116 research outputs found

    A 10-b Fourth-Order Quadrature Bandpass Continuous-Time Ī£Ī” Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver

    Get PDF
    This document is the Accepted Manuscript version of the following article: Junfeng Zhang, Yang Xu, Zehong Zhang, Yichuang Sun, Zhihua Wang, and Baoyong Chi, ā€˜A 10-b Fourth-Order Quadrature Bandpass Continuous-Time Ī£Ī” Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiverā€™, IEEE Transactions on Microwave Theory and Practice, Vol. 65 (4): 1303-1314, first published online 16 February 2017. The version of record is available online at DOI: 10.1109/TMTT.2017.266237, Published by IEEE. Ā© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A fourth-order quadrature bandpass continuous-time sigma-delta modulator for a dual-channel global navigation satellite system (GNSS) receiver is presented. With a bandwidth (BW) of 33 MHz, the modulator is able to digitalize the downconverted GNSS signals in two adjacent signal bands simultaneously, realizing dual-channel GNSS reception with one receiver channel instead of two independent receiver channels. To maintain the loop-stability of the high-order architecture, any extra loop phase shifting should be minimized. In the system architecture, a feedback and feedforward hybrid architecture is used to implement the fourth-order loop-filter, and a return-to-zero (RZ) feedback after the discrete-time differential operation is introduced into the input of the final integrator to realize the excess loop delay compensation, saving a spare summing amplifier. In the circuit implementation, power-efficient amplifiers with high-frequency active feedforward and antipole-splitting techniques are employed in the active RC integrators, and self-calibrated comparators are used to implement the low-power 3-b quantizers. These power saving techniques help achieve superior figure of merit for the presented modulator. With a sampling rate of 460 MHz, current-steering digital-analog converters are chosen to guarantee high conversion speed. Implemented in only 180-nm CMOS, the modulator achieves 62.1-dB peak signal to noise and distortion ratio, 64-dB dynamic range, and 59.3-dB image rejection ratio, with a BW of 33 MHz, and consumes 54.4 mW from a 1.8 V power supply.Peer reviewe

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (Ī£Ī”) modulators (Ī£Ī”Ms) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order Ī£Ī”M, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 Ī¼W, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient Ī£Ī”M using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuitā€™s sensitivity to the circuit componentsā€™ variations. This continuous-time, 2-1 MASH Ī£Ī”M has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The Ī£Ī”M achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the authorā€™s knowledge the circuit achieves the lowest Walden FOMW for Ī£Ī”Ms operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    Design of Highly Efficient Analog-To-Digital Converters

    Get PDF
    The demand of higher data rates in communication systems is reflected in the constant evolution of communication standards. LTE-A and WiFi 802.11ac promote the use of carrier aggregation to increase the data rate of a wireless receiver. Recent DTV receivers promote the concept of full band capture to avoid the implementation of complex analog operations such as: filtering, equalization, modulation/demodulation, etc. All these operations can be implemented in a robust manner in the digital domain. Analog-to-Digital Converters (ADCs) are located at the heart of such architectures and require to have larger bandwidths and higher dynamic ranges. However, at higher data rates the power efficiency of ADCs tends to degrade. Moreover, while the scale of channel length in CMOS devices directly benefits the power, speed and area of digital circuits, analog circuits suffer from lower intrinsic gain and higher device mismatch. Thus, it has been difficult to design high-speed ADCs with low-power operation using traditional architectures without relying on increasingly complex digital calibration algorithms. This research presents three ADCs that introduce novel architectures to relax the specifications of the analog circuits and reduce the complexity of the digital calibration algorithms. A low-pass sigma delta ADC with 15 MHz of bandwidth is introduced. The system uses a low-power 7-bit quantizer from which the four most significant bits are used for the operation of the sigma delta ADC. The remaining three least significant bits are used for the realization of a frequency domain algorithm for quantization noise improvement. The prototype was implemented in 130 nm CMOS technology. For this prototype, the use of the 7-bit quantizer and algorithm improved the SNDR from 69 dB to 75 dB. The obtained FoM was 145 fJ/conversion-step. In a second project, the problem of high power consumption demanded from closed loop operational amplifiers operating at Giga hertz frequency is addressed. Especially the dependency of the power consumption to the closed loop gain. This project presents a low-pass sigma delta ADC with 75 MHz bandwidth. The traditional summing amplifier used for excess loop compensation delay is substituted by a summing amplifier with current buffer that decouples the power consumption dependency with the closed loop gain. The prototype was designed in 40 nm CMOS technology achieving 64.9 dB peak SNDR. The operating frequency was 3.2 GHz, the total power consumption was 22 mW and FoM of 106 fJ/conversion-step. In a third project, the same approach of decoupling the power consumption requirements from the closed loop gain is applied to a pipelined ADC. The traditional capacitive multiplying DAC used in the residual amplifier is substituted by a current mode DAC and a transimpedance amplifier. The prototype was implemented in 40 nm CMOS technology achieving 58 dB peak SNDR and 76 dB SFDR with 200 MHz sampling frequency. The ADC consumes 8.4 mW with a FoM of 64 fJ/Conversion-step

    Low Power Analog to Digital Converters in Advanced CMOS Technology Nodes

    Get PDF
    The dissertation presents system and circuit solutions to improve the power efficiency and address high-speed design issues of ADCs in advanced CMOS technologies. For image sensor applications, a high-performance digitizer prototype based on column-parallel single-slope ADC (SS-ADC) topology for readout of a back-illuminated 3D-stacked CMOS image sensor is presented. To address the high power consumption issue in high-speed digital counters, a passing window (PW) based hybrid counter topology is proposed. To address the high column FPN under bright illumination conditions, a double auto-zeroing (AZ) scheme is proposed. The proposed techniques are experimentally verified in a prototype chip designed and fabricated in the TSMC 40 nm low-power CMOS process. The PW technique saves 52.8% of power consumption in the hybrid digital counters. Dark/bright column fixed pattern noise (FPN) of 0.0024%/0.028% is achieved employing the proposed double AZ technique for digital correlated double sampling (CDS). A single-column digitizer consumes total power of 66.8Ī¼W and occupies an area of 5.4 Āµm x 610 Āµm. For mobile/wireless receiver applications, this dissertation presents a low-power wide-bandwidth multistage noise-shaping (MASH) continuous-time delta-sigma modulator (CT-Ī”Ī£M) employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The proposed MASH 1-1-1 topology is a cascade of three single-loop first-order CT-Ī”Ī£M stages, each of which consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulatorā€™s jitter sensitivity performance. FIRā€™s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing comparator outputs is proposed; this approach is suitable for highspeed operation together with power and area benefits. Fabricated in a 40-nm low-power CMOS technology, the modulatorā€™s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR), 68 dB of signal-to-noise ratio (SNR), and 68.2 dB of dynamic range (DR) within 50.5 MHz of bandwidth (BW), while consuming 19 mW of total power (P). The proposed modulator features 161.5 dB of figure-of-merit (FOM), defined as FOM = SNDR + 10 log10 (BW/P)

    Design of a Continuous-Time (CT) Sigma-Delta modulator for class D audio power amplifiers

    Get PDF
    DissertaĆ§Ć£o apresentada na Faculdade de CiĆŖncias e Tecnologia da Universidade Nova de Lisboa para obtenĆ§Ć£o do Grau de Mestre em Engenharia ElectrotĆ©cnica e de Computadore

    High Speed and Wide Bandwidth Delta-Sigma ADCs

    Full text link

    Low Noise, Jitter Tolerant Continuous-Time Sigma-Delta Modulator

    Get PDF
    The demand for higher data rates in receivers with carrier aggregation (CA) such as LTE, increases the efforts to integrate large number of wireless services into single receiving path, so it needs to digitize the signal in intermediate or high frequencies. It relaxes most of the front-end blocks but makes the design of ADC very challenging. Solving the bottleneck associated with ADC in receiver architecture is a major focus of many ongoing researches. Recently, continuous time Sigma-Delta analog-to-digital converters (ADCs) are getting more attention due to their inherent filtering properties, lower power consumption and wider input bandwidth. But, it suffers from several non-idealities such as clock jitter and ELD which decrease the ADC performance. This dissertation presents two projects that address CT-Ī£Ī” modulator non-idealities. One of the projects is a CT- Ī£Ī” modulator with 10.9 Effective Number of Bits (ENOB) with Gradient Descent (GD) based calibration technique. The GD algorithm is used to extract loop gain transfer function coefficients. A quantization noise reduction technique is then employed to improve the Signal to Quantization Noise Ratio (SQNR) of the modulator using a 7-bit embedded quantizer. An analog fast path feedback topology is proposed which uses an analog differentiator in order to compensate excess loop delay. This approach relaxes the requirements of the amplifier placed in front of the quantizer. The modulator is implemented using a third order loop filter with a feed-forward compensation paths and a 3-bit quantizer in the feedback loop. In order to save power and improve loop linearity a two-stage class-AB amplifier is developed. The prototype modulator is implemented in 0.13Ī¼m CMOS technology, which achieves peak Signal to Noise and Distortion Ratio (SNDR) of 67.5dB while consuming total power of 8.5-mW under a 1.2V supply with an over sampling ratio of 10 at 300MHz sampling frequency. The prototype achieves Walden's Figure of Merit (FoM) of 146fJ/step. The second project addresses clock jitter non-ideality in Continuous Time Sigma Delta modulators (CT- Ī£Ī”M), the modulator suffer from performance degradation due to uncertainty in timing of clock at digital-to-analog converter (DAC). This thesis proposes to split the loop filter into two parts, analog and digital part to reduce the sensitivity of feedback DAC to clock jitter. By using the digital first-order filter after the quantizer, the effect of clock jitter is reduced without changing signal transfer function (STF). On the other hand, as one pole of the loop filter is implemented digitally, the power and area are reduced by minimizing active analog elements. Moreover, having more digital blocks in the loop of CT- Ī£Ī”M makes it less sensitive to process, voltage, and temperature variations. We also propose the use of a single DAC with a current divider to implement feedback coefficients instead of two DACs to decrease area and clock routing. The prototype is implemented in TSMC 40 nm technology and occupies 0.06 mm^2 area; the proposed solution consumes 6.9 mW, and operates at 500 MS/s. In a 10 MHz bandwidth, the measured dynamic range (DR), peak signal-to-noise-ratio (SNR), and peak signal-to-noise and distortion (SNDR) ratios in presence of 4.5 ps RMS clock jitter (0.22% clock period) are 75 dB, 68 dB, and 67 dB, respectively. The proposed structure is 10 dB more tolerant to clock jitter when compared to the conventional Ī£Ī”M design for similar loop filter
    • ā€¦
    corecore