649 research outputs found

    Bidirectional UWB Localization: A Review on an Elastic Positioning Scheme for GNSS-deprived Zones

    Full text link
    A bidirectional Ultra-Wideband (UWB) localization scheme is one of the three widely deployed design integration processes ordinarily destined for time-based UWB positioning systems. The key property of the bidirectional UWB localization is its ability to serve both the navigation and tracking assignments on-demand within a single localization scheme. Conventionally, the perspective of navigation and tracking in wireless localization systems is viewed distinctly as an individual system because different methodologies were required for the implementation process. The ability to flexibly or elastically combine two unique positioning perspectives (i.e., navigation and tracking) within a single scheme is a paradigm shift in the way location-based services are observed. Thus, this article addresses and pinpoints the potential of a bidirectional UWB localization scheme. Regarding this, the complete system model of the bidirectional UWB localization scheme was comprehensively described based on modular processes in this article. The demonstrative evaluation results based on two system integration processes as well as a SWOT (strengths, weaknesses, opportunities, and threats) analysis of the scheme were also discussed. Moreover, we argued that the presented bidirectional scheme can also be used as a prospective topology for the realization of precise location estimation processes in 5G/6G wireless mobile networks, as well as Wi-Fi fine-time measurement-based positioning systems in this article.Comment: 30 pages, 12 figure

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    Soft information for localization-of-things

    Get PDF
    Location awareness is vital for emerging Internetof- Things applications and opens a new era for Localizationof- Things. This paper first reviews the classical localization techniques based on single-value metrics, such as range and angle estimates, and on fixed measurement models, such as Gaussian distributions with mean equal to the true value of the metric. Then, it presents a new localization approach based on soft information (SI) extracted from intra- and inter-node measurements, as well as from contextual data. In particular, efficient techniques for learning and fusing different kinds of SI are described. Case studies are presented for two scenarios in which sensing measurements are based on: 1) noisy features and non-line-of-sight detector outputs and 2) IEEE 802.15.4a standard. The results show that SI-based localization is highly efficient, can significantly outperform classical techniques, and provides robustness to harsh propagation conditions.RYC-2016-1938

    A Non-Line-of-Sight Mitigation Method For Indoor Ultra-Wideband Localization With Multiple Walls

    Get PDF
    Ultra-wideband (UWB) ranging techniques can provide accurate distance measurement under line-of-sight (LOS) conditions. However, various walls and obstacles in indoor non-LOS (NLOS) environments, which obstruct the direct propagation of UWB signals, can generate significant ranging errors. Due to the complex through-wall UWB signal propagation, most conventional studies simplify the ranging error model by assuming that the incidence angle is zero or the relative permittivity\u27s for different walls are the same to improve the through-wall UWB localization performance. Considering walls are different in realistic settings, this article presents a through-multiple-wall NLOS mitigation method for UWB indoor positioning. First, spatial geometric equilibrium equations of UWB through-wall propagation and a numerical method are developed for the precise modeling of UWB through-wall ranging errors. Then, calculated error maps are determined numerically without field measurements. Finally, the determined error maps are combined with a gray wolf optimization algorithm for localization. The proposed method is evaluated via field experiments with four rooms, three walls, and six penetration cases. The results demonstrate that the method can strongly mitigate the multi-wall. NLOS effects on the performance of UWB positioning systems. This solution can reduce project costs and number of power supplies for UWB indoor positioning applications

    A Study of Environment Noise in Ultra-Wideband Indoor Position Tracking

    Get PDF
    This work is motivated by the problem of improving the accuracy of indoor ultra-wideband (UWB) position tracking through the study of the environment noise that affects such a system. Current systems can provide accuracy in the range of 30-100 cm in a small building, suitable for applications that require rough room-level precision such as asset tracking and surveillance. Our long-term goal is to improve the accuracy to 1 cm or better, expanding potential applications to telepresence, augmented reality, training and entertainment. This work investigates the possibility of systematically observing the measurement noise of an UWB position tracking system and building a map of it throughout a facility. In order to understand the effect of environment noise on UWB indoor positioning and in turn filter out the effects of this noise, it is important to have an idea of what this measurement noise looks like in a real world scenario. In this work, an understanding of the measurement noise is gained by taking many measurements using a commercially-available UWB positioning system installed in a real world scenario and analyzing these measurements in various ways. To the author\u27s knowledge, no one has used such an exhaustive approach to analyze measurement noise in UWB indoor positioning. The results of this work show that the measurement noise that affects a UWB indoor position tracking system can be effectively modeled using a weighted sum of Gaussians, is stable over time and is locally similar. Furthermore, a particle filter augmented with a measurement noise map is proposed to improve position tracking accuracy. Finally, a metric is proposed that can be used to quantify expected system performance based on sensor location, sensor orientation and facility floorplan. Using this metric, a procedure is developed to determine the parameters, i.e. sensor position, sensor orientation and potentially others, of the physical installation of the UWB tracking system that will produce minimum measurement error based on sensor geometry and physical facility constraints

    Detection of UWB ranging measurement quality for collaborative indoor positioning

    Get PDF
    Wireless communication signals have become popular alternatives for indoor positioning and navigation due to lack of navigation satellite signals in such environments. The signal characteristics determine the method used for positioning as well as the positioning accuracy. Ultra-wideband (UWB) signals, with a typical bandwidth of over 1 GHz, overcome multipath problems in complicated environments. Hence, potentially achieves centimetre-level ranging accuracy in open areas. However, signals can be disrupted when placed in environments with obstructions and cause large ranging errors. This paper proposes a ranging measurement quality indicator (RQI) which detects the UWB measurement quality based on the received signal strength pattern. With a detection validity of more than 83%, the RQI is then implemented in a ranging-based collaborative positioning system. The relative constraint of the collaborative network is adjusted adaptively according to the detected RQI. The proposed detection and positioning algorithm improves positioning accuracy by 80% compared to non-adaptive collaborative positioning

    Wireless Localization Systems: Statistical Modeling and Algorithm Design

    Get PDF
    Wireless localization systems are essential for emerging applications that rely on context-awareness, especially in civil, logistic, and security sectors. Accurate localization in indoor environments is still a challenge and triggers a fervent research activity worldwide. The performance of such systems relies on the quality of range measurements gathered by processing wireless signals within the sensors composing the localization system. Such range estimates serve as observations for the target position inference. The quality of range estimates depends on the network intrinsic properties and signal processing techniques. Therefore, the system design and analysis call for the statistical modeling of range information and the algorithm design for ranging, localization and tracking. The main objectives of this thesis are: (i) the derivation of statistical models and (ii) the design of algorithms for different wire- less localization systems, with particular regard to passive and semi-passive systems (i.e., active radar systems, passive radar systems, and radio frequency identification systems). Statistical models for the range information are derived, low-complexity algorithms with soft-decision and hard-decision are proposed, and several wideband localization systems have been analyzed. The research activity has been conducted also within the framework of different projects in collaboration with companies and other universities, and within a one-year-long research period at Massachusetts Institute of Technology, Cambridge, MA, USA. The analysis of system performance, the derived models, and the proposed algorithms are validated considering different case studies in realistic scenarios and also using the results obtained under the aforementioned projects
    • …
    corecore