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Abstract

Process systems are often complicated and liable to experience faults and their effects. Faults can

adversely affect the safety of the plant, its environmental impact and economic operation. As such,

fault diagnosis in process systems is an active area of research and development in both academia and

industry.

The work reported in this thesis contributes to fault diagnosis by exploring the modelling and

analysis of fault propagation and detection in process systems. This is done by posing and answering

three research questions. What are the necessary ingredients of a fault diagnosis model? What

information should a fault diagnosis model yield? Finally, what types of model are appropriate to fault

diagnosis?

To answer these questions , the assumption of the research is that the behaviour of a process system

arises from the causal structure of the process system. On this basis, the research presented in this

thesis develops a two-level approach to fault diagnosis based on detailed process information, and

modelling and analysis techniques for representing causality.

In the first instance, a qualitative approach is developed called a level 1 fusion. The level 1 fusion

models the detailed causality of the system using digraphs. The level 1 fusion is a causal map of the

process. Such causal maps can be searched to discover and analyse fault propagation paths through the

process.

By directly building on the level 1 fusion, a quantitative level 2 fusion is developed which uses a

type of digraph called a Bayesian network. By associating process variables with fault variables, and

using conditional probability theory, it is shown how measured effects can be used to calculate and

rank the probability of candidate causes.

The novel contributions are the development of a systematic approach to fault diagnosis based on

modelling the chemistry, physics, and architecture of the process. It is also shown how the control and

instrumentation system constrains the casualty of the process. By demonstrating how digraph models

can be reversed, it is shown how both cause-to-effect and effect-to-cause analysis can be carried out.

In answering the three research questions, this research shows that it is feasible to gain detailed

insights into fault propagation by qualitatively modelling the physical causality of the process system.

It is also shown that a qualitative fault diagnosis model can be used as the basis for a quantitative fault

diagnosis model.

* * *
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Chapter 1

Introduction

Check if you can disconnect the effect and

I’ll go after the cause.

Peter Gabriel, “Moribund the Burgermeister”

This thesis is concerned with fault propagation, detection and analysis in process systems. An

example of a fault in a process system would be a fault in a valve leading to the loss of coolant water

to a reactor. This may lead to measured abnormal temperature and pressure effects in the reactor itself,

with consequent damage to the reactor. Adverse changes in the reactor temperature may also lead to a

shift in the vapour-liquid equilibrium in the downstream separation and stripping processes, decreasing

the amount and quality of saleable product, and increasing waste losses in the purge streams.

This chapter introduces the background to and motivation for the research, along with some concepts

and definitions of process systems, faults, causality and techniques. The motivation of the research

and contribution of this thesis is framed by three research questions. To answer these questions a

methodology is proposed which combines digraph and structural modelling methods to address the

research questions in both qualitative and quantitative terms.

1.1 Background and Context

Process systems are designed, built, commissioned and operated to fulfil specific safety, environmen-

tal and economic operating requirements (Latour et al., 1986; Nimmo, 1995). A process system can

be pictured as a set of devices connected so as to transform a feedstock input into a specified product
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output. Device malfunctions, as well as changes in the process feedstock and external environment,

may adversely affect product quality. Such malfunctions may also affect the safety of the process, and

have an environmental impact.

For example the UK Health and Safety Executive (HSE) regulation on the Control of Major Accident

Hazards (COMAH) publishes guidance on accident prevention, control and mitigation, including the

use of control and safety systems (HSE, 2020). However, process systems can be complicated and

multidisciplinary (Smith, 2005; Sinnott and Towler, 2009) with a number of control loops. Moreover

as Thornhill and Horch (2007) point out such control loops are not isolated from each other so that

faults can propagate over the entire process. On that basis this thesis focuses on a systematic and

scalable methodology for building and analysing models to understand fault propagation, detection

and analysis in process systems based on the process architecture and principles of device operation

1.2 Concepts and Definitions

Initial working definitions of process systems, faults, causes and effects and fault diagnosis are now

given.

1.2.1 Process systems

BSI (2015) defines a system as a “combination of interacting elements organised to achieve one

or more stated purposes”. In this thesis system elements are plant and control devices. Based on the

definitions of system and device, this thesis defines a process system as an arrangement of devices

connected by energy and material streams and information signals. The purpose of the process is to

transform raw materials and energy into material products or energy products. Processes systems

exchange energy, information and mass across a defined boundary with the environment. Process

inputs are signals and streams that enter the process from the environment. Conversely process outputs

are signals and streams that enter the environment from the process.

The architecture of the process system is defined as the “fundamental concepts or properties of a

system in its environment embodied in its devices, relationships, and in the principles of its design and

evolution” (BSI, 2011).
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1.2.2 Plant devices and control devices

This thesis characterises process systems as comprising a set of control and instrumentation (control

for short) devices and a set of plant devices. BSI (2015) states that “one stakeholder’s system-of-interest

can be viewed as a device in another stakeholder’s system-of-interest”. The consequence for this thesis

is that it is sometimes necessary to analyse devices as systems in their own right. Plant and control

devices are collectively known as process devices.

1.2.2.1 Plant devices

Plant devices include heat exchangers, chemical reactors, tanks and vessels. Plant devices are also

known as unit operations (McCabe and Smith, 1976).

1.2.2.2 Control devices

Control devices include proportional-integral-differential (PID) controllers, and instruments for

measuring temperature, pressure and flow. Actuators such as pumps and valves are also control devices.

Control devices therefore measure, manipulate and control the states of plant devices.

1.2.3 Process diagrams

Process and control engineers use a number of diagrammatic models of process systems for design

and operation. Smith (2005) and Sinnott and Towler (2009) note that flowsheets and piping and

instrumentation diagrams are two important forms of diagram which detail the connectivity between

process devices.

1.2.3.1 Process flowsheets

The process flowsheet is an architecture description. An architecture description is a “work product

used to express an architecture” (BSI, 2015). The process flowsheet shows the architecture of the plant

devices and stream connections. The process flowsheet also shows the steady-state process operating

conditions.

1.2.3.2 Piping and instrumentation diagrams

A piping and instrumentation diagram is another architecture description. The piping and instrumen-

tation diagram builds on the the process flowsheet to include the process control and instrumentation

system architecture. In addition, each device, signal and stream is uniquely named.
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Table 1.2.1: Nomenclature for the two-tank process of Figure 1.2.1

Description Label Inside/Outside System Type

Water Tanks TK1, TK2 Inside Device
Control Valves CV1, CV2,CV3,CV4 Inside Device
Manual Valves MV1, MV2 Inside Device
Flow Controllers FC1, FC2, FC3, FC4 Inside Device
Level Controllers LC1, LC2 Inside Device
Flow Transmitters FT1, FT2, FT3, FT4 Inside Device
Level Transmitters LT1, LT2 Inside Device
Temperature Transmitters TT1, TT2 Inside Device
Streams 1,2,3,4,5,6 Inside Stream
Cascaded Controller Set-Points rFC1, rFC2, rFC3, rFC4 Inside Signal
Steam Supplies S1, S2 Outside Device
Water Supplies W1, W2 Outside Device
Steam Drains D2, D4 Outside Device
Downstream Process P2 Outside Process
Non-Cascaded Controller Set-Points rTC1,rLC1,rTC2,rLC2 Outside Signal

1.2.3.3 Example process system

Figure 1.2.1 shows the piping and instrumentation diagram for a two-tank process adapted from

Jiang et al. (2009) where:

i Dashed lines represent control and instrumentation signals.

ii Solid lines represent steam and water streams designated as numbered diamonds 1- 6.

iii The process inputs and outputs are shown as rectangular boxes with a dashed border. They

define the process process boundary.

iv Mass and energy enters the process from water and steam utilities W1, W3 and S2, S4 respec-

tively.

v Mass and energy leaves the process to the condensate drains D2, D4, and a separate downstream

process P2.

vi The controller set-points, for example, rTC1, for controllers TC1, LC1, TC2, LC2 represent

information coming into the process.

The process shown in Figure 1.2.1 is explored in detail in Chapter 5 as a case-study in finding causal

relations between the controller devices.
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Figure 1.2.1: Example process system adapted from Jiang et al. (2009). Mass and energy enters the system
via the cold water and steam utilities W1, W3 and S2, S4 respectively, and leaves via the condensate drains
D2, D4, and through stream 6 to a separate downstream process P2. The non-cascaded controller set-points
rTC1,rLC1,rTC2,rLC2 are signals entering the process system.
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1.2.4 Causation, connectivity and faults

1.2.4.1 General principles

A study of fault propagation raises questions of the existence of pathways which connect phenomena,

and the direction of those pathways to move from causes to effects. The physicist Louis de Broglie said

that “The search for causation is an instinctive tendency of the human mind” (English translation from

Causality and Modern Science, (Bunge, 1979)). However, questions of the nature and representation of

causality and the limits of causal reasoning in engineering and science are still debated. For example

the “Causality in the Sciences” conference series has been running since 2006 (Williamson, 2020).

A key theme in discussions of causation is that of mechanisms or the existence, directionality and

nature of what Pearl denotes as causal pathways (Pearl, 2009). As the philosopher Wesley Salmon

puts it “causal processes, causal interactions, and causal laws provide the mechanisms by which the

world works; to understand why certain things happen, we need to see how they are produced by these

mechanisms” (Salmon, 1984).

This thesis adopts Salmon’s mechanistic approach and proposes that devices, signals and streams

define the causal mechanisms and pathways for fault propagation in process systems. Adapting and

combining from Venkatasubramanian et al. (2003b), Smith and Corripio (1997), Himmelblau (1978),

and BSI (2017), faults, causes, effects and dependency are now defined.

Causes, effects and faults. A cause is a circumstance that results in an observed effect. A fault

is the state of a device which cannot perform a required function. Undesirable causes may lead to

faults, which in turn produce effects. Process faults are broadly categorised as malfunctions and

parameter changes. An example of a malfunction is the electrical failure of a controller. An example

of a parameter change is the fouling of a heat exchanger.

Causal mechanism and dependency . If there is causal mechanism which links a cause C with an

effect E, then E is dependent on C.

Fault diagnosis . Adapting from Ding (2013) fault diagnosis is defined as comprising:

i Detection: The observation of effects.

ii Isolation: The localization of potential causes to within a specific process area.

iii Analysis: The specific identification of the causes and their pathways.
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Figure 1.2.2: Idealised process comprising a set of plant devices and a set of control devices. The set of
control devices comprises subsets of actuator devices, instrument devices and controller devices. Faults and
measured effects cross the process boundary, shown as a dashed rectangle.

1.2.4.2 An idealised process

Figure 1.2.2 shows an idealised process comprising a plant device and three control and instrumen-

tation devices (an instrument, a controller and an actuator), connected by a set of signals and streams.

A stream transports mass, energy, composition and other physical properties from device to device.

A signal travels through a set of control and measurement channels, transporting information

between devices. Faults act on the process to produce measured effects. The detailed architecture of

the process devices, signals and streams defines the possible causal pathways for the propagation of

process faults. The challenge is is to use the available information from measured effects to identify

causal pathways, and isolate the causes of faults.

With respect to the two-tank process of Figure 1.2.1, potential causes include:

i Changes to the plant inputs, such as the steam flow rate from supply S2.

ii Changes to the controller and instrument inputs, such as the the controller setpoint rLC1.
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iii Actuator faults. An example of an actuator fault is valve CV1 sticking, so that it does not

properly respond to the control signal from controller FC1.

These causes may result in measurable effects, such as adverse changes to the water temperature

and level in tank TK1.

1.2.4.3 Model classification

This thesis builds and analyses models of causality and fault diagnosis. This sub-section introduces

general terms and concepts related to modelling and analysis that will be used throughout the thesis.

Forward and backward models. Models which predict a set of effects from a set of causes are

called forward models. By inverting the forward model the set of causes is estimated or retrieved

from measurements of the effects. In this thesis inverted forward models are called backward models.

Forward models are prognostic and backward models are diagnostic.

Quantitative models. Deterministic simulations and data driven statistical or machine learning

models which yield numerical results on the strength of causal relations are examples of quantitative

models.

Qualitative models. Models which express the existence, but not the strength, of causal relations

are qualitative. Event tree and fault tree analysis are examples of qualitative models.

Analytic and synthetic models. A distinction is made between analytic and synthetic modelling

approaches where analytic modelling means a top-down approach to developing and using specific

techniques. Synthetic modelling means a progressive bottom-up fusion of information derived from

analytic techniques.

1.2.5 Graphs, digraphs, matching and structural models

The specific methods used in this thesis are now introduced. The definitions are adapted and

combined from Deo (1974) and Pearl (2009).

1.2.5.1 Graphs and digraphs

Graphs provide visual and algebraic models of the pairwise connectivity between a set of items

called vertices (V ) mediated by a set of connections called edges (E). A graph G therefore represents

the architecture of a system characterised by edges and vertices. If the edges have specific directionality,

the model is a directed graph or digraph D. The work in this thesis focuses on digraphs because of
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their connectivity and directionality properties.

1.2.5.2 Digraph matrices

An adjacency matrix A with binary entries is a representation of which vertices are adjacent or

not. In a digraph D, if a vertex v is at the end of an edge from vertex u then v is adjacent to u. The

relation of u to v is also characterised by calling v the direct descendant of u. Conversely u is the direct

antecedent of v. If the edge from u to v is denoted by euv then v is the endpoint of euv.

An adjacency matrix is used to calculate a reachability matrix R whose binary entries show which

vertices can or cannot ultimately reach another vertex along a continuous series of edges called a path

or a traverse. The action of moving between vertices along a path (traverse) is called traversing.

1.2.5.3 Acyclic and cyclic digraphs

If there is a path starting from a given vertex which ends up back at the same vertex the path is

called a cycle. A digraph with more or more cycles is called cyclic. A digraph with no cycles is called

acyclic. Cyclic digraphs are transformed into acyclic digraphs using digraph condensation. Digraph

condensation is the process whereby all the vertices in a cycle are replaced by a single vertex s.

An example of an acyclic digraph is a non-loopy Bayesian network (Barber, 2012) in which the

vertices are characterised with probabilistic information which relate the probable state of a vertex to

the probable states of its antecedents.

1.2.5.4 Bipartite digraphs

If a set of vertices V set can be divided into two disjoint and independent sets Va and Vb such that

every edge connects a vertex in Va to one in Vb, the the graph is bipartite. Here disjoint means that

Va and Vb have no vertices in common, and independent means that for a vertex set U there are no

connected vertex pairs in U .

1.2.5.5 Digraph matching

A digraph matching is a set of edges such that no two share an endpoint vertex. Correspondingly

a vertex is matched if it is an endpoint of one of the matched edges. Bipartite matching is matching

restricted to edges between the sets Va and Vb.

26



CHAPTER 1. INTRODUCTION

1.2.5.6 Bayesian networks

Bayesian networks are a type of digraph in which the vertices are characterised by probabilities. The

edges between vertices signify conditional probabilities. In this thesis vertex probability is represented

in conditional probability tables (CPTs). By using Bayes theorem, and any available information,

known as evidence, the probable state of all the vertices in the network can be calculated. Worked

examples of Bayesian networks are given in the workbook BN Examples Vs01.xlsx.

The file is available at https://zenodo.org/communities/dl4009.

1.2.5.7 Structural equations and models

A structural equation expresses relations between variables without specifying the exact nature of

the relation. A structural model comprises one or more structural equations.

An example of a structural equation is shown in equation 1.2.1. In this equation p,v and θ denote

the pressure, volume and temperature of gas in vessel. These variables are called structural variables.

The symbols F̂ and F denote structural functions, and represents a relation between the structural

variables. The zero on the left hand side of equation 1.2.1 signifies there are no dependencies. In this

case the structural equation is described as unmatched.

0 = F̂(p,v,θ) (1.2.1)

If it is known that p is dependent on v and θ then equation 1.2.1 can (in principle) be rearranged to

yield equation 1.2.2. This structural equation is described as matched. A matched structural equation

has a single dependent variable (output), and one of more independent (input) variables.

p = F(θ ,v) (1.2.2)

A set of one or more structural equations is called a structural model.

1.2.5.8 Digraphs and structural equations

Digraphs and a structural equations share the terminology of matching. This is not a coincidence. In

this thesis, the correspondence of digraphs and structural equations is a unifying principle in modelling

causal mechanisms and pathways. The details of this correspondence, and its use in fault propagation

analysis, is developed in Chapter 2 and the rest of the thesis.
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1.3 Scope of the Research

1.3.1 Major themes of previous research

Research in fault modelling and analysis is broadly approached through qualitative, deterministic

quantitative, or data driven modelling and analysis. Figure 1.3.1 shows an analytic framework,

adapted and simplified from Venkatasubramanian et al. (2003c). In this context, analytic means the

topics of diagnostic methods is broken down into smaller sub-topics. Figure 1.3.2 shows a later

framework, adapted from Yang et al. (2014) based on information derived from connectivity and

causality modelling. Again the framework is analytic and Yang et al. state that a goal of process

diagnosis is the fusion of information from analytic techniques. However, Yang et al. do not show how

this fusion is to be achieved. These approaches to fault diagnosis highlight three dichotomies.

1.3.1.1 Forward models and backward models

The deterministic models of Figure 1.3.1 are forward (prognostic) models going from causes to

effects and are generally difficult to invert to create backward (diagnostic) models. Statistical models

do diagnose causes from measured effects but calculate likely causal pathways rather than use those

defined by the architecture of the process.

1.3.1.2 Plant devices or control devices

Another analytic separation is found in the treatment of plant devices and control devices. For

example, Mah (1990) developed digraph models based on plant device adjacency, while Jiang et al.

(2009) developed digraph models based on controller device adjacency. Neither approach explicitly or

systematically addresses the adjacency or reachability between plant and control devices to develop a

synthetic approach to modelling causal pathways in process systems.

1.3.1.3 Causal or non-causal relations

In using first principles deterministic models to find causal relations between plant variables, Maurya

et al. (2003a) claimed that because differential equations are dynamic they are causal. Maurya et

al. also claim that because algebraic equations represent simultaneity they are non-causal. In their

paper this latter claim is the rationale for using the idea of matching, introduced in Section 1.2.5, to

algorithmically derive causal relations rather than to directly use the causal pathways inherent in the

process architecture.
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Figure 1.3.1: Analytic classification of fault diagnosis methods adapted from Venkatasubramanian et al.
(2003b) to show selected methods.

1.4 Motivation for the Research

1.4.1 Synthesising analytical approaches

Based on these observations, an open problem in fault diagnosis is one of synthesis. A first

motivation for this thesis is to develop an approach to fault diagnosis that:

i Uses all the information on the process and its architecture to synthesise a physically causal

model of the process

ii Brings together disparate analytical approaches to fault diagnosis to synthesis a coherent analysis

approach to fault propagation.
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Figure 1.3.2: Analytic fault diagnosis framework adapted from Yang et al. (2014) to show selected methods.
In this framework connectivity and causality modelling are distinct activities.

This theme of synthesis resonates with the idea of process synthesis (Smith, 2005; Kemp, 2011).

The rationale of process synthesis is that the process design should use all the available information

to meet a set of design targets. Specifically, process synthesis is focused on “the identification of a

processing route to produce the desired product” (Tula et al., 2015). The idea of processing routes is

consistent with the ideas of connectivity and causal pathways.

The research presented in this thesis builds on the idea that a process has a specific purpose, achieved

through one (or more) processing routes. Moreover, the process has a control and instrumentation

system. By measuring and manipulating process variables in and around the processing route, the

control system keeps the process within operational and safety limits.

This thesis argues that the combination of the processing route and control system defines con-

nectivity and dependency relations. Moreover, dependency relations exist within the process, and

between the process and its environment, and describe the causal mechanisms and pathways for fault

propagation. In turn, such mechanisms and pathways represent a causal map of the process.
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The research presented in this thesis develops a systematic and scalable approach to developing

causal maps and applies such causal maps to the problem of fault propagation, detection and analysis

in process systems.

1.4.2 Understanding complicated systems

A second motivation is prompted by the problem of making sense of complicated systems, and

especially how to model and analyse multiple process effects. A fault in one process area can propagate

through the whole process (Thornhill et al., 2003) and cause multiple effects.

In extreme cases, multiple effects can trigger multiple concurrent alarms. This phenomenon can

make it difficult for process operators and engineers to understand the root cause(s) and respond

appropriately (Laberge et al., 2014). For example, the problem of making sense of multiple alarms

contributed the 1979 accident at the 3 Mile Island nuclear generating station in Pennsylvania (OSTI,

1979). On the basis that measurements from process instruments signpost abnormal effects along causal

pathways, a process causal map would help operators and engineers understand fault propagation

routes through the process.

On a personal note, early on his career, the author worked on programming models for operator

training simulators for combined cycle gas turbine power stations. One use of operator training

simulators is to initiate faults, and use the simulator alarms, as observable abnormal effects, to train the

operators to diagnose the faults. Trying to trace the effects back through the system was intriguing and

instructive for everyone, and often raised questions on the detailed operation of the power station, and

the simulator modelling.

At the start of this PhD, an initial literature review revealed a focus on the modelling and analysing

faults and their effects using mathematical structures called trees. Trees are a form of digraph, the

most well known example being a fault tree. Trees do not contain any loops (in graph theory these

are called cycles), which simplifies the structure of a fault model. However, the industrial processes

that the author has worked on are jam-packed with control loops and recycles. After experimenting

with the mathematics of digraphs and trees, it became clear that trying to algorithmically remove loops

from digraph models of process systems could lead to strange, non-physical results. Therefore, the

author developed an interest in modelling the as-given architecture of process systems, loops and all,

to get a true picture of fault propagation, detection and analysis in process systems.
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1.4.3 Industry 4.0

The term “Industry 4.0” was originated at the Hanover Fair in 2011. However, textciteSchwab2016

defines the period since 2000 as marking the fourth industrial revolution, or industry 4.0. This period is

characterised by large volumes of data, and a number of technologies; particularly artificial intelligence

and machine learning. With respect to applications of these technologies in process systems engineering

(PSE), Reis and Saraiva (2021) call this period PSE 4.0.

As the precursor to industry 4.0, the period 1960-2000 is identified with industry 3.0. With respect

to PSE Reis and Saraiva (2021), characterise this period as based on a mechanistic, natural science

based understanding of unit operations and processes.

The Boston Consulting Group describe nine technologies that underpin industry 4.0. including

simulation and data analysis (BCG, 2015). Don Bartusiak, formerly of ExxonMobil, describes the

combination of simulation and analysis as real-time models of the process called “digital twins” (Greig,

2019).

One of the aims of this thesis is to develop ways of modelling and analysing faults in process

systems that can be used in real-time, digital twin applications at the process supervisory level. Such

fault diagnosis models would be able to provide explanations of fault paths through the process, shown

on a process display. Moreover the information provided would enable process personal to triage

resources to further investigate and fix the problem.

1.5 Research Questions

Based on the motivation for the thesis, the research is framed by three questions.

1.5.1 Model ingredients

What are the necessary ingredients of a fault diagnosis model? Process systems comprise plant and

control devices and an external environment, all connected by signals and streams. Devices, signals

and streams collectively define the process architecture and its as-given causality. All this information

should be included in a process causal model.
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1.5.2 Model analysis

What information should a fault diagnosis model yield? The model should be navigable both

forwards and backwards. For a given set of effects the model should reveal the causal pathways from

effects to their possible causes, and relative strengths. Moreover, specific features of the causal model

should be amenable to more detailed analysis.

1.5.3 Modelling approach

Which types of model are appropriate for fault diagnosis? The two previous research questions

imply that it is appropriate to fuse qualitative and quantitative techniques. In this fusion, the qualitative

modelling provides a systematic and scalable framework to develop the quantitative modelling.

1.6 Objectives of the Research
To address the research questions, the synthetic framework of Figure 1.6.1 is proposed with the two

specific objectives of a level 1 fusion and a level 2 fusion.

1.6.1 Level 1 fusion

The level 1 fusion is a qualitative approach to the modelling and analysis of fault propagation in

process systems. The model ingredients, modelling methods and analysis methods are now discussed.

1.6.1.1 Ingredients of the level 1 fusion

Process architecture. The box labelled WF01, on the left hand side of Figure 1.6.1, denotes

that the process architecture gives information the process devices, signals and streams. The process

architecture is represented as a process flowsheet or piping and instrumentation diagram. These

representations give the specific details of all the process devices (both plant and control) that comprise

the process. The architecture provides an inventory of device archetypes, and their specific names. The

process architecture also details how the process devices are connected by specific signals and streams.

Generic first principles models. Box WF02 indicates the first principles process modelling required

for the level 1 fusion and the level 2 fusion. Each process device archetype has a corresponding first

principles model archetype. Examples of generic models are a heat exchanger or controller.

Generic structural models. The boxes labelled WF04 and WF05 in Figure 1.6.1 denote that each

generic first principles model has an equivalent generic structural model. In the first instance these
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generic structural models are unmatched. They list the variables that characterise the device, but there

is no distinction between dependent and independent variables.

1.6.1.2 Modelling of the level 1 fusion

Box WF07 of Figure 1.6.1 signifies that the information on the specific process architecture and the

generic structural models is combined to give specific device structural models. The inputs and output

of each device structural model are derived from the signals and streams shown on the process piping

and instrumentation diagrams. The choice of independent variables is constrained by the measurement

and manipulation requirements of the control system.

A structural model of the entire process is derived using a systematic, piecemeal approach. The

process structural model is used to derive a process adjacency matrix, and hence process digraph.

This digraph is called a level 1 digraph. The level 1 digraph is a forward computer model of the

cause-to-effect, and hence fault propagation, pathways of the process.

The digraph vertices are structural functions and structural variables. The structural variables

represent process variables. The structural functions represent the whole or parts of process devices.

The digraph edges represent the process signals and streams. This fusion of device and process

architecture information is called a level 1 fusion. The level 1 fusion model represents causality as a

fusion of connectivity and dependency.
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1.6.1.3 Analysis of the level 1 fusion

Having derived a digraph model of the process, it can now be used to qualitatively analyse fault

propagation, and diagnose originating causes. Digraphs are especially useful in modelling fault

propagation because they cab be searched. In the first instance the digraph is a forward model of

cause-to-effect relationships

This thesis shows how the forward version of the level 1 digraph is readily transformed into a

backward (effect-to-cause) model to find the complete set of effect-to-cause pathways, and set of

candidate cause corresponding to any given set of effects.

It is further shown that specific causal relations within forward and backward models can be

discovered by applying set theory to the digraph. For example, the interrelations of the process

controllers can be picked out and represented as a sub-digraph. In this way the pathways for the

propagation of faults between controllers is made clear.

1.6.2 Level 2 fusion

The level 2 fusion model is derived by combining a level 1 fusion with probability data. The

probability data is derived from analysing historical process data, and the outputs of Monte Carlo

simulations.

1.6.2.1 Ingredients and modelling of the level 2 fusion

Box WF09 of Figure 1.6.1 shows the qualitative level 1 digraph is the basis for a quantitative level

2 digraph in the form of a Bayesian network. The convention in Bayesian networks requires the

function vertices of the level 1 digraph to be discarded, so that that variables have direct edges to their

descendent variable. If a vertex has no antecedents, it is independent and is a process cause.

A process variable is said to be in fault if it is outside defined control limits, and therefore has an

abnormal value. Each process variable x has a corresponding fault variable x( f ). If x is outside its

control limits, then x( f ) = 1. Otherwise x( f ) = 0.. Each process variable x also has corresponding

probability of being in fault, given by x(p) = P(x( f ) = 1). If the process variable x has a 30% chance

of being in fault, then x(p) = 0.3.

Each vertex in a level 2 Bayesian network represents a fault variable. The probability of vertex

being in fault is conditionally dependent on the provability of each of its direct antecedents being in
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fault. Each level 2 digraph vertex has an associated conditional probability model. In this thesis, the

probable state of each vertex is modelled by a conditional probability table (CPT).

Each CPT requires probability data, tabulated specifically on how many direct antecedents a vertex

has. Boxes WF03 and WF08 of Figure 1.6.1 signify that the raw data for each CPT comes from

historical data on process faults and effects. If such historical data are not available, Box WF06 and

WF08 show the CPT is calculated from a Monte Carlo simulation using the first principles model.

1.6.2.2 Level 2 fusion analysis

Bayesian networks calculate the probable state of each vertex in the network using evidence. In this

thesis, such evidence comes from observed alarms. Fault diagnosis is based calculating the network

probabilities and ranking the independent vertices from largest to smallest probability of being in an

abnormal state. The vertex with the largest probability of being abnormal is the likely cause of the

abnormal effects.

1.6.3 Answers to the research questions

The research reported in this thesis will show that the modelling and analysis workflow presented in

Figure 1.6.1 will provide the following answers to the research questions.

1.6.3.1 What are the necessary ingredients of a fault diagnosis model?

The necessary ingredients of the level 1 fusion and the level 2 fusion are given by:

i Box WF01. The process architecture, represented by a process flowsheet or piping and instru-

mentation diagram.

ii Box WF02. A first principles model of the process. This model mathematically describes the

chemistry, physics, and control and instrumentation engineering of the process devices.

iii Box WF04 and box WF05. A set of generic structural models for each process device.

iv Box WF03. A set of historical process data. The data should be sufficiently extensive to model

the probability of measured variables being in abnormal state.

v Box WF06 and box WF08. If historical data is not available, probability values can calculated

from a Monte Carlo simulation using the first principles model of the process.
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1.6.3.2 What information should a fault diagnosis model yield?

The level 1 fusion produces a detailed causal map of the process. This map can be searched to

discover the existence of fault propagation paths, and the nature of the physical mechanism by which

faults cause effects. The level 1 fusion is also invertible so that paths can be traced from effects back to

causes.

The level 2 fusion builds on the level 1 fusion to yield quantitative information on the strength of

related cause and effects, discovered by the level 1 fusion.

1.6.3.3 Which types of model are appropriate to fault diagnosis?

Based on the answers to the two previous questions, box WF07 and box WF09 show the types of

model appropriate to the proposed fusion are:

i Qualitative structural models. These models capture the causal relationship between functions

and variables associated with the process.

ii Qualitative digraph models. These models are directly derived from structural models and offer

both a pictorial and qualitative mathematical representation of process fault cause and effect

relationships.

iii Quantitative digraph models. A Bayesian network, directly derived from a qualitative digraph

model can be used to quantify fault cause and effect relationships.

1.6.4 Research reproducibility

This PhD project is based on code and data expressed in MATLAB, Excel, and Microsoft Belief

Network (MSBNx) files. To promote transparency and research reproducibility, these files are available

from the website https://zenodo.org/communities/dl4009.

1.7 Introduction to the Case Studies

The research questions and proposed methodology to address them are explored and developed

using three case studies.
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1.7.1 Two-tank process

The two-tank process of Section 1.2.1 was developed by Jiang et al. (2009) to express the causal

relations of the controllers as a control loop adjacency matrix. However, the adjacency matrix quoted

by Jiang et al. was derived manually using expert engineering judgement, rather than by detailed

analysis.

Chapter 5 systematically derives a detailed causal digraph. This digraph includes all the plant and

control devices, using their as-given architecture. By combining digraphs searches and set theory, a

sub-digraph showing the causal relations between the controllers is obtained and compared with the

result from Jiang et al.

1.7.2 Tennessee Eastman process

A case study using the Tennessee Eastman challenge process (Downs and Vogel, 1993) is developed

to demonstrate the scalability of the proposed level 1 fusion. The structural model is derived from the

first principles mass and energy balance model developed by Jockenhovel et al. (2004), also reported

in Cameron and Gani (2011).

The control scheme is taken from Lyman and Georgakis (1995). A sub-digraph of the process

controller causal relations is extracted. The controller adjacency matrix is derived from the controller

sub-digraph and used to calculate the controller reachabilty matrix.

1.7.3 Heat exchanger network

A level 2 digraph is developed for a heat exchanger network adapted from Kemp (2011). In the

first instance, a first principles process model of the network is developed, where the model includes

temperature measurements. A level 1 digraph is derived from the process model, and converted into a

level 2 digraph.

A Monte Carlo procedure is applied to the process model to generate conditional probability data

for temperature alarms. These data are overlayed on the level 1 digraph to form a level 2 digraph. By

simulating causes and using the resulting temperature alarms as evidence, the diagnostic results of the

level 2 digraph are in good agreement with the known causes for several scenarios.
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1.8 Structure of the Thesis

1.8.1 Chapter 2

Chapter 2 develops the background required for the literature review for the rest of the thesis.

The connection between the visual and adjacency matrix representations of digraphs is explored,

and the calculation of reachability matrices is illustrated. The simplification of cyclical digraphs is

demonstrated. The concept of bipartite matching in digraphs is introduced. The ideas of structural

equations and models are discussed. The theory of Bayesian networks is also reviewed.

1.8.2 Chapter 3

Chapter 3 reviews the process engineering literature to draw out and explain the key themes and

directions of the prior research in process fault diagnosis. The prior research focus on either the plant

or the control process subsystems is discussed.

Several researchers also use bipartite matching in causal modelling. However as shown in Chapter 2

this technique can yield results contrary to the known causality of a system. Based on these observations

the research questions of Section 1.5 are analysed and discussed. By examining the themes of model

ingredients and model analysis, the two level fusion of Figure 1.6.1 is justified as a way to answer the

third research question on the modelling approach.

1.8.3 Chapter 4

Chapter 4 develops the detail of the qualitative level 1 fusion. Plant and control devices are

shown to have an as-built input-output structure based on the principles of chemistry, physics, and

control and measurement. Structural models of example plant and control devices are derived and the

transformation of structural models into digraphs is explained. Device structural models are regarded

as building-block digraphs which are connected using the as-given process architecture (devices,

streams, signals and environment) to yield a complete process digraph. This level 1 fusion procedure

is illustrated through using a level control loop from the two-tank process of Figure 1.2.1. Backward

causal models are formed by transposing forward adjacency matrices. This technique also allows the

determination and analysis of causal pathways using digraph search techniques. Mathematical ideas

from set theory, in particular the intersection of sets, are applied to the output of search. This yields
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specific information such as control device adjacency.

1.8.4 Chapter 5

Chapter 5 applies the level 1 fusion to a detailed case study of the two-tank process with a focus on

algorithmically extracting an adjacency matrix for the controller devices. When this result is compared

to the controller adjacency matrix stated by Jiang et al., seven differences are found. These differences

are shown to arise from tacit assumptions in the manual procedure of Jiang et al. Such assumptions are

revealed in the algorithmic approach of this thesis, which yields detailed causal path information.

1.8.5 Chapter 6

Chapter 6 demonstrates the scalability of the level 1 fusion by applying it to the Tennessee Eastman

challenge process and algorithmically deriving an adjacency matrix for the controller devices. This

analysis reveals a previously undiscovered problem in the design of the compressor control scheme.

Four fault scenarios are analysed to reveal the detail of fault propagation paths and causal mecha-

nisms of the process. The insights provided by the level 1 fusion modelling and analysis are an advance

on the state of the art.

1.8.6 Chapter 7

Chapter 7 develops the quantitative level 2 fusion and shows that a level 2 digraph is a natural

extension of a level 1 digraph. The focus is on the probabilistic modelling of discrete effect states

(normal or abnormal) as process fault evidence. A case study on a heat exchanger network highlight

the successes and limitations of Bayesian approaches to quantitative process causal analysis.

1.8.7 Chapter 8

Chapter 8 presents a critical evaluation of the research. It is proposed that the three research

questions of Section 1.5 find an initial answer in the level 1 fusion approach shown in Figure 1.6.1.

The level 1 fusion is shown to be systematic, inclusive, scalable, navigable and invertible. Testing

the methodology on example systems and analysing the resulting causal pathways shows the known

causality of the systems is reproduced. The development of the quantitative level 2 fusion is a natural

extension of the level 1 fusion. However although the the methodology is successful in the case study,

setting up the required conditional probability tables is computational expensive.
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1.8.8 Chapter 9

Finally, Chapter 9 summarizes the work and outlines some potential areas for future research for

developing both the level 1 and level 2 methodologies.

1.9 Summary
This chapter has introduced the problem of fault propagation, detection and analysis in process

systems, and formulated the research questions to be addressed, casting the problem as one of modelling

and analysing process system causality using digraphs and structural equations.

The contribution of this thesis is founded on the principle that causality in process systems can be

diagnosed using the combination of connectivity and dependency.

This principle is expressed in a proposed synthesis of digraph and structural modelling techniques to

build causal models of process devices. These device models are integrated using the as-given process

connectivity, expressed as streams and signals, to form a complete causal model of a process system,

inclusive of plant and control devices.

The initial formulation of a process causal model is qualitative, called a level 1 fusion, giving

the details of the causal pathways, but not the quantitative impacts of different causes. However by

overlaying the level 1 digraph with probabilistic information, a quantitative level 2 fusion is achieved

to quantify and rank causes from effect evidence. Both the qualitative and quantitative approaches are

invertible to yield effect-to-cause diagnostic models from cause-to-effect prognostic models. Three

process case studies were outlined, and the overall structure of the thesis was presented.

* * *
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Background Theory

This chapter reviews the basic theory of digraphs, structural equations and Bayesian network to describe

directed connections and causality as background for the literature review of Chapter 3. Sections 2.1

to 2.2 introduce the concepts required for the Level 1 fusion. Section 2.3 introduces the Bayesian

Network as the as the basis of the level 2 fusion, which builds on the level 1 fusion.

Section 2.1 defines a digraph. This thesis uses digraphs to model the causality of fault propagation

in process systems. Digraphs can be represented using matrices. Section 2.1.1 defines an adjacency

matrix to model pair-wise connections between vertices. In Section 2.1.4 the adjacency matrix is used

to calculate a reachabilty matrix, which shows the existence of paths between vertices.

Digraphs that do not contain cycles are called acyclic. The prior literature has a strong focus on

deriving acyclic digraphs, also called trees, for use in fault diagnosis modelling and analysis. Section

2.1.5 introduces cyclic digraphs that contain cycles where there is a path from a vertex back to itself.

Section 2.1.6 discusses bipartite matching as a way to derive acyclic digraphs. A bipartite digraph

is a digraph where the vertex set V can be split into two subsets A and B with defined properties. A

bipartite matching from A to B simplifies the relations between A and B.

Section 2.2 defines structural equations and structural models. Dependent and independent structural

models are defined. The correspondence between digraphs and structural models is demonstrated.

Section 2.3 introduces the concept of a Bayesian network as a form of digraph. A Bayesian network

models the conditional probability relationships between variables.

Finally, Section 2.4 presents a summary of the work presented in this chapter.
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Figure 2.1.1: Example digraph in the form of a tree. Vertex v1 is a source; vertices v2,v3,v4 are interior
vertices, and vertices v5...v13 are sinks. This digraph is acyclic.

2.1 Digraphs
Digraphs model directed connectivity and comprise a set of N vertices V = {vi : i = 1,2, ...N}, and

a set of directed edges E =
{

ei : i, j = 1,2, ...M : M ≤ N2}, where ei j is represented in the digraph as

a line directed from vertex vi to vertex v j.

If there is a single directed line from vertex vi to vertex v j that does not include any other vertices

then v j is adjacent to vertex vi.

Figure 2.1.1 shows a digraph in the form a tree (Deo, 1974). The digraph has 13 vertices and 12

edges and is acyclic. In this digraph vertices v2, vertex v3 and vertex v4 are all adjacent to vertex vertex

v1. However vertex v1 is not adjacent to any other vertex.

In this thesis, the process is first described as a detailed structural model comprising variables and

functions. Subsequently, digraph vertices represent these functions and variables. Digraph edges then

represent the existence of causal pathways within the process.

2.1.1 Adjacency matrices

Digraphs are modelled as an N ×N adjacency matrix A such that if ei j exists then Ai j = 1 and v j is

adjacent to vi , otherwise Ai j = 0.

Figure 2.1.2 shows the adjacency matrix A for the digraph of Figure 2.1.1 where zero entries are
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Figure 2.1.2: Adjacency matrix of the digraph of Figure 2.1.1 where zero entries are denoted by a dot. Vertex
v1 is the only source and vertices v5 to v13 are sinks.

denoted by a dot. The first row shows that vertices v2,v3,v4 are adjacent to vertex v1 and are its direct

descendents. Conversely v1 is the direct antecedent of v2,v3,v4.

Digraphs represent architecture pictorially while adjacency matrices represent the same architecture

algebraically. They are readily interconvertible and in this thesis adjacency matrices are built as

computer models to analyse the properties of digraphs.

2.1.2 Vertex in-degree and out-degree

The number of inbound edges to vertex v j is called the in-degree, and the number of outbound

edges from a vertex is called the out-degree. The in-degree of a vertex is equal to the number of its

direct antecedents. The out degree of a vertex is equal to the number of its direct descendents.
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2.1.3 Digraph sources, sinks and paths

Vertices with zero in-degree are called sources, and in this thesis their inbound edges describe

signals and streams coming into a process from the environment. Vertices with zero out-degree are

called sinks. In this thesis their inbound edges describe signals and streams leaving the process to the

environment. Vertices that are not a source or a sink are interior vertices. Sources have null columns

in the adjacency, and sinks have null rows in the adjacency matrix. The term null means that all the

elements are zero. Sources and sinks define the boundary of the digraph.

A path between two adjacent vertices vi and v j is denoted vi → v j and comprises a single edge

between the two vertices. In figure 2.1.1 the path between v1 and v3 is written v1 → v3. If a path exists

between non-adjacent vertices it is comprised of a sequence of edges between adjacent vertices. For

example there is a path between v1 and v9 via v3. This path is written v1 → v3 → v9.

Because of the way this thesis constructs and applies digraphs to engineering systems, this thesis

argues that digraphs represent causal pathways. Moreover, sinks model observed effects, and sources

model root causes. The vertices on a path between a source and a sink are contributory causes.

2.1.4 Reachability matrices

A reachability matrix R of a digraph has R(i, j) = 1 if there is a path from vertex i to vertex j, and

R(i, j) = 0 otherwise. R is calculated from the adjacency matrix A using equation 2.1.2. The entries of

Ak give the number of paths of length k between vi and v j. H(A) is the Heaviside function operating

on a matrix A, and A(i, j) is the entry for the ith row and j the column.

H(A) =

 1 A(i, j)> 0

0 A(i, j)≤ 0
(2.1.1)

R = H

(
N

∑
k=1

Ak

)
= H

(
A(I +A)n−1) (2.1.2)

The reachability matrix R has the following properties with respect to sources and sinks.

i If a vertex is a source, no other vertex can reach it. Its column entry in R is null.

ii If a vertex is a sink, it cannot reach any other vertex. Its row entry in R is null.
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Figure 2.1.3: Reachabilty matrix for the digraph of Figure 2.1.1. The vertex v1 is a source and in this case
can reach every other vertex. Vertices v2,v3 and v4 can reach their direct descendents. Vertices v5 to v13 are
sinks and cannot reach any other vertex.

Figure 2.1.3 gives the reachability matrix derived from the adjacency matrix of Figure 2.1.2. The

first row shows that v1 can reach all the other vertices. Similarly the second row shows that vertex v2

can only reach v5,v6, and v7. These are its direct descendants, as can be seen in Figure 2.1.1. In this

case, the reachability matrix has this simple structure because the digraph in Figure 2.1.1 has no cycles.

2.1.5 Digraph condensation

As already noted, digraphs that do not contain cycles are called trees, and have the structure of fault

trees. One way to attempt to convert cyclic digraphs into trees is to apply digraph condensation.

Figure 2.1.4 shows a more complicated digraph that models the causal relationships between the

controllers in the two-tank process of Figure 1.2.1. The vertices represent the controllers and the edges
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Figure 2.1.4: Cyclic digraph taken from a result in Chapter 5 on the causal relationships of the controllers in
the two-tank process of Figure 1.2.1. The interior vertices represent the controllers and the edges represent
signals. The source vertex v is the set-point of controller v4.

Figure 2.1.5: Digraph condensation for the digraph of Figure 2.1.4. The super vertices S1,S2,S3,S4 are
condensations of the components in the original digraph of Figure 2.1.4. This digraph is now acyclic.

represent signals. The vertex v represents the set-point of controller LC1 and the edge v → v4 represent

the causal relationship between the set-point and the controller.

Two digraph vertices vi and v j are described as strongly connected if there is a path vi → v j and

a path v j → vi. In this case vi and v j lie on a cycle, and the digraph is cyclic. A set of vertices that

are strongly connected to each other is a called a component. The replacement of a component with

a single super-vertex is termed condensation. The digraph of Figure 2.1.4 is cyclic and contains

four components v3 → v4 → v3, v7 → v8 → v7, v1 → v2 → v1, v5 → v6 → v5. These components are

condensed into the super-vertices S1,S2,S3,S4 respectively. Figure 2.1.4 is redrawn as the condensed

digraph of Figure 2.1.5. This digraph is now acyclic. However, the detailed causal structure shown in
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Figure 2.1.4 has been hidden in Figure 2.1.5.

2.1.6 Bipartite matching

The prior literature in using digraphs to represent process systems makes extensive use of bipartite

matching. Of specific relevance to this thesis is that the technique has been used to derive models of

the relationships between process variables, which from the outset do not contain cycles (Lee et al.,

1966). Venkatasubramanian et al. (2003b) and Maurya et al. (2004) apply bipartite matching to the

development of acyclic fault diagnosis models which have a similar form to fault trees (Smith, 2011).

Figure 2.1.6 shows the adjacency matrix for a bipartite digraph comprising vertex sets F and X . All

the digraph edges are from F to X . The terms disjoint and independent are defined in Section 1.2.5.4

and mean that F and X have no vertices in common and that within F or X there are no connected

vertex pairs.

Inspection of Figure 2.1.6 shows x1, x2, and x3 are adjacent to F1. Similarly, x3, x4, and x5 are

adjacent to F2, and x1, x5, and x6 are adjacent to F3. The bipartite matching problem is to make sure

each F has a single unique x adjacent to it.

The matrix of Figure 2.1.7 is a solution to the matching problem. Taking the example of F1, x2 is

Figure 2.1.6: Adjacency matrix of a bipartite digraph with two sets of disjoint and independent vertices F
and X .
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Figure 2.1.7: A solution to the bipartite matching problem of Figure 2.1.6. There is now a single edge from
each of the vertices in F to a unique matched vertex in X .

now uniquely matched to F1. The matrix also shows F1 is now adjacent to x1 and x3.

Figure 2.1.8: Another solution to the bipartite matching problem of Figure 2.1.6.
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2.2 Structural Modelling

2.2.1 Independent equations

Equation 2.2.1 shows an example of an independent structural equation. In this equation x1,x2,x3

are variables and F̂1 is a structural function. In this thesis structural variables are in lowercase, and

structural functions are in uppercase. The exact form of a structural function is undefined.

0 = F̂1(x1,x2,x3) (2.2.1)

The concept of structural equations is generally linked with statistical associations (Pearl, 2009;

Yang et al., 2014)). However as Pearl (2009) notes, it is equally applicable to deterministic models in

the natural sciences and engineering. Because the left-hand side of 2.2.1 is zero, the structural equation

is described as unmatched.

2.2.2 Dependent equations

An example of a dependent structural equation is given by equation 2.2.2.

x2 = F1(x1,x3) (2.2.2)

Dependent structural equations have a single dependent variable. The structural equation is described

as matched. In particular the structural function F1 is matched with the structural variable x2. The

structural equation 2.2.2 is a rearrangement (in principle) of equation 2.2.1 where x2 is selected to be

the dependent variable. The key feature of structural equations is that because the form of the structural

function is undefined, the focus is on the dependency relations between variables, not on the analytical

or numerical solution of the equation.

2.2.3 Structural models

A structural model is a set of one or more structural equations. In their treatment of the numerical

analysis of process models, Lee et al. (1966) present the structural model of 2.2.3. This model

represents a set of nonlinear simultaneous equations. The model comprises six variables and three

equations. Therefore the equation set has 6−3 = 3 degrees of freedom. To solve this model three of

the variables must be assigned as dependent variables. The remaining three variables are independent.
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0 = F̂1(x1,x2,x3)

0 = F̂2(x3,x4,x5)

0 = F̂3(x1,x5,x6)
(2.2.3)

Developing and applying an equation ordering algorithm, Lee et al. show that the structural model

can be rearranged as the structural model 2.2.4. In this form the structural function Fi is a rearrangement

of the corresponding structural function F̂i.

x2 = F1(x1,x3)

x4 = F2(x3,x5)

x6 = F3(x1,x5)
(2.2.4)

The variables x1,x3 and x5 are independent, and each equation in the set 2.2.4 can be solved one at

a time in any order.

2.2.4 Structural models and digraphs

This thesis uses structural modelling to represent first principles models of process systems as

digraphs. The detailed correspondences of process causality, digraphs, bipartite matching and structural

models are discussed in Chapter 4. However, the correspondence of structural models and digraphs is

now illustrated. equation 2.2.5 shows a structural equation taken from the structural model 2.2.4.

x2 = F1(x1,x3) (2.2.5)

Figure 2.2.1: Matrix representation of structural equation 2.2.5.
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This equation means that x2 is directly dependent on F̂1. Similarly, F̂1 is directly dependent on x1

and x3. Also there is no direct dependency between x1 and x3, and no direct dependency between x1 or

x3, and x2. These dependencies are modelled by the matrix of Figure 2.2.1.

Figure 2.2.2: Matrix representation of structural model 2.2.4.

The complete structural model 2.2.4 is represented by the matrix of Figure 2.2.2. This matrix has

the same form as an adjacency matrix. On that basis, a corresponding digraph is shown in Figure 2.2.3.

In a process system functions such as F1 represent the physical operations such as mass balances

and control algorithms. Retaining function information in a structural model helps make clear why

variables are related.

2.2.5 Structural models and bipartite matching

The correspondence of structural models and digraphs also applies to the concept of bipartite

matching. The structural models of equation 2.2.3 has the following properties.

i The model is comprised of two sets: {F̂1, F̂2, F̂3}, and {x1,x2,x3,x4,x5,x6}

ii The sets are distinct: they have no elements in common.

iii the sets are disjoint: there are no direct dependencies between elements in the same set.
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Figure 2.2.3: Digraph corresponding to the matrix of Figure 2.2.2. This digraph is in the form of a tree (Deo,
1974).

The algorithm of Lee et al. (1966) is a bipartite matching algorithm designed to attempt an equation

re-ordering that corresponds to an acyclic digraph. The algorithm is applied to recast the unmatched

equation set 2.2.3 into the matched equation set 2.2.4. The matched equation set 2.2.4 is represented

by the matrix of Figure 2.2.2, which corresponds to the digraph of Figure 2.2.3. This digraph is acyclic

which means the equation set 2.2.4 does not require simultaneous solution. As already noted, the prior

literature has a focus on deriving acyclic digraph for process fault diagnosis.

However, an acyclic digraph is not always achievable. Moreover, as seen from matrices of Figures

2.1.7 and 2.1.7, bipartite matching does not necessarily produce unique digraphs. Importantly for

this thesis, a process system digraph derived using bipartite matching does not necessarily preserve

the physical causality of the process and can lead to non-physical results. Chapter 4 examines this

problem and shows that a qualitative fault diagnosis digraph is not required to be acyclic, and offers an

alternative approach.

2.3 Bayesian Networks

Bayesian networks are digraphs which represent conditional dependencies between variables (Pearl,

2009). In general, Bayesian networks can be cyclic or acyclic. Cyclic Bayesian networks are described

as loopy, while acyclic Bayesian are described as non-loopy (Barber, 2012). However, loopy Bayesian
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Figure 2.3.1: Digraph basis for an example non-loopy Bayesian network.

networks are not guaranteed to be solvable (Barber, 2012). This thesis concentrates on developing

acyclic Bayesian networks based on the existence of causal relationships from sources to sinks in

generally cyclic qualitative digraphs of the complete process.

Figure 2.3.1 presents a digraph which shows the dependencies between four variables: x(f)1 ,x(f)2 ,x(f)3 ,x(f)4 .

Variables x(f)1 ,x(f)2 are independent; x(f)3 is solely dependent on x(f)1 , and x(f)4 depends on both x(f)1 and

x(f)2 .

The variables represent random binary variables called fault variables x(f)1 ,x(f)2 ,x(f)3 ,x(f)4 , which cor-

respond to process variables x1,x2,x3,x4. If process variable xi is outside its defined limits, then xi is

said to be in fault and x(f)i = 1. Otherwise xi is not in fault and x(f)i = 0. Each process variable xi also

has corresponding probability of being in fault, given by.

x(p)i = P(x(f)i = 1) (2.3.1)

If the process variable x has a 30% chance of being in fault, then x(p) = 0.3. A level 2 Bayesian

network calculates x(p)i for each x(f)i represented in the network.

Figure 2.3.2 shows a Bayesian network based on the digraph of Figure 2.3.1. The tables are called

Conditional Probability Tables (CPTs). Using the CPT for x(f)4 as an example, if x(f)1 = 0 and x(f)i = 1,
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Figure 2.3.2: A Bayesian network for calculating x(p)i for each of x(f)1 ,x(f)2 ,x(f)3 ,x(f)4 .

then x(p)4 = 0.8.

Bayesian networks are generally realised as computer models, along with an algorithm to implement

Bayes theorem (Barber, 2012; Murphy, 2012), using the data in the CPTs. The visual utility of a

Bayesian network is that of a digraph in showing the dependency of variables. The diagnostic utility of

a level 2 Bayesian network is that given observed effects, known as evidence, Bayes theorem is used

to recalculate x(p)i for each x(f)i in the network. In a process system evidence comes from measured

variables. However, it should be noted that if the instrumentation for a given variable is offline, then

that variable cannot be observed and therefore cannot be used as evidence.

Of particular interest is the probable state of the independent variables. In Figure 2.3.2 the inde-

pendent variables are x(f)1 and x(f)2 . If there is no evidence, all the vertices in the network are described

as unobserved. The calculated probabilities for an unobserved network are called the prior probabil-

ities, or simply priors. If evidence on the probable state of one or more vertices exists, then x(p)1 is

recalculated as a posterior probability.

As an example, given evidence that variable x4 is observed not to be in fault so that x(f)4 = 0 and

x(p)4 = 0, the network calculates x(p)1 = 0.023 and x(p)2 = 0.047. Figure 2.3.2 shows that the priors are
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x(p)1 = 0.2 and x(p)1 = 0.2. This result means that both cause x1 and cause x2 are not likely to be in fault.

This Bayesian network is implemented in the code Bayes Example 01.xbn. The code is available

from the website https://zenodo.org/communities/dl4009

In order to easily solve the probability model, Bayesian networks are required to be acyclic. This

thesis show how to derive a physically causal acyclic level 1 fusion digraph as the basis for a level 2

Bayesian network. Chapter 6 uses Bayesian networks in a level 2 fusion case study on fault diagnosis

of a heat exchanger network.

2.4 Summary

This chapter has reviewed the relevant background theory on digraphs, structural equations and

Bayesian networks as a precursor to the literature review and the proposed causal modelling fusion.

A digraph has been formally defined using the ideas of vertices connected by directed edges. The

concepts of sources, as vertices with no antecedents, and sinks, as vertices with no descendents were

introduced. Sources and sinks define the boundary of the digraph. Vertices that are not sources or sinks

are called interior vertices.

Digraphs can be represented as matrices. In the first instance, this representation is as an adjacency

matrix, which shows how pairs of vertices are connected by a single directed edge. The adjacency

matrix is used to calculate a reachabilty matrix,which shows if a vertex can get to other vertices through

a continuous sequence of directed edges called a path.

The concept of digraph cycles has been introduced. A cycle is a path from a vertex back to itself.

Digraphs without cycles are called acyclic digraphs. Otherwise the digraph is cyclic. It was noted that

the removal of cycles from digraphs results in a graph with the form of a tree. It was also noted that a

form of fault diagnosis model has a tree structure and is called a fault tree. It was shown that one way

to convert cyclic digraphs into trees is condensation. It was also shown this technique hides the detail

of the causal structure of the process.

Another approach is to develop digraphs which are inherently acyclic is using bipartite matching. An

example of a bipartite matching problem was worked through. The example brought out the possibility

of multiple solutions to bipartite matching problems. It was also noted that bipartite matching can lead

to the development of non-physical models of process causality.
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The basic ideas of structural equations and models have been discussed as a way to focus on the

relations between process variables. It was shown there are unmatched and matched forms of structural

equations. An unmatched structural equation shows that two or more variables are related, but not the

dependencies. A matched structural equation shows that one variable is dependent on one or more

variables.

A structural model has been defined as a collection of one or more structural equations, and the

relationship between structural models and digraphs explained. An example independent structural

model was presented as representing a set of nonlinear simultaneous. It was shown how bipartite

matching could be used to avoid solving the system simultaneously.

Finally, the concept of a Bayesian network was discussed. A Bayesian network was described as a

type of digraph which incorporates conditional information. It was shown how vertices in a level 2

fusion Bayesian network represents fault variables which are associated with process variables. Fault

variables are binary variables whose probability of taking a specified value are modelled by conditional

probability tables. The edges between vertices in a Bayesian network represent the existence of

conditional relationships between fault variables. Bayesian networks are generally implemented as

computer models, along with an algorithm to implement Bayes theorem. The concepts of evidence,

prior probability and posterior probability were introduced. It was noted that evidence comes from

measured variables. However if the instrumentation for measuring a variable is faulty, that variable is

not observed, and is not evidence.

An example of using evidence to calculate the probable state of independent vertices was sketched.

Identifying independent vertices as causes suggest that Bayesian networks can be used in quantitative

fault diagnosis.

* * *
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Chapter 3

Literature Review and a New Fault Diagnosis

Synthesis

This chapter reviews the literature on fault diagnosis in process systems. The survey is guided by

two analytic classifications which reveal a number of separate approaches and methods. The review

suggests that modelling approaches to fault diagnosis are broadly categorised as qualitative, data-driven,

and equation-based. These categories are further subdivided into specific techniques.

One facet of qualitative modelling broadly aims to produce an account of the process causal

pathways based on device connectivity. Another facet models variable relationships using qualitative

physics.

Data-driven modelling aims to use the large amounts of process data to model the causal structure of

a process, without using detailed knowledge of the process architecture, or its fundamental principles,

such as the workings of control devices or plant devices.

Equation-based modelling aims to model process causality and fault diagnosis using first principles

models or structural equations. First principles modelling attempts to accurately model the process

in a fault-free state. Knowledge of fault causes is gleaned by comparing the model outputs with data

from the real process and its measured faults. Structural models represent the relationships between

variables. Bipartite matching is used in the prior literature to order the equations, so as to find the

dependent variables, and to find an acyclic graph representation of the process.

Further investigation shows that none of these approaches, taken on its own, can adequately address
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the real problem in fault diagnosis. Furthermore, the classifications used in the literature are not entirely

satisfactory. It can be shown that apparently disparate techniques have deep connections, which are not

properly exploited.

Following the survey it is proposed that several important techniques can be be brought together

in a new, two level, fault diagnosis synthesis. The first level is termed a level 1 fusion, and builds

a navigable process causal map as a digraph. This map is derived on the fundamental principles of

process device operations, and their connectivity in the process. The causal map reveals the existence

of causal interactions but not their strength. The level 1 fusion map is the basis of a quantitative

level 2 fusion in which the digraph represents fault variables which are associated with continuous

process variables. A fault variable takes discrete values where the probability of having a given value

is modelled by a conditional probability table. The Bayesian network models the strengths of causal

interactions and is used to discriminate between possible root cause candidates.

3.1 Process Systems Engineering
This thesis is concerned with fault propagation, detection and analysis in process systems and

develops an approach based on modelling and analysing the process system as an integrated whole.

To put the specific topic of the thesis in context, the general scope and methods of process systems

engineering (PSE) are now discussed

3.1.1 Scope of process systems engineering

In 1983 Roger Sargent said, “process systems engineering is all about the development of systematic

techniques for process modelling, design and control” (Sargent, 1983). Section 1.2.1 offered a definition

of a process system using ideas from the British Standards Institute prescriptions for systems and

software engineering (BSI, 2011; BSI, 2015).

In a review article from 2005, Sargent argues that process systems engineering (PSE) has its roots in

the 1940’s and the promise of electronic digital computers to enable the precise definition and solution

of problems (Sargent, 2005). The same article also offers the following useful definitions:

i Systems engineering: Understanding the structure and behaviour of complex systems, where a

complex system is a collection of interacting units.
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ii Chemical engineering: Systems engineering applied to the problems of the process industries.

Sargent (2005) also notes the scope of PSE has moved beyond single site processes to multi-site

process operations and the entire supply chain.

In later review article, Stephanopoulos and Reklaitis (2011) offer a broad definition of PSE that in-

cludes the engineering of systems involving physical, chemical, and/or biological processing operations,

and spans the activities:

i Process design.

ii Optimisation of process operations

iii Monitoring, diagnosis and control of process operations.

iv Identifying the structured network of processing operations.

Grossmann and Harjunkoski (2019) review academic and industrial perspectives on PSE using the

headings of process systems engineering process simulation, process design and synthesis, process

control, process operations and optimisation. The paper also notes electrical network supply and

distribution systems, global supply chain networks, and healthcare applications now fall under the

scope of PSE.

Building on work by Gani et al. (2020), Pistikopoulos et al. (2021) review the past, present and

future of PSE from the perspectives of chemical and biochemical engineering. The paper also notes the

scope of PSE is defined not only by what system is studied, but also how and why that system is studied.

This view is summarised by the strapline for The Sargent Centre for Process Systems Engineering at

Imperial College London: “Understanding the performance of complex systems”, which recapitulates

the previous definitions of systems engineering and process systems engineering given by Sargent

(2005) and Sargent (1983), and the authors personal motivations, discussed in Section 1.4.2.

3.1.2 Methods of process systems engineering

3.1.2.1 Mechanistic methods

Pistikopoulos et al. (2021) characterise the methods of PSE as a set of core competencies under-

pinned by mathematical modelling and methods: numerical and statistical analysis, and computer
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science. In a review of artificial intelligence in chemical engineering, Venkatasubramanian (2019)

notes the concerted application of mathematics in developing first-principles physicochemical models

of unit operations, and complete processes, began in the 1950s with Neal Amundsen at the university

of Minnesota. Such models are examples of mechanistic models, where the relationships between

variables are explained in terms of accepted physical mechanisms; for example conservation laws

(Bailer-Jones, 2013).

In a general historical review of process systems engineering Stephanopoulos and Reklaitis (2011)

states that the period 1920-1960 was when many of the mathematical methods underpinning the theory

and practice of PSE during 1960-2000 were developed. In particular control theory, numerical solution

of algebraic and differential equations, and optimisation theory. Graph theory also came into PSE

during the early 1960s to aid in the analysis of process flowsheet models (Westerberg and Sargent,

1964).

Grossmann and Harjunkoski (2019) broadly mark the period 1960-2000 as being a time of major

accomplishment in PSE. The success in this period is attributed to a focus on first-principles physic-

ochemical modelling, and the development of numerical techniques and the increasing power and

availability of computers to solve such models Sargent (2005), Stephanopoulos and Reklaitis (2011),

and Reis and Saraiva (2021). Venkatasubramanian (2019) notes that a mechanistic understanding,

based on fundamental chemistry and physics, is at the heart of causal explanation in science and

engineering.

As already noted in Section 1.4.3 the period 1960-2000 is also identified with industry 3.0 and

particularly PSE 3.0 (Reis and Saraiva, 2021), marked by an approach to PSE based on a mechanistic,

natural science based understanding of unit operations and processes.

3.1.2.2 Data-driven methods

Sargent (2005) points out that process engineers often have to deal with complex, poorly understood

processes. In these cases, trying to develop mechanistic process models can be difficult, time consuming

and expensive (Sargent, 1983). One possible way for process system engineers to tackle this problem

is to develop and use models derived from data. Such data-driven approaches are often discussed using

the terms “data science, artificial intelligence and machine learning” (Venkatasubramanian, 2019;

Grossmann and Harjunkoski, 2019; Reis and Saraiva, 2021; Pistikopoulos et al., 2021). The following
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Figure 3.1.1: “Russian doll” model of artificial intelligence technologies. Taken from IBMe (2021) with
permission.

working definitions are adapted from IBM and used in this thesis.

i Data science is a multidisciplinary approach to extracting actionable insights from data. https:

//www.ibm.com/cloud/learn/data-science-introduction

ii Artificial intelligence (AI), machine learning, neural networks are deep learning are some of

the technologies used in data science. https://www.ibm.com/cloud/blog/ai-vs-machine

-learning-vs-deep-learning-vs-neural-networks. The “Russian doll” model of Figure

3.1.1 shows the relationship between these technologies.

Although the term “machine learning” seems to have originated in a per by Samuel at IBM in 1959

(Samuel, 1959), Schwab (2016) marks the period 2000 to the present as the age of industry 4.0 and

machine learning.

In a 2019 review article Venkatasubramanian (2019) asked the question “the promise of artificial

intelligence in chemical engineering: is it here, finally?”. In this article Venkatasubramanian pays

particular attention to data driven models based on on artificial neural networks (ANNs). The theory

and practice of ANNs in physical science and engineering is detailed in Erdmann et al. (2021) and

the companion website http://deeplearningphysics.org. Broadly speaking an ANN relates a

set of inputs to a set of outputs through a succession of one or more processing layers. The layers

comprise neurons which model non-linear functions. Figure 3.1.2 shows an example of an ANN which

relates five inputs to three outputs. It should be noted that, in principle, all of the inputs of an ANN

are connected to all of the outputs. The number of layers of the ANN, and the parameterisation of the

ANN is developed by training the ANN using input-output data sets.
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Figure 3.1.2: Example of an artificial neural network. Taken from IBMa (2021) with permission.

Venkatasubramanian (2019) draws attention to the fact that code libraries to build ANNs are now

widely and freely available (e.g. https://www.tensorflow.org/). The paper also points out that no

knowledge of the physical mechanisms which relate inputs to outputs is needed. Venkatasubramanian

notes this lack of mechanistic causal explanation and process knowledge runs counter to the foundations

of science and engineering. This observation is also present in the discussion of the future academic

and industrial prospects for PSE, given by Grossmann and Harjunkoski (2019). While acknowledging

the importance of Industry 4.0, and data-driven approaches, Grossmann and Harjunkoski caution

against PSE becoming the domain of software and data companies without the support of process and

control engineers.

Of course, purely mechanistic and purely data-driven approaches are archetypes, and Venkatasubra-

manian (2019) and Pistikopoulos et al. (2021) note that hybrid approaches which combine mechanistic

and ANN techniques are being developed. For example, Venkatasubramanian (2019) cites Chaffart

and Ricardez-Sandoval (2018) which describes the development of an optimisation and control model

for a thin film growth process. The process model is based on mechanistic physics and chemistry, but

the parameterisation of the model is carried out using an ANN.

On a personal note, the author works in the automotive industry where real-time hybrid models in

the form of engine control “maps” are routinely used (Heywood, 1988). Such model-based control

schemes are realised as embedded software in engine control units (ICUs), and are examples of

cyber-physical systems (Isermann, 2014). Engine control maps are essentially non-linear multiple-
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input, single output curve fits. Such maps include models of NOx emissions, derived from detailed

experimental and theoretical studies of chemical reaction networks; and turbocharger maps, based on

the turbomachinery affinity laws familiar to chemical engineers.

Having briefly surveyed the general scope and methods of process systems engineering, their

specific application to process systems fault diagnosis is now discussed.

3.2 Process System Fault Diagnosis

3.2.1 Introduction

As already noted process systems engineering (PSE) models may be broadly classified into two

archetypes.

i Mechanistic models based on first-principles chemistry and physics.

ii data-driven models derived without recourse to the process chemistry and physics.

Each of these classes may be further categorised into quantitative models and qualitative models,

where combinations of these classes are called hybrid models (Venkatasubramanian, 2019).

These categorisations reflect the approaches to the specific problem of process system fault diagnosis

detailed in the review articles by Venkatasubramanian et al. (2003c), Venkatasubramanian et al. (2003b),

and Venkatasubramanian et al. (2003a), defined as model based (mechanistic) and process history

based (data-driven).

3.2.2 Model-based methods

As already noted model-based, mechanistic approaches to PSE in general, and fault diagnosis in

particular can be further classified as qualitative or quantitative.

A survey by Isermann (2006) provides a comprehensive review of quantitative model-based ap-

proaches to fault diagnosis, including the use of first principles models. In general, these approaches

are based on using mechanistic models to predict the numerical relationships between the inputs and

outputs of a fault free process. These predictions are then compared against measured information on

the input-output state of the process.
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Venkatasubramanian et al. (2003c) indicates the first comprehensive treatise on the use of first-

principles process modelling in fault diagnosis was by Himmelblau (1978). However, Venkatasubrama-

nian et al. (2003c) and Qin (2012) suggest that such approaches to process system require considerable

effort, and have not gained wide acceptance. This sentiment is echoed by Nor et al. (2020) who

claim that “modern process systems, the development of perfect first-principles models becomes more

difficult and nearly impossible for some processes”.

In contrast to quantitative models, qualitative models are not required to be solved numerically.

Instead they yield information on the causal relationships between different parts of the process.

Section 3.3 presents a more in-depth discussion of qualitative approaches.

3.2.3 Process history-based methods

As Venkatasubramanian et al. (2003c) note, “in process history based methods only the availability

of large amount of historical process data is assumed”. On this basis, the process-history based

approach corresponds to the data-centric view of industry 4.0 outlined in Section 3.1.2.

Tidriri et al. (2016) equate process history-based methods to supervised learning. In turn, supervised

learning relates to approaches based on developing empirical, statistical, or machine learning methods

(Qin, 2012; Nor et al., 2020). Machine learning methods are often based on the use of Bayes theorem

and include Bayesian networks (Barber, 2012; Murphy, 2012).

Venkatasubramanian et al. (2003c) also classify the development and use of expert systems under

process-history based methods, where “the main components in an expert system development include:

knowledge acquisition, choice of knowledge representation, the coding of knowledge in a knowledge

base, the development of inference procedures for diagnostic reasoning and the development of

input/output interfaces” (Venkatasubramanian et al., 2003a). Ramesh and Davis (1991) develop an

expert system in which the interface output closely reassembles a fault tree. Such fault trees strongly

resemble digraphs. Smith (2011) noted that most packages for drawing and analysing fault trees use

techniques from graph theory to derive and simplify complicated fault trees.

However, Rich and Venkatasubramanian.V. (1987) note that although expert systems are easy to

develop, they can be limited in scope and difficult to update.
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3.2.4 Gap analysis

The discussions of Sections 3.2.1 - 3.2.3 presents an analytic view of process systems fault di-

agnosis in which the problem of process systems fault diagnosis is broken down into a number of

approaches which are applied individually. Figures 3.2.1 and 3.2.2 show simplified versions of analytic

classifications from Venkatasubramanian et al. (2003c) and a review book by Yang et al. (2014).

The aforementioned approaches to fault detection and diagnosis are not mutually exclusive. Hybrid

approaches, which combine several methods have been reviewed by Ge et al. (2013) and Khoukhi

and Khalid (2015). However, there seems to have been a shift towards data-driven methods where the

causality and origin of the fault is inferred without using a detailed model of the process operation and

architecture (Tidriri et al., 2016).

The background theory of Chapter 2 demonstrated that first principles modelling, digraphs, and

Bayesian networks are not necessarily distinct approaches. For example, the classification of Venkata-

subramanian et al. (2003b) separately categorises first principles modelling and digraphs. However,

structural equations, which have a correspondence with digraphs, can be derived from first principles

models. Similarly, in the classification of Yang et al. (2014) structural models and adjacency matrices

are separate, whereas Chapter 2 shows they have a correspondence. Further, Bayesian networks are

classified as a causal method, separate from connectivity methods such adjacency matrices. However,

Bayesian networks are a type of digraph. Moreover, Bayesian methods in general, and Bayesian

networks in particular, are inherently statistical in nature. The probable state of a given variable is

calculated based on the probable state of its direct antecedents. As already noted, machine learning

often relies heavily on Bayesian approaches.

These observations suggest a gap in the research, in which the similarities, rather than the differences,

of approaches to fault diagnosis and detection are explored. Furthermore, all of the approaches to

fault diagnosis involve a model of the process system. Based on these considerations, the following

categories are the focus of this review.

i Qualitative modelling: process architecture, qualitative physics and digraphs.

ii Data-driven modelling: multivariate statistical, machine learning, and Bayesian networks.

iii Equation-based modelling: first principles modelling and structural modelling.
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Diagnostic Methods Quantitative Models

Qualitative Models

Process History

Qualitative Physics

Digraphs

Machine Learning

Multivariate Statistics

First Principles

Figure 3.2.1: Analytic process fault diagnostic classification. Simplified from Venkatasubramanian et al.
(2003c).

3.3 Qualitative Modelling

Qualitative modelling is concerned with finding causal relations between different areas of the

process. For example, what is the mechanism (if any) for a fault in the temperature controller of a

reactor to affect the operation of the flow controller of a feedstock stream? The survey framework of

Venkatasubramanian et al. (2003b) highlights the approaches of qualitative physics and digraphs. Yang
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Diagnostic Methods

Causality:
Process Data

Connectivity:
Process Knowledge

Bayesian Networks

Multivariate Statistics

Adjacency Matrices

Process architecture

Structural Models

Figure 3.2.2: Analytic process fault diagnostic classification. Simplified from Yang et al. (2014).

et al. (2014) also highlighted the use of process architecture. These approaches are now discussed.

3.3.1 Process architecture

Milne (1987) defined the most fundamental form of domain knowledge as knowledge of the

connectivity and paths within a system. This concept is commensurate with the idea that a process is

characterised by processing routes (Tula et al., 2015).

The use of information about the process architecture to understand process performance and

diagnosis was also described by Thornhill et al. (2003) and Yim et al. (2006). The latter paper

points out that computer aided drawing systems store detailed connectivity information in databases

using XML and the Computer Aided Engineering Exchange Schema (CAEX). This approach was

developed by Di Geronimo Gil (2010) and Iyun (2011) to create a form of adjacency matrix called a

connectivity matrix which captures the directional links between between connected process devices.
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This connectivity matrix substitutes as the matrix A in equation 2.1.2 to yield a reachability matrix for

the process devices.

Yang et al. (2014) proposed a different approach in which process devices and their connections are

modelled using the web ontology language OWL (W3C, 2020). The approach is based on the ideas

of object orientation, classes and inheritance used in programming languages such as C++. However

Yang et al. made a distinction between devices in the physical world and the cyber world such that

plant devices belong to the former class, and controllers belong in the later class. This distinction is

also found in the work of Jiang et al. (2009) who developed control loop digraphs for process-wide

oscillation diagnosis using expert judgement, using the process controllers as a basis. These digraphs

are in contrast to those developed by Mah (1990) which modelled the connectivity of unit operations

using pipeline networks.

3.3.2 Qualitative physics

Superficially, the control loop modelling of Jiang et al. (2009) looks like a connectivity matrix

of the type developed by Di Geronimo Gil (2010) and Iyun (2011). However, it is based on using

expert judgment to deduce the existence of causal interactions between controller devices, mediated

by the process physics. This approach is a form of non-numerical, qualitative, physics. De Kleer

and Seely Brown (1984) define qualitative physics as a way to “predict and explain the behavior of

mechanisms in qualitative terms”. De Kleer and Seely Brown, Williams (1984), and Kuipers (1986)

applied this approach to understanding the behaviour of electrical circuits. The central idea of this

qualitative approach is that engineering systems can be split up into components which are connected

to each other. In this case, the connections are made using wires. However, it should be noted that

the approach also uses information on the qualitative behavior of individual components, based on

their physics. This approach is similar to the idea that the properties of differential equations can be

explored qualitatively,

3.3.3 Digraphs

Digraphs are mathematical and visual representations of “from-to” relationships, and are often

used to describe engineering systems as networks (Deo, 1974). As already noted in Section 3.1.1

Stephanopoulos and Reklaitis (2011) describe a process system as a “structured network of process
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operations”, and over the years, digraphs have been used in process systems engineering.

Mason (1953) and Mason (1956) developed the theory and practice of signal flow graphs, as a

form of directed graph, to model linear systems. The overall gains between system inputs and system

outputs are calculated by a form of digraph reduction, analogous to block diagram algebra (Deo, 1974).

Westerberg and Sargent (1964) used digraph theory to schedule process flowsheet calculations

by finding the digraph components. As discussed in Section 2.1.5 components describe cycles in

the digraph, which in turn denote sets of equations which are required to be solved simultaneously.

Seemingly independently of Westerberg and Sargent, Lee et al. (1966) use the technique of bipartite

matching devised by Hall (1935) to order process design calculations completely sequentially. If such

an ordering is possible, the process calculations correspond to an acyclic digraph.

Mah (1974) notes Himmelblau (1966) uses digraph reachabilty matrices to partition flowsheets, and

proposes an algorithm to make the calculation of large reachabilty matrices simpler and faster. Mah

(1990) also presents digraph approaches for calculating flows in pipeline networks.

In the analysis of faults in process systems, Iri et al. (1979) introduced signed digraphs based

on the calculation of positive and negative changes in variables. These ideas were taken further by

Venkatasubramanian et al. (2003b),Maurya et al. (2003a),Maurya et al. (2003b) Maurya et al. (2004),

Di Geronimo Gil (2010), and Di Geronimo Gil et al. (2011) to develop the calculation methodology

and find the forward response for systems modelled by mixed algebraic differential equations.

It should be noted that in the literature cited, the calculation of the response requires the signed

digraphs to be acyclic and proposes the use of bipartite matching to attempt to find acyclic digraphs of

process systems. However, as noted in Section 2.2.5 and explored further in Section 4.2.4, bipartite

matching is not guaranteed to preserve the as-built causal structure of a process system. Oyeleye

and Kramer (1974) develop a type of digraph called an Extended Signed Directed Graph (ESDG)

for the qualitative analysis of process disturbances. The application of the ESDG does not require

the digraph to be cyclic. However, it does require the addition of non-physical digraph edges, which

can complicate the investigation and explanation of causal paths. The ESDG approach is used in the

MIDAS qualitative modelling program Oyeleye et al. (1990).

More recently Arroyo et al. (2014) proposed an approach to causal modelling based on signed

digraphs and CAEX information. Peng et al. (2014) and Peng et al. (2015) developed signed digraphs
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based on specific process failures. These digraphs are supplemented with probability information to

refine the failure diagnoses.

3.3.4 Summary

The process architecture defines the connectivity of process devices, using signals and streams.

These in turn are the pathways for fault propagation within the process. Consideration of the qualitative

physics of the process introduces the idea of causality into process diagnosis. Finally, digraphs have

been used to express qualitative physics.

3.4 Data-Driven Modelling

A complementary approach to modelling the relationships in process systems is to make use of

the process data harvested by the control and instrumentation system. Yang et al. (2014) focus on the

collection and analysis of process data on process measurements (temperature, pressure, flow, and so

on), to analyse as time series.

According to Ge et al. (2013), the motivation for developing data-driven fault diagnostic approaches,

is the long lead-time required to develop and update detailed first-principles model of the type

championed by Himmelblau (1978) and Isermann (2006). Qin (2012) also notes that data-driven

approaches to fault diagnosis do not require a detailed process model or expert knowledge.

In a recent review, Nor et al. (2020) classify data-driven methods into multivariate statistical analysis

and machine learning approaches. Barber (2012) and Murphy (2012) classify Bayesian networks as a

machine learning technique. These approaches to data-driven fault diagnosis are now discussed.

3.4.1 Multivariate statistics

The goal of multivariate statistical analysis is to delineate the contributions of process variables to a

set of statistical measures which signify a detected fault. Norvilas et al. (2000) and MacGregor and

Cinar (2012) explain this is done by calculating the correlations between process variables to find and

rank their association with faults. Generally this analysis is augmented using data dimension reduction

methods such as principal component analysis and partial least squares, and a recent review of these

techniques is given by Severson et al. (2016).

Statistical methods are also used to extract the process architecture. For example Lindner and Auret
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(2015) apply linear and partial cross-correlation to generate the connectivity matrix for a mineral

processing plant, while Chiang et al. (2015) derive a causal map of the Tennessee Eastman process

using a covariance matrix, refined using using process knowledge.

3.4.2 Machine learning

The computer scientist Tom Mitchell describes machine learning as the “study of computer al-

gorithms that improve automatically through experience” and further provides a formal definition

whereby “a computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P if its performance at tasks in T, as measured by P, improves with experience

E.” (Mitchell, 1997). Machine learning algorithms build models using training data sets and employ a

number of techniques based on developing artificial neural networks (Nor et al., 2020) . Some recent

work is now briefly reviewed.

Supervised learning methods are based on training the algorithm to generate rules which model

the state of a set of outputs based on the state of a set of inputs. Lahdhiri et al. (2019) applied these

methods to process data reduction using principal component analysis and the development of fault

diagnosis methods for the Tennessee Eastman Process.

Support vector data descriptions are used to classify data and find outliers and are used by Lee and

Kim (2018) to detect and classify process abnormalities. Fault diagnosis in the Tennessee Eastman

process is addressed by Zou et al. (2018) using neural networks where the structure of the network is

built using machine learning. These techniques are also used by Yongyong and Xiaoqiang (2020) to

build process monitoring models of the Tennessee Eastman process.

3.4.3 Bayesian networks

Bayesian networks (also known as belief networks) are of particular interest in this thesis as they are

a form of digraph which is used to work backwards from effects to causes. Huang (2008) introduces the

idea of Bayesian methods in control loop diagnosis based on the states of two interacting controllers.

Jiang et al. (2016) reduced the dimensionality of the fault diagnosis problem for the Tennessee Eastman

process using principal component and independent component analysis and then apply a Bayesian

procedure for causal inference. A similar approach was adopted to fault studies of the Tennessee

Eastman process by Wang et al. (2017) who used kernel principal reduction as an alternative to principal
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component analysis. The Tennessee Eastman process was also the focus of Zhang and Zhao (2017)

who infer a fault architecture based on a form of Bayesian approach called a deep belief network,

where deep signifies the network is layered. Jun and Kim (2017) related symptoms to faults for a

compressor using categorical data. As an example, a worn impeller fault might cause a fluid surge

effect. The Tennessee Eastman process was again the subject of a deep belief network study by Wei

and Weng (2020) who account for the underlying process chemistry by including a change in feedstock

composition as a fault.

3.4.4 Summary

Data-driven models use the large amount of data collected by process control and instrumentation

systems. These data are analysed to construct a fault diagnosis model of the system that does not

necessarily take account of existing information on the process architecture. In some data-driven

applications a reconstruction of the process architecture is a major focus. One use of multivariate

statistical methods attempt to condense the number of variables in a data set, and find correlations

with observed fault effects. Another use of multivariate statistics is in Bayesian networks. Bayesian

networks are a form of digraph, which cast fault diagnosis as working backward from given effects to

probable causes.

3.5 Equation-based modelling

Equation-based fault diagnosis modelling is based on the idea that a detailed mathematical model

of the process accurately represents the chemistry and physics of the process (for example, O’Kelly

(2013) and Thomas (1999)). The use of such mathematical models is now discussed.

3.5.1 First principles modelling

Another approach to fault diagnosis is to develop a detailed model of a non-faulty process as a set

of mixed differential and algebraic equations for numerical solution. The model is then used to build

fault value estimators, where fault values are parameter or input deviations from defined process norms

(Ding, 2013). Based on techniques developed in Himmelblau (1978), Watanabe and Himmelblau

(1983) apply first principles species and energy balances to a toluene aromatization reactor. This

physical model was then used to build a state-space fault observer model.
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Tian et al. (2011) use a more basic approach, based on the idea that faults can originate from “gross

parameter changes” (Venkatasubramanian et al., 2003c), such as changes in stripper column efficiency.

The stripper column of the Tennessee Eastman process is used in a fault diagnosis study in which

the process instrument data is compared against a simulation. The simulation inputs and parameters

are then modified until the process and model agree and the root cause deduced from the changed

parameter set from the strength of their effects.

First principles modelling of an integrated gasification combined cycle power plant is used by

Pednekar (2016) to design a fault detection sensor network. The simulation of a vertical high-pressure

feedwater heater in a pressurised water reactor nuclear plant is used to provide residual data for a

number of diagnosis methods in Nguyen (2020).

3.5.2 Structural modelling

Another way to use equations in fault diagnosis is to build a model which represents the relationships

between variables. This approach is called structural modelling and was introduced in Section 2.2.

In the process systems context, Iwasaki and Simon (1986) apply the methods of De Kleer and Seely

Brown (1984) to find the causal ordering representation of an evaporator and develop a corresponding

structural equation matrix. Venkatasubramanian et al. (2003b) note the similarities of this approach

to that of solving systems of simultaneous algebraic equations that arise in process modelling using

a technique of precedence ordering. Maurya et al. (2004) identify precedence ordering as defining

the causality of device or system. Furthermore, differential equations are described as being causal,

and algebraic equations as being non-causal. Maurya et al. (2004) develop a framework for the use

of structural equations to form signed digraphs. In this framework such digraphs are required to be

acyclic, and the techniques of bipartite matching and condensation are applied to transform systems of

algebraic and differential equations to yield acyclic digraphs. Bipartite matching can also be cast as an

optimisation problem to find the maximum flow through a network (e.g. Busacker and Saaty (1965)).

The optimisation approach is developed by Di Geronimo Gil (2010) and Di Geronimo Gil et al. (2011)

to find matched structural solutions to the Tennessee Eastman process and a vinyl acetate process.
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3.5.3 Summary

Two approaches to using equation-based modelling in fault diagnosis have been discussed. The

first approach, first-principles modelling, uses a detailed chemistry and physics model of a non-faulty

process. Simulation outputs are compared against the observed effects in a faulty process. These

comparisons can yield information the possible cause(s) of such effects. An alternative is to use

a mathematical model is to represent the relationships between process variables using structural

equations. The structural equations are then use to build acyclic digraphs to capture the causality of

the process.

3.6 Critique of Analytic Frameworks in Fault Diagnosis

3.6.1 Data-driven versus deterministic modelling

According to surveys on published research, Grossmann and Harjunkoski (2019), Venkatasubrama-

nian (2019), Wu and Zhao (2020), Nor et al. (2020), Arunthavanathan et al. (2021), and Pistikopoulos

et al. (2021) the academic state of the art in process system engineering research has a significant

focus on data-driven approaches, particularly machine learning as an enabler of the drive towards

industry 4.0 (Arunthavanathan et al., 2021) in general, and process systems engineering 4.0 (PSE 4.0)

in particular (Reis and Saraiva, 2021).

Sansana et al. (2021) attribute the rise of PSE 4.0, to that fact that data driven approaches do not

need extensive knowledge and detailed, accurate models of the process. Moreover, Section 3.2.2, and

particularly Qin (2012), note that the use of first principles models does not seem to be a popular

approach in process system fault diagnosis.

The survey by Nor et al. (2020) indicates that various types of artificial neural network (ANN) are

frequently used to implement machine learning approaches to process system fault diagnosis.

As noted in Section 3.1.2.2 in principle, all of the outputs of an ANN are connected to all of the

inputs, so that an ANN does not offer a physical explanation for input-output relations (IBMa, 2021).

However, process systems are designed, built and operated to have a specific causality to transform

raw materials and energy into specific products under cost, quality and time constraints, and it may be

the case that not all of the outputs of a process are connected to all of the process inputs.

In this situation, the corresponding processing paths through the ANN are spurious, and lead to a
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phenomenon known as over-fitting (IBMb, 2021). A related phenomena is found in more traditional

examples of multiple regression analysis, where curve fits can be generated without consideration of

physically causal relationships.

Furthermore, in developing the types of qualitative process systems models proposed in this thesis a

numerically accurate first principles model is not needed. The idea is to understand the relationships of

process variables throughout the system, not solve a high-fidelity simulation model to match real-world

numerical data. As an example, a number of equations of state for gases are available. For example,

ideal gas, Van der Vals, Redlich-Kwong and Peng-Robinson. The exact forms and parameterisations

of these models varies, but their general form is that of Equation 3.6.1, where p is absolute pressure, V

is volume, and T is absolute temperature.

f (p,V,T ) = 0 (3.6.1)

Similarly process system phenomena such as energy, species and mass balances, and mass and

momentum transport all have general forms derived from chemistry and physics (Thomas, 1999).

As already noted, process systems are designed, built and operated to direct energy,information and

mass flows along specific routes between specific parts of the process to bring about specific product

outcomes.

Therefore, this thesis argues that consideration of the architecture and first principles chemistry

and physics of a process system allows the construction of models that show clear and detailed causal

paths between process system inputs and outputs. These causal paths are amenable to investigation by

process experts to check and change the assumptions of the model.

3.6.2 Stand alone approaches

The analytic frameworks presented in Section 3.2 categorise the methods of fault diagnosis for pro-

cess systems under headings such as qualitative modelling, data-driven modelling, and first principles

and structural (equation-based) modelling. Sections 3.3, 3.4 and 3.5 have reviewed some of the main

approaches to qualitative, data-driven and equation-based modelling.

However, the analytic frameworks of Figures 3.2.1 and 3.2.2 may not by themselves be enough to

address questions on fault propagation in process systems. For instance, Venkatasubramanian et al.
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(2003a), Yim et al. (2006), Nor et al. (2020) discuss and review hybrid approaches to fault diagnosis.

Interestingly, Maurya et al. (2003b) offered the prediction, “In the future, hybrid approaches combining

forward reasoning and backward reasoning will be investigated”.

Chapter 4 discusses the technical details and results of some of these methods, and the pitfalls of

using the process architecture and structural modelling as separate approaches are highlighted. This

thesis shows that the process architecture is by itself insufficient to model causal relationships in

process systems, the dependency relationships between process variables are also required. Chapter 4

also shows that applying bipartite matching to problems of process causality can lead to non-physical

results.

3.7 Synthetic Framework Proposal

Based on the literature review and critique this thesis proposes the synthetic framework of Figure

1.6.1 on page 35 to answer the research questions of Section 1.6.1. The framework offers a synthetic

approach to fault diagnosis, rooted in finding and using the physical causal structure of the process sys-

tem. Synthetic means a progressive bottom-up fusion of information derived from analytic techniques.

Two levels of fusion are proposed.

The first level, called a level 1 fusion, is a qualitative approach, based on modelling the causality

of the process. The diagnostic principle of the level 1 fusion is based on systematically deriving

the process causal pathways as a qualitative digraph. Using digraph theory, the causal pathways are

navigable, both from cause-to-effects, and from effects-to-causes. In this way, given a set of observed

effects, the routes back through the process are searched to yield one or more common causes.

The level 2 fusion is a quantitative Bayesian network, directly building on the level 1 fusion. The

rationale is to further distinguish possible common causes by ranking the likelihood of their causing

the observed effects.

3.7.1 Level 1 fusion

As discussed in Chapter 1, and shown by the boxes on the left-hand side of Figure 1.6.1 on page 35,

the level 1 fusion is a hybrid approach, based on bringing together the process architecture, a set of

generic first principles models, and a corresponding set of structural models.
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3.7.1.1 Process architecture

The level 1 fusion takes the process architecture to be the design and operation statement on the

purpose of the process system. In particular, the architecture gives specific details on the process

devices (both plant and control), and how they are connected by signals and streams. The process

architecture defines the causal mechanisms and causal pathways of the process.

3.7.1.2 Generic first principles models

Each process device is assumed to have a corresponding first principles model archetype. For

example a generic heat exchanger, a generic pressure vessel, or a generic controller. Complicated

devices are modelled using sub-models. For example, distillation columns are modelled using generic

theoretical plate models.

3.7.1.3 Generic structural models

The two boxes labelled “Generic Structural Models” show that each generic first principles device

model has a corresponding structural model that lists all the variables which characterise the device. In

the first instance each structural model is unmatched.

3.7.1.4 Level 1 fusion modelling

The box in the middle of Figure 1.6.1 on page 35 labelled “Level 1 Fusion” brings together the

generic structural models and the process architecture. For each generic unmatched equation, the

choice of independent variable to form a matched equation is constrained by the measurement and

manipulation requirements of the control system. The matched structural equations are linked by

specific process signals and streams. A specific structural model of the entire process is derived using

a systematic approach.

The structural model of the process is used to derive a process adjacency matrix, and hence a process

digraph called a level 1 digraph. This digraph models the causal pathways, and hence fault propagation

pathways, of the process.

3.7.1.5 Level 1 fusion analysis

The level 1 digraph is used to qualitatively analyse fault propagation, and to diagnose originating

causes. As derived, the level 1 digraph is a forward cause-to-effect model. This thesis shows how

this forward digraph is converted into a backward (effect-to-cause) model. This backward model then
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allows a complete set of possible causes to be found, given a set of effects. Such effects are signified

by fault variables derived from measurements of process variables.

3.7.2 Level 2 fusion

As shown in Figure 1.6.1, the level 1 fusion is the basis for a level 2 fusion in which the vertices are

associated with probabilistic information to yield a Bayesian network which models the strength of

causal interactions.

As already noted, process fault variables are binary variables, which take values 0 or 1. Fault

variables signify deviations (or not) of process variables from a normal operating condition. If a

process variable is outside its normal operating limits, it is described as being in fault. The vertices of

the level 1 digraph are identified with fault variables and Conditional Probability Tables (CPTs) which

model the probable value of the fault variable.

3.7.2.1 Data processing and data sources

Each CPT requires probability data, tabulated specifically on how many direct antecedents a vertex

has. The raw data for each CPT comes from process history of alarm events, or by other means such as

Monte Carlo simulation of the first principles process model.

3.7.2.2 Level 2 fusion analysis

Bayesian networks calculate the probable state of each vertex in the network using evidence. In this

thesis, such evidence comes from observed alarms. Fault diagnosis is based calculating the network

probabilities and ranking the independent vertices from largest to smallest probability of being in

alarm. The vertex with the largest alarm probability is the likely cause of the alarm effects.

3.8 Summary

This chapter has reviewed the process fault diagnosis literature guided by two classifications which

reveal a number of different analytic approaches.

The review suggests that modelling approaches to fault diagnosis are broadly categorised as

qualitative, data-driven, and equation-based. These categories are further subdivided into specific

techniques.

Qualitative modelling is concerned with non-numerical procedures, such using the process archi-
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tecture to derive a connectivity matrix. Another approach is qualitative physics which explain the

behaviour of a process system in general terms

Data-driven modelling aims to use the large amounts of process data to model the causal structure

of a process, without using detailed knowledge of the process architecture.

Equation-based modelling aims to model process causality, and fault diagnosis, using detailed

mathematical models.

To combine the information available from qualitative, data-driven and equation-based approaches ,

a level 1 fusion has been proposed in which a qualitative causal map of a complete process is derived

piecemeal by modelling process devices using structural models, in turn derived from first principles

modelling. The model dependencies are derived from the process architecture. Within the process

architecture, specific constraints are imposed by the measurement and manipulation requirements of

the control and instrumentation system.

The level 1 fusion is a digraph, which models the existence of relationships between causes and

effects but not their strengths. It is therefore qualitative, rather than quantitative.

The qualitative level 1 fusion digraph was identified as the basis for a quantitative level 2 fusion in

which the probabilistic relationships between discrete alarm states are modelled as a Bayesian network.

This level 2 fusion yields information on the strengths of causal relationships.

* * *
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Level 1 Fusion: Qualitative Methods

This chapter develops a qualitative fault diagnosis approach based on a combination of first principles

models of process devices and as-given process architecture. This combination is called the level 1

fusion.

The aim of the level 1 fusion is to build a qualitative causal map, called a level 1digraph, of how the

process operates. The map is navigable, both forward and backward, to provide information on the

fault propagation paths through the process.

A process digraph, as a causal map, is created by combining structural models of process devices

using information on the process architecture. The structural models are themselves derived from

first principles models of process devices. The causality of the digraph is constrained by the specific

architecture of the control and instrumentation system. The level 1 fusion brings together a number of

modelling techniques, notably first principles modelling, structural equations and digraphs.

The initial form of the fault diagnosis model is a cause-to-effect digraph, known as a forward model.

The forward model maps the cause-to-effect paths through the process. A digraph is shown to be

reversible by transposing its adjacency matrix. This digraph is called a backward model, and maps

effect-to-cause paths.

Process faults produce detected effects, where an effect indicates that a process variable is outside

its control limits. Fault root causes are modelled as digraph sources. Detected effects as modelled as

digraph sinks. The relationship of causes to effects is described by two digraph matrices, based on

reachabilty matrices. The first matrix is called a reduced reachabilty (R2) matrix and focuses on the
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reachability of effects from causes. The second matrix is the transpose of the R2 matrix. This matrix

is called a reversed reduced reachabilty (R3) matrix and models effect-to-cause relations. Because a

fault can propagate through a process and cause process-wide effects, those effects may have common

causes. The effects are analysed using the R3 matrix to yield a list of candidate causes.

The R2 and R3 matrices yield information on the existence of causal relationships, but not the

detail of the fault propagation pathways. Fault path information is obtained from the digraph using

digraph search techniques, including shortest path analysis. The results of a path analysis can be

further analysed using set intersection theory to find the causal relations between specific parts of the

process. For example, the causal relations between controller devices can be extracted to show how a

fault that originates in a controller can propagate faults to other controllers.

The level 1 fusion is demonstrated by deriving a digraph for part of the two-tank process of Figure

1.2.1. Finally, it is shown how the qualitative level 1 fusion answers the research questions of Section

1.5, and forms the basis of the level 2 fusion.

4.1 Introduction
Section 1.5 on page 32 poses three research questions:

i Model Ingredients: What are the necessary ingredients of a fault diagnosis model?

ii Model Analysis: What information should a fault diagnosis model yield?

iii Modelling Approach: What types of model are appropriate to fault diagnosis?

To answer these questions, Figure 1.6.1 on page 35 shows a proposal for a fault diagnosis approach

comprising a two level fusion of analytic techniques and information. The level 1 fusion gives a

qualitative approach to fault diagnosis. The level 2 fusion builds on the level 1 fusion to yield a

quantitative approach to fault diagnosis.

Figure 4.1.1 on page 84 shows an expanded view of the level 1 fusion to show the model ingredients

and workflow. These ingredients and the workflow are explained in more detail using a worked

example, which is developed throughout this chapter.

The dashed border of Figure 4.1.1 marks a demarcation between level 1 fusion input ingredients,

and level 1 fusion modelling and analysis ingredients. These are now discussed in turn.
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4.1.1 Modelling ingredients

The boxes labelled FL1.01 - FL1.04 are the input ingredients for the level 1 fusion. Generic first

principles models are mathematical models of generic process devices, for example heat exchangers,

controllers and instruments. Each generic first principles model has an equivalent generic structural

model. There is a distinction between structural models of plant devices and structural models of

control devices. The reason is that control devices have a defined causality, so that the structural

equation of a control device is already matched. By contrast, structural models of plant devices have

their causality imposed by their relationships to the control devices in the specific process architecture.

The specific process architecture (FL1.04) lists and names all the process devices, signals and streams,

and defines their relationships.

The information from boxes FL1.01 - FL1.04 is used to create a structural model for the entire

process (FL1.05). This structural model is converted into an adjacency matrix, and corresponding level

1 digraph (FL1.06). A reachabilty matrix is also calculated from the digraph.

4.1.2 Analysis ingredients

Section 1.2.4.1 defined the causes of faults as device malfunctions and parameter changes which

are modelled as coming into the process. Each process has a defined list of candidate causes. As

noted in Section 2.1.3, this thesis models causes as digraph source, where a source is a vertex with no

antecedents. Similarly, effects are modelled as the outputs of detectors derived from the measurements

of process variables. The output of a detector is a digraph sink, where a sink is a vertex with no

descendants. Process variables have defined upper and lower control limits. If a process variable is

outside its control limits, the effect is abnormal. Otherwise the effect is normal.

The diagnosis of faults, and the more general analysis of fault propagation in a process systems is

carried out using:

i The level 1 digraph of the process.

ii The set of defined candidate causes.

iii The set of defined effects

iv The techniques of FL1.08 - FL1.10.
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Table 4.2.1: Nomenclature for the process fragment of Figure 4.2.1

Description Label Inside/Outside Type
Process Boundary

Water Tank TK1 Inside Plant Device
Control Valve & Actuator CV1 Inside Plant Device
Manual Valves MV1 Inside Plant Device
Flow Controller FC1 Inside Control Device
Level Controller LC1 Inside Control Device
Flow Transmitters FT1 Inside Control Device
Level Transmitters LT1 Inside Control Device
Temperature Transmitter TT1 Inside Control Device
Streams 1 and 5 Inside Stream
Water Supply W1 Outside Plant Device
Non-Cascaded Controller Set-Point rLC1 Outside Signal

Digraph search techniques start at a given vertex and find all the paths from that vertex to every

other vertex. In the first instance, the level 1 digraph is a forward, cause-to-effect model. A backward,

effect-to-cause model is created by reversing the digraph. This reversed digraph can be searched in

exactly the same way. The output of a digraph search is an ordered list of vertices. The techniques

of set theory, and particularly set intersection can be used to focus searches, and extract particular

relationships from the digraph. For example, by forming the intersection of the set of controllers with

the vertex set output of a search, the list of all the controllers on that search is found. The combination

of the level 1digraph, and analysis techniques yields the level 1 fault diagnosis.

4.2 Level 1 Fusion Workflow
This section explains and illustrates the modelling ingredients, boxes FL1.01 - FL1.06, and the

associated workflow. An example fragment of the Two-tank process, including a cascaded control loop

is used throughout as a worked example. In addition to explaining the structure of Figure 4.1.1, the

example is used to explain how the control and instrumentation systems constrains the causality of the

process. The example is also used to demonstrate how a causally correct acyclic digraph is derived.

4.2.1 Example process fragment

Figure 4.2.1 shows a process fragment of the complete Two-tank process. The dashed circle shows

the LC1-FC1 loop to control the water level in the tank to a set-point given by rLC1. The LC1-FC1

control loop is used to illustrate the level 1 fusion ingredients and workflow.
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Table 4.2.2: Nomenclature for the block diagram of Figure 4.2.2 and Figure 4.2.3

Description Symbol Type

Level controller LC1 Control device (controller)
Controller LC1 function YLC1 Function
Set point for LC1 rLC1 Cause
Controller LC1 malfunctions and parameters kLC1 Cause
Controller LC1 output yLC1 Variable
Flow controller FC1 Control device (controller)
Controller FC1 function YFC1 Function
Controller FC1 malfunctions and parameters kFC1 Cause
Controller FC1 ouput yFC1 Variable
Control valve CV1 Control device (actuator)
Valve CV1 function QCV1 Function
Valve CV1 malfunctions and parameters kCV1 Cause
Pressure difference across valve CV1 δ pCV1 Variable
Valve mass flowrate qCV1 Variable
Flow instrument & transmitter FT1 Control device (instrument)
Instrument FT1 function YFT1 Function
Instrument FT1 malfunctions and parameters kFT1 Cause
FT1 output yFT1 Variable
Instrument FT1 effect detector function DFT1 Function
Instrument FT1 effect detector output dFT1 Variable
Level instrument & transmitter LT1 Control device (instrument)
Instrument LT1 function YLT1 Function
Instrument LT1 malfunctions and parameters kLT1 Cause
LT1 output yLT1 Variable
Instrument LT1 effect detector function DLT1 Function
Instrument LT1 effect detector output dLT1 Variable
TK1 water mass mTK1 Variable
TK1 water level lTK1 Variable

The control strategy for the LC1-FC1 loop is is given by.

i The control device LT1 (a level instrument with transmitter) measures the level of the plant

device TK1 (the water tank) and sends a signal to the control device LC1 (a level controller).

ii The control device FT1 (a flow instrument with transmitter) measures the flow of stream 1 and

sends a signal to the control device FC1 (a flow controller).

iii The level controller LC1 sends a setpoint to the flow controller FC1. based on this setpoint, and

the signal from FT1, controller FC1 sends a signal to control device CV1 (a control valve) to

adjust the flow of stream 1, and achieve control the water level in tank TK1.
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Control loops impose the causality of the process using a defined number of causal mechanisms and

pathways. Instruments measure process variables and impose a casual relationship and directionality

between a physical variable such as temperature, and the output signal representing a measurement of

the temperature. Controllers act on instrument output signals and manipulate actuators, such as valves,

to bring about a desired change in the physical variable.

The LC1-FC1 control loop shown in Figure 4.2.1 is a cascaded control loop in which level controller

LC1 is the primary controller, and flow controller FC1 is the secondary controller. Based on its setpoint,

and the primary plant variable measurement, LC1 calculates a setpoint for FC1 to control the valve

CV1, and hence to adjust the flow of water into tank TK1 in order to control the level.

4.2.2 LC1-FC1 structural model derivation

To derive a structural model of the LC1-FC1 control loop, the workflow for the level 1 fusion

is used. The inputs to workflow are the generic first principles models of Table 4.2.3, the generic

structural models of Table 4.2.4, and the architecture of the process fragment shown in Figure 4.2.1.

Figure 4.2.1: A process fragment taken from Figure 1.2.1. The dashed circle shows the tank water level
control loop. Mass flows are shown using a solid line. Measurements and signals are shown using a dashed
line.
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Figure 4.2.2: Block diagram to show the architecture of the LC1-FC1 loop. The nomenclature is given in
Table 4.2.2

These workflow inputs are given by boxes FL1.02, FL1.03 and FL1.04 in Figure 4.1.1 on page 84. Box

FL1.05 denotes the creation of specific structural models.

A common and useful way to understand control loops is to model them using block diagrams. The

block diagram of Figure 4.2.2 shows the architecture of the LC1-FC1 control loop. It is now shown

how block diagrams are applied to the derivation of structural models.

The controller and instrument devices, collectively called control devices, each have a defined

causality whereby they have defined inputs and outputs. Applying this principle to the block diagram

gives the results.

i Device LC1 is a level controller. Its output is used as the flow setpoint by device FC1.

ii Device FC1 is a flow controller. Its setpoint is from LC1, and its measured flow from FT1.

iii Device FT1 is a flow instrument and transmitter which requires flow as an input. Therefore the

output of device CV1 is a flow.

iv Device LT1 is a level instrument and transmitter which requires level as an input. Therefore the

output of device TK1 is a level.

Combining these results, the generic structural models of Table 4.2.4 yields the specific, matched

structural equation sets 4.2.1, 4.2.2 and 4.2.3. The generic structural models are on the left hand side,

and the specific structural models are on the right hand side. The nomenclature for the equation set is

given in Table 4.2.2.
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Control structural model

Controller: yC = YC(rC,xC,kC) → yLC1 = YLC1(rLC1,yLT1,kLC1)

Controller: yC = YC(rC,xC,kC) → yFC1 = YFC1(yLC1,yFT1,kFC1)

Valve: 0 = FV(qV,kV,δ pV,kV) → qCV1 = QCV1(yFC1,δ pCV1,kCV1)

Instrument: yI = YI(xI,kI) → yFT1 = YFT1(qCV1,kFT1)

Instrument: yI = YI(xI,kI) → yLT1 = YLT1(lTK1,kLT1)

(4.2.1)

Detector structural model

Detector: dI = DI(yI) → dFT1 = DFT1(yFT1)

Detector: dI = DI(yI) → dLT1 = DLT1(yLT1) (4.2.2)

Plant structural model

Mass balance: 0 = FT(mT,qin,qout) → mTK1 = MTK1(qCV1,qMV1)

Tank level: 0 = GT(lT,mT) → lTK1 = LTK1(mTK1) (4.2.3)

Equations 4.2.1, 4.2.2 and 4.2.3 comprise the structural model for the LC1-FC1 control loop. The

structural model can be visualised by introducing the concept of a level 1 structural diagram (or simply

structural diagram), derived from the control loop block diagram. The structural diagram for the

LC1-FC1 control loop is shown in Fig 4.2.3. The structural diagram represents structural functions as

blocks, connected by structural variables. The causes and effects of the structural model are visible as

having no function antecedents or function descendants respectively.

4.2.3 Qualitative digraphs

Having set up the matched structural model for the LC1-FC1 control loop, the adjacency matrix

for the loop can be derived. The adjacency matrix is then used by a digraph algorithms to create a

qualitative digraph of the process causal structure. The digraph is qualitative because it models the

existence of causal relations, but not their strength.
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Figure 4.2.3: Structural diagram for the LC1-FC1 control loop.

In the first instance, each function and variable is designated as a vertex in a vertex list. The

derivation of the adjacency matrix is achieved by parsing each structural equation, and noting:

i Each structural equation comprises one dependent variable, one function, and one or more

independent variables,

ii The dependent variable is adjacent to the function.

iii The function is adjacent to each of the independent variables.

As an example, equation 4.2.4 shows the structural equation for controller LC1, taken from the

structural equation set 4.2.1.

yLC1 = YLC1(rLC1,yLT1,kLC1) (4.2.4)
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In equation 4.2.4 the dependent structural variable yLC1 is adjacent to the structural function YLC1.

Denoting the adjacency matrix by A, this adjacency relationship is written as equation 4.2.5. In this

equation, YLC1 and yLC1 now represent indices in a vertex list.

A(YLC1,yLC1) = 1 (4.2.5)

Similarly, in equation 4.2.4 the structural function YLC1 is adjacent to the independent structural

variables rLC1, yLT1, and kLC1. These adjacency relationship are written as equation 4.2.6.

A(rLC1,YLC1) = 1

A(yLT1,YLC1) = 1

A(kLC1,YLC1) = 1

(4.2.6)

Continuing in this way for each structural equation in the structural equation sets 4.2.1, 4.2.2, and

4.2.3 yields the adjacency matrix for the complete LC1-FC1 control loop, shown in Figure 4.2.4. This

matrix comprises 26 vertices and 27 directed edges. The existence of a directed edge is denoted by a

unity entry in the matrix. The causes have empty columns. This means there is no directed edge from

any other vertex to a source. Similarly, the effects have empty rows so that there is no directed edge

from a sink to any other vertex. The adjacency matrix of Figure 4.2.4 is the computer model for the

digraph of Figure 4.2.5.

The Matlab script TT LC1 FC1 01.m shows how the adjacency matrix is setup and calculates Figure

4.2.5. The script is available from the website:https://zenodo.org/communities/dl4009
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Table 4.2.3: First principles plant and control models

Application First Principles Model Symbol Description

Valve 0 = qV − kV
√

pin − pout V Valve name
qV Valve mass flow rate

Or kV Valve flow coefficient
pin Valve inlet pressure

0 = qV − kV

√
δ pV pin Valve outlet pressure

δ pV Valve pressure difference

Tank water mass 0 =
dmT

dt
−qin −qout T Tank name

(Mass balance) mT Tank water mass
qin Water mass flow into tank
qout Water mass flow from tank
t time

Tank water level 0 = lT −
mT

ρaT
lT Tank water level

ρ Water density
aT Tank cross-sectional area

Instrument output yI = αI +βIxI I Instrument name
(Linear response) yI Instrument output

αI,βI Instrument coefficients
xI Instrument input

Controller output eC = rC − xC C Controller name

(canonical form) yC = αCeC +βC
eC

dt
+ γC

∫ t

0

eCdτ yC Controller output

xC Measured process variable
rC Process variable set-point
eC Control error
αC,βC,γC Controller coefficients

Detector dI = 0, lI ≤ yI ≤ uI I Detector name (from an instrument)
dI = 1, otherwise yI Detector input (from an instrument)

dI Detector output
lI Lower control limit
uI Upper control limit
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Table 4.2.4: Generic first principles models and structural models

First Principles Model Corresponding Structural Model

0 = qV − kV

√
δ pV 0 = FV(qV,kV,δ pV,kV)

0 =
dmT

dt
−qin −qout 0 = FT(mT,qin,qout)

0 = lT −
mT

ρaT
0 = GT(lT,mT)

yI = αI +βIxI yI = YI(xI,kI)

eC = rC − xC

yC = αCeC +βC
eC

dt
+ γC

∫ t

0

eCdτ yC = YC(rC,xC,kC)

dI = 0, lI ≤ yI ≤ uI dI = DI(yI)
dI = 1, otherwise
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Figure 4.2.5: Digraph of the LC1-FC1 control loop derived using the adjacency matrix of Figure 4.2.4.
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The reachability matrix R is calculated from the adjacency matrix A using equations 4.2.7 and 4.2.7.

Figure 4.2.6 shows the reachability matrix calculated from the adjacency matrix of Figure 4.2.4.

H(A) =

 1 A(i, j)> 0

0 A(i, j)≤ 0
(4.2.7)

R = H

(
N

∑
k=1

Ak

)
= H

(
A(I +A)n−1) (4.2.8)

4.2.4 Bipartite matching

A major focus of the prior work on the use of digraphs to model process causality using bipartite

matching (Venkatasubramanian et al., 2003b; Maurya et al., 2004). Bipartite matching is used in

numerical analysis to efficiently solve systems of equations, which is equivalent to forming an acyclic

digraph (Lee et al., 1966; Harvey, 2008).

The aim of this section is to show that bipartite matching is not suitable for the purpose of

determining the causality of a process system with a control system. The equation set 4.2.9 shows

an unmatched structural model. This model is derived from the structural equations 4.2.1, 4.2.2 and

4.2.3 used to model the LC1-FC1 control loop. The function names, such as ỸLC1 denote unmatched

functions. The rest of the notation is given in Table 4.2.2.

The model is implemented in Matlab and the bipartite matching problem solved using a subroutine

provided by David Gleich and Ying Wang of Stanford University. The Matlab code is available from

https://zenodo.org/communities/dl4009 as the zip file LC1 FC1 BP Test Vs 01.m.zip.

The digraph resulting from the bipartite matching algorithm is shown Figure 4.2.7. Although the

digraph is acyclic, it has not captured the feedback that is inherent in the control loop.
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Figure 4.2.7: Unconstrained bipartite matching solution to the unmatched structural equation set 4.2.9.

0 = ỸLC1(yLC1,rLC1,yLT1,kLC1)

0 = ỸFC1(yFC1,yLC1,yFT1,kFC1)

0 = Q̃CV1(qCV1,yFC1,δ pCV1,kCV1)

0 = ỸFT1(yFT1,qCV1,kFT1)

0 = ỸLT1(yLT1, lTK1,kLT1)

0 = M̃TK1(mTK1,qCV1,qMV1)

0 = L̃TK1(lTK1,mTK1)

0 = D̃FT1(dFT1,yFT1)

0 = D̃LT1(dLT1,yLT1)

(4.2.9)

Inspection of Figure 4.2.7 shows that the unconstrained bipartite algorithm has designated dLT1 and

dFT1 as causes rather effects, and that qMV1 and rLC1 are designated as effects rather than causes. The

digraph also shows that controller output yFC1 is now dependent on variables qCV1, kCV1, and δ pCV1.

Similarly, controller output yLC1 is now dependent on variables yFT1, yFC1, and kFC1.

These results do not reflect the physical reality of the control loop and illustrate the importance of
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ensuring that the causal constraints inherent in the control devices have to be respected by the matching

algorithm.

4.3 Analysis of the Level 1 Fusion
Having described the level 1 fusion modelling ingredients and workflow (boxes FL1.01 - FL1.06

of Figure 4.1.1 on page 84 , the level 1 fusion analysis ingredients and workflow are now described

(boxes FL1.07 - FL1.11). Once again, the process fragment 4.2.1 on page 88 is used as an illustrative

example.

4.3.1 Relating causes and effects

The purpose of deriving a qualitative process digraph is to use effects to localise and specifically

identify candidate causes. To relate causes and effects, the reachability matrix is used. Although the

reachability matrix does not give details of causal mechanisms and pathways, it does show which

vertices can affect each other.

However, as shown in Figure 4.2.6 on page 97, reachabilty matrices can be quite large, and show

all the vertices, rather than focusing on causes and effects. Also, reachabilty matrices are prognostic.

They show which vertices can be reached from a given starting vertex by moving through the digraph

in the direction of the edges. To easily find effects from causes requires a diagnostic representation. To

overcome these difficulties, two new digraph matrices are defined called a reduced reachabilty (R2)

matrix, and a reversed reduced reachabilty (R3) matrix.

A reduced reachabilty (R2) matrix is a matrix in which the rows solely represent causes, and the

columns solely represent effects. Figure 4.3.1 is the R2 matrix for the LC1-FC1 control loop. In this

case, the matrix shows that all the causes can reach all the effects. This property arises because the

digraph 4.2.5 forms a cycle comprised of all the vertices which are not causes or effects. Figure 4.3.4

shows the digraph condensation of Figure 4.2.5. The vertex S9 is the digraph component comprising

all the vertices which are no causes or effects. The subscript “9” arises because the first eight vertices

in the digraph are the causes on the left-hand side of Figure 4.3.4.

Inspection of this digraph makes is clear that all the causes can reach the effects. The condensed

digraph is calculated by running the code TT LC1 FC1 01.m

Inspection of the R2 matrix shows that its transpose models going from effects to causes. Figure
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Figure 4.3.1: Reduced reachability (R2) matrix for the LC1-FC1 control loop.

4.3.2 shows the transpose of the R2 matrix, which is called a reversed reduced reachabilty (R3) matrix.

The R3 matrix suggests the possibility of reversing complete digraphs, so that fault diagnosis can be

achieved by starting at the effects and finding paths back through the digraph to a set of possible causes.

The workflow for creating the R2 and R3 matrices is shown in Figure 4.3.3.

Figure 4.3.2: Reduced reversed reachabilty (R3) matrix for the LC1-FC1 control loop.
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Start

Process
digraph G

Set of process causes {α}
and set of process effects {ω}

For each αi and ω j find the short-
est path S (G,αi,ω j) from αi to ω j

If S (G,αi,ω j) ̸= ∅,R2i j = 1
Otherwise R2i j = 0 R2

R3 = R2T R3

End

Figure 4.3.3: Workflow for creating a reduced reachability (R2) matrix and a reversed
reduced reachability (R3) matrix.

4.3.2 Digraph reversal

Digraph reversal is achieved by transposing the adjacency matrix of a forward digraph. Figure 4.3.5

shows the reversed digraph corresponding to the transposed adjacency matrix of Figure 4.2.4 on page

95.

Equation 4.3.1 is taken from the structural equation set 4.2.3, and shows the cause-to-effect structural

equation for the level controller LC1. In this equation there is one output which is dependent on three

inputs.

yLC1 = YLC1(rLC1,yLT1,kLC1) (4.3.1)
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Figure 4.3.4: Digraph condensation of Figure 4.2.5

Equation 4.3.2 shows a structural equation in which the causality of equation 4.3.1 has been reversed.

The function Y ∗
LC1 is the reversed counterpart to the function YLC1. This particular example of causal

reversal is marked by the rectangle shown on Figure 4.3.5.

[rLC1,yLT1,kLC1] = Y ∗
LC1(yLC1) (4.3.2)

In this reversed equation, three outputs are dependent on one input. The use of square brackets is

taken from Matlab to denote a function has multiple outputs. It is important to note that equation 4.3.2

is not a numerical inversion of equation 4.3.1. The equations qualitatively describe causal mechanisms,

not quantitative calculations.

The adjacency and reachability matrices corresponding to structural equations 4.3.1 and 4.3.2 are

shown in Figures 4.3.6 to 4.3.9.

Figure 4.3.7 is the transpose of Figure 4.3.6, and Figure 4.3.9 is the transpose of figure 4.3.8.

In general, if the reachabilty matrix derived from adjacency matrix A is R, then the reachabilty

matrix Ω derived from AT is given by Ω = RT .

To show that Ω = RT , equation 4.3.3 is used. In this equation, H is the Heaviside function for

matrices, N is the the number of vertices in the digraph, and A is an N ×N matrix.

R = H

(
N

∑
k=1

Ak

)
(4.3.3)
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Figure 4.3.5: Reversed digraph of the LC1-FC1 loop. derived by transposing the adjacency matrix of Figure
4.2.4 on page 95. The rectangle shows the causal reversal for the instrument function YLC1. The superscript
“*” denotes reversed structural functions.

Figure 4.3.6: Adjacency matrix for the forward structural equation 4.3.1.

Substituting AT for A gives.

Ω = H

(
N

∑
k=1

(AT )k

)
(4.3.4)

For any square matrix A,(AT )k = (Ak)T (Stephenson, 1975) so that equation 4.3.4 becomes.

Ω = H

(
N

∑
k=1

(Ak)T

)
(4.3.5)

The additive property of the matrix transpose also gives.
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Figure 4.3.7: Adjacency matrix for the reversed structural equation 4.3.2.

(
N

∑
k=1

(Ak)T

)
=

(
N

∑
k=1

(Ak)

)T

(4.3.6)

Equations (4.3.5) and (4.3.6) then give equation 4.3.7 which proves the result.

Figure 4.3.8: Reachabilty matrix calculated from the adjacency matrix of Figure 4.3.6.

Figure 4.3.9: Reachabilty matrix calculated from the adjacency matrix of Figure 4.3.7.
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Ω
T = H

(
N

∑
k=1

Ak

)
= R (4.3.7)

4.3.3 Reachability, set intersection and digraph searches

Box FL1.09 of Figure 4.1.1 on page 84 shows the level 1 fusion diagnosis uses the intersection

of sets. This technique is used in two ways: to analyse digraph reachability matrices, and to extract

specific causal mechanisms and pathways from digraph searches.

4.3.3.1 Reachability matrices and set intersection

The R3 matrix focuses on the relationship between all the causes and all the effects. This information

is refined further by selecting only those causes which have a common set of detected effects. A

worked example using the R3 matrix of Figure 4.3.2 illustrates how this is done using set intersection.

If detector DFT1 reports an abnormal effect, then row dFT1 of the R3 matrix (row 1), identifies the set

of causes that can be reached from dFT1 as the set of vertices shown in equation 4.3.8. The operation

C (R3,dFT1) picks out the set of causes corresponding to the non-zero entries of row dFT1 of the R3

matrix.

C (R3,dFT1) = {rLC1,kFC1,kFT1,kCV1,δ pCV1,qMV1,kLT1,kLC1} (4.3.8)

Similarly, if an effect is detected at DLT1, then row dLT1 (row 2), of the R3 matrix identifies the set

of causes that can be reached from dLT1 as the set of vertices shown in equation 4.3.9.

C (R3,dLT1) = {rLC1,kFC1,kFT1,kCV1,δ pCV1,qMV1,kLT1,kLC1} (4.3.9)

The set of common candidate causes is found by the set intersection shown in equation 4.3.10.

C3 = C (R3,dFT1)∩C (R3,dLT1) = {rLC1,kFC1,kFT1,kCV1,δ pCV1,qMV1,kLT1,kLC1} (4.3.10)

The right-hand of equation 4.3.10 therefore comprises all the causes in the LC1-FC1 loop. In this

case it is not possible to qualitatively isolate specific causes to account for the detected effects. This

result is not surprising as the R3 matrix describes the causal relations of a feedback loop.

As another example, and anticipating a result from Chapter 5, Figure 4.3.10 shows an R3 matrix for

the Two-tank process.
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Figure 4.3.10: R3 matrix showing effects and controller causes for the two tank process of Figure 1.2.1.

If detector DTT1 identifies an abnormal temperature effect on tank TK1, then the causes correspond-

ing to the non-zero row entries of row dTT1 (row 4) in R3 are given by equation 4.3.11.

C (R3,dTT1) = {kFC2,kTC1,kFC1,kLC1} (4.3.11)

Qualitatively, on this effect information alone, it is not possible to discriminate between any of the

four causes shown. However, if the only other effect is identified at tank TK2 level detector DLT2, the

full set of candidate causes is now given by:

C (R3,dTT1) = {kFC2,kTC1,kFC1,kLC1}

C (R3,dLT2) = {kFC1,kLC1,kFC3,kLC2} (4.3.12)

The set of common cause candidates is given by:

C (R3,dTT1)∩C (R3,dLT2) = {kFC1,kLC1} (4.3.13)

The right-hand side of equation 4.3.13 shows that if effects are detected at DTT1 and DLT2, the only

two candidate causes are device faults at controller FC1 and controller LC1. Further investigation of

the fault is therefore focused and resource efficient.
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Figure 4.3.11: Search on the digraph of Figure 4.2.5 showing all the vertices that can be reached from kLC1.
The pathway highlighted in red is the shortest path between kLC1 and dFT1.

4.3.3.2 Digraph searches and set intersection

General digraph searches. A drawback of the R3 approach is that it reveals the end-points of

causal pathways, but not the pathways themselves.

Digraph search algorithms start from a specific vertex and traverse the digraph to discover all the

vertices that can be reached from the starting vertex. A forward digraph has cause-to-effect causal

pathways. Therefore digraph searches on forward digraphs begin at causes. However, a reversed

digraph, in which the edges are directed from effects to causes, can be searched beginning at effects.

There are two widely-used algorithms for general digraph searches: breadth-first and depth-first

searches. A detailed treatment of these algorithms, along with other digraph theory computer tech-

niques, is given in Cormen et al. (2009). There is some debate on the efficiency and efficacy of

depth-first versus breadth-first searches (Deo, 1974). The depth-first algorithm is the default algorithm

in the MATLAB native function library, and hence is used in this thesis.

The result of a digraph search is sub-digraph. Figure 4.3.11 shows search on the digraph for the

LC1-FC2 loop, shown in Figure 4.2.5. This sub-digraph shows all the causal pathways that can be

traversed starting at vertex kLC1.
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Shortest path searches. A specific case of a digraph search is to find shortest path between

two vertices. In the qualitative digraphs discussed in this thesis, the shortest path is the one with

the minimum number of edges. For these digraphs, the MATLAB default shortest path method is

a breadth-first search. The causal pathway highlighted in red in Figure 4.3.11 is the shortest path

between controller cause kLC1 and temperature effect dFT1. The shortest path between a cause vertex

and effect vertex is useful in fault propagation analysis because it is the most direct causal path.

Set intersection. Digraph searches can be refined by combining them with set intersection. The

shortest path between kLC1 and dFT1 is denoted by S (kLC1,dFT1), such that:

S (kLC1,dFT1) = {kLC1,YLC1,yLC1,YFC1,yFC1,QCV1,qCV1,YFT1,yFT1,DFT1,dFT1} (4.3.14)

Excluding effect detection functions, the set of control device structural functions in the LC1-FC1

loop is given by equation 4.3.15

{YC}= {YLC1,YFC1,YLT1,YFT1} (4.3.15)

The set of controller structural functions on the shortest path between kLC1 and dFT1 is given by:

S (kLC1,dLC1)∩{YC}= {YLC1,YFC1,YFT1} (4.3.16)

The result means that a fault propagating along the shortest path between the cause kLC1 and

the effect kLC1 encounters level controller function YLC1, flow controller function YFC1, and the flow

transmitter function YFT1, but not the level transmitter function YLT1. This technique is used in Chapter

5 to extract the relations between controllers for the complete Two-tank process.

4.3.3.3 Fault polytrees

The term polytree is an adaption of a term by Pearl (2009), in which digraphs are derived from

statistical data. The fault polytree builds on the idea of a fault tree (Smith, 2011), and shows the

shortest paths from multiple cause to multiple effects on a sub-digraph of the digraph for complete

process. Figure 4.3.12 shows a polytree derived from the LC1-FC1 digraph of Figure 4.2.5. The

polytree shows the shortest paths between the causes kCV1 and kLC1, and the effects dFT1 and dLT1. The

polytree shows there is a common path between the valve function QCV1, and the flow qCV1.
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Figure 4.3.12: Fault polytree showing the shortest paths between the causes kCV1 and kLC1, and the effects
dFT1 and dLT1.

4.3.4 Derivation of acyclic digraphs

The modelling of causes as sources and effects as sinks enables the derivation of acyclic digraphs

from cyclic digraphs. Such acyclic digraphs model the existence, but not the detail, of causal relation-

ships, and are used to construct a Bayesian network and the quantitative level 2 fusion. The exact detail

of the causal relation between a cause and effect is explained by the level 1 fusion. The workflow for

the derivation of acyclic digraphs is now explained.

Figure 4.2.6 on page 97 shows the reachabilty matrix for the complete LC1-FC1 control loop. The

matrix of Figure 4.3.13 is formed from the reachabilty matrix of Figure 4.2.6 by picking out the rows

and columns corresponding to the causes and effects. This new matrix is called a cause and effect

matrix.

The set of causes is denoted by α and is given by equation 4.3.17.

α = {rLC1,kLC1,kFC1,δ pCV1,kCV1,kFT1,qMV1,kLT1} (4.3.17)

The set of effects is denoted by ω and is given by equation 4.3.18.

ω = {dLT1,dFT1} (4.3.18)
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Figure 4.3.13: Cause and effect matrix for the Two-tank process.

The cause and effect matrix of Figure 4.3.13 can be written in the form of the block matrix on the

right hand side. In this block representation, the only non-zero block is given by the R2 matrix of

Figure 4.3.1. This matrix is now used as an adjacency matrix to form the acyclic digraph of Figure

4.3.14.

The cause and effect matrix is demonstrated to be always acyclic as follows. Equation 4.3.19 details

the calculation of the reachability for the block representation of the cause and effect matrix.

2

∑
k=1

Ak =

α ω( )
α . R2

ω . .

+

α ω( )
α . R2

ω . .

×

α ω( )
α . R2

ω . .

=

α ω( )
α . R2

ω . .

(4.3.19)

The second order term is zero so that the reachabilty matrix is identical to the adjacency matrix.

Moreover, the reachabilty matrix is strictly upper triangular, with zeros on its diagonal. Deo (1974)

proves that any reachabilty matrix is acyclic if and only if the reachabilty matrix has a zero diagonal.

This concludes the demonstration that the cause and effect matrix models an acyclic causal digraph.

4.3.5 Answers to the research questions

This chapter has described and illustrated the model ingredients and workflow for a qualitative fault

diagnosis approach called a level 1 fusion to address the research questions proposed in Chapter 1:
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Figure 4.3.14: Acyclic digraph corresponding to the matrix of Figure 4.3.13.

i Model Ingredients: What are the necessary ingredients of a fault diagnosis model?

ii Model Analysis: What information should a fault diagnosis model yield?

iii Modelling Approach: What type of modelling approach is appropriate to answer questions i and

ii?

4.3.5.1 What are the necessary ingredients of a fault diagnosis model?

The proposed level 1 fusion shown in Figure 4.1.1 and shows that the necessary ingredients of a

qualitative fault diagnosis are:

i The detailed information on the process architecture.

ii A first principles model of the process chemistry and physics.

iii A set of detected effects to be analysed to produce a fault diagnosis.

iv A toolbox of analysis techniques.

4.3.5.2 What information should a fault diagnosis model yield?

The level 1 fusion developed in this chapter yields several tools for the analysis of process faults:
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i A qualitative navigable causal map all the physical routes and mechanisms for fault propagation

within a process system.

ii A reversed causal map which allows effects to be traced back to causes.

iii A reduced reachabilty R2 matrix, and a reversed reduced reachability R3 matrix to quickly

determine which causes can reach which effects, and vice versa.

iv A fault polytree, as a generalisation of a fault tree, to show the direct paths between multiple

causes and multiple effects.

Taken together, the proposed analysis techniques allow the diagnosis of candidate causes from

detected effects. The diagnosis is qualitative in that the existence of candidate causes and fault

propagation pathways is described, but not the strength of their contribution to the detected effects.

4.3.5.3 What types of model are appropriate to fault diagnosis?

This chapter has shown that the types of models appropriate to fault diagnosis are:

i Qualitative structural models. These models capture the causal relationship between functions

and variables associated with both plant and control system devices and processes.

ii Digraph models. These models offer a both a pictorial representation of the process structural

model. Digraphs are also mathematical entities and can be analysed using well-established

algorithms.

4.4 Summary
This chapter has proposed a qualitative fault diagnosis approach called a level 1 fusion. The level

1 fusion was systematically developed by combining process architecture information from process

diagrams, and first principles mathematical models of the process plant and control devices.

In the first instance the level 1 fusion gave a detailed qualitative structural model of the causal

relationships within the process system. By using the idea of a control block diagram, it was shown that

the control and instrumentation system imposes causality on the structural model,and hence defines

the dependent and independent process variables.
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The structural model of the process was shown to be the basis for a qualitative digraph. This digraph

is a detailed causal map of the process. The digraph can be analysed to give several views of the

relationships between causes and effects.

The level 1 fusion digraph was analysed to derive forms of simplified reachabilty matrix. The first

matrix is called a reduced reachability (R2) matrix, which captures the existence of a path between a

cause and and effect. Transposing the R2 matrix gives a reversed reduced reachabilty (R3) matrix. The

R3 matrix shows the existence of effect-to-cause paths.

It was shown that by analysing information on effects using set intersection theory, a set of common

causes could be derived. These common causes locate candidate faults to specific process areas.

To extract detailed information on the fault propagation path between causes an effects, the ideas

of digraph searches were introduced. It was then shown how the idea of fault tree analysis could be

generalised to show the paths between multiple causes and multiple effects using a fault polytree.

Finally, it was shown how the level 1 fusion answers the research questions.

* * *
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Chapter 5

Level 1 Fusion: Two-tank Process Case Study

In this chapter, the qualitative level 1 fusion of Chapter 4 is applied to a case study taken from the prior

literature. The modelling and analysis workflows are based on deriving a causal model of the process

by combining information of the process architecture, and a first principles model.

The process is a Two-tank water system with level and temperature control loops on both tanks.

The level 1 fusion is able to analyse all the causal paths through the process in detail. Furthermore

the level 1 fusion allows a quick representation of the process causal structure by deriving a reduced

reachabilty (R2) matrix, and reversed reduced reachabilty (R3) matrix.

The analysis of the relationships between the process controllers is studied in detail, and the findings

of the level 1 fusion provide an advance on the prior literature.

The Two-tank case study demonstrates the application of a systematic modelling and analysis

procedure to fault propagation analysis in process systems.

5.1 Scope of the Case Study
The case study is based on the level 1 fusion modelling and analysis of the Two-tank process of

Figure 5.2.1. Jiang et al. (2009) noted that previous work focused on the plant device architecture

(Mah, 1990). To understand plant-wide oscillation analysis, Jiang et al. argued that the focus should

be on the control system architecture, and introduced the concept of a controller digraph to focus on

the relationships between the process controllers. Using this concept, Jiang et al. stated a controller

adjacency matrix using engineering judgment. Jiang et al. then calculated a controller reachabilty

matrix using the standard method of Equation 4.2.8 on page 98.
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To test the level 1 fusion approach, this thesis systematically derives a digraph for the complete

process. Using this process digraph as an example, an algorithm is developed and applied to extract

the controller adjacency matrix from any process digraph.

To differentiate between the work of Jiang et al. and the work presented in this thesis, the following

nomenclature is used.

i The controller adjacency matrix and the reachability matrices of Jiang et al. are denoted by ACJ

and RCJ respectively.

ii The level 1 fusion digraph for the complete Two-tank process is denoted by GTT. The adjacency

and reachability matrices corresponding to GTT are denoted by ATT and RTT respectively.

iii The level 1 fusion controller adjacency matrix and controller reachabilty matrices are denoted

by ATTC and RTTC respectively.

As already noted, this thesis extracts ATTC from GTT by developing and applying an algorithmic

method. The reachabilty matrix RTTC is calculated from ATTC using the standard method of Equation

4.2.8 on page 98.

The matrices ATTC and RTTC are then compared with ACJ and RCJ. The differences that arise are

explained by analysing the level 1 fusion digraph GTT to find and explain causal paths within the

complete Two-tank process.

5.2 Process Description and Assumptions
Figure 5.2.1 shows the piping and instrumentation diagram for the Two-tank process studied by

Jiang et al. (2009).

i Dashed lines represent control and instrumentation signals.

ii Solid lines represent steam and water streams designated as numbered diamonds 1- 6.

iii The system inputs and outputs are shown as rectangular boxes with a dashed border and define

the process system boundary.

iv Mass and energy enters the process from water and steam utilities W1, W3 and S2, S4 respec-

tively.
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Figure 5.2.1: Example process system adapted from Jiang et al. (2009).
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Table 5.2.1: Nomenclature for the Two-tank process of Figure 5.2.1

Description Label Inside/Outside System Type

Water Tanks TK1, TK2 Inside Device
Control Valves CV1, CV2,CV3,CV4 Inside Device
Manual Valves MV1, MV2 Inside Device
Flow Controllers FC1, FC2, FC3, FC4 Inside Device
Level Controllers LC1, LC2 Inside Device
Flow Transmitters FT1, FT2, FT3, FT4 Inside Device
Level Transmitters LT1, LT2 Inside Device
Temperature Transmitters TT1, TT2 Inside Device
Streams 1,2,3,4,5,6 Inside Stream
Steam Supplies S1, S2 Outside Device
Water Supplies W1, W2 Outside Device
Steam Drains D2, D4 Outside Device
Downstream Process P2 Outside Process
Non-Cascaded Controller Set-Points rTC1,rLC1,rTC2,rLC2 Outside Signal

v Mass and energy leaves the process to the condensate drains D2, D4, and a separate downstream

process P2.

vi The controller set-points for TC1, LC1, TC2, LC2 represent information coming into the system.

vii Both water tanks are assumed to be open to air at constant pressure pAir.

viii The inlet port of valve MV1 is below the water level of tank TK1.

The paper by Jiang et al. lacks information on whether CV1, MV1 and CV3 discharge above or

below the water levels of TK1 and TK2. This thesis shows the causal structure of the process depends

on whether the discharge is above or below the water level of tank TK2.

Jiang et al. modelled the process controller device architecture of Figure 5.2.1 using the adjacency

matrix ACJ of Figure 5.2.2. This result was derived manually by Jiang et al. using the following rules.

Controller j is adjacent to controller i such that ACJ(i, j) = 1 if

i Controller output yi directly affects the controlled process variable x j without going through any

other controller output.

ii Controller output yi affects process variable xi directly.
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Figure 5.2.2: Controller adjacency matrix ACJ stated in Jiang et al. (2009).

5.2.1 Level 1 fusion modelling, analysis and workflow

Figure 5.2.3 shows the workflow for creating a level 1 fusion model for the Two-tank process. This

specific workflow is adapted from the generic workflow shown in Figure 4.1.1 on page 84 of Chapter

4. An orange box denotes a manual task. The blue box denotes an automated task. The focus of the

level 1 fusion for the Two-tank process is to create an adjacency matrix for the complete process, ATT

(Box FL1.06.1). Using this process adjacency matrix, a level 1 digraph, GTT, for the complete process

is created. This digraph is then analysed to draw out specific features of the causal structure of the

process. In particular a controller adjacency matrix, ATTC, is algorithmically extracted from GTT.

5.2.2 Level 1 fusion modelling of the Two-tank process

The creation of the process adjacency matrix (box FL1.06.1 of Figure 5.2.3) uses the following

procedure:

i Modelling of control loop block diagrams to capture the connections and causality of the piping

and instrumentation diagram.

ii Use of control loop block diagram logic to build a set of matched structural equations.

iii Conversion of the matched structural equations into the entries of ATT.
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Figure 5.2.4: Block diagram of a cascaded control loop.

Inspection of Figure 5.2.1 show that each tank has a cascaded control loop to control the water

temperature, and a cascaded control loop to control the water level. The procedure to generate the

process adjacency matrix is explained using these cascade loops. Table 5.2.2 shows the nomenclature

used in the procedure.

5.2.2.1 Control loop block diagram modelling

The starting point is a control systems block diagram. The structure of a control loop block diagram

arises because control devices are designed to be inherently causal. Control devices have well defined

inputs, outputs and modes of operation. These properties constrain the causality of the plant devices.

Figure 5.2.4 shows a block diagram for a cascaded control loop. Each block is affected by causes.

Some of these causes are process variables, or parameter sets, required for the device(s) within the

block to function. Other causes are malfunctions.

5.2.2.2 Structural equation matching

To show how control loop block diagrams are used to find matched structural equation sets, the

TC1-FC2 control loop of the Two-tank process is worked through.

Figure 5.2.5 shows a block diagram model of the TC1-FC2 cascaded temperature control loop,

derived from the piping and instrumentation diagram of Figure 5.2.1. The logic of Figure 5.2.5

determines how the loop is modelled as a set of matched structural equations. For example, the output

of TT1 is dependent on the temperature of the water in tank TK1. This dependency is written as the
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structural equation 5.2.1. The nomenclature is defined in Table 5.2.2 where structural functions are

upper case, and structural variables are lower case.

yTT1 = YTT1(θTK1,kTT1) (5.2.1)

In this equation, YTT1 is a structural function which represents the operation of TT1. The structural

function has an independent variable, the water temperature in tank TK1, θTK1. and a dependent

variable, the measurement signal, yTT1. A set of independent causes, such as calibration parameters

and instrument malfunctions, are grouped together as kTT1.

The principles exemplified by Equation 5.2.1 apply to the blocks representing plant devices. Because

the block diagram of Figure 5.2.5 shows that the block labelled TK1 tank water temperature must

output a temperature to be measured by TT1, a matched structural equation for that block is given by

Equation 5.2.2. The nomenclature is defined in Table 5.2.2.

θTK1 = ΘTK1(h2,qMV1,qCV1,θW1) (5.2.2)

Continuing in this way around the block diagram yields the particular set of matched structural

equations shown in Equation 5.2.3. The underlying physical models, and general structural equations

are derived in Chapter 4. The model nomenclature is defined in Table 5.2.2.

Figure 5.2.5: Block diagram for the TC1-FC2 cascaded temperature control loop.
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Table 5.2.2: Nomenclature for the Two-tank process structural equation and digraph models

Symbol Description Example

D Observed effect function DFT1

d Observed effect variable dFT1

H Steam pipe heat transfer function H2

h Steam pipe heat transfer variable h2

k Device malfunction cause variable kFC1

L Tank water level function LTK1, LTK2

l Tank water level variable lTK1, lTK2

M Tank water mass function MTK1, MTK2

m Tank water mass variable mTK1, mTK2

pAir Air pressure variable
p Pressure variable pD1, pT K1
Q Valve flow function QCV1

q Valve flow variable qCV1

r Controller setpoint rLC1

Y Controller or Instrument function YFC1, YFT1

y Controller or Instrument output variable yFC1, yFT1

δh Heat of vaporisation for steam supply δhS2

∆P Pressure drop function ∆PCV1

δ p Pressure drop variable δ pCV1

Θ Temperature function ΘTK1, ΘS2

θ Temperature variable ΘTK1, θS2

yFC2 = YFC2(yTC1,yFT2,kFC2)

qCV2 = QCV2(δ pCV2,yFC2,kCV2)

yFT2 = YFT2(qCV2,kFT2)

yTC1 = YTC1(rTC1,yTT,kTC1)

h2 = H2(δhS2,qCV2)

θTK1 = ΘTK1(h2,qMV1,qCV1,θW1)

yTT = YTT(θTK1,kTT)

(5.2.3)

By adapting the block diagram of Figure 5.2.5, the structural equation set 5.2.3 can also be

represented as the structural block diagram of Figure 5.2.6.

5.2.3 Structural modelling of the Two-tank process

The block diagram-structural model procedure is repeated for each control loop in the Two-tank

process. The structural models for LC1-FC1, LC2-FC3 and TC2-FC4 loops are given below.
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5.2.3.1 LC1-FC1 structural model

The structural model for the LC1-FC1 loop is given by Equation 5.2.4 and Figure 5.2.7

Figure 5.2.6: Structural block diagram for the TC1-FC2 control loop.

Figure 5.2.7: Structural block diagram for the LC1-FC1 control loop.
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yFC1 = YFC1(yLC1,yFT1,kFC1)

qCV1 = QCV1(δ pCV1,yFC1,kCV1)

yFT1 = YFT1(qCV1,kFT1)

yLC1 = YLC1(rLC1,yLT1,kLC1)

yLT1 = YLT1(lTK1,kLT1)

mTK1 = MTK1(qCV1,qMV1)

lTK1 = LTK1(mTK1)

(5.2.4)

5.2.3.2 LC2-FC3 structural model

The structural model for the LC2-FC3 loop is given by Equation 5.2.5 and Figure 5.2.8.

Figure 5.2.8: Structural block diagram for the LC2-FC3 control loop.

yLC2 = YLC2(rLC2,yLT2,kLC2)

yFC3 = YFC3(yLC2,yFT3,kFC3)

qCV3 = QCV3(δ pCV3,yFC3,kCV3)

mTK2 = MTK2(qCV3,qMV1,qMV2)

lTK2 = LTK2(mTK2)

yFT3 = YFT3(qCV3,kFT3)

yLT2 = YLT2(lTK2,kLT2)

(5.2.5)
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5.2.3.3 TC2-FC4 structural model

The structural model for the TC2-FC4 loop is given by Equation 5.2.6 and Figure 5.2.9

Figure 5.2.9: Structural block diagram for the TC2-FC4 control loop.

yFC4 = YFC4(yTC2,yFT4,kFC4)

qCV4 = QCV4(δ pCV4,yFC4,kCV4)

yFT4 = YFT4(qCV4,kFT4)

yTC2 = YTC2(rTC2,yTT2,kTC2)

h4 = H4(δhS4,qCV4)

θTK2 = ΘTK2(h4,qMV1,qMV2,qCV3,θW3,θTK1)

yTT2 = YTT2(θTK2,kTT2)

(5.2.6)

5.2.3.4 Supplementary modelling

The structural models 5.2.3, 5.2.4, 5.2.5 and 5.2.6 require supplementary modelling for the flows

through MV1 and MV2, and the pressure differences across the control valves. The symbol δ p

represents the pressure difference across a valve. The symbol ∆P is the corresponding structural

function. The symbol pAir denotes air pressure. The symbol l denotes tank water level. The subscripts

D2, D4 and P2 refer to the steam drains, and downstream process shown in Figure 5.2.1.

qMV1 = QMV1(δ pMV1,kMV1)

qMV2 = QMV2(δ pMV2,kMV1)
(5.2.7)
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δ pCV2 = ∆PCV2(pS2,PD2)

δ pCV4 = ∆PCV4(pS4, pD4)

δ pMV2 = ∆PMV2(pAir, lTK1, pP2)

(5.2.8)

If the valves CV1, CV3, and MV1 discharge above the tank water level, then the pressure of the

discharge port is the same as air pressure, The structural equations for the pressure differences across

these valves are given by Equation 5.2.8.

δ pCV1 = ∆pCV1(pW1, pAir)

δ pCV3 = ∆pCV3(pW3, pAir)

δ pMV1 = ∆pMV1(lTK1, pAir)

(5.2.9)

If valves CV1, CV3 and MV1 discharge below the water level, then the weight of water above the

discharge port provides an additional pressure term. This additional term is modelled as dependent on

the water level in the discharge tank.

δ pCV1 = ∆pCV1(pW1, pAir, lTK1)

δ pCV3 = ∆pCV3(pW3, pAir, lTK2)

δ pMV1 = ∆pMV1(lTK1, pAir, lTK2)

(5.2.10)

The modelling expressed in Equations 5.2.9 and 5.2.10 yield two different structural models for the

complete Two-tank process.

5.2.3.5 Detected fault effects

Each instrument has a structural equation to represent the observations of instrument outputs as

detected fault effects. Each detected fault effect describes the corresponding process as breaching its

control limit. The structural equations to model detected fault effects are shown in Equation 5.2.11.

The symbol d denotes the detected fault effect, and D is the corresponding structural function.
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dFT1 = DFT1(yFT1)

dLT1 = DLT1(yLT1)

dFT2 = DFT2(yFT2)

dTT1 = DTT1(yTT1)

dFT3 = DFT3(yFT3)

dLT2 = DLT2(yLT2)

dFT4 = DFT4(yFT4)

dTT2 = DTT2(yTT2)

(5.2.11)

5.2.4 Level 1 fusion and the process adjacency matrix

Having defined the structural model for the complete Two-tank process process the process adjacency

matrix is derived. In the first instance the adjacency matrix ATT is derived, based on valve CV1

discharging above the water level lTK1 in tank TK1, and valves CV3 and MV1 discharging above the

water level lTK2 in tank TK2 . The adjacency matrix A∗
TT, and its graph, G∗

TT, is derived and analysed in

Section 5.2.6.

5.2.4.1 Adjacency matrix and digraph workflow

To derive an adjacency matrix from a structural model, two assumptions are noted:

i All structural functions and variables represent vertices of a digraph GTT.

ii If vertex vj depends directly on vertex vi, then vj is adjacent to vi, and ATT(vi,vj) = 1. Otherwise,

ATT(vi,vj) = 0

Based on these assumptions, the generic workflow for deriving a process adjacency matrix A, and

process digraph G, is shown in Figure 5.2.10. The dashed box represents steps that are executed within

a Matlab script. Steps marked as a “manual edit” require the user to manually change the Matlab script

to model a specific problem. Those steps marked as “algorithm” indicate where matrix and digraph

properties are calculated. For the specific Two-tank process case study, the generic process adjacency

matrix matrix A becomes ATT, and the generic process digraph G becomes GTT.

A simple example of how to use this workflow for Steps 1-4 is now worked through.

Input 1: Equation 5.2.12 gives the structural model for temperature transmitter TT2.
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Figure 5.2.10: Generic workflow for using a structural model to create and analyse the level 1 digraph and
controller adjacency matrix for a process.

yTT2 = YTT2(θTK2,kTT2) (5.2.12)

In this equation yTT2 represents the transmitter output signal and YTT2 is a structural function

representing the hardware and software of transmitter TT2. The term θTK2 represents the water
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Figure 5.2.11: Zero valued matrix as a basis for an adjacency matrix derived from the structural equation
5.2.12.

Figure 5.2.12: Populated adjacency matrix for the structural equation 5.2.12.

temperature in tank TK1 and kTT2, represents the parameters and malfunctions associated with TT2.

Matlab describes digraph vertices as integer indices. To implement a process digraph in which the

vertices have meaningful names corresponding to process structural functions and vertices, steps 1 and

2 of the workflow are required.

Steps 1 and 2: From the structural equation 5.2.12, a set of string variables is given by:

Λ = {“YTT2”,“yTT2”,“θTK2”,“kTT2”}

Taken in order of occurrence, a corresponding set of integer variables (matrix indices) is given by:

v1 = YTT2 = 1,v2 = yTT2 = 2,v3 = θTK2 = 3,v4 = kTT2 = 4 → v = {YTT2,yTT2,θTK2,kTT2}

Step 3: Assume that equation 5.2.12 represents the entire process, and is therefore the complete

structural model. There are four vertices, and a zero valued basis for an adjacency matrix is given by

Figure 5.2.11.
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Step 4: For a structural equation such as 5.2.12, the function is defined as being adjacent to its

inputs, and the output is adjacent to the function. Because the function separates the output from the

inputs, none of the inputs is adjacent to the output.

The non-zero adjacency relations for the structural equation 5.2.12 are written as Equation 5.2.13.

Figure 5.2.12 shows the resulting adjacency matrix, and Figure 5.2.13 shows the corresponding digraph.

ATT(θTK2,YTT2) = 1 ≡ ATT(3,1) = 1

ATT(kTT2,YTT2) = 1 ≡ ATT(4,1) = 1

ATT(YTT2,yTT2) = 1 ≡ ATT(1,2) = 1

(5.2.13)

5.2.4.2 Complete process adjacency matrix for the Two-tank process

The adjacency matrix for the complete Two-tank process is given by ATT, and is based on valves

CV1, CV3 and MV1 discharging above the water level in tank TK1 and tank TK2. The structural

model for the complete Two-tank process comprises Equations 5.2.3 to 5.2.9, and Equation 5.2.11.

Based on this structural model, the Matlab script TT Digraph Vs01.m creates an adjacency matrix

“ATT” of dimension 126 × 126 and a digraph “GTT” comprising 126 vertices and 144 edges. The

script is available from https://zenodo.org/communities/dl4009. An Excel capture of ATT is

also available from the Zenodo website: Two tank A and R matrices Vs01.xlsx.

Figure 5.2.13: Digraph of the adjacency matrix shown in Figure 5.2.12.
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5.2.5 Analysis of the digraph for the Two-tank process

The Two-tank process digraph, GTT, is algorithmically generated from the adjacency matrix code.

Figure 5.2.14 shows the Two-tank process digraph. To declutter the digraph the function vertex labels

are not shown. The digraph is analysed using well-established graph theory algorithms such as finding

the shortest path between two vertices in a digraph (Deo, 1974).

5.2.5.1 Controller adjacency matrices ACJ and ATTC

As noted in Sections 5.1 and 5.2, the paper of Jiang et al. (2009) focuses on the relationships

between controllers in the Two-tank process, modelled by a controller adjacency matrix ACJ, shown

in Figure 5.2.2 on page 119. Jiang et al. simply state matrix ACJ without derivation, or reference to a

wider process digraph. The level 1 fusion has derived an adjacency matrix ATT for the entire Two-tank

process. Based on ATT, this thesis now discusses the application of the level 1 fusion to the following

topics:

i The algorithmic derivation of a controller adjacency matrix ATTC from the digraph GTT,

ii The explanation of differences between ATTC and AJC

5.2.5.2 Algorithmic derivation of controller adjacency matrix ATTC

To derive the controller adjacency matrix ATTC for the Two-tank process, this thesis proposes the

following definition of controller adjacency, taken from Jiang et al. (2009):

i A complete process digraph is denoted by G and modelled by an adjacency matrix A.

ii Controller adjacency is modelled by a controller adjacency matrix AC.

iii Controller j is adjacent to controller i if there is a shortest path from controller output yi to

controller function Yj which does not include any other controller function.

iv If j is adjacent to i then AC(i, j) = 1. Otherwise AC(i, j) = 0.

This procedure is formalised in Step 8.1 of Figure 5.2.15 and picks out the controller functions

along a shortest path in the process digraph G modelled by adjacency matrix A. Therefore controller

adjacency is defined on the subset of controller function vertices within G.
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Figure 5.2.15: Generic workflow for deriving a controller adjacency matrix from a process digraph. This
workflow is expanded from the generic process adjacency matrix and digraph workflow of Figure 5.2.10 on
page 129.

Figure 5.2.15 expands on the workflow of Figure 5.2.10 to show how the shortest path algorithm is

applied to a process digraph G to find a level 1 fusion controller adjacency matrix AC. In the specific

case of the Two-tank process, G becomes GTT, and AC becomes ATTC. This use of digraph shortest

path analysis is expanded into the algorithm of Steps 6, 7 and 8 of Figure 5.2.15.

Step 6 of the controller adjacency matrix workflow requires the set of controller structural functions

{Y}, and the set of controller outputs {y}. These sets are given by Equations 5.2.14 and 5.2.15

respectively. The controller structural functions represent the hardware and software of each controller.

{Y}= {YFC2,YTC1,YFC1,YLC1,YFC4,YTC2,YFC3,YLC2} (5.2.14)

{y}= {yFC2,yTC1,yFC1,yLC1,yFC4,yTC2,yFC3,yLC2} (5.2.15)
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Figure 5.2.16: TC1-FC2 control loop.

For two controllers i and j, Step 7 of the workflow finds the shortest path between a controller

output yi, and a controller function Yj, and Step 8.1 picks out all the controller functions on the shortest

path. Step 8.2 sets the controller adjacency matrix entry for controllers i and j . If controller function Yj

is the only controller function on the shortest path, j is controller adjacent to controller i. Conversely, if

there is more than one controller function on the shortest path then the shortest path from the output of

controller i encounters at least one other controller before controller j is reached. Therefore controller

j is not controller adjacent to controller i.

To illustrate Steps 7 and 8 Figure 5.2.16 shows the TC1-FC2 cascade control loop. Four worked

examples are now presented which illustrate the derivation of the level 1 fusion controller adjacency

matrix for the Two-tank process, ATTC.

Worked example no.1. Applying Step 7, Equation 5.2.16 shows the set of vertices in order of

discovery along the shortest path between yFC2 and YFC2 within the digraph GTT. In this equation S is

the function to find the shortest path, GTT is the level 1 fusion digraph of the Two-tank process, yFC2

represents the output of controller FC2, and the controller function YFC2 represents the hardware and

software of controller FC2.

S (GTT,yFC2,YFC2) = {yFC2,QCV2,qCV2,yFT2,yFT2,yFC2} (5.2.16)
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Using Equations 5.2.14 and 5.2.16, and applying Steps 8.1 and 8.2 of the workflow of Figure 5.2.10

gives Equation 5.2.17.

S (GTT,yFC2,YFC2)∩{Y}= {YFC2}→ |{YFC2}|= 1 (5.2.17)

This result shows that YFC2 is the only controller function on the shortest path, so that FC2 is

controller adjacent to itself to give the level 1 fusion controller adjacency matrix entry.

ATTC(FC2, FC2) = 1. (5.2.18)

Moreover, the result can be verified by tracing the output control signal from controller FC2 in

Figure 5.2.16 on page 135. Similar results are found for controllers FC1, FC3 and FC4.

Worked example no.2. Applying Step 7 the shortest path between the controller output yFC2 and

the controller function YTC1 is given by Equation 5.2.19

S (GTT,yFC2,YTC1) = {yFC2,QCV2,qCV2,H2,h2,ΘTK1,θTK1,YTT1,yTT1,YTC1} (5.2.19)

From Equations 5.2.14 and 5.2.19, applying Steps 8.1 and 8.2 gives Equation 5.2.20.

S (GTT,yFC2,YTC1)∩{Y}= {YTC1}→ |{YTC1}|= 1 (5.2.20)

Therefore controller TC1 is controller adjacent to controller FC2, so that ATTC(FC2, TC1) = 1.

Worked example no.3. Equation 5.2.21 shows the shortest path between the output of controller

TC1 and the function for controller FC2.

S (GTT,yTC1,YFC2) = {yTC1,YFC2} (5.2.21)

From Equations 5.2.14 and 5.2.21, applying Steps 8.1 and 8.2 gives Equation 5.2.22.

S (GTT,yTC1,YFC2)∩{Y}= {YFC2}→ |{YFC2}|= 1 (5.2.22)

This result shows YFC2 is the only controller function on the shortest path, and that controller FC2 is

controller adjacent to controller TC1 to give ATTC(TC1, FC2) = 1.
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Worked example no. 4. Equations 5.2.23 and 5.2.24 show the application of Steps 7, 8.1 and 8.2

to finding the controller adjacency relationship between controller TC1 and itself.

S (GTT,yTC1,YTC1) = {yTC1,YFC2,yFC2,QCV2,qCV2,H2,h2,ΘTK1,θTK1,YTT1,yTT1,YTC1} (5.2.23)

S (GTT,yTC1,YTC1)∩{Y}= {YFC2,YTC1}→ |{YFC2,YTC1}| ̸= 1 (5.2.24)

Equation 5.2.24 shows the shortest path from the output of controller TC1 back to the controller

function TC1 takes in the controller function for controller FC2. Therefore controller TC1 is not

adjacent to itself and ATTC(TC1, TC1) = 0.

5.2.5.3 Comparison and explanation of controller adjacency matrices ACJ and ATTC

Applying the workflow of Figure 5.2.15 across all the controller output-function pairs gives the full

level 1 fusion controller adjacency matrix ATTC of Figure 5.2.18. For comparison against the controller

adjacency matrix ACJ of Jiang et et al. shown in Figure 5.2.2, differences in the entries of ATTC are

marked up. Entries marked (.) denote where a controller adjacency entry in ACJ is not present in ACi.

Conversely, entries marked [1] show where ACi has a controller adjacency entry that is not present

in ACJ. The four entries within the black square are the results of the four worked examples. The

differences between ATTC and ACJ are now explained.

Differences on the diagonal. The differences on the diagonal of Figure 5.2.18 relate to the self-

Figure 5.2.17: Structural block diagram for the TC1-FC2 control loop (reproduced from Figure 5.2.6 on
page 124).

137



CHAPTER 5. LEVEL 1 FUSION: TWO-TANK PROCESS CASE STUDY

Figure 5.2.18: Controller adjacency matrix ATTC. The marked entries show differences with the controller
adjacency matrix of Jiang et al. shown in Figure 5.2.2. the four entries bounded by the black square are the
results of the four worked examples.

adjacency of primary controllers in cascaded loops. Jiang et al. (2009) state without derivation their

controller adjacency matrix ACJ. A particular assumption is that controllers are automatically controller

adjacent to themselves, so that all the diagonal entries ACJ = 1.

However, from worked example no. 4 of the previous section, Equations 5.2.19 and 5.2.20 yield

Equation 5.2.25, which shows that controller TC1 is not controller adjacent to itself.

S (GTT,yTC1,YTC1)∩{Y}= {YFC2,YTC1}→ |{YFC2,YTC1}→ ATTC(TC1, TC1) = 0 (5.2.25)

The result of Equation 5.2.25 can be verified using Figure by tracing the output control signal from

controller TC1 in Figure 5.2.16 on page 135. Similar results are found for controllers LC1, TC2 and

LC1.

Difference for controllers FC1 and TC2. Figure 5.2.18 also shows that FC1 is controller adjacent

to controller TC2. The shortest path between yFC1 and YTC2 is given by Equation 5.2.26 and shown in

Figure 5.2.19.

Figure 5.2.19: Shortest path S (GTT,yFC1,YTC2).
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S (GTT,yFC1,YTC2) = {yFC1,QCV1,qCV1,ΘTK1,θTK1,ΘTK2,θTK2,YTT2,yTT2,YTC2} (5.2.26)

The explanation of the causal path between yFC1 and YTC2 is as follows.

i The controller output yFC1 affects the valve function QCV1 and adjusts the cold water flow qCV1

into water tank TK1.

ii Flow qCV1 affects the energy balance of tank TK1, ΘTK1 and decreases the water temperature

θTK1

iii Water at temperature θTK1 flows from tank TK1 to tank TK2 and affects the energy balance tank

for tank TK2, ΘTK2. The change in ΘTK2 reduces the water temperature in tank TK2, θTK2.

iv The decrease in θTK2 affects the temperature instrument function YTT2.

v Consequently, the temperature reading yTT2 is decreased, which affects the controller function

YTC2. Controller TC2 adjusts the flow of steam to heat tank TK2. In this case the action of TC2

would be to increase the steam flow to counteract the effect of θTK2 being reduced.

It is unclear why Jiang et al. did not record AC(yFC1,YTC2) = 1, given they noted that the temperature

of tank TK1 can affect the temperature of tank TK2.

Figure 5.2.20: Two controller digraphs for the Two-tank process. The digraph on the left is modelled by
adjacency matrix ACJ. The digraph on the right is modelled by the adjacency matrix ATTC.
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Figure 5.2.20 shows the Two-tank controller digraphs of Jiang et al. (2009) and this thesis. The

digraph on the left is modelled by the by adjacency matrix ACJ shown in Figure 5.2.2 on page 119.

As already noted, ACJ is stated without derivation. The self-loops show that an output signal from

a controller always reaches its own controller without passing through another controller first. This

contradicts the structure of the Two-tank piping and instrumentation diagram shown in Figure 5.2.1 on

page 117.

The digraph on the right is modelled by the adjacency matrix ATTC. This matrix is a result of

applying the controller adjacency algorithm of Figure 5.2.15 on page 134 to the complete level 1 fusion

model for the Two-tank process, as detailed in Section 5.2.2 starting on page 119.

5.2.5.4 Comparison of reachability matrices RCJ and RTTC

As noted in Section 4.2.3 the reachability matrix R, corresponding to an adjacency matrix A, is

calculated from Equations 5.2.27 and 5.2.28. In these equations, M is any square matrix; i and j are

the indices for the matrix rows and columns respectively; N is the dimension of A; I is the identity

matrix of dimension N, and H is the Heaviside function, which operates on the elements of M,M(i, j).

H(M(i, j)) =

 1 M(i, j)> 0

0 Otherwise
(5.2.27)

Figure 5.2.21: Level 1 fusion controller reachability matrix RTTC calculated from ATTC. This matrix is
identical to that of Jiang et al. (2009) calculated from ACJ.

140



CHAPTER 5. LEVEL 1 FUSION: TWO-TANK PROCESS CASE STUDY

R = H
(
A(I +A)N−1) (5.2.28)

Despite the differences in the controller adjacency matrices ACJ and ATTC, the corresponding

reachability matrices are identical, shown in Figure 5.2.21.

5.2.6 Modelling and analysis of alternative digraph G∗
TT

5.2.6.1 Assumptions and modelling

An explicit assumption in the modelling of ATT and GTT is that water valves CV1, CV3 and MV1

discharge above the level of the water in tanks TK1 and TK2. An alternative assumption is that

CV1, CV3 and MV1 discharge below the level of the water in tanks TK1 and TK2. These alternate

assumptions result in an adjacency matrix A∗
TT and G∗

TT.

The procedure for creating the adjacency matrix A∗
T T is the same as that for creating AT T . The

majority of the structural model to form A∗
TT,is the same as that for forming ATT. The differences are in

the equation set that models valve discharge above water, 5.2.9, is replaced with equation set 5.2.10

(reproduced here as Equation 5.2.29) , which models valve discharge below the water level. The terms,

lTK1 and lTK2 represent the pressure acting against the valve flow due to the weight of water in the

discharge tank.

δ pCV1 = ∆pCV1(pW1, pAir, lTK1)

δ pCV3 = ∆pCV3(pW3, pAir, lTK2)

δ pMV1 = ∆pMV1(lTK1, pAir, lTK2)

(5.2.29)

There are three additional adjacencies, arising from the dependence of the functions ∆pCV1,∆pCV3

and ∆pMV1 on lTK1, lTK2 and lTK2 respectively. These additional dependencies are shown in equation set

5.2.30 and are shown in red in the digraph of Figure 5.2.22.

Table 5.2.3: Nomenclature for structural equation set 5.2.29

Symbol Description

lTK1, lTK2 Water level in tanks TK1 and TK2
pair Air pressure
pW1, pW1 Water pressure at supplies W1 and W3
∆pCV1,∆pCV3,∆pMV1 Pressure drop functions for valves CV1, CV3 and MV1
δ pCV1,δ pCV3,δ pMV1 Pressure drop variables for valves CV1, CV3 and MV1
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A∗
TT(lTK1,∆pCV1) = 1

A∗
TT(lTK2,∆pCV3) = 1

A∗
TT(lTK2,∆pMV1) = 1

(5.2.30)

The adjacency matrix A∗
TT is the same dimension as ATT, 126 × 126. The number of non-zero

adjacency entries (digraph edges) has now increased by three, from 144 to 147. A complete process

digraph, G∗
TT, is derived from A∗

TT, and is shown in Figure 5.2.22.

5.2.6.2 Controller adjacency matrix A∗
TTC

A controller adjacency matrix A∗
TTC is calculated using the workflow of Figure 5.2.15. Figure 5.2.23

shows the controller adjacency matrix A∗
TTC. The two entries marked ∗ show the differences with the

adjacency matrix ATTC of Figure 5.2.18.

The controller reachabilty matrix, R∗
TTC is calculated from A∗

TTC using Equation 5.2.28, and is shown

in Figure 5.2.24. The entries within the marked block of R∗
TTC show the existence of causal paths which

did not exist in RTTC, shown in Figure 5.2.21. The adjacency entry of Equation 5.2.31 solely accounts

for the marked entries in A∗
TTC and R∗

TTC.

A∗
TT(lTK2,∆pMV1) = 1 (5.2.31)

The particular differences between ATTC and A∗
TTC are in the existence of the controller adjacencies

of equation set 5.2.32, marked by a “*” in Figure 5.2.23.

A∗
TTC(FC3,TC1) = 1

A∗
TTC(FC3,LC1) = 1

(5.2.32)
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The adjacencies of Equation 5.2.32 are explained by the shortest paths:

S (A∗
TTC,yFC3,YTC1) = {yFC3,QCV3,qCV3,MTK2,mTK2,LTK2, lTK2,∆pMV1,δ pMV1,

QMV1,qMV1,MTK1,mTK11,LTK1, lTK1,YLT1,yLT1,YLC1}
(5.2.33)

S (A∗
TTC,yFC3,YLC1) = {yFC3,QCV3,qCV3,MTK2,mTK2,LTK2, lTK2,∆pMV1,δ pMV1,

QMV1,qMV1,ΘTK1,θTK1,YTT1,yTT1,YTC1}
(5.2.34)

Both paths share a common segment λ , where:

λ = {yFC3,QCV3,qCV3,MTK2,mTK2,LTK2, lTK2,∆pMV1,δ pMV1,QMV1,qMV1} (5.2.35)

The path segment λ relates the control signal output of FC3 ,yFC3, to the flow of water through

valve CV3 ,qCV3, and subsequently to the water level in tank TK2 ,lTK2. Valve MV1 discharges below

the water level in TK2, and the weight of water above the valve discharge port exerts a back pressure

against the water flow through MV1, qMV1. Using λ , Equations 5.2.36 and 5.2.37 abbreviate the paths

of Equations 5.2.33 and 5.2.34 respectively.

S (A∗
TTC,yFC3,YLC1) = {λ ,MTK1,mTK11,LTK1, lTK1,YLT1,yLT1,YLC1} (5.2.36)

S (A∗
TTC,yFC3,YTC1) = {λ ,ΘTK1,θTK1,YTT1,yTT1,YTC1} (5.2.37)

Figure 5.2.23: Controller adjacency matrix A∗
TTC. The entries marked ∗ show differences with the adjacency

matrix ATTC of Figure 5.2.18.
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Figure 5.2.24: Controller reachability matrix R∗
TTC. The entries within the block mark the differences with

reachabilty matrix R∗
TTC of Figure 5.2.21.

Equation 5.2.36 shows the causal path between yFC3 and YLC1 comprises the segment λ , and

subsequently leads to the physics and measurement of the water level of tank TK1. The level

measurement provides the process variable signal to level controller LC1.

The causal path between yFC3 and YTC1 also comprises λ , and then leads onto the physics and

measurement of the water temperature of tank TK1. The temperature measurement provides the

process variable signal to temperature controller TC1.

In both cases paths, the only controller function vertex on the causal path is at the end of the

path. Applying the workflow of Figure 5.2.15 to S (A∗
TTC,yFC3,YLC1) and S (A∗

TTC,yFC3,YTC1) gives

the adjacencies of Equation set 5.2.32.

5.2.7 Analysis of controller malfunctions

Chapter 1 defines causes as sources, which have no process antecedents, and effects as sinks, which

have no process descendants. An example of a source is the controller malfunction kFC1. An example

of an effect is the fault detector dFT1. Fault detectors are driven by instrument inputs, and signify when

a process variable breaches its defined control limits. To show the relations between the causes of

controller malfunctions and effects detected by instruments, a reduced reachability R2 matrix, and a

reversed reduced reachabilty R3 matrix are derived.

By setting α and ω using Equation 5.2.38, the R3 matrix of Figure 5.2.25 is derived using the
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Figure 5.2.25: An R3 matrix showing the causal relations between instrument variable detected effects, and
controller malfunction causes.

workflow of Figure 4.3.3 on page 102.

α = {kFC2,kTC1.kFC1,kLC1,kFC4,kTC2,kFC3,kLC2}

ω = {dFT 2,dT T 1,dLT 1,dFT 1,dFC2,dLT 2,dTC2,dFC4}]
(5.2.38)

The use of this matrix is illustrated by the example of detecting effects at level transmitters LT2 and

LT1 as follows:

If an effect is observed at LT2, reading across the row for dLT2 shows the cause is given by the set of

controller malfunctions {kFC1,kLC1,kFC3,kLC2}. Similarly, if an effect is detected at level transmitter

LT1, reading across the row for dLT1 shows that the causes of dLT1 are the set of controller malfunctions

{kFC1,kLC1}. If effects are observed both at dLT2 and at dLT1 the set of common causes is given by

{kFC1,kLC1,kFC3,kLC2}∩{kFC1,kLC1} = {kFC1,kLC1}. In this case the cause is isolated to the cascade

control loop comprising controllers FC1 and LC1. Based on this isolation, further investigation can be

carried out on FC1 and LC1 to find the specific malfunction.

5.2.8 Discussion of the Two-tank process case study

5.2.8.1 Modelling approach

In this thesis, a level 1 digraph GTT of the Two-tank process is derived. The derivation is based

on first principles modeling of the plant, combined with block diagram models of the control and
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instrumentation system. In this way the causality of the process is captured in a systematic and

transparent way. A controller adjacency matrix, ATTC is extracted from GTT using digraph shortest path

analysis techniques. A controller reachabilty matrix, RTTC, is then calculated using ATTC.

The matrix ATTC developed in this way is more complete and correct than the matrix ACJ developed

in the literature by Jiang et al. (2016). The matrices differ in two ways.

i Jiang et al. assume a controller is always adjacent to itself.

ii Jiang et al. propose that TC2 is not adjacent to controller FC1. The workflow proposed in this

thesis demonstrates that TC2 is adjacent to controller FC1.

Using the idea of direct controller interaction, the assumption that a controller is always adjacent

to itself is not universally true. For example, if i is the primary controller in a cascade loop, and j

is the secondary controller, then the output of i is the setpoint of j. It is the output of j that directly

affects the controlled variable of i. To avoid inconsistencies, the workflow of Figure 5.2.15 models

and analyses the causal relationships between controllers as a property of a complete process digraph.

In this approach, a controller i as adjacent to itself only if there is no other controller function in the

shortest path from the controller output yi to the controller function, Yi.

The level 1 fusion modelling and analysis the Two-tank process found that controller TC2 is adjacent

to controller FC1. The causal mechanisms that explain this relationships are described in detail using

Figure 5.2.19 on page 138.

In summary, controller FC1 controls the flow of cold water into tank TK1, affecting the water

temperature, θTK1. Water flows tank TK1 into tank TK2, thereby affecting the water temperature θTK2.

This temperature is measured by temperature transmitter TT2 and input to temperature controller TT2.

The causal path from FC1 to TT2 is now complete.

Jiang et al. do not present a systematic method for writing down the controller adjacency matrix

ACJ, and their omission of the adjacency of controller TC2 to controller FC1 seems to be an oversight.

The advantage of the level 1 fusion approach is that of systemically integrating first principles

modelling and piping and instrumentation information for the complete process. This approach

treats plant and control and instrumentation devices on the same basis using structural equations,

which express causality using dependent and independent variables. Moreover, the subsequent level 1
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fusion digraph is amenable to detailed investigation, using digraph searches, which in turn provides a

sense-check on the state of the digraph.

Despite the differences between ACJ and ATTC, the corresponding reachabilty matrices, RCJ and

RTTC, are identical. However, a reachabilty matrix only provides information on whether or not a vertex

can reach another vertex. There is no information on the causal pathway which links the vertices. The

value of deriving a detailed level 1 fusion digraph, is the digraph can be analysed using graph theory,

and causal pathways revealed and investigated.

5.2.8.2 Differences between level 1 fusion digraphs GTT and G∗
TT

The two digraphs GTT and G∗
TT illustrate the importance of modelling assumptions. Digraph GTT

assumes valve CV1 discharges above the water level of tank TK1, and valves CV3 and MV1 discharge

above the water level of tank TK2. Digraph G∗
TT assumes valve CV1 discharges below the water level

of tank TK1, and valves CV3 and MV1 discharge below the water level of tank TK2.

Digraph G∗
TT demonstrates that causality does not always follow the direction of a stream. For

example, a digraph built assuming MV1 discharges below the water level of tank TK2 shows that qMV1,

from tank TK1 is causally dependent on both the upstream and downstream conditions of MV1. These

dependencies provide the causal pathway from FC3 to TC1, and from TC3 to LC1.

5.3 Answers to the Research Questions
This thesis addresses three research questions:

i What are the necessary ingredients of a fault diagnosis model?

ii What information should a fault diagnosis model yield?

iii What types of model are appropriate to fault diagnosis?

As a basis for answering these questions, this thesis argues that process systems are described by:

i A specific set of purposes, and operational and safety limits.

ii A defined boundary with the environment.

iii A specific set of plant devices connected in an architecture to yield defined routes through the

process
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iv A specific set of control devices to actively monitor and control the process within operational

and safety limits.

5.3.1 What are the necessary ingredients of a fault diagnosis model?

A process piping and instrumentation diagram is a statement of the architecture of the plant and

control devices. This architecture describes the routes through the process. The plant and control

devices are modelled using the principles of chemistry, physics, and control engineering.

Using the observation that the control and instrumentation system constrains the causality of

the process causality, the level 1 fusion takes information of the architecture, and first principles

information as the necessary ingredients to build a causal model of the process. This causal model is

then used for fault propagation analysis.

5.3.2 What information should a fault diagnosis model yield?

A fault propagation model should be capable of prognostic analysis (going forward from causes

to effects), and diagnostic analysis (going backward from effects to causes). Fault diagnosis is an

example of the inverse problem.

The level 1 fusion model is built using process ingredients that are inherently cause-to-effect.

However, the model is readily invertible for qualitative effect-to-cause analysis. Moreover, the model

is amenable to analysis so that specific features, such as the causal relationships between controller,

are easily extracted.

5.3.3 What types of model are appropriate to fault diagnosis?

This thesis proposes an approach to fault propagation modelling termed a level 1 fusion. The model

ingredients are synthesised to form a digraph model of the causal relations between environmental

and process variables. Applying this approach to a case study on a Two-tank process described in the

literature, this thesis has shown that:

i In general, the level 1 fusion is a systematic approach to process causal modelling.

ii In particular, the level 1 fusion offers a viable and transparent qualitative approach to fault

propagation modelling and analysis.
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iii It is important to make clear modelling assumptions. For example whether or not water valves

discharge above or below the water level in a tank.

iv Causality does not always follow the direction of the material, energy, and signal flows marked

on process diagrams.

* * *
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Chapter 6

Level 1 Fusion: Tennessee Eastman Challenge

Case Study

In this chapter, the qualitative level 1 fusion of Chapter 4 is applied to the Tennessee Eastman

Challenge Process. The first principles modelling, process architecture, and control scheme are taken

from Jockenhovel et al. (2004), Cameron and Gani (2011), Lyman and Georgakis (1995), and Luo

et al. (2017).

The level 1 fusion shows the majority of the process controllers are adjacent, and can mostly reach

other. The single controller reachability exception is the compressor recycle flow controller. From this

data, the level 1 fusion analysis highlights an design flaw in the compressor recycle control scheme.

Four mini fault propagation case studies are worked through. The results show the level 1 fusion

gives detailed insights into the details of fault propagation mechanisms.

6.1 Scope of the Case Studies

To demonstrate the scalability of the level 1 fusion approach, a level fusion digraph, GTE, of the

Tennessee Eastman challenge process is developed. Using the process digraph, a source-to-sink matrix

is algorithmically derived. This matrix relates fault causes to fault effects. To show how the level 1

fusion is used in detailed fault propagation, shortest path analysis is applied to a set of known faults,

and the results compared with those of Chiang et al. (2015).
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6.1.1 Process Description

The Tennessee Eastman (TE) challenge process is a test problem for investigating plant-wide

process control schemes (Downs and Vogel, 1993). Figure 6.1.1 shows the process. As described by

Downs and Vogel, the process comprises a mixing header and recycle stream, a reactor, a condenser, a

separator, a stripper, a compressor, a pump and 12 valves. The control scheme used is control structure

2 by Lyman and Georgakis (1995), and the flow sheet of Figure 6.1.1 is from Luo et al. (2017). The

process produces two products, G and H, from four reactants A, C, D, E. An inert species B and a by

product F are also present. The overall chemistry of the process is given by the three reactions r1, r2, r3:

A + C + D → G (r1)

A + C + E → H (r2)

A+3D+E → 3F (r3)

(6.1.1)

Each individual reaction is exothermic and irreversible . The rate of each reaction increases with

the reactor temperature, and with increasing partial pressure of each reactant. Therefore the overall

reaction is exothermic, and increases with temperature and the availability of each reactant. The reactor

temperature is controlled using a water cooled heat exchanger. Fresh feedstock from streams 1, 2 and

3 is mixed with a recycle stream in a mixing header, and enters the reactor via stream 6. The purge

stream leaves the process via stream 9. The liquid product stream is given by stream 11. The process

has three multi-channel analysers, denoted in this thesis as XI6, XI9 and XI11. Analyser XI6 monitors

the composition of mixer outflow stream 6 (vapour). Analyser XI9 monitors the composition of purge

stream 9 (vapour), and analyser XI11 monitors the composition of product stream 11 (liquid).

6.1.2 First Principles and Structural Models

6.1.2.1 Model nomenclature

The flow sheet of Figure 6.1.1 shows the process architecture. In the flow sheet instruments and

valves are associated with variable measurements vx. For example Figure 6.1.2 shows a flow instrument

v4 and a valve v28. Valve v28 adjusts stream 4 with a molar rate rate of q4. Flow instrument v4 is

renamed as FI4, and v28 is renamed as CV4.
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Figure 6.1.2: Control loop example from Figure 6.1.1 to illustrate control device naming. The loop controls
stream 4. The flow instrument associated with v4 is renamed as FI4. The control valve associated with v28 is
renamed CV4. The molar flow of stream 4 is q4.

Table 6.1.1 shows the full renaming scheme for the process control and instrumentation.

The flowsheet has two level controllers called LC7. These are renamed as LC31 and LC32 after

their associated control valves. Valve CV31 adjusts the liquid flow from the separator bottoms. Valve

CV32 adjusts the flow of product from the stripper bottoms.

The model nomenclature follows that used for the two-tank process level 1 fusion model, and is

defined in Table 6.1.2.

It should be noted in the first principles modelling (Jockenhovel et al., 2004; Cameron and Gani,

2011), stream flows are mainly adjusted by valves. This is not the case with the flows q5,q6, and q7.

The nomenclature of Table 6.1.2 reflects this. For example, the flow q5 does not have an associated

Table 6.1.1: Process equipment nomenclature for the Tennessee Eastman level 1 fusion model

Fig. 6.1.1 Thesis Type Fig. 6.1.1 Thesis Type

v1 FI1 Flow instrument v20 JI20 Compressor work
v2 FI2 Flow instrument v21 TI21 Temperature instrument
v3 FI3 Flow instrument v22 TI13 Temperature instrument
v4 FI4 Flow instrument v23 XI11g Analyser
v5 FI5 Flow instrument v24 XI11h Analyser
v6 FI6 Flow instrument v25 CV2 Control valve
v7 PI7 Pressure instrument v26 CV3 Control valve
v8 LI8 Level instrument v27 CV1 Control valve
v9 TI9 Temperature instrument v28 CV4 Control valve
v10 FI10 Flow instrument v29 CV8 Control valve
v11 TI11 Temperature instrument v30 CV9 Control valve
v12 LI12 Level instrument v31 CV10 Control valve
v13 PI13 Pressure instrument v32 CV11 Control valve
v14 FI14 Flow instrument v33 CV33 Control valve
v15 LI15 Level instrument v34 CV34 Control valve
v18 TI18 Temperature instrument v35 CV35 Control valve
v19 FI19 Temperature instrument LC7(Stripper) LC31 Level controller

LC7(Separator) LC32 Level controller
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Table 6.1.2: Nomenclature for the Tennessee Eastman level 1 fusion model.

Description Variable Example Function Example

Process chemical species a, b, c, d, e, f, g, h - - -
Vapour/liquid equilibrium coefficient for species i φi φa - -
Molar flow rate of stream i (Valve controlled) qi q4 QCVi QCV4

Molar flow rate of stream i (Mass balance) qi q5 Qi Q5

Number of moles of species i in unit operation j nij naM Nij NaM

Partial pressure of species i in unit operation j pij paS Pij PaS

Liquid mole fraction of species i χij χdR, χd10 Xij XdR, Xd10

in stream/unit operation j
Vapour mole fraction of species i γij γa6 Γij Γa6

in stream/unit operation j
Energy generation rate of reaction ri eri er1 Eri Er1

Temperature of unit operation j θj θR Θj ΘR

Heat transfer to / from unit operation j hj hR Hj HR

Analyser for stream j, species k yXIjk yXI6a YXIjk YXI6a

Controller setpoint r rXC13 - -
Device malfunction k kFC1 - -
Flow controller, number N yFCN yFC1 YFCN YFC1

Level controller, number N yLCN yLC17 YLCN YLC17

Temperature controller, number N yTCN yTC19 YTCN YTC19

Composition controller, number N yXCN yXC13 YXCN YXC13

valve. Jockenhovel et al. (2004) and Cameron and Gani (2011) calculate this flow from a mass balance

on the stripper, and flows q4, q10, and q11. This thesis assigns the function Q5 to the mass balance,

the output of which is the flow rate q5. In contrast, stream q4 is adjusted by valve CV4 and the

corresponding structural function is denoted QCV4

The Tennessee Eastman process has a separator and stripper. To distinguish the nomenclature for

these two process operations, the stripper is denoted by “p” because it provides the product stream.

6.1.2.2 Plant model

A first principles plant model, developed by Jockenhovel et al. (2004) is the basis for the level 1

fusion. This model is itself based on the original model and FORTRAN code developed by Downs and

Vogel (1993), and Ricker and Lee (1995). Jockenhovel et al. extended the original FORTRAN model

to include energy balances for the mixing volume, reactor, separator and stripper.

The model of Jockenhovel et al. comprises 30 differential equations and 160 algebraic equations,
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and is the basis for the structural model presented in the file TE Structural Model Vs01.pdf at the

website https://zenodo.org/communities/dl4009

Following the procedure used in Section5.2.3 of the two-tank case study, this plant model is con-

verted into a set of structural equations. As with the two-tank process, the Tennessee Eastman process

control and instrumentation system provides the causal constraints. The plant model nomenclature is

defined in Tables 6.1.1 and 6.1.2.

As an example of how to derive a plant structural model, the mixer mole balance for species A

(denoted by subscript a) is given by equation 6.1.2. In this equation naM is the number of moles of A in

the mixer M, γaj is the vapour concentration of A in stream j [mol mol−1], and qj is the molar flow rate

of stream j [mol s−1].

dnaM

dt
= γa1q1 + γa2q2 + γa3q3 + γa5q5 + γa8q8 − γa6q6 (6.1.2)

The corresponding structural model is given by equation 6.1.3.

naM = NaM(γa1,q1,γa2,q2,γa3,q3,γa5,q5,γa8,q8,γa6,q6) (6.1.3)

6.1.2.3 Control and instrumentation model

The control and instrumentation structural model is derived from the device architecture presented

in Figure 6.1.1. The structural model for each control loop is developed using the principles of Section

5.2.3. As an example the flow control loop for valve CV4 of Figure 6.1.3) is shown in equation 6.1.4.

The model nomenclature is explained in Tables6.1.1 and 6.1.2.

Because Jockenhovel et al. did not present a complete pressure and flow model, the valve structural

models do not include pressure terms. Therefore the valve flows are based only on the output of the

associated controller (denoted by y) , and the valve parameter and malfunction terms (collectively

denoted by k).

q4 = QCV4(yFC4,kCV4)

yFC4 = YFC4(yFI4,yLC17,kFC4)

yFI4 = YFI4(q4,kFI4)

(6.1.4)

The flowsheet of Figure 6.1.1 on page 153 shows the process has three mole fraction analysers.
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These analysers provide the process variable inputs to five composition controllers. These composition

controllers then provide the setpoints for five other controllers. The structural models for the five

composition controllers are given by equation set 6.1.5. The modelling nomenclature -is defined in

Tables 6.1.1 and 6.1.2.

yXC13 = YXC13(rXC13,yXI6a,kXC13), yXI6a = YXI6a(γa6)

yXC14 = YXC14(rXC14,yXI6d,kXC14), yXI6d = YXI6d(γd6)

yXC15 = YXC15(rXC15,yXI6e,kXC15), yXI6e = YXI6e(γe6)

yXC19 = YXC19(rXC19,yXI9b,kXC19), yXI9b = YXI9b(γb9)

yXC20 = YXC20(rXC20,yXI11e,kXC20), yXI11e =YXI11e(χe11)

(6.1.5)

6.1.2.4 Process causes and effects

Based on the flowsheet of Figure 6.1.1, the first principles model of Jockenhovel et al. (2004), and

the fault diagnosis work of Chiang et al. (2015), Table 6.1.3 proposes a set of process causes and

effects. As noted in Section 5.2.3.5, causes are denoted by α , and effects by ω . Cause are variables

which do not have process antecedents and are not the outputs of structural functions. Effects represent

the detection of faults, characterised by process variables breaching their control limits. Effects are the

Figure 6.1.3: Control loop modelled by structural equation set 6.1.4.
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outputs of structural functions and have no descendants. The inputs to those structural functions are

the outputs of instrument functions. The points to note on the entries and omissions of Table 6.1.3 are

as follows.

Causes α1-α6. The variables α1-α6 represent the vapour mole fractions in the feed streams 1-4. The

species A, C, D, and E are reactants. Species B is inert, and contributes to the mass balances around

the process.

Causes α13 -α16. Each controller, instrument and valve has an associated variable k. For example,

valve CV1 has the the associated variable kCV1. These variables represent device malfunctions and

device gross parameter changes as described in Venkatasubramanian et al. (2003c) For simplicity, these

variables are described as device causes. The four device causes listed in Table 6.1.3 relate to the fault

scenarios described by Chiang et al. (2015).

Effects ω1 - ω5. These effects all relate to the measurements of the feedstock flow rates into the reactor.

Effects ω6 - ω7. These effects relate to abnormal conditions in the purge flow rate and product flow

rate respectively.

Effects ω8 - ω11. These effects correspond to abnormal conditions around the reactor: liquid level,

temperature, pressure, and cooling water outlet temperature.

Effect ω12. This variable describes an abnormal condition in the condenser cooling water outlet

temperature. The condenser mediates the transfer of energy and mass between the reactor and the

separator.

Effects ω13 - ω16 correspond to abnormal conditions in the operation of the separator. These effects

also include abnormalities in the liquid flow rate from the separator to the stripper.

Effects ω17 - ω20 correspond to abnormal conditions in the operation of stripper, including the stripper

steam flow rate.

Effects ω21 - ω28. These effects signify adverse conditions in the species mole fractions of stream 6

(reactor feedstock), stream 9 (the separator purge), and stream 11 (the product stream).

Effect ω29. Finally, this effect corresponds to abnormalities in the compressor work.

6.1.2.5 Process adjacency matrix and digraph

Based on the structural modelling detailed in TE Structural Model Vs01.pdf, the creation and

analysis of the process adjacency matrix ATE and digraph GTE follows the workflow of Figure 5.2.10
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on page 129.

The adjacency matrix ATE is of dimension 446×446, and the corresponding digraph GTE comprises

446 vertices and 880 edges. The MATLAB code to model the Tennessee Eastman Challenge level

1 fusion digraph, can be downloaded from the Zenodo website https://zenodo.org/communiti

es/dl4009. The full adjacency matrix is also available from the website as the Excel spreadsheet

Tennessee Eastman A and R matrices Vs01.

The digraph GTE is generated from the MATLAB code TE Digraph Vs 01, and is shown in Figure

6.1.4. To avoid cluttering the figure, only the cause kCV1, and the effect dXI9a are explicitly labelled as

examples. The red line shows the shortest path between the two vertices. Figure 6.1.1 and Table 6.1.1

show that valve CV1 adjusts the flow of feedstock species A into the process. Table 6.1.3 shows that

dXI9a is the mole fraction of species A in purge stream 9. The fault path between the cause kCV1 and the

effect dXI9a is discussed in more detail in Section 6.2.2.1 of this thesis.

6.1.3 Analysis of the Tennessee Eastman process digraph

6.1.3.1 Compressor recycle control

The interactions between the process controllers can be analysed using the workflow of Figure

5.2.15 on page 134. The matrix ATEC is shown in Figure 6.1.5. This matrix draws attention to controller

FC5 which has all zero row and column entries. The corresponding controller reachabilty matrix

RTEC is shown in Figure 6.1.6. This matrix is almost full with the exceptions of the row and column

corresponding to controller FC5 which are both empty.
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Table 6.1.3: Causes (α) and effects (ω) for the Tennessee Eastman process level 1 fusion model

ID Description Type Variable Function Input

α1 Vapour mole fraction of species A in stream 1 Cause γa1 - -
α2 Vapour mole fraction of species D in stream 2 Cause γd2 - -
α3 Vapour mole fraction of species E in stream 3 Cause γe3 - -
α4 Vapour mole fraction of species A in stream 4 Cause γa4 - -
α5 Vapour mole fraction of species B in stream 4 Cause γb4 - -
α6 Vapour mole fraction of species C in stream 4 Cause γc4 - -
α7 Stream 1 temperature Cause θ1 - -
α8 Stream 2 temperature Cause θ2 - -
α9 Stream 3 temperature Cause θ3 - -
α10 Stream 4 temperature Cause θ4 - -
α11 Stream 12 inlet temperature Cause θ12i - -
α12 Stream 13 inlet temperature Cause θ13i - -
α13 Valve CV1 faults and parameters Cause kCV1 - -
α13 Valve CV4 faults and parameters Cause kCV4 - -
α15 Valve CV12 faults and parameters Cause kCV12 - -
α16 Valve CV13 faults and parameters Cause kCV13 - -

Detection of abnormal values in:
ω1 Stream 1 flow rate Effect dFI1 DFI1 yFI1

ω2 Stream 2 flow rate Effect dFI2 DFI2 yFI2

ω3 Stream 3 flow rate Effect dFI3 DFI2 yFI3

ω4 Stream 4 flow rate Effect dFI4 DFI4 yFI4

ω5 Stream 6 flow rate Effect dFI6 DFI6 yFI6

ω6 Stream 9 flow rate Effect dFI10 DFI10 yFI10

ω7 Stream 11 flow rate Effect dFI17 DFI17 yFI17

ω8 Reactor level Effect dLI8 DLI8 yLI8

ω9 Reactor temperature Effect dTI9 DTI9 yTI9

ω10 Stream 7 / Reactor pressure Effect dPI7 DPI7 yPI7

ω11 Reactor cooling water outlet temperature Effect dTI21 DTI21 yTI21

ω12 Condenser cooling water outlet temperature Effect dTI22 DTI22 yTI22

ω13 Separator level Effect dLI12 DLI12 yLI12

ω14 Separator temperature Effect dTI11 DTI11 yTI11

ω15 Separator pressure Effect dPI13 DPI13 yPI13

ω16 Separator liquid outflow Effect dFI14 DFI14 yFI14

ω17 Stripper level Effect dLI15 DLI15 yLI15

ω18 Stripper temperature Effect dTI18 DTI18 yTI18

ω19 Stripper pressure Effect dPI16 DPI16 yPI16

ω20 Stripper steam flow rate Effect dFI19 DFI19 yFI19

ω21 Stream 6 species A mole fraction Effect dXI6a DXI6a yXI6a

ω22 Stream 6 species D mole fraction Effect dXI6d DXI6d yXI6d

ω23 Stream 6 species E mole fraction Effect dXI6e DXI6e yXI6e

ω24 Stream 9 species A mole fraction Effect dXI9a DXI9a γXI9a

ω25 Stream 9 species B mole fraction Effect dXI9b DXI9b yXI9b

ω26 Stream 11 species E mole fraction Effect dXI11e DXI11e yXI11e

ω27 Stream 11 species G mole fraction Effect dXI11g DXI11g xXI11g

ω28 Stream 11 species H mole fraction Effect dXI11h DXI11h xXI11h

ω29 Compressor work Effect dJI DJI wC
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Figure 6.1.7: Controller FC5 and the compressor/purge control scheme.

Figure 6.1.7 shows controller FC5 operating on the recycle valve, labelled CV8 in Table 6.1.1 on

page 154. Lyman and Georgakis (1995) state that “the recycle flowrate is maintained at a constant

value in structures 2, 3 and 4 using the compressor recycle valve”. From Figure 6.1.7, controller FC5 is

using the measurement of flow q8 from instrument FI5 to control the recycle flow to a constant value.

Denoting the flow from the separator as qS, the flow through the compressor as qC, and the recycle

flow as q29

qC = qS −q9 +q29 (6.1.6)

q8 = qC −q29 (6.1.7)

Substituting equation 6.1.6 into equation 6.1.7 gives:

q8 = qS −q9 +q29 −q29 → q8 = qS −q9 (6.1.8)

Equation 6.1.8 shows that a measurement of flow q8 contains information on flows qS and q9, but

not on the recycle flow q29. The purge flow q9 is controlled by flow controller FC6 using control valve

CV9. This analysis suggests that the control scheme of Figure 6.1.7 cannot maintain q29 at a constant

value as Lyman et al. intend. If instrument FI5 is moved so it sits on the recycle line, then it will
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Figure 6.1.8: Fault list for the Tennessee Eastman Challenge process. Reproduced from Luo et al. (2017)
with permission.

measure the required flow q29.

The author is not aware of any other analysis in the literature on the Tennessee Eastman challenge

process that has demonstrated this finding.

6.1.3.2 General fault analysis

A purpose of the Tennessee Eastman challenge is to detect and diagnose a set of process faults

(Downs and Vogel, 1993; Ricker and Lee, 1995; Chiang et al., 2015). Figure 6.1.8 shows the fault list.

The workflow of Figure 4.3.3 on page 102 is used to generate a reduced reachabilty (R2) matrix which

models cause-to-effect relationships, and and a reversed reduced reachabilty (R3) matrix which models

effect-to-cause relationships. The list of causes is denoted by α . The list of effects is denoted by ω .

165



CHAPTER 6. LEVEL 1 FUSION: TENNESSEE EASTMAN CHALLENGE CASE STUDY

Fi
gu

re
6.

1.
9:

L
ev

el
1

fu
si

on
re

du
ce

d
re

ac
ha

bi
lty

(R
2)

m
at

ri
x

fo
rt

he
Te

nn
es

se
e

E
as

tm
an

C
ha

lle
ng

e
pr

oc
es

s.
T

he
R

2
m

at
ri

x
sh

ow
s

w
hi

ch
ca

us
es

ca
n

re
ac

h
w

hi
ch

ef
fe

ct
s.

C
au

se
s

ar
e

de
no

te
d

by
α

,a
nd

fa
ul

te
ff

ec
ts

by
ω

.

166



CHAPTER 6. LEVEL 1 FUSION: TENNESSEE EASTMAN CHALLENGE CASE STUDY

Because the R2 matrix for the Tennessee matrix is filled with ones, all of the causes can reach all the

effects. In this case, the applying set intersection technique, illustrated on page 146, to the R2 matrix

of Figure 6.1.9, will yield all the elements of α as common cause candidates. Therefore, refining a

qualitative fault diagnosis is not possible using the R2 matrix. One way to address the problem of

refining a qualitative fault diagnosis is to use the level 1 fusion digraph to examine fault propagation

paths.

6.1.3.3 Fault propagation and fault polytrees

Fault propagation paths are derived from path analysis of the digraph GTE. There may be several

paths between a specified cause and a specified effect. As already noted in Section 4.3.3.2, a useful

indication of fault propagation mechanisms is the shortest path between a cause and an effect.

An example shortest path S between a start vertex xs and an end vertex xe in a digraph G comprises

the vertices xs, x1, x2, x3, xe. The shortest path is written as equation 6.1.9.

S (G,xs,xe) = {xs,x1,x2,x3,xe} (6.1.9)

Section 4.3.3.3 defines a fault polytree as a sub-digraph of a complete level 1 fusion digraph. The

fault polytree builds on the idea of a fault tree, and shows the shortest paths from multiple causes to

multiple effects.

6.2 Fault Propagation Case Studies

6.2.1 Background

In a previous study by Chiang et al. (2015) a simulation of the Tennessean Eastman challenge

process was used to inject a selection of prescribed faults and observe the resulting effects. The results

were analysed by a fault diagnosis model to assign causes to effects. The full list of fault scenarios is

shown in Figure 6.1.8 on page 165. The diagnosis model used by Chiang et al. mapped relationships

between variables using on covariance analysis tailored with process knowledge.

The application of the level 1 fusion is to derive a fault polytree to find physically causal explanations

of the mechanisms which link the causes to detected effects.
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Figure 6.2.1: Snapshot of the process flow sheet showing feed stream 1.

The fault scenarios studied by Chiang et al. are given by:

i Single fault 6.

ii Simultaneous faults 4 and 5.

iii Simultaneous faults 5 and 7.

iv Simultaneous faults 11 and 14.

6.2.2 Case study on single fault 6

Figure 6.1.8 on page 165 shows that fault 6 is the loss of feed stream 1. Figure 6.2.1 shows a

snapshot of feed stream 1, taken from the complete process flow sheet of Figure 6.1.1 on page 153.

The level 1 fusion models fault 6 using the valve fault cause kCV1, where valve CV1 adjusts the flow of

stream 1.

The level 1 fusion fault polytree is shown in Figure 6.2.2. The nomenclature is shown in Table 6.2.1.

The cause k1 and its effects are shown in red. Chiang et al. also report a spurious fault k12. This cause

and its effects are also highlighted in red.

The genuine fault 6 is reported as causing the following effects.

i Abnormal feed stream 1 flow rate q1: dFI1

ii Abnormal species A mole fraction in reactor feed stream 6 yX16a: dX16a,
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iii Abnormal species A mole fraction in purge stream 9 yXI9a: dXI9a.

iv Abnormal compressor work wC: dJI.

v Abnormal reactor cooling water outlet temperature θ12o: dTI21.

The spurious fault is reported as causing the following effects.

i Abnormal compressor work wC: dJI.

ii Abnormal reactor cooling water outlet temperature θ12o: dTI21.

Table 6.2.1 defines the nomenclature for Figure 6.2.2. The table shows which variables are

measured, and therefore have detectors . The table also shows which detectors show abnormal effects.

For example, the compressor work, WC is measured by instrument YJI. The instrument output reading,

yJI is processed by the detector DJI. In this case the detector output dJI registers an abnormal effect. To

avoid cluttering the polytree, only those instruments and detectors which report abnormal effects are

shown in Figure 6.2.2.

Figure 6.2.2: Fault polytree for the analysis of single fault 6.
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Table 6.2.1: Nomenclature for the fault polytree of Figure 6.2.2

Plant Control Detection
Description Func. Var. Func. Var. Func. Var. Type Status
Fault on valve CV1 (fault 6) kCV1 cause abnormal
Fault on valve CV12 (spurious) kCV12 cause abnormal
Enthalpy of reaction Er1 er1

for reaction r1
Vapour mole fraction of Γa6 γa6 YXI6a yXI6a DXI6a dXI6a effect abnormal
species A in stream 6
Vapour mole fraction of Γa9 γa9 YXI9a yXI9a DXI9a dXI9a effect abnormal
species A in stream 9
Moles of species A in mixer NaM naM

Partial pressure of PaR paR

species A in reactor
Partial pressure of PaS paS

species A in separator
Total pressure in reactor PR pR YPI7 yPI7 DPI7 dPI7 effect normal
Total pressure in separator PS pS YPI13 yPI13 DPI13 dPI13 effect normal
Stream 1 flow. Through CV1 QCV1 q1 YFI1 yFI1 DFI1 dFI1 effect abnormal
Stream 1 flow. Through CV12 QCV12 q12

Reactor cooling water mean Θ12 θ12

temperature for heat transfer
Reactor cooling water Θ12o θ12o YTI21 yTI21 DTI21 dTI21 effect abnormal
outlet temperature
Reactor temperature ΘR θR YTI9 yTI9 DTI9 dTI9 effect normal
Separator temperature ΘS θS YTI11 yTI11 DTI11 dTI11 effect normal
Compressor work WC WC YJI yJI DJI dJI effect abnormal

6.2.2.1 Analysis of fault at valve CV1

A fault in valve CV1 is the correct candidate cause for fault 6, which results in the loss of stream 1

which supplies reactant A to the process. The fault is modelled by the cause kCV1. The fault polytree of

Figure 6.2.2 shows the direct fault paths from kCV1, to detected abnormal effects at dFI1, dXI6a, dXI9a, dJI,

and dTI21. The physical mechanisms which explain these fault propagation paths are now described.

Fault 6 path 1. This fault connects cause kCV1 to effect dFI1 and is described by equation 6.2.1.

S (GTE,kCV1,dFI1) = {kCV1,QCV1,q1,YFI1,yFI1,DFI1,dFI1} (6.2.1)

i The valve fault kCV1 affects the valve function QCV1 to reduce the flow q1.

ii The reduction in flow q1 is measured by the flow instrument function YFI1.
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iii The output yCV1 is checked by the detector function DFI1 which sets dFI1 = 1 to indicate a breach

of the lower flow limit for q1, and hence an abnormal effect.

Fault 6 path 2. This fault path connects cause kCV1 to effect dXI6a and is described by equation

6.2.2.

S (GTE,kCV1,dXI6a) = {kCV1,QCV1,q1,NaM,naM,Γa6,γa6,YXI6a,yXI6a,DXI6a,dXI6a} (6.2.2)

i The valve fault kCV1 affects the valve function QCV1 to reduce the flow q1.

ii The reduced flow q1 enters the mixer, affects the mixer mole balance function for species A,

NaM, and decreases the number of moles of species A in the mixer, naM.

iii The outlet flow of the mixer is given by stream 6. The reduction in naM affects the mole fraction

function for species A in stream 6, Γa6, and reduces the mole fraction of species A in stream 6,

γa6.

iv The decrease in γa6 is measured by the analyser function YXI6a, which reduces the output reading

yXI6a.

v The decrease in yXI6a affects the detector function DXI6a which indicates a breach of the lower

limit for γa6, and the abnormal effect dXI6a is recorded.

Fault 6 path 3. This fault path connects cause kCV1 to effect dXI9a and is described by equation

6.2.3.

S (GTE,kCV1,dXI9a) = {kCV1,QCV1,q1,Er1,er1,ΘR,θR,ΘS,θS,PaS, paS,

Γa9,γa9,YXI9a,yXI9a,DXI9a,dXI9a}
(6.2.3)

i The valve fault kCV1 affects the valve function QCV1 to reduce the flow q1.

ii The reduced flow q1 enters the reactor via mixer outlet stream 6, and affects the reaction r1. The

reduction of the supply of species A to the reactor affects the energy of reaction function Er1 and

decreases the energy of reaction er1.
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iii The reaction energy decrease affects the reactor energy balance, ΘR, and decreases the reactor

temperature θR. The reactor temperature is coupled to the separator energy balance, ΘS, via the

condenser, and causes a decrease in the separator temperature θS.

iv The decrease in θS affects the partial pressure function of species A in the separator PaS, and

causes a decrease in the partial pressure of species A in the separator paS.

v The decrease in paS affects the mole fraction function for species A in stream 9, Γa9 to decrease

the mole fraction of species A in stream 9, γa9 . Stream 9 is the purge flow from the separator

vapour space.

vi The decrease in γa9 is measured by the analyser function YXI9a, which reduces the output reading

yXI9a.

vii The decrease in yXI9a affects the detector function DXI9a which indicates a breach of the lower

limit for γa9, and the abnormal effect dXI9a is indicated.

Fault 6 path 4. This fault path connects cause kCV1 to effect dJI and is described by equation 6.2.4.

S (GTE,kCV1,dJI) = {kCV1,QCV1,q1,Er1,er1,ΘR,θR,ΘS,θS,PaS, paS,

PS, pS,WC,wC,YJI,yJI,DJI,dJI}
(6.2.4)

i This path is identical to S (GTE,kCV1,dXI9a) up to and including the reduction of the partial

pressure of species A in the separator, paS.

ii The reduction of paS affects the separator total pressure function, PS and causes a reduction in

the total pressure of the separator, pS.

iii The separator pressure is the inlet pressure for the compressor.A decrease in the separator

pressure affects the compressor work function, WC, and causes a decrease in the compressor

work, wC.

iv The decrease in wC affects the instrument function YJI, and causes a decrease in the instrument

output yJI.
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v The decrease in yJI affects the detector function DJI and the detector output dJI indicates an

abnormal effect.

Fault 6 path 5. This fault path connects cause kCV1 to effect dTI21 and is described by equation

6.2.5.

S (GTE,kCV1,dJI) = {kCV1,QCV1,q1,Er1,er1,ΘR,θR,Θ12,θ12,Θ12o,θ12o,

YTI21,yTI21,DTI21,DTI21}
(6.2.5)

i As already noted in the description of fault 6 path 4, a decrease in flow q1 leads to a reduction in

the reactor temperature θR.

ii The decrease in θR means less heat transfer from the reactor which affects the cooling water

energy balance function Θ12 and reduces the cooling water mean temperature θ12.

iii The reduction in θ12 affects the reactor cooling water outlet temperature function Θ12o, which

reduces the reactor cooling water outlet temperature θ12o.

iv The decrease in θ12o affects the temperature instrument function YTI21 and causes a decrease

in the instrument output yTI21. The decrease in yTI21 affects the detector function DTI21 and the

abnormal effect dTI21 is indicated.

6.2.2.2 Analysis of spurious fault at valve CV12

Valve CV12 is controlled by the reactor temperature control loop, and adjusts the reactor cooling

water flow q12. The fault in CV12 is modelled by the cause kCV12, and produces abnormal effects at

dTI21 and dJI. These effects indicate an abnormal reactor cooling water outlet temperature, and an

abnormal compressor work respectively. To illustrate the causal mechanisms along the fault, it is

assumed the valve fault reduces the reactor cooling water flow. The paths arising from this spurious

fault are denoted as fault 6 path 6 and fault 6 path 7.

Fault 6 path 6. This fault path connects cause kCV12 to effect dTI21 and is described by equation

6.2.6.

S (GTE,kCV12,dTI21) = {kCV12,QCV12,Θ12,Θ12,Θ12o,θ12o,YTI21,yTI21,DTI21,dTI21} (6.2.6)
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i The valve fault kCV12 affects the valve function QCV12 to reduce the flow q12.

ii The reduced flow q12 enters the reactor heat exchanger and affects the cooling water energy

balance function Θ12.

iii The effect of the reduction in q12 is to reduce the heat transfer, but increase the residence time

of the cooling water in the heat exchanger. In the limiting case of zero flow, the cooling water

would settle to just below the reactor temperature. The net effect is that θ12 increases.

iv The increase in θ12 affects cooling water outlet temperature function Θ12o so that the cooling

water outlet temperature, θ12o, increases.

v The increase in θ12o affects the temperature instrument function YTI21, and increases the instru-

ment output yTI21.

vi The increase in yTI21 affects the detector function DTI21 and the abnormal effect dTI21 is indicated.

Fault 6 path 7. This fault path connects cause kCV12 to effect dJI and is described by equation 6.2.7.

S (GTE,kCV12,dJI) = {kCV12,QCV12,Θ12,θ12,ΘR,θR,ΘS,θS,

PaS, paS,PS, pS,WC,wC,YJI,yJI,DJI,dJI}
(6.2.7)

i This path corresponds to path 6 fault 6 up to and including the cooling water mean temperature

θ12.

ii Because θ12 increases, the heat transfer decreases and the reactor temperature θR increases.

iii The reactor temperature is coupled to the separator energy balance, ΘS, via the condenser, and

causes an increase in the separator temperature θS.

iv The increase in θS affects the separator partial pressure function for species A, PaS, and results in

an increase in the partial pressure of species A, paS.

v The increase in paS affects the total separator pressure function, PS, and increases the total

pressure in the separator, pS.
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vi The separator is connected to the compressor inlet so that an increase in the separator pressure

will affect the compressor work function WC to increase the compressor work wC.

vii This increase causes the instrument function YJI to increase its output yJI.

viii The increase in yJI affects the detector function DJI, and the abnormal effect dJI is reported.

6.2.2.3 Summary

A fault in valve CV1 leads to a reduction on the flow of stream 1. The level 1 fusion fault path

analysis indicates this will lead to decreases in measured variables around the process. This makes

physical sense because stream 1 supplies reactant species A to the process. If there is a reduction in

the supply of reactant A, then there is less of species A in the process to measure, and the process as a

whole will be less energetic. It is interesting to note that no abnormal effects in the reactor temperature

and pressure, and separator temperature and pressure, were recorded. However, stream 4 supplies both

of reactants A and C to the process. It may be that the lower threshold for the supply of reactant A to

the process as a whole had not been reached.

The level 1 fusion also explains the detail of the causal mechanisms whereby a reduction in the

reactor cooling water flow causes and increase in the reactor cooling water outlet temperature, and an

increase in the compressor work.

6.2.3 Case study on simultaneous fault 4 and fault 5

Using the simulation results of Chiang et al. (2015), Figure 6.1.8 on page 165 shows that fault 4 is

a step change in the reactor cooling water inlet temperature, θ12i, which causes an abnormal reactor

temperature θR, and corresponding detection effect dTI9 = 1. Fault 5 is a step change in the condenser

cooling inlet temperature θ13i, which causes an abnormal separator temperature, θS and corresponding

detection effect dTI11 = 1. A fault polytree for the analysis of the fault propagation paths is shown in

Figure 6.2.3. The nomenclature is defined in Table 6.2.2. Causes and effects are shown in red.

6.2.3.1 Analysis of fault 4

The causal mechanisms which explain the fault propagation path from a step change in the reactor

cooling water inlet temperature to the detection of an abnormal reactor temperature are now described.

175



CHAPTER 6. LEVEL 1 FUSION: TENNESSEE EASTMAN CHALLENGE CASE STUDY

Figure 6.2.3: Fault polytree for simultaneous fault 4 and fault 5.

To illustrate the causal mechanisms along the path, it is assumed the step change is an increase in

the reactor cooling water temperature.

Fault 4 path 1. This fault path connects cause θ12i to effect dTI9 and is described by equation 6.2.8.

S (GTE,θ12i,dTI9) = {θ12i,Θ12,θ12,ΘR,θR,YTI9,yTI9,DTI9,DTI9} (6.2.8)

i When the reactor cooling water enters the reactor heat exchanger, the increase in θ12i affects

the reactor cooling energy balance function, Θ12 and increases the reactor cooling water mean

temperature, θ12.

ii The increase in θ12 reduces the heat transfer between the reactor and reactor cooling water and

affects the reactor energy balance ΘR. Because less heat is transferred from the reactor, the

reactor temperature θR increases.

iii The increase in reactor temperature affects the temperature instrument function YTI9, and increases

the instrument output yTI9.

iv The increase in yTI9 affects the detector function DTI9, and the abnormal effect dTI9 is recorded.

6.2.3.2 Analysis of fault 5

The causal mechanisms which explain a step change in the condenser cooling water inlet temperature,

θ13i, leading to the detection of an abnormal separator temperature, θS, are now explained by the

analysis of the direct causal path S (GTE,θ13i,dTI11). It is assumed the step change is an increase in

θ13i. The first principles model of Jockenhovel et al. assumes the condenser and the separator are in

thermal equilibrium at temperature θS.

Fault 5 path 1. This fault path connects cause θ13i to effect dTI11 and is described by equation 6.2.9.
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S (GTE,θ13i,dTI11) = {θ13i,Θ13,θ13,ΘS,θS,YTI11,yTI11,DTI11,DTI11} (6.2.9)

i Condenser cooling water at an increased temperature θ13i, enters the condenser heat exchanger,

affects the condenser cooling water energy balance Θ13i, and increases the condenser cooling

water mean temperature.

ii The increased condenser cooling water temperature decreases the heat transfer between the

condenser vapour and affects the condenser/separator energy balance ΘS.

iii The result is an increase in the temperature of the condenser and separator, θS.

iv The increase in θS is measured by the temperature instrument function YTI11, and increases the

output reading yTI11.

v The increase in yTI11 affects the detector DTI11, and the abnormal effect dTI11 is reported.

6.2.3.3 Summary

The level 1 fusion explains the causal mechanisms that link observed abnormal process effects

to changes in the reactor cooling water inlet temperature, and the condenser cooling water inlet

temperature.

6.2.4 Case study on simultaneous fault 5 and fault 7

As already noted in Section 6.2.3, Fault 5 is a step change in the condenser cooling inlet temperature

θ13i. Fault 7 is a step reduction in the flow of stream 4 which supplies reactant species C to the stripper.

Table 6.2.2: Nomenclature for the fault polytree of Figure 6.2.3

Plant Control Detection
Description Func. Var. Func. Var. Func. Var. Type Status
Reactor cooling water θ12i cause abnormal
inlet temperature (fault 4)
Condenser cooling water θ13i cause abnormal
inlet temperature (fault 5)
Reactor cooling water mean Θ12 θ12

temperature for heat transfer
Separator cooling water mean Θ13 θ13

temperature for heat transfer
Reactor temperature ΘR θR YTI9 yTI9 DTI9 dTI9 effect abnormal
Separator temperature ΘS θS YTI11 yTI11 DTI11 dTI11 effect abnormal
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Figure 6.2.4: Fault polytree for simultaneous fault 5 and fault 7.

This fault is modelled using the valve CV4 fault cause kCV4. A fault polytree for the analysis of the

fault propagation paths is shown in Figure 6.2.4. The nomenclature is defined in Table 6.2.3. Abnormal

causes and effects are shown in red. To avoid cluttering the polytree, only those instruments and

detectors which report abnormal effects are shown in Figure 6.2.4.

In this scenario, a step change in θ13i (fault 5) causes the following effects.

i Abnormal separator temperature θS: dTI11

ii Abnormal separator pressure pS: dPI13,

iii Abnormal compressor work wC: dJI,

Similarly, a fault in kCV4 (fault 7) causes the following effects.

i Abnormal stream 4 flow q4: dFI4,

ii Abnormal stripper pressure pP: dPI16,

iii Abnormal reactor pressure pR: dPI7,

iv Abnormal reactor cooling water outlet temperature θ12o: dTI21,
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Table 6.2.3: Nomenclature for the fault polytree of Figure 6.2.4

Plant Control Detection
Description Func. Var. Func. Var. Func. Var. Type Status
Fault on valve CV4 (fault 5) kCV4 cause abnormal
Species A partial pressure in reactor PaR paR

Species A partial pressure in separator PaS paS

Total pressure in stripper PP pP YPI16 yPI16 DPI16 dPI16 effect abnormal
Total pressure in reactor PR pR YPI7 yPI7 dPI7 dPI7 effect abnormal
Total pressure in separator PS pS YPI13 yPI13 dPI13 dPI13 effect abnormal
Stream 4 valve and flow QCV4 q4 YFI4 yFI4 DFI4 DFI4 effect abnormal
Reactor cooling water mean Θ12 θ12

temperature for heat transfer
Separator cooling water mean Θ13 θ13

temperature for heat transfer
Reactor cooling water Θ12o θ12o YTI21 yTI21 DTI21 dTI21 effect abnormal
outlet temperature
Reactor cooling water θ13i cause abnormal
inlet temperature (fault 7)
Mixer temperature Θm θM

Stripper temperature ΘP θP YTI18 yTI18 DTI18 dTI18 effect normal
Reactor temperature ΘR θR YTI9 yTI9 DTI9 dTI9 effect normal
Separator temperature ΘS θS YTI11 yTI11 DTI11 dTI11 effect abnormal
Compressor work WC wC YJI yJI DJI dJI effect abnormal

v Abnormal separator pressure pS: dPI13,

vi Abnormal compressor work wC: dJI,

6.2.4.1 Analysis of fault 5

The fault path mechanisms which explain how a step change in θ13i causes abnormal effects in θS,

pS and wC shown in Figure 6.2.4, are now described. It is assumed the step change is an increase in

θ13i.

Fault 5 path 2. Continuing the fault path numbering scheme from Section 6.2.3.2, this fault path

connects cause θ13i to effect dTI11 and is described by equation 6.2.10. The causal mechanisms of the

fault path described by equation 6.2.10 have already been explained in Section 6.2.3.2.

S (GTE,θ13i,dTI11) = {θ13i,Θ13,θ13,ΘS,θS,YTI11,yTI11,DTI11,DTI11} (6.2.10)

Fault 5 path 3. This fault path connects cause θ13i to effect dPI13 and is described by equation

6.2.11.
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S (GTE,θ13i,dPI13) = {θ13i,Θ13,θ13,ΘS,θS,PaS, paS,PS, pS,YPI13,yPI13,DPI13,dPI13} (6.2.11)

i This path is identical to the path described in equation 6.2.10, up to and including the separator

temperature θS.

ii Beginning with the increase in the separator temperature θS, Figure 6.2.4 shows that θS affects

the partial pressure function for species A in the separator, PaS.

iii The function PaS yields an increase in the partial pressure of species A in the separator, paS.

iv The increase in paS affects the function for the total pressure in the separator, PS.

v The function PS causes an increase the total pressure in the separator, pS.

vi The increase in pS affects the pressure instrument function YPI13, and increases the output yPI13.

vii The increased output affects the detector DPI13 which records the abnormal effect dPI131.

Fault 5 path 4. This fault path connects cause θ13i to effect dJI and is described by equation 6.2.12.

S (GTE,θ13i,dJI) = {θ13i,Θ13,θ13,ΘS,θS,PaS, paS,PS, pS,WC,wC,YJI,yJI,DJI,dJI} (6.2.12)

i This path is identical to the path of equation 6.2.11 up to and including the separator pressure pS.

ii The separator is for the compressor. Because it is harder to compressor a high pressure gas then

a lower pressure gas, an increase in the separator pressure affects the compressor work function

wC which gives an increase the compressor work, wC.

iii The increase in wC affects the instrument function YJI and increases the output yJI.

iv The increase in yJI affects the detector function DJI. which indicates the abnormal effect dJI.

6.2.4.2 Analysis of fault 7

Fault 7 is modelled by the valve fault kCV4 and leads to a reduction in the the flow of stream 4, q41.

Stream 4 supplies reactant species A and C to the stripper. The causal mechanisms along the fault

paths from kCV41 to the detected abnormal effects are now described.
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Fault 7 path 1. This fault path connects cause kCV4 to effect dFI4 and is described by equation

6.2.13.

S (GTE,kCV4,dPI16) = {kCV4,QCV4,q4,YFI4,yFI4,DFI4,dFI4} (6.2.13)

i The valve fault kCV4 affects the valve function QCV4 and causes a reduction in the flow of stream

4 denoted by q4.

ii The reduction in q4 affects the flow instrument function YFI4 and causes a decrease in the output

yFI4.

iii The decreased measurement yFI4 affects the detector function DFI4, which reports the abnormal

effect dFI4.

Fault 7 path 2. This fault path connects cause kCV4 to effect dPI16 and is described by equation

6.2.14.

S (GTE,kCV4,dPI16) = {kCV4,QCV4,q4,ΘP,θP,PP, pP,YPI16,yPI16,DPI16,dPI16} (6.2.14)

i This fault path corresponds to the path described by equation 6.2.13 up to and including the

reduction in q4.

ii The reduction in q4 reduces the flow of enthalpy into the stripper energy balance function ΘP,

and reduces the temperature of the stripper, θP.

iii The reduction in θP affects the stripper pressure function PP, and reduces the stripper pressure

pP.

iv The reduction in pP affects the pressure instrument function YPI16 , and reduces the instrument

output yPI16.

v The reduction in yPI16 affects the detector function DPI16 which reports the abnormal effect dPI16.

Fault 7 path 3. This fault path connects cause kCV4 to effect dPI7 and is described by equation

6.2.15.
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S (GTE,kCV4,dPI7) = {kCV4,QCV4,q4,ΘP,θP,ΘM,θM,ΘR,θR,

PaR, paR,PR, pR,YPI7,yPI7,DPI7,dPI7}
(6.2.15)

i This fault path corresponds to the path described by equation 6.2.14 up to and including the

reduction in θP.

ii The reduction in θP reduces the enthalpy flow from the stripper into the mixer via stream 5.

This reduction in enthalpy affects the mixer energy balance function ΘM, and reduces the mixer

temperature θM.

iii The reduction in θM decreases the enthalpy of the flow from the mixer, stream 6, into the reactor.

The reduction in enthalpy affects the reactor energy balance function ΘR, and causes a reduction

in the reactor temperature θR.

iv The reduction in θR affects the function for the partial pressure of species A in the reactor, PaR.

This causes a reduction in the partial pressure of species A in the reactor, paR.

v The reduction in paR affects the function for the total pressure in the reactor, PR, and reduces the

total pressure in the reactor, pR.

vi The reduction in pR affects the pressure instrument function YPI7 and causes a reduction in the

output function yPI7.

vii The reduction in yPI7 affects the detector function DPI7 which reports the abnormal effect dPI7.

Fault 7 path 4. This fault path connects cause kCV4 to effect dTI21 and is described by equation

6.2.16.

S (GTE,kCV4,dPI7) = {kCV4,QCV4,q4,ΘP,θP,ΘM,θM,ΘR,θR,

Θ12,θ12,Θ12o,θ12o,YTI21,yTI21,DTI21,dTI21}
(6.2.16)

i This fault path corresponds to the fault path described by equation 6.2.15 up to and including the

reduction in the reactor temperature θR.
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ii The reduction in the reactor temperature will reduce the heat transfer to the reactor cooling water

and affect the energy balance function for the cooling water, Θ12. This causes the reactor cooling

water mean temperature θ12 to decrease.

iii The decrease in θ12 will affect the reactor cooling water outlet temperature function Θ12o, and

reduce the reactor cooling water outlet temperature θ120.

iv The reduction in θ12o affects the temperature instrument function YTI21 and reduces the output

yTI21.

v The reduction of yTI21 affects the detector function DTI21 and the abnormal effect dTI21 is recorded.

Fault 7 path 5. This fault path connects cause kCV4 to effect dPI13 and is described by equation

6.2.17.

S (GTE,kCV4,dPI7) = {kCV4,QCV4,q4,ΘP,θP,ΘM,θM,ΘR,θR,

ΘS,θS,PaS, paS,PS, pS,YPI13,yPI13,DPI13,dPI13}
(6.2.17)

i This fault path corresponds to the fault path described by equation 6.2.16 up to and including the

reduction in the reactor temperature θR.

ii The reactor and the separator are coupled via stream 7 and the condenser. The reduction in θR

will reduce the enthalpy of the flow to the separator.

iii The reduction in enthalpy will affect the separator energy balance function ΘS, and reduce the

separator temperature θS.

iv The reduction in θS affects the function for the partial pressure of species A in the separator PaS,

which reduces the partial pressure of species A in the separator, paS.

v The decrease in paS affects the function for the total pressure in the separator, PS, and decreases

the total pressure in the separator, pS.

vi The decrease in pS affects the pressure instrument function YPI13, and decreases the output yPI13.

vii The decreased output affects the detector DPI13 which records the abnormal effect dPI131.
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Fault 7 path 6. This fault path connects cause kCV4 to effect dJI and is described by equation 6.2.18.

S (GTE,kCV4,dPI7) = {kCV4,QCV4,q4,ΘP,θP,ΘM,θM,ΘR,θR,

ΘS,θS,PaS, paS,PS,WC,wC,YJI,yJI,DJI,dJI}
(6.2.18)

i This fault path corresponds to the fault path described by equation 6.2.17 up to and including the

reduction in the separator pressure pS.

ii The reduction in pS affects the compressor work function WC. Because it is easier to compress a

lower pressure gas than a higher pressure gas, the compressor work, wC, is reduced.

iii The reduction in wC affects the instrument function YJI, which reduces the output reading yJI.

iv The reduction in yJI causes the detector function DJI to record the abnormal effect dJI.

6.2.4.3 Summary

Fault 5 is a step change in the reactor cooling water inlet temperature, θ12i. This fault was first

investigated in Section 6.2.3.2. For the purposes of investigation, in both cases it was assumed the

change was an increase in the reactor cooling water inlet temperature. However, additional effects

were observed in the second study of Fault 5. The propagation paths between θ12i and all the effects

at the separator temperature, separator pressure, and compressor work measurements are physically

explicable using the level 1 fusion path analysis.

Fault 7 is a reduction of the flow of stream 4. This fault leads to a reduction in the supply of reactant

C to the process. The level 1 fusion analysis indicates this causes temperatures and pressures in the

process to decrease. Inspection of the chemical reactions shown in equation 6.1.1 on page 152 shows

the loss of species C will curtail reactions r2 and r3. In this case there is less heat of reaction generated

in the process and the temperatures and pressures around the process will be depressed.

6.2.5 Case study on simultaneous fault 11 and fault 14

Figure 6.1.8 on page 165 shows that fault 11 is random variation in the reactor cooling water inlet

temperature, θ12i. Fault 14 is the sticking of the reactor cooling water valve CV12, modelled using

kCV12 . The simulation of these two faults by Chiang et al. (2015) reports a single abnormal value in

the reactor temperature θR.
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Figure 6.2.5: Fault polytree for simultaneous fault 11 and fault 14. Abnormal causes, effects and their fault
propagation paths are shown in red. the path in blue highlights the causality of the control system in response
to a measured change in the reactor temperature θR

6.2.5.1 Fault path analysis

A level 1 fusion fault polytree is shown in Figure 6.2.5. The causes and effects are shown in red.

The nomenclature is shown in Table 6.2.4.

Table 6.2.4: Nomenclature for the fault polytree of Figure 6.2.5

Plant Control Detection
Description Func. Var. Func. Var. Func. Var. Type Status
Reactor cooling water θ12i cause abnormal
inlet temperature (fault 11)
Fault on valve CV12 (fault 14) kCV12 cause abnormal
Reactor cooling water Θ12o θ12o YTI21 yTI21 DTI21 dTI21 effect normal
outlet temperature
Cooling water energy balance and Θ12 θ12

mean temperature
Stream 12 valve and flow Q12 q12

Reactor temperature ΘR θR YTI9 yTI9 DTI9 dTI9 effect abnormal
Reactor temperature YTC10 yTC10

control loop
secondary controller
Reactor temperature YTC18 yTC18

control loop
primary controller
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To avoid cluttering the polytree, only those detectors associated with an abnormal effect are shown

The fault polytree emphasises that fault 11 and fault 14 are closely associated with the operation of

the reactor temperature control loop, and there is a single detected abnormal effect. The action of the

control loop is therefore included in the polytree and the causal analysis.

i For the purpose of illustrating causal mechanisms, it is assumed the reactor cooling water inlet

temperature, θ12i, is randomly significantly below its normal operating point.

ii The reduction in θ12i affects the reactor cooling water energy balance Θ12, and reduces the mean

temperature of the reactor cooling water θ12.

iii The reduction in θ12 increases the heat transfer from the reactor and affects the reactor energy

balance ΘR to decrease the reactor temperature θR.

iv The decrease in θR affects the temperature instrument function YTI9 to reduce the measured

reading yTI9.

v The reduction in yTI9 affects the detector function DTI9, and the abnormal effect dTI9 is recorded.

vi The reactor temperature measurement yTI9 is the measured variable for the primary reactor

temperature controller TC18. A reduction in yTI9 affects the controller function YTC18 and causes

a reduction in the output yTC18.

vii The output of TC18 is the setpoint of the secondary controller TC10, which acts on the reactor

cooling water valve CV12. The measured variable for TC10 comes from the measurement, yTI21,

of the cooling water outlet temperature θ12o.

viii . However, there is no evidence of abnormality in θ12o. In this case the assumption is that yTI21 is

not widely varying, and controller TC10 is acting on setpoint changes, from yTC18, alone.

ix At this time the reactor temperature is decreasing, so the action of controller function YTC10

should be to adjust the output signal yTC10 to act on the valve function YCV12 to decrease the flow

q12. The reduction in flow decreases the heat transfer from the reactor to the cooling water.
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x The reactor cooling water valve CV12 is sticking, modelled by the action of kCV12. If CV12 is

unable to close in response to the demand signal yTC10, then the reactor cooling water flow q12 is

unchanged and will ave no effect on the reactor cooing water energy balance Θ12

xi However, the cooling water inlet temperature is still randomly varying which randomly affects

the heat transfer process HR, and hence the reactor temperature, θR.

xii The purpose of the secondary control loop and TC10 is to respond quickly to changes in the

cooling water temperature, θ12o, and control. The observation that θ12o is normal, and θR is

abnormal may indicate the control loop tuning for the TC18-TC10 cascade requires investigation.

6.2.5.2 Summary

The level 1 fusion analysis of simultaneous fault 11 and fault 14 provides a causal account of the

action of the reactor cooling water control loop. Fault 11 is a random variation in the cooling water

inlet temperature θ12i. Fault 14 is the sticking of the reactor cooling water valve CV14, modelled by

the cause kCV14.

For a single detected abnormal effect in the reactor temperature, the level 1 fusion path provide a

clear qualitative description of the causal path. Noting the control of the reactor temperature uses a

cascaded control loop, the fact that the primary variable θR is abnormal, while the secondary variable,

θ12o is normal, may indicate a control tuning problem.

6.3 Discussion of the Tennessee Eastman Level 1 Fusion

6.3.1 Controller analysis

Once the process digraph has been algorithmically derived from the adjacency matrix, the algorith-

mic workflow of Figure 5.2.15 on page 134 yields a control adjacency matrix. This matrix focuses on

the causal interactions of the process controllers. The Tennessee Eastman controller adjacency and

reachabilty matrices of Figures 6.1.5 and 6.1.6 on pages 162 and 163 highlight that the compressor

recycle flow controller FC5 is redundant. Closer investigation suggests this redundancy is the result of

the mass balance around the compressor, and the placement of flow instrument FC5.
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6.3.2 Fault propagation analysis

The controller matrices of Figures 6.1.5 and 6.1.6 shows that the majority of the process controllers

have direct interactions with each other, and that with the exception of controller FC5, they can all reach

other. Similarly, the reduced reachability (R2) matrix of Figure 6.1.9 shows that all the process causes

can, in principle, propagate faults that are detectable at all process fault detectors. This seems to present

a problem for controller fault diagnosis. Adjacency and reachabilty matrices do not give information

on causal pathways and mechanisms. However, causal path analysis allows the enumeration of the

devices, variables and measurements on a path between a cause and an effect.

Section 6.2 presents and analysis of four fault case studies. Chiang et al. (2015) had previously

carried out a fault analysis study on the scenarios presented. In that study, Chiang et al. simulated the

faults and applied a diagnosis model to ascribe relations between causes and effects. The diagnosis

model used by Chiang et al. was data driven map of relations between simulation variables. The

relations between variables was derived using covariance analysis tailored with process knowledge.

Using the workflow of Figure 4.1.1 on page 84, the level 1 fusion model builds a physically causal

map using the process architecture and a first principles process model. Fault detection is only possible

at process instruments. This means that although the level 1 fusion model represents process variables

in great detail, only if they are measured can they be used as direct evidence of a process fault.

Noting that the level 1 fusion is qualitative, the results from the four case studies presented in this

chapter show that the level 1 fusion provides detailed insights into the physically causal mechanisms

along fault propagation paths.

6.3.3 Computational scalability of the level 1 fusion

The level 1 fusion is proposed as a scalable approach to fault diagnosis modelling and analysis.

Because the level 1 fusion is a computer model, the scalability of the level 1 fusion can be assessed by

considering.

i The size of digraph that can be stored.

ii The time taken to search digraphs.

All the work presented in this thesis was carried out on a HP Z Book 15 G3 laptop. The processor
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Figure 6.3.1: Scatter plot of the time taken to execute the Matlab shortest path algorithm from digraph vertex
V1 to vertex V10,000 versus the number of edges in the digraph.

is a 2.80 GHz Intel Xeon, and the machine has 31.9 GB of usable RAM. To test the scalability of the

level 1 fusion, two computer experiments were carried out.

The first experiment investigated the maximum size of digraph adjacency matrix that can be stored,

by generating random adjacency matrices An of dimension n×n, where n is number of vertices. The

matrices are random because the entry An(i, j) is randomly assigned a 1 or 0 to generate an edge, or

not, from vertex i to vertex j. The experiment showed the machine ran out of memory generating and

storing random matrices for n > 10,000.

Based on the result of the first experiment, the second experiment used a Monte Carlo simulation

to generate 1000 random adjacency matrices of dimension n = 10,000 to asses the time taken to find

the shortest path between vertex V1 and vertex V10,000. Figure 6.3.1 shows the results from the second

experiment. Deo (1974) shows the shortest path search time is of the order of |E|+ |V |, where |E|

is the number of edges in the digraph, and |V | is the number of vertices. Because |V | = 10,000 is

constant, Figure 6.3.1 simply plots |E|. These data show the longest shortest path execution time is

around 0.06 seconds, which suggests the computational modelling and analysis of large level 1 fusion

models is feasible.
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6.4 Answers to the Research Questions
This chapter has used the level 1 fusion to study fault propagation, detection and analysis in the

Tennessee Eastman challenge process. The results of this study are used to answer the research

questions.

6.4.1 What are the necessary ingredients of a fault diagnosis model?

The case study presented in this chapter show that the ingredients of ingredients of the level 1 fusion

are:

i The process diagram of the Tennessee Eastman challenge problem from Downs and Vogel

(1993).

ii The control and instrumentation scheme (structure 2) of Lyman and Georgakis (1995).

iii The first principles process model of Jockenhovel et al. (2004).

The process diagram and the control and instrumentation scheme define process architecture. The

first principles model describes the detail of the plant chemistry and physics.

6.4.2 What information should a fault diagnosis model yield?

In this case the level 1 fusion has been used as a prognostic tool to analyse fault propagation paths

and mechanisms going from causes to effects. The use of fault polytrees enables the representation

and analysis of multiple causes and effects.

The comparison with the the results for the same case study from Chiang et al. (2015) shows the

level 1 fusion gives significant additional physical and chemical insights into the mechanisms of fault

propagation. In the first instance, this is because the model is based on physical causation, rather than

statistical correlation. Secondly, the level 1 fusion models variables which are not measured,such as

the reactor cooling water inlet temperature. Such unmeasured variables are necessary to fully describe

the causality of the process

6.4.3 What types of model are appropriate to fault diagnosis?

The level 1 fusion modelling and analysis of the Tennessee Eastman process uses exactly the same

workflow, and digraph modelling code as the two- tank process. The resulting level 1 fusion of the
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Tennessee Eastman process is significantly larger than that of the Two-tank process. However, the size

of the model did not impact the analysis of the fault propagation paths and mechanisms. On this basis

the level 1 fusion is applicable to large processes.

6.5 Summary
This chapter has presented a study of the Tennessee Eastman challenge process. The first principles

modelling, process architecture, and control scheme are detailed in Jockenhovel et al. (2004), Cameron

and Gani (2011), Lyman and Georgakis (1995), and Luo et al. (2017). The analysis of the Tennessee

Eastman process shows the majority of the process controllers are adjacent, and that (with the exception

of the compressor recycle flow controller) they can all reach each other. An analysis of the isolation

of the compressor recycle flow controller highlights and apparent error in the position of a flow

measurement.

The level 1 fusion model of the Tennessee Eastman challenge process was applied to four fault

analysis case studies taken from the prior literature. The level 1 fusion was able to fully explain a

selection of fault propagation paths in the Tennessee Eastman process. The inclusion of all process

variables in the level 1 fusion model makes it possible to trace faults back to their root causes even

when the variable in question is not measured. Therefore the level 1 fusion provides an advance on the

existing state of the art, for instance as presented by Chiang et al.

The modelling and results presented in this chapter demonstrate the applicability of a systematic

modelling and analysis procedure to reveal the causal structure of process systems, and to answer

the research questions on the nature of a qualitative fault diagnosis modelling approach, the model

ingredients, and what kind of analysis can be done with the model.

* * *
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Level 2 Fusion: Bayesian Networks

This chapter describes the basis and workflow of a level 2 fusion for use in modelling and analysing

fault propagation. The level 2 fusion uses a Bayesian network to model the conditional probability

relations between the detected effects of faults. The basis of a Bayesian network is a level 2 qualitative

digraph, which is derived from the level 1 digraph.

To convert the level 2 qualitative digraph into a Bayesian network requires that each vertex is

associated with a conditional probability table. Each conditional probability table models the probable

value of its vertex conditional on the value of its direct antecedents. In the level 2 fusion, each vertex

represents an effect associated with the measurement of a process variable. If the measurement of the

variable is within defined control limits, the effect is set to zero, otherwise the effect is set to one. Fault

root causes (hereafter, causes) are represented by vertices with no antecedents. Given a set of effects,

the Bayesian network uses the conditional probability tables to calculate the probability that any one

of causes gave rise to the effects.

The data for each conditional probability table are derived from process history data, or simulation.

To demonstrate the simulation and data processing procedures, a Monte Carlo simulation is carried out

using the example of a heat exchanger device.

To test the efficacy of the level 2 fusion, a case study on a Heat Exchanger Network (HEN) is

presented. A reachabilty analysis of the HEN shows that all of the causes can reach all the effects. it

is shown that the Bayesian network can quantitatively differentiate between causes by making use

of evidence of effects. The differentiation of causes by their probability of occurrence is useful in
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prioritising candidate fault causes for further investigation.

The case study shows the proposed level 2 fusion is a credible approach to process fault analysis.

However, the case study also identifies a shortcoming in that the approach can require a large amount of

raw data to set up the conditional probability tables. This shortcoming is further highlighted using the

two-tank process. Finally, the level 2 fusion is discussed in the context of the three research questions

proposed in Chapter one.

7.1 Ingredients and Workflow

Figure 7.1.1: Expanded view of the level 2 fusion.

Figure 7.1.1 shows the ingredients and workflow for the level 2 fusion. Specifically the approach

uses a type of digraph called a Bayesian network. Bayesian Networks offer a way to quantitatively

model and analyse causal systems using conditional probabilities, and Bayes theorem. Detected effects

are used as evidence that is provided to the Bayesian model to calculate causal probabilities, and to

rank likely causes for further investigation (Koller and Friedman, 2009; Pearl, 2009; Murphy, 2012).

The evidence used in the level 2 Bayesian model comes from process effects. An effect signifies that

a measured process variable its outside its defined limits. The value of an effect is set by a detector
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Figure 7.1.2: Heat exchanger control system. The nomenclature is defined in Table 7.1.1.

associated with a measurement instrument.

As already noted in Section 2.3, cyclic Bayesian networks are not guaranteed to be solvable.

However an acyclic digraph can capture the existence, or otherwise, of physical relationships between

causes and effects. The qualitative mechanistic detail of the paths between causes and effects is

explained by the generally cyclic level 1 fusion digraph.

To derive a level 2 Bayesian network for a process, an acyclic level 1 digraph of the process is

overlayed with conditional probability information on effect values to form the Bayesian network.

7.1.1 Heat exchanger example

To illustrate the workflow of the level 2 fusion, Figure 7.1.2 presents a process fragment showing

an example heat exchanger and control system. The nomenclature is given in Table 7.1.1

In this example, the cold stream outlet temperature ΘCo is controlled by adjusting the hot stream

flow rate qH. The hot stream inlet temperature (θHi), and the cold stream flow rate and inlet temperature

(qC and ΘCi), are determined in other areas of the process.

The heat transfer coefficient, u and the heat transfer areas a are classified as variables in this example.
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Table 7.1.1: Nomenclature for the heat exchanger control system of Figure 7.1.2

Variable Description Units

HX Heat exchanger device

TT1 Temperature instrument and transmitter device

TC1 Temperature controller

CV1 Temperature control valve

yTT1 Output of TT1

yTC1 Output of TC1

cC Cold stream specific heat capacity kJ K−1 kg−1

cH Hot stream specific heat capacity kJ K−1 kg−1

ua Heat transfer coefficient × area kW/K−1

qC Cold stream mass flow rate kg s−1

qH Hot stream mass flow rate kg s−1

θCi Cold stream inlet temperature ◦C

θCo Cold stream outlet temperature ◦C

θHi Hot stream inlet temperature ◦C

θHo Hot stream outlet temperature ◦C

Their product ua can change can change over time due to heat exchanger fouling. As noted in Chapter

1, this type of change is called a parameter fault (Venkatasubramanian et al., 2003c).

7.1.2 Level 1 fusion

The file Heat Exchanger Physics.pdf at https://zenodo.org/communities/dl4009 de-

rives a model of a heat exchanger to yield equation set 7.1.1. The model is a rearrangement of the Log

Mean Temperature Difference (LMTD) approximation (Rogers and Mayhew, 1980).

0 = θCo −θCi(1−β3)+β3θHi, 0 = θHo −θHi +β2β3(θCi −θHi)

β1 = exp
(
−ua

(
1

qHcH
− 1

qCcC

))
, β2 =

qHcH

qCcC
, β3 =

1−β1

1−β1β2

(7.1.1)

This first principles model corresponds to the unmatched structural equations 7.1.2 and 7.1.3.
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Figure 7.1.3: Control block diagram of Figure 7.1.2.

0 = GC(θCo,θHi,θCi,qH,cH,qC,cC,ua) (7.1.2)

0 = GH(θHo,θHi,θCi,qH,cH,qC,cC,ua) (7.1.3)

As noted in Chapter 4 and Chapter 5, instrument blocks impose causality in process systems.

The temperature transmitter block TT1 of Figure 7.1.3 requires a physical temperature as an input.

Therefore the output of the block HX cold side is a physical temperature. The unmatched structural

equation 7.1.2 now becomes the matched structural equation 7.1.4.

θCo = ΘCo(θHi,θCi,qH,cH,qC,cC,ua) (7.1.4)

Further, the equation set 7.1.5 shows three simplifications for variables that go together.

gC = qCcC, gH = qHcH, υ = ua (7.1.5)

The variables gC and gH are called the heat capacity flow rate for the cold and hot streams respectively

(Kemp, 2011). The variable υ is hereafter called the ua coefficient. Structural equation 7.1.4 now

becomes structural equation 7.1.6.

θCi = ΘCo(θHi,θCi,gH,gC,υ) (7.1.6)

Similar control constraints (from elsewhere in the wider process) are applied on the hot side of the

heat exchanger. The unmatched structural equation 7.1.3 becomes the matched structural equation

7.1.7.

θHo = ΘHo(θHi,θCi,gH,gC,υ) (7.1.7)
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Figure 7.1.6: Digraph of the adjacency matrix shown in Figure 7.1.4.

As already noted, effects are detected by the measurements of process variables breaching their

defined control limits. Therefore structural models for instruments and detectors are required. The

block diagram of Figure 7.1.3 shows the cold side outlet temperature is measured by the instrument

and transmitter device TT1. The structural equations to model TT1 and its associated detector are taken

from the list of generic structural functions defined in table 4.2.4 on page 94. The specific structural

equations are given by equation set 7.1.8. The hot side outlet temperature is measured by temperature

instrument and transmitter TT2, and yields the structural equation set 7.1.9. To simplify the example

structural model it is assumed that instruments TT1 and TT2 are not in fault so that the instrument k

variables are not included in the model.

yTT1 = YTT1(θCo)

dTT1 = DTT1(yTT1)
(7.1.8)

yTT2 = YTT2(θHo)

dTT2 = DTT2(yTT2)
(7.1.9)

The adjacency matrix corresponding to structural equations 7.1.6, 7.1.7, 7.1.8 and 7.1.9 is shown in

Figure 7.1.4. The corresponding level 1 digraph is shown in Figure 7.1.6.
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Figure 7.1.7: Cause and effect adjacency matrix derived from the reachabilty matrix of Figure 7.1.5.

7.1.3 Level 2 digraphs

7.1.3.1 Acyclic digraphs

The level 2 fusion is based on an acyclic digraph which simply models the existence of physically

causal relationships between causes and effects. The acyclic digraph is overlayed with probability

information to form a quantitative Bayesian network. The cause and effect vertices represent variables

and unlike a level 1 digraph, there are no function vertices in a Bayesian network (Pearl, 2009).

The first step in deriving a Bayesian network is to convert a level 1 digraph into an acyclic digraph.

As noted in Chapter 4, any level 1 digraph can be converted into an acyclic digraph using the reduced

reachabilty (R2) matrix. This digraph comprises only cause vertices and effect vertices.

Applying the workflow of Figure 4.3.3 on page 102 the reachability matrix of Figure 7.1.5 is

converted into the cause and effect adjacency matrix of Figure 7.1.7. As already noted in Section

4.3.4 the cause and effect matrix is a block matrix, where the non-zero block is given by the reduced

reachability (R2) matrix. The causes are denoted by α and the effects are denoted by ω where.

α = {θHi,θCi,gH,gC,υ}

ω = {dTT1,dTT2}
(7.1.10)

The digraph corresponding to the cause and effect adjacency matrix of Figure 7.1.7 is shown in
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Figure 7.1.8. and shows which effects are physically dependent on which causes.

Having derived an acyclic digraph for the process, the next step towards a Bayesian network is to

convert this digraph describing the relations between process causes and effects. In the first instance,

faults are quantified through fault variables.

A process variable x is measured by the process control and instrumentation system to yield a set

of measurements. A measurement of variable x at time step j is denoted by x j. To keep the overall

process safe and economic, the process variable x has defined and upper and lower control limits, x(u)

and x(l). A fault variable x(f)j is associated with x and is defined such that.

x(f)j =

 0, x(l) ≤ x j ≤ x(u)

1, otherwise
(7.1.11)

The fault variable x(f)j takes the values 0 or 1 and is therefore binary. The binary values of a fault

variable are called its fault values. Because a fault variable x(f)j is dependent on variable x, the causal

relations between the heat exchanger fault variables are given by the digraph of Figure 7.1.10. Each

process variable xj also has corresponding probability of being in fault, given by.

x(p)j = P(x(f)j = 1) (7.1.12)

Figure 7.1.8: Level 2 digraph corresponding to the adjacency matrix of Figure 7.1.7.
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Figure 7.1.9: Process stream temperature as a function of time. Four faults are marked with red circles.

7.1.3.2 Probabilities of fault variables

Figure 7.1.9 shows a plot of a process stream temperature x as a function of time. Because these are

a sequence of data points taken in time order, they are called a time series. In this case the time series

is normally distributed around the setpoint of rθ of 34◦C. The standard deviation of θ , θ
(σ), is 0.57◦C

In Figure 7.1.9, the upper and lower limits are two standard deviations above and below the setpoint.

so that in this particular case:

θ (l) = θ (r)−2θ (σ)

θ (u) = θ (r)+2θ (σ)
(7.1.13)

In the field of statistical process control, a variable x is said to be “out of control” if it breaches

its defined limits (Oakland, 2011). In this thesis, if fault variable x(f)j = 1, variable x is “in fault” at

sample x j. Otherwise x is “not in fault” at x j. The data of Figure 7.1.9 show that over the course of

1000 measurements, ΘCo is in fault four times.
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Figure 7.1.10: Level 2 digraph showing fault variable dependencies for the hot side and cold side outlet
temperatures of a heat exchanger.

These data allow an estimate of the probability of θ being in fault, P(θ (f) = 1) ≡ θ
(p).

θ
(p) =

4
1000

= 0.004 (7.1.14)

The probability of θ not being in fault is given by P(θ (f) = 0) = 1 - θ
(p).

1−θ
(p) = 1−0.004 = 0.996 (7.1.15)

In general, from m measurements of a process variable x, the probability that any randomly selected

measurement of x is in fault is given by.

x(p) =
1
m

m

∑
j=1

x(f)j (7.1.16)

7.1.4 Conditional probability tables

The level 2 fault variable digraph is the basis of a conditional probability model. For example,

the probability of θHo being in fault is conditional on the probabilities of its direct antecedents in the

digraph being in fault. The qualitative causal relations of Figure 7.1.10 are used to build a quantitative

conditional probability model by using conditional probability tables.
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Figure 7.1.11: Operating basis for a heat exchanger used to generate example fault probability data.

Each process device has a set of normal operating conditions called its operating basis. Figure

7.1.11 shows the operating basis for an example heat exchanger. Table 7.1.3 shows a conditional

probability table for the probable value of the heat exchanger fault variable θ
(f)
Ho . These data were

generated by a Monte Carlo simulation of a heat exchanger using the operating basis shown in Figure

7.1.11, and the first principles model of equation set 7.1.1 on page 195.

To carry out the Monte Carlo simulation, the heat exchanger is assumed to comprise the set of

causes α = {θHi,θCi,gH,gC,υ}, and the set of effects ω = {θHo,θCo}. Each of the causes is assumed

to be normally distributed around its mean value, given by its nominal operating point. The standard

deviation for each cause is fixed using Equation 7.1.21 on page 208 such that each cause x has a

standard deviation σx, a nominal operating point rx and a maximum percentage half-range mx. As

explained in Section 7.1.5.2 , this formulation means that setting mx to 15% and the fault limits each

for x as x±2σx gives around 95% of the simulated data points x j within ±5% of rx, and not in fault.

Table 7.1.2: Monte Carlo parameters to generate the conditional probability table of Table 7.1.3
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The mean and standard deviation of the effects can be set in exactly the same way in advance of the

Monte Carlo simulation. the number of samples used in Monte. Checks are made on the simulated

effects to ensure the sampled mean and standard deviation agree with their set values.

The first principles model and statistical calculations were coded in MATLAB, and executed inside

a loop. At each iteration of the loop the input data were sampled and the first principles model and

statistical calculations executed using these input data. The input data and the calculated hot and cold

stream outlet data were checked for faults, and the fault probability calculations updated. The loop

Table 7.1.3: Conditional probability table to calculate θ
(p)
Ho (P(θ (f)

Ho = 1)) and 1− θ
(p)
Ho (P(θ (f)

Ho = 0)) in
Figure 7.1.10.
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was iterated 8.0×106 times to generate the data of Table 7.1.3.

Given the fault values of the antecedents of θ
(f)
Ho , the value of θ

(p)
Ho is given by the table entries.

Because each of the five fault variables are binary, the values (1 if in fault, otherwise 0) of the antecedent

fault variables form 25 = 32 patterns, which are shown in Table 7.1.3 as B01 - B32. The binary pattern

template for the antecedent fault variables is given by:

B =
(
θ
(f)
Hi ,θ

(f)
Ci ,g

(f)
H ,g(f)C ,υ(f)) (7.1.17)

The first pattern of the conditional probability table of Table 7.1.3 is B01 = (1,1,1,1,1). This means

that all the antecedents of θHo, θHi, ....υ , are in fault. The table also shows that when this fault pattern

occurs, it will definitely cause θHo to go into fault so that θ
(f)
Ho = 1 and θ

(p)
Ho (P(θ (f)

Ho = 1)) = 1.

The last pattern of the conditional probability tables of Table 7.1.3 is B32 = (0,0,0,0,0). This

means that θHi, ....υ are not in fault. However, there is still a probability that θHo is in fault such that

P(θ (f)
Ho = 1) = 0.0073. This probability is not zero because even though all the antecedents are not in

fault, they are all randomly varying. These random variations can coincide to drive θHo into fault.

The independent antecedent variables also have conditional probability tables. For example, the

fault variable θ
(f)
Hi has the conditional probability table 7.1.4. These data were generated as part of

the Monte Carlo procedure using the data in Table 7.1.2. In this case θ
(f)
Hi is independent with no

antecedents so that the value of θ
(p)
Hi is not conditional on the value of any other variable. These same

probability data are used to model the fault value probabilities of all the antecedent variables of Figure

7.1.10 and Table 7.1.3.

When all the vertices of the level 2 digraph of Figure 7.1.10 are assigned a conditional probability

table, the result is a Bayesian network.

Table 7.1.4: Conditional probability table to calculate θ
(p)
Hi and θ

(p,0)
Hi .
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7.1.5 Data generation and processing

The entries of the conditional probability table are derived by analysing process data. In general

these data are gathered and stored by the process control and instrumentation system, using the process

historian (Love, 2007). However, if these data do not exist, for example in a newly commissioned

process, they can be generated by Monte Carlo simulation, as was used in the previous section.

7.1.5.1 Process history data

The purpose of the data processing is to examine process historian time series, similar to that

of Figure 7.1.9 on page 202. For example, the historian data are analysed over n samples to find

occurrences of the antecedent fault pattern B01 of Table 7.1.3, and occurrences of θ
(f)
Ho = 1. The

probability of θ
(f)
Ho = 1 conditional on the antecedent fault pattern B01 is given by equation 7.1.18.

The numerator of equation 7.1.18 counts the number of times pattern B01 and θ
(f)
Ho = 1 occur

together. The symbol ∧ is the logical AND operator. The denominator of equation 7.1.18 counts the

number of times pattern B01 occurs. The term (B = B01) j evaluates to 1 if true, and 0 if not true.

P((B = B01)∧ (θ
(f)
Ho = 1)) =

n

∑
j=1

(B = B01) j ∧ (θ
(f)
Ho) j

n

∑
j=1

(B = B01) j

(7.1.18)

The conditional probability table of Table 7.1.3 shows that every time the antecedent fault pattern

B01 occurs, θ
(f)
Ho is in fault. Similarly, the entry for B02 shows that if fault pattern B02 occurs, θ

(f)
Ho has

a 0.6552 chance of being in fault (θ (p)
Ho = 0.6552).

7.1.5.2 Monte Carlo simulation

In the case of table 7.1.3 t conditional probability table entries were derived from a Monte Carlo

simulation to generate time series data. The details of the parameter settings are now described.

For each variable x, the series comprises randomly sampled data taken from a normal distribution

around the setpoint rx, with standard deviation σx. It should be noted that although a normal distribution

is used, conditional probability calculations in general, and Bayesian networks in particular, are

distribution-independent.

The process variable x is assumed to be within a maximum half-range mx% such that:

rx −
rxmx

100
≤ x ≤ rx +

rxmx

100
(7.1.19)
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If it is further assumed that practically all of the values of a variable x are within the range rx ±6σx,

then:

rx −6σx ≤ x ≤ rx +6σx (7.1.20)

Combining Equations 7.1.19 and 7.1.20 gives:

6σx =
rxmx

100
→ σx =

rxmx

600
(7.1.21)

A simulated normal distribution for x can now defined in terms of its setpoint and maximum

half-range. The fault limits can be defined in terms of the standard deviation, as this gives a useful

statistical check on the data. For example, setting mx to 15% gives 6σ = 15%, so that 2σ = 5%.

Setting the fault limit for x as 2σ means that about 95% of the simulated data points x j are within

±5% of rx, and are not in fault. Table 7.1.5 shows the fault limits relating to Figure 7.1.11.

x(f)j =

 0,rx −2σx ≤ x j ≤ rx +2σx

1,otherwise
(7.1.22)

As an example, the range of the simulated instrument is from 75◦C to 234◦C, so that the setpoint of

θHi = 159◦C. Assuming mθHi = 15%, Equations 7.1.20, 7.1.21 and 7.1.22 give σθHi = 3.98 so that.

135.15◦C ≤ θHi ≤ 182.85◦C (7.1.23)

Table 7.1.5: Two-sigma fault limits for the heat exchanger of Figure 7.1.11

x rx σx rx −2σx rx +2σx

θHi 159.0 3.980 151.05 166.95

ΘCi 38.00 0.95 36.10 39.90

gH 2.29 0.06 2.18 2.40

gC 0.93 0.02 0.88 0.98

υ 1.18 0.03 1.12 1.24

ΘHo 126.75 3.17 120.41 133.09

ΘCo 117.00 2.93 111.15 122.85
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Table 7.1.6: Two-sigma fault limits for the heat exchanger network causes and effects

x type units rx σx rx −2σx rx +2σx

θS1 cause ◦C 159.0 3.98 151.05 166.95

θX2Co cause ◦C 38.00 0.95 36.10 39.90

gS1 cause kW ◦C−1 2.29 0.06 2.18 2.40

gS4 cause kW ◦C−1 0.93 0.02 0.88 0.98

υX3 cause kW ◦C−1 1.18 0.03 1.12 1.24

θS6 cause ◦C 15.00 0.38 14.25 15.75

gS6 cause kW ◦C−1 2.00 0.05 1.90 2.10

υX6 cause kW ◦C−1 1.94 0.05 1.84 2.04

θX5Co effect ◦C 34.00 0.85 32.30 35.70

gS5 cause kW ◦C−1 1.96 0.05 1.86 2.06

θX3Co effect ◦C 117.00 2.93 111.15 122.85

θX6Ho effect ◦C 77.00 1.93 73.15 80.85

θMo effect ◦C 53.00 1.33 50.35 55.65

θ
(f)
Hi =

 0,151.05 ≤ θHi ≤ 166.95

1,otherwise
(7.1.24)

The fault range data for all the variables of Figure 7.1.11 are shown in Table 7.1.6

7.1.5.3 Fault pattern probabilities

In general, the calculation of conditional probability table entries makes use of equation 7.1.18.

However generating sufficient data for these calculations can be intensive. For example, assuming 2σ

fault limits, the probability of occurrence of the fault pattern B01 in Table 7.1.10 is given by equation

7.1.25 where B is a binary pattern variable.

P(B = B01) = θ
(p)
Hi ×θ

(p)
Ci ×θ

(p)
gH ×θ

(p)
gC ×υ

(p) = 0.04565 ≈ 1.97×10−7 . (7.1.25)

In other words, the fault pattern B01 (where all the variables are in fault) would be expected

to occur once in every
1

1.97×10−7 , or approximately 5× 106 samples of the general fault pattern
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(
θ
(f)
Hi ,θ

(f)
Ci ,θ

(f)
gH,θ

(f)
gC ,υ

(f)). If a process control system samples across the entire process once every

second, then pattern B01 is expected to occur in a time interval lasting 5×106 seconds, or roughly 60

days.

The pattern B01 represents the least likely causal fault pattern of Table 7.1.4.The most likely causal

fault pattern is B32 (none of the cause variables are in fault), where:

P(B = B32) = θ
(p,0)
Hi ×θ

(p,0)
Ci ×θ

(p,0)
gH ×θ

(p,0)
gC ×υ

(p,0) = 0.95445 ≈ 0.79. (7.1.26)

Using the same logic as for pattern B01, the causal fault pattern B32 is expected to occur every one

or two seconds for a control system which samples every one second.

However, recording the occurrence of the antecedent fault patterns is not the whole story for

evaluating probability models such as equation 7.1.18. The joint occurrence of fault pattern B01 and

fault θ
(f)
Ho is also required. The occurrence of θ

(f)
Ho = 0 and θ

(f)
Ho = 1, is conditional on the values of the

input signals
(
θHi,ΘCi,θgH,θgC,υ

)
.

To get an idea of the time to occurrence of pattern B01 causing θ
(f)
Ho = 1, upper and lower bounds

on the probability of occurrence are calculated.

Upper bound. The upper bound is calculated by assuming that as soon as pattern B01 occurs, then

this definitely drives ΘHo into fault. In this case, the probability of the occurrence of B01 and θ
(f)
Ho = 1

is simply the probability of occurrence of pattern B01.

Lower bound. The lower bound is calculated by assuming that ΘHo does not depend on the

independent variables {θHi,θCi,gH,gC,υ}. In this case, ΘHo is also an independents variable. Under an

assumption of a normal distribution and the 2σ upper and lower control limits of equation (7.1.22, an

independent random variable is expected to be in fault, by chance alone, around 4.56% of the time.

In this case P(θ (f)
Ho = 1) = θ

(p)
Ho = 0.0456. Denoting a binary pattern by B, then the probability of

binary pattern B01 occurring is given by P(B = B01).

The estimates for the upper and lower bounds are given by.
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P
(
B = B01

)
∧ (θ

(f)
Ho = 1)

)u
= θ

(p)
Hi ×θ

(p)
Ci ×θ

(p)
gH ×θ

(p)
gC ×υ(p) = 0.04565 ≈ 1.97×10−7

P
(
B = B01

)
∧ (θ

(f)
Ho = 1)

)l
= θ

(p)
Hi ×θ

(p)
Ci ×θ

(p)
gH ×θ

(p)
gC ×υ(p)×0.0456 = 0.04566 ≈ 8.99×10−9

(7.1.27)

The upper bound equates to
1

1.97×10−7 or approximately 5× 106 samples. The lower bound

equates to
1

8.99×10−9 or approximately 1×108 samples. Based on these data, the number of required

pattern samples, N, to include the least likely case, is bounded by.

5×106 ≤ N ≤ 1×108 (7.1.28)

Assuming the control system can sample once every second, the corresponding time bound in days,

Tdays, needed to gather the process historian data is approximately given by.

60 ≤ Tdays ≤ 1287 (7.1.29)

In a real process, this estimate is tested after the fact by looking at the process historian data and

doing the probability calculations on a rolling operational basis. However the estimate highlights that a

probabilistic approach to fault diagnosis has start-up costs in terms data analysis effort and calendar

time.

7.1.6 Bayesian networks

A Bayesian network is a variables-only digraph such that each vertex is associated with a conditional

probability table. The conditional relations of the conditional probability table are the causal relations

of each Bayesian network vertex to its direct antecedents. Figure 7.1.12a shows a mixer in which two

inlet streams, S1 and S2 are mixed to produce a single mixer outlet stream. The temperatures of the

inlet and outlet streams streams are given by θS1, θS2 and θMo respectively. Each stream temperature

has an associated binary fault variable. For example, when θMo is in fault θ
(f)
Mo = 1. Otherwise θ

(f)
Mo = 0.

The probability that θMo is in fault is given by P(θ (f)
Mo = 1), abbreviated to θ

(p)
Mo . The same concepts

and nomenclature apply to θS1 and θS2.
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(a) Process diagram
(b) Level 2 digraph.

Figure 7.1.12: Two-stream mixer

Figure 7.1.13: Bayesian network to model stream temperature fault probabilities for the mixer of Figure
7.1.12a. The Bayesian network is derived from the level 2 digraph of Figure 7.1.12b.

Figure 7.1.12b shows a level 2 digraph for the mixer temperature faults. This digraph is the basis for

the Bayesian network of Figure 7.1.13, in which each vertex is associated with a conditional probability

table. Using the Bayesian network of Figure 7.1.13, and Bayes theorem, the probabilities θ
(p)
S1 , θ

(p)
S2 ,
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and θ
(p)
Mo can be calculated for a variety of scenarios. Pearl (2009) and Murphy (2012) provide detailed

accounts of the theory of Bayesian networks. The core ideas used in this thesis are now explained in

the context of fault analysis using the mixer example.

7.1.6.1 Conditional probability

If a fault cause variable E(f) is causally dependent on a fault effect variable C(f) then the joint

probability function is given by equation 7.1.30.

P(E(f),C(f)) = P(E(f)|C(f)x)P(C(f)) (7.1.30)

Equation 7.1.30 can be extended to model multiple dependencies. The joint probability function for

the mixer fault variables is given by equation 7.1.31, where θ
(f)
S1 and θ

(f)
S1 are independent of each other.

P(θ (f)
M ,θ

(f)
S1 ,θ

(f)
S2 ) = P(θ (f)

M |θ (f)
S1 ,θ

(f)
S2 )P(θ

(f)
S1 )P(θ

(f)
S2 ) (7.1.31)

7.1.6.2 Observations evidence, and probabilities

If a measurement of the definite value of a fault variable is available, that fault variable is said to be

observed. Otherwise it is unobserved. If the observation is used in a conditional probability calculation,

it is called evidence. A probability calculated without using evidence is called a prior probability.

Conversely, a probability calculated using evidence is called a posterior probability.

Using the data in conditional probability tables, a Bayesian network can be used to evaluate

equation 7.1.31 with and without evidence. The evaluation of Bayesian networks is laborious by

hand and the Bayesian network is modelled using the code BN Mixer Model Vs01.xbn at the website

https://zenodo.org/communities/dl4009.

If no evidence on the of θ
(f)
S1 and the value of θ

(f)
S1 is used, then prior probabilities for the mixer

temperature faults values are given by equation 7.1.32.

P(θ (f)
M = 1) = 0.19, P(θ (f)

S1 = 1) = 0.1, P(θ (f)
S2 = 1) = 0.2 (7.1.32)

If evidence that θ
(f)
S1 = 1 and θ

(f)
S2 = 1 is used, P(θ (f)

S1 ) and P(θ (f)
S2 ) are both set to 1.00 in equation

7.1.31, so that the posterior probabilities of the fault variable values is given by equation 7.1.33.

P(θ (f)
M = 1) = 1, P(θ (f)

S1 = 1) = 1, P(θ (f)
S2 = 1) = 1 (7.1.33)
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7.1.6.3 Bayes theorem

The results so far calculate the probability of an effect using evidence of causes. The probabilities

of causes using the evidence of effects can also be calculated using the joint distribution function.

Equation 7.1.30 is written in terms of known conditional probability tables of Bayesian networks.

The joint probability function can also be written as

P(E(f),C(f)) = P(C(f)|E(f))P(E(f)) (7.1.34)

Equations 7.1.30 and 7.1.34 then give.

P(C(f)|E(f)) =
P(E(f)|C(f))P(C(f))

P(E(f))
(7.1.35)

In general, equation 7.1.35 is known as Bayes theorem, and allows the calculation of the probability

of causes, given evidence of effects. The numerator of equation 7.1.35 is the cause-to-effect evaluation

of the joint probability function. The denominator of equation 7.1.35 is the prior probability of the

effect. All the required data are taken directly from the conditional probability tables of the Bayesian

network.

As an example if the observation that θ
(f)
M = 1) is used as evidence in the mixer Bayesian network

of Figure 7.1.13, the evaluation of Bayes theorem using the code BN Mixer Model Vs01.xbn at the

website https://zenodo.org/communities/dl4009 yields.

P(θ (f)
S1 = 1|P(θ (f)

M = 1) = 0.53 (7.1.36)

P(θ (f)
S1 = 1|P(θ (f)

M = 1) = 0.58 (7.1.37)

7.1.6.4 Simulations and software

This thesis uses the Microsoft freeware package MSNBX. All the Bayesian networks presented are

available at https://zenodo.org/communities/dl4009
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Figure 7.2.1: Heat exchanger network. The values shown are the nominal operating values for the process.
The data are reported to two decimal places and taken from Kemp (2011) with permission

7.2 Case Study: Heat Exchanger Network

7.2.1 Process description

Figure 7.2.1 shows a section of a Heat Exchanger Network (HEN), adapted from Kemp (2011).

The HEN comprises a set of heat transfer devices (circles) which act on the given upstream condition

(boxes) to produce the required downstream conditions. Figure 7.2.1 represents the HEN architecture,

where the original heat exchanger device labelling has been preserved for referencing. Hot streams

which require cooling traverse from left to right. Cold streams that require heating traverse from

right to left. The fragment is part of a wider process in which the control and instrumentation system

controls the stream flows, supply temperatures, and heat exchanger outlet temperatures.

Faults can arise and propagate throughout the HEN because of variations in the supply conditions,

Table 7.2.1: Nomenclature for the heat exchanger network of Figure 7.2.1

Description Label Type

Hot Supply S1 Supply
Cold Supply S6 Supply
Heat Exchanger X2 Supply
Heat Exchanger X5 Supply
Heat Exchanger X3, X6 Device
Mixer M Device
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and the heat transfer performance of the individual exchangers. Such faults cause adverse temperature

changes around the network. The fault diagnosis problem is then to work out which causes contributed

to the effects.

7.2.2 Problem definition

As already noted, causes and effects are examples of faults. The usefulness of a Bayesian network is

that a set of effects can be used as evidence in a Bayesian network. Using such evidence, the Bayesian

network can recalculate the prior probabilities of causes, and rank candidate causes. In this case study,

temperature effects provide the evidence for the Bayesian network so as to generate hypotheses on the

candidate causes of observed process effects.

To simulate faults, a first principles model of the heat exchanger network is used. This model is

derived by coupling individual heat exchanger models, given by the equation set 7.1.1 on page 195.

Each of the temperatures shown in Figure 7.2.1 can go into fault associated with a fault, where the

general form of the fault calculation is given by equation 7.1.22. A Bayesian network is derived from a

Monte Carlo simulation of the HEN.

Four example studies are considered. In each of the four studies, a first principles model of the HEN

is used to set the supply temperature θS1 so that it is in fault and θ
(f)
S1 = 1. The effects of the cause θS1

are calculated by the process simulation and produce effects in other process variables. These effects

are used as evidence in the Bayesian network.

Effects are available for the variables θx3Co, θx6ho, and θmco. These variables are the cold side outlet

temperature of heat exchanger X3, the hot side outlet temperature of heat exchanger X6, and the outlet

temperature of the mixer. The complete nomenclature for the case study is given in Table 7.2.2. All

data are based on those from Kemp (2011), and taken to two decimal places.

7.2.3 Level 1 fusion

The first principles simulation of the heat exchanger network is based on coupling individual heat

exchanger and fault models. The mixer is also required to be modelled. Assuming adiabatic mixing, a

steady-state energy balance yields equation 7.2.1.

0 = (θM)(gS5 +gS6)− (θX5Co)(gS5)− (θX6Co)(gS6) (7.2.1)

216



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

Table 7.2.2: Nomenclature and data for heat exchanger network modelling

Symbol Description Operating Value Fault Probability
Variable Variable

θS1 Stream 1 supply temperature 159.00◦C θ
(f)
S1 θ

(p)
S1

θS6 Stream 6 supply temperature 15.00◦C θ
(f)
S6 θ

(p)
S6

gS1 Stream 1 heat capacity flow rate 2.29 kW ◦C−1 g(f)
S1 g(p)

S1

gS4 Stream 4 heat capacity flow rate 0.93 kW ◦C−1 g(f)
S4 g(p)

S4

gS5 Stream 5 heat capacity flow rate 2.00 kW ◦C−1 g(f)
S5 g(p)

S5

gS6 Stream 6 heat capacity flow rate 2.00 kW ◦C−1 g(f)
S6 g(p)

S6

υX3 Exchanger 3 ua coefficient 1.18 kW ◦C−1
υ

(f)
X3 υ

(p)
X3

υX6 Exchanger 6 ua coefficient 1.94 kW ◦C−1
υ

(f)
X6 υ

(p)
X6

θX2Co Exchanger 2 cold side outlet temperature 38.00◦C θ
(f)
X2Co θ

(p)
X2Co

θX3Co Exchanger 3 cold side outlet temperature 117.00◦C θ
(f)
X3Co θ

(p)
X3Co

θX3Ho Exchanger 3 hot side outlet temperature 126.75◦C θ
(f)
X3Ho θ

(p)
X3Ho

θX5Co Exchanger 5 cold side outlet temperature 34.00◦C θ
(f)
X5Co θ

(p)
X5Co

θX6Co Exchanger 6 cold side outlet temperature 72.00◦C θ
(f)
X6Co θ

(p)
X6Co

θX6Ho Exchanger 5 hot side outlet temperature 77.00◦C θ
(f)
X6Ho θ

(p)
X6Ho

θM Mixer outlet temperature 53.00◦C θ
(f)
M θ

(p)
M

θX3Ho = ΘX3Ho(θS1,θX2Co,gS1,gS4,υX3)

θX3Co = ΘX3Co(θS1,θX2Co,gS1,gS4,υX3)

θX6Ho = ΘX6Ho(θX3Ho,θS6,gS1,gS6,υX6)

θX6Co = ΘX6Co(θX3Ho,θS6,gS1,gS6,υX6)

θM = ΘM(θX6Co,θX5Co,gS6,gS5)

(7.2.2)

Assuming the temperatures θx3Co, θx6ho, and θmco are controlled to their setpoints, a complete set of

matched structural equations is given by the equation set 7.2.2

Figure 7.2.3 shows the adjacency matrix derived from the structural equation set, and Figure 7.2.2

shows the corresponding level 1 digraph corresponding to the heat exchanger network of Figure 7.2.1

on page 215. Figure 7.2.4 shows the reachability matrix corresponding to the adjacency matrix.
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Figure 7.2.2: Level one fusion digraph correspond to the structural equation set 7.2.2, and the adjacency
matrix of Figure 7.2.3.

The adjacency matrix of Figure 7.2.3 on page 219 highlights the temperature of stream S1, θS1, as a

cause because it is a variable that is not adjacent to any other variable. Similarly, θX3Co is an effect

because it is a variable, and no other variable is adjacent to it. The reachability matrix of Figure 7.2.4

shows that θS1 can reach θX3Co. The relationship between causes and effects is the basis of the level 2

fusion.

218



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

Fi
gu

re
7.

2.
3:

A
dj

ac
en

cy
m

at
ri

x
co

rr
es

po
nd

in
g

to
th

e
st

ru
ct

ur
al

eq
ua

tio
n

se
t7

.2
.2

.

219



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

Fi
gu

re
7.

2.
4:

R
ea

ch
ab

ili
ty

m
at

ri
x

co
rr

es
po

nd
in

g
to

th
e

ad
ja

ce
nc

y
m

at
ri

x
of

Fi
gu

re
7.

2.
3.

220



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

7.2.4 Level 2 fusion

The causal structure of the level 2 fusion is found from the causal structure of the level 1 fusion by

applying the workflow of Figure 4.3.3 on page 102 to the digraph of Figure 7.2.1. In the first instance the

set of causes and the set of effects are found from the digraph. Using this cause and effect information a

reduced reachability (R2) matrix is derived. The R2 matrix shows the relationship between continuous

variables. The R2 matrix is mapped to an R2(f) matrix which shows the relationships between fault

cause and fault effect variables. The R2 and R2(f) matrices are shown in Figure 7.2.5 on page 224.

The R2(f) matrix is used as the adjacency matrix for an acyclic qualitative digraph comprising only

cause and effect fault variables, shown in Figure 7.2.7 on page 226. Finally, the qualitative fault cause

and effect digraph is used as the causal basis for a quantitative Bayesian network. The steps in the

workflow are now illustrated for the heat exchanger network.

7.2.4.1 Causes and effects in the heat exchanger network

As already noted, Section 2.1.3 defines a cause as a digraph vertex with no antecedents. An effect is

a digraph vertex with no descendants. In an adjacency matrix, causes are variables associated with

empty columns, and effects are variables associated with empty rows. The adjacency matrix of Figure

7.2.3 on page 219 shows that θS1, is a cause and θX3Co is an effect.

Inspection of Figure 7.2.3 yields the complete sets of causes α and effects ω for the heat exchanger

network as Equations 7.2.3 and 7.2.4. The nomenclature for the equations is given by Table 7.2.2 on

page 217.

α = {θS1,θX2Co,gS1,gS4,υX3,θS6,gS6,υX6,θX5Co,gS5} (7.2.3)

ω = {θX3Co,θX6Ho,θMo} (7.2.4)

7.2.4.2 Deriving the reduced reachability matrix

The reduced reachabilty (R2) matrix of a digraph shows which causes can reach which effects. In

this thesis, the R2 matrix is found for the heat exchanger network by applying the workflow of Figure

4.3.3 on page 102 to the digraph of Figure 7.2.1 yields the reduced reachabilty (R2) matrix of Figure

7.2.5. To illustrate the workflow, two examples are now worked through.
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Worked example no. 1. Equation 7.2.5 shows the shortest path from the cause θS1 to the effect

θX3Co.

S (GHEN,θS1,θX3Co) = {θS1,ΘX3Co,θX3Co} ̸=∅ (7.2.5)

A shortest path exists, hence R2(θS1,θX3Co) = 1

Worked example no. 2. Equation 7.2.6 shows the shortest path from the cause θS1 to the effect θS6.

S (GHEN,θS1,θS6) =∅ (7.2.6)

In this case no shortest path exists, hence R2(θS1,θS6) = 0. The complete R2 matrix on the left hand

side of Figure 7.2.5 is derived by analysing the shortest paths from all the causes of Equation 7.2.3 to

all the effects of Equation 7.2.4.

7.2.4.3 Deriving the Bayesian network

The R2 matrix shows the relationships between causes and effects which are continuous variables.

The R2 matrix is used to derive a Bayesian network which models the relationships between faults.

Fault variables are binary variables which correspond to continuous variables as follows.

i x denotes a continuous process variable.

ii x(f) denotes a fault variable corresponding to x

iii If x is outside its designated control limits, x(f) = 1. Otherwise x(f) = 0.

Step 1. Each continuous cause or effect process variable is mapped to an corresponding binary fault

variable. For example, the left-hand side of Equation 7.2.7 represents the continuous cold side outlet

temperature of heat exchanger X3. The right-hand side of the equation represents the corresponding

binary fault variable.

θX3Co → θ (f)
X3Co (7.2.7)

Mapping all the continuous process variables of Equations 7.2.3 and 7.2.4 to corresponding binary

fault variables yields Equations 7.2.8, 7.2.9 and 7.2.10. The matrix R2(f) is shown on the right hand

side of Figure 7.2.5.

222



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

α (f) = {θ (f)
S1,θ

(f)
X2Co,g(f)

S1,g
(f)

S4,υ
(f)

X3,θ
(f)

S6,g(f)
S6,υ

(f)
X6,θ

(f)
X5Co,g(f)

S5} (7.2.8)

ω (f) = {θ (f)
X3Co,θ

(f)
X6Ho,θ

(f)
Mo} (7.2.9)

R2 → R2(f) (7.2.10)

Step 2. The R2(f) matrix is used to build a square fault cause and effect adjacency matrix of the

general form shown on the left hand side of Figure 7.2.6. The right hand side of Figure 7.2.6 shows

the specific structure of the fault causal relationships for the heat exchanger network, using the R2(f)

matrix shown on the right hand side of Figure 7.2.5.

It was shown in Section 4.3.4 that an adjacency matrix of the form of Figure 7.2.6 models an acyclic

digraph. In this case such a digraph shows the existence, or otherwise, of relationships between fault

causes and fault effects.

Step 3. When the vertices of the digraph derived from the R2(f) matrix are associated with

conditional probability tables, the digraph is a Bayesian network. For this case study, the required

conditional probability tables are generated from a Monte Carlo simulation on a process model of the

heat exchanger network shown in Figure 7.2.1.

The parameterisation and data analysis of the Monte Carlo simulation was carried out using the

procedure described on pages 207 - 208, specifically Equations 7.1.18 - 7.1.22, where.

i Equation 7.1.18 calculates the probability that a given effect variable is in fault and the antecedent

causes of that effect have a given fault pattern. For simplicity of illustration Equation 7.1.18 is

shown for a particular case.

ii Equations 7.1.19 - 7.1.21 show how to calculate the one sigma value, σx for a process variable

x which is controller to a set-point rx, and upper and lower control limits given by rx +mx and

rx −mx.

iii Equation 7.1.22 shows how to calculate the value of the fault variable x(f)j using the value of the

corresponding process variable x and the value of 2σx.

The parameter data for the causes and effects are shown in Table 7.1.5. Figure 7.2.7 shows the
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Figure 7.2.5: R2 and R2(f) matrices for the heat exchanger network.

Bayesian network for the fault variables of the heat exchanger network, derived using the R2 matrix.

The basis of the Bayesian network shown in Figure 7.2.7 is that a cause can propagate a fault to a

causally connected effect.

Using the fault values of the effects as evidence, the Bayes network calculates the probability of

each cause being in fault α
(p) = P(α (f) = 1). The highest cause fault probability is designated as the

likely fault cause, and prioritised for further investigation.

224



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

Fi
gu

re
7.

2.
6:

St
ru

ct
ur

e
of

a
fa

ul
tc

au
se

an
d

ef
fe

ct
ad

ja
ce

nc
y

m
at

ri
x

fr
om

th
e

R
2(f

)
m

at
ri

x
fo

rt
he

he
at

ex
ch

an
ge

rn
et

w
or

k.

225



CHAPTER 7. LEVEL 2 FUSION: BAYESIAN NETWORKS

Figure 7.2.7: Bayesian network for the heat exchanger network fault variables. The causal structure of the
Bayesian network is found from the R2(f) matrix of Figure 7.2.6.

7.2.5 Objectives and methods of the case study

7.2.5.1 Introduction

The R2(f) matrix of Figure 7.2.5 shows the set of three fault effects given by Equation 7.2.11 are all

dependent on the subset of five common fault causes given by Equation 7.2.12.

ω (f) = {θ (f)
X3Co,θ

(f)
X6Ho,θ

(f)
M} (7.2.11)

αs
(f) = {θ (f)

S1,θ
(f)

X2Co,g(f)
S1,g

(f)
S4,υ

(f)
X3} (7.2.12)

These relationship mean it is not possible to qualitatively differentiate between candidate causes

based on observing the effects. The Bayesian network of Figure 7.2.7 is intended to quantitatively

differentiate between the five candidate causes by using evidence on the fault state of the three effects.

The case study comprises four numerical diagnostic experiments using a deterministic simulation

of the heat exchanger network (HEN), and a corresponding probabilistic simulation as a Bayesian

network. In this case study, the Bayesian network was derived using a Monte Carlo simulation on a

deterministic model of the HEN shown in Figure 7.2.1 on page 215. Table 7.1.6 on page 209 shows

the nominal operating point rx for each of the process variable causes and effects.
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As noted in Step 3 of Section 7.2.4.3 on page 222, application of Equations 7.1.21 and 7.1.22 on

page 208 yields the sigma values shown in Table 7.1.6. Each cause is assigned a normally distributed

series of value, based on its nominal operating point and sigma values. Each series of values can be

viewed as a time series. The time series for the causes are inputs to the deterministic HEN model to

calculate time series for the effects. Based on the two sigma upper and lower limits of Table 7.1.6, each

cause and effect time series has an associated fault time series. Using the data processing methodology

outlined in Section 7.1.5 on page 207, the cause and effect fault time series are processed to populate

conditional probability tables (CPTs) for each cause and effect fault variable. The Bayesian network is

therefore built to model a given process architecture and performance around a set of nominal design

values.

Unless the process changes, the causal relationships and CPT data of the Bayesian network are

fixed. The Bayesian network is built in the open source Microsoft MSBNX environment. The Bayesian

network model is available from the website https://zenodo.org/communities/dl4009.

Fault simulation, observations, instruments and evidence. A deterministic model of the heat

exchanger process shown in Figure 7.2.1 on page 215 is used to simulate a fault. This fault generates

effects in the heat exchanger model. The effects are used as evidence in Bayesian network to infer the

fault. The following notation and ideas are used in the case study.

i x denotes a continuous process variable, measured by an instrument and x(f) denotes the corre-

sponding fault variable. If x is outside its control limits, the instrument sets x(f) = 1, otherwise

the instrument sets x(f) = 0.

ii If an instrument is broken then it is not possible to say if the process variable x is fault or not. In

this case x(f) is set to NaN (not a number) and is treated as unobserved for the purposes of the

Bayesian network.

iii x(p) denotes the probability that x(f) = 1.

iv Evidence is the set of observations of fault effects ω
(f)
j = 0 or ω

(f)
j = 1

for each ω
(f)
j ∈ {θ

(f)
X3Co,θ

(f)
X6Ho,θ

(f)
M}.

v If ω
(f)
j = NaN, this data is unobserved and not used as evidence in the Bayesian network.
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vi For each process cause variable in the subset αs the values of α
(f)
s are unobserved (i.e. has no

associated measurement) and the probability values α
(p)
s are calculated from the evidence of the

observed fault effects ω
(f)
j = 0 or1.

Fault experiments and fault diagnosis. The deterministic model is used to set the cause θS1 from

150◦C to 170◦C. Table 7.1.6 shows that θS1 = 170◦C > 166.95◦C so that θ
(f)

S1 = 1. The change in θS1

propagates throughout the deterministic heat exchanger network (HEN) model which calculates the

effects ω
(f)
j ∈ {θ

(f)
X3Co,θ

(f)
X6Ho,θ

(f)
M}. Using these simulated effect data as evidence, the diagnostic

test is to check if the Bayesian network inference of the most probable source corresponds to the

known cause of θ
(f)

S1 = 1. It should be noted that the deterministic HEN simulation and the Bayesian

network are not automatically coupled through software. The fault data from the HEN simulation are

manually entered into the Bayesian network as evidence, which recalculates the probable states of

all the other fault variables in the Bayesian network. The case study comprises four simulation and

inference experiments, which are now introduced.

Experiment no.1. The purpose of Experiment 1 is to provide a baseline. The deterministic heat

exchanger model is in normal operation. However no data on the states of {θ
(f)

X3Co,θ
(f)

X6Ho,θ
(f)

M}

are used as evidence. In this case the state of the Bayesian network is calculated based on the

probable states of the independent cause variables. Because no evidence is used in this calculation, the

probability data reported in this experiment are the priors for the Bayesian network. A simple example

of how the priors for independent variables are used to calculate the priors for all other variables in

the network is given at the Zenodo site for this thesis https://zenodo.org/record/5138057. The

worksheet RSG#1Forward of the Excel workbook BN Examples Vs01.xlsx manually works through

the priors calculation of the “Rain, Sprinkler, Grass” problem given at https://en.wikipedia.org

/wiki/Bayesian network.

Experiment no.2. In the second experiment the temperature of source S1, θS1, is set to 170◦C,

which is above its setpoint θ
(r)
S1 of 159◦C. This change forces θS1 into fault such that θ

(f)
S1 = 1. The

HEN simulation calculates the propagation of the fault in θS1 around the heat exchanger network to

yield the resulting effects. It is found that changing θ
(r)
S1 from 159◦C to 170◦C causes the following

effects in the HEN simulation.

θ
(f)
X3Co = 1, θ

(f)
X3Ho = 1, θ

(f)
M = 0 (7.2.13)
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Table 7.2.3: Diagnostic experiment no.1. HEN simulation and Bayesian network prior results

Process Variable Description Process variable Fault variable Evidence BN Ranking
value from HEN value from HEN prior

θS1 Cause 159.0◦C θ
(f)
S1 - 0.0456 -

θX2Co Cause 38.00◦C θ
(f)
X2Co - 0.0455 -

gS1 Cause 2.29 kW ◦C−1 g(f)
S1 - 0.0455 -

gS4 Cause 0.93 kW ◦C−1 g(f)
S4 - 0.0456 -

υX3 Cause 1.18 kW ◦C−1
υ

(f)
X3 - 0.0457 -

θX3Co Effect 117.0◦C θ
(f)
X3Co - 0.0535 -

θX6Ho Effect 77.00◦C θ
(f)
X6Ho - 0.0729 -

θMo Effect 53.00◦C θ
(f)
Mo - 0.0196 -

These valid effects are used as evidence in the Bayesian network to calculate the probable fault

values of the process variable sources {θS1,θX2Co,gS1,gS4,υX3}. These probability estimates are ranked.

If P(θ (f)
S1 = 1) is the highest ranking, then the Bayesian network has correctly diagnosed θS1 as being

the cause of the effects.

Experiments no.3 and no.4. The purposes of the numerical Experiments no.3 and no.4 is to see

how the Bayesian network fault diagnosis changes when fault detection instruments are broken so that

less evidence is available to make a diagnosis. These two experiments are indications of the robustness

of the diagnosis given by Experiment no.2.

General remarks. Because data on the fault state of the heat exchanger network (HEN) simulation

is being input as evidence to the Bayesian network (BN), the Bayesian analysis of experiments no.2,

no.3 and no.4 report posterior results. As already noted, in diagnostic experiment no.1 no fault state

data from the HEN simulation are input as evidence to the BN. The results of BN are therefore priors.

The tables reporting the data abbreviate heat exchanger network to HEN, and Bayesian network to BN.

The four diagnostic experiments are now explained in detail.

7.2.5.2 Diagnostic experiment no.1.

In this baseline experiment, the source θS1 is kept at its operating temperature and the heat exchanger

network (HEN) simulation is unperturbed. No fault data are input to the Bayesian network (BN) so
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Table 7.2.4: Diagnostic experiment no.2. HEN simulation and Bayesian network posterior results

Process Variable Description Process variable Fault variable Evidence BN Ranking
value from HEN value from HEN posterior

θS1 Cause 170.0◦C (θ (f)
S1 = 1) - 0.8470 1

θX2Co Cause 38.00◦C θ
(f)
X2Co - 0.0498 5

gS1 Cause 2.29 kW ◦C−1 g(f)
S1 - 0.0653 2

gS4 Cause 0.93 kW ◦C−1 g(f)
S4 - 0.0649 3

υX3 Cause 1.18 kW ◦C−1
υ

(f)
X3 - 0.0588 4

θX3Co Effect 124.2◦C θ
(f)
X3Co = 1 Used 1.0000 -

θX6Ho Effect 81.60◦C θ
(f)
X6Ho = 1 Used 1.0000 -

θMo Effect 54.90◦C θ
(f)
Mo = 0 Used 0.0000 -

that the BN reports priors. Table 7.2.3 reports the heat exchanger network simulation and Bayesian

network. The structure of the table is now explained.

Process variables and fault variables. The cause variables are inputs to the deterministic HEN

simulation, which calculates values for all the process cause and effect variables and their associated

fault variables.

By definition, the causes are all independent from each other. In the case study as a whole, only θS1

is forced into fault by changing its value. For diagnostic experiment No.1, θS1 is kept at at its setpoint,

as shown in the process diagram of Figure 7.2.1 on page 215.

Evidence. None of the HEN simulation fault variable values are input as evidence to the Bayesian

network.

Bayesian network probabilities. For each of the variables xi, the Bayesian network (BN) calculates

the probability that xi is in fault: P(x(f)
i = 1). Because no fault data from the HEN simulation is input

as evidence to the BN, all of the BN probabilities reported in Table Table 7.2.3 are by definition

prior probabilities. As soon as any evidence is input to the Bayesian network, the Bayesian network

calculates posterior values for P(x(f)
i = 1).
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Table 7.2.5: Diagnostic experiment no.3. HEN simulation and Bayesian network posterior results

Process Variable Description Process variable Fault variable Evidence BN Ranking
value from HEN value from HEN posterior

θS1 Cause 170.0◦C (θ (f)
S1 = 1) - 0.2330 1

θX2Co Cause 38.00◦C θ
(f)
X2Co - 0.0467 5

gS1 Cause 2.29 kW ◦C−1 g(f)
S1 - 0.1410 2

gS4 Cause 0.93 kW ◦C−1 g(f)
S4 - 0.0474 4

υX3 Cause 1.18 kW ◦C−1
υ

(f)
X3 - 0.0480 3

θX3Co Effect 124.2◦C θ
(f)
X3Co = NaN - - -

θX6Ho Effect 81.60◦C θ
(f)
X6Ho = 1 Used 1.0000 -

θMo Effect 54.90◦C θ
(f)
Mo = 0 Used 0.0000 -

7.2.5.3 Diagnostic experiment no.2.

The data and results for for diagnostic experiment no.2 are reported in Table 7.2.4. In this experiment

all the instrumentation for the effects is working properly so that all the fault data can be input to the

Bayesian network. The cause θS1 is set to 170.00◦C. This value if outside the upper control limit so

the HEN simulation calculates the fault variable value θ
(f)
S1 = 1.

Process variables and fault variables. The values of the HEN process variables change as θS1

changes from 159.00◦C to 170.00◦C. The instruments for the detection of faults in process variables

θX3Co, θX6Co and θMo are all working properly and reporting valid fault values.

The entry (θ (f)
S1 = 1) denotes the fact that although this value is known in the deterministic simulation,

it relates to a non-instrumented cause, and is not used as evidence in the Bayesian network fault

diagnosis.

Evidence. In this experiment, the effects θ
(f)
X6Ho = 1, θ

(f)
Mo = 0, and θ

(f)
X3CoMo = 1 are valid and input

as evidence to the Bayesian network.

Bayesian network probabilities. The fault evidence from the HEN simulation are input to the

Bayesian network by setting θ
(p)
X3Co = 1, θ

(p)
X6Ho = 1 and θ

(p)
Mo = 0. The rest of the Bayesian network

values are calculated by the Bayesian network as posterior probabilities. These data now show that

using all the available evidence, the most likely cause is a fault in the supply temperature of supply
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Table 7.2.6: Diagnostic experiment no.4. HEN simulation and Bayesian network posterior results

Process Variable Description Process variable Fault variable Evidence BN Ranking
value from HEN value from HEN posterior

θS1 Cause 170.0◦C (θ (f)
S1 = 1) - 0.2480 1

θX2Co Cause 38.00◦C θ
(f)
X2Co - 0.0468 5

gS1 Cause 2.29 kW ◦C−1 g(f)
S1 - 0.1390 2

gS4 Cause 0.93 kW ◦C−1 g(f)
S4 - 0.0475 4

υX3 Cause 1.18 kW ◦C−1
υ

(f)
X3 - 0.0482 3

θX3Co Effect 124.2◦C θ
(f)
X3Co = NaN - - -

θX6Ho Effect 81.60◦C θ
(f)
X6Ho = 1 Used 1.000 -

θMo Effect 54.90◦C θ
(f)
Mo = NaN - - -

stream 1, θS1. The Bayesian network estimates that θ
(p)
S1 = 0.8470, or around 85%. Equation 7.2.14

shows this result means that θ
(f)
S1 = 1 is around 13 times more likely to be the cause of the observed

effects than the next most likely candidate cause, g(f)
S1 = 1. These data support a hypothesis that a fault

in the temperature of supply stream S1 is the cause of the observed faults. From these results the

candidate cause θS1 should be prioritised for further investigation.

θ
(p)
S1

g(p)
S1

=
0.8470
0.0653

= 12.97 (7.2.14)

7.2.5.4 Diagnostic experiment no.3.

This experiment gives an indication of how robust the Bayesian network (BN) is to making a fault

diagnosis when a fault detection instrument is broken. The output of a broken instrument is invalid,

designated as NaN, and is not admissible as evidence to the BN.

The results for diagnostic experiment no. 3 are reported in Table 7.2.5. In this experiment the

instrumentation for effects θX6Ho and θMo is working. The instrumentation for effect θX3Co is broken.

Process variables and fault variables. This experiment has the same basis as diagnostic experiment

no.2 The fault readings θ
(f)
X6Ho = 1 and θ

(f)
Mo = 0 are valid. The reading θ

(f)
X3Co = NaN is invalid.

Evidence. The effects θ
(f)
X6Ho = 1 and θ

(f)
Mo = 0 are input as evidence to the Bayesian network.

Bayesian network probabilities. The evidence of θ
(f)
X6Ho = 1 and θ

(f)
Mo = 0 is input to to the Bayesian
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network by setting θ
(p)
X6Ho = 1.0, and θ

(f)
X6Ho = 0.0. Using this evidence, the rest of the Bayesian network

posterior probabilities are calculated.

The data of Table 7.2.5 shows that the posterior calculation of θ
(p)
S1 has decreased from 0.8470 (85%)

in experiment no.1 to 0.2330 (23%) in experiment no.2. Therefore not being able to admit the data

for θ
(f)
X3Co has a significant effect on the posterior results of the Bayesian network. However, when the

posteriors are ranked, a fault in θS1 is still the most likely candidate cause of the observed effects.

7.2.5.5 Diagnostic experiment no.4

In this final experiment, the diagnostic robustness of the Bayesian network is further examined by

designating two fault sensors as broken. The results for diagnostic experiment no.4 are reported in

Table 7.2.6. In this experiment the instrumentation for effect θ
(f)
X6Ho is working. The instruments for

effects θ
(f)
X3Co and θ

(f)
Mo are broken.

Process variables and fault variables. Once again, this experiment has the same basis as diagnostic

experiment no.2 and the values of the process variables are unchanged. The effect θ
(f)
X6Ho = 1 is valid.

The effects θ
(f)
X3Co = Nan and θ

(f)
Mo = Nan, are invalid.

Evidence. The effect θ
(f)
X6Ho is used as evidence. The effects θ

(f)
X3Co and θ

(f)
Mo are not used in evidence.

Bayesian network probabilities. The observation that θ
(f)
X6Ho = 1 is input as evidence to the

Bayesian network simulation by setting θ
(p)
X6Ho = 1.0. The consequent Bayesian network inferences

show that a fault in the temperature of supply stream S1, θS1, has a probability of occurrence of 0.2480.

Therefore a fault in θS1 has around a 25% chance of being the cause of the observed fault in θX6Ho, and

is ranked as being the most likely cause.

7.2.6 Discussion of the case study

The Bayesian network for a level 2 fusion is constructed from a level 1 fusion digraph of the process

system. In this way, physical causality is inherent within the modelling. Moreover the Bayesian

network conditional probability tables are populated with prior probability data based on the chance

that a given process variable is in fault by using easily defined and understood control limits on the

acceptable range of the variable. The conditional probability tables for a Bayesian network for the fault

diagnosis of process can be populated using operational data or data from a Monte Carlo simulation.
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The results from the four numerical experiments suggest Bayesian networks can be used in the the

fault diagnosis of process systems. The most compelling result was derived using all the available

evidence. Nevertheless, the use of limited data gave information on the most likely causal candidate.

This may indicate that the level 2 fusion is useful in situations where instruments are offline, and

maximum fault detector coverage of the process is not possible.

However, building a level 2 fusion for a process does incur start-up costs. The case study presented

in this chapter considered a heat exchanger network, where each heat exchanger structural model had

five independent causes. If the required data are collected by a process control system and historian

sampling once every second, the time needed to gather the data is estimated to be between 60 and 1287

days. Of course, this estimate is for building a level 2 fusion from scratch. Once the level 2 fusion is

built, the cost of model maintenance arises from the time spent on tracking changes to the process.

In addition, the required level 2 fusion conditional probability tables could be partially or wholly

generated from Monte Carlo simulation, or by using data from similar plants. As the project matures,

these data could be replaced by probabilities calculated from data stored in the process historian.

7.3 Answers to the Research Questions
This chapter has described and illustrated the model ingredients and workflow for a quantitative

fault diagnosis approach called a level 2 fusion to address the research questions.

i What are the necessary ingredients of a fault diagnosis model?

ii What information should a fault diagnosis model yield?

iii What modelling approach is appropriate to answer questions i and ii?

7.3.1 What are the necessary ingredients of a fault diagnosis model?

The case study on the heat exchanger network has shown that the necessary ingredients of a

quantitative fault diagnosis models are:

i A model of the physical cause-to-effect relationship’s of the process. In the case of a level 2

fusion, this model is provided by the level 1 fusion.
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ii A process data set which enables the population of conditional probability tables to model fault

variables.

iii Information on the detected effects of a process to be used as evidence in a Bayesian network

analysis.

7.3.2 What information should a fault diagnosis model yield?

The level 2 fusion yields information on the probability of candidate causes being in fault. This

quantitative information allows the ranking of candidate causes in order of likelihood. On a real

process, this ranking gives a prioritised task list for further investigation.

7.3.3 What types of model are appropriate to fault diagnosis?

The level 2 fusion is a probabilistic model of the strength of relationships between cause and effects.

The specific modelling approach is that of a Bayesian network. The level 2 fusion is directly derived

from the level 1 fusion, which is a detailed qualitative model of the physical relationships between

causes and effects.

7.4 Summary
A level 2 fusion is proposed to address the problem of process fault propagation, detection and

analysis. The objective of the level 2 approach is to directly build on the qualitative level 1 approach,

so that the causal digraph can make quantitative fault diagnoses.

The level 2 fusion uses a Bayesian network to model the conditional probability relations between

fault variables. In the first instance a level 1 digraph is built. This digraph models the causal relations

using a structure comprising both variable and function vertices. To comply with the convention that

Bayesian networks comprises only vertices representing variables, the level 1 qualitative digraph is

converted to a level 2 qualitative digraph. The vertices of the Bayesian network represent binary fault

variables corresponding to process variables.

To realise the level 2 qualitative digraph as a Bayesian network requires that each vertex is associated

with a conditional probability table. Each conditional probability table models the probable value of its

vertex conditional on the value of its antecedent vertices.
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The data for the conditional probability tables would ideally come from the process itself. In lieu

of such data a Monte Carlo procedure is used, based on the level 1 first principles process model.

However, it was shown that the time required to harvest the required data is potentially expensive. The

level 2 qualitative digraph and the quantitative conditional probability tables are brought together as a

Bayesian network called a level 2 fusion.

To test the efficacy of the level 2 fusion, a case study on a heat exchanger network is presented.

A reachability analysis of the Bayesian network shows that all of the fault causes can reach all the

observable effects. In this case fault isolation using qualitative causal analysis is not possible. However

it is shown that the Bayesian network can discriminate between causes using effect evidence. The

probability of each fault occurring is ranked by its probability of occurrence.

The case study shows the proposed level 2 fusion is a credible approach to process fault analysis.

However, further work is needed to automate the workflow and reduce project start-up costs.

* * *
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Chapter 8

Critical Evaluation

This chapter presents a critical evaluation of the level 1 fusion and level 2 fusion developed in this

thesis. The level 1 fusion and level 2 fusion were developed to address the research problem of fault

propagation, detection and analysis in process systems.

The merits and limitations of the level 1 and level 2 fusion are assessed against the three research

questions proposed in Chapter 1, and the results of the case studies presented in Chapter 5, Chapter 6,

and Chapter 7.

The results of these assessments are summarised as contributions to the research problem, and by

establishing the limitations such as restrictive assumptions and barriers to implementation of the level

1 fusion and the level 2 fusion.

To address these limitations, this chapter proposes several suggestions for development of the level 1

fusion and the level 2 fusion. The developments of the level 1 fusion are based on software engineering

improvements. The developments of the level 2 fusion are based on estimating the probability of rare

events.

8.1 Evaluation of the Level 1 Fusion

8.1.1 Recap of the level 1 fusion

The level 1 fusion is reported in this thesis is a novel, systematic and transparent approach to

modelling and analysing the causal structure of process systems. The causal structure of a process is

the framework for investigating fault propagation mechanisms, and diagnosing candidate causes from
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detected effects.

The motivation for developing the level 1 fusion is to answer three research questions:

i Model ingredients. What are the necessary ingredients of a fault diagnosis model?

ii Model analysis. What information should a fault diagnosis model yield?

iii Modelling approach. What types of fault diagnosis model should be used?

The merits, limitations and further developments of the level 1 fusion are now discussed and

evaluated, using these research questions.

8.1.2 Merits of the level 1 fusion

8.1.2.1 Model ingredients: focus on the process

At the heart of the level 1 fusion is a focus on the physical and engineering principles of the process.

First principles process modelling is combined with process architecture information. The process

comprises connected plant devices and the control devices. Plant devices include heat exchangers,

reactors and separators. Control devices include controllers, instruments and valves. In this way the

level 1 fusion expresses the causal structure of the process.

8.1.2.2 Model analysis: qualitative fault propagation paths

In the first instance, a reduced reachabilty (R2) matrix was developed which gives an immediate

answer to which causes can reach which effects. It was demonstrated that transposing a digraph

adjacency matrix reverses all the digraph edge directions. Using this technique, the reversed reduced

reachabilty (R3) matrix is developed as the effect-to-cause version of the R2 matrix. The merit of the

R3 matrix is that it is clear which effects are dependent on which causes. Further, applying set theory

techniques to R2 and R3 matrices makes it possible to reduce the list of candidate causes corresponding

to the list of detected effects.

It has also been shown how set theory can be applied to digraphs to pick out specific features of

causal mechanisms, for example, the relationships between process controllers. This new technique is

called paring.

To fully understand the mechanisms that link causes and effects, digraph path analysis is used. The

function vertices in the level 1 fusion digraph correspond to physical processes and engineering devices.

238



CHAPTER 8. CRITICAL EVALUATION

An example of a process function is the species mole fraction partition function for a vapour-liquid

mixture. An example of a device function is a flow controller. Therefore a path through a level 1

digraph reveals the mechanisms by which faults propagate.

The shortest path between a cause and effect is the most direct one. If one or more shortest paths

can be sequentially joined to include and explain the list of observed effects, then this candidate path

can be tested and confirmed or falsified by further investigation of the actual process. In this case,

more convoluted fault propagation paths can be investigated.

An extension of a fault tree called a fault polytree has been developed to explain the relationships

between multiple causes and multiple effects. Fault polytrees are based on shortest path analysis and

show the explanatory causal paths between candidate causes and observed effects.

8.1.2.3 Modelling approach: structural models and digraphs

The combination of a detailed first principles model and flowsheet information is used to derive

a structural model of the complete process. A structural model qualitatively describes the causal

dependencies between variables, and is made up of of one or more structural equations. A structural

equation has a single dependent variable which is related to a list of independent variables through

a function. The function represents a process device, such as a controller, or a chemical or physical

process such as heat transfer.

The process structural model is used to build an adjacency matrix, which is in turn used to compute

a digraph. A level 1 fusion process digraph comprises vertices representing functions and vertices

representing variables. Plant function vertices represent chemical and physical processes, such as

heat transfer, chemical reactions, mass and energy balances, and vapour-liquid equilibrium. Control

function vertices represent controllers, instruments and valves. Digraphs are mathematical entities,

but they also have a pictorial representation. Therefore control and plant vertices and the connections

between them represent the chemical and control engineering of the actual process in a way that is

familiar to a process engineer.

Each function vertex has a single descendant variable vertex which represents the output of the

function. The level 1 fusion uses the architecture of the process as a whole, and its control and

instrumentation system in particular, to build the structural model. It has been shown how the control

and instrumentation system constrains the causality of the process, which is reflected in the structural
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model and subsequent level 1 fusion digraph. Therefore, a level 1 function vertex and its descendant

variable vertex are matched according to the design of the process. This approach has solved a problem

that has arisen with previous approaches that used matching techniques based on the efficient solution

of large systems of equations.

A feature of the level 1 fusion is that root causes are modelled as digraph vertices which represent

variables, and have no antecedents. The effects of faults are observed using fault detectors associated

with instruments. Therefore candidate faults are clearly defined, effects are only observed on measured

variables and fault propagation paths can be traced between causes and effects.

The level 1 fusion has a focus on the physical causality of the system. Furthermore, an adjacency

matrix, and hence digraph, of a process is built systematically in a step-by-step procedure using

structural equations combined with process architecture information. This approach allows the level 1

fusion to be validated as it is being built, where validation means to “to assure that the model represents

the real system to a sufficient level of accuracy” (Sargent, 2010). A useful approach to validation is

that of face validity (Sargent, 2010) which relies on experts working through the model to assess its

reasonableness. In the case of a level 1 fusion model of a process system, face validation entails control

and process engineers checking the cause to effect paths to see if they are physically credible. This

same approach was used in Section 6.2 on the Tennessee Eastman process, and allows the structure of

the underlying first principles model of Jockenhovel et al. (2004) to be visually explored in detail. If

the validation team find that the structure of the level 1 fusion does not make physical sense, then the

first principles model can be revised accordingly.

8.1.3 Summary of contributions of the level 1 fusion

In answering the research questions, and modelling and analysing two major case studies, the level 1

fusion has delivered the following contributions in the field of fault propagation, detection and analysis

in process systems.

i Using the deterministic chemistry, physics, and device architecture of the process as the basis

for a qualitative causal approach to process fault propagation modelling and analysis.

ii Showing how the process control and instrumentation system constrains the causality of the

process.
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iii Showing how digraph reversal and effect-to-cause analysis are achieved by transposing the

adjacency matrix.

iv Developing the reduced reachabilty (R2) and reversed reduced reachabilty (R3) matrices to

quickly evaluate causal relationships.

v Developing fault polytrees to detail the paths between multiple causes and multiple effects.

vi Using the qualitative R2 matrix to develop a quantitative, causal Bayesian network for process

fault diagnosis.

8.1.4 Limitations of the level 1 fusion

The level 1 fusion has several limitations, broadly categorised under the headings of restrictive

assumptions and implementation barriers. These limitations are now discussed.

8.1.4.1 Restrictive assumptions

One-to-one correspondence of functions and function outputs. A core assumption of the level 1

fusion is that each function has a single output. This one-to-one correspondence is expressed in the

process structural model, and subsequently in the process digraph. It can be argued that this assumption

increases the number of vertices in the digraph, which may lead to increased digraph complexity.

Use of shortest path analysis. The level 1 fusion makes extensive use of shortest path analysis

to investigate fault propagation path and mechanisms. Although the shortest path is the most direct

path, it is possible it may not be the path that gives rise to the detected effect. Although no examples

were found in the case studies, it is conceivable that the shortest path provides a causal mechanism that

attenuates the signal from the cause to the effect. If it found from quantitative studies this is the case,

all the paths from a cause to an effect can be evaluated.

8.1.4.2 Implementation barriers

Process model availability. The level 1 fusion relies on the availability of a detailed first principles

process model. While it is the case that a process often has a process simulation “digital twin”, these

simulations do not always expose their mathematical models as equation sets. Furthermore, it may be

the case that the even if such models are available from a process simulator they are in a form which

is matched to yield a numerically efficient solution. This matching does not necessarily correspond
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to the causal matching imposed by the control and instrumentation system. In this case considerable

rearrangement of the first principles model is required. It may also be the case that no model or

simulation of the process has been developed.

Projects costs. In this thesis, two case studies have been developed. The first project is the level

fusion model of the Two-tank process. The second case study is the Tennessee Eastman challenge

process. Each study takes time and effort to develop, debug and implement. This time and effort

is called the project cost. The project costs for the case studies presented in this research were not

prohibitive. However, the manual methods used may be limiting for developing a level 1 fusion for a

very large and complicated process, such as the Jamnager oil refinery in India.

Type of process system. The level 1 fusion methodology has been applied to two industrial process

systems, the Two-tank process and the Tennessee Eastman process. Both these processes have a

well-defined architecture expressed in process and instrumentation diagrams and flowcharts.

One potential area of application is physiologically based pharmacokinetic (PBPK) modelling and

analysis for drug movement through the bodies of humans and animals (Geishke and Serafin, 2014) .

In this case the modelling is based on a well-defined anatomical and physiological architecture of the

body, where organs and tissues are process devices, connected by blood and lymph vessels.

A common application of graph theory is in formulating and solving the “Travelling Salesman

Problem” (Deo, 1974). Therefore, another area in which the level 1 fusion may be used is in supply

chain modelling, where the process architecture defines the transport relationships between suppliers

and consumers (Tipi, 2021).

The level 1 fusion is not readily applicable to systems which have a rapidly time-varying architecture,

where rapidly means the architecture of the real-world system changes faster than the model can be

changed and re-validated . Examples of such systems are gene-regulation networks (Lebre et al.,

2010), and supply-chains in which vertices representing retailers, warehouses and consumers may be

randomly added or removed from the system at short notice (Matei et al., 2013).

8.1.5 Further Developments of the level 1 fusion

At this stage, further developments of the level 1 fusion are based on ideas for software tools

and recent implementations of graph theory algorithms to overcome the restrictive assumptions, and

implementation barriers. These are now discussed.
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Figure 8.1.1: Process diagram segment of the complete two-tank process shown in Figure 5.2.1 on
page 117. This segment shows the LC1-FC1 level control loop.

8.1.5.1 Structural block digraph tool

On the basis that process and control engineers are familiar with the look and feel of block diagrams,

there is a potential opportunity to develop structural block diagram software tools to model level 1

fusion process digraphs.

A graphical structural block diagram builder could be the front-end for a digraph modelling engine.

Figure 8.1.3 shows a mock-up of the block circled in red in Figure 8.1.2. This specific block models

the structural function of equation 8.1.1.

qCV1 = QCV1(yFC1,δ pCV1,kCV1) (8.1.1)

Figure 8.1.2: Structural block diagram for the two-tank LC1-FC1 control loop of Figure 8.1.1.
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Figure 8.1.3: Control valve CV1 structural function block.

Similarly, the structural variable δ pCV1 is derived from the specific matched structural function

block of Figure 8.1.4. This block represents the structural function of equation 8.1.2.

δ pCV1 = ∆pCV1(pW1, pAir) (8.1.2)

In a future graphical model-builder these blocks would be instances of generic library blocks

representing unmatched structural equations. The block matching is completed when a particular

output is selected to integrate with another block. Figure 8.1.5 shows the generic unmatched structural

block for the pressures associated with a valve. This corresponds to the generic unmatched structural

function of equation 8.1.3.

0 = F(pi, po,δp) (8.1.3)

Figure 8.1.4: Pressure difference structural function block for valve CV1.
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Figure 8.1.5: Generic unmatched structural function for the pressures associated with a valve.

Figure 8.1.7 shows the mock-up integration of the ∆pCV1 and QCV1 structural function blocks. The

generic unmatched structural block of Figure 8.1.5 becomes the specific matched structural block of

Figure 8.1.3.

Because the graphical front end is supported by a digraph engine, once a structural function

block model has been completed, a corresponding adjacency matrix is automatically calculated. The

structural function block diagram itself assumes the properties of a digraph, and can be analysed using

graph theory algorithms. For example, the path coloured red in Figure 8.1.7 shows the shortest path

between the pressure of the cold water source for tank TK1, pW1, and the flow rate through valve CV1,

qCV1.

The formulation of matched structural models depends on the architecture of the control and

instrumentation system. Iyun has developed a process connectivity software tool, based on the use of

intelligent piping and instrumentation diagrams (Iyun, 2011; Di Geronimo Gil, 2010; Di Geronimo Gil

et al., 2011). This approach captures the process plant and control architecture. On this basis, intelligent

piping and instrumentation diagrams could be further developed as the starting point of a graphical

modelling system to build level 1 fusion digraphs.

8.1.5.2 Additional digraph software tools

This PhD has used Matlab and its native graph theory functions to develop the level 1 fusion

workflow. The latest version of Matlab used in this thesis is R2020a. However, Matlab is under
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Figure 8.1.6: Snapshot of the Two-tank process.

continuous development with new graph theory tools being deployed. Moreover, the Python language

supports a number of graph theory libraries. Python is a free, open source language with an active

community of developers working on implementing graph algorithms.

An interesting recent development is the introduction of a new graph function, “allpaths”, in Matlab

R2021a. This function returns all the paths between a specified start and end vertex. To test this new

function, the Matlab script TT General Digraph Test Bed All Paths Vs01.m applies the allpaths

function to finding paths through the Two-tank digraph. The code can be found at the Zenodo site:

https://zenodo.org/communities/dl4009

As an example, Figure 8.1.6 shows a snapshot of the Two-tank process of Figure 5.2.1 on page

117. Applying the allpath function to the process digraph yields two paths between a fault on the flow

controller FC1, kFC1 and the output of the temperature controller TC1, yTC1 the two paths are shown in

Table 8.1.1.
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Table 8.1.1: Fault paths from controller FC1 to the output of controller TC1

Path 1 Vertex Description Path 2 Vertex Description
kFC1 Fault on FC1 kFC1 Fault on FC1
YFC1 FC1 function YFC1 FC1 function
yFC1 FC1 output yFC1 FC1 output
QCV1 CV1 function QCV1 CV1 function
qCV1 CV1 flow qCV1 CV1 flow
MTK1 TK1 water mass balance function
mTK1 TK1 water mass
LTK1 TK1 water level function
lTK1 TK1 water level
∆pMV1 Delta pressure function for MV1
δ pMV1 delta pressure for MV1
QMV1 MV1 function
qMV1 MV1 flow
ΘTK1 TK1 energy balance function ΘTK1 TK1 energy balance function
θTK1 TK1 water temperature θTK1 TK1 water temperature
YTT1 TK1 temperature instrument YTT1 TK1 temperature instrument

function function
yTT1 TK1 temperature instrument yTT1 TK1 temperature instrument

output output
YTC1 TK1 temperature controller YTT1 TK1 temperature controller

function function
yTC1 TK1 temperature controller yTT1 TK1 temperature controller

output output

In this case the paths split after the valve CV1 flow, qCV1, and rejoin at the energy balance function

for tank TK1, ΘTK1. Although path 1 takes a longer route through the process, path 2 is the more direct

route between the fault on controller FC1 and the output of controller TC1.

As noted the Python community is active in developing code for the analysis of graphs and digraphs.

For example the GitHub community, graph-notebook: https://github.com/aws/graph-notebook.

These developments are concerned with writing language and platform tools for implementing digraphs.

However, it is not clear that these, or or Python tools represent a technical advance of the ones available

in Matlab. For example, the Python package NetworkX is used for modelling and analysing digraphs

https://networkx.org/. Although NetworkX is presented as a GUI for building digraphs, it still

requires the developer to enter the digraph programmatically to show the resulting digraph visually.
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Figure 8.1.8: Data flows in a digital shadow (left) and a digital twin (right). Both are digital models.
Reproduced from Kritzinger et al. (2018) with permission.

8.1.5.3 Application to digital models of process systems

The level 1 fusion has been developed as a detailed approach to modelling and analysing physical

causality in process systems. However, and as noted in Section 1.4.3, this does not mean the level 1

fusion is stand alone, or is intended to supplant other approaches. Rather the level 1 fusion and level 2

fusion can form the basis of digital model approaches to fault diagnosis.

Digital models, shadows and twins. As already noted in Section 1.4.3, in the context of a process

system a digital twin is a virtual, real-time model of the process. According to Yang et al. (2020) a

key feature of digital twins is their capability to act on real-time data from the process. In the same

vein Kritzinger et al. (2018) note that digital twins include algorithms which decide about action.

These descriptions chime with that of Pistikopoulos et al. (2021) who characterise digital-twin model

development as part of model-based automation.

A defining characteristic of a digital twin is the level of integration with process control and

instrumentation system (Negri et al., 2017; Kritzinger et al., 2018; Perno et al., 2021). Kritzinger et al.

(2018) propose the classification shown in Figure 8.1.8. The physical object corresponds to the process.

The digital object is the real-time representation of the process. A manual data flow is shown as a

dashed line. An automatic data flow is shown as a solid line. A digital shadow has a manual data flow

from the digital object back to the physical object. A digital shadow is a human-in-the-loop (HITL)

system where process personnel act on the information provided by the control system. In a digital

twin, all the data flows are automatic so that a digital twin is a human-out-of-the loop (HOTL) system.

Based on these views of digital models as components of the process control system the level 1 and

level 2 fusions could be used as part of a suite of process digital models as follows.
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The level 1 fusion as a digital model. A level 1 fusion model of a process can be used in a digital

model approach to process system engineering by using the set of real-time values of the detected

process faults, e(f), to find all the paths back to the set of common causes c(f). In practical terms, the

level 1 fusion would be developed and maintained as an integral component of the process control and

instrumentation system, with the digraph model rendered on the control room supervisory displays.

The detail of the paths from effects to causes can be highlighted, with the rest of the digraph suppressed

as required. The process personnel would use the level 1 model to investigate the fault paths from

effect back to causes. Therefore the level 1 fusion is a digital shadow.

The level 2 fusion as a digital model. The level 2 fusion could be used in a suite of digital twin

models to compliment the level 1 model by displaying the probability rankings of candidate causes

using real-time data on measured effects. The level 2 fusion is a digital shadow. The probability

rankings of the causes allow control and process personal to triage where to put time and resources to

investigate fault causes.

If a candidate cause is identified with a high probability of being in fault, then the control and safety

systems could use the outputs of the level 2 digital models to affect automatic remedial action. This

may include by-passing that part of the process, or instigating a shutdown. In such cases the level 2

fusion is a fully-fledged digital twin.

Development of the level 1 fusion as a neural network digital model. In a literature review, Yang

et al. (2020) conclude that artificial neural networks, as an example of data driven machine learning,

are a key technology for modelling in the process industries. Similarly, from a review of the published

literature from January 2016 to October 2020, Perno et al. (2021) conclude that machine learning is

the dominant research focus of digital twin technologies in the process industries.

The case study on the Tennessee Eastman Challenge process in Chapter 6 has illustrated how the

level 1 fusion can provide a qualitative physical explanation or refutation of the quantitative results of

process fault diagnosis models derived from statistical correlations and machine learning techniques.

The level 1 fusion could also be used directly in machine learning (ML) digital models of process

systems by using the R2 matrix. Figure 8.1.9 shows a simple ML model called an artificial neural

network (ANN). Such ANN models are very useful in solving problems in which data can be modelled

using linearly separable categories (Goodfellow et al., 2016; Raschka and Mirjalili, 2019). In the
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Figure 8.1.9: A single layer artificial neural network (ANN) model of the relationship of a single
cause ci and single effect e j. The artificial neuron is denoted by Ni j.

Figure 8.1.10: Example R2 matrix and a corresponding ANN architecture. The vertices marked N1 and N2
can represent single neurons, or more complicated structures called deep convolutional neural networks.

context of this thesis, such categories apply to fault variables which are in-fault and not in-fault.

The qualitative structure of Figure 8.1.9 is reminiscent of a level 1 fusion digraph which links effect

ci to effect e j through function Ni j. Conversely, a level 1 fusion R2 matrix can be used to build ANN

architectures. The left-hand side of Figure 8.1.10 shows an example R2 matrix for a process with

four root causes and two measurable effects where each effect is uniquely associated with a single

neuron. To avoid creating spurious causal relationships in the ANN, for example linking cause c( f )
1 to

effect e( f )
2 , each effect is modelled by an individual ANN. For simplicity of illustration the ANNs of

Figure 8.1.10 are shown with single neurons as vertices. Because this form of an ANN is based on the
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physically causal relationships between fault variables, the supervised learning of the ANN is focused

on the parameterisation of the model. In addition, the neuron vertices can functionally represent more

complicated structures called deep convolutional neural networks (DCNNs) (Goodfellow et al., 2016).

Because this modelling approach combines deterministic causality with data driven machine learning,

it is an example of a hybrid model (Venkatasubramanian, 2019).

The example of Figure 8.1.10 shows a model of cause-to-effect relationships in a process system,

based on developing an R2 matrix for the process. The problem of fault diagnosis is one of tracing

backwards from effects to causes. The transpose of the R2 matrix is the R3 matrix which shows the

existence of relationships from effects to causes. In the same way the R2 matrix gives the basis for a

cause-to-effect ANN, the R3 matrix can be used as the basis for a set of process effect-to-cause ANNs.

Therefore, an area for future research is the development and use of fault detection ANNs based on

level 1 R2 and R3 matrices.

As with the level 2 fusion Bayesian network such ANNs would be used in the first instance to triage

the allocation of process personal to investigate candidate causes. On this basis ANN digital models

are examples of digital shadows. If the output of the ANN digital model could be used in an automatic

control or safety system, then the ANN would become a digital twin.

8.2 Evaluation of the Level 2 Fusion

8.2.1 Recap of the level 2 fusion

The level 2 fusion developed in this thesis is a probabilistic digraph called a Bayesian network. The

level 2 fusion builds directly on the process digraph of the level 1 fusion, and models the relationships

between fault causes and their effects.

The merits, limitations and potential further developments of the level 2 fusion are now discussed

using the three research questions.

i Model ingredients. What are the necessary ingredients of a fault diagnosis model?

ii Model analysis. What information should a fault diagnosis model yield?

iii Modelling approach. Which types of model are appropriate to fault diagnosis?
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8.2.2 Merits of the level 2 fusion

8.2.2.1 Model ingredients: A focus on the process

The quantitative level 2 fusion builds directly on the level 1 fusion as the digraph of a reduced

reachability (R2) matrix that directly links causal variables to effect variables. The merit of this

approach is that the level 2 fusion inherits the causal properties of the level 1 fusion, Therefore, the

level 2 fusion models physical relationships between causes and effects.

The level 2 fusion also requires quantitative data to populate conditional probability tables. These

data come from:

i Processes control system historian data.

ii Monte Carlo simulations using a first principles model.

The merit of this approach is the level 2 fusion uses data from the actual process, or data from a

high-fidelity process simulation data to model the probabilistic behaviour of the process.

8.2.2.2 Model analysis: quantitative diagnosis and prognosis

The advantage of the level 2 fusion over other types of numerical model is that it is inherently

invertible. The level 2 fusion yields the following diagnostic and prognostic information:

i The calculation of the probability of the causes being abnormal, given the probability of the

effects being abnormal. The cause with the highest probability is diagnosed as the likely

candidate cause.

ii The calculation of the probability of the effects being abnormal, given the probability of the

causes being abnormal. This calculation is useful as a prognostic check on the plausibility

candidate cause diagnosed in point i.

8.2.2.3 Modelling approach: reduction of complexity

The level 1 fusion provides a detailed qualitative description of the causal mechanisms which link

parts of the system. A merit of the level 2 fusion is that because the level 2 fusion is the digraph of the

level 1 R2 matrix, it is much simpler than the level 1 digraph. Causes link directly to effects.

Another merit is that the software for modelling Bayesian networks is focused on the ease of

representation and use. The detail of the calculations is hidden from the user.
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8.2.3 Summary of contributions of the level 2 fusion

As a quantitative development of the level 1 fusion, the level 2 fusion has delivered the following

contributions in the field of fault propagation, detection and analysis in process systems.

i The level 2 fusion builds directly on the causal structure of the level 1 fusion. It does not

represent correlations between variables, but the instead the physical causality of the process

system defined causes and measurable effects.

ii The complexity of the causal structure of the process is reduced, compared to the level 1 fusion.

iii Once the level 2 fusion for a specific process has been set up as a graphical model (e.g. as an

MSBNx project), the level 2 fusion is user-friendly. All the mathematics is hidden from the user.

8.2.4 Limitations of the level 2 fusion

8.2.4.1 Restrictive assumptions

The level 2 fusion is based on the level 1 R2 matrix for a given process. Therefore, for the level

2 fusion digraph to be correct, the level 1 fusion must be correct. Getting the level 2 digraph correct

requires a robust level 1 fusion development process.

8.2.4.2 Implementation barriers

The major implementation barrier for a level 1 fusion is the time and effort required to populate

the Bayesian network conditional probability tables. This could take many months or even years of

process operation data collection time. In the absence of actual process data, simulated data my be

used. However, as also demonstrated in Section 7.1.5.3, generating simulated data may also be very

time consuming.

8.2.5 Further developments of the level 2 fusion

In theory, generating the conditional probability tables for a level 2 fusion is straightforward. The

causal patterns that are required to be detected are well-defined events. Furthermore, calculating the

probability of an event is determined from the frequency of occurrence of the event.

The problem is that because the required causal patterns can be so rare, then a large volume of

process historian data are required to capture their occurrence. If this data does not exist, then a
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large number of Monte Carlo simulations are required to capture the occurrence of rare patterns, and

calculate the probability of such patterns causing an effect to go into fault. For example, Table 7.1.3 on

page 205 shows the conditional probability table for the heat exchanger shown in Figure 7.1.11 on

page 204. The rarest patterns are those with the most ones in them, indicating multiple simultaneous

faults. The most rare pattern of causes is pattern B01. The probability that this pattern causes θHo to

go into fault is given by equation 8.2.1.

P((B = B01)∧ (θ
(f)
Ho = 1)) = 1.000 (8.2.1)

As shown in equation 7.1.29, the wait time for this event could be around 1300 days. Table 8.2.1

shows a partial view rearrangement of Table 7.1.3, formed by introducing an index k and sorting the

data according to increasing θ
(p)
Ho .

Figure 8.2.1 shows the plot for the complete data set of Table 8.2.1. The data appear to lie on a

function which can be modelled numerically. Recalling that k is associated with a cause pattern, it

may be possible to generate sufficient data using cause patterns that are frequent, and use these data to

model a curve and estimate values of θ
(p)
Ho caused by rare cause patterns.

8.3 Chapter Summary
This chapter has provided a critical evaluation of the level 1 fusion and level 2 fusion developed in

this thesis.

The merits of the work developed in this thesis were assessed against the three research questions.

This assessment, along with the results of the case studies, show the level 1 and level 2 frameworks

have made several novel and significant contributions to the study of fault propagation, detection and

Table 8.2.1: Partial view of reordering of Table 7.1.3

Pattern k θ
(p)
Ho

B32 k1 0.0073
B24 k2 0.0114
B30 k3 0.0138
... ... ...
B02 k30 0.6552
B03 k31 0.7812
B01 k32 1.000
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Figure 8.2.1: Plot of full data set partially shown in Table 8.2.1.

analysis in process systems.

The critical evaluation has also highlighted a number of limitations. In the case of the level 1 fusion,

it is proposed these limitations are addressed by developments in software engineering. The major

limitation of the level 2 fusion is in estimating the probability of occurrence of rare fault patterns. An

idea for addressing this problem have been suggested.

* * *
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Conclusions

This final chapter provides and overview the research presented in this thesis. Answers to the research

questions are provided, and the novel contributions of the research are stated. Some final remarks

summarise the overall achievements and value of the research.

9.1 Overview of the Research

9.1.1 The motivation for the research

The background to the research presented in this thesis is based on the ideas:

i A process has a specific purpose, achieved through processing routes.

ii Processing routes comprise chemical and physical processes, and electrical, mechanical and

software devices.

iii Processing routes are defined by the architecture of the process.

iv Processing routes are deterministic.

v Faults propagate along processing routes.

Therefore, this thesis proposed that fault propagation in a process system is a consequence of the

deterministic, physical causality of the process system.
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Based on this proposition, the motivation for the research was to develop and apply a fault diag-

nosis model whose ingredients comprised detailed information on chemistry and physics of process,

combined with the process architecture.

Hence, the physical causality of the process was put at the heart of the research into fault propagation,

detection and analysis in process systems.

9.1.2 The methods of the research

The proposition of fault propagation based on physical causality prompted the investigation of

qualitative and quantitative modelling and analysis methods for studying physical causality.

9.1.2.1 Modelling methods

In the first instance, the representation of the chemistry, physics and engineering of the process is

achieved using structural equations which detail the dependencies amongst variables using structural

functions. However, systems of structural equations can be permuted according to their degrees of

freedom. Therefore it is necessary to constrain the structural model according to the the operation of

the control system, using information about the process architecture.

Having developed a qualitative structural model of the causal relationships of the process, it is

useful to analyse the model in a way that is easily navigable and easily related to the as-given layout of

the process. To achieve these objectives, the concept of a digraph was introduced. Digraphs are a way

to model the relationships between a set of vertices connected by directed lines called edges. In the

context of this research, vertices are used to represent structural functions and variables, and the edges

represent energy, mass and information flows. Hence, the equivalence of structural models and digraph

models was demonstrated and used to develop a qualitative level 1 fusion.

The level 1 fusion is a digraph which describes a navigable causal map of the process. In this

representation fault causes are modelled as sources, where sources are vertices without any antecedents.

Similarly, effects are modelled as sinks, where sinks are vertices without any descendants. Furthermore,

effects are associated with the output variables of the process instrumentation. In the level 1 fusion

variables are binary, and represent the normal or abnormal state of a continuous process variable.

Therefore causes are either normal or abnormal, and effects are either normal or abnormal.

The level 1 fusion is qualitative because it describes the existence, but not the strength, of the
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relationships between causes and effects. To develop a quantitative approach to fault modelling, the

level 2 fusion was developed, based on the concept of a Bayesian network.

Bayesian networks are a form of digraph in which only vertices representing variables are present.

The vertices also model the probability of a variable having a particular value. The level 2 fusion is

a Bayesian network which models the relationships between causes and effects. The probability of

each cause and effect being normal or abnormal is modelled using a conditional probability table. The

causal relationships described by the level 2 fusion are developed directly from the level 1 fusion.

Hence the level 2 fusion inherits the causal basis of the level 1 fusion.

Therefore, the use of structural equations, and subsequent digraphs, gave rise to qualitative and

quantitative modelling methods with a common basis in the physical causality of the process.

9.1.2.2 Analysis methods

Digraphs can be algorithmically searched to detail the paths between vertices. Therefore fault

propagation paths from causes to effects through the process can be identified and analysed using the

level 1 fusion. The research showed how digraphs are reversed, hence the paths from effects to causes

can also be traced.

Fault propagation paths in process systems can be convoluted. Therefore this theses developed the

Reduced Reachabilty (R2) matrix and Reversed Reduced Reachabilty (R3) matrix to quickly asses the

causal relations between fault causes and detected effects.

Established engineering methods such as fault tree analysis show fault propagation paths from a

single cause to multiple effects. Therefore the research presented in this thesis has developed and

applied the method of fault polytrees which detail the causal paths from multiple fault causes to

multiple detected effects.

9.1.3 The results of the case studies

The modelling and analysis methods developed in the research have been applied to two qualitative

case studies, and one quantitative case study. The results and conclusions of these studies are now

summarised.
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9.1.3.1 Level 1 fusion case studies

The first case study was an investigation of a Two-tank process. This process was developed

and studied in the prior literature to analyse the causal relationships between the process controllers.

Through a detailed analysis of relationships amongst the process controllers, the level 1 fusion revealed

several incorrect and hidden assumptions present in the prior literature. Therefore the level l fusion

was able to show the necessity of combining plant and control system information to formulate a fault

diagnosis model.

The second case study was an investigation of the Tennessee Eastman challenge process. The

process flowsheet, specific control scheme, and first principles modelling were all taken from the

prior literature. In the first instance, an analysis of the relationships between the process controllers

revealed a flaw in the compressor control scheme. The rest of the case study focused on the analysis of

several fault scenarios, which were again developed in the prior literature using process simulation and

statistical models. The level 1 fusion was able to fully explain the detailed causal mechanisms which

linked causes to effects. These results represent a significant advance on the state of the art.

The time and effort required to develop a level 1 fusion model for a particular process is called the

project cost. It is worth noting the level 1 fusions for the Two-tank process and Tennessee Eastman

Challenge process carried significant project costs. However, once the process digraphs were set up,

their analysis was algorithmic

9.1.3.2 Level 2 fusion case study

A quantitative level 2 fusion of a heat exchanger network was directly derived from a qualitative

R2 matrix representation of the the process. Therefore the level 2 fusion only modelled physically

causal relationships between causes and effects. The conditional probability tables of the level 2 fusion

were populated using a Monte Carlo simulation of the HEN. By using the evidence of effects from the

result of a fault simulation, it was shown level 2 fusion successfully diagnosed process causes from

the evidence of detected effects. Hence, the level 12 fusion has is a credible causal and quantitative

approach to fault diagnosis in process systems.

Both levels of fusion have an associated project cost. Once the level 1 fusion has been set up, the

level 2 fusion carries an additional project cost in data harvesting or data generation to populate the

conditional probability tables of the level 2 fusion.
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9.2 Answers to the Research Questions
To address the study of fault propagation, detection and analysis in process systems, three research

questions were posed. The research and results presented in this thesis give answers to those questions,

which are now summarised.

9.2.1 What are the necessary ingredients of a fault diagnosis model?

In order to qualitatively model and analyse the mechanisms of fault propagation between causes

and effects, the level 1 fusion has been developed. The ingredients of the level 1 fusion are:

i First principles models of the process chemistry and physics.

ii Information on the plant and control device architecture. Such architecture information is

provided by process and instrumentation diagrams or process flowsheets.

The quantitative level 2 fusion builds directly on the level 1 fusion, to derive a Bayesian network.

The ingredients of the level 2 fusion are:

i A verified level 1 fusion model.

ii Numerical data to populate conditional probability tables. This can come from the process

historian. Alternatively the data can be simulated.

9.2.2 What information should a fault diagnosis model yield?

The level 1 fusion yields several tools to analyse process faults:

i A detailed, qualitative digraph as a causal map of all the physical routes and mechanisms by

which faults propagate from causes to effects.

ii A reversed digraph as a causal map which traces effects back to causes.

iii A reduced reachability (R2) matrix, and a reversed reduced reachabilty (R3) matrix for the rapid

evaluation of which causes can reach which effects, and vice versa. The R2 matrix is also the

basis of the level 2 fusion

iv Fault polytrees to detail the direct paths between multiple causes and multiple effects.
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This thesis has shown how the quantitative level 2 fusion is directly derived from the level 1 R2

matrix to yield a Bayesian network. The level 2 fusion yields the following information:

i The calculation of the probability of the causes being abnormal, given the probability of the

effects being abnormal. The cause with the highest probability is identified as the likely candidate

cause.

ii The calculation of the probability of the effects being abnormal, given the probability of the

causes being normal. This calculation is useful as an additional check on the candidate cause

identified in point i.

9.2.3 What types of model are appropriate to fault diagnosis?

This thesis has shown that the types of models appropriate to fault diagnosis are:

i Qualitative structural models. These models capture the causal relationship between functions

and variables associated with both plant and control system devices and processes.

ii Qualitative digraph models. These models are directly derived from structural models and offer a

pictorial representation of the process structural model. Furthermore, digraphs are mathematical

entities which can be analysed using well-established algorithms.

iii Quantitative digraph models. A Bayesian network, directly derived from a qualitative digraph

model.

9.3 Novel Contributions of the Research
Defining and developing the ingredients, analysis methods and tools, and modelling approaches of

the level 1 and level 2 fusions has resulted in a number of novel contributions.

i Using the deterministic chemistry, physics, and device architecture of the process as the basis

for a qualitative causal approach to process fault propagation modelling and analysis.

ii Showing how the process control and instrumentation system constrains the causality of the

process.

262



CHAPTER 9. CONCLUSIONS

iii Showing how digraph reversal and effect-to-cause analysis are achieved by transposing the

adjacency matrix.

iv Developing the reduced reachabilty (R2) and reversed reduced reachabilty (R3) matrices to

quickly evaluate causal relationships.

v Developing fault polytrees to detail the paths between multiple causes and multiple effects.

vi Using the qualitative R2 matrix to develop a quantitative, causal Bayesian network for process

fault prognoses and diagnosis using the level 2 fusion.

9.4 Final Remarks
This thesis has developed a new approach to the modelling and analysis of fault propagation in

process systems. The reasoning behind this approach is the realisation that process systems are

engineered to have a definite causal structure. This causal structure can be mapped by combining

process architecture information from process diagrams, and first principles mathematical models of

the process plant and control devices. In the first instance, this workflow leads to a qualitative level 1

fusion, and subsequently to a quantitative level 2 fusion.

In conclusion the level 1 fusion has been successfully applied to two process case studies. Similarly,

the level 2 fusion has also been successfully applied to a process case study. On this basis, the author

believes the level 1 fusion and level 2 fusion approaches developed and presented in this thesis offer

novel, systematic, transparent and physically credible approaches to fault propagation modelling and

analysis in process systems.

* * *
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