) is only possible on the PCA reduced dataset. The 

improvement in signal-to-nosie facilitated by PCA also permits template matching of microstructural regions that only 

weakly diffract, such as borides. In Chapter 2, this approach was used to screen grain boundary precipitation over a 

wide region of composition space, to identify the point at which M6C carbides would no longer precipitate. This point 

was then used as the ‘base’ composition for subsequent alloying to improve thermomechanical performance in  

Chapter 4, through Nb and Ti additions. The PCA approach was also used in Chapter 4 to validate that no additional 

grain boundary phases had precipitated, other than the benign MC carbide. Improvements in strength and oxidation 

resistance were achieved, leading to the submission of a patent for a new Co/Ni-base superalloy.  

It is hoped that the robust microstructural characterisation pipeline developed in this thesis can be used for similar 

analyses to those presented in this work as a matter of routine, as an easy to use tool for understanding  phase character 

(structure and chemistry) in a host of engineering applications. For example, Dessolier et al have leveraged the approach 

for understanding carbide and G-phase precipitation in alloys relevenat to the oil & gas industry [282].  

A particularly challenging task in EBSD is the separation of L12 ɣʹ precipitates from the FCC ɣ matrix. Separating these 

precipitates, which are of extreme engineering significance (see Section LR.2), is impossible by eye and requires a very 

sensitive analysis. In Chapter 3 three unsupervised machine learning approaches are employed to tackle this problem: 

PCA, NMF, and autoencoder neural networks. Unlike the polycrystalline case of the previously discussed analyses, here 

a single crystal region was analysed. For this reason a VARIMAX rotation was not employed, as we were trying to draw 

out the very subtle differences in band contrast between the two structures, and a maximally variance-efficient 

decomposition was required. Performing an inverse gnomonic projection (as described at Section LR.3.2.4) permits 

easier visualisation of the differences and features present in the latent factors. All three approaches were able to access 

a sensible latent space, with NMF doing the best job of explicitly identifying a factor representative of the difference in 

crystal structure, as required. This correlated with its minimal error in a derived contrast metric for quantifying the 

difference in class-average diffraction pattern for specific crystallographic plane projection / Kikuchi band profiles. In 

this chapter ‘spherical-angular dark field imaging’ is also presented, which enables imaging and visualisation of specific 

crystallographic Kikuchi features.  

In the appendices to this thesis, specific aspects of the analyses presented in the preceding chapters are discussed. These 

are included to briefly expand on interesting topics not deserving of a full chapter. A significant effort of the work for 

Chapter 3 was in developing an algorithm to very accurately obtain the pattern centre and crystal orientation, which are 

needed for the inverse gnomonic transform and band integration. Appendix 1 details this algorithm in detail, and 

presents some refinement tests and analysis of its convergence in a supervised setting. Appendix 2 develops a Bayesian 

representation of the cross-correlation peak height, in which the statistic is treated as a member of the population of all 

cross-correlations in an SO(3) library search. Modelling the distribution function as lognormal is validated, and an 

approach is developed that considers how likely it is that a given XCF peak height is randomly as high as it is. It is 
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suggested that such an approach may be helpful for determining a cut-off value for acceptability of RTM indexing, as 

cross-correlation will always provide a solution and its quality is not immediately apparent. 

Finally, a slightly different microstructural characterisation is conducted in Appendix 3, as the lattice strain state 

surrounding a TWIP-steel twin is examined.  The 4D-STEM approach identifies transmission electron diffraction spots 

and tracks their movement across the AOI, which permits evaluation of the local strain state and its variation across 

microstructural features of interest. In Appendix 3 the lattice strain resolved in crystallographically significant 

directions is evaluated and compared to an analytical model. 
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Thesis conclusions 

The dual objectives of this thesis, as discussed in the Preamble, were: (1) to develop new approaches for the quantitative 

characterisation of metal alloy microstructures, and (2) employ them to produce new alloys with optimised grain 

boundary character and high temperature strength. Given this context, the following conclusions are drawn from the 

presented work: 

• In Chapter 1 a new characterisation pipeline, combining EBSD and EDS, leveraging unsupervised machine 

learning to learn latent features (each generally aligned with a microstructural grain or sub-grain), was 

developed.. The approach enables observation of fine grain boundary phases, such as carbides, and an 

investigation into weighting between EBSD and EDS information yielded insight into optimal signal-to-noise 

for subsequent phase identification with template matching. The number of principal components to retain, an 

extremely important parameter, was identified by specifying a lower limit to dataset variance contribution 

(equivalently, eigenvalue of the covariance matrix).  

• In Chapter 2, this method was employed to better understand grain boundary precipitation of carbides and 

borides in Co/Ni-base superalloys, and compared to ThermoCalc modelling. Subpixel cross-correlation of latent 

EBSPs with simulated templates, sampled from the SO(3) orientation group, permit accurate determination of 

phase and orientation. This was applied to thirteen alloys with varied C, B, Zr and Ti content, as well as two 

with lower Cr:Al ratio, V208C, and RR1000. The main alloy series saw variation in M6C and MC carbide 

precipitation, and M2B borides at higher B levels. NiAl was observed in the reduced Cr:Al alloys. RR1000 only 

exhibited precipitation of MC and M3B2. The carbides in the main alloy series were primarily enriched in Mo 

and W, but with Mo exhibiting a preference for M2B when that precipitate was present.  

• Chapter 3 saw application of similar ideas to the difficult task of characterising L12 ɣʹ precipitates. 

Unsupervised machine learning (PCA, NMF, autoencoders) is capable of separating the two structures on the 

fine-grained differences in band contrast. These can be visualised after applying an inverse gnomonic projection 

to generate a spherical representation of the EBSPs, from which cross-sectional band profiles can be integrated. 

This also permits calculation of a form of virtual crystallographic imaging we call ‘spherical-angular dark field’ 

microscopy to map intensity of specific Kikuchi band features. All three ML approaches are capable of finding 

a latent that explicitly aligns with crystallographic ordering. We derive a normalised contrast metric to observe 

the difference between ɣ and ɣʹ classifications. Of the three approaches, NMF provides the lowest error in this 

metric, providing an argument for superior classification capability, arguably rationalised by its physical 

(detector counting) justification as a non-negative basis.  

• In Chapter 4, the alloys developed in Chapter 2 were taken further with additions of Nb and Ti for high 

temperature strength. The physical properties of these were characterised using the techniques developed in 

Chapter 1, and compared to the state-of-the-art. This new generation of Co/Ni-base superalloys saw 

improvements in strength, oxidation resistance, and thermal processing window. 
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Conclusions from complementary work in the appendices may also be drawn: 

• In Appendix 1, the algorithm used in Chapter 3 for EBSP pattern centre refinement was explicitly highlighted 

and evaluated further. It was found to be able to converge to an accurate orientation / PC solution at 15˚ of initial 

Euler angle misorientation.  

• Appendix 2 presents a novel normalisation procedure for the cross-correlation function used in refined template 

matching was presented. This permits evaluation of the suitability of an orientation solution, but it was found 

that the raw cross-correlation peak height is a better metric for absolute template similarity.  

• In Appendix 3, the micromechanical stress state surrounding a TWIP steel twin was characterised using a novel 

TEM method. This was compared to an analytical model, and the implications for future steel design were 

considered.  

Aside from papers and preprints, this thesis has resulted in several other tangible outputs. The alloys developed in 

Chapter 4 lead to the filing of a patent in collaboration with Rolls-Royce PLC, for a new Co/Ni-base superalloy 

composition range.The PCA/RTM pipeline developed for Chapter 1 and Chapter 2 is now publicly available as open 

source software, implemented in MATLAB, as part of the AstroEBSD structure and orientation analysis package  - 

github.com/benjaminbritton/AstroEBSD. The Python package ebspy was developed for handling, preparation, and 

normalisation of EBSD data for  further machine learning, available at github.com/tmcaul/ebspy. Spherical-angular dark 

field imaging, as used in Chapter 3, is publicly available at github.com/tmcaul/SphericalAngularDF. Finally, a series 

of generic mtex orientation analysis codes and pipelines is available at github.com/tmcaul/tpm_EBSD 
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Appendix 1 - Pattern Centre & Orientation Refinement  

1. Chapter Summary 

Very accurate knowledge of an electron backscatter pattern (EBSP) pattern centre, (PC), the centroid of the inelastically 

scattered electron intensity, is required in order for robust template matching and inverse gnomonic projection for ‘on-

the-sphere’ analysis.  

2. Methods 

Given an a priori  known crystallographic phase, a coupled orientation / PC solution can be iteratively updated via the 

RTM procedure. The peak height  of the cross-correlation function (XCF) of the refined solution and the experimental 

pattern can be used as an objective function to be maximised. In this paradigm, well established gradient ascent 

algorithms, such as those discussed in Section LR.4.1 can be employed. The algorithm takes the following form: 

 

Initialise parameters: 
• Running orientation solution = ‚: (a vector of three Euler angles) 
• Running PC solution = e: (a vector -  [PCX, PCY, DD]) 
• Running best PH = ": (a scalar) 
• Initial orientation solution = ‚8 
• Initial PC solution = e8 
• Experimental pattern = „ 
• Initial XCF peak height = "8 = 0 
• Crystal phase = C 
• Number of iterations to perform = n_iterations 

 
for n = 1:n_iterations 

1. Simulate EBSP, ‰l = Generate(Φ:,	±:	; 	C). 
2. Calculate and refine XCF(‰l, „) to generate new orientation, Ê, with a corresponding peak height, x. 
3. if previous iteration resulted in an update, estimate ∇^#XCF	(„, ‰l) with a finite difference method. 
4. if x > ":$8: 

• e: = p 
• ‚: = Ê 
• ": = x 
• p = e: + ê ∇p#XCF	(„, ‰l) 

5. else:  
• ê = 0.9 ê  
• e: = e:$8 
• ‚: = ‚:$8 
• ": = ":$8 
• p = e:$8 + 0.1	ê	îç#? 

 

Algorithm Ap1-1: Gradient descent for orientation and PC refinement 
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Figure Ap1-2: Histograms of final misorientation after refinement, with initial misorientations given (a)-(e).  

 

Figure Ap1-1: (a) Increase of the RTM peak height,	":, as refinement proceeds, (b) average across 100 tests, for each 
of five initial misorientations, with standard error in the mean shaded. 
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To evaluate the procedure, simulated patterns of known, random orientation and PC were used as experimental patterns. 

Specifically, the true PC, q  =	[0.45, 0.4, 0.65] + [0.1	îç#?, 0.1	îç#?, 0]. This is perturbed by  [0.15 rand, 0.15 rand, 

0] to provide the initial solution ±8. A true orientation is randomly sampled using the mtex crystallographic analysis 

package. Random candidates for the initial orientation solution are generated until one is sampled with misorientation 

to the true orientation of less than 1˚. This orientation is then set as Φ8. These ±8, Φ8 were then refined using the 

algorithm presented. A PC deviation parameter is defined: 

 Proportion of tests with final misorientation less than: 

Initial misori. 0.25˚ 0.5˚ 1˚ 2˚ 

5˚ 0.33 0.82 0.97 0.98 

7.5˚ 0.32 0.81 0.99 0.99 

10˚ 0.21 0.82 0.99 1.00 

12.5˚ 0.27 0.81 0.93 0.93 

15˚ 0.25 0.57 0.82 0.82 
  

Table Ap1-1: Proportion of tests that resulted in misorientations below four specified levels, for each initial 
misorientation. 

Figure Ap1-3: Histograms of final PC error, ∆, after refinement, with initial misorientations given (a)-(e). 
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Δ = ÍD(Î' − ±')%
q

'78

 

Which is the Euclidean distance between q and p. Final misorientation and ∆ were measured upon completion. This 

evaluation procedure was repeated for 100 randomised start conditions, and 5 levels of misorientation to the true 

solution: 5˚, 7.5˚, 10˚, 12.5˚, 15˚. The parameter n_iterations was set to 100. 

3. Results & Discussion 

A typical plot of the objective function as refinement proceeds is presented in Figure Ap1-1a. As is typical in gradient 

based methods, an initial rapid improvement is followed by a slow ascent towards a local maximum. Evaluating the 

arithmetic mean average of this objective profile across 100 tests for each of the given initial misorientations yields the 

profiles presented in Figure Ap1-1b. The presented approach performs better when the initial conditions are closer to 

the true values.  

In the 15˚ misorientation case, many tests result in an accurate solution, but the mean and standard deviation are 

magnified by a larger number of tests failing to converge. Histograms of the final misorientations after refinement are 

presented in Figure Ap1-2. These can be quantitatively summarised as in Table Ap1-1, by considering the proportion 

 Proportion of tests with final PC error less than: 

Initial misori. 0.0025 0.005 0.010 0.050 

5˚ 0.23 0.61 0.95 0.98 

7.5˚ 0.25 0.68 0.96 0.99 

10˚ 0.10 0.65 0.97 1.00 

12.5˚ 0.18 0.57 0.90 0.95 

15˚ 0.19 0.45 0.79 0.84 
  

Table Ap1-2: Proportion of tests that resulted in PC errors below four levels, for each initial misorientation. 

PC designation [PCX, PCY, DD] 

True [0.4694, 0.4251, 0.6500] 

Start [0.5723, 0.4697, 0.6500] 

Final [0.4715, 0.4307, 0.6507] 

Difference (True – Final) [-0.0021, -0.0055, -0.0007], or ∆ = 0.0060 
  

Table Ap1-3: Breakdown of PC errors for an example 15˚ misorientation test. 
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of tests that result in final misorientations less than specified levels. It is evident that the highest levels of initial 

misorientation lead to a lower likelihood of successful refinement. However, many tests at the highest degree of 

misorientation were successful to within a small margin of error. The principal difference across test regimes seems to 

be the higher initial misorientations are slightly less likely to successfully converge, within the experiment paradigm of 

100 iterations. Surprisingly, it seems that the best performance is achieved when the initial misorientation is 10˚. This 

is possibly due to the choice of step size ê, and insufficiently fast learning rate annealing.  

The same error analysis was conducted to consider the final PC error, with results summarised in Figure Ap1-3: 

Histograms of final PC error, ∆, after refinement, with initial misorientations given (a)-(e). and Table Ap1-2. The same 

trend as for final misorientation is observed; a higher degree of initial misorientation leads to a slightly reduced 

likelihood of successful refinement, with the optimal performance seen for initial misorientation of 10˚. 

Finally, for illustration, the final PC errors are expanded upon for an example refinement of 14.89˚ initial misorientation, 

and 0.49˚ final misorientation after refinement. This is presented in Table Ap1-3. The algorithm results in a difference 

in PCX of 0.0021, for a 300 px square image corresponding to 0.63 px error, 1.65 px error in PCY, and 0.21 px error in 

DD.  

4.  Conclusions 

This mini-chapter has demonstrated the coupled orientation / PC refinement possible using a finite difference gradient 

based method. The algorithm was tested on dynamical simulations of known orientation, with randomised initial 

orientation and PC (to within a specified tolerance of misorientation), and the final misorientation and PC error 

measured. 
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Appendix 2 - Measuring the quality of cross-correlation 

1. Chapter Summary 

The distribution of XCF peak heights for refined template matching are evaluated, and a new metric for determining 

quality of matching presented. This standardised score, Z, corresponds to confidence that the solution was not effectively 

sampled randomly from the SO(3) search template library. This score is suitable for determining whether a solution 

should be considered or regarded as noise. The unnormalised cross-correlation peak height remains a better metric of 

absolute similarity, and should be used to determine the structure and orientation solution from acceptable (non-random) 

candidates.  

2. Method and Results 

The cross-correlation function (XCF) peak height allows inference of the displacements (lag) in multidimensional 

signals that maximise similarity [137]. In the refined template matching (RTM) procedure, the measured horizontal and 

vertical displacements between a measured electron backscatter pattern (EBSP) and the most similar template (with a 

known orientation) allows rotations about two axes to be corrected, improving the determined orientation. This 

procedure always gives a result, which is problematic in cases where the identified crystal (with the largest XCF peak 

height) either has no solution (the EBSP is noise), or the correct crystal structure was not simulated. For this reason we 

seek a metric of absolute match quality, to quantify how reasonable the RTM solution is.  

It is sensible to normalise the XCF peak heights with respect to the distribution from which they are generated. The 

normalised XCF peak heights, g are then given:  

 
g =

log	("V12) − •

p
 Ap2-1 

For SO(3) search maximum XCF peak height "V12 (for a given phase). Further, • and p are the arithmetic mean and 

standard deviation of the XCF peak heights for the SO(3) library search: 

 
• =

1

#
Dlog	("')

:

'

 Ap2-2 

 

p = Í
1

# − 1
D(log	("') − •)%
:

'

 Ap2-3 

Where "' are the XCF peak heights in the library search of n templates. The normalisation routine assumes a lognormal 

distribution of peak heights within an SO(3) library search for a test EBSP. An example of such distributions are 

presented in Figure Ap2-1, with test pattern known a priori to be an FCC Ni EBSP [1].  
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Figure Ap2-1: Histograms and fitted probability distributions for SO(3) searches against Ni, M6C, ZrC, and Ferrite 
dynamical simulations. The ‘x’ correspond to the measured maximum peak height for the corresponding library 
search. 

 

Ni M6C ZrC Ferrite 

1.1516 x 10-34 2.548 x 10-12 2.123 x 10-24 8.825 x 10-31 

Table Ap2-1: p-values for Chi-square hypothesis tests comparing log(XCF peak height) to a normal distribution. 

 

Figure Ap2-2: (a) Comparison of fitted probability distributions for each phase, for a Ni EBSP, and (b) XCF 
peak heights normalised with respect to a standard data-generating distribution. 
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In order to validate the veracity of this prior, a Chi-square goodness of fit hypothesis test is performed to determine 

whether the null hypothesis (that the measured XCF peak heights are not a sample from a lognormal distribution) can 

be rejected. Rejection of the null hypothesis corresponds to validating that the log of the peak height is lognormally 

distributed. The p-values for the Chi-square tests performed are presented in Table Ap2-1. 

The p-values correspond to the probability that the log of the peak heights fitting a normal distribution just as well as 

Figure Ap2-4: Demonstration of how a poor solution can present a large Z.  
 

Figure Ap2-3: The correct solution (Ni) does not exhibit the maximal Z, due to the relatively large standard 
deviation of its Gaussian parameterisation. It does exhibit the maximal XCF peak height. 
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has been observed given that the null hypothesis is true. Their small value means that we reject the null hypothesis, and 

validate the prior that that XCF peak heights are lognormally distributed. 

Figure Ap2-2a presents a comparison of the log of the XCF peak heights for a Ni EBSP to the corresponding fitted 

lognormal distributions. Clearly the maximum peak height from the Ni SO(3) search is greater than the other maxima, 

and the FCC ZrC phase is a runner up. 

Now applying the standardisation routine, Figure Ap2-2b shows the normalised XCF peak heights in Figure Ap2-2a, 

interpreted in terms of a standard normal data-generating distribution. Importantly, in this case the ordering is preserved. 

The principal advantage of this metric is that Z corresponds to a number of standard deviations away from the expected 

value of the data-generating distribution. This allows direct interpretation of Z in terms of a probability that the 

measurement was not randomly sampled from the distribution. For example, Z > 2 would correspond to approximately 

a > 97.8% probability this came from a purely random sample from the SO(3) library. Therefore, it is suitable as a metric 

for determining whether a solution is acceptable (a pattern of pure noise is expected to have ≤ the modal XCF peak 

height). Then, for instance, one can only accept solutions with Z > 4, which implies an extreme degree of confidence 

that the solution is better than any random sample from the SO(3) group.  

In Figure Ap2-2b, the ordering between candidate phases was preserved with respect to their unnormalised XCF peak 

heights. Unfortunately, due to strong variation in the standard deviation of log	("') between candidate phases, the largest 

value of Z does not always correspond to the best solution. This is illustrated in Figure Ap2-3.   

This effect can result in the incorrect phase being assigned to a solution, if the maximal Z is taken. An experimental 

example is presented in Figure Ap2-4. Here, all the candidate phases have a better-than-random template with at least 

moderate similarity to the measured pattern. Thus, it can be concluded that none should be discarded and all are valid 

solutions. The optimal solution should of course be that with the absolute best similarity (most shared pixels) to the 

experimental pattern, independent of its class’s sampled distribution, which corresponds to the maximal value of the 

unnormalised XCF peak height.  

3. Conclusions 

From the analysis presented in this chapter the following straightforward conclusions can be drawn: 

• A lognormal distribution is suitable for approximating the population probability density function for XCF peak 

heights.  

• Standardisation of the inferred parameters permits quantifying confidence that a peak height value was not 

randomly selected from its population. This provides a metric for determining whether to retain a 

structure/orientation solution. 

• The standardised peak heights are not suitable for selection of absolute best phase from a group of acceptable 

(non-random) candidates. This is best achieved with the absolute (unnormalised) XCF peak height. 
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Appendix 3 - 4D-STEM elastic stress state characterisation of a TWIP  
steel nanotwin 

1. Chapter Summary 

The stress state in and around a deformation nanotwin in a twinning-induced plasticity (TWIP) steel is measured. Using 

four dimensional scanning transmission electron microscopy (4D-STEM), the elastic strain field in a 68.2-by-83.1 nm 

area of interest is measured with a scan step of 0.36 nm and a diffraction limit resolution of 0.73 nm. The stress field in 

and surrounding the twin matches the form expected from analytical theory and is on the order of 15 GPa, close to the 

theoretical strength of the material. It is inferred that the measured back-stress limits twin thickening, providing a 

rationale for why TWIP steel twins remain thin, continuously dividing grains to give substantial work hardening. These 

results support modern mechanistic understanding of the influence of twinning on crack propagation and embrittlement 

in TWIP steels.   

2. Introduction 

Understanding the mechanical behaviour of engineering alloys at the nanoscale is critical to improving alloy design and 

processing, and hence performance [283]–[286]. Steel is the most common man-made material after concrete, at around  

1.6 billion tonnes per year production, seeing critical application in gas turbines, nuclear plant, construction, and 

automotive.  Plastic deformation by twinning or shear-associated martensite transformation is commonly used in alloy 

design strategies, from Mg to Zr, steels and BCC Ti alloys, as well as functional intermetallics such as NiTi. Thus, better 

understanding of the stress state and back stress around such features will open up new avenues for improving 

performance, by manipulation of composition and processing to achieve desirable nanoscale behaviour and therefore 

bulk properties.  In the case of face-centred cubic (FCC) crystal twinning, as presented in Figure Ap3-1, Shockley 

partial <112>{111} dislocations, formed from the 

dissociation of a full <110>{111} lattice dislocation, 

propagate on successive {111} planes. These impart a 

local strain field, and their propagation (and therefore 

accumulation of plastic strain) is limited by interaction 

with other lattice defects (interstitial or substitutional 

solutes, additional twins, dislocations, etc).  

Four dimensional scanning transmission electron 

microscopy (4D-STEM) is a relatively new technique in 

which an electron diffraction spot pattern is acquired at 

every point in a scan grid. In this regard it is similar to 

electron backscatter diffraction (EBSD), now a routine 

method for microscale structural analysis [109], [117], 

but a much finer ‘pencil-beam’ probe permits sub-nm 

spatial resolution. The trade-off is that a zone-axis 

generally must be identified and aligned with the 

transmitted beam, inherently limiting knowledge of the 

Figure Ap3-1: Twinning in FCC materials, with habit 
plane (111( ). A series of Shockley partial [2(11(](111( ) 
dislocations transform the crystal plane by plane, 
building up the twin. 
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reciprocal lattice to two coplanar vectors. A comprehensive review of 4D-STEM and its applications in strain mapping, 

imaging, and ptychography is available in ref [147]. In this work the py4DSTEM open source software package, 

developed by Savitzky et al [148], is employed.  

Lattice strain measurement with this approach is becoming fairly routine. It has been used to investigate resistivity in 

semiconductors [149], [150], and more recently begun to be applied to polycrystalline materials [151]. Pekin et al [152], 

[153] have measured the strain field around austenitic (FCC) stainless steel features. They observed a ~4% variation in 

strain across their area of interest, which included dislocations and an annealing twin boundary. In this study we 

investigate the elastic strain fields in a similar FCC Fe material, and additionally calculate the stress fields directly from 

the elastic strain measurements.  Here twinning-induced plasticity (TWIP) steel is examined, with a focus on thin 

deformation nanotwins. Twinning-induced plasticity in these systems can result in large ductility of up to 95% [287]–

[289]. It is believed that continuous subdivision of grains by ongoing twin nucleation, without significant thickening,  

leads to a dynamic ‘Hall-Petch’ effect with sufficient twin back-stress to inhibit propagation of dislocations at these 

barriers [290]. This leads to pile-ups, hardening, and ductility. Deformation twins have also been explored in the context 

of crack initiation in TWIP steels by Koyama et al [291]. In this study we provide a direct measurement of the nanoscale 

stress state for comparison to the increasingly cited analytical model of Müllner et al [292]–[294]. In this chapter it is 

qualitatively observed that the analytical form of this model corresponds well to measurements of local stress.  

3. Methods 

An ingot of TWIP-steel (Fe – 16.4Mn – 0.9C – 0.5Si – 0.05Nb – 0.05 V wt%) was produced by vacuum arc melting in 

an Ar atmosphere. It was cast, homogenised at 1300˚C for 24 h, hot rolled with a 50% reduction, cold rolled with a 67% 

reduction, and annealed at 1000˚C for 5 min. This gave a fully austenitic microstructure. A ‘dogbone’ tensile specimen 

with 1 x 1.5 mm cross section and 19 mm gauge was deformed to 6% plastic strain at a nominal stroke rate of 10-3 s-1. 

A <110> zone was selected for this experiment, defined such that the [011] direction is out of the plane.  EBSD was 

used to identify a grain with a <110> crystallographic direction in the vertical axis of the scanning electron microscope 

field of view.  An electron transparent sample was then prepared using the focussed ion beam (FIB) lift-out technique, 

extracting a thin lamella with its plane aligned to the horizontal axis of the scan, thus yielded a thin foil of the {110} 

plane, with the <110> direction its normal.  

Figure Ap3-2: Virtual bright (a,b) and dark (c,d) field images of the steel nanotwin, as well as average Bragg vector 
maps (e) - sums over real space  of the identified Bragg peak locations, weighted by intensity. The red circles in (a-
d) diffraction patterns correspond to the limits of the virtual aperture. 
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4D-STEM was performed on the electron transparent foil using the probe and image spherical aberration-corrected 

JEOL ARM300CF TEM at ePSIC. The pencil beam was set-up by turning off the probe corrector hexapoles and using 

the condenser and transfer lens pairs to reach a small convergence semi-angle. Diffraction patterns were collected with 

a Merlin (MediPix) direct electron detector. An accelerating voltage of 200 kV and a camera length of 9 cm was used, 

with a 10 μm condenser lens aperture.  Calibration diffraction data was gathered from  evaporated gold on amorphous 

carbon sample and using the 10 μm aperture a 2.1 mrad convergence semi-angle and 0.0157 Å-1 detector pixel size were 

measured. This gives a diffraction-limited spatial resolution of 0.73 nm. A 68.2-by-83.1 nm area of interest was scanned 

in 188-by-229 real space pixels, and with a 256-by-256 pixel diffraction pattern captured at each of these scan positions, 

with a 1 ms dwell time per pattern. 

The in-plane elastic strain tensor was calculated from the electron diffraction pattern at each scan location. Bragg peak 

identification, dataset calibration including elliptical distortion correction and diffraction shift correction, and elastic 

strain calculation were performed with the open source py4DSTEM analysis package [148], [154]. For locating Bragg 

peaks a correlation power of 1 was used, corresponding to cross-correlation [153], and estimate the subpixel Bragg disc 

positions with local Fourier up-sampling by a factor of 16 [142]. The details of this method are considered further in 

Section LR.3.3. 

The in-plane elastic stress was determined from the measured strains and Hooke’s law. The axis system presented in 

Figure Ap3-1 is used: 1,2,3 refer to the twinning system, with the 23 plane at the interface (origin at the twin centre). 

In this scheme the [111(] twin plane normal is aligned with the 2 direction, with 1 along [2(11(].  To calculate the stresses, 

a reference stiffness tensor, ÏIRUis rotated to the 1, 2, 3 axis system. Reference stiffness tensor components C88
IRU = 197.5 

GPa, C8%
IRU = 124.5 GPa, CLL

IRU = 122.0 GPa are used, with subscripts referring to tensor components rather than our axis 

systems, as measured for a similar austenite by Johansson et al [295], [296] with respect to a <100> system. Having 

previously calculated the in-plane elastic strains resolved in the [12(1] and [101(] directions, the complete elastic stress 

state can be inferred by assuming plane strain: the unknown strain components εqq, ε8q, and ε%q are found by assuming 

Figure Ap3-3: Elastic strain maps resolved in the 11 (a), 22 (b), 12 (c) and 33 (d) directions. An average 1-direction 
profile, perpendicular to the twin’s length, was calculated by integrating all points in the 2-direction in the 
highlighted region. 
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the stress components σqq, σ8q, and σ%q are zero. The full strain state and compliance tensor are then used to calculate 

the full stress tensor, and the unkonwn, non-zero, σ88, σ%%, and σ8%. This procedure is discussed in Section LR.3.3. 

4. Results & Discussion 

4.1 Virtual imaging and strain mapping 

Presented in Figure Ap3-2 are ‘virtual’ bright and dark field (VBF, VDF respectively) images reconstructed from 

intensity collected from the highlighted digital apertures. VBF images (a) and (b) clearly distinguish the twin from the 

matrix. Given the axis system adopted, [011] out of plane, and the diffraction vectors as indexed in Figure Ap3-2, it is 

inferred that these twins have habit plane (111(). 

A large amount of structure-dependent information is contained in the direct beam. Traditional bright field imaging 

(using an objective aperture to isolate the direct beam) uses electron wave phase information as well as intensity to re-

interfere and reconstruct an image [107]. In VBF one only has access to electron intensity in the diffraction plane, so it 

is likely that the contrast observed between twin and matrix is derived from local strain, lattice rotation, or dynamical 

effects which will alter the ratio of diffracted to direct intensity.  Two VBF images are presented in Figure Ap3-2 (a,b) 

to show the presence of diffraction contrast in the direct beam as well as in the first order diffraction spots.  The high 

angle VDF image in (c) is akin to conventional high-angle annular dark field (HAADF) imaging, which indicates 

propensity to scatter electrons to high angles, and suggests that there is no detectable variation in local chemistry 

between the twin and the matrix. The minimal contrast observed in (c) could be attributed to local ordering as a precursor 

to the formation of coherent V-rich carbides [297], [298]. The twin is explicitly highlighted in (d) by reconstructing the 

spatial image from the 2(00 reciprocal lattice point for the twinned region only, analogous to a traditional TEM dark 

field image. In (e) we present a Bragg vector map (after Savitzky et al [154]), showing the distribution of all measured 

Bragg peak locations for the untwinned region. It is noted that a small amount of intensity is observed at the twin 

reciprocal lattice points even for the untwinned class. This is possibly due to the geometry of the specimen, dynamical 

diffraction, and through-thickness sampling of both untwinned and twinned material near the interface. 

The strain components ε88, ε%%, ε8% were calculated from the relative movements of the diffraction spots. This operation 

was performed independently for the twin and the matrix regions. A set of reference reciprocal lattice vectors were 

obtained by averaging the untwinned region’s reciprocal lattice basis vectors. The twin basis vectors magnitudes were 

normalised to this unstrained length. As such, elastic strains are given in reference to this ‘unstrained’ state. The 

measurement could alternatively be considered as the elastic strain variation across the area of interest. 

Maps of measured (11, 22, 12) and inferred (33) strain components across the area of interest are presented in Figure 

Ap3-3. Included is an integration along the 2-direction in a highlighted area, to obtain an average line profile in the 1 

direction. It is observed that ε%% and ε8% remain fairly level in the matrix region between the twins, while ε88 exhibits 

more deviation. The twinned regions exhibit an increase in ε88 and ε%%, and a reduction in ε8% relative to the matrix. 

Maps of the stress tensor are presented in Figure Ap3-4. The same line profile integration as for the strain maps is 

performed. The components σ88 and σ%% exhibit large positive stress rises across the interface. The component σ8% is 

much smaller in magnitude, but generally observes a negative ‘sense’ shear stress profile.  



 165 T P McAuliffe 

4.2 Comparison to micromechanical model 

For comparison to an analytical micromechanical model, the formulation of Müllner et al [292]–[294] is followed. This 

considers the elastic stress field around the twin to follow that of a disclination dipole. Given a distance x along the 1-

direction, and y along the 2-direction, in this scheme: 
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Using a natural logarithm, where a is the twin half-thickness, with pre-factor D given:  
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Using the shear modulus, ν Poisson’s ratio, and parameter ⍵ the ‘power’ of the disclination: 

 
⍵ = 	2	 tan$8

B
%.

  = 38.94˚ for FCC materials [293] 
 

With b as the magnitude of the Shockley partial Burgers vector and h the separation between twinning planes. The co-

ordinates x, y, z are taken in reference to the centre of the disclination dipole from which the stress field is derived [293]. 

Models of σ88, σ%%, and σ8% along the A-A’ profile are included in Figure Ap3-4. Here y, z = 0 at the centre of the 

twins, and y is varied along the profile A-A’. It is found that an initial x value of ~ -5 nm leads to stress profiles with 

similar form to those observed. This corresponds to the sample representing an average of 5 nm along the x direction 

away from the disclination dipole, which is the basis of the considered model. A Poisson’s ratio of 0.31 is used, and the 

model considers a twin thickness of 10 px (3.63 nm) [296]. Note that in order to qualitatively compare discretely sampled 

positions in the analytical model to the experiments, in which some degree of beam overlap is expected, we apply a 

Chebyshev windowing function to the integration. This accelerates the function’s descent towards zero in the limit, 

which was necessary for superposition of the two twin stress fields in our small area of interest. 

Our strain measurements are significantly larger than previously seen in most 4D-STEM experiments, for example the 

~4% range observed by Pekin et al [153]. Stresses of the magnitude we have measured are rarely observed under 

standard loading, but under conditions of severe plastic deformation in a drawn wire these levels are reached 

macroscopically [299].  

4.3 Interpretation 

The sample has seen significant plastic strain. The tolerance for very high defect density is precisely what makes steels 

(especially those exhibiting the TWIP effect) amongst the strongest and readily work-hardening engineering materials 

available. It is observed that the forms and sense of the stress profiles measured are similar to those predicted by the 

model. The (uniaxial) theoretical strength of a material can be approximated as Young’s Modulus / 10 in the absence of 
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accurate potentials [300]. This is around 20 GPa in our case. The presented measurements lie below this threshold, but 

are fairly close. The stresses predicted by the model appear to exceed our approximate threshold, but follow the same 

trend as the experimental results.  

Koyama et al [291] have used electron channelling contrast imaging to investigate hydrogen embrittlement initiation at 

deformation twin boundaries. They observe that transgranular cracks always propagate along twin boundaries; in this 

work σ88 is measured to be locally very high in a similar material, in accordance with their observation. Furthermore, 

in this work evidence of significant strain at twin boundaries is provided, which will attract the hydrogen and embrittle 

the steel, which Koyama et al set out as a softening mechanism. As they suggest, this is despite the coherence of the Σ3 

boundary, and explains observed hydrogen trapping at such features in similar materials [301].  

Finally, it is suggested that the significant stress intensity observed parallel and perpendicular to their boundaries 

controls their thickening. Twin thickness is determined by the tendency to minimise elastic strain energy. Clausen et al 

[302] have described the twin internal back-stress generated by matrix constraint of the transformed twin in Mg: the 

plastic shear provided by the twinning transformation is spread over the incorporating grain, resulting in an equal and 

opposite elastic strain being contained within the twin. This elastic back-strain (leading to internal back-stress) is what 

has been observed. The twin thickness is controlled by accommodation of the transformation strain, as there is an energy 

Figure Ap3-4: Elastic stress maps of the 11, 22, and 12 components. As in Figure 3, an integrated 1-direction 
profile (over the shaded region), perpendicular to the twin’s length, was calculated by integrating all points in the 
2-direction in the highlighted region. 
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penalty to this back-stress. The stress intensity surrounding our nanotwins thus prevents their thickening. This allows 

for a large number density of fine twins, enhanced grain sub-division, and therefore a greater work hardening rate. As 

deformation progresses, plastic strain accumulation increases, resulting in a greater elastic back-stress. Equivalently, in 

larger grains where the twinning strain can be more widely distributed, the back stress is lower and twins are able to 

grow thicker, as suggested by Rahman et al [293], [290].  

5. Conclusions 

The following conclusions are drawn: 

• Measurement of the elastic strain and stress state around deformation nanotwins in a TWIP steel reveals a 

significant polarisation, with stresses close to, but less than, the approximate theoretical strength of the material. 

• The profiles and sense of the stresses follow those predicted by the analytical model of Müllner et al [292]–

[294].  

• The magnitude of  the stress state surrounding the twin  could explain the observations and provide evidence 

for hydrogen embrittlement mechanisms associated with twins set out by  Koyama et al [291]. The observed 

stress field also likely plays a critical role in controlling twin thickness. This determines the rate of grain 

subdivision and the alloy work hardening rate [302]. 
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Appendix 4 – supplementary data 

1. Results 

 

 
 

Figure Ap4-1: Full tensile testing (engineering stress against strain) for alloys presented in Chapter 4. 
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Alloy 
designation Co Ni Mo Cr Al W Ta C B Zr Ti Nb   

(0Ti, 0Nb) 35.7875 35.7875 2 12 10 2.75 1.25 0.3 0.085 0.04 (at%)   

Base: (0.3Ti, 
0Nb) 35.759 35.909 2 12 10 2.75 1.25 0.1 0.042 0.04 0.3 (at%)  

Base + 0.5Nb 35.919 35.919 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 0.5 (at%) 

Base + 1Nb 35.269 35.269 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 1 (at%) 

Base + 2Nb 34.769 35.919 2 12 10 2.75 1.25 0.1 0.042 0.02 0.3 2 (at%) 

Base + 1 Ti 35.269 35.269 2 12 10 2.75 1.25 0.1 0.042 0.02 1.3 0 (at%) 

Base + 2Ti 34.769 35.919 2 12 10 2.75 1.25 0.1 0.042 0.02 2.3 0 (at%) 

              
              

Alloy 
designation 

Density 
/ g cm-3 

Solvus 
/ ˚C 

RT Yield 
/ MPa 

RT Ult 
/ MPa 

650˚C 
Yield  

/ MPa 

650˚C 
Ult 

/ MPa 

700˚C 
Yield 

/ MPa 

700˚C 
Ult 

/ MPa 

750˚C 
Yield 

/ MPa 

750˚C 
Ult 

/ MPa 

850˚C 
Yield 

/ MPa 

850˚C 
Ult 

/ MPa 
 

(0Ti, 0Nb) 8.67 1021 855 1260 769 1131 778 1092 810 971 557 559  

Base: (0.3Ti, 
0Nb) 8.61 1042 885 1265 752 927 774 905 777 967 628 650  

Base + 0.5Nb 8.69 1049 953 1363 779 1076 787 1049 767 912 673 706  

Base + 1Nb 8.74 1062 940 1336 791 1035 824 1038 805 1062 617 629  

Base + 2Nb 8.79 1074   

Base + 1Ti 8.61 1067 937 1329 757 1001 768 1064 786 1059 718 736  

Base + 2Ti 8.53 1090 1000 1336 788 1082 824 1038 834 1131 733 753  

              

Table Ap4-1: Summary of physical properties of alloys developed in Chapter 4. 


