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A Non-Line-of-Sight Mitigation Method for Indoor
Ultra-Wideband Localization With Multiple Walls

Mengyao Dong , Graduate Student Member, IEEE, Yihong Qi , Senior Member, IEEE,
Xianbin Wang , Fellow, IEEE, and Yiming Liu

Abstract—Ultra-wideband (UWB) ranging techniques can
provide accurate distance measurement under line-of-sight
(LOS) conditions. However, various walls and obstacles in
indoor non-LOS (NLOS) environments, which obstruct the
direct propagation of UWB signals, can generate signifi-
cant ranging errors. Due to the complex through-wall UWB
signal propagation, most conventional studies simplify the
ranging error model by assuming that the incidence angle
is zero or the relative permittivities for different walls are
the same to improve the through-wall UWB localization
performance. Considering walls are different in realistic
settings, this article presents a through-multiple-wall NLOS
mitigation method for UWB indoor positioning. First, spa-
tial geometric equilibrium equations of UWB through-wall
propagation and a numerical method are developed for
the precise modeling of UWB through-wall ranging errors.
Then, calculated error maps are determined numerically
without field measurements. Finally, the determined error
maps are combined with a gray wolf optimization algo-
rithm for localization. The proposed method is evaluated
via field experiments with four rooms, three walls, and six
penetration cases. The results demonstrate that the method
can strongly mitigate the multi-wall. NLOS effects on the
performance of UWB positioning systems. This solution
can reduce project costs and number of power supplies for
UWB indoor positioning applications.

Index Terms—Error map, gray wolf optimization (GWO),
indoor localization, non-line-of-sight (NLOS), through-wall,
ultra-wideband (UWB).
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I. INTRODUCTION

IN the era of Industry 4.0, indoor positioning technology has
been widely used in different industrial applications such as

robot services and smart manufacturing [1], [2]. The indoor posi-
tioning market will reach $41 billion by 2022 [3]. Many wireless
technologies, particularly Bluetooth [4], radio frequency iden-
tification (RFID) tags [5], and Wi-Fi [2], have been utilized to
achieve indoor positioning. In large-scale scenarios, Bluetooth
and RFID technologies have the advantages of low cost and
low power consumption [4], [5]. Wi-Fi-based systems can lever-
age existing Wi-Fi infrastructures without additional hardware
costs [2], [6]. However, these techniques do not provide high
positioning accuracy [7], and they often divide the indoor map
into many grids to sample signal fingerprints, which requires
high human workloads. Alternatively, ultra-wideband (UWB)
technology has attracted intensive attention [1], [8], [9]. With
its extremely high bandwidth, short pulse waveform, and low
transmission power, UWB technology offers the advantages of
high accuracy, strong penetration ability, long range, robustness
to multipath, and good coexistence with other communication
systems [10]. Therefore, UWB technology is a desirable solution
for indoor positioning.

Using UWB technology for planar indoor positioning requires
at least three UWB nodes with fixed locations as anchors around
the indoor area. Another UWB mobile node, named tag, has to
continuously range with the anchors to determine its changing
location. The measured distances from the anchors to the tag are
used as inputs to a localization algorithm to locate the mobile
tag.

There may be one or multiple obstacles in the service area,
e.g., movable furniture or fixed walls, between the UWB tag
and anchors, leading to non-line-of-sight (NLOS) scenarios [1],
[11], [12]. Ranging results based on time of arrival (TOA) may
contain positive errors in excess of 1 m in NLOS scenarios,
compared with the 20-cm ranging accuracy that is common
in line-of-sight (LOS) cases [1], [8]. In practice, to provide
high-precision indoor positioning, additional UWB anchors
have to be installed on both sides of a wall to avoid NLOS
ranging due to walls, which means each room is equipped
with a separate positioning system. A room length is generally
less than 20 m, whereas the maximum operational range of
UWB can reach 100 m [10]. As a result, applications of using
an independent positioning system in each room fail to take
advantage of UWB technology’s long-distance ranging and good
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penetration. Furthermore, additional UWB anchors significantly
increase UWB hardware complexity and deployment costs,
which hampers the large-scale development of UWB positioning
applications [13].

Many kinds of surrounding objects could induce NLOS prop-
agation in UWB positioning and different methods have been
proposed to mitigate different NLOS effects, such as walls [1],
furniture [7], and human body [9]. Walls and their effects have
attracted many specialized studies due to their ubiquity and
immobility. Studying the UWB through-wall localization can
be combined with other NLOS mitigation methods to address
hybrid NLOS situations.

Among the UWB NLOS mitigation methods, map-based
methods are suitable for relatively static indoor environ-
ments [7]. The map-based methods utilize the layout of the
specific positioning environment and the tag position to deter-
mine the NLOS situation, i.e., the number of walls between
an anchor and a tag [10]. It is possible to leverage through-
wall error information to mitigate the NLOS errors. However,
UWB through-wall ranging errors could be complex due to the
unknown layered materials in each wall. Recently, researchers
have approximated the through-wall ranging error models by
assuming that the relative permittivities for different walls are
the same [1], [12] or measured UWB positioning error maps [7]
to improve the positioning accuracy. For example, Silva and
Hancke reduced the NLOS localization errors by 42%–69%
after implementing a simplified error-model-based mitigation
algorithm [1]. Based on our extensive literature survey, the
following three research gaps have been identified.

1) Existing UWB through-wall ranging error models are
simplified and are not suitable for multiple walls.

2) Map-based UWB NLOS localization algorithms are often
based on the preliminary tag position [1], which may
incorrectly determine the error model used.

3) Existing fingerprint methods require a large number of
time-consuming measurement points in the field.

To address the above research gaps, this article proposes an
NLOS mitigation method for UWB indoor localization in the
presence of multiwall obstacles. The contributions are summa-
rized as follows.

1) We propose a numerical solution with spatial geometric
equilibrium equations for the UWB through-wall ranging
error model. The solution is adequate for one or multiple
walls of different thicknesses and materials and thus can
be applied in a wide variety of scenarios.

2) We develop a method for calculating the error map based
on the proposed UWB through-wall ranging error model.
The error map can be determined numerically without
field measurements, which is significantly different from
other measured error maps.

3) We combine the error maps with a gray wolf optimization
(GWO) algorithm for positioning UWB tags and verify
the method using static and continuous experiments.

The rest of this article is organized as follows. Section II
reviews the existing methods. Section III introduces the UWB
through-wall ranging. Section IV presents the proposed method.

TABLE I
RECENT EXISTING RESEARCH ON UWB NLOS MITIGATION

Section V describes experiments, results, and discussions. Fi-
nally, Section VI concludes this article.

II. RELATED WORKS

To tackle the UWB NLOS mitigation challenges, the key is
to characterize and mitigate the effect of NLOS obstacles on the
UWB signal propagation path. Recent studies in the literature
can be classified into four categories: 1) channel-based meth-
ods [14], [15], [16], 2) prior-knowledge-based methods [17], 3)
map-based methods [1], [7], and 4) others [18]. The method pro-
posed in this study is a map-based method. Table I summarizes
the notable UWB NLOS mitigation research over the past three
years.

The channel-based methods rely on the fact that UWB channel
statistics [10] or diagnosis information [14] changes as UWB
signals penetrate through obstacles. Researchers tried to build
a relationship (or regression model) between the channel infor-
mation and NLOS errors in advance, and used the relationship
and field channel data to estimate the NLOS errors, and then
mitigated the errors in UWB ranging or positioning. For exam-
ple, Yu et al. [10] proposed a fuzzy comprehensive evaluation
method to classify UWB channels into multiple cases, such as
LOS and penetrating concrete walls, and estimated the NLOS
errors based on the different cases. Similarly, machine learning
algorithms, such as deep neural networks, have been used to
establish relationships between the channel information and
through-wall NLOS errors [15]. However, the relationships are
unstable and not easy to build because extensive measurement
campaigns are required on site [1]. Furthermore, not all the UWB
sensors have access to channel information [17].

Prior knowledge includes thresholds or probability density
functions of the ranging or positioning errors [10], [17]. Based
on the modeled prior knowledge, Bayesian filters [17], such
as Kalman filter [18] and particle filter [9], are often used to
mitigate the NLOS errors. However, the prior knowledge is
only applicable to some specific scenarios [10] and/or additional
acceleration sensors [17]. For example, Barbieri et al. developed
a Bayesian filtering method with a prior probability density
function of the NLOS errors and assumed that the velocity vector
of the tag was known [17].
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Fig. 1. Through-wall UWB wave propagation.

For a relatively static indoor environment, map-based meth-
ods can leverage through-wall error models to reduce each
NLOS ranging error. Silva and Hancke [1] developed a through-
wall NLOS error model using regression analysis. Ngo et al. [12]
derived the theoretical bounds of through-wall NLOS errors. In
the work of Silva and Hancke [1] and Ngo et al. [12], the relative
permittivities of different walls were assumed to be the same in
the various positioning scenarios for simplicity. Djaja-Josko and
Kolakowski [11] assumed the through-wall UWB waves were
perpendicular to walls. However, in a more realistic scenario, a
UWB ranging process could involve different incidence angles
and multiple walls with different thicknesses and materials.
Furthermore, with a 1-m NLOS ranging error, the tag may be
localized in different rooms, resulting in distinct through-wall
error estimates. For example, Silva and Hancke [1] used a
trilateration algorithm to obtain a preliminary position of the
UWB tag and they assumed that the position accuracy was
sufficient to select the error model. However, when the UWB tag
was near the edge of a room, the preliminary estimate was likely
to be in a different room. Because the error models were clearly
different for different rooms, they may incorrectly calculate
the ranging errors based on the preliminary tag position. In
addition, UWB error maps can help to improve the positioning
accuracy [7]. However, this type of method requires intensive
grid measurements [17].

Based on the above review, each type of method has its own ad-
vantages and disadvantages. A new through-multiple-wall UWB
indoor localization algorithm is required with more realistic
error models, less time-consuming on-site measurements, and
independent of preliminary estimated position.

III. UWB THROUGH-WALL RANGING

A. UWB Through-Wall Propagation

As UWB signals propagate through a wall, as shown in Fig. 1,
the electromagnetic propagation medium first changes from air
to the wall and then back to air again, and the signals are reflected,
refracted, scattered, and diffracted, resulting in attenuation and
waveform distortion of the UWB signal [3], [21]. The UWB
signal attenuation is similar to what happens when a narrowband
signal propagates through a wall. The waveform distortion is
caused by the dispersion of the complex permittivities of indoor

building materials. Both the attenuation and distortion reduce
the signal-to-noise ratio, resulting in a reduced range for the
UWB [21]. While UWB ranging signals cannot penetrate very
thick walls, they can pass through most of the common building
walls [1].

During the propagation of the penetrated UWB signals inside
a wall, both the propagation path and speed of the signals are
changed by the wall [3]. Compared with multipath propagation
and door/window obstruction, the through-wall NLOS cases are
the main error source for UWB positioning systems [22], which
is the focus of this article.

B. UWB Through-Wall Ranging Error

Several assumptions were made in this study: At least three
UWB signals are still strong enough to range after penetrating
walls; the relative permittivities of the air on both sides of the
wall are the same and equal to one; the wall thickness can
be obtained by maps or field measurements. Based on these
assumptions, from the perspective of the TOA of a UWB signal,
UWB through-wall ranging errors can be explained as follows.
To illustrate the error more clearly, we select a wall, UWB tag,
and UWB anchor as an example. In the schematic shown in
Fig. 1, UWB signals propagate from point A (x1, y1) through
the wall to point D (x2, y2). Point B is the incident point, α is
the incidence angle, β is the refraction angle, and θ is the angle
between the two UWB nodes and the wall.

The propagation path of the UWB signal from point A to point
D is realized in several different segments, i.e., from point A to
point B, then to point C, and finally to point D. The relationship
between the incidence angle and refraction angle is given by
Snell’s law [12], which is the basic technical support of this
study

sinα
sinβ

≈ √
εr (1)

where εr is the relative permittivity of the wall. In general
indoor positioning scenarios, εr > 1 and 0 ≤ α < π

2 [1]. The
propagation speed of UWB waves in the air is approximately
the speed of light c while the speed in a wall is given by [1]

vw ≈ c√
εr

. (2)

Therefore, the actual time-of-arrival (TOA) is as follows:

t =
dAB

c
+

dBC
√
εr

c
+

dCD

c
(3)

where dAB , dBC , and dCD are the Euclidean distances between
the corresponding points.

However, the TOA-based UWB range between point A and
point D is determined by multiplying (3) by c [1], [12]

d̂AD = ct

= dAB + dBC
√
εr + dCD

. (4)

It is known that dAB + dBC + dCD ≥ dAD, where dAD is the
Euclidean distance between point A and point D, and εr > 1.
These two factors cause the TOA-based UWB through-wall
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Fig. 2. Proposed NLOS mitigation method for UWB localization with
multiple walls.

ranging results to be inaccurate. The ranging error of the TOA-
based method in this situation is calculated as follows:

e = d̂AD − dAD

=
|y1 − y2| − w

cosα
+

w

cosβ
√
εr − dAD

(5)

wherew is the thickness of the wall, and | · | denotes the absolute
value. However, it is difficult to calculate the NLOS errors
using (5) since the refraction angle β is unknown, especially
when UWB waves travel through multiple walls with different
intersection angles [12].

IV. PROPOSED METHOD

Fig. 2 shows the block diagram of our proposed method
for NLOS mitigation. In Section IV-A, we present a numeri-
cal solution with spatial geometric equilibrium equations for
the through-multiple-wall ranging error model. After using the
calibration process presented in Section IV-B and dividing the
map into regions and grids, the numerical solution is then used
to calculate error maps for the entire positioning system in
Section IV-C. Finally, the calculated error maps are combined
with a GWO algorithm to mitigate the positioning error in
Section IV-D.

A. Solving Ranging Errors Using Spatial Equilibrium
Equations

As shown in Fig. 1, the following geometric relationships
exist in the X- and Y-directions:

(dAB + dCD)sinα+ wtanβ = |x1 − x2|, (6)

(dAB + dCD)cosα+ w = |y1 − y2|. (7)

We define m = dAB + dCD. Therefore, (1), (6), and (7) can
form a system of three-variable trigonometric equations:

F (m,α, β) =

⎧⎨
⎩
f1 = msinα+ wtanβ − |x1 − x2|
f2 = mcosα+ w − |y1 − y2|
f3 = sinα

sinβ −√
εr

= 0 (8)

where m, α, and β are the three unknown values. Equation (8)
contains three unknown variables with four degrees and does
not have a closed solution.

As classical optimization methods, gradient descent and
Gauss–Newton algorithms can solve sums of squares of non-
linear functions, and thus solve nonlinear equations, such as
(8). The Levenberg–Marquardt algorithm combines the gradient
descent and Gauss–Newton algorithms by using a damping
parameter [23]. During the iterative update, a large damping pa-
rameter will make the Levenberg–Marquardt algorithm close to
the gradient descent algorithm, and a small damping parameter
will make the algorithm close to the Gauss–Newton algorithm.
In detail, the trial stepΔ at each iteration is calculated as follows:

Δ = −(JTJ + λI)−1JTF (9)

where λ is the damping parameter that is updated from iteration
to iteration, I is the identity matrix, and J is the Jacobian matrix
of F (m,α, β). In this case

J =

⎡
⎢⎣

∂f1
∂m

∂f1
∂α

∂f1
∂β

∂f2
∂m

∂f2
∂α

∂f2
∂β

∂f3
∂m

∂f3
∂α

∂f3
∂β

⎤
⎥⎦

=

⎡
⎢⎣

sinα mcosα w
cos2β

cosα −msinα 0
0 cosα

sinβ − sinαcosβ
sin2β

⎤
⎥⎦ .

(10)

In addition, a well-known library in Python, “scipy,” provides
the Levenberg–Marquardt algorithm. This method requires an
initial estimate of the unknown parameters (m0, α0, and β0). We
selected the following initial estimates:

m0 = dAD − w (11)

α0 = β0 = arctan(
|x1 − x2|
|y1 − y2| ). (12)

As shown in Fig. 3, UWB waves ranging through two walls,
including parallel and perpendicular walls, are more complex.
The proposed spatial geometric equilibrium equations are simi-
lar and can also determine the through-multiwall ranging errors
in both cases. The following geometric relationships can be built
in the X- and Y-directions for each scenario in Fig. 3. We set
m′ = dAB + dCD + dEF .

For parallel walls, a system of four-variable trigonometric
equations can be obtained as follows:

F‖(m,′ α, β1, β2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 = m′sinα+ w1tanβ1

+w2tanβ2 − |x1 − x2|
f2 = m′cosα+ w1 + w2

−|y1 − y2|
f3 = sinα

sinβ1
−√

εr1

f4 = sinα
sinβ2

−√
εr2

= 0. (13)
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Fig. 3. More complex scenarios of UWB waves ranging through two
walls: (a) parallel walls and (b) perpendicular walls. w1 and w2 denote
the thicknesses of the two walls, respectively, εr1 and εr2 denote the
relative permittivities of the two walls, respectively, and β1 and β2 are
the first and the second refraction angles, respectively.

For perpendicular walls, a system of four-variable quadratic
equations can be given as follows:

F⊥(m,′ α, β1, β2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1 = m′sinα+ w1tanβ1

+w2 − |x1 − x2|
f2 = m′cosα+ w1

+w2tanβ2 − |y1 − y2|
f3 = sinα

sinβ1
−√

εr1

f4 =
sin(π

2 −α)

sinβ2
−√

εr2

= 0. (14)

Based on these equations, we can use the Levenberg–
Marquardt algorithm to solve for the four unknown values,
m′, α, β1, and β2. The through-wall ranging errors in the two
scenarios shown in Fig. 3 can be calculated respectively using
the following equations:

e‖ =
|y1 − y2| − w1 − w2

cosα
+

w1

cosβ1

√
εr1

+
w2

cosβ2

√
εr2 − dAF

(15)

e⊥ =
|y1 − y2| − w1 − w2tanβ2

cosα
+

w1

cosβ1

√
εr1

+
w2

cosβ2

√
εr2 − dAF

. (16)

In addition, this method can determine through-wall NLOS
errors in arbitrary scenarios if we know the coordinates of the
UWB nodes and walls as well as the properties of the walls.

Remark 1: This method is based on the properties of the wall
(i.e., the thicknessw and relative permittivity εr) and the position
coordinates of the two UWB nodes are known.

To obtain the properties of the wall, a calibration process is
proposed in Section IV-B. Obtaining the location coordinates of
the UWB tag is a positioning problem, which is the purpose of
this article and is addressed in Sections IV-C and IV-D.

B. Calibrating Parameters

Most commercial venues typically have detailed floor plans
available [1]. The wall thickness w can be extracted from indoor
maps. In addition, when deploying UWB anchors to predefined
locations, we can measure the wall thickness simultaneously.
However, the relative permittivity εr is difficult to determine
because walls are nonhomogeneous and their materials are
hard to determine [3]. Here, a calibration process is used to
approximate the relative permittivity.

During the calibration process, two UWB nodes are placed
on opposite sides of each wall, with their connecting line per-
pendicular to the wall. The distance between each UWB node
and the wall is 50–200 cm, depending on the site conditions.
There should be no obstacle other than the wall between the
two UWB nodes. The true distance dw between the two UWB
nodes is first measured using a laser rangefinder or tape measure.
A two-way time-of-flight method [7] is then adopted to collect
the UWB ranging results using both UWB nodes. The relative
permittivity of the wall can be approximated using [1], [3]:

εr ≈
(
d̂w − dw

w
+ 1

)2

(17)

where d̂w denotes the UWB ranging result through the wall.
The calibration requires W measurements, where W denotes
the number of interior walls in the positioning system. The
calibration workload is acceptable since it runs concurrently
with the deployment of UWB anchors.

Remark 2: The relative permittivity of the wall obtained by
calibration is subject to error, but this result can provide a basis
for the subsequent calculations.

C. Calculating Error Maps

We consider localization in a two-dimensional indoor map
U ⊂ R2, where R denotes the set of real numbers. Fig. 4 shows
an indoor positioning scenario with W = 3 interior walls, some
exterior walls, and one UWB anchor. Here, we ignore the
presence of the doors.

With the anchor as the end point, a number of rays are drawn
through each wall’s connection points, including end points and
intersections. The rays and the walls divide the positioning plane
into several minimum division units, such as U1,1 and U1,2, as
shown in Fig. 4(a). If two line segments are drawn from the
anchor to any point in the two adjacent minimum division units,
and the number and order of the walls crossed by the two line
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Fig. 4. Error map of the positioning system for Anchor 2: (a) segmen-
tation process, where black lines denote the drawn rays and red dotted
lines denote the example line segments; (b) segmentation results, where
different color blocks denote different subareas.

segments are the same, then the two adjacent minimum division
units belong to the same subarea. For example, in Fig. 4(a), two
points are selected in the adjacent minimum division units U1,1

and U1,2, and the dotted red lines are drawn from the two points
to the anchor, both the red line segments only pass through wall
w3. Therefore, the two adjacent minimum division units U1,1

and U1,2 belong to the same subarea U1.
The final division results are shown in Fig. 4(b). Depending

on the combination of different walls, for each UWB anchor, the
entire positioning area U can be divided into up to

∑W
w=0 C

w
W

subareas. These subareas correspond to different through-wall
cases. For example, the subarea U4 indicates that when the tag is
in this subarea, the ranging between the tag and the anchor will
be through the walls w2 and w3.

Next, the whole map can be divided into grids, each with a
size of 10 × 10 cm. The UWB tag is placed in the center of each
grid, at which point the position coordinates of the UWB tag
and anchor and the wall properties (i.e., thickness and relative
permittivity) are known. Therefore, the through-wall ranging
error between the UWB tag and anchor can be determined by
the method proposed in Section IV-A. Different subareas require
different calculation equations. For example, (16) is required
when the tag is in the U4 subarea.

The calculated ranging error between the tag in each grid and
the ith anchor can be saved in a matrix as an offline error map

Ei =

⎡
⎢⎢⎢⎢⎣
ei,(1,1) ei,(1,2) . . . ei,(1,Y )

ei,(2,1) ei,(2,2) . . . ei,(2,Y )

...
...

. . .
...

ei,(X,1) ei,(X,2) . . . ei,(X,Y )

⎤
⎥⎥⎥⎥⎦ (18)

where X and Y denote the maximum number of grid elements
in two directions.

Remark 3: The proposed error map is calculated based on
the proposed error model and a simple calibration procedure,

which, unlike the fingerprint method [7], does not require a large
measurement effort.

D. Positioning Tags Using GWO Algorithm

We propose an error-map-based GWO algorithm for position-
ing tags in a two-dimensional through-wall scenario. The GWO
algorithm is a metaheuristic algorithm with high local optima
avoidance and computational speed [24]. The error-map-based
GWO method is suitable for all types of distance-based local-
ization questions. The main steps are summarized in Algorithm
1 as follows.

Step 1: Definition and initialization. There areN ≥ 3 anchors
and one tag in the positioning system. We definexi = [xi yi]

T ⊂
U as the position of the ith UWB anchor. In this scenario,
based on a two-way time-of-flight method [7], UWB ranging
can be used to measure the distances between N anchors and
the tag. The corresponding measured ranges are denoted by
d̂ = [d̂1 d̂2 . . . d̂N ]T . In addition, we define T as the maximum
number of iterations and initialize t = 0 as the current number
of iterations (0 ≤ t < T ). The positions xk = [xk yk]

T ⊂ U
are initialized randomly, denoting the position of the kth wolf,
k ∈ {1, 2, . . . ,K}, and K denotes the number of wolves.

Step 2: Calculating fitness. The fitness of the kth wolf is
calculated as follows:

d̃i,xk
= d̂i − ei,xk

(19)

fxk
=

N∑
i=1

|di,xk
− d̃i,xk

| (20)

where di,xk
and d̃i,xk

denote the true Euclidean distance and
the mitigated distance between the ith anchor and the kth wolf,
respectively, ei,xk

can be read from (18), and fxk
denotes the

fitness of the kth wolf.
Step 3: Sorting fitness. The calculated fitness values are

sorted, the smallest three fitness values are selected, and their
corresponding positions are labeled as xa, xb, and xc.

Step 4: Updating positions. The positions xk are updated
using the following equations [24]:⎧⎨

⎩
Da,xk

= |2r1 · xa − xk|
Db,xk

= |2r2 · xb − xk|
Dc,xk

= |2r3 · xc − xk|
(21)

⎧⎨
⎩

xk1 = xa − (2 − 2t
T ) · (2r4 − 1) ·Da,xk

xk2 = xb − (2 − 2t
T ) · (2r5 − 1) ·Db,xk

xk3 = xc − (2 − 2t
T ) · (2r6 − 1) ·Dc,xk

(22)

where {r1, r2, ..., r6} are random vectors in [0,1]. Then

xk(t+ 1) =
xk1 + xk2 + xk3

3
(23)

where xk(t+ 1) denotes the position of the kth wolf in the (t+
1)th iteration. After all positions of the K wolves are updated,
one iteration is completed, and we set t = t+ 1. Then, steps 2–4
are repeated until t ≥ T .

Step 5: Output. After T iterations, the location with the best
fitness is the final estimated location of the UWB tag.
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Algorithm 1: UWB Through-Multi-Wall Positioning Algo-
rithm.

Input: Locations of the UWB anchors xi; measured
ranges d̂; error maps Ei; maximum number of
iterations T ; the number of wolves K.

Output: Estimated location of the UWB tag.
1: Initialization: Set t = 0. Randomly initialize

xk = [xk yk]
T ⊂ U .

2: for t = 0 to T do
3: Calculate the fitness for all K wolves using (19) and

(20).
4: Sort the K fitness values.
5: Set the positions with the smallest three fitness

values to xa, xb, and xc.
6: Update the positions of the K wolves using (23).
7: end for
8: return xa

V. EVALUATION AND ANALYSIS

A. Experimental Setup

1) Test Site: Two-dimensional experiments were performed
in a factory with a hall and three rooms, as depicted in Fig. 5(a).
Fig. 5(b) shows a photograph of the hall. The overall size of the
factory was 14 × 20 m. The thicknesses of the three types of
interior walls are denoted as w1, w2, and w3.

2) Instruments: Four UWB nodes, based on a low-cost
DW1000 module [9] with a 2-dB omnidirectional antenna, were
used in the experiment, as shown in Fig. 5(b). Three of these
nodes were used as anchors and one was used for the tag. All
the UWB nodes were configured with the 3.993-GHz channel
and a data rate of 110 kb/s. UWB ranging was conducted using
a two-way time-of-flight method [7]. With this configuration,
the frequency of ranging and positioning was 3.57 Hz [9]. Data
collection and calculations were carried out on a PC with an
i7-8565 U CPU with a frequency of 1.8 GHz and 8 GB of RAM.

The coordinates of the anchors were AN1 (3.30, 17.13), AN2
(12.82, 6.50), and AN3 (0.85, 0.30) (unit: m). The height of the
UWB nodes was set to 2.5 m. A Mileseey rangefinder with an
accuracy of 2 mm and a tape measure with an accuracy of 1 mm
were used to find the true distances and positions.

3) Static Localization Experiment: Fig. 5(a) shows the layout
of the static localization experiment. The design of the layout
was limited by various goods stacked in the factory. The UWB
tag was placed one by one at each of the 29 locations with
known coordinates for ranging with the three UWB anchors.
At each location, the measurement lasted for 2 min. With the
positioning frequency of 3.57 Hz, the number of measurements
at each location was approximately 420. Therefore, the total
number of measurements was 29 × 420 = 12, 180.

4) Continuous Localization Experiment: In the continuous
localization experiments, a movable cart carried the UWB tag
slowly (∼0.1 m/s) along predetermined trajectories in Room
2, Room 3, and Hall, and the lengths of the trajectories were

Fig. 5. Experimental site: (a) Layout and (b) photographs of the hall
and the UWB anchor. “AN1,” “AN2,” and “AN3” denote the three UWB
anchors. The 29 red dots denote the locations of the UWB tag.

655, 720, and 1150 cm, respectively. The total number of mea-
surements was 1405. The reference trajectories included straight
lines, L-shapes, and rectangles due to the constraints imposed
by the locations of other objects in the rooms. The specific
trajectories are given in Fig. 10.

5) Localization Algorithm Implementation: In the static and
continuous experiments, three other map-based methods were
also compared with the proposed algorithm. The first and sec-
ond methods employed the traditional least-squares trilateration
algorithm and they used the corrected ranging results based on
the error models proposed in [11] and [12], named Model 1 and
Model 2, respectively. The third algorithm was proposed in [1],
named Model 3. In our algorithm, the anchor number N was
equal to 3, wolf number K was set to 15, and iteration number
T was set to 30.

B. Calibration and Calculated Error Map

From the layout of the factory, we obtained the thicknesses
of the three walls, w1, w2, and w3, which were 13, 13, and
20 cm, respectively. By applying the method in Section IV-C,
the averages of the relative permittivities of walls w1, w2, and
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Fig. 6. Through-wall ranging error map for each anchor. From left to
right are anchor 1, anchor 2, and anchor 3. Coordinate axes are in
meters, and ranging errors are in centimeters.

TABLE II
RANGING ERRORS IN THE STATIC EXPERIMENT

w3 were 4.97, 5.10, and 8.39, respectively, which required about
10 min in the field to determine. Then, the through-wall ranging
error maps were calculated using the PC described in Section V-
A as shown in Fig. 6. The calculation process took about 5 min
in our office. When penetrating one wall, the average values of
the measured and calculated errors were 44.52 and 31.28 cm,
respectively, with a difference of 13.24 cm. When penetrating
two walls, the mean measured error and calculated error were
56.60 and 45.35 cm, respectively, with a difference of 11.25 cm.

C. Static Experiment Results

1) Ranging Performance: The ranging performance was
evaluated based on the absolute ranging errors, including the
original measured and mitigated ranging errors. The evaluation
metrics included the mean and standard deviations (STDs).
Table II shows the ranging performance in the static experi-
ment. The mean original ranging errors between the UWB tag
and the anchors AN1, AN2, and AN3 were 45.84, 38.93, and
44.72 cm, respectively, and the overall mean ranging error was
43.16 cm. As a comparison, the proposed method effectively
mitigated the ranging error. When ranging with anchors AN1,
AN2, and AN3, the average mitigated ranging errors dropped

Fig. 7. Comparison of ranging errors in static experiments.

Fig. 8. CDF of the location errors in static experiments.

dramatically to 16.49, 12.13, and 17.96 cm, respectively. The
overall mean ranging error decreased to 15.53 cm. Similarly,
the standard deviation of the ranging error was reduced from
24.26 to 13.57 cm. Considering the different number of walls
penetrated, the proposed method can reduce the original range
errors by 40%, 69%, and 75% for the LOS, through-one-wall,
and through-two-wall cases, respectively.

Fig. 7 shows the violin charts [25] of the different ranging
error distributions. The width of each violin chart denotes its
probability density. Fig. 7 shows the blue charts were long and
thin, whereas the red charts were short and wide. This means
that the original ranging errors were dispersed with long-tail
behaviors while most of the mitigated ranging errors were more
concentrated and smaller.

2) Localization Performance: The localization performance
was evaluated based on the positioning error, i.e., the Euclidean
distance between the true and estimated positions of the UWB
tag. The average, standard deviation, and root-mean-square error
(RMSE) of the positioning errors were applied to represent the
localization performance [1], [10].

Table III shows the statistics of the location errors. In all
the rooms, the RMSEs of the Model 1, Model 2, and Model 3
algorithms were 28.72, 27.96, and 33.54 cm, respectively, while
the RMSE of the proposed method was reduced to 16.99 cm.
Overall, the proposed algorithm yielded small means, standard
deviations, and RMSEs compared to other methods. The perfor-
mance for single rooms is discussed in Section V-E1.
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TABLE III
STATIC LOCATION ERRORS USING DIFFERENT ALGORITHMS (UNIT: CM)

Fig. 9. Localization results using the proposed method in static exper-
iments. The horizontal and vertical axes in the magnified figure are the
X and Y axes, respectively. Coordinate axes are in centimeters.

Fig. 8 compares the cumulative distribution functions (CDFs)
for the location errors obtained using different algorithms. The
proposed method outperformed the other three map-based meth-
ods. For the proposed algorithm, 80% of the location errors were
below 30 cm while those of other methods were larger, even up
to 70 cm.

Fig. 9 shows the localization results for each UWB tag loca-
tion, where red dots denote the true positions, black dots denote
the estimated positions using our proposed method, and red
ellipses denote the elliptical error probability at 95% confidence
(EEP95) [17]. To emphasize the positioning errors, black lines
were drawn between each true position and the mean location
estimate. Most of the estimated locations were close to the real
locations, and only several locations in Room 3 deviated from
the real values.

D. Continuous Experiment Results

Fig. 10 shows the continuous localization results using the
proposed algorithm. Due to the lack of real positions of the
mobile UWB tag, measurable cross-track errors were used to
evaluate the mobile positioning accuracy, i.e., the shortest dis-
tance from the estimated position to the reference trajectory [10].
The average cross-track error was 13.28 cm. Note that since the
estimates did not always deviate vertically from the track, the
cross-track errors served only as a reference.

Fig. 11 compares the localization performances using dif-
ferent algorithms in the continuous experiments. The proposed

Fig. 10. Continuous localization results using the proposed method at
different sites. (a) Room 2. (b) Hall. (c) Room 3.

method was better than the other three map-based methods.
Over 80% of the cross-track errors using the proposed method
were smaller than 25 cm while those of other three map-based
methods were below 50–70 cm.

E. Discussion

1) Performance of Penetrating Multiple Walls: Fig. 12 com-
pares the localization performances of the proposed method
and other three map-based methods for different numbers of
penetrating walls in static experiments. In Room 2, the UWB
tag was separated from the three anchors by only one wall, and
the localization errors of all the algorithms were relatively close
to 16 cm. In the hall, two walls obstructed the UWB tag and the
anchors AN1 and AN3. The RMSE of the proposed algorithm
was 18.72 cm, which was clearly smaller than those of the other
three map-based methods. Details can be found in Table III. The
results showed that the proposed algorithm performed better in
the multiple-wall scenarios.
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Fig. 11. CDF of the cross-track location errors in the continuous ex-
periments.

Fig. 12. Localization error with different numbers of wall penetrations.

2) Effect of Uneven Walls on Localization Accuracy: Since
walls are nonhomogeneous and the relative permittivities of
the walls must be approximated in the calibration process,
it is necessary to discuss the effect of uneven walls on the
performance of the proposed method. The calibrated relative
permittivities were modified from−30% to 30% with a step size
of 10% to calculate the locations of the UWB tag in the static
experiments. The average localization error using the proposed
method was slightly increased by 1.6 cm from 21.98 to 23.58 cm.
As comparison, the error using Model 1 increased by 4.54 cm,
whereas that using Model 2 was increased by 4.55 cm. As
Model 3 did not use the relative permittivity, the results were
unchanged. Even so, the accuracy using the proposed method
was still the best. This means the acceptable variations in relative
permittivity had little effect on the localization accuracy of the
method.

3) Effect of Grid Size: Here, we set up eight different grid
sizes, including 1 × 1, 5 × 5, 10 × 10, 20 × 20, 30 × 30, 40 ×
40, 50 × 50, and 100 × 100 cm. Accordingly, we used these
eight grid sizes to calculate eight error maps, which were used
in the static experiments. Other experimental environments and
conditions were unchanged. Fig. 13 shows the relationship
between the grid size and the localization errors as well as
the relationship between the grid size and the number of grid
elements of the error maps. The RMSE of the proposed method
increased as the grid became larger while the number of grid
elements of the calculated error maps decreased rapidly. When
the grid size was 10 × 10 cm, the RMSE of the proposed method
was 16.99 cm and the number of grid elements of the error

Fig. 13. Effect of using different grid sizes in the error maps.

maps was 28 000, achieving a balance between the number of
grid elements and the localization performance. In addition, we
calculated the estimation rate of the localization system [6],
which is related to the grid size. For the eight grid sizes, the
estimation rates were 0.1%, 1.1%, 6.6%, 44.1%, 86.4%, 94.3%,
97.5%, and 100%, respectively. It is worth mentioning that the
grid size did not affect the field workload using the proposed
method. The grid size can be adjusted based on the hardware of
the calculation platform.

4) Robustness: In the factory experiment, there were four
rooms, three interior walls with different thicknesses and rel-
ative permittivities, and six types of penetration situations. To
further verify the robustness, we conducted another UWB indoor
localization experiment in a lounge and two restrooms with an
overall size of 5.87 × 7 m. There were other two walls and three
penetration cases. The experimental configurations were similar
to those in the factory experiments. The positions of the anchors
were AN1 (2.5, 0.35), AN2 (0.5, 6.5), and AN3 (5.37, 6.5) (unit:
m). The height of the UWB anchors and tag was 1.26 m. There
were two interior walls on the site. The thicknesses were 30
and 13 mm. The relative permittivities were calibrated as 7.75
and 5.30. The overall mean ranging error decreased from 43.63
to 11.28 cm with a mitigation rate of 74%. The RMSE of the
proposed method was reduced to 16.14 cm.

5) Effect of Wall Materials: We have investigated common
indoor walls, including concrete, wood, gypsum, and brick
walls. First, we calibrated these walls using the proposed method
in Section IV-B. Based on the calibration results, we calcu-
lated the UWB through-wall ranging errors, which was 33.34,
19.53, 15.48, and 7.14 cm for the different walls. Then, we
moved the UWB nodes but ensured they passed through the
same wall. The average measured through-wall ranging errors
were 37.61, 23.39, 17.03, and 10.76 cm for the different walls,
respectively. Correspondingly, the difference between the cal-
culated and measured ranging errors were 4.27, 3.86, 1.55, and
3.62 cm, respectively. The calculated ranging errors were close
to the measured ranging errors, demonstrating that the proposed
method is competent for different types of walls. Benefiting
from the on-site calibration, we do not need to be particularly
concerned with the type of wall. It should be noted that the
walls in this study are common indoor walls with materials and
thicknesses that allow UWB wave penetration.

6) Effect of Doors and Windows: To investigate the effect of
doors and windows, we conducted one through-door and one
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TABLE IV
COMPARISON OF THIS WORK WITH OTHER UWB MAP-BASED METHODS

through-window UWB ranging experiments. The door is made
of wood and is a common interior door. The window is mainly
made of glass. There were two UWB nodes in the experiments,
and their configuration was the same as the previous one. Here,
we considered the door and window as a specific type of wall
and calibrated the door and window. And, we calculated the
UWB through-door and through-window ranging errors as 4.80
and 0.93 cm, respectively. Then, we moved the UWB nodes and
measured the ranging errors, which were close to the calculated
ranging errors. In addition, we counted the thickness of 10
common interior doors and windows. The thickness of common
interior doors in offices is between 3 and 5 cm, and the thickness
of common interior windows is generally less than 1 cm. The
general penetration ranging error is less than 6 cm. Therefore,
we can use our approach to calibrate doors or windows and
then mitigate the ranging error to improve the accuracy of the
positioning system, or we can directly treat the door or window
as a LOS case to simplify the system.

F. Comparison With Other Studies

Table IV shows the comparisons of the results from the
proposed and other map-based UWB positioning approaches.
Silva and Hancke [1] did not require the calibration for walls,
which is a great contribution. However, they assumed that the
relative permittivities of multiple walls were identical and the
walls being penetrated could be known. Ngo et al. [12] directly
measured the UWB through-one-wall ranging error, which is
one type of calibration. The measured through-one-wall rang-
ing error was used to correct the UWB ranging results. And
they made the same two assumptions. Djaja-Josko et al. [11]
measured the delay of UWB signals introduced by different
walls, which is another type of calibration. The delay multiplied
by the propagation speed of the electromagnetic wave is the
through-wall ranging errors. But they did not consider the mul-
tiwall scenarios and they also assumed that the walls penetrated
by UWB signals are known. Based on these great works [1],
[11], [12], our approach uses maps and calibration but does not
rely on the two assumptions, and achieves a smaller RMSE than
other methods.

Because the proposed method uses maps and calibration,
which is similar to the fingerprint method, Table V compares
the method with three excellent fingerprint methods. There were

TABLE V
COMPARISON OF THIS WORK WITH FINGERPRINT METHOD

several experimental settings in [2]. Among them, a 20 × 20-m
laboratory with 3 Wi-Fi nodes was divided into equal-sized
grids with a size of 4 × 4 m. At each grid, six points were
collected. A total of 150 on-site measurements were conducted
to collect the received signal strength (RSS). The best average
localization error was 1.38 m. Similarly, a 73 × 20-m indoor
area surrounded by 9 Wi-Fi nodes was divided into 175 grid
points with an interval of 0.8 m between adjoining points.
The RMSE was 2.50 m [26]. Four long-range (LoRa) nodes
were deployed in a 50 × 100-m indoor space [6]. The whole
indoor space was divided into 3-m spaced hexagon girds. In the
field, 149 measurements were conducted to build the fingerprint
database. The average error distance was 1.76 m [6]. In the
preparation of our experiment, we only conducted three on-site
measurements to calibrate wall properties. Then, we calculated
UWB ranging errors at each grid instead of measuring, meaning
the grid number only increases the calculation instead of the
measurement workload. Therefore, our approach using UWB
technology has the advantage of high accuracy and low workload
compared with the fingerprint methods using Wi-Fi and LoRa.

G. Limitations and Future Work

The study has some limitations that will be addressed in the
future. Currently, only interior walls were investigated. The
proposed method will be combined with other UWB NLOS
mitigation methods to mitigate hybrid NLOS cases, such as
NLOS errors induced by the simultaneous blocking of signals by
walls, furniture, and human bodies. Furthermore, the proposed
method assumes the UWB through-wall signals can function
properly. We will combine this work with signal characteristics
and coverage. In addition, we will verify the robustness or
generality in more scenarios, and we will extend this work from
localization to tracking by adding prediction methods, such as
the Kalman filter.

VI. CONCLUSION

In this article, we present an NLOS mitigation method
for UWB indoor positioning with multiple walls. Specifically,
we develop spatial geometric equilibrium equations of UWB
through-wall propagation to accurately model UWB through-
multiwall ranging errors. Based on the modeled ranging errors,
we calculate error maps without time-consuming field mea-
surements. Finally, we propose a localization algorithm that
incorporates the error map and GWO. The solution is effective
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for realistic industrial environments with multiple walls and
different relative permittivities. We conducted field experiments
in different scenarios to evaluate the method. The RMSE of the
proposed algorithm was 16.99 cm, which was 60% less than that
without NLOS mitigation. The effects of penetrating different
walls, inhomogeneity of the walls, and different grid sizes and
robustness were discussed. The results showed the effectiveness
of the proposed method in improving the location estimation
performance in a multi-wall scenario. In the future, we will
further consider hybrid NLOS scenarios and signal coverage,
explore the robustness, and extend this work from positioning
to track.
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