8 research outputs found

    Assessing the Technical Specifications of Predictive Maintenance: A Case Study of Centrifugal Compressor

    Get PDF
    Dependability analyses in the design phase are common in IEC 60300 standards to assess the reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and event tree analysis (ETA)to identify critical components and failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate monitoring priority, and this helps to determine the critical monitoring specifications. However, FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using a case study of a centrifugal compressor and validated using empirical data provided by the case study company. The paper also demonstrates the possible enhancements introduced by Industry 4.0 technologies.publishedVersio

    Condition-based maintenance implementation: A literature review

    Get PDF
    Industrial companies are increasingly dependent on the availability and performance of their equipment to remain competitive. This circumstance demands accurate and timely maintenance actions in alignment with the organizational objectives. Condition-Based Maintenance (CBM) is a strategy that considers information about the equipment condition to recommend appropriate maintenance actions. The main purpose of CBM is to prevent functional failures or a significant performance decrease of the monitored equipment. CBM relies on a wide range of resources and techniques required to detect deviations from the normal operating conditions, diagnose incipient failures or predict the future condition of an asset. To obtain meaningful information for maintenance decision making, relevant data must be collected and properly analyzed. Recent advances in Big Data analytics and Internet of Things (IoT) enable real-time decision making based on abundant data acquired from several different sources. However, each appliance must be designed according to the equipment configuration and considering the nature of specific failure modes. CBM implementation is a complex matter, regardless of the equipment characteristics. Therefore, to ensure cost-effectiveness, it must be addressed in a systematic and organized manner, considering the technical and financial issues involved. This paper presents a literature review on approaches to support CBM implementation. Published studies and standards that provide guidelines to implement CBM are analyzed and compared. For each existing approach, the steps recommended to implement CBM are listed and the main gaps are identified. Based on the literature, factors that can affect the effective implementation of CBM are also highlighted and discussed.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n潞 39479; Funding Reference: POCI-01-0247-FEDER-39479]

    Evaluaci贸n de t茅cnicas de inteligencia artificial utilizadas en el diagn贸stico de fallas en plantas de potencia

    Get PDF
    This article presents an evaluation about the research related to the development of computational tools based on artificial intelligence techniques, which focus on the detection and diagnosis of faults in the different processes associated with a power generation plant such as: hydroelectric, thermoelectric and nuclear power plants. Initially, the main techniques of artificial intelligence that allow the construction of intelligent systems in the area of fault diagnosis is described in a general way, techniques such as: fuzzy logic, neural networks, knowledge-based systems and hybrid techniques Subsequently A summary of the research based on each of these techniques is presented. Subsequently, the different articles found for each of the techniques are presented in tables, illustrating the year of publication and the description of the research carried out. The result of this work is the comparison and evaluation of each technique focused on the diagnosis of failures in power plants. The novelty of this work is that it presents an extensive bibliography of the applications of the different intelligent techniques in solving the problem of detection and diagnosis of failure in power plantsEste art铆culo presenta una evaluaci贸n de herramientas computacionales basadas en t茅cnicas de inteligencia artificial, las cuales se enfocan en la detecci贸n y diagn贸stico de fallas en los diferentes procesos asociados a una central de generaci贸n de energ铆a tal como: hidroel茅ctricas, termoel茅ctricas y centrales nucleares. Inicialmente, se describen de manera general las principales t茅cnicas de inteligencia artificial que permiten la construcci贸n de sistemas inteligentes para el diagn贸stico de fallas en centrales el茅ctricas, se presentan t茅cnicas como: l贸gica difusa, redes neuronales, sistemas basados en el conocimiento y t茅cnicas hibridas.  Posteriormente se presentan en tablas los diferentes art铆culos encontrados para cada una de las t茅cnicas, ilustrando el a帽o de publicaci贸n y una descripci贸n de cada publicaci贸n. El resultado de este trabajo es la comparaci贸n y evaluaci贸n de cada t茅cnica enfocada al diagn贸stico de fallas en centrales el茅ctricas.  Lo novedoso de este trabajo, es que presenta una extensa bibliograf铆a de las aplicaciones de las diferentes t茅cnicas inteligentes en la soluci贸n del problema de detecci贸n y diagn贸stico de falla en centrales de generaci贸n el茅ctric

    A review of model based and data driven methods targeting hardware systems diagnostics

    Get PDF
    System health diagnosis serves as an underpinning enabler for enhanced safety and optimized maintenance tasks in complex assets. In the past four decades, a wide-range of diagnostic methods have been proposed, focusing either on system or component level. Currently, one of the most quickly emerging concepts within the diagnostic community is system level diagnostics. This approach targets in accurately detecting faults and suggesting to the maintainers a component to be replaced in order to restore the system to a healthy state. System level diagnostics is of great value to complex systems whose downtime due to faults is expensive. This paper aims to provide a comprehensive review of the most recent diagnostics approaches applied to hardware systems. The main objective of this paper is to introduce the concept of system level diagnostics and review and evaluate the collated approaches. In order to achieve this, a comprehensive review of the most recent diagnostic methods implemented for hardware systems or components is conducted, highlighting merits and shortfalls

    A Bayesian network development methodology for fault analysis; case study of the automotive aftertreatment system

    Get PDF
    This paper proposes a structured methodology for generating a Bayesian network (BN) structure for an engineered system and investigates the impact of integrating engineering analysis with a data-driven methodology for fault analysis. The approach differs from the state of the art by using different initial information to build the BN structure. This method identifies the cause-and-effect relationships in a system by Causal Loop Diagram (CLD) and based on that, builds the Bayesian Network structure for the system. One of the challenges in identifying the root cause for a fault is to determine the way in which the related variable causes the fault. To deal with this challenge, the proposed methodology exploits Dynamic Fault Tree Analysis (DFTA), CLD and the correlation between variables. To demonstrate and evaluate the effectiveness of the presented method, it is implemented on the data-driven methodology applied to the automotive Selective Catalytic Reduction (SCR) system and the obtained results have been compared and discussed. The proposed methodology offers a comprehensive approach to build a BN structure for an engineered system, which can enhance the system's reliability analysis

    Systems reliability and data driven analysis for marine machinery maintenance planning and decision making

    Get PDF
    Understanding component criticality in machinery performance degradation is important in ensuring the reliability and availability of ship systems, particularly considering the nature of ship operations requiring extended voyage periods, usually traversing regions with multiple climate and environmental conditions. Exposing the machinery system to varying degrees of load and operational conditions could lead to rapid degradation and reduced reliability. This research proposes a tailored solution by identifying critical components, the root causes of maintenance delays, understanding the factors influencing system reliability, and recognising failure-prone components. This paper proposes a hybrid approach using reliability analysis tools and machine learning. It uses dynamic fault tree analysis (DFTA) to determine how reliable and important a system is, as well as Bayesian belief network (BBN) availability analysis to assist with maintenance decisions. Furthermore, we developed an artificial neural network (ANN) fault detection model to identify the faults responsible for system unreliability. We conducted a case study on a ship power generation system, identifying the components critical to maintenance and defects contributing to such failures. Using reliability importance measures and minimal cut sets, we isolated all faults contributing over 40% of subsystem failures and related events. Among the 4 MDGs, the lubricating system had the highest average availability of 67%, while the cooling system had the lowest at 38% using the BBN availability outcome . Therefore, the BBN DSS recommended corrective action and ConMon as maintenance strategies due to the frequent failures of certain critical parts. ANN found overheating when MDG output was above 180 kVA, linking component failure to generator performance. The findings improve ship system reliability and availability by reducing failures and improving maintenance strategies

    Fault propagation, detection and analysis in process systems

    Get PDF
    Process systems are often complicated and liable to experience faults and their effects. Faults can adversely affect the safety of the plant, its environmental impact and economic operation. As such, fault diagnosis in process systems is an active area of research and development in both academia and industry. The work reported in this thesis contributes to fault diagnosis by exploring the modelling and analysis of fault propagation and detection in process systems. This is done by posing and answering three research questions. What are the necessary ingredients of a fault diagnosis model? What information should a fault diagnosis model yield? Finally, what types of model are appropriate to fault diagnosis? To answer these questions , the assumption of the research is that the behaviour of a process system arises from the causal structure of the process system. On this basis, the research presented in this thesis develops a two-level approach to fault diagnosis based on detailed process information, and modelling and analysis techniques for representing causality. In the first instance, a qualitative approach is developed called a level 1 fusion. The level 1 fusion models the detailed causality of the system using digraphs. The level 1 fusion is a causal map of the process. Such causal maps can be searched to discover and analyse fault propagation paths through the process. By directly building on the level 1 fusion, a quantitative level 2 fusion is developed which uses a type of digraph called a Bayesian network. By associating process variables with fault variables, and using conditional probability theory, it is shown how measured effects can be used to calculate and rank the probability of candidate causes. The novel contributions are the development of a systematic approach to fault diagnosis based on modelling the chemistry, physics, and architecture of the process. It is also shown how the control and instrumentation system constrains the casualty of the process. By demonstrating how digraph models can be reversed, it is shown how both cause-to-effect and effect-to-cause analysis can be carried out. In answering the three research questions, this research shows that it is feasible to gain detailed insights into fault propagation by qualitatively modelling the physical causality of the process system. It is also shown that a qualitative fault diagnosis model can be used as the basis for a quantitative fault diagnosis modelOpen Acces

    System diagnosis for an auxiliary power unit

    Get PDF
    Even though the Auxiliary Power Unit (APU) is a widely used system in modern aviation, the existing experimental, simulation and diagnostic studies for this system are very limited. The topic of this project is the System Diagnosis of an APU, and the case study that is used in this research is a Boeing 747 APU. This APU was used to develop an experimental rig in order to collect performance data under a wide range of loading and environmental conditions. The development of the experimental rig consumed considerable time and required the design and installation of structures and parts related with the control of the APU, the adjustment of the electric and pneumatic load and the data acquisition. The validation of the rig was achieved by a repeatability test, which ensures that the collected measurements are repeatable under the same boundary conditions, and by a consistency test, which ensures that the performance parameters are consistent with the imposed ambient conditions. The experimental data that are extracted from the rig were used to calibrate a physics-based (0-D) model for steady-state conditions. Data that correspond to faulty conditions were generated by injecting faults in the simulation model. Based on the most prominent APU faults, as reported by The Boeing Company, six components that belong to different sub-systems were considered in the diagnostic analysis, and for each one of them, a single fault mode was simulated. By using healthy and faulty simulation data, for each component under examination, a classification algorithm that can recognise the healthy and faulty state of the component is trained. A critical part of the diagnostic analysis is that each classifier was trained to recognise the healthy and the faulty state of the corresponding component, while other components can be either healthy or faulty. The test results showed that the proposed technique is able to diagnose both single and multiple faults, even though in many cases different component faults resulted in similar fault patterns.Transport System
    corecore