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Abstract 
 

The liveness detection ability is explicitly required for current personal verification systems in many 

security applications. As a matter of fact, the project of any biometric verification system cannot 

ignore the vulnerability to spoofing or presentation attacks (PAs), which must be addressed by 

effective countermeasures from the beginning of the design process. However, despite significant 

improvements, especially by adopting deep learning approaches to fingerprint Presentation Attack 

Detectors (PADs), current research did not state much about their effectiveness when embedded in 

fingerprint verification systems. We believe that the lack of works is explained by the lack of 

instruments to investigate the problem, that is, modelling the cause-effect relationships when two 

systems (spoof detection and matching) with non-zero error rates are integrated. 

To solve this lack of investigations in the literature, we present in this PhD thesis a novel performance 

simulation model based on the probabilistic relationships between the Receiver Operating 

Characteristics (ROC) of the two systems when implemented sequentially. As a matter of fact, this is 

the most straightforward, flexible, and widespread approach. We carry out simulations on the PAD 

algorithms’ ROCs submitted to the editions of LivDet 2017-2019, the NIST Bozorth3, and the top-

level VeriFinger 12.0 matchers. With the help of this simulator, the overall system performance can 

be predicted before actual implementation, thus simplifying the process of setting the best trade-off 

among error rates. 

In the second part of this thesis, we exploit this model to define a practical evaluation criterion to 

assess whether operational points of the PAD exist that do not alter the expected or previous 

performance given by the verification system alone. Experimental simulations coupled with the 

theoretical expectations confirm that this trade-off allows a complete view of the sequential 

embedding potentials worthy of being extended to other integration approaches. 
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1. Introduction 
 

The ability of detecting fingerprint presentation attacks [1, 2, 3] is also called fingerprint liveness 

detection, or fingerprint anti-spoofing. It has been boosted in the last ten years thanks to the 

availability of data sets of spoof and alive fingerprint images which allow to partially overcome the 

lack of information about the problem. In particular, the International Fingerprint Liveness Detection 

competition, known as LivDet, is a biennal appointment for academies and companies to make the 

point about the potentials of state-of-the-art fingerprint liveness detectors or PADs. Fig. 1 points out 

the main achievements of LivDet from 2011 to 2021, whose results are described extensively in [4]. 

Starting from the LivDet 2019 edition, we began to evaluate not only liveness detection systems, but 

also their integration with a matching system for personal recognition (Figure 1.2). Apparently in 

contrast with the trend of the previous competition results (2011-2017), the last two pointed out a sort 

of “stop” on the increasing average detection rate of PADs, that is particularly marked for the last 

edition. Although the datasets used in the last competition are more challenging in terms of spoof 

detection, the observed decrease is not attributable only to this. As a matter of fact, when a PAD is 

integrated into a fingerprint verification system, several unsolved limitations arise. The most evident 

one is the apparent gain of attacks detection rate (APCER), at the expense of a loss of genuine 

acceptance rate (GAR) [5, 6, 7], according to the ISO terminology [8]. This means that a genuine user 

could be rejected, instead of a match failure, because his/her fingerprint is misclassified as a fake one 

[9, 10].  

Figure 1.1: Percentage mean accuracy over the datasets and participants to 2011-2021 editions of LivDet [4] 
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The literature experimentally investigated the integration problem by considering both parallel and 

sequential combinations of the presentation attack module and the matching module [5, 6, 7, 11, 12, 

13]. Recently, the 2nd edition of the Handbook of Biometric Anti-spoofing reported an evaluation 

methodology for integrated systems, which is also adopted in this work (Chp. 12, [14]). 

All of the aforementioned works recognized a performance decrease when PAD and matcher are 

embedded [5, 9]. The extent of this degradation, however, remains unclear. Can we still rely on the 

integrated system for security applications? In our opinion, the fact that this error rate amount 

seriously impacts on the whole system’s performance does not make aware about the security  

breaches that this might lead, once the system has been scaled up for large user populations. This 

problem appears to be commonly accepted by the community, and considered as intrinsic of a 

combination of two non-zero error free systems.  

One of the core points is the impossibility of doing many things without collecting data, replicating 

algorithms, and performing experiments. We cannot predict the possible amount of error rates and 

the conditions of effectiveness of the PAD integration, according to, for example,  the adopted sensor, 

the spoofing materials or the probability of being attacked [14]. Nevertheless, while the sensor 

characteristic and material adopted are the main variables to evaluate a PAD system, the impact of 

the spoofing attack probability was never considered at all. For example, high-security and consumer 

applications (e.g. sensors integrated in smartphones) have different design goals and should be treated 

diversely: in the second, suppliers may assume that presentation attacks are substantially less probable 

or irrelevant and accordingly tailor the PAD. However, this is currently not possible. There is no other 

method to assess current PAD performance when incorporated into verification systems than the ones 

described above. 

Figure 2.2: Block diagram of a general integrated verification system.  
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Things could change if a tool modelling the presentation attack probability were available. We might 

determine for which operational points and conditions to implement the given embedding. The tool 

may evaluate the influence of latex-made PAIs1 and sensor technology on ROC. Designers would 

have a practical instrument for assessing high-security and consumer applications. 

 

1.2 Contribution 
 

The first goal of my PhD research was to address the lack of theoretical and experimental explanation 

of the integration problem, that is, model the cause-effect relationships when two non-zero error-free 

systems work together. For this purpose, we proposed a novel investigation instrument [15]: a 

performance simulator of the probabilistic relationships among variables at hand in the case of the 

sequential fusion of presentation attacks detector and matcher. Sequential fusion is only a possible 

choice, but it is also the simplest and widespread one. 

We called this simulator BIO-WISE and made it publicly available2. It takes as input the receiver 

operating characteristic (ROC) curve of the fingerprint matcher and that of the PAD. The output is 

the whole acceptance rate in its three basic components: the  genuine acceptance rate (GAR), the false 

non-match rate (FNMR), and the presentation attack acceptance rate (IAPMR)[8]. The simulation 

can be performed according to two main parameters: the prior probability of being attacked by spoofs 

, and the specific operational point chosen for the fingerprint PAD. 

We did not implement or replicate any PAD algorithms or matching system. This is also what a 

designer would prefer to do: take the vendors’ individual ROCs and explore the performance 

achievable according to some expected scenarios. Due to the very high detection rate achieved, it is 

reasonable to consider the PAD algorithms of 2017-2019 LivDet competitions as good 

representatives of the state of the art. In particular, they represent the performance achievable when 

detecting presentation attacks by using convolutional neural networks, which are largely 

acknowledged as the PAD systems of “novel generation”. We computed their ROC curves, and 

investigated their limits and potentials from a theoretical viewpoint during integration with the well-

known NIST Bozorth3, that is, the main benchmarking matcher publicly available3 and the Verifinger 

12, namely, the top-level matcher nowadays off-the-shelf4. After verifying the reliability of our model 

in terms of difference between expected and real values, we carried out an extensive set of 

 
1 Presentation Attack Instrument or, simply, spoof or fake fingerprint. 
2 https://livdet.pythonanywhere.com/ 
3 https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis 
4 https://www.neurotechnology.com/verifinger.html 



7 

 

simulations, explicitly designed to assess the impact on the GAR depending on the materials used for 

the attack and the probability of being attacked. Accordingly, we derived the main guidelines to 

follow for deciding whether a particular PAD can be embedded in the matching process. 

However, using the current version of BIO-WISE is difficult to appreciate for which PAD's 

operational points the overall GAR degradation can be still acceptable, with the advantage of handling 

presentation attacks.  

Therefore, as a second contribution of this thesis, we present a significant improved version of BIO-

WISE, by introducing a formal definition of “trade-off” a term that is used when referring to “a 

balancing of factors all of which are not attainable at the same”. 

Through this tool we could quantify the loss of performance in terms of GAR and the related gain in 

terms of IAPMR and FMR, with particular reference to the best operational points of the liveness 

module by setting that of the matcher (e.g. the Equal Error Rate (EER)). Using this tool with multiple 

PADs and matchers can also assess “where we are” based on current technology. 

Chapter 2 of this thesis gives an overview of biometric technologies, highlighting the limits and 

potentials of such approaches. Chapter 3 introduces fingerprint biometry and related works for 

fingerprint recognition and liveness detection. In Chapter 4, we present Bio-WISE, a novel simulator 

able to predict the integrated system performance from the individual ROC curves of PAD and 

verification systems. Chapter 5 present an additional tool, the "trade-off", that significantly improves 

the capabilities of Bio-WISE. Chapter 5 concludes this manuscript by providing a summary of the 

major contributions. 
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2. Biometric technologies  
 

 

The term "biometric recognition" refers to the process of measuring human biological and behavioral 

features for the purpose of automatically recognizing or authenticating an individual [16]. It is the 

science that establishes a person's identity based on physical characteristics, such as the fingerprint 

or palm of the hand, the geometry of the hand or fingers, facial features, iris or retina, or behavioral 

, that is the characteristics influenced by the personality of the individual, such as the style of typing 

on the keyboard, the gait or the voice. In general, any human characteristics which meet the 

requirements of universality, uniqueness, permanence and collectability [17] can be used as a 

biometric identifier. 

Biometric recognition can be seen as a particular application of pattern recognition. Pattern 

recognition is a branch of artificial intelligence that deals with locating and interpreting physical (or 

behavioral) phenomena through the introduction of classification criteria. A pattern is, therefore, an 

information element (a handwritten document, a movement, a sound, a somatic characteristic, etc.) 

of any nature that can be acquired through an external sensor. 

Therefore, creating a biometric recognition system means building a system capable of translating 

an analogue physical phenomenon into a digital description that the machine can understand: once 

the user’s biometric traits have been acquired, they must be transformed into an abstract 

representation by extracting the feature set. Then, this set is compared with the templates’ features 

stored in a database. The output of this comparison is the so-called match score, which is a measure 

of the similarity between the two feature sets. Typically, biometric systems can operate in two modes 

[18] (Fig. 2.2-2.3): 

• Authentication or verification: the system verifies the user’s identity by comparing the 

acquired biometric trait with the corresponding reference, called template, stored in the 

database. In this mode, the user declares his identity with a PIN, a smart card, a user name, 

etc.. It is a 1:1 comparison. 

• Identification: the system compares the input data with all those stored in the database, to 

determine the most similar. A series of possible candidates is returned, ordered according to 

the match score. It is a 1:N comparison. 
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The enrollment phase, in which a user's biometric information is collected and saved, precedes both 

modes of operation. A number or string is used to link the user's identity to the stored data, 

called templates (Fig. 2.1). 

 

 

 

 

Biometric systems consist of several modules. We generally distinguish: 

• Acquisition module: responsible for the acquisition and digitization of biometric data. The desired 

biometry is captured by an electronic device (camera, scanner, fingerprint reader, etc.). It can be 

Figure 2.1: Scheme of the enrollment phase of a fingerprint-based biometric system. 

Figure 2.2: Scheme of the authentication mode of a fingerprint-based biometric system. 

Figure 2.3: Scheme of the identification mode of a fingerprint-based biometric system. 
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accompanied by a sample quality control module, which discards any templates that could generate 

unreliable scores in the subsequent stages. 

• Pre-processing or segmentation module: optional module that improves raw data quality to extract 

more robust features. 

• Features extractor: allows the processing of the input image and extracts the distinctive 

components; 

• Matching module: outputs the similarity scores (identification) or the score (verification) generated 

by comparing the input data with those stored in the database. The higher the score, the more similar 

the input data and the enrolled template. 

• Database, where biometric templates are stored during the enrollment phase. 

 

2.1 Biometric system limitations 
 

Although biometrics are now commonly used, it is also true that they suffer from some limitations 

concerning large-scale applications. Depending upon the different scenarios, a biometric system can 

present certain drawbacks [19]:  

• Performance limitation: biometrics are systems that base their power on statistics, therefore 

on probabilistic decisions, which are error-prone. In a verification system, errors are due to 

many reasons, such as variations in human characteristics (e.g., occlusions [20]), 

environmental factors (e.g., illuminations [21]) and cross-device matching [22]. 

• Architecture limitation: Between the acquisition module and the comparison module, there 

are numerous points of vulnerability in which an attack can occur and consequently 

compromise the security of a biometric system. We can mainly identify eight weak points 

[20], schematized in Figure 2.4: 

1. Presentation Attack: an artificial reproduction of the biometric feature is presented 

as input to the system. Examples include a fake finger, a copy of a signature, or a face 

mask. 

2. Replication of the biometric signal: the sensor is bypassed, and a recorded signal is 

replayed to the system, such as an old copy of a fingerprint image or a previously 

recorded audio signal; 
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3. Feature overriding: the feature extraction module is attacked by a trojan horse in 

which the attacker preselects the features; 

4. Feature replacement: the set of extracted features is replaced with a different 

fraudulent one; 

5. Matcher corruption: the matcher is corrupt, and the attacker forces the decision; 

6. Template replacement: one or more templates are modified in such a way that a 

fraudulent template corresponds to an authorized identity; 

7. Interception of communication: the template transmitted by the database is 

intercepted while sent to the matcher and corrupted; 

8. Overriding the final decision: If the hacker can override the final match decision, 

then the authentication system has been disabled. 

 

In this PhD thesis, we will focus on the so-called Presentation Attacks (PA) and, in particular, on the 

impact of the approaches for detecting and preventing such attacks on fingerprint systems, also known 

as Fingerprint Presentation Attack Detectors (FPADs), when integrated into verification system. This 

topic will be deepen in the next Section. 

 

2.2 Evaluation of biometric systems 
 

As shown in the previous section, biometric systems have several limitations which may significantly 

decrease their use in real-life applications. Therefore, the evaluation of biometric systems is carefully 

considered in the literature. In general, a biometric system can be seen as a binary classification 

system subject to two types of errors:  

• False positives (FP): access will be allowed to unauthorized users. It represents a security 

concern; 

Figure 2.4: Vulnerable points of attacks in a biometric system. 
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• False negatives (FN): access will be denied to authorized users. It is not a security issue. 

Typically, the error rates are reported in terms of False Positive Rate (FPR), which corresponds to the 

ratio between FP and the total number of negative samples and False Negative Rate (FNR), which 

corresponds to the ratio between FN and the total number of positive samples. Often, the FNR is 

substituted by its opposite, the True Positive Rate (TPR) intended as the ratio of correctly classified 

positives. 

To compute these error rates, the system needs to be tailored with a decision threshold which will 

serve as a boundary between the output scores of the genuine accesses and presentation attacks. By 

changing this threshold, the balance between FPR and FNR will also change: increasing FPR reduces 

FNR and vice-versa. However, it is often desired that an optimal threshold is chosen according to 

some criterion. A well-established criterion is, for instance, the Equal Error Rate (EER) [26] defined 

as: 

𝐸𝐸𝑅 =
𝐹𝑃𝑅(𝑠∗) + 𝐹𝑁𝑅(𝑠∗)

2
 

where 𝑠∗ is an optimal threshold value for which 𝐹𝑃𝑅 = 𝐹𝑁𝑅. 

Usually, classification systems are also evaluated via graphical representations of the results. One of 

the most commonly used method to summarize a system’s performance is the Receiver Operating 

Characteristic (ROC) (Fig. 2.5) . The ROC curve is created by plotting the true positive rate (TPR) 

against the false positive rate (FPR) at various threshold settings. The Area Under ROC Curve (AUC) 

value is often used as a yardstick in order to compare several system: the higher the AUC the better 

the system. 

Figure 2.5:Example of Receiver Operating Characteristic (ROC) curve. 
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2.2.1 Evaluation of verification systems 
 

In the scope of biometric verification systems, positive samples are called genuine samples, namely 

users that are being matched against the same reference identity, while users matched incorrectly 

against another identity, called zero-effort or impostor samples, are considered negative samples. 

Moreover, False Match Rate (FMR) and Genuine Acceptance Rate (GAR) are the most commonly 

used terms for FPR and TPR [8, 24]. FMR stands for the ratio of incorrectly accepted zero-effort 

impostors and GAR for the ratio of correctly accepted genuine users. 

 

2.2.2 Evaluation of presentation attack detection systems 
 

The need to protect against presentation attacks (PAs) led to Presentation Attack Detection (PAD, 

also known as anti-spoofing). A biometrics system can be designed to automatically detect when a 

presentation attack is occurring and take appropriate defensive actions against it. Regardless of the 

technique, biometric mode or degree of independence of external equipment, also PAD systems are 

most commonly treated as binary classification systems [14]. The two classes that they differentiate 

are bona-fide5 (positive samples) and presentation attack samples (negative samples). From this 

perspective, their evaluation is equivalent to the previously introduced evaluation standards for the 

binary classification systems. The performance metrics for a PAD has been recently renamed by the 

ISO/IEC 30107-3 standard [24]: the FPR was retitled to Attack Presentation Classification Error 

Rate (APCER), while the FNR to Bona Fide Presentation Classification Error Rate (BPCER). 

They represent, respectively, the percentage of bona-fide and presentation attacks misclassified by 

the PAD. 

 

2.2.3 Evaluation of verification systems under presentation attacks 
 

Presentation attack detection systems in biometrics are seldom imagined to operate independently. 

Their task is to conduct an additional check on the decision of biometric verification systems in order 

to identify a fraudulent user who owns a replica of a genuine user's biometric feature. As illustrated 

in Section 2.2.1, verification systems are designed to decide between two categories of verification 

 
5 Bona-fide are also called real or live samples. Both genuine and zero-effort impostor samples are bona-fide samples. 

While zero-effort impostors are negative samples in a verification system, they are considered positive samples in a 

standalone PAD system (since they are not PAs). 
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attempts: bona-fide genuine users (positives) and the so-called bona-fide zero-effort impostors 

(negatives) [8]. Presentation attacks represent a new type of samples that can be presented at the input 

of this system. Considering that both presentation attacks and zero-effort impostors need to be 

rejected, it is still possible to regard the problem as a binary classification task where the genuine 

users are the positives, while the union of presentation attacks and zero-effort impostors are the 

negatives. Nevertheless, tuning of different properties of the verification system to make it more 

robust to presentation attacks may require a clearly separated class of presentation attacks. 

Presentation attacks, therefore, should be considered as a third separate category of samples that the 

verification systems need to handle [25]. This viewpoint, casts biometric verification into a pseudo-

ternary classification problem.  

Therefore, the usual False Match Rate (FMR) and Genuine Acceptance Rate (GAR) are coupled 

with the term Impostor Attack Presentation Match Rate (IAPMR), representing the ratio of 

incorrectly accepted presentation attacks [24]; This will be the terminology adopted in the remainder 

of this thesis. 
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3. Fingerprint Biometric Systems 

 
 

A fingerprint is an impression left by the friction ridges of a human 

finger’s tip (Fig. 3.1) [27]. This biometric characteristic can reasonably 

be considered the most mature from both an academic and an industrial 

point of view. It is not only used worldwide for forensic purposes but 

also in civilian applications (e.g. smartphone market) thanks to its 

property of uniqueness and persistence [28]. Fingerprints can be 

represented by using global information (e.g., finger ridges) or local 

information (characteristics derived from the ridges).  

Ridge details are generally described in hierarchical order at three 

different levels:  

• At a global level (Level 1), ridges assume a distinctive shape 

characterized by high curvatures. These regions, called 

singularities or singular points, can be classified into three types: cycles, deltas and spirals. 

• At a local level (Level 2), the details consist of different anomalies referred to as minutiae 

points, representing a discontinuity of the ridge/valley structure. The most important classes 

of minutiae are ridge endings and bifurcations. A ridge ending generates when a ridge abruptly 

breaks off, while a bifurcation is the point where a ridge splits into two branches (Figure 3.2). 

• At an even finer level (Level 3), if the fingerprint image is acquired at high resolution (1000 

dpi), details such as sweat pores and incipient ridges can be detected in the fingerprint pattern 

  

(a) (b) 

 

The following sections will provide an overview of the modules that compose a typical fingerprint-

based biometric system. Subsequently, attention will be focused on the problem of the so-called 

liveness detection, i.e. the identification of spoof fingerprints. Finally, we will discuss the integration 

of these two modules, which is the central theme of this thesis. 

Figure 3.1: Fingerprint image. The 

alternating of ridges and valleys on 

the surface of fingertips generates a 

unique pattern. 

Figure 3.2: Examples of minutiae: ridge ending (a) and ridge bifurcation (b). 



16 

 

3.1 Fingerprint recognition 
 

The architecture of a fingerprint-based verification system is typically composed of five modules 

[27]: 

• A device for image acquisition: the user's fingerprint is acquired by a fingerprint scanner to 

produce a raw digital representation; 

• A preprocessing or segmentation module in which the input image is enhanced to extract 

distinctive features more easily; 

• A feature extraction algorithm, which extracts a set of discriminatory characteristics from 

the acquired and processed image. It is the core of the process; 

• A matcher, in which the actual recognition process occurs. The input fingerprint is 

compared against one or more existing templates, returning a score: the higher it is, the more 

similar the two images are; 

• A database, where the templates of approved users of the biometric system, also called 

clients, are usually stored. 

 

In the last decades, several fingerprint recognition algorithms have been developed [29]. They can 

be coarsely classified into three families: 

• Correlation-based approaches: two fingerprints are overlapped, and the correlation between 

pixels for various alignments is computed (for example, by varying the position and 

orientation) [30,31]. 

• Minutiae-based approaches: this is the most popular and used technique, inspired by the 

oldest manual procedure for comparing two fingerprints. It consists of the search and 

subsequent memorization of the minutiae in a feature vector that includes different 

characteristics such as type, orientation, position, etc. The comparison is essentially based on 

finding the best alignment between the stored template and the set of input minutiae, which 

results in the largest number of coupled minutiae [32, 33]. The two matchers employed in this 

thesis are minutia-based: the NIST Bozorth3 and Verifinger 12. 

• Non-Minutiae feature based approaches: minutiae extraction is harrowing for extreme low-

quality fingerprint images. In these cases, fingerprint pattern properties such as ridges' local 

direction and frequency, shape, texture information, etc., can be exploited to build a descriptor 

characterized by compactness, accuracy and robustness [34, 35, 36]  
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3.2 Liveness detection  
 

Since 1998, when the weakness of personal identification systems to fingerprint replicas was first 

established [23], the scientific community has studied and proposed novel approaches to defend such 

systems using so-called Presentation Attack Detectors (PADs). Similarly, attackers' abilities have 

continued to improve over time, and the study of attack approaches is the core of research on 

Presentation Attack detection. In this respect, the most common methods for fabricating a spoof 

fingerprint can be classified into two categories: consensual and non-consensual. 

In the consensual approach, the user's finger is pressed on an impressionable material's surface or 

wrapped by it, as in the example in Figure 3.3. The negative of the fingerprint is thus fixed on the 

cast that can now be used as a mold and filled with casting substances, such as latex, liquid ecoflex, 

or glue. The solidified material is then separated from the mold and represents a replica of the genuine 

fingerprint, allowing a presentation attack against a fingerprint recognition system [37]. Effective 

spoofs have also been generated through 2D and 3D sophisticated printing techniques [38]. 

Cooperative approaches are considered as the worst-case scenario since the user's collaboration 

permits the creation of a high-quality fake.  

 

Non-consensual methods, on the other hand, depend on recovering indirectly the fingerprint. 

Latent fingerprints from a smooth or non-porous surface can be exploited after being visualized, since 

they are not directly visible in most cases.  

Various methods to perform this visualisation step are known from forensics. One of the methods is 

application of very fine-grained powders on the latent fingerprint or take a photo of a smartphone 

screen [41]. The visualised latent fingerprint is then digitised and converted to a black and white mask 

that is used in further steps. In this case, the digital version of the mark is used to create the mold. A 

Figure 3.3: Creating a mold with silicone rubber (RTV). 
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laser printer or photolithographic techniques can be used to print it on a transparent sheet, where the 

spoof materials are then casted (Figure 3.4). Another standard procedure consists of dripping the 

material after engraving the negative of the fingerprint on a printed circuit [42]. 

Although such techniques need a high level of precision, good manual dexterity, image processing 

skills and especially time [50], they involve greater risks for the user as they are more realistic in 

terms of attacks on a biometric system.  

 

To defend against these types of attacks, various software solutions for liveness detection have been 

implemented over the years [39]. 

Usually, these methods are divided into two categories: 

• Hardware-based techniques: specific hardware devices are added to the sensor to detect 

physical traits that ensure liveliness (e.g. heartbeat, blood pressure, odour [43, 44, 45]). These 

solutions usually have a higher fake detection rate but at the expense of a higher cost and 

invasiveness, as happens, for example, with blood pressure measurement. 

• Software-based techniques: the sample's liveness is verified after a standard sensor has 

acquired it, by augmenting the software architecture with a dedicated attack detection 

algorithm. Distinctive features are extracted from the image and not from the finger itself. In 

general, software-based methods are less expensive and, intuitively, non-invasive since their 

function is transparent to the user. 

 

Figure 3.4: Fingerprints obtained with non-consensual method printed on a 

transparent sheet. They can be used as a cast for creating a spoof. 
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The real challenge in this field is to make traditional readers reliable and robust against presentation 

attacks through software-based methods. Over the years, many publications focused on showing 

performance improvement and the number of datasets for this aim enormously increased. As with 

other biometrics, presentation attack detection techniques have also evolved from the analysis of 

ridges and valleys to local hand-crafted methods based on morphology, color and texture analysis, 

such as BSIF and LBP, and more modern deep-learning techniques [46, 47, 48].  

Among the several initiatives, the International Fingerprint Liveness Detection Competition (LivDet), 

organized by the Biometric Unit of the PRALab6 of the University of Cagliari, is a well-acknowledge 

biennial meeting aimed at making the point on the limits and perspectives of PADs. The competition 

occurred and grew in seven editions between 2009 and 2021, offering novel falsification techniques, 

spoof materials and types of scanners. 

In LivDet (2009-2017) and the majority of works in the literature,  the problem of fingerprint liveness 

detection is treated and evaluated as an independent pattern classification problem, namely, it is not 

yet viewed as a part of a fingerprint verification system. As LivDet 2019 and 2021 editions showed 

(Figure 1.1) and other previous works noticed, fusing a PAD with an existing personal verification 

system is not trivial at all: in all cases, a drop in performance has been noticed, due to the increase in 

the rejected genuine users, that is, the system’s GAR.  

This brings some questions and doubts about the integration process: what are the advantages and 

drawbacks if integration is done with the SOA PADs? Is it possible to evaluate quantitatively the 

conditions under which these PADs can be integrated without degrading the overall performance? 

Ideally, a good trade-off between the ability to reject zero-effort and presentation attacks (low FMR 

and IAPMR) and the need to accept genuine users (high GAR) is necessary. This is not easy to obtain, 

and experiments are obviously necessary to set such a trade-off, if any. 

The following Section will analyze the main achievement in the literature regarding integrated 

fingerprint systems. 

 

 

 

 

 
6 Pattern Recognition and Applications Lab, https://pralab.diee.unica.it/ 
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3.3 State of the art of integrated system: a brief review 
 

Although the research on fingerprints PAD is still hot, a few of works has dealt with the problem of 

its integration with a verification system. Table 3.1 lists such contributions. The most relevant points 

that we can summarize from these references are: 

• Proposed integration methods rely on sequential fusion [5] or attempt to model liveness and 

match scores based on probabilistic correlations between measurements and events in the 

form of a Bayesian network [6, 7, 12, 13]. While these publications are valuable, they do not 

provide a comprehensive analysis of the integrated system's relationships between the FMR, 

GAR, and IAPMR. The amount of false rejections is simply reported as a value, different 

from one system to another, and it is even impossible to predict it a priori. 

• In all cases, IAPMR >> FMR for the same acceptance threshold. Consequently, the False 

Non-Match Rate strongly increases when the individual system is under presentation attack 

[3, 1, 5] because a more stringent threshold is required to reduce IAPMR. Moreover, 

experiments in [49] showed that GAR could lower up to 40% when the fingerprint sensor is 

subjected to presentation attacks. Again, no explanation for this is still given. 

• The performance of current PADs discourages integration and suggests other approaches, 

such as hardware-based liveness detection or tricks like enrolling multiple fingers [50], 

especially by considering large-scale applications. This cannot be neglected despite the 

significant efforts of academies and companies to exploit the most recent achievements in 

machine learning, where the use of deep networks led to a PAD accuracy apparently better 

than that achieved using hand-crafted features [51]. This can also be observed by looking at 

Fig. 1.1, where the performance of the 2015 edition is mostly related to the use of hand-crafted 

features, whilst the one of the 2017 edition is mostly related to the use of deep learning 

approaches and these are used in almost all algorithms submitted to the 2019-2021 edition [4]. 
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Table 3.1: List of contributions on the integration of PAD and verification systems. 

Reference Contribution Year 

Abhyankar et al. [5] 

Integration of fingerprint PAD and verification by sequential fusion. 

Verification performance is experimentally evaluated. Fusion allows a 

performance better than that of individual verification system under 

Presentation Attacks. The impact on GAR of integrating PAD and matcher 

is noticed. 

2009 

Marasco et al. [6] 

Bayesian-based fusion of PAD and verification system. It allows a 

performance better than that of individual verification system. No 

theoretical explanation is given about that. The decrease of GAR in order 

to keep low FMR and IAPMR can be also noticed from the reported results. 

2012 

Rattani et al. [7] 

Follow-up of [3]. Several Bayesian-based combinations of liveness and 

match scores are proposed. A general performance improvement with 

respect to the individual matcher is pointed out.  

2012 

Marasco et al. [11] 

Sequential integration of fingerprint PAD on a multimodal system based on 

face and fingerprint. Experimental evaluation. No mention about GAR, 

FMR and IAPMR relations is given. 

 

2011 

Rattani and Poh [12] 

Joint Density Estimation by Fusion of quality, liveness and matching 

scores. Performance improvement is pointed out under Presentation 

Attacks. The contribution of liveness score appears strongly relevant, but 

no theoretical explanation of the phenomenon is given.  

2013 

Wong et al. [13] 

Follow-up of [5]. An extended framework is proposed by including quality 

measurements as done in [4]. Experimental results show the decrease of 

GAR in order to keep low FMR and IAPMR. 

2014 

Biggio et al. [49] 

A statistical meta-model for security evaluation of multibiometric systems 

against presentation attacks. IAPMR values are always minor than FMR 

values. Up to 40% GAR loss is acknowledged for integrated system. 

2017 

Crossmatch WP [50] 

It is pointed out that in order have a reduced probability of being 

successfully attacked, the user should enrol multiple fingers and then using 

a randomization procedure of required fingers during the verification stage. 

2014 

 

Furthermore, it is unclear how and why the cited integration approaches work and in which cases 

they could not. In other words, the literature lacks theoretical motivations for what is achieved. The 

consequence is that quantifying or predicting the advantage of such methods, given the individual 

performance of PAD and verification system, is currently not possible. 
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Implications of this drawback are apparent if we consider that the design process needs a phase in 

which the optimum fusion strategy must be chosen based on the individual systems' performances. 

Otherwise, the designer could also be interested in simply evaluating the real need for a fusion 

module, starting, for instance, from the current state of the art and the a priori probability of a 

presentation attack [14]. However, without a clear model for estimating such performance, all 

possible approaches must be implemented and tested. Only after this step the selection of the best one 

is possible according to the working context and related constraints. This is further complicated when 

evaluating more than one PAD and verification system is necessary. 

This work is aimed to start filling this gap by proposing a framework able to present the overall 

system performance under integration without the implication of the practical difficulties above. The 

outcome of our research is a simulator of possible scenarios, called Bio-WISE7, oriented to the 

sequential fusion of PAD and verification systems. We choose such integration because the link 

between performance and probabilistic relationships can be modelled easily under appropriate 

working hypotheses. Moreover, the superiority of more complex approaches to this one has not yet 

been shown, neither theoretically nor experimentally. Through Bio-WISE, great help can be given to 

the design phase and to understand to which extent the use of a PAD allows better performance. In 

particular, the designer can understand whether sequential fusion works depending on the kind of 

attacks (materials), and the probability of being attacked. Moreover, she/he can state "where we are" 

according to the current technology on which matchers and PADs are based. 

 

 

 

 
7 https://livdet.pythonanywhere.com/ 
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4. Bio-WISE: Biometric recognition with integrated PAD: 

simulation environment 
 

 

As previously mentioned, the purpose of this study is to present a simulator capable of returning the 

performance expectation of the sequential fusion of PAD and fingerprint matching. We named this 

simulator Bio-WISE and made it available to the public. As outlined in Figure 4.1, it accepts as input 

the ROC curves of the fingerprint matcher and the PAD and returns the integrated system's metrics, 

namely, the genuine acceptance rate (GAR), the false match rate (FMR) and the impostor attack 

presentation match rate (IAPMR).In addition, two main parameters are added to perform the 

simulation: the prior probability of being attacked by spoofs called "w" (see also in Ref. [14]) and the 

specific operating point chosen for the fingerprint PAD, set by a specific percentage of BPCER or 

APCER. By adjusting these two criteria, our simulator can represent different case-study to determine 

when it is most convenient to switch the PAD module on or off.  

In the following sections, we will introduce the necessary terminology to illustrate how this simulator 

is implemented, starting from the appropriate modelling of the probabilistic relationships among the 

ROC of the two individual systems. 

 

 

 

 

Figure 4.1: Scheme of Bio-WISE, the proposed simulator. It takes the individual metrics of the matcher and 
the PAD, and return the “performance expectation” of their sequential fusion. 
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4.1 Problem Modeling 
 

In this Section, we introduce some terms used in the rest of the manuscript. First of all, let 𝐺 represent 

the boolean event “the input user is authorized” and �̅� the opposite event “the input user is an 

impostor”. Obviously, 𝐺 ∪ �̅� = Ω where Ω indicates the Certain Event. Second, let 𝐿 represent the 

boolean event "the input image is alive/authentic", namely, the input picture is from the user's living 

fingertip. Accordingly, �̅� denotes that the input image is from a spoof fingerprint. Even in this case, 

𝐿 ∪ �̅� = Ω. According to this notation, the following combined occurrences are possible: 

• {𝐿, 𝐺}: the input image is alive, and the user is authorized (genuine user trial);  

• {𝐿, �̅�}: the input image is alive, and the user is unauthorized (zero-effort attack);  

• {�̅�, �̅�}: the input image is spoof and the user is unauthorized (presentation attack);  

• {�̅�, 𝐺}: impossible event. An authorized user should never utilize a replica of his fingerprint 

to access the system. 

The relationship between these two variables are summarized by the Venn’s diagram (Fig 4.2). By 

expressing the probabilities linked to 𝐺 and 𝐿 with 𝑃(𝐺) and 𝑃(𝐿), where 𝑃(𝐺 ) =  1 − 𝑃(�̅�) and 

𝑃(𝐿 ) =  1 − 𝑃(�̅�), we can also state: 

• the input sample belongs to an unauthorized user, given 𝐿 =  𝐹𝑎𝑙𝑠𝑒:  𝑃(𝐺|�̅�)  =  0;  

• the input sample is alive, given 𝐺 =  𝑇𝑟𝑢𝑒:  𝑃(𝐿|𝐺)  =  1; 

• 𝑃(𝐺, 𝐿)  = 𝑃(𝐺). 

 

Figure 4.2: Relationship between G and L events. 
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It is now necessary to link the events 𝐿 and 𝐺, related to the nature of the input sample, to the output 

of the matching and the liveness detection phases. For this purpose, we introduce two events that 

appropriately model the acceptance rate of a single matcher and a PAD. As shown in Section 2.2, in 

a biometric verification system the access is granted to a certain user when the matching score 𝑠𝑀 

between the input image and the user’s claimed identity template(s) is over a given acceptance 

threshold 𝑠𝑀
∗ . Consequently, we can define the boolean event 𝑀 as follow: 

𝑀 =  𝑠𝑀 > 𝑠𝑀
∗  (4.1) 

 

Its probability, 𝑃(𝑀), represents the acceptance probability of a generic input sample. It can be 

written in the function of the event 𝐿 and 𝐺 exploiting the law of total probability: 

𝑃(𝑀) = 𝑃(𝑀|𝐺, 𝐿) ∙ 𝑃(𝐺, 𝐿) +  𝑃(𝑀|�̅�, 𝐿) ∙ 𝑃(�̅�, 𝐿) +  𝑃(𝑀|�̅�, �̅�) ∙ 𝑃(�̅�, �̅�) (4.2) 

 

In a similar way we can define the boolean event 𝐹, which takes into account the decision of the 

liveness detector:  

𝐹 =  𝑠𝐹 > 𝑠𝐹
∗  (4.3) 

𝐹 is 𝑡𝑟𝑢𝑒 if the liveness score 𝑠𝐹, obtained by the analysis of the feature set extracted from the input 

image, is over a certain liveness threshold 𝑠𝐹
∗ . Therefore, 𝑃(𝐹) is the general probability of classifying 

a generic pattern as alive:  

𝑃(𝐹) = 𝑃(𝐹|𝐿) ∙ 𝑃(𝐿) + 𝑃(𝐹|�̅�) ∙ 𝑃(�̅�) (4.4) 

On the basis of the definitions above we may represent the acceptance rate of each access trial for 

the individual matcher in terms of the typical error rates used to evaluate its performance: 

𝑃(𝑀|𝐺, 𝐿) = 𝐺𝐴𝑅(𝑀) (4.5) 

𝑃(𝑀|�̅�, 𝐿) = 𝐹𝑀𝑅(𝑀) (4.6) 

𝑃(𝑀|�̅�, �̅�) = 𝐼𝐴𝑃𝑀𝑅(𝑀) (4.7) 

respectively, the Genuine Acceptance Rate, the False Match Rate and the Impostor Attack 

Presentation Match Rate.  

Likewise, we may depict the bona fide and presentation attack classification error rates of the PAD: 

𝑃(𝐹|𝐿) = 1 − 𝐵𝑃𝐶𝐸𝑅(𝐹) (4.8) 

𝑃(𝐹|�̅�) = 𝐴𝑃𝐶𝐸𝑅(𝐹) (4.9) 
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4.2 Sequential fusion of liveness detection and matching 
 

The sequential nature of the embedding represented in Fig. 4.3 sets up the final decision to be an 

AND-like boolean one. This means that an input pattern characterized by a certain state of nature 

{𝐿, 𝐺}, is finally accepted when both 𝐹 and 𝑀 events are 𝑇𝑟𝑢𝑒. This is valid whether the matcher 

precedes the PAD and vice versa. 

In the following, we model the expression of the acceptance rate by using the terminology previously 

introduced. We avoid to specify the actual value of truth associated to 𝐿 and 𝐺, since analogous 

expressions can be obtained for each configurations of these random variables. 

 

 

 

4.2.1 Matching and liveness 

Let us first consider an integrated system where the identity of a specific user is verified before the 

liveness detection. In this case, the probability of acceptance, given a specific configuration of {𝐿, 𝐺}, 

can be expressed as:  

𝑃(𝑀, 𝐹|𝐿, 𝐺)  =  𝑃(𝑀|𝐿, 𝐺)  ·  𝑃(𝐹|𝐿, 𝐺, 𝑀) (4.10) 

 

 

This formulation can be simplified under the following assumptions: 

Figure 4.3: Serial combination of presentation attack detector and matcher. The PAD-matcher fusion is a 
particular case of AND fusion system. 
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(1) 𝑭 is independent of 𝑮, given 𝑳 and 𝑴. No information about the liveness probability is given 

by the evidence that the sample belongs to an authorized user, since 𝑭 ≠ 𝑳. Accordingly:  

𝑃(𝐹|𝐿, 𝐺, 𝑀) = 𝑃(𝐹|𝐿, 𝑀) 

(2) 𝑭 is independent of 𝑴, given 𝑳: again, there is no probabilistic correlation between the 

liveness score and the fact that the input sample match or not. The decision of the liveness 

module is independent of the fact that a specific fingerprint matches the corresponding user’s 

template, also according to the definition itself of PAD, which must detect the liveness 

separately regardless of the user population. Therefore:      

𝑃(𝐹|𝐿, 𝑀) = 𝑃(𝐹|𝐿) 

 

In summary, if we report the simplified expression of the acceptance rate for all the admissible 

combinations of 𝐿 and 𝐺, and substitute the system rates to the probabilities (Eqs. 4.5-9), we can 

observe that the classification error of a “matcher→PAD” integrated system is always the simple 

product of the error rates of the two individual systems: 

 

Probabilities  Error rates  

𝑃(𝑀, 𝐹|𝐿, 𝐺) = 𝑃(𝐹|𝐿) ∙ 𝑃(𝑀|𝐿, 𝐺) ⇒ 𝐺𝐴𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐺𝐴𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹))  

𝑃(𝑀, 𝐹|𝐿, �̅�) = 𝑃(𝐹|𝐿 ) ∙ 𝑃(𝑀|𝐿, �̅�) ⇒ 𝐹𝑀𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐹𝑀𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹)) (4.11) 

𝑃(𝑀, 𝐹|�̅�, �̅�) = 𝑃(𝐹|�̅� ) ∙ 𝑃(𝑀|�̅�, �̅�) ⇒ 𝐼𝐴𝑃𝑀𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐼𝐴𝑃𝑀𝑅(𝑀) ∙ 𝐴𝑃𝐶𝐸𝑅(𝐹)  

 

 

Worth noting, according to the extensive literature about the decision-level fusion of multiple 

classifiers, the sequential fusion of matcher and presentation attacks detector can be treated as a 

standard AND rule [52]. The AND fusion rule is the logical product of two boolean variable, in this 

case 𝑀 and 𝐹. However, the literature does not conclude that the classification error of a generic 

AND-based fusion system is always the simple product of the error rates of the individual systems. 

Thanks to the formulation above, we are also able to give a prediction of the performance by 

estimating 𝐵𝑃𝐶𝐸𝑅(𝐹), 𝐴𝑃𝐶𝐸𝑅(𝐹), 𝐺𝐴𝑅(𝑀), 𝐹𝑀𝑅(𝑀) and 𝐼𝐴𝑃𝑀𝑅(𝑀) independently of each 

other. Therefore, the proposed model considers the PAD-matcher fusion as a particular case of AND 

fusion system, where even the error rate evaluation can be treated similarly.  

Moreover, we can explain some more interesting relationships between M and F:  
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• From the point of view of zero-effort attacks, we may see that the GAR/FMR ratio is 

unaltered, independently of the presentation attacks detector’s performance. 

• The formulation above implicitly confirms what was experimentally reported in [5]: beyond 

𝐹𝑀𝑅 and 𝐼𝐴𝑃𝑀𝑅, also the 𝐺𝐴𝑅 decreases in the integrated system, if we keep the same 

operating point of the matcher. Such loss is intrinsic to this kind of fusion and it is inversely 

proportional to the 𝐵𝑃𝐶𝐸𝑅 of the presentation attacks detector. 

 

4.2.2 Liveness and matching 

In this architecture, the liveness detection is carried out before the verification of the identity (Fig. 

4.3), namely, the input sample is verified only after it is classified as alive. The acceptance rate 

consequently assumes the following form: 

𝑃(𝑀, 𝐹|𝐿, 𝐺) =  𝑃(𝐹|𝐿, 𝐺) ∙ 𝑃(𝑀|𝐿, 𝐺, 𝐹) (4.12) 

 

We can simplify the expression by recalling that 𝑭 is independent of 𝑮 (assumption 1 in the previous 

Section): 

𝑃(𝑀, 𝐹|𝐿, 𝐺) =  𝑃(𝐹|𝐿) ∙ 𝑃(𝑀|𝐿, 𝐺, 𝐹) (4.13) 

 

The last step is determining the degree of dependence between M and F events. We already 

hypothesized that F is independent of M. However, let us now discuss it more in-depth. The question 

is: what is the probabilistic dependence of obtaining a match given that the submitted fingerprint 

image is classified as alive? A recent work [40] investigated the statistical relationships between 

match scores, quality scores and liveness scores of fingerprint spoofs created from latent fingermarks. 

Based on the reported results, we can assume that no explicit statistical dependence can be found 

between the match score and the liveness score. For the sake of example, we report in Figure 4.4 the 

plots of match and quality scores vs the correspondent liveness scores when a presentation attack is 

committed by a spoof fabricated with one of the most effective materials, namely, the gelatine. It is 

evident that there is no significant correlation among such measurements. Therefore we can confirm 

what we have previously stated: there is no difference in having a spoof or a live fingerprint on the 

sensor’s surface: the probability of a match is unaffected. 
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(a) (b) 

Figure 4.4: Quality/match scores vs liveness scores when the gelatine is used to fabricate PAIs.  

These plots are quoted from [9], where more details are available. 

 

Consequently: 

𝑃(𝑀, 𝐹|𝐿, 𝐺) =  𝑃(𝐹|𝐿) ∙ 𝑃(𝑀|𝐿, 𝐺) (4.14) 

 

Hence,  the final expressions of GAR, FMR and IAPMR are the same as reported in Eqs. 4.11, 

regardless of whether the matcher precedes or follows the PAD: 

𝐺𝐴𝑅𝑃𝐴𝐷→𝑀𝑎𝑡𝑐ℎ𝑒𝑟 =  𝐺𝐴𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐺𝐴𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹))  

𝐹𝑀𝑅𝑃𝐴𝐷→𝑀𝑎𝑡𝑐ℎ𝑒𝑟 =  𝐹𝑀𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐹𝑀𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹)) (4.15) 

𝐼𝐴𝑃𝑀𝑅𝑃𝐴𝐷→𝑀𝑎𝑡𝑐ℎ𝑒𝑟 =  𝐼𝐴𝑃𝑀𝑅𝑀𝑎𝑡𝑐ℎ𝑒𝑟→𝑃𝐴𝐷 = 𝐼𝐴𝑃𝑀𝑅(𝑀) ∙ 𝐴𝑃𝐶𝐸𝑅(𝐹)  

 

Hereinafter, we will refer to them as 𝐺𝐴𝑅𝑆𝑒𝑞, 𝐹𝑀𝑅𝑆𝑒𝑞, and 𝐼𝐴𝑃𝑀𝑅𝑆𝑒𝑞, respectively. 

 

4.2.3 The final model: Bio-WISE 

 

On the basis of the previous Section, and by recalling Eq. 4.2, we obtain the acceptance rate for an 

integrated system: 

𝐴𝑅𝑆𝑒𝑞(𝑀, 𝐹) = 𝑃(𝑀, 𝐹) =

= 𝐺𝐴𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑃(𝐺, 𝐿) + 𝐹𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑃(�̅�, 𝐿) +  𝐼𝐴𝑃𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹)

∙ 𝑃(�̅�, �̅�) 

(4.16) 
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Since 𝑃(𝐺,∗)/𝑃(�̅�)  =  𝑃(∗ |�̅�), we can rewrite Eq. 4.16 as:  

𝐴𝑅𝑆𝑒𝑞(𝑀, 𝐹) = 𝐺𝐴𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑃(𝐺) + 𝐺𝐹𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹; 𝑤) ∙ 𝑃(�̅�) (4.17) 

 

Where 𝐺𝐹𝑀𝑅𝑆𝑒𝑞 is the so-called Global FMR, a weighted sum of the two negative errors in 

function of the term 𝑤 (see also 𝐹𝐴𝑅𝜔 in Ref. [14], p. 471): 

𝐺𝐹𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) = 𝐹𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑃(𝐿|�̅�) + 𝐼𝐴𝑃𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑃(�̅�|�̅�) = 

= 𝐹𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ (1 − 𝑤) + 𝐼𝐴𝑃𝑀𝑅𝑆𝑒𝑞(𝑀, 𝐹) ∙ 𝑤 
(4.18) 

 

Worth noting, the term 𝑤 of Eq. 4.18 is also reported as a parameter, 𝜔, in Ref. [14], with the 

following definition: “𝜔 denotes the relative cost of presentation attacks with respect to zero-effort 

impostors”. In other words, we have proved that it can also be understood as the prior probability of 

the system being exposed to presentation attacks since it corresponds to 𝑃(�̅�|�̅�). Accordingly, the 

values of 𝑤 are between zero and one, and they are representative of the various security scenarios; 

in particular the higher is 𝑤, the higher is the risk of presentation attacks. 

Eqs. 4.17-18, coupled with Eq. 4.15, define our simulator. The final Receiver Operating 

Characteristics (ROCs) can be derived by considering the individual ROCs of the presentation attacks 

detector and the matcher, with a great help for the designer who is not forced to carry out additional 

experiments to compute the whole ROC. As a matter of fact, performing experiments with 

presentation attacks is expensive due to the problem of recovering a user population representative 

enough and fabricating fake fingerprints, consensually or not. Thanks to Bio-WISE,  human effort 

and cost can be remarkably saved during the design process. Besides this model clearly shows that 

the GAR decrease is intrinsic to the sequential fusion, other considerations can be done by appropriate 

simulations, which are carried out in the next Sections. In particular, the GAR decrease is 

counteracted by the PAD’s effectiveness in preventing spoofing attacks and distinguishing them from 

zero-effort attacks. Furthermore, the prior probability of a spoofing attack 𝑤 strongly impacts on 

justifying the addition of a PAD module to the matcher. By acting on 𝑤, and the PAD’s operational 

point 𝐵𝑃𝐶𝐸𝑅 =  𝑝% or 𝐴𝑃𝐶𝐸𝑅 =  𝑝%, the designer may depict several possible scenarios and 

decide whether the 𝐺𝐹𝑀𝑅𝑆𝑒𝑞  is better than that of the individual matcher.  
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4.3 Experiments and analysis 
 

In this Section, we investigate by experiments the Bio-WISE model by some case-studies from the 

2017-2019 edition of LivDet. 

4.3.1 Datasets 

In 2009, to evaluate the main results of the state of the art in the field of fake fingerprint recognition, 

the Department of Electrical and Electronic Engineering of Cagliari, in collaboration with the 

Department of Electrical and Computer Engineering of the University of Clarkson, organized the first 

international liveness detection competition, the Fingerprint Liveness Detection Competition 

(LivDet) [4]. The competition aimed to compare biometric detection methodologies using a 

standardized test protocol and a dataset of live and spoof fingerprints created ad hoc by the Biometrics 

Laboratory of the University of Cagliari for each competition. Approximately every two years, further 

contests were established to assess the yearly development in this domain. Registration is open to all 

academic and industrial institutions with a liveness detection solution. These participants are invited 

to submit their algorithm in an executable which will be analysed and tested on the above dataset to 

verify its performance. Once the competition is over, the results are published in the related scientific 

paper. 

In the following experimental analysis, we utilized LivDet 2017 and 2019 [4] datasets. They both 

comprise three datasets of live and spoof fingerprints captured each of them with a different sensor: 

two optical, GreenBit and DigitalPersona and a thermal swipe, Orcanthus (Figure 4.5). Table 4.1 

displays the specific properties of the sensors. The spoofs were generated using several different 

materials, and always following a consensual procedure. The general distribution of the fingerprint 

images between both sets is given in Table 4.2 and 4.3. 

Table 4.1: Device characteristics for LivDet 2017 and LivDet 2019 datasets 

Scanner Model 
Resolution 

[dpi] 

Image Size 

[px] 
Format Type 

GreenBit DactyScan84C 500 500x500 BMP Optical 

Orcanthus Certis2 Image 500 300xn PNG 
Thermal 

Swipe 

DigitalPersona U.are.U 5160 500 252x324 PNG Optical 
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Table 4.2: Composition of the LivDet 2017 dataset. 

 Train Test 

Dataset Live 
Wood 

Glue 
Ecoflex 

Body 

Double 
Live Gelatine Latex 

Liquid 

Ecoflex 

GreenBit 1000 400 400 400 1700 680 680 680 

Orcanthus 1000 400 400 400 1700 680 658 680 

DigitalPersona 999 400 400 399 1700 679 670 679 

 

Table 4.3: Composition of the LivDet 2019 dataset. 

 Train Test 

Dataset Live 
Wood 

Glue 
Ecoflex 

Body 

Double 

Latex Gelatine 
Live Mix1 Mix2 

Liquid 

Ecoflex 

GreenBit 1000 400 400 400 - - 1700 680 680 680 

Orcanthus 1000 400 400 400 - - 1700 680 658 680 

DigitalPersona 1000 250 250 - 250 250 1700 679 670 679 

 

 

 

Figure 4.5: Sensors adopted in LivDet 2017 and 2019 editions: GreenBit (a), DigitalPersona (b) and Orcanthus (c). 

 

4.3.2 Experimental protocol 

Before employing the model to investigate the actual impact a liveness detector module can bring to 

a fingerprint verification system, it is necessary to validate the thesis expressed by Eqs. 4.15. For this 

purpose, we must measure the differences, in terms of performance, between a real sequential 

integrated system and our simulated scenario, and check if they are comparable. In our evaluation, 

we considered several PAD systems based both on hand-crafted features and deep learning methods. 
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In particular, all the algorithms submitted to LivDet 2017 and 2019 competitions were exploited by 

testing them on relative edition datasets: in the 2017 edition, the solutions adopted are equally 

distributed between deep learning and hand-crafted algorithms, while in 2019, almost all detectors 

are based on deep learning approaches. Subsequently, for each dataset, we adopted the following 

experimental protocol:  

1. We computed the liveness score and match score (using the standard Bozorth3 matcher); 

2. We computed the individual ROC curves for both PAD and verification system; 

3. We estimated the theoretical ROC curve of the sequential integrated system by applying Eqs. 

4.15. In our architecture, the liveness module precedes the matcher. 

4. We computed the performance of the system separately, without the help of Eqs. 4.15. In other 

words, we computed the experimental ROC curves according to the standard design approach. 

We summarized the results by two possible operational points: a stringent one, where only 1% of 

presentation attacks can be misclassified, and a relaxed one, where 1% of live samples is incorrectly 

rejected. Therefore, 𝐴𝑃𝐶𝐸𝑅(𝑠𝐹
∗)  =  0.01 in the first case, and 𝐵𝑃𝐶𝐸𝑅(𝑠𝐹

∗) =  0.01 in the second 

one. Of course, all operational points could be investigated. Let us say that the selected ones represent 

two case-studies quite extreme: in the first case, we may think to a context where it is necessary to 

assure that very few attacks can be tolerated, due to security constraints; the second case is typical to 

a service open to a large number of users where it is supposed that a few of attacks are performed 

over time and it is much more important that no users are “blocked” by the PAD module. 

 

4.3.3 Validation 

The following experimental analysis points out the model’s reliability in predicting a real sequential 

system. As mentioned in the previous Section, we investigated over eighty PADs from LivDet 2017 

and 2019, computing the absolute difference between significant indexes (FMR, GAR and IAPMR) 

estimated by Eqs. 4.15 and those obtained through the standard design approach at the selected 

operational points. For the sake of space, we then extrapolated a set of statistical parameters from the 

results to show the estimation error, expressed in percentage points, introduced by our model. Since 

we were not interested in emphasizing the performance differences over the sensors or in assessing 

the best PAD, we evaluated a global estimate error by computing the average of each acceptance rate 

over all PADs. We report the mean and standard deviation of such errors in Table 4.4. 
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Table 4.4: LivDet 2017 and 2019 datasets: Mean and standard deviation of the absolute difference of FMR, GAR, and IAPMR 

between a standard and an estimated scenario for the two investigated operational points. Reported values are not fractional. 

  LivDet 2017 LivDet 2019  

 

𝐴𝑃𝐶𝐸𝑅01 

𝐹𝑀𝑅 0.0265 ± 0.023 0.0206 ± 0.023  

 𝐺𝐴𝑅 0.9376 ± 0.388 0.2911 ± 0.265  

 𝐼𝐴𝑃𝑀𝑅 0.0254 ± 0.021 0.0475 ± 0.136  

 

𝐵𝑃𝐶𝐸𝑅01 

𝐹𝑀𝑅 0.0094 ± 0.011 0.006 ± 0.008  

 𝐺𝐴𝑅 0.1532 ± 0.046 0.1330 ± 0.092  

 𝐼𝐴𝑃𝑀𝑅 0.1910 ± 0.150 0.0855 ± 0.133  

 

To better visualize these results, we summarized them with the help of box plots. Figure 4.6 reports 

the analysis conducted when the PAD is working at the 𝐴𝑃𝐶𝐸𝑅 = 1% (𝐴𝑃𝐶𝐸𝑅01 hereinafter). 

Firstly, we notice that the two LivDet datasets are similar in terms of error distribution. In both cases, 

FMR and IAPMR distributions are characterized by a lower variability with respect to the genuine 

acceptance rate (GAR) one. We can appreciate this graphically since the interquartile range (IQR) of 

GAR distribution, that is the difference between the third quartile (Q3) and the first one (Q1) (i.e. the 

total box length), is relatively more extensive than that of SFAR and FAR distributions. This is more 

marked in the 2019 edition, whose distributions also present a positive skew, namely most of the 

observations are concentrated on the low end of the scale. Another point to highlight is the presence 

of outliers. By definition, if a value is outside of the Q3 + 1.5 · IQR or the Q1 − 1.5 · IQR range, that 

value will be considered an outlier. There are many strategies for dealing with outliers in data, 

depending on the application and dataset. Fig. 4.6 shows outliers only on SFAR error distribution and 

analyzing their value, we can state that they have no statistical significance for the purposes of our 

investigation. 

On the other hand, when a very relaxed liveness threshold is set (𝐵𝑃𝐶𝐸𝑅 = 1%, referred to as 

𝐵𝑃𝐶𝐸𝑅01 from now on), the IAMPR estimation error undergoes substantial growth, while GAR and 

FMR distributions’ decrease (Figure 4.7). In this case, we do not identify particular skewness in the 

distributions; therefore, the probability of getting estimation errors is higher than in the previous 

instance. Nevertheless, the maximum range is smaller since the largest non-outlier for both editions 

is relatively lower. This was partly expected since the integrated system performances with a tolerant 

PAD threshold are pretty similar to those of the verification system alone. Unlike the previous case, 

outliers also occur in the FMR and GAR error distributions, even though they do not pose a significant 

danger to the goodness of fit. 
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In summary, the outcomes of this study indicate that the predicted performances are similar to the 

experimental data. The most significant error value of this data collection was generated by a 2017 

liveness detector in the GAR distribution at the FPR01 operating point, and is around 1.88. In other 

words, the largest difference between our model and the actual curve is, on average, less than 2%. 

We may thus infer that our model simulates the sequential combination of a presentation assault 

detector and a fingerprint verification system with an acceptable level of accuracy. 

 

 

 

 

  

Figure 4.6: Box plots of the absolute difference of FMR, GAR, and IAPMR between a standard and an estimated scenario 

for the 𝐴𝑃𝐶𝐸𝑅01 operational point in LivDet 2017 and 2019. 

  

Figure 4.7: Box plots of the absolute difference of FMR, GAR, and IAPMR between a standard and an estimated scenario 

for the 𝐵𝑃𝐶𝐸𝑅01 operational point in LivDet 2017 and 2019. 
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4.3.4 Simulations: are we ready for integration? 

 

Once the experimental analysis confirmed the reliability of our simulator in predicting the integrated 

system performances, we were able to focus on verifying the effect caused by embedding state-of-

the-art PAD modules into a state-of-the-art fingerprint verification one. 

Section 4.2.3 defines the GFMR index (Eq. 4.18) as a weighted sum of FMR and IAPMR through 

the term w. Thanks to this term, which represents the PA probability, it is possible to evaluate the 

system's response to several scenarios, with and without liveness detection embedded. To this 

purpose, we performed various experiments and plotted the Global ROC curves (GROC, 𝐺𝐹𝑀𝑅 vs 

𝐺𝐴𝑅) when 𝑤 =  [0.00, 0.75]. Choosing such a large, though unlikely, range allows us not only to 

test different security scenarios but also to show PADs' behavior in the worst possible case.  

In this evaluation, we offer two sets of plots: in the first one, we compare the integrated with the 

corresponding individual system equipped with the standard matcher Bozorth3; in the other, the 

comparison is carried out by adopting the top-level matcher Verifinger 12. PAD side, we analyze all 

the algorithms submitted to LivDet 2017 and 2019 competitions. Nevertheless, for the sake of space, 

we propose only the results of the winning algorithm submitted to LivDet 2019 edition, i.e., the 

algorithm named "PADUnkFv" [53], since its behavior is representative of the majority of the 

presented algorithms. Moreover, to set cross-dataset and cross-material experiments, we tested all the 

datasets collected in that edition and the previous one. 

This analysis led to the identification of two critical scenarios in which the integration significantly 

degrades the overall performance of personal verification: one involving the acquisition sensor and 

the other involving the PAI material. In the next Sections, we will analyse in detail such scenarios 

and propose effective solution to handle them. 

 

4.3.4.1 Sensor dependent analysis 
 

In this section, we compare the performance of the two integrated systems with that of the verification 

system alone for the LivDet 2019 datasets. The presented ROCs offer a clear overview of the impact 

of PAD in the two extreme cases investigated in this work. For instance, when the system is adjusted 

to the 𝐴𝑃𝐶𝐸𝑅01 operational point, it is evident that the integration usefulness depends entirely on the 

probability of attack 𝑤. The 𝐺𝐴𝑅 loss introduced by embedding the PAD is significant (especially 

for the DigitalPersona sensor, Fig. 4.10a-c) and must be justified by high-risk situations of 
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presentation attacks, where the probability of PA is very high (𝑤 > 0.5). Setting such a crucial 

working point in a relatively low-risk context becomes no longer convenient, given the drop in 𝐺𝐴𝑅. 

As pointed out by Eqs. 4.16, such loss is intrinsic to this kind of fusion and depends on the goodness 

of the liveness module. Suppose the number of rejected genuine users proves to be outside the design 

constraints. In that case, the PAD could be avoided or used as a sort of" warning" information during 

the system's operations. Otherwise, the threshold could be relaxed to obtain a better performance on 

genuine users but misclassifying more fake fingerprints. This is significant evidence: wherever the 

meta-designer chooses to operate in a very conservative operational point, he/she can decide to act in 

advance on the system parameters to improve the performance. 

In fact, when genuine acceptance is the first care (𝐵𝑃𝐶𝐸𝑅01 operational point), the performances are 

much more balanced. The integrated system does not exhibit a notable 𝐴𝑃𝐶𝐸𝑅 value increase by 

strongly reducing the 𝐼𝐴𝑃𝑀𝑅 as 𝑤 rises. 

In general, the common aspects highlighted by Figures 4.8-4.10 are mainly two:  

1. A system with an embedded PAD is more robust to w variations than a simple matcher. 

Graphically, we can notice that the curves' dispersion is nearly null, especially when the 

precautionary threshold is set (𝐴𝑃𝐶𝐸𝑅01 ). In other words, the performance does not decay if 

w increases, as is the individual case. This means that the PAD is working correctly and 

blocking attack attempts from fingerprint forgers.  

2. Although Verifinger 12 is a top-level fingerprint verification algorithm, compared with 

Bozorth3, the absence of substantial performance differences when considering their 

integration with the PAD suggests that this is the leading "actor" to the global system's 

effectiveness. We will thoroughly investigate this aspect in Section 4.3.4.3.  

A peculiar aspect, instead, is represented by the integrated system working on the Digital Persona 

sensor. Figure 4.10{a-c} shows the PAD performance, achieved at 𝐴𝑃𝐶𝐸𝑅01 operational point. 

We immediately notice that the performance drop is considerably higher if compared to the other 

competition sensors. We can assume that this behavior is due to the acquisition surface. It is 

significantly reduced compared to the GreenBit sensor, as reported in Table 4.1 (the Orcanthus sensor 

has a different acquisition technology). This may represent an obstacle in capturing the defects that 

may appear in the fake fingerprint edge, and that could facilitate PA detection. To support this thesis, 

we report the average attack presentation classification error rate computed on all LivDet 2019 

algorithms (Figure 4.11): the shape of the 𝐴𝑃𝐶𝐸𝑅 curve is more relaxed in the case of the 

DigitalPersona sensor, which means that the percentage of false positives (i.e., the fake fingerprints 
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classified as alive) is greater under the same threshold. For this reason, the 𝐴𝑃𝐶𝐸𝑅01 operational point 

corresponds to a value of the liveness threshold such as to lead to misclassification of a significant 

number of live fingerprints.  

The role of our simulator is fundamental in this case: If a designer becomes aware of this evidence, 

he can avoid using this sensor or set another operating point if this scenario does not meet the security 

constraints of the targeted application. When the PAD is working at 𝐵𝑃𝐶𝐸𝑅01 operational point (Fig. 

4.11{b,d}), the integrated system performance improves and gains a fair degree of robustness as the 

probability of attack increases. As we pointed out in the previous section, the operational points at 

which both systems operate profoundly impact the final performance since we have the individual 

error/detection rate product. 

  

(a) (b) 

  

(c) (d) 

Figure 4.8: GreenBit dataset from LivDet 2019. Comparison between GROCs for an integrated (solid line) and individual (dashed 
line) matching system equipped with Bozorth3 (a,b) and Verifinger 12 (c,d), varying the presentation attacks probability w. 

Both operational points are reported for each matcher. 
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(a) (b) 

  

(c) (d) 

Figure 4.9: Orcanthus dataset from LivDet 2019. Comparison between GROCs for an integrated (solid line) and individual (dashed 
line) matching system equipped with Bozorth3 (a,b) and Verifinger 12 (c,d), varying the presentation attacks probability w. 

Both operational points are reported for each matcher. 
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(a) (b) 

  
(c) (d) 

Figure 4.10: DigitalPersona dataset from LivDet 2019. Comparison between GROCs for an integrated (solid line) and individual 

(dashed line) matching system equipped with Bozorth3 (a,b) and Verifinger 12 (c,d), varying the presentation attacks probability 

w. Both operational points are reported for each matcher. 

 
Figure 4.11: Average Attack Presentation Classification Error Rate (APCER) compared in the three sensors of the LivDet 2019 

edition. A slow decay trend characterizes the case of the DigitalPersona dataset if compared to the other sensors. 



41 

 

4.3.4.2 Material dependent analysis 
 

In this investigation, we considered the integrated systems obtained with the LivDet 2017 datasets. 

The three test sets of LivDet2017, as reported in Tables 4.2 and 4.3, differ in both the fingerprints 

number and composition from those of the 2019 edition. However, the training set is the same 

regarding the GreenBit and Orcanthus sensors. This lets us figure out which types of materials are 

best or worst for a specific type of detector. It is commonly acknowledged that the liveness detector 

reacts differently depending on the spoof material [2, 10]. What kind of effects does this have on the 

whole system? How do the GAR and GFMR vary? If the PAD behavior is inconsistent with all 

materials, then an attack with a particular material may completely change the design expectations. 

It is important to remember that this research aims not to determine which system has the highest 

performance but to highlight the information that a designer might use during the preliminary stages 

of a project. Bio-WISE can effectively demonstrate their influence on the system where sensitive 

materials exist. 

Similar to the previous section, we evaluated the LivDet 2019 winner on the LivDet 2017 datasets. 

When the liveness threshold is set to 𝐴𝑃𝐶𝐸𝑅 =  1% value, we observed a substantial decrease in 

classification accuracy compared to the corresponding 2019 datasets (Fig. 4.12{a,c} and 4.13a,c}). 

Since we are examining the same acquisition sensors, in this case, we can only attribute this behavior 

to the different materials utilized in the two competitions. 

Therefore, we conducted further analyses at the classification level for each material. Figure 4.14 

illustrates the distinction between the two above cases: LivDet2017's gelatin-made spoofs are 

erroneously classified as alive fingerprints in a percentage higher than other materials. This means 

that gelatin can reproduce the natural fingerprint's characteristics so well that it can fool the detector 

more frequently than any other material in the two datasets. 

In addition, the percentage difference between the two indices associated with common materials ("L. 

Ecoflex" and "Latex") is significantly lower than that between "Mix" and "Gelatine." If a more 

relaxed threshold is chosen, such as 𝐵𝑃𝐶𝐸𝑅 =  1%, the performance of the integrated system tends 

to improve, especially as w grows. Therefore, the presentation attacks detector must be studied 

concerning critical materials before being selected. In summary, we can say that there are still 

unresolved questions about some materials since the best LivDet2019 detector cannot reach a 

satisfactory performance on them. This holds for gelatin, one of the most widely accessible and 

inexpensive materials. 
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(a) (b) 

  
(c) (d) 

Figure 4.12: GreenBit dataset from LivDet 2017. Comparison between GROCs for an integrated (solid line) and individual 

(dashed line) matching system equipped with Bozorth3 (a,b) and Verifinger 12 (c,d), varying the presentation attacks probability 

w. Both operational points are reported for each matcher. 
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(a) (b) 

  
(c) (d) 

Figure 4.13: Orcanthus dataset from LivDet 2017. Comparison between GROCs for an integrated (solid line) and individual 

(dashed line) matching system equipped with Bozorth3 (a,b) and Verifinger 12 (c,d), varying the presentation attacks probability 

w. 

Both operational points are reported for each matcher. 

 

 
Figure 4.14: Average APCER compared for the GreenBit sensor of LivDet 2017 and 2019. 
The "Gelatin" material used in LivDet 2017 originates fake fingerprints harder to classify. 
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4.3.4.3 PAD dependent analysis 
 

A last investigation is proposed to corroborate the hypothesis about the PAD weight in the integrated 

system's efficiency. The graphs reported so far suggest that the crucial phase during the design phase 

lies in the liveness detector's choice.  

To corroborate this assumption explicitly, we present experimental results attesting to the behavior 

of two distinct PADs. In particular, we compared the 2019 LivDet winner with the runner-up, the 

"JLW LivDet" algorithm. In Table 4.5, we highlight the primary differences between these two 

algorithms by providing their results in terms of 𝐵𝑃𝐶𝐸𝑅@1%𝐴𝑃𝐶𝐸𝑅 and 𝐴𝑃𝐶𝐸𝑅@1%𝐵𝑃𝐶𝐸𝑅 on 

all datasets from the 2019 edition of LivDet. We evaluated both algorithms using the most challenging 

sensor in the competition, the DigitalPersona. However, our conclusions apply to all evaluated 

datasets. Similar to the previous experiments, we report the results obtained by varying both the PAD 

operational point (BPCER01 or APCER01) and the matcher (Bozorth3 or Verifinger 12).  

Figure 4.15 shows the outcome of the comparison. For each plot, we depict two attack scenarios: one 

with a moderately low risk (𝑤 =  0.25) and one with a severe risk (𝑤 =  0.75).  As can be seen, 

they confirm the thesis expressed up to now. Since the variations between graphs 16a, c and 16b, d 

are similar, the degradation in overall system performance is due to the different PAD types and is 

independent of the matcher. This effect is enhanced as the liveness threshold becomes more 

restrictive.   

To be fair, investigated matchers are all minutiae-based. Based on the scientific and technological 

SOTA, this technology is the most reliable and mature. We cannot say whether different results may 

be achieved using different matchers based on other features (textural, filters). Examining the impact 

of the integrated system of deep learning-based matchers rather than minutiae-based is complex and 

out of the scope of this paper. An additional support of our findings is that PAD systems are based 

mainly on the training-by-example approach, the accuracy of which depends on several factors, such 

as the training set representativeness, avoiding overfitting, etc. As a matter of fact, these systems are 

greatly influenced by the input pattern, which may exhibit significant differences concerning those 

adopted for training (never-seen-before attacks) and generate very unexpected responses. Therefore, 

the related performances are generally less robust than matchers, where representativeness is strictly 

defined in terms of the unicity of the subject’s fingerprint. 
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Table 4.5: LivDet 2019 dataset. Comparison of BPCER@1%BPCER and APCER@1%BPCER 
 for the two most accurate liveness detectors of the LivDet 2019 competition. 

 GreenBit DigitalPersona Orcanthus 

Name Type 
BPCER@1% 

APCER 

APCER@1% 

BPCER 

BPCER@1% 

APCER 

APCER@1% 

BPCER 

BPCER@1% 

APCER 

APCER@1% 

BPCER 

PADUnkFv 
Deep 

learning 
5.00% 14.22% 14.03% 40.95% 5.96% 5.88% 

JLW_LivDet 
Hand-

crafted 
0.39% 0.33% 26.67% 55.60% 3.23% 5.51% 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.15: DigitalPersona dataset from LivDet 2019. GROC comparison between the top two LivDet 2019 winners, embedded 
with Bozorth3 (a,b) and Verifinger 12 (c,d) matching system, when the presentation attacks probability w ∈ {0.25, 0.75}. Both 

operational points are reported for each matcher. . 
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4.3.4.4 Application tips: the Global EER analysis 
 

In the previous Sections, we showed how the Bio-WISE output, namely, the integrated system’s 

metrics, allowed us qualitatively compare several PAD and matchers. In order to make a choice, the 

meta-designer must consider several possible probabilities of the occurrence of a presentation attack. 

Nevertheless, the correct ratio of presentation attacks and impostors in the negative class union can 

sometimes be unknown at design time. Therefore it may be challenging to evaluate which is the most 

suitable solution for a given application. To give a more practical instrument in deciding 

quantitatively which operational points the given embedding is worthy of being implemented or not, 

we considered a well-established criterion: the Equal Error Rate (EER). Since we introduced the 

GFMR metric, we can simplify the pseudo-ternary classification problem of integrated system so that 

it suits the binary nature of the verification systems, and therefore define the so-called Global-EER 

as follows:  

𝐺𝐸𝐸𝑅(𝜏∗)  =  
(𝐺𝐹𝑀𝑅(𝜏∗)  +  (1 −  𝐺𝐴𝑅(𝜏∗))) 

2
 (4.19) 

 

where 𝜏∗ is the optimal threshold which ensures the minor difference between the GFMR and the 

complementary of the GAR.  

By plotting the GEER at different values and the EER of the verification system alone, we obtain a 

very informative graph where the point at which the PAD begins to improve the performance of the 

integrated system can be individuated effortlessly. For instance, let us consider the GEER of the usual 

integrated system working at 𝐴𝑃𝐶𝐸𝑅01 and 𝐵𝑃𝐶𝐸𝑅01 operational points, for all LivDet 2019 datasets 

and matchers examined (Figure 4.16). We immediately notice that one or both the GEER curves 

(solid lines) can intersect the EER one (dashed line) at a precise point, the so-called 𝐺𝐸𝐸𝑅∗. If we 

now consider 𝑤∗, the value of w corresponding to the 𝐺𝐸𝐸𝑅∗ point, and �̂� the probability of attack 

estimated a priori for a specific application, and the following condition occurs:  

𝑤∗ ≤ �̂� (4.20) 

then the designer’s choice will fall on the integrated system. In other words, the 𝐺𝐸𝐸𝑅∗ value can be 

exploited as a parameter for choosing the best solution between the two approaches. Accordingly, the 

designer now has a concrete and appropriate instrument to investigate the feasibility of such 

integration quantitatively. For example, if we consider the GreenBit sensor, with Verifinger 12 

equipped and the PAD working at the 𝐴𝑃𝐶𝐸𝑅01 (Fig. 4.16b), the 𝑤∗ value corresponding to the 

intersection point of the GEER and EER curves is approximately equal to 0.20. Therefore, if the 
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estimated attack probability should prove to be lower, the PAD can be turned off/replaced or its 

operational point changed. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.16: LivDet 2019 datasets: GEER trend when the presentation attacks probability w ∈ [0.00, 0.30]. Both matchers are 

reported: Bozorth3 (left column) and Verifinger 12 (right column). The intersection point of the integrated system curves (solid 

orange and blue) with the individual system one (dashed yellow) is called GEER∗ . The employed PAD is the "PADUnkFv" 

algorithm. 
 



48 

 

4.4 Discussion 
 

Based on our experience gained thanks to the organization of the International Fingerprint Liveness 

Detection Competition (LivDet) [4], which allows us to make the point about the current performance 

of presentation attacks detectors, the present work was aimed to make a step ahead, by investigating 

the integration of PAD and verification system jointly. As a matter of fact, the design of such a system 

(in general, any biometric verification system) cannot ignore the vulnerability to presentation attacks. 

In other words, the ability to detect presentation attacks must be integrated into the fingerprint 

verification system from its first design steps. However, the literature lacked an effective instrument 

to evaluate the impact of such embedding. 

To solve this issue, we developed a model able to predict the performance of the sequential 

combination of a presentation attacks detector and a fingerprint verification system. Worth remarking, 

the sequential fusion is one among several possibilities, but it is also the simplest and widespread one. 

Reported experiments on the LivDet 2017-2019 datasets showed the validity of the proposed model. 

This allows to appreciate directly the connection between the current PAD performance and matching 

system. From our investigation, we derived the following guidelines for the designer: 

• The w parameter gives a precise picture of the integrated system's performance from the point 

of view of the probability of a spoofing attack compared to zero-effort attacks. As a result, the 

designer may adjust w's value at different points to evaluate several security situations. 

Through the GEER parameter, a critical value of w can be found in which the performance of 

the integrated system begins to improve concerning that of the verification system alone. If it 

is out of design constraints, the PAD can be replaced or turned off. 

• Setting the operational point of the PAD (parameter in Figure 4.1) allows for observing how 

the system rates (GAR, FMR and IAPMR) vary. If a too-high GAR loss is registered, the 

liveness threshold can be relaxed until obtaining a satisfactory result in terms of attacks 

rejected and genuine accepted. 

• By comparing the ROCs of different available systems, Bio-WISE allows for assessing worst-

case and best-case scenarios and setting the most suitable PAD accordingly. Our experiments 

found critical issues with gelatin-like materials and small surface-based sensors (Sections 

4.3.4.1 – 4.3.4.2). 
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On the other hand, the following limitations were pointed out:  

• Estimations of the individual ROCs, namely, that of fingerprint presentation attacks detector 

and verification system, must be accurate if we are interested in the explicit prediction of the 

fusion performance. This is necessary to reduce the discrepancies between expected and actual 

performance values.  

• The proposed model works only for the sequential combination of PAD and verification 

systems. Other approaches, like the score-level fusion-based ones, need a specific model. To 

confirm this, we checked the consistency of the simulator in predicting the performance of 

integrated system algorithms proposed in LivDet2019, which were not based on sequential 

fusion. Unfortunately, the obtained estimation error did not allow a reliable adoption of the 

model. As was expected mainly, this simulator has no general application. 

Despite the limitations above, it should be remarked that the prediction of the error rates can be done 

a priori, that is, before implementing the system on overall. This property can be used, for example, 

in the meta-design process. Given two possible individual ROC curves, Bio-WISE simulates the 

performance achievable by their sequential fusion. Showing that the possible performance of the 

system is around an acceptable range could be enough during the meta-design process. This may lead 

to a specific performance-oriented approach to the design of an intrinsically secure fingerprint 

verification system. 
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5. Bio-WISE upgrade: the trade-off  
 

The evaluations carried out so far highlight that the most evident problem of integrating fingerprint 

PAD and verification system is the loss of genuine acceptance rate (GAR). We presented several 

insights for the designer to take full advantage of our simulator. There is, nevertheless, a limit. Using 

the current version of BIO-WISE, it is difficult to appreciate for which PAD's operational points the 

overall GAR degradation can be still acceptable, with the advantage of handling presentation attacks. 

The key question is: how much GAR loss can we accept, having at the same time the ability to detect 

PAs? A novel instrument is needed to answer appropriately, especially considering PADs with 

different characteristics.  

In this Section, we introduce a formal definition of “trade-off”, a term that is used when referring to 

“a balancing of factors all of which are not attainable at the same time”8. We carried out a new set of 

simulations using LivDet 2017 and 2019 data sets, specifically oriented to derive, from the proposed 

formulation of trade-off, the extent to which the PAD can be integrated without significantly 

degrading the whole performance, and accordingly, draw the main guidelines for this purpose. 

 

5.1 Performance “trade-off”: a formal definition 
 

Eqs. 4.15  are not sufficiently expressive for evaluating whether the loss of accepted genuines 

introduced by the PAD embedding can be kept within a given tolerance range. For this purpose, we 

introduce a novel parameter, called trade-off, defined as the ratio between the fraction of attackers 

and genuines accepted for a given match threshold value 𝑠𝑀
∗ . Since the attackers can be classified into 

two groups, impostors (zero-effort) and presentation attacks, we have two trade-off values: 

𝑇𝑍𝐸
𝑀  =  

𝐹𝑀𝑅(𝑀)

𝐺𝐴𝑅(𝑀)
 (5.1) 

𝑇𝑃𝐴
𝑀  =  

𝐼𝐴𝑃𝑀𝑅(𝑀)

𝐺𝐴𝑅(𝑀)
 (5.2) 

 

Where the abbreviations ZE and PA stand respectively for "zero-effort" and "presentation attack". As 

it can be easily verified, the formal definition above quantifies the "balance" expressed in the 

definition above. Thus it is reasonable to refer to Eqs. 5.1-5.2 as representatives of the term "trade-

 
8 https://www.merriam-webster.com/dictionary/trade-off 
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off" when a matcher must deal with genuine users and attacks "at the same time". Due to the 

cumulative nature of the error curves and since 𝐼𝐴𝑃𝑀𝑅 ≥  𝐹𝑀𝑅, the relation 𝑇𝑍𝐸 ≤ 𝑇𝑃𝐴 is always 

valid, whatever the matcher threshold value found. 

Additionally, these metrics can be successfully employed to assess the worst-case performance 

scenarios without using a PAD, as, by definition, the verification system is unable to counter a 

presentation attack. Since we are interested in evaluating the improvement achievable by a sequential 

integrated system, we may express the relative trade-off values by recalling Eqs. 4.15: 

 

𝑇𝑍𝐸
𝑆  =  

𝐹𝑀𝑅𝑆𝑒𝑞

𝐺𝐴𝑅𝑆𝑒𝑞
=

𝐹𝑀𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹))

𝐺𝐴𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹)) 
= 𝑇𝑍𝐸

𝑀
 (5.3) 

𝑇𝑃𝐴
𝑆  =  

𝐼𝐴𝑃𝑀𝑅𝑆𝑒𝑞

𝐺𝐴𝑅𝑆𝑒𝑞
=

𝐼𝐴𝑃𝑀𝑅(𝑀) ∙ 𝐴𝑃𝐶𝐸𝑅(𝐹)

𝐺𝐴𝑅(𝑀) ∙ (1 − 𝐵𝑃𝐶𝐸𝑅(𝐹)) 
= 𝑇𝑃𝐴

𝑀 ∙ 𝜏𝐹 (5.4) 

 

From these formulations, we can mainly highlight the following aspects: 

• The trade-off values relating to zero-effort attacks are independent of the liveness threshold. 

In other words, the original relationship between 𝐹𝑀𝑅 and 𝐺𝐴𝑅 cannot be changed by any 

PAD. 

• The performance ratio, denoted as 𝜏𝐹, is always less than one since 𝐴𝑃𝐶𝐸𝑅(𝐹) ≤ 1 −

𝐵𝑃𝐶𝐸𝑅(𝐹) for any liveness threshold. 

• The PAD inclusion reduces the maximum error obtainable by the verification system alone, 

namely 𝑇𝑃𝐴
𝑀

 in proportion to the 𝜏𝐹 parameter. For the same liveness operating point, the more 

efficient the liveness detector is, the better the improvement will be. 

To further study the role of the trade-off in the systems embedding, we focus on determining 

whether an operational point of the liveness detector exists, such as to keep the loss of GAR within 

a specific tolerance margin.  

For this purpose, since 𝑇𝑃𝐴
𝑆

 varies according to the performance of the liveness detector, we must 

firstly set a reference operational point of the matcher within which the system, without the PAD, 

should work. This process will be detailed in the next Section. 

 

 



52 

 

5.1.2 A case study: the Equal Error Rate (EER) 
 

We report here an example of a case study obtained by selecting, for the sake of simplicity, the Equal 

Error Rate (EER), which can be considered the matcher operational point par excellence. However, 

our findings can be extended to any other operational point. In this instance, the Eqs. 5.1-5.2 assume 

the following constant values: 

 

𝑇𝑍𝐸
𝐸𝐸𝑅  =  

𝐸𝐸𝑅

1 − 𝐸𝐸𝑅
 (5.5) 

𝑇𝑃𝐴
𝐸𝐸𝑅  =  

𝐸𝐸𝑅 + ∆

1 − 𝐸𝐸𝑅
= 𝑇𝑍𝐸

𝐸𝐸𝑅
∙ (1 +

∆

𝐸𝐸𝑅
) = 𝑇𝑍𝐸

𝐸𝐸𝑅
∙ (1 + ∆𝐸𝐸𝑅) (5.6) 

 

Where the term ∆𝐸𝐸𝑅 in Eq. 5.6 expresses the fraction deviation (also representable in percentage) 

from the reference trade-off  𝑇𝑍𝐸
𝐸𝐸𝑅and depends on the relative performance difference ∆ between the 

percentage of impostors (𝐹𝑀𝑅) and presentation attacks accepted (𝐼𝐴𝑃𝑀𝑅) at the EER. It is worth 

remarking that these quantities are known from the ROC of the verification system. Similarly, we can 

easily define from Eq. 5.4 the trade-off for presentation attacks relating to the serial system, as it is 

the only one subject to the PAD influence: 

𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅  = 𝑇𝑃𝐴

𝐸𝐸𝑅 ∙ 𝜏𝐹 = 𝑇𝑍𝐸
𝐸𝐸𝑅 ∙ (1 + ∆𝐸𝐸𝑅) ∙ 𝜏𝐹 (5.7) 

 

In order to show how the trade-off values can be exploited to select the most appropriate PAD 

operating point, we provide in Figure 5.1 a toy example representing a possible trend of the trade-off 

curves defined by Eqs. 5.5-5.8 when plotted against the GAR of the sequential system. We remember 

that our model (Eqs. 4.15) may predict the integrated system’s indices without actually implementing 

it overall.  

First of all, we observe that the 𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅

 curve (blue line) is included within the operational points of 

𝑧𝑒𝑟𝑜 − 𝐴𝑃𝐶𝐸𝑅 of the PAD (𝜏𝐹 = 0) and the first liveness threshold value for which 𝜏𝐹= 1. At this 

point, the serial system equals the matcher’s performance in detecting spoofs, thus cancelling all PAD 

advantages. This means that, through this curve, we can precisely define the GAR loss associated 

with each operational point of the liveness detector. Among these, what is the working point that may 

guarantee the most appropriate balance? Ideally, the best possible compromise would allow keeping 

the performance of the integrated system stable on zero-effort and at the same time improve that 

relating to PAs.  
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Figure 5.1: Toy graph displaying the relationship between 𝑇𝑍𝐸
𝐸𝐸𝑅, 𝑇𝑃𝐴

𝐸𝐸𝑅 and  𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅  in an integrated system. 

 

In the graph, this point corresponds to the intersection of the 𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅

 curve with the 𝑇𝑍𝐸
𝐸𝐸𝑅

 straight line, 

in which the ratio between impostors/genuine is equivalent to the false/genuine one, namely the 

integrated system detects fakes with the same ”efficiency” with which the matching system alone 

blocks the impostors. As previously stated, this results in a GAR loss, which is proportional to the 

performance of the liveness detector. Accordingly, the tolerance margin, within which to accept the 

genuines’ loss to improve the fakes’ detection, can be defined as follows:  

𝜌 = 𝐺𝐴𝑅(𝐸𝐸𝑅) − 𝐺𝐴𝑅𝑎𝑑𝑚 (5.7) 

 

where 𝐺𝐴𝑅𝑎𝑑𝑚 is the minimum admissible 𝐺𝐴𝑅 of the integrated system, which is still compatible 

with the simulated scenario’s constraints. The higher it is, the greater is the tolerance. In this case, 𝜌 

indicates the maximum percentage deviation from the nominal 𝐺𝐴𝑅 value of the matcher at the EER. 

In our graphs, it is represented by the green area. Once the region has been delimited, we can derive 

the following guideline from Fig. 5.1: if the accepted GAR loss is on the left or coincident with the 

point at which the blue curve assumes the value 𝑇𝑍𝐸
𝐸𝐸𝑅

 , the most advisable decision is to set the 

working point for the PAD at that value, keeping the loss of GAR within the fixed range.  

On the other hand, it is possible to evaluate any intermediate point that generates a satisfactory 

advance compared to the verification system’s case. Whether such a point does not exist, the PAD 

under consideration does not fit the scenario’s constraints. Finally, the example also suggests that the 

trade-off on presentation attacks can be made even better than the 𝑇𝑍𝐸
𝐸𝐸𝑅

 value, but with significant 

attention to the fact that the 𝐺𝐴𝑅 of the sequential system degrades rapidly. Conversely, more fakes 

are accepted by increasing the percentage of genuine accepted relative to the intersection point. In 
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summary, once the matcher operational point has been set, our trade-off definition allows to 

accurately assess under which conditions a presentation attack detector can be integrated without 

significantly degrading the overall performance in terms of 𝐺𝐴𝑅. The following section shows how 

to apply the outlined guidelines to a real-case study. 

 

5.2 Experimental analysis 

5.2.1 Datasets and protocol 

The proposed experimental analysis was performed on LivDet 2017, and LivDet 2019 datasets [4]. 

We analyze all the algorithms submitted to both competitions. Nevertheless, for the sake of space, 

we report only the results obtained by the top-two winners of LivDet 2019 on the datasets of the same 

competition (Table 4.1), since their behaviour allows us to summarize that of the other algorithms 

and cover diverse simulation scenarios. Then, for each dataset, we proceeded as follows: (1) We 

computed the liveness scores using the two winning algorithms submitted to the LivDet 2019 

competition, namely ”PADUnkFv” and ”JLW LivDet”. Both PADs can be considered amongst the 

best at the state of the art; (2) We computed the match score using the standard NIST Bozorth3 and 

the top-level VeriFinger 12 matcher. (3) We derived individual acceptance rates for the matching 

system, namely 𝐺𝐴𝑅, 𝐹𝑀𝑅 and 𝐼𝐴𝑃𝑀𝑅, and the error rates for the liveness detector, that is, 𝐵𝑃𝐶𝐸𝑅 

and 𝐴𝑃𝐶𝐸𝑅, and subsequently, we applied Eqs. 4.15 for computing the acceptance rates of the 

integrated system. (4) We computed the trade-off values by setting the operating point of the matcher 

at EER (Eqs. 5.5-5.7). (5) We applied the rules defined in Section 5.1 to define the tolerance margin 

and consequently set the best trade-off among error rates. This analysis demonstrated that our novel 

instrument may be employed not only in the meta-design process to determine the optimum PAD 

operating point, but also as a comparator of current PAD technology when applied to a specific 

matcher and sensor combination. 

5.2.2 Results 

In order to guarantee a correct evaluation of the data and graphs, we first report in Table 5.1 the values 

of 𝑇𝑍𝐸 , 𝑇𝑃𝐴 and 𝐺𝐴𝑅 calculated at the EER working point of the matcher for the analyzed sensors. 

The significant difference between the two trade-off values of zero-effort and presentation attaks 

testify the danger of spoofing if not correctly contrasted. This is particularly apparent for the 

Verifinger 12 matcher, which although it provides a benefit to zero-effort attacks detection, presents 

a much higher 𝑇𝑃𝐴
𝐸𝐸𝑅 than Bozorth3 and consequently, it is more vulnerable to presentation attacks. 
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Therefore, it is necessary to integrate a PAD with the verification system and evaluate the impact on 

the overall performance to mitigate such risk. Let us consider, for instance, the GreenBit sensor 

equipped with the matcher VeriFinger and the best detector of LivDet 2019, namely “PADUnkFv” 

(Figure 5.2a). The last value indicated in the x-axis corresponds to the 𝐺𝐴𝑅 value at the EER. The 

acceptance area is obtained by setting 𝜌 =  10%. To evaluate the PAD’s effectiveness in detecting 

spoofs, the 𝑇𝑃𝐴
𝑆

 (yellow curve) curve should be observed. We note that this curve crosses the straight 

line 𝑇𝑍𝐸 ,   for a value of 𝐺𝐴𝑅 ≃  92%. It means that to bring the liveness detection rate (trade-off on 

PAs) to the same level of the verification system’s accuracy on impostors (trade-off on zero-effort 

attacks), we should accept a loss of 𝐺𝐴𝑅 of approximately eight per cent. The crossing point is located 

within the green area of tolerance, therefore this could be a case of a feasible integrated system, as it 

can block presentation attacks with high efficiency, keeping the associated 𝐺𝐴𝑅 loss within the 

performance constraints.  

Another example of a suitable embedded system is depicted in Figure 5.2c, obtained by applying the 

same configuration of PAD/matcher to the Orcanthus sensor. However, it is important to point out 

that the intersection point is only a possible choice. As a matter of fact, our simulator allows to clearly 

view the integrated system’s behaviour for each PAD operational point and, accordingly, choose the 

one that best suits the final application context. In both cases (Fig. 5.2{a,c}), the 𝑇𝑃𝐴
𝑆

 curve decreases 

rapidly at first and then more slowly until it crosses the 𝑇𝑍𝐸 line; therefore, we could select an 

intermediate point shortly before the gradient becomes too small, achieving a good compromise 

between rejected PAs and 𝐺𝐴𝑅 loss. This also applies when the crossing point is not located within 

the green area. Figure 5.2b shows a case of this kind, related to the DigitalPersona sensor. Here, the 

high performance guaranteed by the matcher VeriFinger 12 (𝐸𝐸𝑅 <  1%) generates a not practicable 

trade-off point due to the high loss of accepted genuines (𝐺𝐴𝑅 ≃  83%). Nevertheless, the simulation 

shows us that it is still possible to consistently improve the detection of fakes of over 90 % than in 

the case of the recognition system alone, by choosing, for instance, the point corresponding to the 

maximum accepted loss value as the PAD’s threshold or any other value within the green area.  

Table 5.1: GAR and trade-off values (in percentage) at the EER operational point for Greenbit, DigitalPersona  

and Orcanthus sensors equipped with Bozorth3 and Verifinger 12 matchers. 

 
GreenBit DigitalPersona Orcanthus 

𝐺𝐴𝑅 𝑇𝑍𝐸 𝑇𝑃𝐴 𝐺𝐴𝑅 𝑇𝑍𝐸 𝑇𝑃𝐴 𝐺𝐴𝑅 𝑇𝑍𝐸 𝑇𝑃𝐴 

Bozorth3 98.77 1.13 69.43 94.73 4.66 58.48 95.30 5.93 52.79 

Verifinger12 99.68 0.37 98.92 99.10 0.78 97.49 99.20 0.64 92.72 
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(a) 

 

(b) 

 

(c) 

Figure 5.2:  𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅 trend for GreenBit (a), DigitalPersona (b) and Orcanthus (c) sensors 

equipped with Verifinger 12 matching system and ”PADUnkFv” liveness detector.  

The tolerance margin ρ (green area) is set to 10%. 
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Another advantage of our trade-off definition is the ability to compare several PADs simultaneously, 

study their behaviour and consequently choose the one that provides better performance. For this 

purpose, we show the comparison between the two PADs under examination when they are integrated 

with the Bozorth3 matcher on all the investigated sensors (Figure 5.3). This analysis shows three 

different scenarios, exemplified by each sensor: 

• Figure 5.3a: the 𝑃𝐴𝐷𝑈𝑛𝑘𝐹𝑉 algorithm (green curve) does not meet the required 

specifications since not only its intersection point is outside the acceptance area defined by 

the tolerance parameter (𝜌 =  2%) but also has lower accuracy under the same liveness 

threshold. On the other hand, the JLW LivDet algorithm (yellow curve) fits the GreenBit 

characteristics perfectly, achieving a trade-off on PAs comparable to the trade-off on ZE 

attacks with only 1% loss of 𝐺𝐴𝑅.  

• Figure 5.3b: in this case, the JLW LivDet algorithm (yellow curve) does not match the needed 

parameters. The tolerance area is defined setting 𝜌 =  5% and the PADUnkFV , albeilt 

borderline, respects the performance constraints.  

• Figure 5.3c shows instead a situation of equality among the two PADs since the two curves 

are nearly superimposed. Therefore, both could be valid choices in an application scenario. 

It is worth recalling that we focused only on the top-two winners algorithms of LivDet 2019, 

nevertheless, the proposed tool can be easily employed to compare several PAD and assess which 

solution is the most accurate for a given task or simply to evaluate the performance in terms of genuine 

loss. For this purpose, we present in Figure 5.4 a comparison of eight different PADs submitted to 

LivDet 2017 embedded with Bozorth3 on DigitalPersona sensor. For the sake of clarity, we did not 

draw the green area. However, we can immediately notice that the best PAD is the “PAD 7”, with a 

GAR loss of approximately two percent at the intersection point. This means that the integrated 

system can work at the EER operational point of the verification system by improving its spoof 

detection by over 35% with a relatively small cost. 
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(a) 

 

(b) 

 

(c) 

Figure 5.3: Comparison between  𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅 curves of the top two PADs of LivDet 2019 

integrated with Bozorth3 matcher on the GreenBit (a), DigitalPersona (b) and Orcanthus (c) 

sensor. The tolerance margin ρ (green area) is set to 2% (a) and 5% (b,c). 
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Figure 5.4: Comparison between 𝑇𝑃𝐴
𝑆,𝐸𝐸𝑅 of eight different PADs of LivDet 2017 integrated with Bozorth3 matcher on the 

DigitalPersona sensor. 
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6. Conclusions 
 

This paper’s contribution is the investigation of the probabilistic relationships of error rates when 

integrating a fingerprint verification system with a presentation attacks detector. Main question was 

if it is possible to simulate or predict the performance of a fingerprint verification system when 

sequentially integrated with a PAD. This question was raised by the fact that the liveness detection 

ability is explicitly required for current personal verification systems, but, on the other side, the 

performance of PADs does not seem to still fit the high performance requirements which allow to 

meet the constraints on FMR and GAR. More, was it possible to explicit the probabilistic relationships 

between acceptances and rejections for the two modules, in order to evaluate if and how they can be 

sequentially combined, at which operational points they can work? With the goal of answering to the 

above questions, this paper’s main finding is a theoretical model, named Bio-WISE, able to predict 

the overall system performance from the individual ROC curves of PAD and verification systems, 

thus simplifying the process of setting the best trade-off among error rates. The proposed model has 

shown to be reliable according to results obtained on the LivDet data sets. In our opinion, it can be 

considered as a starting point to approach the design of a fully integrated fingerprint verification from 

the point of view of the individual performances at hand.  

It is also possible to hypothesize appropriate ROCs and make simulations to assess if the fusion 

performance can be acceptable. The reported results suggest that integrating a PAD into a fingerprint 

verification system is suitable if the operating point is chosen carefully and the probability of an attack 

is small but non-zero. This is particularly evident in the GEER analysis shown in Figure 4.16.On the 

other hand, we pointed out some drawbacks which limit the potential of this model. For instance, due 

to the difficulty in providing the integrated system's evaluation on multiple operational points, only 

two PAD's operational points were set. In particular,  it was not possible to quantify the balance 

between the addition of PAD ability and the loss of accuracy on genuine users. Thus, we defined a 

new measurement, called “trade-off” to investigate every PAD working point. Our trade-off 

definition allowed to select the most appropriate PAD setting from a theoretical viewpoint. We 

showed the practical use of such achievement.  

To sum up, the literature previously lacked instruments such as BIO-WISE. This and the trade-off 

presented here can be considered a first pioneering step forward. However, other integration 

approaches are possible. With BIO-WISE, we wanted to introduce a novel pathway worthy to meet 

the research community's interest. 
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