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ABSTRACT  
 
 

Risk Analysis in Biometric-Based Border Inspection System  
 

Mayra A. Sacanamboy  
 
 

The main goal of a Border Inspection System is to prevent the entry of individuals who 
pose a threat to a country.  The entry of just one of these persons could have severe 
consequences.  Nevertheless, performing a lengthy border inspection is not possible, 
given that 240,737 international passengers enter the country in an average day [5].  For 
this reason, the primary inspection is performed using biometrics traits and information 
flow processes that have a low false acceptance rate and have a high throughput. 
 
This thesis uses the analytic modeling tool called LQNS (Layered Queueing Network 
Solver) to solve open models for biometric-based border inspection system and cost 
curves to evaluate the risk.  The contributions of the thesis include a performance model 
of a biometric-based border inspection using open workloads and a risk model of a 
biometric-based border inspection using cost curves. Further, we propose an original 
methodology for analyzing a combination of performance risk and security risk in the 
border inspection system. 
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Chapter 1 : Introduction 

An increasing number of computer systems strives to maximize performance or to 

minimize cost for a given functionality without reducing the functional requirements or 

including new system components. To achieve this goal, risk assessment in the early 

design phase of software lifecycle followed by performance analysis in all phases in the 

lifecycle guides the selection of the most prominent design among design alternatives, 

avoiding the implementation of unacceptable designs. 

Information generated by a critical system cannot be trusted given the possible 

existence of software faults.  Failures may result in either the loss of life, injury or 

damage to the environment, high economic losses or failure of a goal-directed activity. 

Mission-critical system, such as a border inspection system for example, has to quantify 

the uncertainty whether a traveler represents a treat to the country he wants to enter in. 

An inspector makes his final decision based on the output given by the biometric and 

database search modules, and his expertise. 

This chapter presents an introduction to software performance and software 

performance engineering.  The section that follows summarizes our contributions to 

modeling techniques used to solve performance and risk models of biometric-based 

border inspection systems.  This chapter concludes with the thesis outline. 

1.1 Software Performance 
Performance is a “pervasive quality of software systems” which means that the 

software components and the underlying layers like hardware, middleware, operating 

system, among others, exert their influences on it [26].  The most frequently used 

techniques for evaluating system performance are measurement, simulation and analytic 
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modeling.   Measurement relies on the existence of a live system while simulation and 

analytic modeling depend on a model of the system under consideration [20]. 

Among these techniques, the costliest one is measurement, since it is feasible only if 

there exists a real system with the configuration being studied. Nevertheless, the 

measurement technique gives the most accurate results, because parameters, such as 

workload, are representative.  Simulation uses the model of the system under study by 

creating a program which traces the progress of events as discrete steps over time.  

Analytic modeling applies mathematical expressions to obtain performance results 

for the system being studied.  This kind of modeling requires simplifying assumptions, 

which allow analyzing large systems. It is computationally efficient and its parameters 

are easier to obtain due to their higher level of abstraction.  Accuracy is one advantage 

that simulation has over analytic modeling, nevertheless simulation models are often time 

consuming and difficult to design, debug, parameterize and execute.   

1.2 Software Performance Engineering  
Software performance engineering (SPE) is a methodology that has been 

successfully incorporated into software development [23]. SPE uses quantitative methods 

to identify architectural and design alternatives that will fulfill performance objectives.  

Furthermore, SPE allows to improve the design through a better understanding of the 

performance properties within the system.  

Performance issues that can be easily addressed by SPE are identification of 

potential bottlenecks, determination of the maximum system load, analysis the impact of 

architectural changes on performance and understanding the influence of particular 

components to performance. The activities in the SPE include assessment of performance 

risk, identification of critical Use Cases, selection of key performance scenarios, 

construction of performance models, analysis of software resource requirements, 

evaluation of the models and finally verification and validation of models.  We briefly 

discuss these steps below: 

Assessment of performance risk is addressed by identifying potential risks and their 

impact on the project’s success in order to deal with them systematically.  The impact is a 

combination of the probability that a failure occurs and the severity of the damage it may 

cause. 

  2  
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Identification of critical Use Case and selection of key performance scenarios are 

handled by identifying and selecting the scenarios that are important to responsiveness as 

seen by users or have performance risk. Those use cases can produce failures in the 

system or reduce the success of the system if the performance goals are not met. 

Establishing performance objectives is carried out by specifying quantitative criteria. 

Response time is the time interval between a user’s request to the system and response 

from the system. Throughput is the rate at which the requests are processed by the 

system; Utilization is the fraction of time the component is busy processing requests; 

Workload intensities specify the level of usage in component. 

Construction and Evaluation of performance models: performance models are 

obtained from performance scenarios, and they are evaluated by quantifying design 

changes which assess trade-offs and highlight the best alternative.  Sensitivity studies 

indicate the model parameters which produce large changes in the model. 

Verification and Validation are the activities that proceed in parallel with the above 

activities.  Model verification is intended to establish whether the model predictions are a 

truthful reflection of the software’s performance, answering to question “are we building 

the model right?”.  On the other hand, model validation establishes whether the model 

exhibits the execution characteristics of the software, addressing the question “are we 

building the right model?”.  

In this thesis, an analytical method for solving performance models and a risk 

methodology are developed and applied to border inspection systems with the goal of 

establishing the optimal thresholds between the risk and performance. The Stochastic 

Rendezvous Network Model (SRVN) proposed by Woodside [52] and the Layered 

Queueing Network Solver (LQNS) [53][54] are the basis for solving the performance 

models. The SRVN is used to model the system, and LQNS is used to solve the obtained 

SRVN model. 
 

1.3 Thesis Contribution 
We consider the following as the contributions in this work. 

• Analyzing the open arrivals in the border inspection model and providing some 

basic characteristics of the traveler data traffic. 

  3  



Chapter 1: Introduction 

  4  

• Comparing the results in this thesis with previously published results. 

• Analyzing the risk for a biometric-based border inspection using cost curves. 

• Combination of performance risk and security risk in the border inspection system 

in order to find the most suitable thresholds in the system. 

 
 

1.4 Thesis Outline 
The rest of the thesis is organized as follows.  Chapter 2 provides basic material about 

Layered Queueing Network, UML profile for schedulability, performance and time, 

derivation of LQN models from annotated UML diagrams, and finally overviews risk 

analysis concepts and methodologies.  Chapter 3 introduces the characteristics of 

travelers in the environment of border inspection points.  The result obtained by 

analyzing the distribution is provided too.  A layered prediction model is devised and 

shown to be accurate.  Chapter 4 explains our approach to risk analysis of a biometric-

based border inspection system.  Chapter 5 presents conclusions and future work. 



Chapter 2 : Literature Review 

This chapter supplies a brief overview of analytic performance modeling with 

Layered Queuing Network models and software modeling with UML performance 

notation, which we use in the analysis in this thesis.  We reviewed different risk analysis 

methodologies: architectural risk analysis, performance risk analysis and a risk 

methodology. Therefore, we gain understanding of the different types that are suitable for 

the context, which is defined by misclassification costs from the verification algorithms 

deployed in the system.   

 

2.1 Layered Queuing Network Models 
The Layered Queuing Network (LQN) model, proposed by Franks, is an extended 

queueing model, which we use in the performance analysis discussed in this thesis.  We 

use LQN performance model to represent system with software queueing and 

rendezvous.  This modeling technique is well suited for systems with parallel tasks 

running on a network. 

2.1.1 General Description 
An LQN model denotes model-based performance where each layer of the model is 

represented by a network of queues.  It is described by a directed graph with nodes that 

represent software entities and hardware devices, and with arcs that represent service 

requests. A LQN task, represented by a parallelogram, can act as a server or a client 

interacting with other tasks.  Generally, it represents software components.  When a task 

does not receive requests but only generates requests is called a reference task, and it 

represents a pure client or a load generator.  On the other hand, a pure server task only 
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receives requests and does not initiate requests.  A server usually represents hardware 

resources such as processors and I/O devices, among others. 

Available services through a task are represented by entries, where each entry has its 

own demands for other services and execution time which are given as model parameters. 

An entry is drawn as a slice of the corresponding task.  A single input queue is offered by 

every task, where requests for its different entries wait together to be served.  A single 

request queue is also shared in a multi-server node.   A multi-server node is composed of 

several identical servers that work in parallel. 

Figure 1 shows an example LQN model.  At the top there is the client, which sends 

requests for verifyData and/or writeInfo services to the task named Application.  Each 

Application entry requires services from two different entries of the DB task. Every 

software task is running on a processor node, drawn as a circle. 

The following parameters must be included in the LQN model.  If it is an open 

workload model, we need to specify the arrival rates.  Otherwise, we specify the 

associated populations and “think” times.  In addition, for each device, we need to define 

the average service time, the average number of visits either when the software task entry 

is seen as a client to a device, or when the software task entry is communicating with 

another task entry.  Finally, for each software and hardware servers, we establish a 

scheduling discipline, and the average message delay in each request. 
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Figure 1 LQN model 

Synchronous, asynchronous and forwarded are the type of communication messages 

between entries that LQN is able to recognize. A Forwarded message uses a forwarding 

chain, so the client, who submits requests, will wait until a replay from the last server 

within the chain is received (see Figure 2).  Synchronous and asynchronous messages 

work in the standard way.  In the former, the client is blocked until the requested server 

replays as in remote procedure calls (RPC).  In asynchronous communication, the client 

is not blocked while the server is working autonomously on the received request. 

phase1 reply to 
original client forwarding 

waitingSynchron
message 
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Client

idle phase2 phase1idle 
DB

busy idle phase2
Application 

ClientE 

VerifyData writeInfo 
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Figure 2  LQN forwarding message 
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2.1.2 Task 
A task represents a resource, where the resource could be a process in a system, 

client, hardware device, and buffer among others.  A task always runs on a processor and 

has a queue that uses one of the scheduling methods such as, FIFO (first-in, first out), 

PPR (priority, preemptive resume) and HOL (head-of-line priority). 

2.1.3 Entry 
Entries represent different kind of services offered by a task.  They are able to 

receive just one kind of requests at a time.  Requests can be synchronous or 

asynchronous.  The parameters in an entry are defined by using either phases or activities.  

Activities are recommended when the internal behavior of the task is so complex that 

forks and joins are used.  On the other hand, phases are appropriate when the behavior of 

the task can be specified as a sequence of one to three activities. 

2.1.4 Activity 
An activity represents the finest level of detail required in order to describe one or 

more execution scenarios.  Parallelism within task can be represented by using activities, 

because they are able to depict concurrent threads of control and also the randomness in 

the execution process by introducing probabilities between different paths.  Table 1 

summarizes the precedence types used to connect activities.  

Table 1 Permitted connections between activities in LQN 

Name and Description Representation 
Connecting arc 
Transfer control 

 

And-join 
Parallel activities are synchronized at that point  

 
And-fork 
Start of concurrent execution 

 

& 
a 

& 

a 
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Or-join 

 
Or-fork 
After executing the activity one of the paths is selected 
with probability p. 

 
Loop 
The activity is repeated an average of n times 

 

+ 
a 

P2 P1 + 

a 

n * a 

 

2.2 UML Profile for Schedulability, Performance and Time (UML 
SPT) 

UML SPT offers a common framework for annotating UML models with predictive 

quantitative analyses capability. Existing and future model analysis techniques benefit 

from the offered features [16].  The process of system design and refinement is done 

through the parametric understanding of an implementation with functional requirements.  

The evaluation is typically done by executing test cases and measuring the results.  The 

following section focuses on UML Performance notation. 

 

2.2.1 Performance Modeling 
Incorporating performance analysis in UML models facilitates the association of 

performance quality of service (QoS) characteristics with particular elements of the UML 

model.  Furthermore, the specification of execution parameters in the UML models 

implies their use in modeling tools that will predict performance characteristics.  Finally, 

performance requirements can be captured straightforward from the design context.  

The performance analysis domain model is depicted in Figure 3.  A better 

explanation of each element from the domain model is presented next.  

Performance context is used to explore a variety of situations concerning a particular 

set of resources.  In order to explore different QoS values such as load intensity and 

  9  
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response delay, among others, in the same performance context, a parameterization is 

needed. 

Scenario is an ordered and finite set of activities (scenario steps) that describe the 

performance context, with response time and throughput.  A workload is defined for each 

scenario, representing the intensity of use.  The scenario can be either described by paths 

that fork, join, loop, and are alternative with some probability. 

Workload indicates the intensity of requests over resources within a specific 

scenario.  Workload specification can be open or closed.  Open workloads are used in 

systems where jobs enter the system disjointedly of job completions.  Generally, they are 

modeled through Poisson arrivals since jobs follow that predetermined pattern.  In closed 

workloads, a fixed number of jobs enter the system and continue circulating within the 

scenario with an associated “think time”, which represents an external delay period 

outside the system.  

Resources are represented as servers.  They can be active or passive.  Active 

resources have associated service times and they are the servers in the performance 

models.  On the other hand, passive resources have associated holding times and they are 

acquired and released during scenario execution. 

  10  
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Figure 3 Performance analysis domain model adapted from [16] 

The UML extensions required for displaying the relevant performance values are 

presented in Table 2.  Value types such as PAperfValue and RTarrivalPattern use a BNF 

notation that is further explained in [16]. 

 
Table 2 UML extensions defined for performance modeling 

Stereotype Associated Tags Value Types 
<<PAcontext>>   
<<PAopenLoad>> PArespTime 

PApriority 
PAoccurrence 

PAperfValue 
Integer 
RTarrival Pattern 

<<PAclosedLoad>> PArespTime 
PApriority 
PApopulation 
PAextDelay 

PAperfValue 
Integer 
Integer 
PAperfValue 

<<PAstep>> PAdemand 
PArespTime 
PAprob 
PArep 
PAdelay 
PAextOp 
PAinterval 

PAperfValue 
PAperfValue 
Real 
Integer 
PAperfValue 
PAextOpValue 
PAperfValue 

<<PAhost>> PAutilization 
PAschdPolicy 
PArate 
PActxtSwT 

Real 
{‘FIFO’,’HeadOfLine’,etc} 
Real 
PAperfValue 
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PAprioRange 
PApreemptable 
PAthroughput 

Integer 
Boolean 
Real 

<<PAresource>> PAutilization 
PAschdPolicy 
PAschdParam 
PAcapacity 
PAaxTime 
PArespTime 
PAwaitTime 
PAthroughput 

Real 
{‘FIFO’,’PriorityInheritance’,etc} 
Real 
Integer 
PAperfValue 
PAperfValue 
PAperfValue 
Real 

 

2.3 Transformation from UML to LQN 
Previous works [4][19][33][34] have developed methodologies that use information 

from different UML diagrams in order to incrementally generate performance models 

carrying out an LQN translation technique.  The most convenient ones were proposed by 

[4][19]. Use Case Diagrams provide information on the workloads, which identify the 

services and the users of the system.  Sequence Diagrams are used to obtain the software 

execution model because they reflect the system behavior given that they describe in 

detail the scenarios that are critical to the system performance.  Finally, Deployment 

diagrams state different physical contexts needed for system analysis [19]. 

An example of developing a performance model of a Building Security System is 

presented in Figure 4-Figure 7 from [35].  The system provides access control and video 

surveillance among other functions that are depicted in the use case diagram in Figure 4. 

For simplicity, we display only the annotated sequence diagram for the access control 

scenario in Figure 5.  In the sequence diagram: a user inserts his card into a door reader, 

this information is transmitted to a server, which checks the access rights associated with 

the user’s card in the data base and then either grants or denies access.  This scenario 

possesses some requirements, such as the transaction completion time of one second, and 

the access request load of about 1 request per 2 seconds on average.  The information 

from the UML diagrams is required in order to build the layered queueing network 

model. 
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Figure 4 Use Case Diagram of a Building Security System [35] 

 

 

Figure 5 Annotated Sequence Diagram for the access control scenario [35] 
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Figure 6 Deployment of a Building Security System [35] 

 
Figure 7 Layer Queueing Network model for the Building Security system [35]  
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2.4 Characterization of Workloads 
The type of workload that is employed in the performance model has to be 

considered as important as workload metrics such as service demand distribution, think 

time, etc, in order to provide accurate representations of the system under study [22]. 

2.4.1 Open workload 
Open workload assumes that a user generates a request, waits to receive a response 

and finally leaves.  Basically, a new request to the system is only initiated by a new user 

arrival.  At any instance of time, the system has a different number of jobs.  Nevertheless, 

the throughput X is assumed to be known and equal to the arrival rate λ, therefore the 

main goal is to characterize the distribution of jobs in the system. 

2.4.2 Closed workload 
In this kind of workload, the system is used unendingly by some fixed number of 

users. In general this number of users identifies the multiprogramming level denoted by 

N. Every user in the system submits jobs and after receiving the response, waits some 

amount of time in order to submit another job request.  New requests are initiated after 

the completion of previous ones.  The total number of jobs in the system is constant and 

the total number of users in the system can be defined as N=Nthink+Nprocess where, ones 

are thinking Nthink, and other ones are either queuing to run jobs or running jobs Nprocess. 

Other parameters such as server load and response time are respectively defined as 

fraction of time that the server is busy resulting from the product of the mean service 

demand E(S) and the mean throughput X; and the response time, the interval of time 

between a request is submitted and resolved. 

 

2.5 Risk 
To comprehend the nature of risk, we need several related definitions.  Vulnerability 

is defined as a flaw in the system that can be unexpectedly activated or purposely 

exploited.  Hazard is a situation or event that potential could lead to accidents.  

Identifying and assessing those hazards is the first activity that must be carried out within 

the risk analysis [24]. 
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The hazard analysis identifies and assesses those sources of danger on the system.  It 

can be divided in the following steps:  

1. Preliminary Hazard Analysis (PHA) identifies crucial system functions and 

general system hazards, which lead to identification of safety design criteria 

and requirements in the early life cycle. 

2. System Hazard Analysis (SHA) examines possible hazards caused by 

interfaces between subsystems that working together can impact system 

safety; its main goal is to advise changes and controls and assess design 

responses according to safety requirements. 

3. Subsystem Hazard Analysis (SSHA) identifies and assesses hazards related 

with subsystems that individually can affect the overall system safety. 

4. Operating and Support Hazard Analysis (OSHA) examines hazards created 

by human-machine interfaces, it is performed throughout system use and 

maintenance stages. 

There are several models and techniques that can be used in hazard analysis: 

Checklist, Fault Tree Analysis (FTA), Event Tree Analysis, Failure Modes and Effects 

Analysis (FMEA), Failure Modes, Effects, and Criticality Analysis (FMECA), formal 

methods (CSP, CCS, hybrid automata). 

After identifying hazards in the system, it is appropriate to define the severity and 

probability of occurrence for each recognized hazard.  Finally, we can define risks 

associated with the system: the Risk is defined as a combination of the likelihood of an 

event and its associated severity. Therefore, risk increases when either the likelihood or 

the severity increase and the other component does not decrease by the same proportion 

[15]. 

Risk analysis is conducted in order to find answers to questions such as: what can 

fail? How likely is it to happen? And given that it occurs, what are the effects? [1].  The 

risk analysis can be performed at the architectural level allowing an early detection and 

correction of problems that could be less costly as it will be if detected in a late stage of 

the software life-cycle such as implementation. 
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2.5.1 Architectural-Level Risk Analysis 
It is known that failures of critical components and connectors in the system have a 

major impact on the overall system reliability. In [12] Goseva-Popstojanova et al, 

proposed a risk analysis process that can be used in the early stages of software lifecycle.  

It uses the behavior contained in UML specifications, in particular, use cases and 

sequence diagrams in order to establish the risk factors of components and connectors.  

These are determined by measuring their dynamic complexity (2.5.1-1) and coupling 

(2.5.1-2), respectively.  In a given scenario ,  is the risk factor of component i for 

scenario x,  is the normalized complexity of component i in scenario x,  is the 

severity level of component i in scenario x.   is the normalized coupling and  

is the severity level for the connector between the ith and the jth components in the 

scenario . 
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The dynamic complexity is determined by using UML state charts from which we 

can obtain both the cardinality of subset of states for a component i in the scenario Sx 

(|Ci
x|) and the cardinality of subset of transitions traversed (ti

x=|Ti
x|) (2.5.1-3) and the 

normalized dynamic complexity (2.5.1-4). 
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The dynamic coupling is determined by using UML sequence diagrams from which 

we can obtain the number of messages sent from component i to component j during 

scenario Sx (Mij
x) and it is normalized by dividing over the total number of messages 

exchanged in scenario Sx  as in (2.5.1-5). 
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For a given scenario, a severity level is assigned to each component and connector 

based on the Failure Mode and Effect Analysis technique.  Next, scenario risk factors are 

estimated considering multiple failure states in order to represent failure modes with 

different severity level.  The steps of the methodology are presented in Figure 8 . 

 

 

Figure 8 Architectural-Level Risk Analysis Methodology. Source [12] 

 

Construction of the scenario risk model requires first, a control flow graph, in which 

states map active components and arcs map connectors assuming they have a Markov 
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property which allows the representation of the model software execution behavior for 

scenario Sx as an absorbing discrete time Markov chain (DTMC). Second, inclusion of 

failure states into the DTMC as absorbing states.  

Finally, the risk factor for each use case is acquired by averaging the risk factors of 

all scenarios Sx present in the use case, and similarly, the overall system risk factor is 

obtained by averaging the use case risk factors.       

2.5.2 Performance-based Risk Analysis 
Performance risk is created by violations of performance requirements [6].  This 

methodology indicates both risky software components and risk scenarios by using 

annotated UML diagrams such as Use Cases, Sequence diagrams and Deployment 

diagrams in order to estimate the probability of performance failure in combination with 

the failure severity estimation from the Functional Failure Analysis. 

An outline of the methodology is depicted by Figure 9.  The methodology, the 

demand vector is defined for an action/step of a component and by size of the data 

exchanged for an interaction of a connector.  A Software Execution Model is obtained by 

translating the sequence diagram dynamics into a flow graph whose parameters come 

from the demand vectors.  A Service demand for each hardware device is obtained from 

the annotated deployment diagram. 

A stand-alone analysis is executed, where the completion time of the whole scenario 

is based on a dedicated hardware platform with a single user workload, if the time value 

from this analysis is not violating the performance objective then a posterior investigation 

with a realistic workload in the presence of contention for resources is carried out in 

order to find the probability of failure.  On the other hand, when the time value of the 

stand-alone analysis violates the performance objective, it is clear that the software 

system deployed on that specific hardware architecture is not suitable for the 

requirements, and then the failure probability is set to one. 

In the following steps, both calculation of the asymptotic bounds of the performance 

model and an estimation of probability of failure as a violation of the performance 

objective are achieved.  Additionally, the functional failure analysis is done over the 

system-level sequence diagram, where information for each event in the system-level 

sequence diagram is associated with a failure mode, its effects and its severity level. 
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Finally, estimation of the performance risk of a scenario is executed by calculating 

the product of the probability that the system fails in meeting the established performance 

objective with the severity associated with this failure in the scenario.  Identification of 

high-risk components in a scenario is done by finding the component with the highest 

residence time and identification of high-risk scenarios is done by performing cross 

scenarios comparisons through normalization of the overall residence time of components 

in a specific scenario with the response time of the scenario. 

INPUT:  
Performance objective. 
UML diagrams: Use case Diagram, Sequence Diagram, and Deployment Diagram. 

For each Use Case 
For each scenario 

STEP1- Assign demand vector to each action/interaction in Sequence diagram; build 
a Software Execution Model. 

STEP2- Add hardware platform characteristics on the Deployment Diagram; conduct 
stand-alone analysis. 

STEP3- Devise the workload parameters; build a System Execution Model; conduct 
contention-based analysis and estimate probability of failure as a violation of 
a performance objective. 

STEP4- Conduct severity analysis and estimate severity of performance failure for the 
scenario. 

STEP5- Estimate the performance risk of the scenario; identify high-risk components. 

OUTPUT:  
Probability of performance-based risk of the scenarios. 
Identification of performance-critical components. 

Figure 9 Performance-based Risk Analysis Methodology.  Source [6] 

2.5.3 Risk Analysis Methodology  
 

The National Institute of Standards and Technology proposed a methodology for risk 

management for information technology systems [24].  The methodology consists of 

sequential steps which provide a foundation to assess the scope of the probable threat and 

the risk associated with the system.  Furthermore, an identification of suitable controls for 

reducing or eliminating risk can be selected in order to provide better protection of the 

mission-critical system. 
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Figure 10 presents the selected steps of the risk analysis methodology.  System 

characterization is the first step, followed by hazard identification, vulnerability 

assessment and control and impact analysis. 

 

 

Hazard Identification 

Vulnerability Assessment

Control analysis 

Likelihood Determination

Impact Analysis 

Risk Determination

System Characterization 

Figure 10 Risk Analysis Methodology Processes. Adapted from [24] 

 

System Characterization delineates the system boundaries and the system related 

information in order to understand the environment. The information is usually about 

hardware, software, system interfaces, data sensitivity and criticality, system mission, 

system security policies, among others. 

Threat Identification recognizes potential conditions that might exploit a specific 

system vulnerability.  Given that those potential conditions by themselves in the non 

existence of vulnerabilities to exploit do not constitute a risk, it is necessary to consider 

threat-sources, vulnerabilities and current controls in order to establish the likelihood of a 

threat.  Examples of threat-sources are environment, nature or human being. 

Vulnerability Assessment identifies and evaluates the vulnerabilities related to the 

system environment identified in the system characterization step.  Finally, it provides a 

foundation for determining mitigation measures. 
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  22  

Control Analysis studies the current and future controls imposed in the system with 

the purpose of minimize or eliminate the probability of a potential threat exploiting 

system vulnerability.  

Likelihood Determination obtains a general likelihood which suggests the probability 

that the vulnerabilities already identified may be exploited within the system.  Factors 

such as source of the threat and its motivation, nature of the vulnerability, and current 

control mechanisms to block possible flaws, should be considered. 

 

High

treat-source is stimulated and capable; controls 
may block successful vulnerability exploitation 

threat-source is highly  
stimulated and capable 
Controls are ineffective

The threat-source is poorly stimulated or capable; controls are at least 
significantly effective. 

Low 

Medium 

Figure 11 Likelihood Levels and meaning. Adapted from [24] 

 

Impact Analysis measures the unfavorable effect of successful system’s 

vulnerabilities exploitation.   The unfavorable impact of a security event can be described 

in terms of loss or degradation of integrity, availability and confidentiality. 

Risk Determination is the determination of risk for a particular threat/vulnerability 

pair can be expressed as a function of likelihood of a given threat, and the magnitude of 

the impact. 
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Chapter 3 : Performance analysis 

In this chapter, we present the configuration of the biometric-based border inspection 

system  (structure and functionalities) using UML diagrams.  We build and parameterize 

the performance model using information from similar systems [4][27][28][29] and open 

workloads.  We estimate open workloads by analyzing travelers’ arriving pattern from 

operational data at Dulles International Airport [5].  Finally, we create and evaluate 

several performance experiments with the purpose of identifying configurations that offer 

minimum waiting time among the different types of security and architectural options.   

 

3.1 Problem definition 
Nowadays, the most trustworthy mechanism to authenticate users is by using 

biometrics.  International travelers at a border inspection point authenticate themselves 

through their biometrics features, fingerprints and face, which provide an enhancement in 

the security of the authentication process. Modeling a system like that is a challenging 

task, because it requires attention to multiple factors that may affect the accuracy of the 

model [56].  Our research goal is to evaluate the effects on service and waiting time for 

different types of security and architectural options within our performance models.   

Emerging international standards define the format a machine readable documents 

(MRTD). Together with biographical data, MRTD stores document holder’s biometric 

information. In order to minimize the likelihood of accepting false credentials, the 

authenticity and integrity of the data inside the traveler’s MRTD are reinforced using 

Public Key Infrastructure (PKI). When presented with decrypted information, the 

immigration officer shares traveler’s information with the Traveler Name Server (TNS). 

TNS alerts the officer about traveler’s admissibility status. Concurrently, the officer 
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interviews the traveler and collects his or her biometric information, currently a digital 

photo and ten fingerprints. Collected biometric information is stored and processed at the 

Traveler Biometric Server (TBS). If this primary inspection has a successful outcome, the 

traveler is admitted into the country, otherwise he or she is referred to a secondary 

inspection point where another officer will perform a longer interview and perform 

multiple checks against watch lists. [56] 

We have been engaged in the development of analytical performance models for 

border inspection points. The goal of performance modeling is to analyze suitability of 

system requirements, such as the organization of the PKD, optimization of workflows 

and maximization of the passenger throughput. A related goal has been the comparison of 

modeling costs and benefit between analytical models and elaborate simulation analysis 

models. 

Our models assume that all travelers possess an MRTD. The performance model 

requires determining the type of workload generator, possible bottlenecks, types of 

scheduling policy, and the distribution of servers and resources. Workload generators are 

generally classified as open or closed [56]. In previous work, Bracchi et. al. [3] [4] used 

closed workloads for modeling of border inspection points.  Those models served as the 

basis for the present work, which is an extension of [3] [4].   One of our contributions is 

the use of open workloads. Open workloads are used in systems where jobs enter the 

system disjointedly of job completions. On the other hand, in closed workloads, a fixed 

number of jobs enter the system and continue circulating within the system with an 

associated processing time.  From the practical stand point, open workloads represent our 

applications better and provide modeling results which are easier to communicate to 

customers.  

3.2 Software Specification 
The border inspection system can be described by its structural and behavioral 

software elements [4], where the first one describes logically or physically its software 

elements and their corresponding interconnections, and the second one describes the 

software comportment at runtime.  In describing the requirements, we will follow the 

methodology proposed by Bracchi et. al. [4]. 
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3.2.1 Use Case Diagram 

This diagram presents the global interactions including variants between the system 

and the actor who is a physical or logical entity demanding services from the system. 

For the biometric-based border inspection system, Bracchi [4] identified four main 

processes: traveler examination, biographic checking, biometric verification and 

biometric identification.  Additionally, the related actors to the system under study are: 

travelers and the interagency border inspection system.  Those processes and actors are 

considered as well in the present work. 

Figure 12 shows the use case diagram identified for the biometric border inspection 

system.  In “Appendix A: Detailed Uses Cases and Sequence Diagrams”, we present 

expanded use cases and their corresponding sequence diagrams. 

The traveler examination process begins when a traveler arrives to the border 

inspection point and presents his/her MRTD (machine readable traveler document) to the 

primary officer in the booth.  The primary officer validates the MRTD by scanning it 

through the MRTD reader which returns the MRTD’s corresponding digital signature that 

is confirmed by employing the Public Key Certificate stored in the Public Key Directory 

or in the MRTD itself.  Additionally, the system verifies the Public Key Certificate 

Authority, machine readable zone (MRZ) and face image stored in the MRTD.  Once the 

officer has validated that the MRTD is original, he requests a biographic check while at 

the same time he requests the traveler to submit his/her fingerprint and face image, used 

for biometric verification (a one-to-one match).  Further, the officer interviews the 

traveler in parallel while the system is retrieving the traveler’s profile.  The system 

alarms the officer when there is a possible mismatch between the records in the system 

and the live biometric data, so the officer sends the traveler to a secondary inspection 

where a biometric identification (a one-to-many match) process is initiated.  In the 

absence of problems, the primary officer grants the traveler access to the country. 
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Figure 12 Use Case Diagram for the Biometric-based border Inspection System. Adapted from [4] 

The biographic checking process initiates when the primary officer sends the basic 

traveler’s information, first and last name, birth-date and MRTD number to the Traveler’s 

Name Server (TNS) and the consular consolidated database (CCD) in order to obtain a 

consolidated information about the traveler’s immigration status.  The TNS retrieves the 

traveler’s information from current immigration status and criminal violations, and the 

CCD retrieves the picture and consular information related to visa applications, 

approvals, refusals and the biometric identifiers captured during the process of MRTD 

issuance. 

The biometric verification starts when the traveler’s live fingerprints (right slap, left 

slap, and thumbs slap) are captured by the fingerprint scanner and a face image is taken 

by a digital camera. The system checks the quality of the collected biometric traits. When 

the quality of the collected biometric traits is poor, the system will request to repeat the 

acquisition of the biometric traits. The collected biometric traits are matched against the 

traveler’s biometric templates in the Traveler Biometric System (TBS). Matching scores 

for fingerprint and face are generated. The system answers that the traveler is who he/she 

claims to be if the final match score is above a threshold.  If the system decides that the 

traveler is not who he or she claims to be, then the primary officer sends the traveler to 

the secondary inspection booth. 

  26  



Chapter 3: Performance analysis                   

The biometric identification process is activated when the secondary inspection 

officer requests a search in a consolidated watchlist with the traveler’s face image 

captured at the primary inspection booth while performing an in-depth interview to the 

traveler.  The traveler biometric database (TB DB) retrieves the top 50 identities after a 

complete match, and ranks the retrieved templates. 

3.2.2 Sequence Diagram 

This type of diagram presents in detail the interactions between system components 

that were outlined by the use cases.  These interactions are represented by messages. [23] 

Using the performance scenarios identified in the use case diagrams which have the 

greatest impact on performance and the dynamics of those use cases through the 

sequence diagrams, we are able to start building the system performance model. 

In “Appendix A: Detailed Uses Cases and Sequence Diagrams”, Figure 44 to Figure 

48 present the dynamics of the use cases Traveler Examination, Biographic Checking, 

Biometric Verification and Biometric Identification with resource demands for each 

scenario step. 

3.2.3 Deployment Diagram 
This type of diagram illustrates both the physical configuration of the system and the 

software allocation on the hardware device, which provide essential information to the 

performance model.  We are able to estimate resource demands of interactions by 

identifying the hardware devices executing functionalities provided by the software 

system and their corresponding service rate.  

Figure 13 presents the deployment diagram for the border inspection system under 

study.  The system contains several primary inspection booths.  As described by [4], each 

inspection booth has a workstation (POE workstation) that accesses the traveler name 

server (TNS) and the traveler biometric server (TBS) through a WAN connection.  In our 

baseline configuration, the POE workstation stores the Public Key Directory (PKD) as a 

dedicated resource.  In section 3.4.1, we will analyze and report the performance results 

when the PKD is located outside the POE workstation and communicates with it through 

a network link. 
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Figure 13 Deployment Diagram for the Biometric-based border Inspection System. Adapted from [4] 
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3.3 Performance Model Parameters 
The U.S. Customs and Border Protection (CBP) monitors arriving passenger 

processing times in 16 major international airports [5]. CBP data also includes the 

number of passengers per hour and the average number of open booths.   

Figure 14 to Figure 18 present CBP arrival information from December 2007 at one 

of the terminals of the Dulles International Airport.  This distribution was used in our 

experiments presented later. The data set was normalized to average the number of 

travelers per booth per hour. Ensuing distribution is presented in Figure 15.  For 

modeling purposes, we assume that the passengers are evenly distributed among the 

available booths.  December of 2007 was chosen because the new regulation of 10 

fingerprint acquisition was implemented at that time.  Dulles International Airport was 

the first airport to put into action this security upgrade. 

Figure 14 shows the average number of passengers arriving per booth per second 

throughout the day.  It is notorious that there are certain times when no travelers arrive. 

There are hours where the load is 75% higher than the smallest load.  A significant 

variation (error bars) is observed during the night hours up to 2 am.  Columns with no 

error bars represent a single value.  With this kind of pattern in arriving of the travelers at 

border inspection points, it seems that modeling the system with open workloads presents 

a more realistic approach that the one previously reported with closed workloads [3]. 
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Figure 14 Average Passengers in the month of December 2007  
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Figure 15 Passenger Distribution at the Terminal Booths 

 

Figure 16 presents the average daily waiting time.  We see that the average waiting 

time range is usually between 30 and 50 minutes, and that the upper-bound, the busiest 

day, is on Sunday and the lower bound of the system occurs at the middle of the week 

were the waiting time is nearly 30 minutes.   With this information we can validate our 

models because the graph provides reference values for waiting times.  Processing time is 

not recorded by CBP and therefore it cannot be directly validated. 
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Figure 16 Waiting time in December 2007 
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Figure 17 PDF for Dulles Data and Approximated Distributions 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Passengers/Hour/Booth

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

 

 

Empirical
Poisson
Normal
Generalized Extreme Value

 
Figure 18  Cumulative PDF for Dulles Data and Approximated Distributions 

   
The distribution of the Dulles Airport data is shown in Figure 15 through Figure 18.  

Figure 15 presents the probability density function (PDF) of the observed arrival rates 

(passengers per hour per booth).  The mean value for the dataset is 21 

passengers/hour/booth and the standard deviation is 13.  Figure 17 compares the dataset’s 
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PDF with fitted Poisson, Normal and Generalized Extreme Value (GEV) distributions. 

Figure 18 presents the cumulative PDF compared to the fitted distributions.  The normal 

distribution is presented as a reference but it yields negative values, which makes it 

inappropriate for the modeling arrival rates in this situation where the mean is close to 

zero.   

The Poisson distribution may serve as an approximation to the actual distributions 

when only the mean estimates are available [20], condition that is assumed throughout 

the models.  For example, refer to the access control scenario of Figure 5.  Poisson 

distribution showed to be a poor fit for the observed passenger distribution, as can be 

inferred from Figure 17.  The goodness of fit was evaluated by the Chi-square test. The 

test determined that the best approximation for the actual distribution is a Generalized 

Extreme Value (GEV) distribution with k = 0.15, σ = 8.46, and µ = 14.80. The test P 

value for GEV fit is 0.39 (thus the confidence in the GEV fit is 61%).  The actual 

distribution was not used due to limitations in the modeling tool that did not allow for 

custom distributions to be implemented.   

Using the annotations from the use case diagram and the probability density function 

for traveler arrival, we are able to calculate user workloads on different performance 

scenarios based on the probabilities associated with the scenarios and with the related use 

cases.  The probabilities associated with the scenarios are given by <<PAprob>>, which 

states the probability that a user invokes the linked use case.  Therefore, an open 

workload can be described as a product between the arrival distribution and the 

probability associated with relevant use cases.   

3.3.1 Execution environment 
Table 19 and Table 20 in Appendix B: Performance Parameters, present data 

assumptions that are extended from technical reports of analogous systems [27][28][29].  

Table 21 to Table 24 in Appendix B: Performance Parameters present the estimated time 

of each <<PAstep>> for the sequence diagrams based on the data assumptions and 

calculated values. 

Delays introduced by inspector officers are assumed to be exponentially distributed 

[4]. For example the time spent by the officer to do both the physical reviewing process 

of traveler documents and interview process averages 20 seconds.  The computing 

  32  



Chapter 3: Performance analysis                   

process time of each server is calculated by focusing on complex operations to be 

executed such as cryptographic operations, query databases, and process requests among 

others.  The average time for transferring data through communication channel is 

calculated by dividing the size of the data to be transferred by the throughput of the 

channel [4][57].  Similarly, the average time for input/output of files from a disk is 

estimated by knowing the size of the data to be transferred and the throughput of the 

storing device. 

Some important service demands are presented here. For a global picture of the 

model and a more complete set of parameters see Appendix B: Performance Parameters. 

Based on the analysis presented in [4], performance parameters for Biometric 

Verification and Identification, Traveler Examination, and Biographic Checking are 

defined as follows. 

 Performance parameters related to Biometric verification and identification: 
• captureFingerprint{PAdemand=(‘pred’,’mean’,(15,’s’)} refers to the necessary time to process 

the captured left slap, right slap and thumbs slap of the traveler. 

• checkQuality{PAdemand=(‘pred’,’mean’,(0.005,’s’)} is the required time to check the quality of 

the biometric trait. 

• capture faceImage{PAdemand=(‘pred’,’mean’,(5,’s’)} is the required time to process an online 

traveler’s picture using a digital camera. 

• send-store&matchBiometrics{PAextOp=(‘pred’,’mean’,(0.0329,’s’)} is the necessary time to send 

the biometric data collected in the POE Workstation from the traveler (fingerprint scans + face 

image) to the TBS, using the WAN connecting them: 0.0329 = (50+20)KB/16.6 Megabits/s 

• read-writeBiometricData{PAextOp=(‘pred’,’mean’,(0.00637,’s’)} is the time for reading a 

previously stored face image file (20KB) in the TBS disk and for writing the biometric data 

collected from the traveler (fingerprint scans + face image) on it: 

200MB/s) KB/ 20)20((50  ms 5.93 0.00637 +++=  

• MatchFingerPrint {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} is the time, the TBS spends 

comparing how similar the traveler’s fingerprints with its corresponding fingerprints-probe are.  

• MatchFace {PAdemand=(‘asmd’,’mean’,(0.05,’s’)} is the time, the TBS spends matching the 

traveler’s face image with its corresponding face-probe. 

• compareWatchlist{PAdemand=(‘asmd’,’mean’,(5,’s’) PAextOp=(‘pred’,’mean’,(97.66218,’s’)} is 

the time that the TBS disk spends by matching the traveler’s face image with the set of 1 million 

face images in the biometric watchlist, it is assumed to be 5 seconds; additionally the TBS disk 

consumes time reading the entire watchlist. Consequently, the actual time required to perform the 
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computation depends on the size of the watchlist: 5.93ms + (1,000,000×20KB/200MB/s) = 

97.66218s  

• rankIdentities {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} is the required time by the TBS to rank 

the match scores from comparing the traveler’s face image with the set of 1 million face images in 

the biometric watchlist. 

Performance parameters related to Traveler examination: 
• return MRTDData{PAdemand=(‘pred’,’mean’,(X,’s’) PAextOp=(‘pred’,’mean’,(Y,’s’)}, the 

PAdemand specifies the time required by the MRTD Reader to read the data stored in the MRTD 

where X = MRTDsize bytes /424 kilobits/s.  PAextOp refers to the time the MRTD transfers its 

data to the MRTD reader.  Y = MRTDsize bytes/848 kilobits/s 

• validateMRTD{PAdemand=(‘pred’,’mean’,(X,’s’)} refers to the necessary time to transfer the 

MRTD data from the MRTD reader to the POE Workstation through a 12 Mbits/s USB link.  

X=MRTDsize bytes/12 MB/s 

• return PKCertificate{PAextOp=(‘pred’,’mean’,(Y,’s’)} specifies the necessary time to read Public 

Key Certificates from the Disk of the POE Workstation. The actual reading time depends on the 

number of certificates to be read (N=1 or 2): Y =6.5ms + (N*PKCsize KB/ 130MB/s) 

• validate(MRTD_DS){PAdemand=(‘pred’,’mean’,(X,’s’)} refers to the required time to validate 

the authenticity of the digital signature on the MRTD.  Therefore, we need to compute a hash 

function (SHA-1) of the MRTD data, and to verify the authenticity of the digital signature by 

applying the RSA algorithm using the Public Key of the MRTD signer (2048 bits) [27].  The time 

to perform the operation depends on the amount of data stored in the MRTD: X= 

t[SHA_1(MRTDsize bytes)] + t[RSA(2048bits)-verify(20bytes)] 

Performance parameters related to Biographic checking: 
• findTravelerData{PAextOp=(‘pred’,’mean’,(0.0118,’s’)} is the necessary time to exchange the 

TNS traveler’s biographic and lookup information and a picture of him/her. Our assumptions 

about the average size of the traveler’s data are: 5 KB for the biographic data and 20 KB for the 

picture.  25KB / 16.6 Megabits/s = 0.0118s  

• return consolidateInfo {PAextOp=(‘pred’,’mean’,(0.00595,’s’)} refers to the required time to 

retrieve from the TNS disk traveler’s biographic and lookup data: 5.93 ms + (5 KB / 200MB/s) = 

0.00595s  

• return picture{PAextOp=(‘pred’,’mean’,(0.006,’s’)} is the time a traveler’s picture from the CCD 

server disk is retrieved: 5.93ms + (20KB /200MB/s) = 0.006s  

• reviewDocs {PAdemand=(‘asmd’,’mean’,(300,’s’)} is the time a secondary inspection officer 

comprehensively reviews the traveler’s documents and belongings and to question him/her. 

• processInspectionData {PAdemand=(‘asmd’,’mean’,(5,’s’)} refers to the time a secondary 

inspection officer needs to decide if authorizing the traveler to enter the country based on the 

outcome of checks. 
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Following the work of [4] in closed workloads, Figure 19 and Figure 20 below depict 

the analytic layered queueing network model for the open workload biometric-based 

border inspection configured with the previous parameter settings.  Those parameters are 

basically service demands on entries and activities, generated workload with reference 

tasks, and amount of replicated devices. 

Figure 19 presents an overview of the system configuration by showing tasks, 

hardware devices and the flow of messages between entries and entries requiring usage of 

devices, through request arcs.  On the other hand, Figure 20 offers a more detail 

explanation of tasks internal functionality by their corresponding activities and their 

communications which are done by configurations using sequences, fork-join, etc. 

In our system, travelers are either genuine or impostors.  A genuine traveler is a 

person whose identity recognition is based on the authenticity of his/her traveler 

documents and his/her biometric traits.  On the other hand, an impostor traveler is an 

individual who has forged his/her traveler documents and/or biometric traits with the 

purpose of entering the country using a different identity circumventing the system.  The 

implications on the system performance are increasing average waiting times due to in 

depth search of watch lists, verification of authenticity of traveler’s documents, and 

detailed interviewing. 

 The OrFork in the beginPrimaryInspection entry, was used in order to represent the 

option of possible impostors present at the booth, given a predefined prior probability 

associated with them.  Although, the system triggers an alarm when detecting suspect 

impostors, it also does that to some genuine travelers, for this reason at the secondary 

inspection a mixture flow of both genuine and impostor arrives.  Furthermore, there are 

some impostors that the system is unable to detect succeeding in circumventing it, while 

other genuine travelers are deported or in custody until more evidence is available so 

their identities are reinforced. 
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Figure 19 LQN Model for the biometric-based Border Inspection using open workloads 
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Figure 20 Expanded LQN Model for the primary and secondary inspection options using open workloads 
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3.4 Experiments and Results 

3.4.1 Public Key Certificate 

The purpose of this experiment is to examine the waiting time results from accessing 

public key certificates of authorities issuing MRTDs.  The public key certificate may be 

stored locally in the MRTD, in a dedicated database or in a shared database.  The 

validation of certificates of authorities is required in order to verify the authenticity of 

travelers’ documents at the inspection booths.  

The LQN models are solved in order to obtain their analytical solution and establish 

the most suitable configuration that provides the best performance.  As mentioned above, 

three cases were explored: 

1. MRTDs public key certificate is stored inside the traveler document. 

2. Dedicated PKD: public key certificate is stored in a database that is access locally 

from each officer workstation. 

3. Shared PKD: public key certificate is stored in a database that is access by a pool 

of airports in a region.  In order to express the intensity of requests on the PKD, four kind 

of PKI population were studied: 1 airport, 40 airports, 80 airports and 160 airports.  

The entries and activities related to configuration 3, basically the inclusion of a PKI 

system that communicates with the POE workstation, are taken from [4] and depicted in 

Figure 22 .  Specific modifications related with inclusion of impostor population, false 

match rate, and detailed verification and identification modes on the biometric modules 

are based on the same description provided by Figure 20.  Parameters of the relevant 

LQN entries are shown in Table 3 for the various scenarios. 

Table 3 LQN parameterization for Public Key Certificate Experiment 

LQN entries Option 
 MRTD Dedicated PKD Shared PKD 

readMRTDdata 0.1446s 0.1184s 0.1184s 
scanMRTD 0.2708s 0.2368s 0.2368s 
validateMRTD 0.0093s 0.0082s 0.0082s 
PKCertificate 0.0065s 0.0065s 0.0065s 
verify 0.0044s 0.0044s 0.0044s 
send-getPKCert - - 0.0017s 
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Figure 21 presents the result of our model analysis, the average waiting time at the 

inspection booths undertaken by travelers. The architectural options: MRTD, dedicated 

PKD and shared PKD with 40 airports present similar average waiting times in the 

inspection point. The number of travelers that can be inspected every time is limited by 

the available primary inspection points. They are able to handle population in the ranged 

1 to 1600 with acceptable times, with a larger population the system becomes saturated 

and the waiting time goes to infinite.  At those points, the only solution would be to 

increase the number of available booths, since this is the bottleneck in the system. The 

shared PKD within 80 and 160 airports become sooner saturated since more airports are 

requesting services to the shared PKD. 

MRTD Dedicated PKD Shared PKD (1 airport)
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Figure 21 Average waiting time using different architectural options 
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Figure 22 LQN model for the border inspection system using the shared-PKD option
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3.4.2 Screening Policies 

The purpose of this experiment is to examine the effects of increasing the number of 

subjects in the watch lists to the inspection and waiting time at the inspection booths.  

Watch lists are deployed at border crossing to facilitate quick screening of passengers 

against the list of persons of interest.  It is assumed that the watchlists are partitioned and 

distributed along the TBS disks, in order to increase the system throughput.  The 

considered size values for the watchlist and their corresponding parameterization values 

in the LQN entries are presented in Table 4. 

Figure 23 presents the inspection time experienced by travelers at the booth 

inspections when the system performs the identification search over a consolidated 

watchlist.  The average inspection time is less than six minutes in the secondary line, 

when the number of suspects within the list is between 1,000 – 1,000,000, which is 

comparable with reported results in the literature [25].  On the other hand, the system 

with the current configuration is unable to work with watchlist sizes equal or larger than 

to 10,000,000 since it superpasses the acceptable time, thus creating very large queues. 

Figure 24 shows how traveler waiting time changes as additional high-risk subjects 

are included in watchlist. In the baseline scenario, we assume that the watchlist size is 

fixed to be 1,000,000.  We can observe from the plots that increasing the watchlist size 

directly impacts the waiting time as the number of travelers increases.   

Table 4 LQN parameterization for different screening scenarios 

Watchlist size 
(different subjects) 

LQN entries 
(comparison time)

1,000 0.03034 s 
10,000 0.25 s 
100,000 2.447 s 

1,000,000 24.414 s 
10,000,000 244.1465 s 
50,000,000 1220.709 s 
100,000,000 2441.4121 s 
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Figure 23 Average secondary inspection time for different screening scenarios 
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Figure 24 Total waiting time for different screening scenarios 

3.4.3 Biometric False Match Rate 
False match rate (FMR) is the frequency of the error incurred when deciding that two 

biometric strings, the input string and the template are from the same subject, while in 

reality they are from different subjects. It occurs when match scores from impostor are 

above the system’s threshold. This experiment intends to evaluate how the false match 

rate in the biometric system affects the performance provided by the airport inspection 

point.  Below, we report the FMR as a p1 in the primary inspection interaction, where p1 
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expresses the probability that an impostor traveler is accepted as a genuine traveler; the 

values considered are shown in Table 5. 

Table 5 FMR variation in the LQN model (Biometric False Match Rate Experiment) 

FMR LQN entries 
1% p1: 0.01 

0.1% p1: 0.001 
0.01% p1: 0.0001 

 

The impact in inspection and waiting time associated with variations at the impostors 

prior probability is also studied, using the fixed values of FMR=0.01% and 

FNMR=0.1%.  For the sake of clarity, we relate the different levels of security threat with 

the impostor arrival probabilities.  The values considered are shown in Table 6 and they 

do not correspond with actual values deployed by the Department of Homeland Security 

at the airports. 

Table 6 LQN parameterization (Biometric False Match Rate Experiment) 

P(impostor) Alert Level Status LQN entries 
0% green pi=0  

0.01% pi=0.0001 
0.1% blue pi=0.001 
0.5% yellow pi=0.005 
1% orange pi=0.01 
10% red pi=0.1 

 

Figure 25 represents the total waiting time experienced by travelers when the system 

FMR changes from 1% to 0.01%. Results of our model analysis did not present 

significant differences in the waiting time for the various values given to the FMR, using 

the fixed values of FNMR=0.1% and p(impostor)=0.1%.  The low impostor arrivals 

probability in combination with the different FMR values allows that the waiting time for 

secondary inspection between impostors were almost the same. In addition, the system 

performance is heavily affected by the travelers, so the waiting time increases as the 

traveler arrival increases.  Even more, the system is not saturated as long as the arrival 

rate is under 1,400 travelers per hour. 
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Figure 25 Total waiting time for different FMR scenarios, assuming P(impostor)=0.001 

 

Figure 26 presents results for different alert level status at the inspections facilities.  

For the baseline inspection scenario we assumed a blue alert level or high condition with 

the impostor prior probability of 0.1%.  We perform an analysis on that parameter, 

assigning it the values 0%, 0.01%, 0.1%, 0.5%, 1%, 10%.  These values may correspond 

to different levels of security threat.  A 0% and 0.01% (low condition) correspond to the 

low risk of experiencing an impostor, so a trusted traveler population (e.g. pilots, 

government officers, etc) is being processed quickly.  A 0.1% (guarded condition), 0.5% 

(elevated condition), 1% (high condition) and 10% (severe condition) correspond to the 

increasing risk of experiencing an impostor.  From Figure 26 we can conclude that the 

total waiting time is sensitive to large values of impostor arrival probability.  For 

example, the 10% rate produces saturation at the inspection booths, given that it is more 

probable that the alarms in the system will be activated, so the officers would have to 

send more people to a second inspection and the total inspection would take longer, given 

that a more detailed interviewing is required. 
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Figure 26 Total Inspection time for different impostor prior probabilities 
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Figure 27 Total average Inspection time at different combinations of FMR and Watchlist size 

 

Figure 27 offers total average inspection time at different combinations of FMR, and 

watchlist size. For a load of 1049 travelers/hour, and a fixed FNMR=0.001. The system 

provides the lowest inspection time with the option FMR=0.0001.  Nevertheless, going 

from a watchlist size of 10 million to 100 million increases the total inspection service 
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time from less than nine minutes to nearly 64 minutes.  On the contrary, the effect of 

watchlist size when below 100 thousand is not significant.  Note that the bound imposed 

by the traveler population is still an issue.  In conclusion, more than increasing watchlist 

size, reduction of the False Match Rate offers significant reductions in passenger 

screening time. 

3.4.4 Replication of PKD 

This experiment intends to evaluate the improvement in performance of the system 

given that we increase the number of PKD available in the shared PKD configuration. 

We use the LQN model for the shared-PKD option (see Figure 22) augmented with the 

values corresponding to the number of replicas wanted.  We found in the first experiment 

that options for 80 and 160 airports become saturated very soon. For this reason we 

replicate some PKDs in order to increase the throughput.  In Table 7, for 80 airports, 

having more than one replica decreases the utilization, thus unsaturating the system. The 

intermediate point is attained with 3 PKDs because a reasonable waiting time is achieved 

and the utilization is half providing room for further requests.  For 160 airports, such 

point is attained with 6 PKDs.  It must be noted that implementing replicas have an 

inherent cost because consistency needs to be guaranteed.  

Table 7 Utilization 

80 airports 

PKD 
# 

Primary 
Inspection 
Time (s) 

Waiting 
Time 
(m) 

Utilization 
PKD 
DB 

PKD 
Proc. 

PKD 
Disk 

1 58.47 25 0.9995 0.4346 0.5650 
2 44.49 19 0.8756 0.3807 0.4949 
3 44.44 19 0.5856 0.2546 0.3310 
4 44.43 19 0.4393 0.1910 0.2483 
5 44.43 19 0.3514 0.1528 0.1986 
6 45.43 19 0.2929 0.1273 0.1655 

160 airports 

PKD 
# 

Primary 
Inspection 
Time (s) 

Waiting 
Time 

Utilization 
PKD 
DB 

PKD 
Proc. 

PKD 
Disk 

1 94.02 ∞ 0.9999 0.4347 0.5652 
2 58.34 25 1.0000 0.4348 0.5652 
3 47.37 20 0.9999 0.4348 0.5652 
4 44.46 19 0.8755 0.3807 0.4949 
5 44.44 19 0.7014 0.3049 0.3964 
6 44.43 19 0.5846 0.2542 0.3304 
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3.5 Analysis 
Our results from the performance experiments provide insights about total waiting 

time that a traveler would experience during his/her authentication process at the 

inspection booths.  At the same time, we are able to assess different architectural and 

security related options, that could present a major impact on the border inspection 

mission, which is to keep inadmissible travelers (e.g. forged traveler’s identity, required 

by law enforcement agencies) from entering the country and facilitate the entrance of 

travelers who meet the legal requirements to entry the country, without a detriment in any 

of the inspection procedures. In all the performance models, we use the arrival rate from 

the approximated distribution (see section 3.3), which depicts the requests load that the 

system would experienced. 

We start evaluating the average waiting time as a result of different localization of 

public key certificates of authorities issuing MRTDs.  We considered storing the public 

key certificate inside the MRTD, on a dedicated PKD inside every POE workstation and 

in a PKD shared by the inspection points within 1 airport, 40 airports, 80 airports and 160 

airports. From this experiment, we observe (see Figure 21) that the availability of primary 

inspection points determines the number of travelers that can be inspected every moment.  

The configuration that involves sharing the PKD among 80 to 160 airports, presents 

saturation on traveler’s arrival of less than 1,200 and 1,000 per hour, respectively.  These 

results are consistent since many requests are arriving to the single PKD in both of the 

configurations. On the other hand, the configurations of locally stored (MRTD), 

dedicated stored (PKD in every POE workstation) and shared PKD among 1 to 40 

airports present similar average waiting for the traveler. 

Next, we explore the impact of watchlists size on the average secondary inspection 

time.  The average secondary inspection time is about the same in the cases where the 

number of entries is 1,000,000 or below. However, for watchlists size over 1,000,000 

entries (see Figure 23), the average waiting time starts increasing due to a slower 

response from the Traveler Biometric disks (TBS-disk), which contain the watchlists. 

This experiment suggest that implementation of novel indexing schemes on TBS-disks 

may improve its response time that will translate in reduction of the secondary inspection 

time. 
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We performed a sensitivity analysis on the probability of impostors and genuine 

travelers arriving at the inspection booths by evaluating the average inspection time and 

the total waiting time.  We varied the impostor probability from 0% to 10%. Our baseline 

scenario assumes that 0.1% of the travelers are impostors and there is one secondary 

inspection.  We observed (see Figure 26) that for a relatively large probability of 

impostors (10%) among travelers, the system bottleneck becomes the secondary 

inspection given that more travelers are likely referred to it.  This experiment suggests 

that replication of secondary inspections are required when the probability of impostors 

arriving at the border inspection start reaching 1% or above. 

Another important finding is the performance implication as a result of the system’s 

false match rate.  The total waiting time in the system is about the same for the FMR’s 

different values 0.1% to 1% (see Figure 25).  Those results are consistent given the fact 

that impostor prior probability and false non-match rate were fixed in all the cases, 

therefore the secondary inspections queues are slightly influenced by small waiting time 

contributions from the impostors who were detected by the system.  

Next, we explore the effects in the total inspection service time when combining 

different watchlists sizes with different false match rate values (see Figure 27).  In 

general, the system using a FMR=0.0001 provides the lowest inspection time.  Although, 

going from a watchlist size of 10 million to 100 million increases the total inspection 

service time approximately six times.  On the contrary, the effect of watchlist size of 

below 100 thousand is not significant; the total inspection time is almost the same. 

Finally, we analyzed the performance impact from having more than one PKD 

replica in the configurations that presented saturation (shared PKD among 80 to 160 

airports) (see Table 7).  The experiment shows reduction in the PKD utilization, up to the 

point where the having more than three replicas and six replicas in every case 

respectively did not alter the primary inspection time and waiting time. 

In summary, results from the previous experiments provide insights about 

improvements in the inspection time that travelers would experience in the system when 

using different types of configurations.  Changes in those configurations may result as a 

set up of security measures that have to be implemented in the system. 
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The most important goal of border inspection is to identifying “high-risk” 

individuals, who can put in danger a country by a terrorist attack.  The selection of 

travelers that must be exhaustively inspected as opposed to a superficial scrutiny without 

increasing the threat is a key issue.  Nevertheless, terrorists may have gone through 

border inspections without been caught and are still unknown. 

One major vulnerability of border inspection system was the lack of an universal 

mechanism to include the names of all terrorist in watch lists. This vulnerability was 

exploited by Khalid al-Mihdhar and Nawaf al-Hazmi, two of the hijackers involved in the 

9/11, whom even though were identified by the CIA as potential criminals by January 

2001, the CIA did not request them to be watch-listed until late August 2001, when they 

had already being accepted in the US. [14] 

Figure 28 and Figure 29 present some statistics inferred from [11] which reveal that 

officers at ports of entry have prohibited the entrance of thousands of individuals and 

detected fraudulent travel documents.  The officers at ports of entry likely did not 

apprehend all the inadmissible aliens. How many of the inadmissible aliens and other 

violators evaded successfully the inspection points is estimated through a program called 

Compliance Examination (COMPEX) [11]. 
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4.1 Biometric System 
Since 2003, the Border Inspection System contains a biometric subsystem, which is 

able to work in three different modalities: identification, verification and watchlist. 

Identification (Who am I?) modality is applied when the identity of a subject is 

unknown in advance. A biometric pattern is computed from the subject’s biometric 

features in order to find out the identity of that person.  The entire template database is 

compared against the subject’s probe yielding a match score which has to be within a 

given threshold in order to provide the top k identities. 

Verification (Am I whom I claim I am?) modality is used when the subject provides 

an alleged identity.  The system performs a comparison between the person’s biometric 

query with the template that is already in the system, a score is produced and checked 

against a threshold.  
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In a watchlist, the subject does not claim an identity; therefore the biometric sample 

of the subject is compared with the samples present in the watchlist to detect if the 

subject’s pattern is in it.  When a subject is found to have similarities to one or more 

entries in the watchlist that are higher than the given threshold, the system actives an 

alarm and returns the list of identities from the watchlist that triggered the alarm.  The 

system could incur in two types of errors: miss rate and false hit rate.  Miss rate is when 

the system pulls out wrong identities without including the right one or a reject and the 

subject is present in the watchlist.   False hit rate is when the alarm is activated by a 

subject that is not present in the watchlist. 

Biometric signatures and their corresponding templates are different.  Their 

similarity depends on the acquisition method, user interaction with the acquisition device, 

the acquisition environment, and the possible variations present in the traits due to 

physiological changes [30]. Some of the common reasons for biometric 

signal/representation variations are: 

• Inconsistency in the biometric presentation: The signal obtained by the 

sensor from a biometric trait relies on both the intrinsic trait characteristic 

and the way the trait is offered. For example, the three-dimensional shape of 

a finger is mapped into the two-dimensional surface of the sensor accordingly 

to the pressure and contact that the finger put on the sensor surface, given 

that, the finger is an elastic object and the projection of the finger surface into 

the sensor surface is not exactly controlled, different impressions of a finger 

are related to each other by various transformations. Additionally, it is 

possible that each impression of a finger may represent a different portion of 

finger’s surface introducing additional spurious features.  

• Irreproducible Presentation: Biometric identifiers are susceptible to wear 

and tear, malfunctions, injuries and physiological development. For example, 

the ridge structure of a finger can change either permanently or temporarily 

by injuries, manual work, and accidents, among others.  Hand geometry 

measurements might not be reproducible when the user is wearing different 

kinds of jewelry each time.  Face recognition is affected by facial hair, 

makeup, accidents, external accessories that correspond to irreproducible face 
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representations. A person’s voice changes as a result of health problems, for 

example a common cold, affecting a voice recognition system. These events 

and more contribute to dramatic variations in the biometric trait signal 

captured at different acquisition instants. 

• Imperfect Signal/Representational Acquisition: The acquisition environment 

in real scenarios is not perfect and produces extraneous variations in the 

acquired biometric signal. For example, poor-quality fingerprint acquisitions 

are caused by a non-uniform contact with the sensor and the dryness of the 

skin, thin/worn-out ridges, skin disease, sweat, dirt, and humidity in the air, 

which lead to either spurious or missing minutiae. Different illuminations 

cause prominent differences in the facial appearance. The voice signal is 

affected by the channel bandwidth characteristics.  The use of different image 

processing operations could perturb feature localization. High inter-class 

similarity (biometric traits from different subjects are similar) due to either 

inherent lack of distinctive information in the biometric trait or the 

representation used for the biometric trait is too restrictive, finally the feature 

extraction algorithm could introduce some measurement errors.  

Variations in the biometric signal/representation lead to error rates in the biometric 

authentication system, since the matching module has to decide which of the following 

hypotheses is true: 

The null hypothesis ⇒OH

⇒aH

the two samples do not match, the input does 

not come from the same subject as the template. 

The alternate hypothesis the two samples match, the input comes from 

the same subject as the template. 

The two errors that a matcher can present are: 

I. False Match (FM): Deciding that the input and the template are from the 

same individual, while in reality they are from different people, deciding Ha 

when Ho is true.  The frequency with which this occurs is called the False 

Match Rate (FMR) (3.4.4-1).  An impostor can generate a high match score 

(s>T), thus causing an FM. 
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FMR=   

 

II. False Non-Match (FNM): Deciding that two biometrics, input and template 

are not from the same identity, while in reality they are from the same 

identity; deciding Ho when Ha is true.  The frequency at which this occurs is 

called the False Non-Match Rate (FNMR).  A genuine subject can generate a 

low match score (s<T), thus causing a FNM. 
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∞
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(3.4.4-1) 

 
FNMR=  (3.4.4-2) 

 

 

Unfortunately, the non-match score distribution typically overlaps the match score 

distribution.  Subsequently, it is not feasible to choose a threshold for which FMR=0 and 

FNMR=0.  A threshold must be defined based on the security level that the system must 

offer.  The lower chance of False Match implies a higher security level.  This will cause 

some level of inconvenience for genuine users. 

 

Figure 30 Common Biometric Error rates 

In the border inspection system, frequent flyers will usually produce lower error rates 

since they are more habituated to interact with the system.  Furthermore, studies have 

shown that there are differences in recognizing different persons with respect to their 

biometric identifiers.  Among them, some will produce higher error rates than others 
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[2][7].  Another important fact is the fraud rate, i.e., the percentage of the population that 

is attempting to defraud the system. 

Finding the most appropriate FNMR and FMR in our models is one of our major 

goals, since we can evaluate performance scenarios where impostors are not detected 

during border inspection process, and genuine travelers are inconveniently rejected. 

4.1.1 Receiver Operator Characteristic (ROC) Curve 

A ROC curve is one method of assessing classification performance in two 

dimensions of binary class classifiers; the graph plots the FMR against FNMR [8].  The 

set of points in the curve come from variations in the setting of a classifier’s threshold.  

The ROC curve provides an estimate of the predictive characteristics of a classifier.  

Figure 31 presents a ROC curve with different application scenarios. 

 

Figure 31 FMR vs. FNMR ROC curve. Source [30] 

 

4.1.2 Vulnerabilities of Biometric Systems 

Even though, biometric authentication systems have numerous advantages over 

traditional authentication systems [17], they are not exempt of weak points that can be 

exploited by attacks [21]. 

A biometric system is depicted in Figure 32, where modules may be vulnerable to 

the following attacks: 

1. Fake biometrics are provided to the sensor as input, for example synthetic finger, 

face makeup, or a face disguise. 

2. Resubmitting previously stored digitized biometrics signals: In this mode of 

attack, a recorded signal is replayed to the system, bypassing the sensor. 
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Examples include the presentation of an old copy of a fingerprint image or the 

presentation of a previously recorded audio signal. 

3. The feature set obtained at the feature extraction module is chosen by the attacker 

via a Trojan horse in the module. 

4. Fraudulent modification of stored templates: the attacker may modify one or more 

templates in the database with the intention of accepting a fraudulent subject or rejecting 

subjects associated with the corrupted template. Biometric systems storing the template in 

smartcards are susceptible to this kind of attack. 

5. Replacement of features obtained from the input signal with a different fraudulent 

feature set.  For example, the communication channel between the feature extraction 

module and the matcher module can be interfered in order to alter specific packets. 

6. Attack to the communication channel between the stored templates and the 

matcher by intercepting and modifying the information traveling on it, this type of attack 

can be replayed in other moment for gain access. 

7. Alteration of the matcher module in order to emit pre-established match scores. 

8. Alteration of the final decision is the most critical attack, given that the system 

becomes useless, even though its recognition framework possesses excellent performance 

characteristics. 

These attacks can be minimized by incorporating liveness detection of the entity 

originating the input signal (attack at points 1,2), encrypting the communication channels 

(attack at points 5,6) , placing the matcher and the database in a secure location (attack at 

points 4,5,7) using cryptography at the decision module (attack 8), mutual authentication 

between each pair of modules, hardening of database server, among others [32]. 
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Figure 32 possible Attack points in a biometric authentication system, adapted from [21].   

 

4.2 Risk Model 
Predicting the number of high-risk aliens who may bypass the border security 

inspection system is currently one of the most challenging problems.  Some approaches 

have been developed in order to increase the accuracy in the biometric modules [25].  

They formulate the identification as a game theory problem where the Government uses 

some parameters in order to maximize the detection probability and the impostors want to 

minimize the detection probability by providing an image of poor quality.  Classifying 

regular travelers as high-risk ones implies the application of several verification 

procedures, therefore increasing the inspection time which translates in fewer officers 

available.  On the other hand, misclassifying a high-risk alien as a low-risk traveler 

carries the risk of immigration failure and its cost implications in the society. 

Let us define the set of inspection points as I.  I is divided into two disjoint sets, I1 is 

the set of primary inspection points which are mandatory for all travelers and set I2 which 

is the set of secondary inspection points. If threshold η1 at I1, is not met, an inspector 

must perform an exhaustive examination so the traveler could be cleared out or detained 

based on a second threshold η2. 

We assume that every inspection point in I has a sequence of steps, each intended to 

check one particular out of the N known possible treats, such as: construction of a 

fraudulent MRTD using materials from legitimate documents, alteration of MRTD by 

either substituting the photograph, or altering both the text in the visible zone and 

machine readable zone (MRZ).  Furthermore, there are impersonation attacks, where a 

8 

Decision 

1 
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high-risk traveler alters his biometric traits, like face (by using plastic surgery, masks or 

makeup), fingerprint (by cuts, bruises, among others) in a way that it resembles a low risk 

traveler.  

Figure 33 presents possible technical hazards in the biometric-based border 

inspection system where each device in the system could introduce some level of 

inaccuracy in the inspection process.  Security attacks related to Trojan horses, software 

component replacement, and communication channels among others are depicted in 

Figure 32. 

Table 8 presents the severity of each component for the border inspection system that 

can occur. We are assuming that methods of liveness detection are used in the fingerprint 

sensors, there is an officer guiding the biometric acquisition, the communication channels 

are well protected against eavesdropping, replay attacks, man in the middle and brute 

force attacks. 
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Figure 33 Technical threats in the biometric-based border inspection system 

 

Table 8 Severity Analysis for a biometric-based border inspection system 

Triggered hazard Cause Fault Criticality 
Mismatch between 
stored  template in 
TNS database and 
probe in MRTD 

System fails to 
inform officer that 
the traveler needs a 
second inspection 

Failure to match the 
impostor traveler, 
who is a terrorist. 

High 

Mismatch between 
stored template in 
TBS disk and 
MRTD 

System fails to 
inform officer that 
the traveler is 
required by law 
enforcement 

Failure to detain a 
bad alien 

High 

Check for 
information 
on TNS 

Secondary 
Inspection 
(if 
necessary)

Capture
faceImage1/6 2 3

2 

5 

Check for 
information 
on 
watchlist

4 

2

 Above 
η1? 

No

Yes

 Above 
η2? 

Yes

No

Accept 

Restrain

Technical Threats: 
1. MRTD scanner overloading, e.g. interference, power surges, input flooding 
2. DB compromise, e.g. DB with modified entries or identity associa

furthermore, without recent updates (see Table 9) 
3. Fingerprint scanner disrupted service, high failure to acquire. 
4. Digital camera spoof by disguise, facial hair and accessories. 
5. Threshold bad configuration, e.g. illegitimate traveler is likely to resu

successful match decision. 
6. POE workstation is not able to connect to PKI directory, high access tim

directory. 

tions changed, 

lt in a 

e to PKI 

5
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Update in TBS disk 
has not be executed, 
the watchlist is not 
the most recently 
one. 

System fails to 
inform officer that 
the traveler is 
required by law 
enforcement 

Failure to detain a 
bad alien 

High 

Incorrect search of 
inconsistencies in 
biographic data 
within traveler’s 
documents. 

Officers at primary 
and/or secondary 
inspection point fail 
to detect 
inconsistencies in 
traveler’s 
documents  

Failure to detect 
fraudulent 
documents 

High 

Mismatch between 
captured facial 
features and the 
stored template 

System fails to 
inform officer the 
real traveler’s 
identity 

Failure to identify 
an impostor alien 

High 

Data inaccuracies, 
omitted and 
inactivated fields, 
duplicate records in 
watchlists [13] 

System fails to 
inform the officer 
the current suspects 
in government 
watchlists 

Failure to detain a 
traveler required by 
law 

High 

Poor quality in 
fingerprints due to 
genetics, hard labor 
or deliberately done. 
5% of the general 
public 
10% of those on the 
watchlist [25]. 

System is not able 
to collect 
fingerprints and 
perform verification 
and identification. 

Failure to 
authenticate a 
traveler in the 
system.   

High 

Mismatch between 
stored template in 
TNS database and 
probe in MRTD 

System flags to the 
officer that the 
traveler needs a 
second inspection, 
when he is who 
claims to be. 

Failure to no match 
the genuine traveler 

Low 

 

Table 9 presents the approximate update time among the databases used in real 

border inspection systems [18].  The maximum lapse of time for executing updates is 

monthly, which could create a security hole in the system. 



 
Table 9 Databases at port of entry and their approximate update time [18] 

Database Update time 
CCD Days / weeks 

TBS (IDENT) Days/weeks/months 
TNS (APIS) Hours 

PKD Undefined 
 

Our risk model considers misclassifications due to the limitations of biometric 

identification system.  For that reason, we evaluate different levels of security related to 

misclassification costs over the classification algorithms that may be deployed at the 

border inspection and how their results would impact the waiting time in the system. 

4.2.1 Cost Curves 
Cost Curves present graphically the expected cost of misclassification of classifiers 

along the range of their operating points. Additionally, they can show confidence 

intervals and statistical significance when comparing their error rates, which cannot be 

done easily by using ROC curves [8]. 

The coordinate axis in Cost curves are represented by probability cost function 

PC(+) in x obtained as in (4.2.1-1) and by the normalized expected misclassification cost 

in y obtained as in (4.2.1-2).  Since we are dealing with misclassification, let us denote 

class “+” as impostor and class “-“ as genuine.  The cost of misclassifying a genuine user 

as an impostor is denoted by C(+|-) and C(-|+) denotes the cost of incorrectly classifying 

an impostor as a genuine.  Probabilities of an user being an impostor or a genuine user, at 

the deployment of the system, are represented by p(+) and p(-) respectively.   

( ) ( )
( ) ( ) ( )( )

 

An example of a cost curve including possible regions is depicted in Figure 34.  

Trivial classifiers such as ones that either classify all the users as genuine or classify all 

the users as impostors are characterized by line connecting (0,0) to (1,1) and line 
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connecting (1,0) to (0,1) respectively.  Points above these lines correspond to cases where 

the performance of a classifier is worse than the trivial classifiers.  Finally, best and worst 

cases are represented by line (0,0) to (0,1) and line (0,1) to (1,1) respectively.  Recall that 

the best case occurs when the classifier correctly classifies the users and the worst case 

occurs when the classifier misclassifies all the users. 

We are interested in the region where classifiers perform better than trivial ones, then 

the range of normalized expected cost that suffices our model evaluation is (0,0.5) a long 

the probability cost PC(+) in (0,1). 

Cost curves are constructed by drawing lines between points (0,FNMR) and (1, 

FMR) for all possible values obtained by moving the threshold in the classifier.  All the 

intersection points from left to right are connected so the lower envelope of the cost curve 

is created.  Every line in the cost curve corresponds to a point (FNMR, FMR) in the ROC 

curve given that they have a bidirectional point/line duality. 

 

Figure 34 Possible regions in a cost curve 

 

A cost curve analysis provides the foundations for selecting the model under which 

the overall misclassification cost is minimum, taking into account the misclassification 

cost ratio defined as (4.2.1-3).  The probability cost function PC(+) can be rewritten as 
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(4.2.1-4).  Misclassification costs can influence the tendency for deciding on models and 

model parameters considered the most appropriate. This type of analysis is incorporated 

in our risk model, so we can use the performance of fingerprint and face matchers 

publicly available. 

( )
( )

 

 

Martonosi et al [50] studied the effectiveness of terrorist detection by prescreening 

systems at the airports before travelers get into the airplane.  Their system may be viewed 

as an analogy to our border inspection system.  Following their ideas, probabilities about 

the flow of impostors in the border inspection system are defined in Table 10.   

Table 10 Definition of Probabilities associated with impostors at the primary and/or secondary 
inspection points 

We combine our cost curve analysis with the corresponding risk resulting from the 

product of the severity level with posterior probability related to impostors and genuine 

travelers:    

+−
−+

=
|
|

C
Cμ

( )
( )
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Prior probability that an actual impostor is classified as 
high risk (hr) visitor. 

 Fraction of low risk (lr) visitors that are selected for 
secondary inspection 

),2|( lrInspelectsP nd

 Conditional probability that an impostor is detected in 
the primary inspection 
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 Conditional probability that an impostor is detected in 
the secondary inspection. 

),2|( +InspdetainP nd

( ) ( )
( ))|2(1),(

)|2(1),(1)2(
lrInspselectPlrP

lrInspselectPhrPInspunselectlrP
nd

ndnd

−⋅+=

−⋅+−=∩

)|2(),(),()2( lrInspselectPlrPhrPInspcheckP ndnd ⋅+++=∩+

 
(4.2.1-5)

 (4.2.1-6)

[ ]{
[ ] } SeverityInspcheckPInspdetainP-1

InspunselectlrPInspdetainP-1Risk
ndnd

ndst

⋅∩+⋅++

∩⋅+=

)2(),2|(
)2(),1|(

 
(4.2.1-7)
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Given that  and, similarly, 

, equation 

),1|(1),1|( +−=+ InspdetainPInspasspP stst

),2|(1),2|( +−=+ InspdetainPInspasspP ndnd (4.2.1-7) can be simplified as: 

{
 

(4.2.1-8)

 

The cost of misclassifying a genuine user as an impostor can be rewritten as 
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(4.2.1-9)

Also, the cost of incorrectly classifying an impostor as a genuine, ( )+− |C , is: 

} 1)2(),2|(
)2|(),1|(|
⋅∩−⋅−+

∩−⋅−=−+

InspcheckPInspdetainP
InspunselectlrPInspdetainPC

ndnd

ndst

( ) {
 

(4.2.1-10)
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We considered the methodology shown in Table 11 for determining the overall 

system performance according to the required level of risk of the system.  In section 4.2.2 

we analyzed the cost curves at the light of the performance results obtained from section 

3.4. 

Table 11 Proposed Methodology combining Risk and Performance for a Software System 

Construct the LQN model from the Use case diagram, 

deployment diagram, sequence diagram and performance 

annotations. 

For each scenario 

      For each value of the system threshold 

          Calculate FNMR and FMR 

       End 

       Construct the Cost curve 

       Calculate cost ratio based on equations (4.2.1-9)(4.2.1-10) 

       For each misclassification cost ratio 

           Calculate Probability Cost and Expected Cost 
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        End 

End 

Find the best scenario where Expected Cost is the lowest 

Select the corresponding  FNMR and FMR from the previous step 

Map those thresholds in the performance models 

Calculate overall system performance  

4.2.2 Cost Curves for Face Recognition and Fingerprint Recognition 
nes (low-risk 

alien

le 11), we utilized the publicly available 

perf

Classification of travelers as impostors (high-risk aliens) or genui

s), during the authentication process in the border inspection system as a result of 

fixed system’s thresholds, have different types of security risk costs.  It is highly 

undesirable to misclassify a high-risk traveler as low-risk since high-risk individuals are 

getting into the country defeating the main goal of the border security system.  On the 

other hand, it is undesirable to misclassify a low-risk traveler as a high-risk one since we 

are overloading the system with comprehensive traveler checks that may cause the 

detriment of the system responsiveness.   Our research goal is to demonstrate that varying 

the system thresholds induce by low risk costs at the border inspections. Under a given 

range of probability cost and cost ratios, we are able to assess system responsiveness as it 

relates to waiting time and inspection time. 

Following our methodology (see Tab

ormance matching rates of face and fingerprint recognition algorithms reported in 

Face Recognition Vendor Test 2006 [9] and Fingerprint Vendor Test 2003 [10], 

respectively. We created the cost curves associated with every classification algorithm in 

each modality (face and fingerprint) by drawing lines between the points (0,FNMR) and 

(1, FMR) for all the available pairs (FMR,FNMR) in the Receiver Operator Characteristic 

(ROC) curve of each algorithm.  All the intersection points from left to right are 

connected so the lower envelope of the cost curve is created.  Additionally, we defined a 

set of probabilities and misclassification costs for every scenario that considers the 

different alert level status in the system (see Table 12).  Finally, we cross-relate the 

information from the cost curves (e.g. FMR, FNMR, normalized expected cost) with our 

performance models in order to estimate the impact to the traveler’s waiting time. 
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Figure 35Figure 35 shows the recognition performance results from state-of-the-art 

computer algorithms and human face recognition using a large-scale experiment setup in 

the Face Recognition Vendor Test (FRVT) 2006 [9].  The dataset consisted of a pool of 

single frontal facial faces across illumination changes, where half of these pairs were 

match pairs (images from the same person) and half were non-match pairs (images from 

different people).  The experiment matched face images taken under controlled 

illumination against face images under uncontrolled illumination. The seven computer 

algorithms used were: Viisage (V-norm), Tsinghua U. (Ts2-norm), SAIT (ST-norm), 

Neven Vision (NV1-norm), Identix (Idx1-norm), Cognitec (Cog1-1to1), and Sagem 

(SG1-1to1).  Among these algorithms, the Tsinghua U. (Ts2-norm) algorithm performed 

better than humans, Viisage (V-norm) and SAIT (ST-norm) algorithms had a similar 

performance. 

 
Figure 35 ROC curve for performance matching of 7 algorithms for Face images. Source [9] 

Figure 36 shows the recognition performance results from single-finger flat and slap 

in a medium scale test in the Fingerprint Vendor Technology Evaluation (FpVTE) 2003 

[10].  Images used in the experiments were obtained from livescan devices.  Comparison 

of a single dataset against itself was performed; the dataset was formed from 10,000 
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images, where 5,000 images were single-finger flats and the remaining images were 

single-finger segmented slaps.  Among the eighteen algorithms used in the experiment, 

Nec and Cogent algorithms had the best recognition performance. 

 

 
Figure 36 ROC curve for performance matching of 18 algorithms for fingerprints.  Source [10] 

In Table 12, we defined for every alert level status in the system (severe, guarded 

and low) class distributions, p(+) and p(-), that may be deployed.  We estimate the 

probability cost (PC) values for the four cost ratios µ (1:10, 1:100, 1:1000, and 1:10000).  

Table 12 Assumed probabilities for the risk scenarios 

Probabilities 
( )
( )+−

−+
=

|
|

C
Cμ ( )

( ) ( )
+ 

μ∗−++
=

pp
pPC Alert Level 

Status 

( ) =+p 0.01 
( ) =−p 0.99 

0.1 0.091743 

Severe condition 0.01 0.502513 
0.001 0.909918 
0.0001 0.990197 

( ) =+p 0.001 
( ) =−p 0.999 

0.1 0.009911 

Guarded condition 0.01 0.090992 
0.001 0.500250 
0.0001 0.909174 

( ) =+p 0.0001 0.1 0.000999 Low condition 0.01 0.009902 
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( ) =−p 0.9999 0.001 0.090917 
0.0001 0.500025 

 

Figure 38 to Figure 40 present the corresponding cost curves for the face modality 

for every alert level status that a border inspection could experience by a given 

probability of the impostor population.  When the ratio cost is 1:10 and with the assumed 

impostors probabilities (0.01, 0.001, and 0.0001), the Probability Cost approaches zero 

no matter which alert level is deployed.  Furthermore, the Probability Cost decreases 

(moves towards the right direction) as long as the impostor prior probability decreases.   

Table 13 presents the analysis of cost curves for face matching algorithms, within the 

range values of 0.01, 0.001, and 0.0001 impostor probability.  It is observed that face 

modality does not perform satisfactory in the severe and guarded conditions at ratio cost 

1:1,000.  The total waiting time experienced by the travelers at the border inspection 

system is high (∞), making it infeasible to perform recognition since there is saturation at 

the second inspection.  This scenario may not be adequate for the border inspection 

system.  

Table 13 Cross-relation between cost curves for Face modality and the performance models 

( )+p  
( )
( )+−

−+
=

|
|

C
Cμ

 

( )
( ) ( ) μ∗−++

+
=

pp
pPC FNMR   FMR  

[ )( CostENorm ]  Total waiting 
time (min) 

0.01 0.01 0.502513 0.175 0.073 0.123743674 ∞ 
0.001 0.909918 0.367 0.003 0.035789848 ∞ 

0.001 0.01 0.090992 0.00152 0.322 0.030681116 29.81656 
0.001 0.500250 0.175 0.073 0.1239745 ∞ 
0.0001 0.909174 0.367 0.003 0.036060664 ∞ 

0.0001 0.001 0.090917 0.00152 0.322 0.03065708 28.08652 
0.0001 0.500025 0.175 0.073 0.12399745 ∞ 

 

 

Recalling the performance experiments p(+)=0.01 and FMR=0.0001 and 

FNMR=0.001 indicates a waiting time near twenty minutes.  This is shown below in 

Figure 37.  On the other hand, with the misclassification cost ratio of 1:100 and 1:1000 

and an arrival rate of 1049 travelers/hour, we found that the combination of all these 

parameters in the system produce an infinite waiting time since the secondary inspection 

is unable to attend the high load created by genuine travelers incorrectly classified. 
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Figure 37 Total Inspection time for different impostor prior probabilities using FMR=0.0001 and 
FNMR=0.001 

From Figure 38 to Figure 40 we find that V-norm and Ts2-norm are the two face 

recognition algorithms that offer the best performance.  We are able to distinguish the 

range of Probability Cost where the algorithm V-norm outperforms Ts2-norm. The 

operating range for the lower envelope of Ts2-norm algorithm is 0.45<PC(+)<=0.99 and 

it does not include the lowest extreme cost ratio (1:10) in any of the three configurations.  

V-norm has the lower expected cost with 1:10 cost ratio for all values of PC(+).  The 

maximum difference in expected cost for this cost ratio is about 58% between the Ts2-

norm and V-norm.  On the other hand, the operating range for V-norm algorithm is 

slightly narrower than the one in Ts2-norm, 0.00099<=PC(+)<0.45 and it does not 

include the highest cost ratio (1:10000) in any of the three configurations because the 

Ts2-norm has the lower expected cost with that cost ratio for all values of PC(+).  The 

maximum difference in expected cost for that cost ratio is about 56% between the V-

norm and Ts2-norm.  In conclusion, when the system has to be deployed in an extreme 

risky environment it is recommended to use the V-norm while in a safer environment the 

Ts2-norm algorithm would lead the lowest expected misclassification cost.  
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Figure 38 Cost curves for face matching algorithms – Severe condition. 

 

 
Figure 39 Cost curves for face matching algorithms - Guarded condition 

 

Performance 
difference 

Performance 
difference
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Figure 40 Cost curves for face matching algorithms - Low condition 

 

Figure 41 to Figure 43 show the corresponding cost curves for the fingerprint 

modality for every alert level status that a border inspection could experience by a given 

probability of the impostor population.  NEC algorithm offers the smallest normalized 

expected cost among the algorithms 123IDM2, Avalon, Biolink, Cogent, Identix and 

Motorola. Cogent shows similar recognition performance in the ROC curve (see Figure 

36), but in the cost space is well separated from the NEC algorithm. The maximum 

difference between them is about 76% (0.0009 compared to 0.0037) which occurs when 

PC(+) is about 0.7913.   

Table 14 shows normalized expected costs and their FMR and FNMR for the 

fingerprint modality.  Contrary to what was revealed with the face modality, performance 

of fingerprint is highly satisfactory since the total waiting time is in the range of 20 to 32 

minutes. The normalized expected cost is two orders of magnitude lower than in the case 

of face recognition algorithms and the FMR – FNMR ratio corresponds to acceptable 

configurations desired in the border inspection system. 

The NEC algorithm includes all the cost ratios, with the highest normalized expected 

cost at 0.0013 in the operating range 0.3625<=PC(+)<=0.5501. 
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Table 14 Cross-relation between cost curves for Fingerprint modality and the performance models 

( )+p  
( )
( )+−

−+
=

|
|

C
Cμ

 

( )
( ) ( ) μ∗−++

+
=

pp
pPC [ ])( CostENormFNMR FMR     

Total 
waiting time 

(min)
0.01 0.01 0.502513 0.001276 0.0013 0.00128806 28.0293 

0.001 0.909918 0.002026 0.0006 0.000728457 32.32856 
0.001 0.01 0.090992 0.0001834 0.0031 0.000448787 20.26925 

0.001 0.500250 0.001276 0.0013 0.001288006 26.62272 
0.0001 0.909174 0.002026 0.0006 0.000729518 30.98755 

0.0001 0.001 0.090917 0.001276 0.0013 0.001278182 20.11963 
0.0001 0.500025 0.002026 0.0006 0.001312964 26.48694 

 

 

 
Figure 41 Cost curves for fingerprint matching algorithms – Severe condition 
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Figure 42 Cost curves for fingerprint matching algorithms – Guarded condition 

 

 
Figure 43 Cost curves for fingerprint matching algorithms – Low condition 

 
 
 
 
 
 
 
 
 
  



Chapter 5 : Conclusions 

5.1 Research Summary 
  As biometric-based border inspection systems increase in size and complexity, the 

need to evaluate their performance and security risk becomes critical.  The use of analytic 

models provided an opportunity for exploring design and configuration alternatives.  The 

benefit of analytical model is that their solution times are significantly faster than what 

can be expected from simulations. 

This thesis uses the analytic modeling tool called LQNS (Layered Queueing 

Network Solver) to solve open model for a biometric-based border inspection system and 

Cost curves to evaluate risk.  

First, we constructed a performance model of a biometric-based border inspection 

system by using available traces corresponding to average traveler arrivals of similar 

deployed systems [5] and information from technical reports [27][28][29].  We used this 

information as the traveler’s workload intensity, where the range of workload intensities 

goes from low to peak.  We estimated the software resource requirements using the 

information from available literature, technical reports, and educated guesses. We created 

several performance experiments in order to evaluate different type of system 

configurations related to screening policies, to configuration of system’s thresholds, to 

localization of public key certificates database, and finally to replication of public key 

directories when using a centralized database. 

Second, we established a security risk model of a biometric-based border inspection 

by creating cost curves of the biometric algorithms’ recognition performance that may be 

deployed.  We considered our system risk criticality as is either high or low, given that a 

traveler may be an impostor (high-risk) or a genuine (low-risk).  We considered three 
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different security scenarios, such as severe level, guarded level and low level.  For each 

level, we studied different misclassification cost ratios which range from the least costly 

to the most costly.  Additionally, we estimated the normalized expected cost at those 

misclassification ratios.   

Third, we analyzed a combination of performance and security risk in the border 

inspection system in order to find the most suitable biometric thresholds.  Using the cost 

curves approach and the LQN models, we were able to explore the interplay between the 

loads imposed by the traveler arrivals, and the system security.   

The biometric-based border inspection system performance is dramatically affected 

by increasing the size of watchlists and by changing the false match rate of the system.  

Among the configuration options and the level of security, it is clear that the system 

saturates when the size of the watchlist is larger than 1,000,000 entries.  On the other 

hand, watchlist sizes between 1 thousand and 1 million entries at a fixed FMR and 

FNMR of (0.0001 , 0.001) causes marginal changes in the average inspection time.  

Variations at the FMR with a fixed watchlist size creates saturation in the system sooner 

than the system with different watchlist sizes. Our experiments suggest that FMR has a 

great impact in the overall system performance and security. 

We have analyzed a performance model of a biometric-based border inspection 

system under a risk/security trade-off view with the aim to find the most suitable 

operating set-ups (FMR, FNMR) in both fields.  We found that having a low normalized 

expected cost from the deployed recognition algorithms does not guarantee low waiting 

times that may be experienced by travelers in the border inspection system.  The 

travelers’ load imposes a very strong restriction over the results for any specific risk 

level.  Therefore, the correlation between the cost curves and the performance models 

indeed guide the findings of optimal operating conditions. 

 

5.2 Future Work 
Our plans for the future work  include the definition of confidence intervals for every 

alert condition scenario in the cost curves in order to find the bounds within which the 

risk (normalized cost) is expected to vary for every operating condition (FMR, FNMR).  

Additionally, we plan to incorporate the assessment of statistical significance in operating 
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ranges (misclassification costs and class probabilities) where cost curves from different 

classification algorithms are taken into account. 

Another important line of the research could be to analyze the performance and risk 

of the border security systems by modeling the fusion of face and fingerprint matching 

algorithms at the score-level and decision-level.  This would create opportunities to 

further analyze the operating points that would emerge as the most adequate compromise 

from the  risk analysis and performance models. 
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Appendix A: Detailed Uses Cases and 
Sequence Diagrams 

 
In this appendix, we present in detail the assumed border inspection system configuration 

by means of use cases (see Tables 15-18) and their corresponding sequence diagrams (see 

Figures 40-44).  The actors that interact with the system are: travelers and the interagency 

border inspection system.  Further, the critical processes that we studied are: traveler 

examination, biographic checking, biometric verification and biometric identification.     

 
Table 15 Traveler Examination expanded use case 

Use Case Traveler Examination 

Actors Traveler 

Purpose In this use case the traveler’s documents and biometrics traits are 

verified against information of the traveler stored in system 

databases in order to grant access to the country to rightful 

travelers who does not present a risk for the country. 

Cross-reference Biographic checking, biometric verification 

1. The traveler presents his/her 

MRTD (machine readable traveler 

document) to the primary officer 

in the booth. 

2. The primary officer scans the MRTD through the 

MRTD reader. 

3. The data on the MRTD is retrieved and its 

corresponding digital signature is confirmed by 

employing the Public Key Certificate stored in the 

Public Key Directory or in the MRTD itself. 

4. Verification of the Public Key Certificate 
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Authority, MRZ and face image is performed. 

5. The system initiates the biographic checking use 

case. 

6. The system requests the live inkless acquisition 

of traveler’s fingerprints and face image, see 

biometric verification use case.   

7. The primary officer grants the traveler access to 

the country. 

Alternate section 

Line 2. If the MRTD is either damaged or its reader is not working properly, the officer 

manually enters the information into the system and continues to perform the biographic 

and biometric inspection. 

Line 4. If any of the verifications fail, the primary officer stops the traveler’s primary 

inspection process and sends the traveler to the second inspection.  

Line 7. The primary officer is not convinced with the system’s results, so he sends the 

traveler to further processing in the secondary inspection. 

 

Table 16 Biographic Checking expanded use case 

Use Case Biographic Checking 

Actors Interagency Border Inspection System 

Purpose In this use case the traveler’s information is checked against 

existing information of the traveler in the CCD system database 

and the TNS in order to permit the entry of individuals who are 

not suspect of having a threat to the country, who have abided the 

terms of their admission to the country and who are not required 

for criminal acts. 

Cross-reference Traveler Examination 

 1. The basic traveler’s information such as: name, 

last-name, birth-date and MRTD number is sent to 

both the Traveler’s Name Server (TNS) and the 
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CCD. 

 2. Traveler’s information from current immigration 

status and criminal violations are retrieved from the 

TNS. 

Picture and consular information related to visa 

applications, approvals, refusals and the biometric 

identifiers captured during the process of MRTD 

issuance are retrieved from the CCD. 

 3. A consolidate information about the traveler is 

displayed. 

 

Table 17 Biometric Verification expanded use case 

Use Case Biometric Verification 

Actors Traveler, Border Inspection System 

Purpose In this use case the traveler’s biometrics traits are verified against 

information of the traveler stored in system databases. 

Cross-reference Traveler Examination 

 1. The traveler’s live fingerprints (right slap, left 

slap, and thumbs slap) are captured by the 

fingerprint scanner and a face image is taken by a 

digital camera. 

2. The system checks the quality of the collected 

biometric traits. 

3. The collected biometric traits are matched 

against the traveler’s biometric templates in the 

Traveler Biometric System (TBS). 

4. Matching scores for fingerprint and face are 

generated. 

5. The system answers that the traveler is who 

claims to be. 
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Alternate section 

Line 2.  If the quality of the collected biometric traits is poor, the system will request 

again the acquisition of the biometric traits. 

Line 5.  When the system decides that the traveler is not who claims to be, the primary 

officer sends him/her to the secondary inspection booth. 

 
Table 18 Biometric Identification expanded use case 

Use Case Biometric Identification 

Actors Border Inspection System 

Purpose In this use case the traveler’s face image is compared against a 

consolidated watchlist stored in system databases. 

Cross-reference Traveler Examination 

 1. The traveler’s face image taken by a digital 

camera in the primary inspection booth is sent to 

the TB DB by an inspector in the secondary 

inspection. 

2. The TB DB generates match scores after 

comparing the traveler’s face image against the 

entire consolidated watchlist. 

3. The TB DB ranks the match scores and retrieves 

the top 50 identities. 
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Figure 44 Sequence Diagram for the traveler examination use case. Adapted from [4] 
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Figure 45 Sequence Diagram for the Biographic Checking use case 

 

Figure 46 Sequence Diagram for the Secondary Inspection in the traveler examination use case. 
Adapted from [4] 
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Figure 47 Sequence Diagram for the Biometric Verification Use Case 
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Figure 48 Sequence Diagram for the Biometric Identification Use Case 

 
 
 
 
 
 



 

Appendix B: Performance Parameters 

The assumed execution environment of the border inspection system is depicted 

here.  Resource demands within each step performance scenario that is translated to a 

parameter in the LQN model are also presented. Table 19 and Table 20, present data 

assumptions that are extended from technical reports of analogous systems 

[4][27][28][29][58].  Table 21 to Table 24, present the estimated time of each 

<<PAstep>> for the sequence diagrams based on the data assumptions and calculated 

values. 

 
Table 19 Hardware Platform Devices and Transfer Rates Specification. Adapted from [4][58] 

 
POE 

Workstation 
 

Traveler 
Name 
Server 
(TNS) 

Traveler 
Biometric 

Server 
(TBS) 

Consular 
Consolidate 

Database 
(CCD) 
Server 

MRTD 
Reader 

MRTD 
Card LAN WAN 

CPU Pentium 
2.6 GHz 

       

Memory 2 GB        
Disk 
Delay 

6 ms 5.93 ms 5.93 ms 5.93 ms     

Transfer 
Time 

130 MB/s 200 
MB/s 

200 MB/s 200 MB/s 424 kb/s 848 kb/s 100 
Mbits/s 

16.6 
Mbits/s 

 
 

Table 20 Estimated Data Size. Adapted from [27][58] 

 Fingerprint 
Scans (10 
fingerprints) 

Face 
Image 

Watchlist 
(106 Face 
images) 

Traveler 
Name 
Record 

Consolidated 
Consular 
Record 

Picture 
inside 
MRTD 

MRTD 
digital 
signature 

MRTD 
Public 
Certificate 

Machine 
Readable 
Zone 

Type KB KB KB KB KB bytes bytes KB bytes 
Size 50 20 2*107 5 20 12704 20 1.8 88 
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Table 21 Scenario Steps with Performance Annotations for the Sequence Diagram of the Traveler 
Examination. Adapted from [4] 

Scenario Step Meaning 
beginPrimaryInspection 
{PAdemand=(‘asmd’,’mean’,(0,’s’)} 

Assumed time to generate a request for primary inspection. 

reviewDocuments 
{PAdemand=(‘asmd’,’mean’,(20,’s’)} 

Assumed time used for interviewing/reviewing- documents a 
traveler in the primary inspection.  

processInspectionData 
{PAdemand=(‘asmd’,’mean’,(5,’s’)} 

Assumed time spent by the primary inspection officer to 
decide whether the traveler can enter the country based on the 
results from checks. 

return inspectionResult 
{PAdemand=(‘asmd’,’mean’,(5,’s’)} 

Assumed time to communicate the result of the inspection 
process in the primary inspection. 

biographic&biometricChecks 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

captureFingerprint 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

Assumed time used for setting the fingerprint scanner up. 

return fingerprintData 
{PAdemand=(‘pred’,’mean’,(15,’s’)} 

Calculated time used for capturing left slap, right slap and 
thumbs slap of the traveler. 

checkQuality 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

Assumed time used to check the quality of the biometric trait. 

capture faceImage 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

Assumed time used for setting the digital camera up. 

return faceImageData 
{PAdemand=(‘asmd’,’mean’,(5,’s’)} 

Assumed time used for taking a traveler’s picture using a 
digital camera 

send-store&matchBiometrics 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
  PAextOp=(‘pred’,’mean’,(0.0329,’s’)} 

Calculated time used for transmitting the biometric data 
collected from the traveler (fingerprint scans + face image) in 
the POE Workstation to the TBS, through the WAN that 
connect them.  
0.0329 = 70KB/16.6 Megabits/s 

read-writeBiometricData 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
  PAextOp=(‘pred’,’mean’,(0.00637,’s’)} 

Calculated time used for writing the biometric data collected 
from the traveler (fingerprint scans + face image) to the TBS 
disk, and to read a previously stored face image file (20KB) 
from it. 
0.00637= 5.93 ms + (90 KB/ 200MB/s) 

return biometricMatchResult 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 

 

processData(MRTDValidation, 
biographicResult, 
biometricVerificationResult) 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 

Assumed time used for consolidating the results from the 
MRTD validation, the biographic information and the 
biometric verification result. 

return checksResult 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

scanMRTD 
{PAdemand=(‘asmd’,’mean’,(1,’s’)} 

Assumed time for swiping the MRTD through the MRTD 
reader by the primary inspection officer. 
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Scenario Step Meaning 
return MRTDData 
{PAdemand=(‘pred’,’mean’,(X,’s’) 
  PAextOp=(‘pred’,’mean’,(Y,’s’)} 

Calculate time used by the MRTD Reader to read the data 
stored in the MRTD. The actual duration of the operation 
depends on the size of the MRTD data, which leads to the 
following alternatives:  
        X =15695.2 bytes/424 kilobits/s=0.2708s 
        X =12852 bytes/424 kilobits/s=0.2368s 
 
Time used by the MRTD to transfer its data to the MRTD 
reader.  The actual duration of the operation depends on the 
size of the MRTD data, which leads to the following 
alternatives:  
        Y =15695.2 bytes/848 kilobits/s=0.1446s 
        Y =12852 bytes/848 kilobits/s=0.1184 s 

validateMRTD 
{PAdemand=(‘pred’,’mean’,(X,’s’)} 

Time used to transfer the MRTD data from the MRTD reader 
to the POE Workstation through a 12 Mbits/s USB link. The 
duration of the operation depends on the size of the MRTD 
data: 
       X=15695.2 bytes/12 MB/s=0.0093s 
       X =12852 bytes/12 MB/s=0.0082s 

getPKCertificate 
{PAdemand=(‘pred’,’mean’,(0.005,’s’)} 

 

return PKCertificate 
{PAdemand=(‘pred’,’mean’,(0.005,’s’) 
PAextOp=(‘pred’,’mean’,(Y,’s’)} 

Time used to read Public Key Certificates from the Disk of 
the POE Workstation. The reading time depends on the 
number of certificates to be read (one or two), which leads to 
the next alternatives: 
Y =6.5 ms + (1.8KB/ 130MB/s) =0.006513s 
Y =6.5 ms + (3.6KB/ 130MB/s) =0.006517s 

validate(MRTD_DS) 
{PAdemand=(‘pred’,’mean’,(X,’s’)} 

Time used to validate the authenticity of the digital signature 
on the MRTD by computing a hash function (SHA-1) of the 
MRTD data, and by verifying the authenticity of the digital 
signature through the RSA algorithm using the Public Key of 
the MRTD signer (2048 bits) [27].  The next alternatives 
consider different MRTD sizes: 
X= t[SHA_1(14695.2bytes)] + t[RSA(2048bits)-
verify(20bytes)]=0.0091s 
X= t[SHA_1(12852bytes)] + t[RSA(2048bits)-
verify(20bytes)]=0.0091s 

validate(CAPKCertificate) 
{PAdemand=(‘pred’,’mean’,(0.0015,’s’)}

Time used to validate the authenticity of the digital signature 
on the Public Key Certificate of the MRTD issuer by 
computing a hash function (SHA-1) of the certificate data 
itself, and by verifying the authenticity of its digital signature 
through the RSA algorithm using the Public Key of the 
Country CA (3072 bits) [27].   
0.0015=t[SHA_1(1.8KB)] + t[RSA(3072bits)-
verify(20bytes)]=0.0015s 

validate(MRZ_DS) 
{PAdemand=(‘pred’,’mean’,(0.0009,’s’)}

Time used to validate the authenticity of the MRZ within the 
MRTD by computing a hash function (SHA-1) of the MRZ 
data, and by verifying the authenticity of the digital signature 
on the MRZ through the RSA with the Public Key of the 
document signer (2048 bits) [27].   
0.0009=t[SHA_1(88bytes)] + t[RSA(2048bits)-
verify(20bytes)]=0.0009s 
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validate(faceImage_DS) 
{PAdemand=(‘pred’,’mean’,(0.0006,’s’)}

Time used to validate the authenticity of the face image within 
the MRTD by computing a hash function (SHA-1) of the 
image data, and by verifying the authenticity of the digital 
signature on the face image through the RSA with the Public 
Key of the document signer (2048 bits) [27].  
0.0006=t[SHA_1(12704bytes)] + t[RSA(2048bits)-
verify(20bytes)]=0.0006s 

return MRTDValidation 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

findTravelerData 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
  PAextOp=(‘pred’,’mean’,(0.0118,’s’)}

Time used to exchange the TNS traveler’s biographic and 
lookup information (5 KB) and his picture (20 KB).  
25KB / 16.6 Megabits/s = 0.0118s  

findName 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 

 

getImmigrationStatus 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

getViolations 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

return consolidateInfo 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
  PAextOp=(‘pred’,’mean’,(0.00595,’s’)} 

Time used to retrieve from the TNS disk the traveler’s 
biographic and lookup data (5 KB):  
5.93 ms  + (5 KB / 200MB/s) = 0.00595s  

findPicture 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 

 

return picture 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
  PAextOp=(‘pred’,’mean’,(0.006,’s’)} 

Time used to retrieve from the CCD server disk the traveler’s 
picture: 
5.93 ms  + (20KB /200MB/s) = 0.006s 

return consolidateInfo, picture 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 

 

beginSecondaryInspection 
{PAdemand=(‘asmd’,’mean’,(0,’s’)} 

Time used by the secondary inspection officer to start an 
identification process. 

identifyTraveler 
{PAdemand=(‘asmd’,’mean’,(5,’s’) 
  PAextOp=(‘pred’,’mean’,(0.0094,’s’)} 

Time used to send a face image of the traveler to the TBS. 
20KB/16.6Megabits/s=0.0094s 

compareWatchlist 
{PAdemand=(‘asmd’,’mean’,(5,’s’) 
  
PAextOp=(‘pred’,’mean’,(97.66218,’s’)} 

5 s is the time used by the TBS to match the traveler’s face 
image with the set of 106 face images in the biometric 
watchlist.  
 
Time used by the TBS disk to read the set of 106 face image 
templates in the biometric watchlist. The total time required to 
perform the computation depends on the size of the watchlist. 
5.93 ms  + (2×107 KB /200MB/s) = 97.66218s  

rankIdentities 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

Return identities 
{PAdemand=(‘asmd’,’mean’,(0.005,’s’)}

 

reviewDocs 
{PAdemand=(‘asmd’,’mean’,(300,’s’)}

Time used by the secondary inspection officer to thoroughly 
review the traveler’s documents and personal effects. 

processInspectionData 
{PAdemand=(‘asmd’,’mean’,(5,’s’)} 

Time used by the secondary inspection officer to decide if 
authorizing the traveler to enter the country based on the 
results from checks. 
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return inspectionResult 
{PAdemand=(‘asmd’,’mean’,(2,’s’)} 

Time used by the secondary inspection officer to 
communicate to the traveler the result of the inspection 
process. 

 
Table 22 Scenario Steps with Performance Annotations for the Sequence Diagram of the Biographic 

Checking 

findTravelerData {PAdemand=(‘asmd’,’mean’,(0,’s’)} 
findName {PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
   PAextOp=(‘pred’,’mean’,(0.006,’s’)} 
getImmigrationStatus {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
getViolations {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
return consolidateInfo {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
findPicture {PAdemand=(‘asmd’,’mean’,(0.005,’s’) 
   PAextOp=(‘pred’,’mean’,(0.0062,’s’)} 
return picture {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
return consolidateInfo, picture {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
 

Table 23 Scenario Steps with Performance Annotations for the Sequence Diagram of the Biometric 
Verification 

captureFingerprint {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
return fingerprintData {PAdemand=(‘pred’,’mean’,(15,’s’)} 
checkQuality {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
capture faceImage {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
return faceImageData {PAdemand=(‘asmd’,’mean’,(5,’s’)} 
store&matchBiometrics {PAdemand=(‘asmd’,’mean’,(0,’s’)} 
MatchFingerPrint {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
MatchFace {PAdemand=(‘asmd’,’mean’,(0.05,’s’)} 
Verification {PAdemand=(‘asmd’,’mean’,(0.5,’s’)} 
return biometricVerificationDecision {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
 

Table 24 Scenario Steps with Performance Annotations for the Sequence Diagram of the Biometric 
Identification 

identifyBiometrics {PAdemand=(‘asmd’,’mean’,(0,’s’)} 
identifyTraveler {PAdemand=(‘asmd’,’mean’,(5,’s’) 
   PAextOp=(‘pred’,’mean’,(0.0094,’s’)} 
compareWatchlist {PAdemand=(‘asmd’,’mean’,(5,’s’) 
   PAextOp=(‘pred’,’mean’,(97.66218,’s’)} 
rankIdentities {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
return identities {PAdemand=(‘asmd’,’mean’,(0.005,’s’)} 
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