92 research outputs found

    Fusion of fingerprint presentation attacks detection and matching: a real approach from the LivDet perspective

    Get PDF
    The liveness detection ability is explicitly required for current personal verification systems in many security applications. As a matter of fact, the project of any biometric verification system cannot ignore the vulnerability to spoofing or presentation attacks (PAs), which must be addressed by effective countermeasures from the beginning of the design process. However, despite significant improvements, especially by adopting deep learning approaches to fingerprint Presentation Attack Detectors (PADs), current research did not state much about their effectiveness when embedded in fingerprint verification systems. We believe that the lack of works is explained by the lack of instruments to investigate the problem, that is, modelling the cause-effect relationships when two systems (spoof detection and matching) with non-zero error rates are integrated. To solve this lack of investigations in the literature, we present in this PhD thesis a novel performance simulation model based on the probabilistic relationships between the Receiver Operating Characteristics (ROC) of the two systems when implemented sequentially. As a matter of fact, this is the most straightforward, flexible, and widespread approach. We carry out simulations on the PAD algorithms’ ROCs submitted to the editions of LivDet 2017-2019, the NIST Bozorth3, and the top-level VeriFinger 12.0 matchers. With the help of this simulator, the overall system performance can be predicted before actual implementation, thus simplifying the process of setting the best trade-off among error rates. In the second part of this thesis, we exploit this model to define a practical evaluation criterion to assess whether operational points of the PAD exist that do not alter the expected or previous performance given by the verification system alone. Experimental simulations coupled with the theoretical expectations confirm that this trade-off allows a complete view of the sequential embedding potentials worthy of being extended to other integration approaches

    Fingerprint recognition with embedded presentation attacks detection: are we ready?

    Get PDF
    The diffusion of fingerprint verification systems for security applications makes it urgent to investigate the embedding of software-based presentation attack detection algorithms (PAD) into such systems. Companies and institutions need to know whether such integration would make the system more “secure” and whether the technology available is ready, and, if so, at what operational working conditions. Despite significant improvements, especially by adopting deep learning approaches to fingerprint PAD, current research did not state much about their effectiveness when embedded in fingerprint verification systems. We believe that the lack of works is explained by the lack of instruments to investigate the problem, that is, modeling the cause-effect relationships when two non-zero error-free systems work together. Accordingly, this paper explores the fusion of PAD into verification systems by proposing a novel investigation instrument: a performance simulator based on the probabilistic modeling of the relationships among the Receiver Operating Characteristics (ROC) of the two individual systems when PAD and verification stages are implemented sequentially. As a matter of fact, this is the most straightforward, flexible, and widespread approach. We carry out simulations on the PAD algorithms’ ROCs submitted to the most recent editions of LivDet (2017-2019), the state-of-the-art NIST Bozorth3, and the top-level Veryfinger 12 matchers. Reported experiments explore significant scenarios to get the conditions under which fingerprint matching with embedded PAD can improve, rather than degrade, the overall personal verification performance

    Towards anomaly detection for increased security in multibiometric systems: spoofing-resistant 1-median fusion eliminating outliers

    Get PDF
    Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset

    Vulnerabilities and attack protection in security systems based on biometric recognition

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, noviembre de 200

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    On the use of client identity information for face anti-spoofing

    Get PDF
    With biometrics playing the role of a password which can not be replaced if stolen, the necessity of establishing counter- measures to biometric spoofing attacks has been recognized. Regardless of the biometric mode, the typical approach of anti-spoofing systems is to classify biometric evidence based on features discriminating between real accesses and spoofing attacks. For the first time, to the best of our knowledge, this paper studies the amount of client-specific information within these features and how it affects the performance of anti-spoofing systems. We make use of this information to build two client-specific anti-spoofing solutions, one relying on a generative and another one on a discriminative paradigm. The proposed methods, tested on a set of state-of-the-art anti- spoofing features for the face mode, outperform the client- independent approaches with up to 50% relative improvement and exhibit better generalization capabilities on unseen types of spoofing attacks

    Risk analysis in biometric-based Border Inspection System

    Get PDF
    The main goal of a Border Inspection System is to prevent the entry of individuals who pose a threat to a country. The entry of just one of these persons could have severe consequences. Nevertheless, performing a lengthy border inspection is not possible, given that 240,737 international passengers enter the country in an average day [5]. For this reason, the primary inspection is performed using biometrics traits and information flow processes that have a low false acceptance rate and have a high throughput.;This thesis uses the analytic modeling tool called LQNS (Layered Queueing Network Solver) to solve open models for biometric-based border inspection system and cost curves to evaluate the risk. The contributions of the thesis include a performance model of a biometric-based border inspection using open workloads and a risk model of a biometric-based border inspection using cost curves. Further, we propose an original methodology for analyzing a combination of performance risk and security risk in the border inspection system
    • …
    corecore