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On the use of client identity information for face
anti-spoofing

Ivana Chingovska, André Anjos

With biometrics playing the role of a password which can
not be replaced if stolen, the necessity of establishing counter-
measures to biometric spoofing attacks has been recognized.
Regardless of the biometric mode, the typical approach of
anti-spoofing systems is to classify biometric evidence based
on features discriminating between real accesses and spoofing
attacks. For the first time, to the best of our knowledge,
this paper studies the amount of client-specific information
within these features and how it affects the performance of
anti-spoofing systems. We make use of this information to
build two client-specific anti-spoofing solutions, one relying
on a generative and another one on a discriminative paradigm.
The proposed methods, tested on a set of state-of-the-art anti-
spoofing features for the face mode, outperform the client-
independent approaches with up to 50% relative improvement
and exhibit better generalization capabilities on unseen types
of spoofing attacks.

Index Terms—Spoofing Attack, Counter-Measures, Counter-
Spoofing, Biometric Verification, Liveness Detection, Replay

I. INTRODUCTION

The wide deployment of biometric recognition systems
in the recent years has been hindered by the discovery of
their vulnerability to spoofing attacks: attempts to access the
system by presenting a copy of the biometric trait of a user.
Depending on the biometric mode, manufacturing such copies
may be a matter of a few mouse clicks. For example, for face
biometrics, all that is required is downloading and printing a
user’s photograph from the Internet: task which has become
strikingly easy in the era of information globalization and
social networks [1]. While more effort and skills may be
required to spoof other biometric modes, recent security trials
of commercial biometric authentication systems on mobile
devices have shown that the vulnerability exists and can be
easily exploited [2].

As noted by D. Denning [3], “It’s liveness, not secrecy,
that counts”. The fact that the biometric traits can not be
kept secret should not be an obstacle for using biometrics.
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Such a reasoning has inspired an ever increasing number
of liveness detection and anti-spoofing algorithms for many
biometric modes. Some of them utilize a specific hardware
device ensuring the presence of a living person in front of
the system. Others combine multiple modalities, presuming
that this increases the difficulty of spoofing the system [4].
Among systems which depend on additional hardware or
require user interaction, software-based solutions which use
only the evidence taken by the biometric sensor may be the
most favorable due to their inexpensiveness and convenience
of use [5].

A point which is very often overlooked is that anti-spoofing
systems are designated to protect biometric recognition sys-
tems and as such need to work jointly with them. One aspect of
this cooperation may be sharing information which is available
to either the recognition or the anti-spoofing system. One ex-
ample is the identity of the client who needs to be recognized,
which is an essential information for the recognition system.
In a verification scenario, a client claims an identity and the
system uses this information to match the input sample against
a stored model. In an identification scenario, the input sample
is matched against several stored models whose identities are
known. Nevertheless, the anti-spoofing systems rarely make
use of this information.

Usually, the anti-spoofing systems are designed as binary
classifiers whose task is to discriminate between real access
and spoofing attack samples, with no regards to the client
identity. They are based on the assumption that there is no
critical difference between the spoofing attacks performed
against different clients. Even more, they disregard the varia-
tions between the real access samples coming from different
clients.

One may argue that the features that anti-spoofing systems
use, need to be selected in such a manner that they capture
the intrinsic differences between real accesses and spoofing
attacks, rendering them unconcerned of the client identities.
Indeed, the face anti-spoofing features proposed in the liter-
ature take into account several aspects of disparity between
real accesses and spoofing attacks, like texture, quality, motion
patterns etc., and they show great discrimination capabilities
between the two classes of samples. This, however, does not
exclude the possibility that the extracted anti-spoofing features
are influenced by the characteristics of the individual clients
and may retain some client-specific information. This infor-
mation may be useful to make better discrimination between
the real accesses and spoofing attacks of a particular client.

The contribution of this paper is three-fold. Firstly, we
investigate to what extent the face anti-spoofing features
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encompass client-specific information and whether this in-
fluences the performance of the anti-spoofing systems. Sec-
ondly, we demonstrate how to exploit this information by
describing two new client-specific anti-spoofing approaches.
The first one builds generative models for the real accesses
of each of the enrolled clients and normalizes the scores with
spoofing attack models. The second one incorporates client-
specific information into the training of a discriminative binary
classifier, resulting in a separate classifier for each client.
Focusing on the face mode, we assess the performance of these
client-specific approaches and their generalization capabilities
to detect spoofing attacks of types not seen during training. As
a final contribution, the implementation of the client-specific
methods are available as open-source, allowing for testing
the proposed methods using different features and biometric
modes.

Applying the proposed client-specific methods to three dif-
ferent state-of-the-art face anti-spoofing features, we observe
a notable improvement over client-independent approaches
which do not use information about the client identity. More-
over, in most cases, the client-specific approaches appear to
generalize better in detecting spoofing attacks of a type not
seen during training. We would like to emphasize that the
main objective of the paper is to establish the prospects of
using client-specific information in anti-spoofing, rather than
studying an extensive set of anti-spoofing features and their
applicability in this context.

In the remainder of this paper, Section II covers the typ-
ical features and methods used in face anti-spoofing. The
motivation and the description of the proposed client-specific
approaches is given in Section III. Section IV describes the
experimental findings, while Section V concludes the paper
and summarizes future perspectives.

II. RELATED WORK

The problem of spoofing detection can be regarded as a
binary classification problem, with the real access samples
considered the positive class and the spoofing attacks the
negative one. The typical anti-spoofing features are selected
to have good discrimination capabilities with respect to the
two classes, regardless of the identities of the clients that the
samples belong to. As such, the features are directly used to
train binary classifiers of different kinds.

The anti-spoofing features can be derived from various
sources. Some methods use multi-spectral analysis [6], or
response to a challenge which is posed to the user [7] to detect
spoofing attacks. The mandatory additional hardware required
alongside the biometric sensor is the primary drawback of the
former approach, while the intrusiveness of the latter. As a
result, many authors are in favor of features which are obtained
in a completely automatic software-based manner from the
sample captured by the biometric sensor [5].

Depending on the cues used to discern spoofing attacks
from real accesses, the software-based anti-spoofing features
for the face mode fall into one of three categories: texture-
based, motion-based and liveness-based. The texture-based
features exploit differences in texture between real accesses

and attacks. The sources of these differences could be: dif-
ferent optical qualities of the human skin and the spoofing
media [8]; blurring due to the limited resolution of the spoofing
device [9] or involuntary shaking while performing the attack;
artifacts appearing in the spoofing production process [10] or
diffuse reflection due to a non-natural shape of the spoofing
attack [9]. To exploit the texture discrepancies, several authors
analyze the differences between the samples in a specific set of
frequency bands [11], [12]. Another popular approach analyzes
the reflectance component extracted from the images [13],
[14]. Expecting degradation of the quality of the recaptured
images in the case of spoofing attacks, [15] derives anti-
spoofing features from image quality measurements. Following
another trail to the same end, several notable works use low-
level texture descriptors extracted from the face region, like
Local Binary Patterns (LBP) [16], [17], Gabor wavelets [10] or
Histogram of Oriented Gradients (HOG) [9]. Furthermore, [9]
demonstrated the benefit of extracting these features from face
components, like eyes, nose or mouth, while [18] uses them
on faces whose micro and macro motion is enhanced using
motion magnification technique. [19] indicates that low-level
features can be used to detect the edges of a spoofing media.

Aiming at exploiting the variation of texture patterns in the
course of a video segment, [20] proposes a spatio-temporal
descriptor of face appearance and dynamics based on the LBP-
TOP operator [21]. Another extension of the texture analysis
into temporal domain is presented in [22].

The motion-based methods explore movements on the scene
which are unusual for a 3D human face, and exploit them
as a cue that an attack is being performed. Similar amount
of movement in the central and peripheral face parts is one
such peculiarity which can be observed in the case of a 2D
face attacks [23]. Heuristic of the movement of 2D and 3D
surfaces is developed in [24]. The high correlation between
the movements of the face region and the background as an
indication of a spoofing attack is used in [25] and [26].

The liveness-based methods try to detect evidence of live-
ness in the scene. Eye-blinking and involuntary lip movements
are the most typical signals used by these methods [27].

A recent trend that came into prominence with [28], [26]
involves combining several methods at score or feature level.
The best results are achieved if the fused methods use comple-
mentary features which discern spoofing attacks from different
aspects [29]. Such methods achieve the best performances
up to date, even when confronted with a multitude of attack
types [30].

With regards to the classification step which follows the
feature extraction, the systems comply to the binary classi-
fication definition. For a sample with feature vector x, the
systems determine the value of its class c ∈ {R,A}, where
R stands for the class of Real accesses and A stands for
the class of attacks. The majority of anti-spoofing systems
use discriminative approaches, like Support Vector Machines
(SVM) [13], [17], [10], [19], [9], [20], Linear Discriminant
Analysis (LDA) [17], Sparse Logistic Regression [14] and
Multi-Layer Perceptron (MLP) [25]. Some systems produce
scores on which a threshold can be directly applied [11], [24].

To the best of our knowledge, a generative approach has
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not been proposed for anti-spoofing up to the present moment.
However, keeping in mind the binary nature of the problem,
generative system can be easily developed by using proba-
bilistic theory. Two generative models, which can be based on
a Gaussian Mixture Model (GMM), can be built separately
for the class of real accesses and for the class of attacks. To
infer the class c given the feature vector x, we firstly need
to compute the likelihoods p(x|c). Then, the final decision
is taken depending on the value of the log-likelihood ratio
(LLR) defined in Equation 1, and a pre-determined decision
threshold [31].

cLLR = log
p(x|c = R)

p(x|c = A)
(1)

During training of the systems mentioned above, the full
set of available real access and spoofing attack samples are
taken to form the positive and the negative class, respectively.
These systems can be considered as client-independent, as the
information about the clients that the samples belong to is
disregarded.

III. CLIENT-SPECIFIC APPROACHES

The client-independent classification methods described in
Section II assume that the characteristics extracted from the
available samples (both real accesses and spoofing attacks) are
invariant across the different clients and do not include any
client-specific information. This is a reasonable hypothesis,
as the proposed features are specifically designed to capture
artifacts of spoofing attacks regardless of the client identities.
Yet, we argue that many of the proposed features, even
inadvertently, retain information specific to the clients that the
samples belong to.

The main objective of this paper is to establish the idea
of considering the client identity information when building
anti-spoofing systems. It does not intend to compete with
the best performing methods like in [30], which rely on
complex combinations of anti-spoofing features. Instead, it
aims to demonstrate how client-specific classification can be
beneficial even when using simple features, upon which many
of the best performing methods are built. As a case study,
we focus on three types of state-of-the-art face anti-spoofing
features: LBP [17], LBP-TOP [20] and MOTION [25], each
of which tackles the spoofing attack detection from a different
perspective. The source code of our methods is publicly avail-
able1, so that the presented results can be easily reproduced.
More importantly, the code can be readily used to analyze the
applicability of client-specific approaches for any other anti-
spoofing features or combination of features.

The client-specific approaches can use the client identity
information in the same way as the biometric recognition sys-
tem they protect. This information may come from the claim
of the client about his identity (in a verification scenario),
or from the enrolled model the sample is matched to (in an
identification scenario). To exemplify, the operation of a client-
specific anti-spoofing system protecting a verification system
is illustrated in Fig. 1. The (blue) dashed line feeding the

1http://pypi.python.org/pypi/antispoofing.clientspec
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Fig. 1: Flow diagram of the operation of a client-specific
anti-spoofing system in a verification scenario

client identity information into the anti-spoofing system, is
the main difference of a client-specific approach with respect
to a typical client-independent approach.

A. Motivation

Besides the characteristics of a live person on the scene,
many of the face anti-spoofing features described in Section II
may capture intrinsic personal properties of the client the
sample belongs to. These properties may be related to the
appearance or the behavior of the client. For example, the
involuntary movements or eye-blinking patterns, which are
an intrinsic client trait, may be manifested into the motion-
based or spatio-temporal anti-spoofing features. The physical
appearance of the face or the skin tone and surface are likely
to have an impact on the texture-based features, like LBP
or Gabor wavelets. Indeed, LBP and Gabor wavelets, in a
more complex variants, are commonly used as discriminative
features in face verification [32]. Although the anti-spoofing
features are not likely to be used for face recognition, the
above observations give rise to the following questions: (1)
do these features carry information about the client; (2) is this
information relevant to make a better discrimination between
the real access and spoofing samples belonging to that client.

An acclaimed study of the dependence of verification scores
on the identity of the clients [33], established the popular
Doddington’s zoo. In particular, the clients are categorized in
four categories based on their predisposition to influence the
error rates of the verification system, like False Acceptance
Rate (FAR), False Rejection Rate (FRR) and others. In its
original form, the Doddington’s zoo assumes just two types
of inputs to the verification system: genuine users and zero-
effort impostors. A recent study on a fingerprint verification
system demonstrates the existence of the Doddington’s zoo
effect when a verification system is confronted with spoofing
attacks [34]. The study has shown that the system’s vulner-
ability to spoofing among a population is client-specific as
well. We perform a similar analysis, evaluating the scores of
state-of-the-art client-independent anti-spoofing systems using
the aforementioned LBP, LBP-TOP and MOTION features.
The analysis is done on the Replay-Attack face spoofing
database [17], details of which are given in Section IV-A. The
analyzed client-independent classifier is SVM, which is the
baseline classifier used in [17], [20]. Note that, unlike [34],
which evaluates the verification scores, we analyze the anti-
spoofing scores per client. For the three studied anti-spoofing
features, Fig. 2 displays box plots showing the variation of the
scores for the real access and spoofing attack samples of each

 http://pypi.python.org/pypi/antispoofing.clientspec
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client in the test set of the database. The decision threshold
determined using Equal Error Rate (EER) on the development
set is plotted as well. The central bar of each box is the median
of the client scores, its upper edge denotes the 75th percentile
of the scores, the lower one the 25th percentile, while the
whiskers extend to the most extreme non-outlier score values.

Fig. 2 demonstrates the existence of client-specific score
variations for the client-independent baseline, especially in
the case of real access samples. Similar conclusion can be
drawn by performing Kruskal-Wallis non-parametric statistical
test [35], with null-hypothesis stating that there is no variation
in the scores of the samples of the client population. In our
analysis, this hypothesis was rejected at a 0.01% significance
level.

The high client-specific score variations mean that different
clients contribute differently to the system’s FAR and FRR.
These variations may mirror the overlap of real access and
spoofing attack samples of different clients in the feature
space. In such a case, the decision boundary of the client-
independent SVM is not equally suitable for all the clients,
leading to low performance for certain clients and overall
sub-optimal performance of the system. This indicates the
presence of client-specific information in the feature space and
suggests that a client-independent approach may not be enough
to model the features.

According to [36], creating client-specific models is one
way to alleviate the issue. In this context, we explore two dif-
ferent directions. The first one presents a generative approach,
where we model the real access samples of each client sep-
arately and we normalize the scores using generative models
for the attacks. The second one is a discriminative approach,
with separate SVM classifier trained for each client. We show
that by considering client-specific aspects, performance can be
significantly boosted in both cases.

B. Client-specific generative approach

To build a client-specific generative approach to anti-
spoofing, we use Probabilistic Graphical Model framework
(PGM) [31]. Let’s assume that from each sample we can
extract K different feature vectors xk ∈ Rnk , k ∈ 1..K,
each with a dimensionality nk and related to different types of
anti-spoofing cues. Naively, they are assumed to be mutually
independent.

While a client-independent generative approach assumes
that all the responsibility for the features comes from the
sample class c ∈ {R,A}, a client-specific generative method
assumes that the features are not completely independent of
other variables, like the identity i of the client the sample
belongs to. Such a dependency scheme can be illustrated using
a Bayesian network as in Fig. 3.

Having such a model, the conditional probability of a set
of features X = {xk|k ∈ 1..K} is given in Eq. 2.

p(X|c, i) =
K∏

k=1

p(xk|c, i) (2)

Given the sample features X and the client identity i = I,
we need to infer the class c ∈ {R,A}. For this, we need to

Fig. 3: PGM for client-specific generative approach: features
depend on sample class and identity

compute the likelhoods p(X|c, i = I) based on a real access
and spoofing attack models trained separately for each client.
In this study, the likelihood function p(X|c, i) is modeled with
Gaussian Mixture Model (GMM). Afterwards, the decision on
the value of c is taken by computing the log-likelihood ratio
as in Equation 3 and comparing it with a decision threshold
θ.

cLLR = log
p(X|c = R, i = I)

p(X|c = A, i = I)
(3)

The idea is similar to a well-known method in biometric
verification, initially proposed for the task of speaker ver-
ification [37]. To distinguish between a genuine client and
impostor, the method compares two hypotheses: H0 stating
that the sample comes from the client with identity i, and
H1 as an alternative hypothesis stating that the sample comes
from any other client (impostor). The likelihoods for both
hypotheses are modeled with GMM. By definition, the model
for H0 should be created using samples from the genuine
client. The model for H1 can be created in different ways.
One way is to estimate it as a single model, usually called
Universal Background Model (UBM), by using a background
set of other clients B. Another way is to build a separate model
for each of the clients in a predefined set called cohort set
C and to estimate the likelihood of H1 as a function of the
likelihoods of the separate models.

In the case of a client-specific spoofing detection, the
hypothesis H0 states that the sample comes from a real
access of the client with identity I, and its likelihood can be
defined as p(X|H0) = p(X|c = R, i = I). The definition of
p(X|H0) implies that its model can be created by using the
real access samples of the client with identity I. Hence, an
essential requirement for the method is the availability of real
access samples for each client at training time. To satisfy this
requisite, it is enough to use the samples which are used to
enroll the client in the biometric recognition system.

The alternative hypothesis H1 states that the sample comes
from an attack of the client with identity I and its likelihood
can be defined as p(X|H1) = p(X|c = A, i = I). By
following this definition, we need to build a model for the
attacks for each client. This step requires access to attack
samples for each of the clients at training time. However, the
process of producing spoofing attacks may be expensive and
time consuming, often requiring a lot of resources and certain
manufacturing skills. Therefore, it is not difficult to imagine
that collecting attack data for all the clients in a system may be
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(c) MOTION features

Fig. 2: Box plots of the scores obtained with a client-independent approach (SVM) for different clients in the test set of
Replay-Attack. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks. The horizontal (green) line

depicts the decision threshold on the development set.

very demanding, complex or, if the number of clients is large,
too costly. Baseline costs will quickly multiply if the system
targets protection against a large number of diverse spoofing
attacks.

To overcome this difficulty, we propose to model the
alternative hypothesis H1 as a function of the likelihoods
of spoofing attack models for a finite set of cohort clients
C. Cohort clients have been extensively used in biometric
verification in different setups. In [38] they are used to perform
T-normalization of the scores. In [39] they are sorted by
similarity with the particular client’s model, and only the
first N are taken to represent H1. In [40] H1 is modeled
with the model of the cohort client with highest likelihood.
Similarly, [41] considers only the cohort client with the
highest likelihood among the cohorts selected after sorting.
Although larger cohort set may yield better results [39],
selection of a subset of cohorts for each client is sometimes
done due to computational limitations.

Having no such constraints, we consider all the clients in the
training set as cohort clients. We build attack models for each
of the clients in the cohort set C. To estimate the likelihood
of the hypothesis p(X|H1), we average the likelihoods of the
cohort attack models as in Eq. 4. Finally, the log-likelihood
ratio in Eq. 3 can be expressed as in Eq. 5.

p(X|H1) =
1

|C|
∑
J∈C

p(X|c = A, i = J) (4)

cLLR = log
p(X|c = R, i = I)

1
|C|

∑
J∈C

p(X|c = A, i = J) (5)

The proposed modeling of H1 has two main advantages.
Firstly, it requires availability of spoofing attacks of only a
limited number of clients, which can be manufactured and
recorded in advance. Secondly, the set of spoofing attacks can
be easily augmented in case a new type of spoofing attack
appears. Retraining of the system in such a case requires only
retraining of the attack models for the cohorts.

Similarly to [37], we use GMM to model the likelihoods for
H0 and H1. Firstly, we create a UBM for real accesses and

attacks using the training set. Then, to create the client-specific
real access models for each enrolled client, we perform
Maximum A-posteriori (MAP) adaptation of the real access
UBM using the client’s enrollment samples. Equivalently, to
create the attack models, we perform MAP adaptation of the
attack UBM using the attack samples of the clients in the
cohort set C. The MAP adaptation is performed on the means
of the GMM components only, as suggested in [38].

C. Client-specific discriminative approach

As described in Section II, discriminative classifiers have
already a well established reputation in face anti-spoofing.
One of the most popular among them is SVM, a classifier
relying on a margin maximization theory to find a hyperplane
that separates positive and negative samples with minimal
generalization error. In this context, SVM is typically used
in a client-independent way, where all real access samples are
considered to belong to the positive class and all spoofing
attacks to the negative one.

SVM in a client-specific context first appeared in speaker
verification [42]. A single SVM classifier in this setup discrim-
inates between samples coming from a claimed identity and
samples coming from an impostor. The full system consists of
separate SVM classifiers trained for each enrolled client. When
a new query arrives, it is classified by the SVM of the client
it is claimed to belong to. Client-specific SVMs in speaker
verification are trained using samples for the particular client
as a positive class, and samples from a set of other clients as
a negative class.

Inspired by this design, we build client-specific SVM for the
anti-spoofing task in a similar manner. For each enrolled client
we train a separate SVM classifier whose role is to discrimi-
nate between real accesses and spoofing attacks for that client.
Therefore, ideally, each SVM should be trained using samples
of the corresponding client. As in the case of the generative
client-specific approaches, we can use the enrollment samples
as the positive class. However, as explained in Section III-B,
obtaining spoofing attacks for each client may be a costly task.
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As for the generative approach, we select a set of cohort
clients C to approximate the spoofing attacks of a particular
client and represent the negative class for the client-specific
SVMs. Since the samples from the cohort usually outnumber
the client samples, the selection of the clients in C is of
great importance and different heuristics to fulfill this task
exist in the literature. One possibility is to consider several
different cohort sets and to choose the one which gives the best
performance on the development set [43]. Instead of cohort
clients, [44] selects cohort samples out of the samples which
are most frequently used as support vectors for the client-
specific SVMs on the development set. Using a large cohorts
set may be restricted by computation limitations, but may
provide better discriminative information [42]. Therefore, we
select all clients in the training set as cohort clients and all
their spoofing attacks as negative samples to train the client-
specific SVMs.

D. Implementation considerations
In the test phase, client-specific anti-spoofing systems need

to compare the query sample with the appropriate client-
specific model or discriminative classifier. A question that may
arise is how they may obtain the client identity information.
It is important to understand that the task of anti-spoofing
systems is to protect a biometric recognition system. As a
result, they may use any information available to the recogni-
tion system, like the client identity. The flow diagram in Fig. 1
exemplifies this concept for the case of a biometric verification
system.

Client-specific methods can not be used at enrollment time,
when the client models are not yet created. If a protection
against spoofing is needed at this point, a client-independent
anti-spoofing system can be used at the cost of a lower
performance. However, when the biometric system is in op-
eration mode, the client identity is available and, as we show
in Section IV, can be used to improve the anti-spoofing
performance.

An important requirement for client-specific anti-spoofing
systems is the availability of enrollment (gallery) samples for
each of the clients. They are used to create client-specific real
access models for the generative approach and to train client-
specific classifiers in the discriminative ones. In a real world
scenario, the anti-spoofing system may use the samples used
to enroll clients in the biometric recognition system for this
purpose. In the process of enrolling a new client to an existing
system, the generative approach builds a real access model of
the new client only, based on his enrollment samples and the
existing UBM of real accesses. In the discriminative approach,
a client-specific SVM for the new client is trained using his
enrollment samples and the cohort attack samples. The real
access models for all the other clients, as well as the attack
models remain unchanged. The same applies for the SVMs of
the other clients in the discriminative approach.

IV. EXPERIMENTAL RESULTS

A. Database and evaluation methodology
A typical client-independent anti-spoofing system can be

evaluated using databases which provide real access and

spoofing attack samples for many identities. As explained in
Section III-D, client-specific approaches have an additional re-
quirement: enrollment samples for each client. The availability
of enrollment samples is important from another aspect as
well: it allows for training a biometric recognition system and
evaluation of its vulnerability to spoofing attacks [17].

Biometric recognition databases encompass enrollment
samples which are used to enroll clients into the biomet-
ric recognition system. Unfortunately, the majority of face-
spoofing databases provide only real access and spoofing
attack samples for the clients and usually lack enrollment data.
This is the case, for example, for NUAA Photograph Impostor
Database [14] and CASIA-FASD [12], which do not dedicate
samples for client enrollment in their protocols. Violating their
protocols would make comparison with previous approaches
on these databases biased. Even if we allow such a violation,
for many of the clients it is not possible to select enrollment
samples out of the real access data, because this data comes ei-
ther from a single session (NUAA) or a single video (CASIA-
FASD), making them highly correlated.

The Replay-Attack face spoofing database2 [17] is, to
the best of our knowledge, the only publicly available face
spoofing database that provides separate enrollment samples.
With 50 clients divided into three non-overlapping subsets,
it provides a clear protocol that can be used for non-biased
training, tuning and testing of algorithms. It encompasses real
access samples taken in two conditions and three types of
spoofing attacks: printed photographs, digital photographs and
video replays.

The goal of our experiments is to show the advantage
of client-specific over client-independent approaches for the
set of features selected for analysis: LBP, LBP-TOP and
MOTION. We report the Half Total Error Rate (HTER) on
the development or test set with a threshold obtained on the
development set. As suggested by the database protocol, the
development set of the database is used to tune specific hyper-
parameters of the algorithms.

The Replay-Attack database defines several evaluation pro-
tocols related to the type of spoofing attacks they contain.
Using these protocols, we perform the experiments in two
phases. The first phase covers intra-protocol evaluations,
where the algorithm is trained and tested using the same
protocol. These experiments demonstrate the performance of
the algorithm in detecting already seen types of spoofing
attacks. The second phase involves cross-protocol evaluations,
where the algorithm is trained and tuned using one protocol
and tested on another one. In this way, similarly to [45], we
investigate the capabilities of the algorithm to generalize over
an unseen type of spoofing attacks.

B. Features and parameter selection

Different parameterization options have been proposed in
the literature for the types of features used in our evaluation, in
particular for LBP and LBP-TOP. For example, these features
may yield better results in their multi-scale variants [16], [20].
Yet, to study the effects of using client identity information,

2https://www.idiap.ch/dataset/replayattack

https://www.idiap.ch/dataset/replayattack
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TABLE I: Comparison of different approaches on grandtest (error rates in %)

LBP LBP-TOP MOTION
dev test dev test dev test

EER FAR FRR HTER EER FAR FRR HTER EER FAR FRR HTER

discriminative client-independent 14.56 9.56 21.29 15.42 8.19 4.45 12.6 8.53 10.73 12.95 10.12 11.53
client-specific 10.02 8.2 11.53 9.87 3.71 3 4.9 3.95 10.18 9.29 13.25 11.27

generative client-independent 21.33 17.93 25.45 21.69 9.32 8.38 16.92 12.65 12.94 13.91 11.14 12.52
client-specific 9.18 9 11.17 10.09 4.73 5.36 7.37 6.36 8.91 9.4 9.92 9.66

we focus on the most simple uniform variants LBPu2
8,1 and

LBP-TOPu2
8,8,8,1,1,1.

The described client-specific approaches depend on few
hyper-parameters which have been optimized by a grid pa-
rameter search on the development set. The parameters for
the generative client-specific approach include the number of
components in the GMM for the real access and spoofing
attack models, as well as the relevance factor for performing
MAP adaptation. We found that the LBP and LBP-TOP
features require relatively high number of components for the
real access GMMs, ranging between 240 - 290 depending on
the protocol. The MOTION features, on the other hand, can
successfully model the client-specific real access feature space
with only 10-50 components. The spoofing attack GMMs
consist of smaller number of components: below 100 for
each of the features. The number of components is usually
the highest for the attack models of the grandtest protocol,
possibly due to the spread of the different types of spoofing
attacks in the feature space.

The hyper-parameters for the discriminative approach re-
alized with SVM with RBF kernel include the constant C
regularizing the decision surface and the kernel parameter γ
controlling the support vectors’ influence. The best values for
these parameters were found to be C = 1 and γ = 0.

Details about the exact parameterization for each of the
protocols in our evaluation are given together with the openly
available source code, making the reported results fully repro-
ducible.

C. Intra-protocol evaluation

In the first experiment, we evaluate all methods considering
the grandtest protocol of Replay-Attack, which consists of all
three types of spoofing attacks: printed photographs, digital
photographs and video replays. Table I provides a comparison
of the performance of the baseline client-independent with
client-specific approaches. EER is given for the development
set, while FAR, FRR and HTER are given for the test set.

Table I shows that the client-specific approaches consis-
tently perform better than the client-independent ones for all
the three types of features, both on the development and test
set. The advantage of client-specific approaches is significantly
large in almost all the cases: the relative improvement of
HTER reaches up to 53.7% for the discriminative techniques
and 49.7% for the generative techniques (applied to LBP-
TOP features). A single exception where the superiority of
the client-specific method is not so prominent happens for the
discriminative techniques applied to MOTION features. The
reason may be in the way MOTION features are constructed.
While LBP and LBP-TOP features are extracted solely from

the face region, MOTION features contain elements ex-
tracted from the background, possibly introducing a client-
independent component. Table I also reveals that the client-
independent approaches most often present a large mismatch
between the values of FAR and FRR, while the client-specific
approaches have no such issue.

To understand the improvement of anti-spoofing perfor-
mance when client-specific approaches are used, in Fig. 4 we
give box plots of the client scores obtained using a client-
specific approach. Compared to Fig. 2, the medians of the
scores have notably more similar values over the client popula-
tion, especially for LBP and LBP-TOP features. Furthermore,
the variance of the scores for each client notes a significant
decrease. Since the client identity is used in modeling the real
accesses, the variance is especially small for real access scores
(upper row). This shows that client-specific approaches model
the feature space in a way that is equally suitable for all the
clients, allowing for a single decision threshold which does
not favor one client over the other.

We performed intra-protocol evaluation for the other pro-
tocols defined in Replay-Attack, consisting only of a single
type of attack. Fig. 5 shows the results for the three types of
features. Each group of four bars represents the HTER on
the test set for the four compared methods on one of the
protocols and the methods belonging to the same category
(discriminative and generative) are given next to each other for
easy comparison. For LBP and LBP-TOP features, the results
are always in favor of the client-specific approaches for all
three types of attacks. Absolute HTER drops from 6.86% to
1.15% (LBP features on printed attacks) and from 8.74% to
3.99% (LBP-TOP features on attacks with digital photographs)
highlight this advantage.

Once again, MOTION features behave differently and the
client-specific approaches perform on similar scale or slightly
worse than the client-independent ones. This is especially
evident for the video attacks, because from the point of view
of these features, there is practically no difference between the
motion patterns of a live client and the same client recorded
in a video.

Table II compares the best performing configuration of
features and methods among the client-independent vs. client-
specific approaches for separate protocols of Replay-Attack.
It suggests that, regardless of the type of spoofing attacks,
a client-specific approach that will outperform any client-
independent approach can always be selected.

D. Cross-protocol evaluation

The capability to generalize well in detecting spoofing
attacks which have not been considered during training is an
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Fig. 4: Box plots of the scores obtained with generative client-specific approach for different clients in the test set of
Replay-Attack. Upper plots: scores of real access samples; lower plots: scores of spoofing attacks. The horizontal (green) line

depicts the decision threshold on the development set.
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Fig. 5: Intra-protocol evaluation. HTER is computed on the test set. – : client-independent approaches; – : client-specific
approaches. Discriminative approaches are denoted with the shortcut ’discr.’, while generative with ’gener.’.

TABLE II: Comparison of best performing
client-independent and client-specific approaches in

intra-protocol evaluation (HTER in % on the test set)

Grandtest Print Digital-Photo Video
client-independent 8.53 5.95 8.74 5.73
client-specific 3.95 1.15 3.99 3.41

important aspect of any anti-spoofing system [45]. Indeed,
having in mind that the possibilities for inventing novel
spoofing attacks are unlimited, exhibiting robustness to unseen
spoofing attacks may be a major security asset of anti-spoofing
systems. In this section, the generalization capabilities of the
proposed and the baseline anti-spoofing methods are studied
using a cross-protocol evaluation.

We investigate three scenarios. In each one of them, the
systems are trained using two out of the three available types
of attacks, while the third one serves for testing. The scenarios’
descriptions are as follows:

• Scenario 1: train with digital photographs and video
replays, test on printed photographs;

• Scenario 2: train with printed photographs and video
replays, test on digital photographs;

• Scenario 3: train with printed and digital photographs,
test on video replays.

According to this, the three scenarios reveal the general-
ization capabilities of the algorithms when tested on printed
photographs, digital photographs and videos, respectively. The
results are given in Fig. 6, where each group of four bars
corresponds to one of the described scenarios.

The client-specific approaches outperform the client-
independent ones for all the three types of features. The HTER
drop is especially significant in the case of LBP and LBP-TOP
features. When using these features, the client-independent
approaches exhibit very low generalization capabilities for
certain types of attacks, like printed or digital photographs.
This weakness is easily overcome by their client-specific coun-
terparts. For example, for LBP features, the client-independent
discriminative baseline trained in Scenario 1 gives HTER as
large as ∼45% in detecting printed attacks. On the other
hand, the client-specific approaches in the same scenario
misclassify only ∼7% of the samples. Similar example under
Scenario 1 appears in the case of LBP-TOP features: the client-
independent baseline gives HTER of more than 38%. The
client-specific approaches increase the generalization capabil-
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TABLE III: Comparison of best performing
client-independent and client-specific approaches in

cross-protocol evaluation (HTER in % on the test set)

Print Digital-Photo Video
client-independent 28.27 16.55 9.39
client-specific 5.00 6.02 5.09

ity of these features by a large margin and achieve HTER of
only as little as 5%.

While client-specific approaches improve the generalization
capabilities of the MOTION features in most of the cases as
well, an exception occurs only for the discriminative client-
specific method operating under Scenario 3.

Table III compares the best performing configuration of fea-
tures and method among the client-independent vs. the client-
specific approaches in cross-protocol evaluation. It shows that
regardless of the types of attacks used for training, a carefully
selected client-specific approach will be more robust to new
types of attacks than any client-independent approach.

Good cross-protocol generalization of client-specific ap-
proaches may be a result of the client-specific models being
better suited to separate the real access samples of a particular
client from the remainder of the feature space.

V. CONCLUSIONS

Anti-spoofing systems are most frequently designated to
secure and work in cooperation with biometric recognition
systems. This paper is, to the best of our knowledge, the first
attempt to make use of the information about the identities
of the enrolled clients to improve the performance of anti-
spoofing systems. The idea is based on the assumption that the
typical anti-spoofing features may, to a certain extent, retain
client-specific information. This assumption is supported by
an empirical evidence.

We implemented two solutions which use client identity
information to detect spoofing attacks: a generative and a
discriminative one. Tested with a variety of state-of-the-art
features, they notice a significant performance gain on differ-
ent protocols of Replay-Attack face spoofing database. For the
grandtest protocol of Replay-Attack the relative improvement
can reach up to ∼50%. Furthermore, they generalize signifi-
cantly better on unseen types of attacks which the system has
not been trained with.

Client-specific anti-spoofing systems use the client identity
information available to the biometric recognition system. If
a spoofing counter-measure is needed at enrollment time, a
client-independent anti-spoofing method can be used at the
cost of lower performance. However, once the client identity
is known, using this information can be of great help in
successfully detecting spoofing attacks.

Extensions of this work are possible in several directions.
Employing the method with other types of features or a com-
bination of features should be a primary future objective. Fur-
thermore, it is of importance to investigate the applicability of
client-specific anti-spoofing systems to other biometric modes.
Our framework, whose source code is publicly available for

reproducing results, readily enables testing other features or
combination of features.

Another direction to be explored is investigating ways to
select the cohort set dynamically and in a client-specific way,
both for the generative and discriminative approaches.

Finally, the current evaluation of the systems excludes zero-
effort impostors which claim a wrong identity. While irrelevant
in the client-independent case, this claim will directly influence
the decision of the client-specific anti-spoofing systems. Since
detecting zero-effort impostors is a task of biometric recogni-
tion systems, an evaluation in such circumstances should be
done jointly with a recognition system.
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from single images using micro-texture analysis,” in International Joint
Conference on Biometrics, 2011, pp. 1–7. 2, 6

[17] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in Biometrics Special Interest
Group (BIOSIG), Proceedings of the International Conference of the,
2012, pp. 1–7. 2, 3, 6

[18] S. Bharadwaj et al., “Computationally efficient face spoofing detection
with motion magnification,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013, June 2013. 2

[19] J. Komulainen, A. Hadid, and M. Pietikainen, “Context based face
anti-spoofing,” in Biometrics: Theory, Applications and Systems (BTAS),
2013 IEEE Sixth International Conference on, Sept 2013, pp. 1–8. 2

[20] T. de Freitas Pereira et al., “Face liveness detection using dynamic
texture,” EURASIP Journal on Image and Video Processing, vol. 2014:2,
2014. 2, 3, 6



JOURNAL SUBMISSION SPECIAL ISSUE ON BIOMETRIC ANTI-SPOOFING 10

discr.
discr.

discr.
gener.

gener.
gener.0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

H
TE

R
(%

)

Print Digital-Photo Video

(a) LBP features

discr.
discr.

discr.
gener.

gener.
gener.0.0

10.0

20.0

30.0

40.0

50.0

H
TE

R
(%

)

Print Digital-Photo Video

(b) LBP-TOP features

discr.
discr.

discr.
gener.

gener.
gener.0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

H
TE

R
(%

)

Print Digital-Photo Video

(c) MOTION features

Fig. 6: Cross-protocol evaluation. HTER is computed on the test set. – : client-independent approaches; – : client-specific
approaches. Discriminative approaches are denoted with the shortcut ’discr.’, while generative with ’gener.’.
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