To ensure safety in confined environments such as mines or subway tunnels, a
(wireless) sensor network can be deployed to monitor various environmental
conditions. One of its most important applications is to track personnel,
mobile equipment and vehicles. However, the state-of-the-art algorithms assume
that the positions of the sensors are perfectly known, which is not necessarily
true due to imprecise placement and/or dropping of sensors. Therefore, we
propose an automatic approach for simultaneous refinement of sensors' positions
and target tracking. We divide the considered area in a finite number of cells,
define dynamic and measurement models, and apply a discrete variant of belief
propagation which can efficiently solve this high-dimensional problem, and
handle all non-Gaussian uncertainties expected in this kind of environments.
Finally, we use ray-tracing simulation to generate an artificial mine-like
environment and generate synthetic measurement data. According to our extensive
simulation study, the proposed approach performs significantly better than
standard Bayesian target tracking and localization algorithms, and provides
robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201